
Cachual Documentation
Release 0.2.2

Alex Landau

January 17, 2017

Contents

1 Installation 3

2 Usage 5

3 How it Works 7

4 Key Generation 9
4.1 Caching Methods . 10

5 Caching Different Data Types 11
5.1 Unpack . 11
5.2 Pack . 11

6 API Documentation 13
6.1 Caching . 13
6.2 Packing and Unpacking Helpers . 15

Python Module Index 17

i

ii

Cachual Documentation, Release 0.2.2

Cachual is a library that makes it easy to cache the return values from your Python functions with a simple decorator:

from cachual import RedisCache
cache = RedisCache()

@cache.cached(ttl=360)
def get_user_email(user_id):

...

Cachual currently supports Redis as the backing cache, but is very easy to extend to other caching backends.

• Installation
• Usage
• How it Works
• Key Generation

– Caching Methods
• Caching Different Data Types

– Unpack
– Pack

• API Documentation
– Caching
– Packing and Unpacking Helpers

Contents 1

Cachual Documentation, Release 0.2.2

2 Contents

CHAPTER 1

Installation

Install the library with pip:

$ pip install cachual

3

Cachual Documentation, Release 0.2.2

4 Chapter 1. Installation

CHAPTER 2

Usage

Initialize a cache using the desired implementation, providing the connection information in the constructor if different
from the defaults:

from cachual import RedisCache
cache = RedisCache(host='localhost', port=1234, db=5)

The cache object gives you access to the cached() decorator, which you can apply to any function whose return
value you want to cache:

@cache.cached()
def get_user_email(user_id):

...

If you don’t specify a TTL then Cachual will use the server default, which is probably forever. In most cases you will
want to specify a TTL, which is given in seconds:

@cache.cached(ttl=300) # 5 minutes
def get_user_email(user_id):

...

5

Cachual Documentation, Release 0.2.2

6 Chapter 2. Usage

CHAPTER 3

How it Works

When you decorate a function with the cached() decorator, before the function is executed, the cache will be
checked for a prior return value for the same function call. This means that the cache key will be different if the
function is called with different argument values.

If the value is found it is immediately returned. Otherwise, the function is executed and the return value is stored in
the cache before returning it.

Any cache failures (get or put) are ignored; if the cache becomes nonfunctional and starts raising exceptions, your
function will execute normally as if there was no cache.

7

Cachual Documentation, Release 0.2.2

8 Chapter 3. How it Works

CHAPTER 4

Key Generation

Keys are generated by first appending the function name to the module where the function resides. After that one of
four strings is appended:

1. If the function is called without arguments, then () is appended.

2. If the function is called only with positional arguments, then the unicode value of each argument is joined with
’, ’ and surrounded by parentheses. For example:

'my.module.get_user_email(abc)'

3. If the function is called only with keyword arguments, they will be included in key=value form, where value
is the unicode value of the argument, in alphabetical order of the keys. For example:

'my.module.get_user_emails(active=True, age=10, location=US)'

4. If the function is called with both, the positional argument values will be included first, and the keyword argu-
ments will be included in alphabetical order of the keys after the positional argument values.

Finally, the entire (unicode) key is encoded as UTF-8 and hashed using MD5. This is to ensure that key format is
uniform and consistent, because some backends (such as Memcached) have restrictions around cache keys, such as
disallowing certain characters and size limits.

For Python 3, all strings are unicode and the default encoding is UTF-8; thus, the value for each argument will be
coerced to unicode using the builtin str function. Python 2 is a bit more complicated; strings are bytes by default. If
you pass a unicode value, that will be the value used for the cache key. If you pass a string literal, it will be converted
to unicode (assuming UTF-8 encoding). Anything else will be converted to bytes (using the builtin str function) and
then converted to unicode assuming UTF-8 encoding.

Arguments should be able to take on any value, but as a best practice, I highly recommend you only pass the basic
types to your functions e.g. string, integer, float, etc. Even better, stick to unicode values for your strings regardless of
what version of Python you’re using.

Note: Because the unicode value of each argument is used to generate the cache key, you need to be careful that you
are consistent in your function calls with respect to the types of your arguments. For example, if you have a function
that takes a single argument like so:

def test(a):
...

Then these two calls will result in the same cache key:

test(5)
test("5")

9

Cachual Documentation, Release 0.2.2

Thus, you should not call your cached function with values for an argument that are different types but have the same
unicode value. This is good practice anyway; mixing types for the same argument value can lead to unmaintainable
code and unexpected bugs.

4.1 Caching Methods

New in version 0.2.2.

You will probably find yourself wanting to cache methods as well - both classmethods and instance methods. Calls to
these methods will pass the calling class (in the former) or the object (in the latter) as the first argument.

For classmethods, you will get the correct behavior: calls to your cached method with the same arguments from the
same class will get the same cache key. Calling the method with a different class will result in a different cache key
(even if the arguments are the same).

Instance methods are a little trickier. By default you will get a different cache key for calls to your instance method
with the same arguments if you are calling from different instances, because the default representation of an object in
Python includes its memory location. This behavior may be undesirable in some situations, for example if you have
a web service that generates a client object for an external API on every request. In this case you probably want the
same cache key for any external API calls with the same arguments, even though the there is a new client object each
request.

To get the desired behavior you can set the use_class_for_self parameter to True to use the class representa-
tion instead of the instance object representation of the first parameter, which will use the same cache key for any calls
as long as they are from instances of the same class:

class ExternalAPIClient(object):

@cache.cached(use_class_for_self=True)
def get_location_name_by_id(self, id):

...

ExternalAPIClient().get_location_name_by_id("test") # Stores in cache
ExternalAPIClient().get_location_name_by_id("test") # Cache hit

10 Chapter 4. Key Generation

CHAPTER 5

Caching Different Data Types

Technically the types of values that your cached functions can return depends on the underlying cache. For example,
Redis’s SET only stores strings; thus, if you wanted to return something other than a string from your cached function,
you would have to convert the value into the desired datatype if it comes from a cache hit. To get around this limitation,
you can provide two additional optional arguments to the cached() decorator.

5.1 Unpack

The unpack argument specifies a function which will be called with the value from the cache in the case of a cache
hit. The result will be passed back to the caller.

In this way you can make sure you get back consistent values regardless of whether the value came from the cache
(which may store every value as a string) or from the actual function call:

def get_int(value):
return int(value)

@cache.cached(ttl=300, unpack=get_int)
def get_user_id(email):

...

5.2 Pack

What if you want to cache a more complex data type, like a list or a dictionary? You can provide a function to the
pack argument, which will be applied before the function’s return value is put into the cache:

@cache.cached(ttl=300, pack=json.dumps, unpack=json.loads)
def get_user_json(user_id):

...

While the exact way to pack or unpack a cached value depends on the underlying cache being used, Cachual provides
a number of functions to unpack strings into common Python data types (since most common cache providers store all
data as strings) and pack JSON values (such as dictionaries and lists that only contain basic types) so that you don’t
have to write these functions yourself. This allows you to rewrite the examples above:

from cachual import unpack_int, pack_json, unpack_json

@cache.cached(ttl=300, unpack=unpack_int)
def get_user_id(email):

11

Cachual Documentation, Release 0.2.2

...

@cache.cached(ttl=300, pack=pack_json, unpack=unpack_json)
def get_user_json(user_id):

...

Note that for Python 3, you will want to use unpack_json_python3 for JSON data and unpack_bytes for
unicode string data because the value returned from the cache will be bytes (as opposed to the unicode string that is
the default string type in Python 3).

For a complete list of these helper functions see Packing and Unpacking Helpers.

Note: Be careful with packing/unpacking. If your pack/unpack functions have unintended side effects (such as
changing the encoding of the value) you may get different results when you retrieve values from the cache. Generally
it is best to keep things as simple as possible - don’t try to cache complex Python datatypes (such as custom objects),
and keep your pack/unpack functions very simple (or use the helpers!). Make sure you understand how the underlying
caching system and library deals with your data, particularly when it comes to encoding. For example, Redis will
encode your value as bytes if possible, falling back to the unicode representation otherwise (which is why you need to
use the pack/unpack functions as above for dictionaries).

12 Chapter 5. Caching Different Data Types

CHAPTER 6

API Documentation

6.1 Caching

class cachual.CachualCache
Base class for all cache implementations. Provides the cached() decorator which can be applied to methods
whose return value you want to cache. This class should not be used directly, and is meant to be subclassed.

Subclasses should define a get method, which takes a single string argument, and returns the value in the cache
for that key, or None in the case of a cache miss; and a put method, which takes three arguments for the cache
key, the value to store, and a TLL (which may be none) and puts the value in the cache.

cached(ttl=None, pack=None, unpack=None, use_class_for_self=False)
Functions decorated with this will have their return values cached. It should be used as follows:

cache = RedisCache()

@cache.cached()
def method_to_be_cached(arg1, arg2, arg3='default'):

...

A unique cache key will be generated for each function call, so that different values for the arguments will
result in different cache keys. When you decorate a function with this, the cache will be checked first; if
there is a cache hit, the value in the cache will be returned. Otherwise, the function is executed and the
return value is put into the cache.

Cache get/put failures are logged but ignored; if the cache goes down, the function will continue to execute
as normal.

Parameters

• ttl (integer) – The time-to-live in seconds. For caches that support TTLs, the keys
will expire after this time. If None (the default), the cache default will be used (usually no
expiration).

• pack (function) – If specified, this function will be called with the decorated func-
tion’s return value, and the result will be stored in the cache. This can be used to alter the
value that actually gets stored in the cache in case you need to process it first (e.g. dump a
JSON string that is properly escaped).

• unpack (function) – If specified, this function will be called with the value from the
cache in the event of a cache hit, and the result will be returned to the caller. This can be
used to alter the value that gets returned from a cache hit, in case you need to process it
first (e.g. turn a JSON string into a Python dictionary).

13

Cachual Documentation, Release 0.2.2

• use_class_for_self (bool) – If True, cache keys will use the class representation
of the first parameter instead of the object representation. This is useful when you want
to cache instance methods, but you want the same cache key if the instance method’s
arguments are the same. An example would be a stateless class that is a client wrapper
for an external service. The first argument would be the instance object, whose default
representation contains the memory location of the object (and thus would be different for
every instance, which is undesirable for a stateless class).

Changed in version 0.2.2: Added use_class_for_self parameter.

class cachual.RedisCache(host=’localhost’, port=6379, db=0, **kwargs)
A cache using Redis as the backing cache. All values will be stored as strings, meaning if you try to store
non-string values in the cache, their unicode equivalent will be stored. If you want to alter this behavior e.g. to
store Python dictionaries, use the pack/unpack arguments when you specify your @cached decorator.

Parameters

• host (string) – The Redis host to use for the cache.

• port (integer) – The port to use for the Redis server.

• db (integer) – The Redis database to use on the server for the cache.

• kwargs (dict) – Any additional args to pass to the CachualCache constructor.

get(key)
Get a value from the cache using the given key.

Parameters key (string) – The cache key to get the value for.

Returns The value for the cache key, or None in the case of cache miss.

put(key, value, ttl=None)
Put a value into the cache at the given key. If the value is not a string, its unicode value will be used. This
behavior is defined by the underlying Redis library, and could be subject to change in future versions; thus
it is safest to only store strings in Redis (although basic types should serialize into a string cleanly, you
will need to unpack them when they are retrieved from the cache).

Parameters

• key (string) – The cache key to use for the value.

• value – The value to store in the cache.

• ttl (integer) – The time-to-live for key in seconds, after which it will expire.

class cachual.MemcachedCache(host=’localhost’, port=11211, **kwargs)
A cache using Memcached as the backing cache. The same caveats apply to keys and values as for Redis - you
should only try to store strings (using the packing/unpacking functions). See the documentation on Keys and
Values here: pymemcache.client.base.Client.

Parameters

• host (string) – The Memcached host to use for the cache.

• port (integer) – The port to use for the Memcached server.

• kwargs (dict) – Any additional args to pass to the CachualCache constructor.

get(key)
Get a value from the cache using the given key.

Parameters key (string) – The cache key to get the value for.

Returns The value for the cache key, or None in the case of cache miss.

14 Chapter 6. API Documentation

https://docs.python.org/3/library/functions.html#bool
https://redis.io/
https://docs.python.org/3/library/string.html#module-string
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/string.html#module-string
https://docs.python.org/3/library/string.html#module-string
https://memcached.org/
https://pymemcache.readthedocs.io/en/latest/apidoc/pymemcache.client.base.html#pymemcache.client.base.Client
https://docs.python.org/3/library/string.html#module-string
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/string.html#module-string

Cachual Documentation, Release 0.2.2

put(key, value, ttl=None)
Put a value into the cache at the given key. For constraints on keys and values, see
pymemcache.client.base.Client.

Parameters

• key (string) – The cache key to use for the value.

• value – The value to store in the cache.

• ttl (integer) – The time-to-live for key in seconds, after which it will expire.

6.2 Packing and Unpacking Helpers

These functions are helpers for packing/unpacking common Python data types for a cache which stores everything as
a string.

cachual.pack_json(value)
Pack the given JSON structure for storage in the cache by dumping it as a JSON string.

Parameters value – The JSON structure (e.g. dict, list) to pack.

Return type string

Returns The JSON structure as a JSON string.

cachual.unpack_json(value)
Unpack the given string by loading it as JSON.

Parameters value (string) – The string to unpack.

Returns The string as JSON.

cachual.unpack_json_python3(value)
Unpack the given Python 3 bytes by loading them as JSON.

Parameters value (bytes) – The bytes to unpack.

Returns The bytes as JSON.

cachual.unpack_bytes(value)
Unpack the given Python 3 bytes by loading them as a Python 3 unicode string, assuming UTF-8 encoding.

Parameters value (bytes) – The bytes to unpack.

Returns The bytes as a Python 3 unicode string, assuming UTF-8 encoding.

cachual.unpack_int(value)
Unpack the given string into an integer.

Parameters value (string) – The string to unpack.

Return type integer

Returns The string as an integer.

cachual.unpack_long(value)
Unpack the given string into a long.

Parameters value (string) – The string to unpack.

Return type long

Returns The string as a long.

6.2. Packing and Unpacking Helpers 15

https://pymemcache.readthedocs.io/en/latest/apidoc/pymemcache.client.base.html#pymemcache.client.base.Client
https://docs.python.org/3/library/string.html#module-string
https://docs.python.org/3/library/string.html#module-string
https://docs.python.org/3/library/string.html#module-string
https://docs.python.org/3/library/functions.html#bytes
https://docs.python.org/3/library/functions.html#bytes
https://docs.python.org/3/library/string.html#module-string
https://docs.python.org/3/library/string.html#module-string

Cachual Documentation, Release 0.2.2

cachual.unpack_float(value)
Unpack the given string into a float.

Parameters value (string) – The string to unpack.

Return type float

Returns The string as a float.

cachual.unpack_bool(value)
Unpack the given string into a boolean. ‘True’ will become True, and ‘False’ will become False (as per the
unicode values of booleans); anything else will result in a ValueError.

Parameters value (string) – The string to unpack.

Return type bool

Returns The string as a boolean.

16 Chapter 6. API Documentation

https://docs.python.org/3/library/string.html#module-string
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/string.html#module-string
https://docs.python.org/3/library/functions.html#bool

Python Module Index

c
cachual, 13

17

Cachual Documentation, Release 0.2.2

18 Python Module Index

Index

C
cached() (cachual.CachualCache method), 13
cachual (module), 13
CachualCache (class in cachual), 13

G
get() (cachual.MemcachedCache method), 14
get() (cachual.RedisCache method), 14

M
MemcachedCache (class in cachual), 14

P
pack_json() (in module cachual), 15
put() (cachual.MemcachedCache method), 14
put() (cachual.RedisCache method), 14

R
RedisCache (class in cachual), 14

U
unpack_bool() (in module cachual), 16
unpack_bytes() (in module cachual), 15
unpack_float() (in module cachual), 15
unpack_int() (in module cachual), 15
unpack_json() (in module cachual), 15
unpack_json_python3() (in module cachual), 15
unpack_long() (in module cachual), 15

19

	Installation
	Usage
	How it Works
	Key Generation
	Caching Methods

	Caching Different Data Types
	Unpack
	Pack

	API Documentation
	Caching
	Packing and Unpacking Helpers

	Python Module Index

