
CakePHP-Upload Documentation
Release 1.3.0

Jose Diaz-Gonzalez

September 13, 2016

Contents

1 Introduction 3
1.1 Upload Plugin 2.0 . 3
1.2 Background . 3
1.3 Requirements . 3
1.4 What does this plugin do? . 3
1.5 This plugin does not do . 4

2 Installation 5
2.1 Using Composer . 5
2.2 Manual . 5
2.3 GIT Submodule . 5
2.4 GIT Clone . 5

3 Imagick Support 7

4 Enable plugin 9

5 Examples 11
5.1 Basic example . 11
5.2 Displaying links to files in your view . 13
5.3 Uploading Multiple files . 13
5.4 Remove a current file without deleting the entire record . 14
5.5 Saving two uploads into different folders . 14
5.6 Changing the upload path dynamically . 15

6 Behavior configuration options 17

7 Using a polymorphic attachment model for file storage 21

8 Thumbnail Sizes and Styles 25
8.1 PDF Support . 26

9 Validation rules 27
9.1 isUnderPhpSizeLimit . 27
9.2 isUnderFormSizeLimit . 27
9.3 isCompletedUpload . 27
9.4 isFileUpload . 28
9.5 isFileUploadOrHasExistingValue . 28
9.6 tempDirExists . 28

i

9.7 isSuccessfulWrite . 29
9.8 noPhpExtensionErrors . 29
9.9 isValidMimeType . 30
9.10 isWritable . 30
9.11 isValidDir . 31
9.12 isBelowMaxSize . 31
9.13 isAboveMinSize . 31
9.14 isValidExtension . 32
9.15 isAboveMinHeight . 32
9.16 isBelowMaxHeight . 33
9.17 isAboveMinWidth . 33
9.18 isBelowMaxWidth . 34

10 FileImportBehavior 35

11 Thumbnail shell 37
11.1 What it does . 37
11.2 How it works . 37
11.3 Running the shell . 37

12 Indices and tables 39

ii

CakePHP-Upload Documentation, Release 1.3.0

Contents:

Contents 1

CakePHP-Upload Documentation, Release 1.3.0

2 Contents

CHAPTER 1

Introduction

1.1 Upload Plugin 2.0

The Upload Plugin is an attempt to sanely upload files using techniques garnered from packages such as MeioUpload
, UploadPack and PHP documentation.

1.2 Background

Media Plugin is too complicated, and it was a PITA to merge the latest updates into MeioUpload, so here I am, building
yet another upload plugin. I’ll build another in a month and call it “YAUP”.

1.3 Requirements

• CakePHP 2.x

• Imagick/GD PHP Extension (for thumbnail creation)

• PHP 5

• Patience

1.4 What does this plugin do?

• The Upload plugin will transfer files from a form in your application to (by default) the webroot/files
directory organised by the model name and primaryKey field.

• It can also move files around programatically. Such as from the filesystem.

• The path to which the files are saved can be customised.

• It can also create thumbnails for image files if the thumbnails option is set in the behaviour options.

• The plugin can also upload multiple files at the same time to different fields.

• Each upload field can be configured independantly of each other, such as changing the upload path or thumbnail
options.

• Uploaded file information can be stored in a data store, such as a MySQL database.

3

CakePHP-Upload Documentation, Release 1.3.0

• A variety of validation rules are provided to help validate against common rules.

1.5 This plugin does not do

• It will not convert files between file types. You cannot use it convert a JPG to a PNG

• It will not add watermarks to images for you.

4 Chapter 1. Introduction

CHAPTER 2

Installation

2.1 Using Composer

View on Packagist, and copy the json snippet for the latest version into your project’s composer.json. Eg, v.
2.x-dev would look like this:

{
"require": {

"josegonzalez/cakephp-upload": "2.x-dev"
}

}

This plugin has the type cakephp-plugin set in its own composer.json, composer knows to install it inside
your /Plugins directory, rather than in the usual vendors file. It is recommended that you add /Plugins/Upload
to your .gitignore file. (Why? read this.)

2.2 Manual

• Download this: https://github.com/josegonzalez/cakephp-upload/archive/2.x.zip

• Unzip that download.

• Copy the resulting folder to app/Plugin

• Rename the folder you just copied to Upload

2.3 GIT Submodule

In your app directory type:

git submodule add -b 2.x git://github.com/josegonzalez/cakephp-upload.git Plugin/Upload
git submodule init
git submodule update

2.4 GIT Clone

In your Plugin directory type:

5

https://packagist.org/packages/josegonzalez/cakephp-upload
http://getcomposer.org/doc/faqs/should-i-commit-the-dependencies-in-my-vendor-directory.md
https://github.com/josegonzalez/cakephp-upload/archive/2.x.zip

CakePHP-Upload Documentation, Release 1.3.0

git clone -b 2.x git://github.com/josegonzalez/cakephp-upload.git Upload

6 Chapter 2. Installation

CHAPTER 3

Imagick Support

To enable Imagick support, you need to have Imagick installed:

Debian systems
sudo apt-get install php5-imagick

OS X Homebrew
brew tap homebrew/dupes
brew tap josegonzalez/homebrew-php
brew install php54-imagick

From pecl
pecl install imagick

If you cannot install Imagick, instead configure the plugin with ’thumbnailMethod’ => ’php’ in the files
options.

7

http://www.imagemagick.org/

CakePHP-Upload Documentation, Release 1.3.0

8 Chapter 3. Imagick Support

CHAPTER 4

Enable plugin

You need to enable the plugin your app/Config/bootstrap.php file:

<?php
CakePlugin::load('Upload');

If you are already using CakePlugin::loadAll();, then this is not necessary.

9

CakePHP-Upload Documentation, Release 1.3.0

10 Chapter 4. Enable plugin

CHAPTER 5

Examples

5.1 Basic example

Note: You may want to define the Upload behavior before the core Translate Behavior as they have been
known to conflict with each other.

CREATE table users (
id int(10) unsigned NOT NULL auto_increment,
username varchar(20) NOT NULL,
photo varchar(255)

);

<?php
class User extends AppModel {

public $actsAs = array(
'Upload.Upload' => array(

'photo'
)

);
}
?>

<?php echo $this->Form->create('User', array('type' => 'file')); ?>
<?php echo $this->Form->input('User.username'); ?>
<?php echo $this->Form->input('User.photo', array('type' => 'file')); ?>
<?php echo $this->Form->end(); ?>

Using the above setup, uploaded files cannot be deleted. To do so, a field must be added to store the directory of the
file as follows:

CREATE table users (
`id` int(10) unsigned NOT NULL auto_increment,
`username` varchar(20) NOT NULL,
`photo` varchar(255) DEFAULT NULL,
`photo_dir` varchar(255) DEFAULT NULL,
PRIMARY KEY (`id`)

);

<?php
class User extends AppModel {

public $actsAs = array(
'Upload.Upload' => array(

'photo' => array(

11

CakePHP-Upload Documentation, Release 1.3.0

'fields' => array(
'dir' => 'photo_dir'

)
)

)
);

}
?>

In the above example, photo can be a file upload via a file input within a form, a file grabber (from a url) via a text
input, OR programatically used on the controller to file grab via a url.

5.1.1 File Upload Example

<?php echo $this->Form->create('User', array('type' => 'file')); ?>
<?php echo $this->Form->input('User.username'); ?>
<?php echo $this->Form->input('User.photo', array('type' => 'file')); ?>
<?php echo $this->Form->input('User.photo_dir', array('type' => 'hidden')); ?>

<?php echo $this->Form->end(); ?>

5.1.2 File Grabbing via Form Example

<?php echo $this->Form->create('User', array('type' => 'file')); ?>
<?php echo $this->Form->input('User.username'); ?>
<?php echo $this->Form->input('User.photo', array('type' => 'file')); ?>
<?php echo $this->Form->input('User.photo_dir', array('type' => 'hidden')); ?>

<?php echo $this->Form->end(); ?>

5.1.3 Programmatic File Retrieval without a Form

<?php
$this->User->set(array('photo' => $image_url));
$this->User->save();
?>

5.1.4 Thumbnail Creation

Thumbnails are not automatically created. To do so, thumbnail sizes must be defined: Note: by default thumbnails
will be generated by imagick, if you want to use GD you need to set the thumbnailMethod attribute. Example:
’thumbnailMethod’ => ’php’.

<?php
class User extends AppModel {

public $actsAs = array(
'Upload.Upload' => array(

'photo' => array(
'thumbnailSizes' => array(

'xvga' => '1024x768',
'vga' => '640x480',
'thumb' => '80x80'

)
)

12 Chapter 5. Examples

CakePHP-Upload Documentation, Release 1.3.0

)
);

}
?>

5.2 Displaying links to files in your view

Once your files have been uploaded you can link to them using the HtmlHelper by specifying the path and using
the file information from the database.

This example uses the default behaviour configuration using the model Example.

<?php
$exampleData = [

'Example' => [
'image' => 'imageFile.jpg',
'dir' => '7'

]
];

echo $this->Html->link('../files/example/image/' . $exampleData['Example']['dir'] . '/' . $exampleData['Example']['image']);
?>

If we have configured a thumbnail in our application. We can simply prefix our file with the name of that thumbnail.

<?php
echo $this->Html->link('../files/example/image/' . $exampleData['Example']['dir'] . '/thumb_' . $exampleData['Example']['image']);
?>

5.3 Uploading Multiple files

Multiple files can also be attached to a single record:

<?php
class User extends AppModel {

public $actsAs = array(
'Upload.Upload' => array(

'resume',
'photo' => array(

'fields' => array(
'dir' => 'profile_dir'

)
)

)
);

}
?>

Each key in the Upload.Upload array is a field name, and can contain it’s own configuration. For example, you
might want to set different fields for storing file paths:

<?php
class User extends AppModel {

public $actsAs = array(
'Upload.Upload' => array(

5.2. Displaying links to files in your view 13

CakePHP-Upload Documentation, Release 1.3.0

'resume' => array(
'fields' => array(

'dir' => 'resume_dir',
'type' => 'resume_type',
'size' => 'resume_size',

)
),
'photo' => array(

'fields' => array(
'dir' => 'photo_dir',
'type' => 'photo_type',
'size' => 'photo_size',

)
)

)
);

}
?>

Keep in mind that while this plugin does not have any limits in terms of number of files uploaded per request, you
should keep this down in order to decrease the ability of your users to block other requests.

If you are looking to add an unknown or high number of uploads to a model it’s worth considering using a polymorphic
attachment.

5.4 Remove a current file without deleting the entire record

In some cases you might want to remove a photo or uploaded file without having to remove the entire record from the
Model. In this case you would use the following code:

<?php
echo $this->Form->create('Model', array('type' => 'file'));
echo $this->Form->input('Model.file.remove', array('type' => 'checkbox', 'label' => 'Remove existing file'));
?>

5.5 Saving two uploads into different folders

Sometimes you might want to upload more than one file, but upload each file into a different folder. This is actually
very simple. By simply using the behavior configuration for each file you can change the path. Don’t forget to make
sure the plugin is installed first.

Let’s assume for this example that we want to upload a picture of a user, and say, a picture of their car. For the sake of
simplicity we’ll also assume that these files are just stored in the User model.

Note: It’s important to notice that each field can have it’s own configuration.

<?php
// app/Model/User.php
public $actsAs = array(

'Upload.Upload' => array(
'avatar' => array(// The name of the field in our database, so this is `users.avatar`

'rootDir' => ROOT, // Here we can define the rootDir, which is the root of the application, usually an absolute path to your project
'path' => '{ROOT}{DS}webroot{DS}files{DS}{model}{DS}{field}{DS}', // The path pattern that we want to use to save our file where {DS} is the directory separator and the {ROOT}, {model} and {field} tokens are replaced with their matching values
'fields' => array(

'dir' => 'image_dir' // It's always helpful to save the directory our files are in, just in case

14 Chapter 5. Examples

CakePHP-Upload Documentation, Release 1.3.0

)
),
'car' => array(

'path' => '{ROOT}{DS}webroot{DS}files{DS}cars{DS}' // Here we have changed the path, so our images will now be in a different folder
)

)
)

5.6 Changing the upload path dynamically

If you need to change the path of the upload dynamically you can do that by changing the behavior settings in your
model. Perhaps in a model callback such as beforeSave().

<?php
// app/Model/User.php
$this->Behaviors->Upload->settings['field']['path'] = $newPath;
?>

5.6. Changing the upload path dynamically 15

CakePHP-Upload Documentation, Release 1.3.0

16 Chapter 5. Examples

CHAPTER 6

Behavior configuration options

This is a list of all the available configuration options which can be passed in under each field in your behavior
configuration.

• pathMethod: The method to use for file paths. This is appended to the path option below

– Default: (string) primaryKey

– Options:

* flat: Does not create a path for each record. Files are moved to the value of the ‘path’ option.

* primaryKey: Path based upon the record’s primaryKey is generated. Persists across a record up-
date.

* random: Random path is generated for each file upload in the form nn/nn/nnwhere nn are random
numbers. Does not persist across a record update.

* randomCombined: Random path - with model id - is generated for each file upload in the form
ID/nn/nn/nn where ID is the current model’s ID and nn are random numbers. Does not persist
across a record update.

• path: A path relative to the rootDir. Should end in {DS}

– Default: (string) ’{ROOT}webroot{DS}files{DS}{model}{DS}{field}{DS}’

– Tokens:

* {ROOT}: Replaced by a rootDir option

* {DS}: Replaced by a DIRECTORY_SEPARATOR

* {model}: Replaced by the Model Alias.

* {field}: Replaced by the field name.

* {primaryKey}: Replaced by the record primary key, when available. If used on a new record being
created, will have undefined behavior.

* {size}: Replaced by a zero-length string (the empty string) when used for the regular file upload path.
Only available for resized thumbnails.

* {geometry}: Replaced by a zero-length string (the empty string) when used for the regular file upload
path. Only available for resized thumbnails.

• fields: An array of fields to use when uploading files

– Default: (array) array(’dir’ => ’dir’, ’type’ => ’type’, ’size’ => ’size’)

– Options:

17

CakePHP-Upload Documentation, Release 1.3.0

* dir: Field to use for storing the directory

* type: Field to use for storing the filetype

* size: Field to use for storing the filesize

• rootDir: Root directory for moving images. Auto-prepended to path and thumbnailPath where neces-
sary

– Default (string) ROOT . DS . APP_DIR . DS

• mimetypes: Array of mimetypes to use for validation

– Default: (array) empty

• extensions: Array of extensions to use for validation

– Default: (array) empty

• maxSize: Max filesize in bytes for validation

– Default: (int) 2097152

• minSize: Minimum filesize in bytes for validation

– Default: (int) 8

• maxHeight: Maximum image height for validation

– Default: (int) 0

• minHeight: Minimum image height for validation

– Default: (int) 0

• maxWidth: Maximum image width for validation

– Default: (int) 0

• minWidth: Minimum image width for validation

– Default: (int) 0

• deleteOnUpdate: Whether to delete files when uploading new versions (potentially dangerous due to nam-
ing conflicts)

– Default: (boolean) false

• thumbnails: Whether to create thumbnails or not

– Default: (boolean) true

• thumbnailMethod: The method to use for resizing thumbnails

– Default: (string) imagick

– Options:

* imagick: Uses the PHP imagick extension to generate thumbnails

* php: Uses the built-in PHP methods (GD extension) to generate thumbnails. Does not support BMP
images.

• thumbnailName: Naming style for a thumbnail

– Default: NULL

– Note: The tokens {size}, {geometry} and {filename} are valid for naming and will be auto-
replaced with the actual terms.

18 Chapter 6. Behavior configuration options

CakePHP-Upload Documentation, Release 1.3.0

– Note: As well, the extension of the file will be automatically added.

– Note: When left unspecified, will be set to {size}_{filename} or {filename}_{size} depend-
ing upon the value of thumbnailPrefixStyle

• thumbnailPath: A path relative to the rootDir where thumbnails will be saved. Should end in {DS}. If
not set, thumbnails will be saved at path.

– Default: NULL

– Tokens:

* {ROOT}: Replaced by a rootDir option

* {DS}: Replaced by a DIRECTORY_SEPARATOR

* {model}: Replaced by the Model Alias

* {field}: Replaced by the field name

* {size}: Replaced by the size key specified by a given thumbnailSize

* {geometry}: Replaced by the geometry value specified by a given thumbnailSize

• thumbnailPrefixStyle: Whether to prefix or suffix the style onto thumbnails

– Default: (boolean) true prefix the thumbnail

– Note that this overrides thumbnailName when thumbnailName is not specified in your config

• thumbnailQuality: Quality of thumbnails that will be generated, on a scale of 0-100. Not supported gif
images when using GD for image manipulation.

– Default: (int) 75

• thumbnailSizes: Array of thumbnail sizes, with the size-name mapping to a geometry

– Default: (array) empty

• thumbnailType: Override the type of the generated thumbnail

– Default: (mixed) false or png when the upload is a Media file

– Options:

* Any valid image type

• mediaThumbnailType: Override the type of the generated thumbnail for a non-image media (pdfs). Over-
rides thumbnailType

– Default: (mixed) png

– Options:

* Any valid image type

• saveDir: Can be used to turn off saving the directory

– Default: (boolean) true

– Note: Because of the way in which the directory is saved, if you are using a pathMethod other than
flat and you set saveDir to false, you may end up in situations where the file is in a location that you
cannot predict. This is more of an issue for a pathMethod of random and randomCombined than
primaryKey, but keep this in mind when fiddling with this option

• deleteFolderOnDelete: Delete folder related to current record on record delete

– Default: (boolean) false

19

CakePHP-Upload Documentation, Release 1.3.0

– Note: Because of the way in which the directory is saved, if you are using a pathMethod of flat, turning
this setting on will delete all your images. As such, setting this to true can be potentially dangerous.

• keepFilesOnDelete: Keep all files when uploading/deleting a record.

– Default: (boolean) false

– Note: This does not override deleteFolderOnDelete. If you set that setting to true, your images
may still be deleted. This is so that existing uploads are not deleted - unless overwritten.

• mode: The UNIX permissions to set on the created upload directories.

– Default: (integer) 0777

• handleUploadedFileCallback: If set to a method name available on your model, this model method
will handle the movement of the original file on disk. Can be used in conjunction with thumbnailMethod to
store your files in alternative locations, such as S3.

– Default: NULL

– Available arguments:

* string $field: Field being manipulated

* string $filename: The filename of the uploaded file

* string $destination: The configured destination of the moved file

• nameCallback: A callback that can be used to rename a file. Currently only handles original file naming.

– Default: NULL

– Available arguments:

* string $field: Field being manipulated

* string $currentName

* array $data

* array options:

· isThumbnail - a boolean field that is on when we are trying to infer a thumbnail path

· rootDir - root directory to replace {ROOT}

· geometry

· size

· thumbnailType

· thumbnailName

· thumbnailMethod

· mediaThumbnailType

· dir field name

· saveType - create, update, delete

– Return: String - returns the new name for the file

20 Chapter 6. Behavior configuration options

CHAPTER 7

Using a polymorphic attachment model for file storage

In some cases you will want to store multiple file uploads for multiple models, but will not want to use multiple tables
because your database is normalized. For example, we might have a Post model that can have many images for a
gallery, and a Message model that has many videos. In this case, we would use an Attachment model:

Post hasMany Attachment

We could use the following database schema for the Attachment model:

CREATE table attachments (
`id` int(10) unsigned NOT NULL auto_increment,
`model` varchar(20) NOT NULL,
`foreign_key` int(11) NOT NULL,
`name` varchar(32) NOT NULL,
`attachment` varchar(255) NOT NULL,
`dir` varchar(255) DEFAULT NULL,
`type` varchar(255) DEFAULT NULL,
`size` int(11) DEFAULT 0,
`active` tinyint(1) DEFAULT 1,
PRIMARY KEY (`id`)

);

Our attachment records would thus be able to have a name and be activated or deactivated on the fly. The schema is
simply an example, and such functionality would need to be implemented within your application.

Once the attachments table has been created, we would create the following model:

<?php
class Attachment extends AppModel {

public $actsAs = array(
'Upload.Upload' => array(

'attachment' => array(
'thumbnailSizes' => array(

'xvga' => '1024x768',
'vga' => '640x480',
'thumb' => '80x80',

),
),

),
);

public $belongsTo = array(
'Post' => array(

'className' => 'Post',
'foreignKey' => 'foreign_key',

21

CakePHP-Upload Documentation, Release 1.3.0

),
'Message' => array(

'className' => 'Message',
'foreignKey' => 'foreign_key',

),
);

}
?>

We would also need to create a valid inverse relationship in the Post model:

<?php
class Post extends AppModel {

public $hasMany = array(
'Image' => array(

'className' => 'Attachment',
'foreignKey' => 'foreign_key',
'conditions' => array(

'Image.model' => 'Post',
),

),
);

}
?>

The key thing to note here is the Post model has some conditions on the relationship to the Attachment model,
where the Image.model has to be Post. Remember to set the model field to Post, or whatever model it is you’d
like to attach it to, otherwise you may get incorrect relationship results when performing find queries.

We would also need a similar relationship in our Message model:

<?php
class Message extends AppModel {

public $hasMany = array(
'Video' => array(

'className' => 'Attachment',
'foreignKey' => 'foreign_key',
'conditions' => array(

'Video.model' => 'Message',
),

),
);

}
?>

Now that we have our models setup, we should create the proper actions in our controllers. To keep this short, we shall
only document the Post model:

<?php
class PostsController extends AppController {

/* the rest of your controller here */
public function add() {

if ($this->request->is('post')) {
try {

$this->Post->createWithAttachments($this->request->data);
$this->Session->setFlash(__('The message has been saved'));

} catch (Exception $e) {
$this->Session->setFlash($e->getMessage());

}
}

22 Chapter 7. Using a polymorphic attachment model for file storage

CakePHP-Upload Documentation, Release 1.3.0

}
}
?>

In the above example, we are calling our custom createWithAttachments method on the Post model. This
will allow us to unify the Post creation logic together in one place. That method is outlined below:

<?php
class Post extends AppModel {

/* the rest of your model here */

public function createWithAttachments($data) {
// Sanitize your images before adding them
$images = array();
if (!empty($data['Image'][0])) {

foreach ($data['Image'] as $i => $image) {
if (is_array($data['Image'][$i])) {

// Force setting the `model` field to this model
$image['model'] = 'Post';

// Unset the foreign_key if the user tries to specify it
if (isset($image['foreign_key'])) {

unset($image['foreign_key']);
}

$images[] = $image;
}

}
}
$data['Image'] = $images;

// Try to save the data using Model::saveAll()
$this->create();
if ($this->saveAll($data)) {

return true;
}

// Throw an exception for the controller
throw new Exception(__("This post could not be saved. Please try again"));

}
}
?>

The above model method will:

• Ensure we only try to save valid images

• Force the foreign_key to be unspecified. This will allow saveAll to properly associate it

• Force the model field to Post

Now that this is set, we just need a view for our controller. A sample view for View/Posts/add.ctp is as follows
(fields not necessary for the example are omitted):

<?php
echo $this->Form->create('Post', array('type' => 'file'));
echo $this->Form->input('Image.0.attachment', array('type' => 'file', 'label' => 'Image'));
echo $this->Form->input('Image.0.model', array('type' => 'hidden', 'value' => 'Post'));
echo $this->Form->end(__('Add'));

?>

23

CakePHP-Upload Documentation, Release 1.3.0

The one important thing you’ll notice is that I am not referring to the Attachment model as Attachment, but
rather as Image; when I initially specified the $hasMany relationship between an Attachment and a Post,
I aliased Attachment to Image. This is necessary for cases where many of your Polymorphic models may be
related to each other, as a type of hint to the CakePHP ORM to properly reference model data.

I’m also using Model.{n}.field notation, which would allow you to add multiple attachment records to the Post.
This is necessary for $hasMany relationships, which we are using for this example.

Once you have all the above in place, you’ll have a working Polymorphic upload!

Please note that this is not the only way to represent file uploads, but it is documented here for reference.

24 Chapter 7. Using a polymorphic attachment model for file storage

CHAPTER 8

Thumbnail Sizes and Styles

The Upload plugin can automatically generate various thumbnails at different sizes for you when uploading files. The
thumbnails must be configured in order for thumbnails to be generated.

To generate thumbnails you will need to configure the thumbnailSizes option under the field you are configuring.

<?php
class User extends AppModel {

public $name = 'User';
public $actsAs = array(

'Upload.Upload' => array(
'photo' => array(// The field we are configuring for

'thumbnailSizes' => array(// Various sizes of thumbnail to generate
'big' => '200x200', // Resize for best fit to 200px by 200px, cropped from the center of the image. Prefix with big_
'small' => '120x120',
'thumb' => '80x80'

)
)

)
);

}
?>

Once this configuration is set when uploading a file a thumbnail will automatically be gen-
erated with the prefix defined in the options. For example (using default configuration)
app/webroot/files/Example/photo/1/big_example.jpg. Where Example is the model, photo is
the field, 1 is the model primaryKey value and finally big_ is the thumbnail size prefix to the filename.

Thumbnail sizes only apply to images of the following types:

• image/bmp

• image/gif

• image/jpeg

• image/pjpeg

• image/png

• image/vnd.microsoft.icon

• image/x-icon

You can specify any of the following resize modes for your sizes:

• 100x80 - resize for best fit into these dimensions, with overlapping edges trimmed if original aspect ratio
differs

25

CakePHP-Upload Documentation, Release 1.3.0

• [100x80] - resize to fit these dimensions, with white banding if original aspect ratio differs

• 100w - maintain original aspect ratio, resize to 100 pixels wide

• 80h - maintain original aspect ratio, resize to 80 pixels high

• 80l - maintain original aspect ratio, resize so that longest side is 80 pixels

• 600mw - maintain original aspect ratio, resize to max 600 pixels wide, or copy the original image if it is less
than 600 pixels wide

• 800mh - maintain original aspect ratio, resize to max 800 pixels high, or copy the original image if it is less
than 800 pixels high

• 960ml - maintain original aspect ratio, resize so that longest side is max 960 pixels, or copy the original image
if the thumbnail would be bigger than the original.

8.1 PDF Support

It is now possible to generate a thumbnail for the first page of a PDF file. (Only works with the imagick
thumbnailMethod.) Please read about the Behavior options for more details as to how to configure this plugin.

26 Chapter 8. Thumbnail Sizes and Styles

CHAPTER 9

Validation rules

By default, no validation rules are attached to the model. You must explicitly attach each rule if needed. Rules not
referring to PHP upload errors are configurable but fallback to the behavior configuration.

9.1 isUnderPhpSizeLimit

Check that the file does not exceed the max file size specified by PHP

<?php
public $validate = array(

'photo' => array(
'rule' => 'isUnderPhpSizeLimit',
'message' => 'File exceeds upload filesize limit'

)
);
?>

9.2 isUnderFormSizeLimit

Check that the file does not exceed the max file size specified in the HTML Form

<?php
public $validate = array(

'photo' => array(
'rule' => 'isUnderFormSizeLimit',
'message' => 'File exceeds form upload filesize limit'

)
);
?>

9.3 isCompletedUpload

Check that the file was completely uploaded

<?php
public $validate = array(

'photo' => array(

27

CakePHP-Upload Documentation, Release 1.3.0

'rule' => 'isCompletedUpload',
'message' => 'File was not successfully uploaded'

)
);
?>

9.4 isFileUpload

Check that a file was uploaded

<?php
public $validate = array(

'photo' => array(
'rule' => 'isFileUpload',
'message' => 'File was missing from submission'

)
);
?>

9.5 isFileUploadOrHasExistingValue

Check that either a file was uploaded, or the existing value in the database is not blank

<?php
public $validate = array(

'photo' => array(
'rule' => 'isFileUploadOrHasExistingValue',
'message' => 'File was missing from submission'

)
);
?>

9.6 tempDirExists

Check that the PHP temporary directory is missing

<?php
public $validate = array(

'photo' => array(
'rule' => 'tempDirExists',
'message' => 'The system temporary directory is missing'

)
);
?>

If the argument $requireUpload is passed, we can skip this check when a file is not uploaded:

<?php
public $validate = array(

'photo' => array(
'rule' => array('tempDirExists', false),
'message' => 'The system temporary directory is missing'

28 Chapter 9. Validation rules

CakePHP-Upload Documentation, Release 1.3.0

)
);
?>

In the above, the variable $requireUpload has a value of false. By default, requireUpload is set to true.

9.7 isSuccessfulWrite

Check that the file was successfully written to the server

<?php
public $validate = array(

'photo' => array(
'rule' => 'isSuccessfulWrite',
'message' => 'File was unsuccessfully written to the server'

)
);
?>

If the argument $requireUpload is passed, we can skip this check when a file is not uploaded:

<?php
public $validate = array(

'photo' => array(
'rule' => array('isSuccessfulWrite', false),
'message' => 'File was unsuccessfully written to the server'

)
);
?>

In the above, the variable $requireUpload has a value of false. By default, requireUpload is set to true.

9.8 noPhpExtensionErrors

Check that a PHP extension did not cause an error

<?php
public $validate = array(

'photo' => array(
'rule' => 'noPhpExtensionErrors',
'message' => 'File was not uploaded because of a faulty PHP extension'

)
);
?>

If the argument $requireUpload is passed, we can skip this check when a file is not uploaded:

<?php
public $validate = array(

'photo' => array(
'rule' => array('noPhpExtensionErrors', false),
'message' => 'File was not uploaded because of a faulty PHP extension'

)
);
?>

9.7. isSuccessfulWrite 29

CakePHP-Upload Documentation, Release 1.3.0

In the above, the variable $requireUpload has a value of false. By default, requireUpload is set to true.

9.9 isValidMimeType

Check that the file is of a valid mimetype

<?php
public $validate = array(

'photo' => array(
'rule' => array('isValidMimeType', array('application/pdf', 'image/png')),
'message' => 'File is not a pdf or png'

)
);
?>

If the argument $requireUpload is passed, we can skip this check when a file is not uploaded:

<?php
public $validate = array(

'photo' => array(
'rule' => array('isValidMimeType', array('application/pdf', 'image/png'), false),
'message' => 'File is not a pdf or png'

)
);
?>

In the above, the variable $requireUpload has a value of false. By default, requireUpload is set to true.

9.10 isWritable

Check that the upload directory is writable

<?php
public $validate = array(

'photo' => array(
'rule' => array('isWritable'),
'message' => 'File upload directory was not writable'

)
);
?>

If the argument $requireUpload is passed, we can skip this check when a file is not uploaded:

<?php
public $validate = array(

'photo' => array(
'rule' => array('isWritable', false),
'message' => 'File upload directory was not writable'

)
);
?>

In the above, the variable $requireUpload has a value of false. By default, requireUpload is set to true.

30 Chapter 9. Validation rules

CakePHP-Upload Documentation, Release 1.3.0

9.11 isValidDir

Check that the upload directory exists

<?php
public $validate = array(

'photo' => array(
'rule' => array('isValidDir'),
'message' => 'File upload directory does not exist'

)
);
?>

If the argument $requireUpload is passed, we can skip this check when a file is not uploaded:

<?php
public $validate = array(

'photo' => array(
'rule' => array('isValidDir', false),
'message' => 'File upload directory does not exist'

)
);
?>

In the above, the variable $requireUpload has a value of false. By default, requireUpload is set to true.

9.12 isBelowMaxSize

Check that the file is below the maximum file upload size (checked in bytes)

<?php
public $validate = array(

'photo' => array(
'rule' => array('isBelowMaxSize', 1024),
'message' => 'File is larger than the maximum filesize'

)
);
?>

If the argument $requireUpload is passed, we can skip this check when a file is not uploaded:

<?php
public $validate = array(

'photo' => array(
'rule' => array('isBelowMaxSize', 1024, false),
'message' => 'File is larger than the maximum filesize'

)
);
?>

In the above, the variable $requireUpload has a value of false. By default, requireUpload is set to true.

9.13 isAboveMinSize

Check that the file is above the minimum file upload size (checked in bytes)

9.11. isValidDir 31

CakePHP-Upload Documentation, Release 1.3.0

<?php
public $validate = array(

'photo' => array(
'rule' => array('isAboveMinSize', 1024),
'message' => 'File is below the mimimum filesize'

)
);
?>

If the argument $requireUpload is passed, we can skip this check when a file is not uploaded:

<?php
public $validate = array(

'photo' => array(
'rule' => array('isAboveMinSize', 1024, false),
'message' => 'File is below the mimimum filesize'

)
);
?>

In the above, the variable $requireUpload has a value of false. By default, requireUpload is set to true.

9.14 isValidExtension

Check that the file has a valid extension

<?php
public $validate = array(

'photo' => array(
'rule' => array('isValidExtension', array('pdf', 'png', 'txt')),
'message' => 'File does not have a pdf, png, or txt extension'

)
);
?>

If the argument $requireUpload is passed, we can skip this check when a file is not uploaded:

<?php
public $validate = array(

'photo' => array(
'rule' => array('isValidExtension', array('pdf', 'png', 'txt'), false),
'message' => 'File does not have a pdf, png, or txt extension'

)
);
?>

In the above, the variable $requireUpload has a value of false. By default, requireUpload is set to true.

9.15 isAboveMinHeight

Check that the file is above the minimum height requirement (checked in pixels)

<?php
public $validate = array(

'photo' => array(

32 Chapter 9. Validation rules

CakePHP-Upload Documentation, Release 1.3.0

'rule' => array('isAboveMinHeight', 150),
'message' => 'File is below the minimum height'

)
);
?>

If the argument $requireUpload is passed, we can skip this check when a file is not uploaded:

<?php
public $validate = array(

'photo' => array(
'rule' => array('isAboveMinHeight', 150, false),
'message' => 'File is below the minimum height'

)
);
?>

In the above, the variable $requireUpload has a value of false. By default, requireUpload is set to true.

9.16 isBelowMaxHeight

Check that the file is below the maximum height requirement (checked in pixels)

<?php
public $validate = array(

'photo' => array(
'rule' => array('isBelowMaxHeight', 150),
'message' => 'File is above the maximum height'

)
);
?>

If the argument $requireUpload is passed, we can skip this check when a file is not uploaded:

<?php
public $validate = array(

'photo' => array(
'rule' => array('isBelowMaxHeight', 150, false),
'message' => 'File is above the maximum height'

)
);
?>

In the above, the variable $requireUpload has a value of false. By default, requireUpload is set to true.

9.17 isAboveMinWidth

Check that the file is above the minimum width requirement (checked in pixels)

<?php
public $validate = array(

'photo' => array(
'rule' => array('isAboveMinWidth', 150),
'message' => 'File is below the minimum width'

)

9.16. isBelowMaxHeight 33

CakePHP-Upload Documentation, Release 1.3.0

);
?>

If the argument $requireUpload is passed, we can skip this check when a file is not uploaded:

<?php
public $validate = array(

'photo' => array(
'rule' => array('isAboveMinWidth', 150, false),
'message' => 'File is below the minimum width'

)
);
?>

In the above, the variable $requireUpload has a value of false. By default, requireUpload is set to true.

9.18 isBelowMaxWidth

Check that the file is below the maximum width requirement (checked in pixels)

<?php
public $validate = array(

'photo' => array(
'rule' => array('isBelowMaxWidth', 150),
'message' => 'File is above the maximum width'

)
);
?>

If the argument $requireUpload is passed, we can skip this check when a file is not uploaded:

<?php
public $validate = array(

'photo' => array(
'rule' => array('isBelowMaxWidth', 150, false),
'message' => 'File is above the maximum width'

)
);
?>

In the above, the variable $requireUpload has a value of false. By default, requireUpload is set to true.

34 Chapter 9. Validation rules

CHAPTER 10

FileImportBehavior

FileImportBehavior may be used to import files directly from the disk. This is useful in importing from a
directory already on the filesystem.

35

CakePHP-Upload Documentation, Release 1.3.0

36 Chapter 10. FileImportBehavior

CHAPTER 11

Thumbnail shell

11.1 What it does

The shell will look through your database for images and regenerate the thumbnails based on your models Upload
behaviour configuration. This allows you to change your thumbnail configuration and run the shell to update your
images without having to re-upload the image.

11.2 How it works

The shell takes the model you provide and checks that the Upload plugin is present and configured. Then it will loop
though all the images checking that the configured upload field is populated in the database and also ensuring that the
file exists on the file system. Then it will regenerate the thumbnails using the current model configuration.

11.3 Running the shell

You can run the shell from the command line as you would any cake shell.

Console/cake upload.thumbnail generate

You will then be asked which model you want to process, and the shell will then process your images.

37

CakePHP-Upload Documentation, Release 1.3.0

38 Chapter 11. Thumbnail shell

CHAPTER 12

Indices and tables

• genindex

• modindex

• search

39

	Introduction
	Upload Plugin 2.0
	Background
	Requirements
	What does this plugin do?
	This plugin does not do

	Installation
	Using Composer
	Manual
	GIT Submodule
	GIT Clone

	Imagick Support
	Enable plugin
	Examples
	Basic example
	Displaying links to files in your view
	Uploading Multiple files
	Remove a current file without deleting the entire record
	Saving two uploads into different folders
	Changing the upload path dynamically

	Behavior configuration options
	Using a polymorphic attachment model for file storage
	Thumbnail Sizes and Styles
	PDF Support

	Validation rules
	isUnderPhpSizeLimit
	isUnderFormSizeLimit
	isCompletedUpload
	isFileUpload
	isFileUploadOrHasExistingValue
	tempDirExists
	isSuccessfulWrite
	noPhpExtensionErrors
	isValidMimeType
	isWritable
	isValidDir
	isBelowMaxSize
	isAboveMinSize
	isValidExtension
	isAboveMinHeight
	isBelowMaxHeight
	isAboveMinWidth
	isBelowMaxWidth

	FileImportBehavior
	Thumbnail shell
	What it does
	How it works
	Running the shell

	Indices and tables

