

 [image: _images/EarthDataCube3.png]

Earth System Data Cube (ESDC)

The Earth System Data Cube (ESDC) is a multi-variate data set of essential Earth System variables on a common grid and
sharing a common data model. The ESDC also comprises a Data Analytics Toolkit for Julia, Python, and R
to facilitate the exploitation data set and an E-Laboratory, which provides a computing environment to access, analyse
and visualize the data set.

Our goal is to foster a holistic understanding of the Earth System by simplifying the simultaneous and consistent
analysis of big and freely available data sets of geopyhsical variables.

	1. Introduction
	1.1. Motivation

	1.2. ESDC Project

	1.3. Purpose

	1.4. Scope

	1.5. References

	1.6. Peer-reviewed Publications

	1.7. Terms and Abbreviations

	1.8. Data Policy

	1.9. Legal information

	2. ESDC Description
	2.1. Macro Structure

	2.2. Spatial and Temporal Coverage

	2.3. Format and Structure

	2.4. Processing Applied

	2.5. Cube Data Variables

	3. ESDC Access
	3.1. Download ESDC Data

	3.2. OPeNDAP and WCS Services

	3.3. E-Laboratory

	3.4. Using Python

	3.5. Using Julia

	3.6. Data Analysis

	4. ESDC Generation
	4.1. Command-Line Tool

	4.2. Writing a new Provider

	4.3. Sharing a Provider

	4.4. Python Cube API Reference

	5. DAT for Julia
	5.1. Overview

	5.2. Use Cases and Examples

	6. DAT for Python
	6.1. Overview

	6.2. Use Cases and Examples

	6.3. Python API Reference

	7. Collaboration
	7.1. Code Repository

	7.2. Website & Forum

Indices and Tables

	Index

	Search Page

1. Introduction

1.1. Motivation

Earth observations (EOs) are usually produced and treated as 3-dimensional singular data cubes, i.e. for each
longitude u ∈ {1, …, Lon}, each latitude v ∈ {1, …, Lat}, and each time step t ∈ {1,…,T} an observation
X = {x(u,v,t)} ∈ R is defined. The challenge is, however, to take advantage of the numerous
EO streams and to explore them simultaneously.
Hence, the idea is to concatenate data streams such that we obtain a 4-dimensional data cube of the form x(u,v,t,k)
where k ∈ {1, …, N} denotes the index of the data stream. The focus of this project is therefore on learning how
to efficiently and reliably create, curate, and explore a 4-dimensional Earth System Data Cube (ESDC).
If feasible, the included data-sets contain uncertainty information. Limitations associated with the transformation
from source format into the ESDC format are explained in the description of the data sets.
The ESDC does not exhibit spatial or temporal gaps, since gaps in the source data are filled during ingestion into
the ESDC. While all observational values are conserved, gaps are filled with synthetic data, i.e. with data that is created by an
adequate gap-filling algorithm. Proper data flags ensure an unambiguous distinction between observational and
synthetic data values.

Depending on the specific question, the user can extract different types of data subsets from the Earth System Data Cube (ESDC)
for further processing and analysis with specialized methods from the
Data Analytics Toolkit. For example,

	investigating the data cube at a single geographic location, the user obtains multivariate time series for each
longitude-latitude pair. These time series can be investigated using established methods of multivariate time series
analysis, and afterwards the results can be merged onto a global grid again.

	Assessing the data-cube at single time stamps results in synoptic geospatial maps,
whose properties can be investigated with geostatistical methods.

	It is also possible to perform univariate spatiotemporal analyses on single variables extracted from the
Data Cube.

	The main objective is, however, to develop multivariate spatiotemporal analyses by utilizing the entire 4D ESDC.
Following this avenue unravels the full potential of the ESDC and may provide a holistic view on the entire Earth System.

The ESDC allows for all these approaches, because all variables are available on a common spatiotemporal grid, which greatly
reduces the pre-processing efforts typically required to establish consistency among data from different sources.

1.2. ESDC Project

The steadily growing Earth Observation archives are currently mostly investigated
by means of disciplinary approaches. It would be, however, desirable to adopt a more holistic approach in understanding land-atmosphere interactions and
the role of humans in the earth system. The potential of a simultaneous exploration of multiple EO data streams
has so far been widely neglected in the scientific community.
The Earth System Data Cube project (ESDC, formerly CAB-LAB) aims at filling this gap by providing
a virtual laboratory that facilitates the co-exploration of multiple EOs for a better understanding of land ecosystem trajectories.

The idea is to build on the existing data-sets and to offer novel tools and technical methods to detect dependencies in the coupled human-nature system.
ESDC’s central service to the scientific community will be a Biosphere Atmosphere Virtual Laboratory (BAVL), which comprises a Data
Cube populated with a wide range of EOs and convenient methods to access and analyze this data remotely by means of the Jupiter framework.
Moreover, the project aims at advancing the scientific analysis capacities by developing data-driven exploration strategies that identify and attribute major changes
in the biosphere-atmosphere system. Ultimately, ESDC will develop a set of indices
characterizing the major relevant Biosphere-Atmosphere System Trajectories, BASTs.
The project partners, Max-Planck-Institute for Biogeochemistry, Brockmann Consult GmbH,
and Stockholm Resilience Center are financed by the European Space Agency (ESA) for three years (2015 to 2017) to
develop the software for ESDC, to collect and analyze the EO data, and to disseminate the idea of the project and its preliminary results.

1.3. Purpose

This Product Handbook is a living document that is under active development just as the ESDC project itself.
Its purpose is to facilitate the usage of the BAVL and primarily targets scientists from various disciplines with a good
command of one of the supported high-level programming languages (Python [http://www.python.org], Julia [http://julialang.org/],
and R [http://www.]), a solid background in the analysis of
large data-sets, and a sound understanding of the Earth System.
The focus of this document is therefore clearly on the description of the data and on the methods to access and manipulate the data.

In the final version, it is meant to be a self-contained documentation that enables the user to independently reap the full potential of the Earth System Data Cube (ESDC).
Developers may find a visit of the project’s git-hub pages [https://github.com/CAB-LAB] worthwile.

1.4. Scope

The Product Handbook gives a general overview of the ESCD’s structure
and provide some examples to illustrate potential uses of the system .
The main part is considered with a detailed technical description of the ESDC
, which is accompanied by the full specification of the API.
Finally, all data-sets included in the ESDC are listed and described in the annex of the Product Handbook.

1.5. References

	ESDC webpage: http://www.earthsystemdatacube.net

	CAB-LAB’s github repository: https://github.com/CAB-LAB

	E-Laboratory: https://cablab.earthsystemdatacube.net

1.6. Peer-reviewed Publications

Sippel, S., Lange, H., Mahecha, M. D., Hauhs, M., Bodesheim, P., Kaminski, T., Gans, F. & Rosso, O.A. (2016)
Diagnosing the Dynamics of Observed and Simulated Ecosystem Gross Primary Productivity with Time Causal Information
Theory Quantifiers. PLoS ONE, accepted. doi:10.1371/journal.pone.0164960.

Sippel, S., Zscheischler, J., Heimann, M., Otto, F. E. L., Peters, J., & Mahecha, M. D. (2015),
Quantifying changes in climate variability and extremes: Pitfalls and their overcoming, Geophysical Research Letters,
42(22), 9990–9998. doi:10.1002/2015GL066307.

Sippel, S., Zscheischler, J., Heimann, M., Lange, H., Mahecha, M. D., van Oldenborgh, G. J., Otto,
F. E. L. & Reichstein, M. (2016) Have precipitation extremes and annual totals been increasing in the world’s dry
regions over the last 60 years? Hydrology and Earth System Sciences Discussions. doi:10.5194/hess-2016-452.

Flach, M., Gans, F., Brenning, A., Denzler, J., Reichstein, M., Rodner, E., Bathiany, S., Bodesheim, P., Guanche,
Y., Sippel, S., and Mahecha, M.D. Multivariate Anomaly Detection for Earth Observations: A Comparison of Algorithms
and Feature Extraction Techniques. Earth System Dynamics – Discussions, doi:10.5194/esd-2016-51.

1.7. Terms and Abbreviations

	Term

	Description

	BAST

	Biosphere-Atmosphere System Trajectory

	BAVL

	Biosphere Atmosphere Virtual Laboratory

	CAB-LAB

	Coupled Atmosphere Biosphere virtual LABoratory

	DAT

	Data Analytics Toolkit

	ESDC

	Earth System Data Cube

	EO

	Earth Observations

	ESA

	European Space Agency

	Grid

	The Data Cube’s layout given by its spatial and temporal resolution and its variables.

	Image

	An 2D data cube subset with dimension (lat, lon)

1.8. Data Policy

The ESDC team processes and distributes the data in the ESDC in good faith, but makes no warranty, expressed or implied,
nor assumes any legal liability or responsibility for any purpose for which the data are used.
In particular, the ESDC team does not claim ownership of the data distributed through the ESDC nor does it alter the data
policy of the data owner. Therefore, the user is referred to the data owner for specific questions of data use.
References and more details of the data sets are listed in the annex of the Product Handbook.

The CAB-LAB team is thankful to have received permissions for re-distribution of all data contained in the ESDC from
the respective data owners.

Note

Please cite the ESDC as:

The ESDC developer team (2016). The Earth System Data Cube (Version 0.1), available at: https://github.com/CAB-LAB.

1.9. Legal information

The Earth System Data Cube consists of a variety of source data sets from different providers, the Data Cube software, which
transforms all data to the common Data Cube format and allows for convenient data access, and the Data Analytics Toolkit, which
provides methods for scientific analysis.

The Data Cube software and the Data Analytics Toolkit are free software:
you can redistribute it and/or modify it under the terms of the GNU General
Public License as published by the Free Software Foundation, either version 3
of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program. If not, see http://www.gnu.org/licenses/.

Copyright (C) 2016 The ESDC developer team.

2. ESDC Description

2.1. Macro Structure

The data is organised in the described 4-dimensional form x(u,v,t,k), but additionally each data stream k is assigned to one
of the subsystems of interest:

	Land surface

	Atmospheric forcing

	Socio-economic data

2.2. Spatial and Temporal Coverage

The fine grid of the ESDC has a spatial resolution of 0.083° (5”), which is properly nested within a coarse grid of
0.25° (15”). Hence, the ESDC is available in two versions

	High resolution version: 0.083° (5”) spatial resolution,

	Low resolution version: 0.25° (15”) spatial resolution.

While the latter contains all variables, the former only comprises those variables that are natively available at this resolution.
The high-resolution data are nested on the low-resolution data set such that one can analyse these in tandem.
In particular data from the socio-economic subsystem are often organised according to administrative units, typically national states, rather than on regular grids.
These data are dispersed to the coarse grid by means of a national state mask, which is created by assigning a national state property to each grid point.

The temporal resolution is 8 days.

The time span currently covered is 2001-2011. We are dedicated to expand this period on both ends, but to preserve the ESDC’s characteristics, a reasonable coverage of data streams is required.

2.3. Format and Structure

The binary data format for the Earth System Data Cube (ESDC) in the CAB-LAB project is netCDF 4 classic, where the term classic stands for an
underlying HDF-5 format accessed by a netCDF 4 API.

The netCDF file’s content and structure follows the CF-conventions [http://cfconventions.org/cf-conventions/v1.6.0/cf-conventions.html].
That is, there are are always at least three dimensions defined

	lon - Always the inner and therefore fastest varying dimension. Defines the raster width of spatial images.

	lat - Always the second dimension. Defines the raster height of spatial images.

	time - Time dimension.

[image: The spatio-temporal structure of the Earth System Data Cube.]
There are 1D-variables related to each dimension providing its actual values:

	
	lon(lon) and lat(lon) - longitudes and latitudes in decimal degrees defined in a WGS-84 geographical

	coordinate reference system. The spatial grid is homogeneous with the distance between two grid points referred to as
the ESDC’s spatial resolution.

	
	start_time(time) and end_time(time) - Period start and end times of a datum given in

	days since 2001-01-01 00:00. The increments between two values in time are identical and referred to as the
ESDC’s temporal resolution.

There is usually only a single geophysical variable with shape(time, lat, lon) represented by each
netCDF file. So each netCDF file is composed of length(time) spatial images of that variable, where each image
of size length(lon) x length(lat) pixels has been generated by aggregating all source data contributing
to the period given by the ESDC’s temporal resolution.

To limit the size of individual files, the geophysical variables are stored in one file per year. For example,
if the temporal resolution is 0.25 degrees and the the spatial resolution is an 8-day period then there will be up to 46
images of 1440 x 720 pixels in each annual netCDF file. These annual files are stored in dedicated sub-directories
as follows:

<cube-root-dir>/
 cube.config
 data/
 LAI/
 2001_LAI.nc
 2002_LAI.nc
 ...
 2011_LAI.nc
 Ozone/
 2001_Ozone.nc
 2002_Ozone.nc
 ...
 2011_Ozone.nc
 ...

The names of the geophysical variable in a netCDF file must match the name of the corresponding sub-directory and the
file name.

The text file cube.config contains a Data Cube’s static configuration such as its temporal and spatial resolution.
Also the spatial coverage is constant, that is, all spatial images are of the same size. Where actual data is missing,
fill values are inserted to expand a data set to the dimensions of the Data Cube.
The fill values in the Data Cube are identical to the ones used in the Data Cube’s sources. The same holds for the data types.
While all images for all time periods have the same size, the temporal coverage for a given variable may vary.
Missing spatial images for a given time period are treated as images with all pixels set to a fill value.

The following table contains all possible configuration parameters:

	Parameter

	Default Value

	Description

	temporal_res

	8

	The constant temporal resolution given as integer days.

	calendar

	'gregorian'

	Defines the Data Cube’s time units.

	ref_time

	datetime(2001, 1, 1)

	The Data Cube’s time unit is days since a reference date/time.

	start_time

	datetime(2001, 1, 1)

	The start date/time of contributing source data.

	end_time

	datetime(2011, 1, 1)

	The end date/time of contributing source data.

	spatial_res

	0.25

	The constant spatial resolution given in decimal degrees.

	grid_x0

	0

	The spatial grid’s X-offset.

	grid_y0

	0

	The spatial grid’s Y-offset.

	grid_width

	1440

	The spatial grid’s width. Must always be 360 / spatial_res.

	grid_height

	720

	The spatial grid’s height. Must always be 180 / spatial_res.

	variables

	None

	The variables contained in the Data Cube.

	file_format

	'NETCDF4_CLASSIC'

	The target binary file format.

	compression

	False

	Whether or not the target binary files should be compressed.

	model_version

	'0.1'

	The version of the Data Cube model and configuration.

2.4. Processing Applied

The Data Cube is generated by the cube-cli tool. This tools creates a Data Cube for a given configuration
and can be used to subsequently add variables, one by one, to the Data Cube. Each variable is read from its specific data source and
transformed in time and space to comply to the specification defined by the target Data Cube’s configuration.

The general approach is as follows: For each variable and a given Data Cube time period:
* Read the variable’s data from all contributing sources that have an overlap with the target period;
* Perform temporal aggregation of all contributing spatial images in the original spatial resolution;
* Perform spatial upsampling or downsampling of the image aggregated in time;
* Mask the resulting upsampled/downsampled image by the common land-sea mask;
* Insert the final image for the variable and target time period into the Data Cube.

The following sections describe each method used in more detail.

2.4.1. Gap-Filling Approach

The current version (version 0.1, Feb 2016) of the ESDC does not explicitly fill gaps. However, some
gap-filling occurs during temporal aggregation as described below. The CAB-LAB team may provide
gap-filled ESDC versions at a later point in time of the project. Gap-filling is part of the Data Analytics
Toolkit and is thus not tackled during Data Cube generation to retain the information on the original data coverage
as much as possible.

For future Data Cube versions per-variable gap-filling strategies may be applied. Also, only a spatio-temporal
region of interest may be gap-filled while cells outside this region may be filled by global default values. An instructive example
of such an approach would be the gap-filling of a leaf area index (LAI) data set, which only takes place in mid-latitudes while gaps in high-latitudess are
filled with zeros.

2.4.2. Temporal Resampling

Temporal resampling starts on the 1st January of every year so that all the i-th spatial images in the ESDC
refer to the same time of the year, namely starting i x temporal resolution. Source data is collected for every
resulting ESDC target period. If there is more than one contribution in time, then each contribution is weighted
according to the temporal overlap with the target period. Finally, target pixel values are computed by averaging
all weighted values in time not masked by a fill value. By doing so, some temporal gaps are filled implicitly.

2.4.3. Spatial Resampling

Spatial resampling occurs after temporal resampling only if the ESDC’s spatial
resolution differs from the data source resolution.

If the ESDC’s spatial resolution is higher than the data source’s spatial resolution, source images are upsampled
by rescaling hereby duplicating original values, but not performing any spatial interpolation.

If the ESDC’s spatial resolution is lower than the data source’s spatial resolution, source images are downsampled
by aggregation hereby performing a weighted spatial averaging taking into account missing values. If there is not an
integer factor between the source and the Data Cube resolution, weights will be found according to the spatial overlap of source
and target cells.

	[image: Contiguous Oversampling]

	[image: Contiguous Undersampling]

	[image: Discontiguous Overrsampling]

	[image: Discontiguous Undersampling]

2.4.4. Land-Water Masking

After spatial resampling, a land-water mask is applied to individual variables depending on whether
a variable is defined for water surfaces only, land surfaces only, or both. A common land-water mask is used for all
variables for a given spatial resolution. Masked values are indicated by fill values.

2.4.5. Constraints and Limitations

The ESDC approach of transforming all variables onto a common grid greatly facilitates handling and joint analysis
of data sets that originally had different characteristics and were generated under different assumptions.
Regridding, gap-filling, and averaging, however, may alter the information contained in the original data considerably.

The main idea of the ESDC is to provide a consistent and synoptic characterisation of the Earth System at given time steps to promote global analyses.
Therefore, conducting small-scale, high frequency studies that are potentially highly sensible to individual artifacts introduced by data transformation is not
encouraged. The cautious expert user may hence carefully check phenomena close to the Land-Sea mask or in data sparse
regions of the original data. If in doubt, suspicious patterns in the ESDC or unexpected analytical results should be verified with the source data in the native resolution.
We try here as much as possible to conserve the characteristics of the original data, while facilitating data handling and analysis by transformation.

This is a difficult balance to strike that at times involves inconvenient trade-offs. We thus embrace transparency and reproducibility to enable the
informed user to evaluate the validity and consistency of the processed data and strive to offer options for data transformation wherever possible.

2.5. Cube Data Variables

	Project

	Name in ESDC

	Description

	URL

	References

	GLEAM

	evaporative_stress

	Evaporative Stress Factor

	http://www.gleam.eu

	Martens, B., Miralles, D.G., Lievens, H., van der Schalie, R., de Jeu, R.A.M., Fernández-Prieto, D., Beck, H.E., Dorigo, W.A., and Verhoest, N.E.C.: GLEAM v3: satellite-based land evaporation and root-zone soil moisture, Geoscientific Model Development, 10, 1903–1925, 2017.

	evaporation

	Evaporation

	snow_sublimation

	Snow Sublimation

	potential_evaporation

	Potential Evaporation

	interception_loss

	Interception Loss

	bare_soil_evaporation

	Bare Soil Evaporation

	open_water_evaporation

	Open-water Evaporation

	surface_moisture

	Surface Soil Moisture

	transpiration

	Transpiration

	root_moisture

	Root-Zone Soil Moisture

	GFED4

	burnt_area

	Burnt Area based on the GFED4 fire product.

	http://www.globalfiredata.org/

	Giglio, Louis, James T. Randerson, and Guido R. Werf. “Analysis of daily, monthly, and annual burned area using the fourth‐generation global fire emissions database (GFED4).” Journal of Geophysical Research: Biogeosciences 118.1 (2013): 317-328.

	c_emissions

	Carbon emissions by fires based on the GFED4 fire product.

	ESA Aerosol CCI

	aerosol_optical_thickness_865

	Aerosol optical thickness derived from the dataset produced by the Aerosol CCI project.

	http://www.esa-aerosol-cci.org/

	Holzer-Popp, T., de Leeuw, G., Griesfeller, J., Martynenko, D., Klueser, L., Bevan, S., et al. (2013). Aerosol retrieval experiments in the ESA Aerosol_cci project. Atmospheric Measurement Techniques, 6, 1919-1957. doi:10.5194/amt-6-1919-2013.

	aerosol_optical_thickness_1610

	Aerosol optical thickness derived from the dataset produced by the Aerosol CCI project.

	aerosol_optical_thickness_550

	Aerosol optical thickness derived from the dataset produced by the Aerosol CCI project.

	aerosol_optical_thickness_659

	Aerosol optical thickness derived from the dataset produced by the Aerosol CCI project.

	aerosol_optical_thickness_555

	Aerosol optical thickness derived from the dataset produced by the Aerosol CCI project.

	GlobTemperature

	land_surface_temperature

	Advanced Along Track Scanning Radiometer pixel land surface temperature product

	http://data.globtemperature.info/

	Jiménez, C., et al. “Inversion of AMSR‐E observations for land surface temperature estimation: 1. Methodology and evaluation with station temperature.” Journal of Geophysical Research: Atmospheres 122.6 (2017): 3330-3347.

	ERAInterim

	air_temperature_2m

	Air temperature at 2m from the ERAInterim reanalysis product.

	http://www.ecmwf.int/en/research/climate-reanalysis/era-interim

	Dee, D.P. et al. 2011 http://onlinelibrary.wiley.com/doi/10.1002/qj.828/abstract

	SoilMoisture CCI

	soil_moisture

	Soil moisture based on the SOilmoisture CCI project

	http://www.esa-soilmoisture-cci.org

	Liu, Y.Y., Parinussa, R.M., Dorigo, W.A., De Jeu, R.A.M., Wagner, W., McCabe, M.F., Evans, J.P., and van Dijk, A.I.J.M. (2012): Trend-preserving blending of passive and active microwave soil moisture retrievals; Liu, Y.Y., Parinussa, R.M., Dorigo, W.A., De Jeu, R.A.M., Wagner, W., van Dijk, A.I.J.M., McCabe, M.F., & Evans, J.P. (2011): Developing an improved soil moisture dataset by blending passive and active microwave satellite based retrievals. Hydrology and Earth System Sciences, 15, 425-436.

	GlobVapour

	water_vapour

	Total column water vapour based on the GlobVapour CCI product.

	http://www.globvapour.info/

	Schneider, Nadine, et al. “ESA DUE GlobVapour water vapor products: Validation.” AIP Conference Proceedings. Vol. 1531. No. 1. 2013.

	Ozone CCI

	ozone

	Atmospheric ozone based on the Ozone CCI data.

	http://www.esa-ozone-cci.org/

	Laeng, A., et al. “The ozone climate change initiative: Comparison of four Level-2 processors for the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS).” Remote Sensing of Environment 162 (2015): 316-343.

	GlobAlbedo

	white_sky_albedo

	White sky albedo derived from the GlobAlbedo CCI project dataset

	http://www.globalbedo.org/

	Muller, Jan-Peter, et al. “The ESA GLOBALBEDO project for mapping the Earth’s land surface albedo for 15 years from European sensors.” Geophysical Research Abstracts. Vol. 13. 2012.

	black_sky_albedo

	Black sky albedo derived from the GlobAlbedo CCI project dataset

	FLUXCOM

	net_ecosystem_exchange

	Net carbon exchange between the ecosystem and the atmopshere.

	http://www.fluxcom.org/

	Tramontana, Gianluca, et al. “Predicting carbon dioxide and energy fluxes across global FLUXNET sites with regression algorithms.” (2016).

	terrestrial_ecosystem_respiration

	Total carbon release of the ecosystem through respiration.

	gross_primary_productivity

	Gross Carbon uptake of of the ecosystem through photosynthesis

	latent_energy

	Latent heat flux from the surface.

	sensible_heat

	Sensible heat flux from the surface

	GPCP

	precipitation

	Precipitation based on the GPCP dataset.

	http://precip.gsfc.nasa.gov/

	Adler, Robert F., et al. “The version-2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979-present).” Journal of hydrometeorology 4.6 (2003): 1147-1167.

	GlobSnow

	fractional_snow_cover

	Grid cell fractional snow cover based on the Globsnow CCI product.

	http://www.globsnow.info/

	Luojus, Kari, et al. “ESA DUE Globsnow-Global Snow Database for Climate Research.” ESA Special Publication. Vol. 686. 2010.

	snow_water_equivalent

	Grid cell fractional snow cover based on the Globsnow CCI product.

3. ESDC Access

As introduced in the last section, the ESDC physically consists of a set of NetCDF [https://www.unidata.ucar.edu/software/netcdf/docs/] files on disk,
which can be accessed in a number of different ways which are described in this section.

3.1. Download ESDC Data

The simplest approach to access the ESDC data is downloading it to you computer using the ESDC FTP server [ftp://ftp.brockmann-consult.de/cablab02/cablab-datacube-0.2.4/].

Since the ESDC is basically a directory of NetCDF [https://www.unidata.ucar.edu/software/netcdf/docs/] files, you can use a variety of software packages and programming
languages to access the data. In each cube directory, you find a text file cube.config which describes the overall
data cube layout.

Within the ESDC Project, dedicated data access packages have been developed for the Python and Julia
programming languages. These packages “understand” the ESDC’s cube.config files and represent the cube data
by a convenient data structures. The section Using Python describes how to access the data from Python.

3.2. OPeNDAP and WCS Services

The ESDC’ data variables can also be accessed via a dedicated ESDC THREDDS server [http://www.brockmann-consult.de/cablab-thredds/catalog.html].

The server supports the OPeNDAP [https://www.opendap.org/] and OGC-compliant Web Coverage Service (WCS) [http://www.opengeospatial.org/standards/wcs] data access protocols.
You can use it for accessing subsets of the ESDC’s data variables and also for visual exploration of the data,
and finally for downloading the data as a NetCDF [https://www.unidata.ucar.edu/software/netcdf/docs/] file or of plain text.

Depending on the variable subsets, and the region and time period of interest, the transferred data volume
might be much lower than a complete download of the ESDC via FTP. However, the disadvantage of using OPeNDAP
and WCS is that the actual structure of the ESDC gets lost, so that it can’t be accessed anymore using
the aforementioned ESDC Python/Julia data access packages.

3.3. E-Laboratory

A dedicated ESDC E-Laboratory [http://cablab.earthsystemdatacube.net/cablab-jupyterhub/] has been developed to access the ESDC data via distributed
Jupyter [http://jupyter.org/about.html] Notebooks [https://jupyter.readthedocs.io/en/latest/index.html] for Julia and Python. This is the most resource efficient and convenient
way of exploring the ESDC.

These notebooks have direct access to the ESDC data so there is no need to download it.
In addition they provide the ESDC Python and Julia APIs comprising
the Data Access API and the Data Analytics Toolkit.

The E-Laboratory provides some example notebooks in the shared ESDC community repository [https://github.com/CAB-LAB/cablab-shared].

The E-Laboratory is based on the JupyterHub [https://jupyterhub.readthedocs.io/en/latest/] platform and currently comprises three 16-core computers
running in a Cloud environment.

3.4. Using Python

3.4.1. Installation

Note: if you use the E-Laboratory you don’t need to install any additional packages for accessing the data.
This section is only relevant if you’ve downloaded a ESDC instance to your local computer.

While in principle the NetCDF [https://www.unidata.ucar.edu/software/netcdf/docs/] files comprising the ESDC can be used with any tool of choice, we
developed specifically tailored Data Access APIs for Python 3.X and Julia.
Furthermore, a set of high-level routines for data analysis, the Data Analytics Toolkit, greatly facilitates
standard operations on the large amount of data in the ESDC.
While in the E-laboratory, the Data Access API and the DAT are already pre-installed,
the user has to download and install the cube library when working on a local computer.

The ESDC Python package has been developed against latest Anaconda [https://www.continuum.io/downloads] / Miniconda [https://conda.io/miniconda.html] distributions and uses their
Conda [https://conda.io/docs/intro.html] package manager.

To get started on your local computer with Python, clone the cablab-core
repository from https://github.com/CAB-LAB:

git clone https://github.com/CAB-LAB/cablab-core

The following command will create a new Python 3.5 environment named esdc with all required dependencies, namely

	dask >= 0.14

	gridtools >= 0.1 (from Conda channel forman)

	h5netcdf >= 0.3

	h5py >= 2.7

	netcdf4 >= 1.2

	scipy >= 0.16

	scikit_image >= 0.11

	matplotlib >= 2.0

	xarray >= 0.9

$ conda env create environment.yml

To active new Python environment named esdc you must source on Linux/Darwin

$ source activate.sh esdc

on Windows:

> activate esdc

Now change into new folder cablab-core and install the cablab Python package using the develop target:

$ cd cablab-core
$ python setup.py develop

You can now easily change source code in cablab-core without reinstalling it.
When you do not plan to add or modify any code (e.g. add a new source data provider), you can also permanently
install the sources using

$ python setup.py install

However, if you now change any code, make sure to the install command again.

After download of a ESDC including the corresponding cube.config file and successful installation of the ESDC,
you are ready to explore the data in the ESDC using the Using Python.

3.4.2. Usage

The following example code demonstrates how to access a locally stored ESDC, query its content, and get
data chunks of different sizes for further analysis.

Open a cube

from cablab import Cube
from datetime import datetime
import numpy as np

cube = Cube.open("/path/to/datacube")

Note, in order to work properly the /path/to/datacube/ passed to Cube.open()
must be the path to an existing ESDC cube directory which contains a valid configuration file named cube.config.
It contains essential metadata about the ESDC to be opened.

cube.data.variable_names

['aerosol_optical_thickness_1610',
 'aerosol_optical_thickness_550',
 'aerosol_optical_thickness_555',
 'aerosol_optical_thickness_659',
 'aerosol_optical_thickness_865',
 'air_temperature_2m',
 'bare_soil_evaporation',
 'black_sky_albedo',
 'burnt_area',
 'country_mask',
 'c_emissions',
 ...]

After successful opening the ESDC, chunks of data or the entire data set can be accessed via the
dataset() and get() functions. The first returns a xarray.Dataset [http://xarray.pydata.org/en/stable/data-structures.html#dataset] object in which all
cube variables are represented as xarray.DataArray [http://xarray.pydata.org/en/stable/data-structures.html#dataarray] objects. More about these objects can also be
found in DAT for Python section. The second function can be used to read subsets of the data.
In contrast it returns a list of Numpy ndarray [http://docs.scipy.org/doc/numpy/reference/arrays.ndarray.html] arrays, one for each requested variable.

The corresponding API for Julia is very similar and illustrated in DAT for Julia.

Accessing the cube data

The cube.data.dataset() has an optional argument which is a list of variable names to include in the returned
xarray.DataArray [http://xarray.pydata.org/en/stable/data-structures.html#dataarray] object. If omitted, all variables will be included. Note it can take up to a few seconds to open
generate the dataset object with all variables.

ds = cube.data.dataset()
ds

<xarray.Dataset [http://xarray.pydata.org/en/stable/data-structures.html#dataset]>
Dimensions: (bnds: 2, lat: 720, lon: 1440, time: 506)
Coordinates:
 * time (time) datetime64[ns] 2001-01-05 ...
 * lon (lon) float32 -179.875 -179.625 ...
 lon_bnds (lon, bnds) float32 -180.0 -179.75 ...
 lat_bnds (lat, bnds) float32 89.75 90.0 89.5 ...
 * lat (lat) float32 89.875 89.625 89.375 ...
 time_bnds (time, bnds) datetime64[ns] 2001-01-01 ...
Dimensions without coordinates: bnds
Data variables:
 aerosol_optical_thickness_1610 (time, lat, lon) float64 nan nan nan ...
 aerosol_optical_thickness_550 (time, lat, lon) float64 nan nan nan ...
 aerosol_optical_thickness_555 (time, lat, lon) float64 nan nan nan ...
 aerosol_optical_thickness_659 (time, lat, lon) float64 nan nan nan ...
 aerosol_optical_thickness_865 (time, lat, lon) float64 nan nan nan ...
 air_temperature_2m (time, lat, lon) float64 243.4 243.4 ...
 bare_soil_evaporation (time, lat, lon) float64 nan nan nan ...
 black_sky_albedo (time, lat, lon) float64 nan nan nan ...
 burnt_area (time, lat, lon) float64 0.0 0.0 0.0 ...
 country_mask (time, lat, lon) float64 nan nan nan ...
 ...

lst = ds['land_surface_temperature']
lst

<xarray.DataArray [http://xarray.pydata.org/en/stable/data-structures.html#dataarray] 'land_surface_temperature' (time: 506, lat: 720, lon: 1440)>
dask.array<concatenate, shape=(506, 720, 1440), dtype=float64, chunksize=(46, 720, 1440)>
Coordinates:
 * time (time) datetime64[ns] 2001-01-05 2001-01-13 2001-01-21 ...
 * lon (lon) float32 -179.875 -179.625 -179.375 -179.125 -178.875 ...
 * lat (lat) float32 89.875 89.625 89.375 89.125 88.875 88.625 88.375 ...
Attributes:
 url: http://data.globtemperature.info/
 long_name: land surface temperature
 source_name: LST
 standard_name: surface_temperature
 comment: Advanced Along Track Scanning Radiometer pixel land surfa...
 units: K

The variable lst can now be used like a Numpy ndarray [http://docs.scipy.org/doc/numpy/reference/arrays.ndarray.html]. Howver, using xarray there are a
number of more convenient data access methods that take care of the actual coordinates provided for every
dimenstion. For example, the sel() method can be used to extract slices and subsets from a data array.
Here a point is extract from lst, and the result is a 1-element data array:

lst_point = lst.sel(time='2006-06-15', lat=53, lon=11, method='nearest')
lst_point

<xarray.DataArray 'land_surface_temperature' ()>
dask.array<getitem, shape=(), dtype=float64, chunksize=()>
Coordinates:
 time datetime64[ns] 2006-06-14
 lon float32 11.125
 lat float32 53.125
Attributes:
 url: http://data.globtemperature.info/
 long_name: land surface temperature
 source_name: LST
 standard_name: surface_temperature
 comment: Advanced Along Track Scanning Radiometer pixel land surfa...
 units: K

Data arrays also have a handy plot() method. Try:

lst.sel(lat=53, lon=11, method='nearest').plot()
lst.sel(time='2006-06-15', method='nearest').plot()
lst.sel(lon=11, method='nearest').plot()
lst.sel(lat=53, method='nearest').plot()

Closing the cube

If you no longer require access to the cube, it should be closed to release file handles and reserved memory.

cube.close()

Some more demonstrations are included in the ESDC community notebooks [https://github.com/CAB-LAB/cablab-shared/tree/master/notebooks].

3.5. Using Julia

The Data Access API for Julia is part of the DAT for Julia.

3.6. Data Analysis

In addition to the Data Access APIs, we provide a Data Analytics Toolkit (DAT) to facilitate analysis and
visualization of the ESDC. Please see

	DAT for Julia

	DAT for Python

4. ESDC Generation

This section explains how a ESDC is generated and how it can be extended by new variables.

4.1. Command-Line Tool

To generate new data cubes or to update existing ones a dedicated command-line tool cube-gen is used.

After installing cablab-core as described in section Installation, try:

$ cube-gen --help

CAB-LAB command-line interface, version 0.2.2
usage: cube-gen [-h] [-l] [-G] [-c CONFIG] [TARGET] [SOURCE [SOURCE ...]]

Generates a new CAB-LAB data cube or updates an existing one.

positional arguments:
 TARGET data cube root directory
 SOURCE <provider name>:dir=<directory>, use -l to list source
 provider names

optional arguments:
 -h, --help show this help message and exit
 -l, --list list all available source providers
 -G, --dont-clear-cache
 do not clear data cache before updating the cube
 (faster)
 -c CONFIG, --cube-conf CONFIG
 data cube configuration file

The list option lists all currently installed source data providers:

$ cube-gen --list

ozone -> cablab.providers.ozone.OzoneProvider
net_ecosystem_exchange -> cablab.providers.mpi_bgc.MPIBGCProvider
air_temperature -> cablab.providers.air_temperature.AirTemperatureProvider
interception_loss -> cablab.providers.gleam.GleamProvider
transpiration -> cablab.providers.gleam.GleamProvider
open_water_evaporation -> cablab.providers.gleam.GleamProvider
...

Source data providers are the pluggable software components used by cube-gen to read data from a
source directory and transform it into a common data cube structure. The list above shows the mapping from
short names to be used by the cube-gen command-line to the actual Python code, e.g. for ozone,
the OzoneProvider class of the cablab/providers/ozone.py [https://github.com/CAB-LAB/cablab-core/blob/master/cablab/providers/ozone.py] module is used.

The common cube structure is established by a cube configuration file provided by the cube-config option.
Here is the configuration file that is used to produce the low-resolution ESDC. It will produce a 0.25 degrees global
cube that whose source data will aggregated/interpolated to match 8 day periods and then resampled to match
1440 x 720 spatial grid cells:

model_version = '0.2.4'
spatial_res = 0.25
temporal_res = 8
grid_width = 1440
grid_height = 720
start_time = datetime.datetime(2001, 1, 1, 0, 0)
end_time = datetime.datetime(2012, 1, 1, 0, 0)
ref_time = datetime.datetime(2001, 1, 1, 0, 0)
calendar = 'gregorian'
file_format = 'NETCDF4_CLASSIC'
compression = False

To create or update a cube call the cube-gen tool with the configuration and the cube data provider(s).
The cube data providers can have parameters on their own. All current providers have the dir parameter
indicating the source data directory but this is not a rule. Other providers which read from
multivariate sources also have a var parameter to indicate which variable of many possible should be used.

$ cube-gen mycube -c mycube.config ozone:dir=/path/to/ozone/netcdfs

will create the cube mycube in current directory using the mycube.config configuration and add a single
variable ozone from source NetCDF files in /path/to/ozone/netcdfs.

Note, the GitHub repository cube-config [https://github.com/CAB-LAB/cube-config] is used to keep the configurations of individual ESDC versions.

4.2. Writing a new Provider

In order to add new source data for which there is no source data provider yet, you can write your own.

Make sure cablab-core is installed as described in section Installation above.

If your source data is NetCDF, writing a new provider is easy. Just copy one of the existing providers,
e.g. cablab/providers/ozone.py [https://github.com/CAB-LAB/cablab-core/blob/master/cablab/providers/ozone.py] and start adopting the code to your needs.

For source data other than NetCDF, you will have to write a provider from scratch by implementing
the cablab.CubeSourceProvider interface or by extending the cablab.BaseCubeSourceProvider
which is usually easier. Make sure you adhere to the contract described in the documentation of the respective class.

To run your provider you will have to register it in the setup.py file. Assuming your provider is called
sst and your provider class is SeaSurfaceTemperatureProvider located in
myproviders.py, then the entry_points section of the setup.py file should reflect this as follows:

entry_points={
 'cablab.source_providers': [
 'burnt_area = cablab.providers.burnt_area:BurntAreaProvider',
 'c_emissions = cablab.providers.c_emissions:CEmissionsProvider',
 'ozone = cablab.providers.ozone:OzoneProvider',
 ...
 'sst = myproviders:SeaSurfaceTemperatureProvider',

To run it:

$ cube-gen mycube -c mycube.config sst:dir=/path/to/sst/netcdfs

4.3. Sharing a Provider

If you plan to distribute and share your provider, you should create your own Python module separate
from cablab-core with a dedicated setup.py with only your providers listed in the entry_points section.
Other users may then install your module on top of an cablab-core to make use of your plugin.

4.4. Python Cube API Reference

Data Cube read-only access:

from cablab import Cube
from datetime import datetime
cube = Cube.open('./cablab-cube-v05')
data = cube.data.get(['LAI', 'Precip'], [datetime(2001, 6, 1), datetime(2012, 1, 1)], 53.2, 12.8)

Data Cube creation/update:

from cablab import Cube, CubeConfig
from datetime import datetime
cube = Cube.create('./my-cablab-cube', CubeConfig(spatial_res=0.05))
cube.update(MyVar1SourceProvider(cube.config, './my-cube-sources/var1'))
cube.update(MyVar2SourceProvider(cube.config, './my-cube-sources/var2'))

	
class cablab.Cube(base_dir, config)

	Represents a data cube. Use the static open() or create() methods to obtain data cube objects.

	
base_dir

	The cube’s base directory.

	
close()

	Closes the data cube.

	
closed

	Checks if the cube has been closed.

	
config

	The cube’s configuration. See CubeConfig class.

	
static create(base_dir, config=CubeConfig(spatial_res=0.250000, grid_x0=0, grid_y0=0, grid_width=1440, grid_height=720, temporal_res=8, ref_time=datetime.datetime(2001, 1, 1, 0, 0)))

	Create a new data cube. Use the Cube.update(provider) method to add data to the cube
via a source data provider.

	Parameters

	
	base_dir – The data cube’s base directory. Must not exists.

	config – The data cube’s static information.

	Returns

	A cube instance.

	
data

	The cube’s data which is an instance of the CubeDataAccess class.

	
info() → str

	Return a human-readable information string about this data cube (markdown formatted).

	
static open(base_dir)

	Open an existing data cube. Use the Cube.update(provider) method to add data to the cube
via a source data provider.

	Parameters

	base_dir – The data cube’s base directory which must be empty or non-existent.

	Returns

	A cube instance.

	
update(provider: CubeSourceProvider)

	Updates the data cube with source data from the given image provider.

	Parameters

	provider – An instance of the abstract ImageProvider class

	
class cablab.CubeConfig(spatial_res=0.25, grid_x0=0, grid_y0=0, grid_width=1440, grid_height=720, temporal_res=8, calendar='gregorian', ref_time=datetime.datetime(2001, 1, 1, 0, 0), start_time=datetime.datetime(2001, 1, 1, 0, 0), end_time=datetime.datetime(2012, 1, 1, 0, 0), variables=None, file_format='NETCDF4_CLASSIC', chunk_sizes=None, compression=False, comp_level=5, static_data=False, model_version='1.0.2')

	A data cube’s static configuration information.

	Parameters

	
	spatial_res – The spatial image resolution in degree.

	grid_x0 – The fixed grid X offset (longitude direction).

	grid_y0 – The fixed grid Y offset (latitude direction).

	grid_width – The fixed grid width in pixels (longitude direction).

	grid_height – The fixed grid height in pixels (latitude direction).

	temporal_res – The temporal resolution in days.

	ref_time – A datetime value which defines the units in which time values are given, namely
‘days since ref_time’.

	start_time – The inclusive start time of the first image of any variable in the cube given as datetime value.
None means unlimited.

	end_time – The exclusive end time of the last image of any variable in the cube given as datetime value.
None means unlimited.

	variables – A list of variable names to be included in the cube.

	file_format – The file format used. Must be one of ‘NETCDF4’, ‘NETCDF4_CLASSIC’, ‘NETCDF3_CLASSIC’
or ‘NETCDF3_64BIT’.

	chunk_sizes – A mapping of dimension names to chunk size for encoding.
Default is None.

	compression – Whether gzip compression is used for encoding.
Default is False.

	comp_level – Integer between 1 and 9 describing the level of compression desired for encoding.
Default is 5. Ignored if compression is False.

	
date2num(date) → float

	Return the number of days for the given date as a number in the time units
given by the time_units property.

	Parameters

	date – The date as a datetime.datetime value

	
easting

	The latitude position of the upper-left-most corner of the upper-left-most grid cell
given by (grid_x0, grid_y0).

	
geo_bounds

	The geographical boundary given as ((LL-lon, LL-lat), (UR-lon, UR-lat)).

	
static load(path) → object

	Load a CubeConfig from a text file.

	Parameters

	path – The file’s path name.

	Returns

	A new CubeConfig instance

	
northing

	The longitude position of the upper-left-most corner of the upper-left-most grid cell
given by (grid_x0, grid_y0).

	
num_periods_per_year

	Return the integer number of target periods per year.

	
store(path)

	Store a CubeConfig in a text file.

	Parameters

	path – The file’s path name.

	
time_units

	Return the time units used by the data cube as string using the format ‘days since ref_time’.

5. DAT for Julia

5.1. Overview

The Data Analytics Toolkit (DAT) for Julia is hosted in CABLAB’s github repository [https://github.com/CAB-LAB/CABLAB.jl]
and is developed in close interaction with the scientific community. Here we give a short overview on the capabilities
of the Julia DAT, but we would refer to the official documentation [http://cab-lab.github.io/CABLAB.jl/latest/] for
a more detailed and frequently updated software description.

The current implementation of the Julia DAT consists of 3 parts:

	A collection of analysis functions that can be applied to the ESDC

	Functions for visualizing time-series and spatial maps

	A function to register custom functions to be applied on the cube

1. Collection of analysis functions

We provide several methods to perform basic statistical analyses on the ESDC. In a typical workflow, the user wants to
apply some function (e.g. a time series analysis) on all points of the cube. In other systems this would mean that the user
must write some loop that reads chunks of data, applies the function, stores the result and then read the next chunk of data
etc. In the Julia DAT, this is done automatically, the user just calls e.g. mapCube(removeMSC,mycube) and the mean seasonal
cycle will be subtracted from all individual time series contained in the selected cube.

In Analysis [http://cab-lab.github.io/CABLAB.jl/latest/analysis.html] one can find a list of all currently implemented DAT methods.

2. Visualisation of the ESDC

For a convenient and interactive visual inspection of the ESDC five plotting functions are available:

	plotXY for scatterplotd or bar plots along a single axis

	plotTS like plotXY but the x axis set to TimeAxis by default

	plotScatter for scatter plots of two elements from the same axis, e.g. of two Variables

	plotMAP for generic map plots

	plotMAPRGB for RGB-like maps plots where different variables can be mapped to the plot color channels

For examples and a detailed description of the plotting functions, see Plotting [http://cab-lab.github.io/CABLAB.jl/latest/plotting.html]

3. Adding user functions into the DAT

Users can add custom functions to the DAT for individual sessions. This is described in detail in the adding_new [http://cab-lab.github.io/CABLAB.jl/latest/adding_new.html] chapter of the manual.

5.2. Use Cases and Examples

Example notebooks that explore the ESDC using the Julia DAT can be found in the cablab-shared [https://github.com/CAB-LAB/cablab-shared/tree/master/notebooks/Julia] repository.

6. DAT for Python

6.1. Overview

The main objective of the Data Analytics Toolkit is to facilitate the exploitation
of the multi-variate data set in the ESDC for experienced users and empower less experienced
users to explore the wealth of information contained in the ESDC. To this end, Python is almost
a natural choice for the programming language, as it is easy to learn and use, offers numerous,
well-maintained community packages for data handling and analysis, statistics, and visualisation.

The DAT for Python relies primarily on xarray [http://xarray.pydata.org/en/stable/] a package that provides N-dimensional data structures
and efficient computing methods on those object. In fact, xarray closely follows the approach adopted
NetCDF, the quasi-standard file format for geophysical data, and provides methods for many
commonly executed operations on spatial data.
The central data structure used for representing the ESDC in Python is thus the xarray.Dataset [http://xarray.pydata.org/en/stable/data-structures.html#dataset].

Such dataset objects are what you get when accessing the cube’s data as follows:

from cablab import Cube
cube = Cube.open("/home/doe/esdc/cablab-datacube-0.2.4/low-res")
dataset = cube.data.dataset(["precipitation", "evaporation", "ozone", "soil_moisture","air_temperature_2m"])

Any geo-physical variable in the ESDC is represented by a xarray.DataArray [http://xarray.pydata.org/en/stable/data-structures.html#dataarray], which are Numpy [http://www.numpy.org/]-like data arrays
with additional coordinate information and metadata.

The following links point into the xarray [http://xarray.pydata.org/en/stable/] documentation, they provide the low-level interface for the Python DAT:

	Indexing and selecting data [http://xarray.pydata.org/en/stable/indexing.html]

	Computation [http://xarray.pydata.org/en/stable/computation.html]

	Split-apply-combine [http://xarray.pydata.org/en/stable/groupby.html]

	Reshaping and reorganizing data [http://xarray.pydata.org/en/stable/reshaping.html]

	Combining data [http://xarray.pydata.org/en/stable/combining.html]

	Time series data [http://xarray.pydata.org/en/stable/time-series.html]

Building on top of the xarray [http://xarray.pydata.org/en/stable/] API the DAT offers high-level functions for ESDC-specific workflows
in the cablab.dat [https://github.com/CAB-LAB/cablab-core/blob/master/cablab/dat.py] module. These functions are addressing specific user requirements and
the scope of the module will increase with the users of the DAT. In the following, typical use cases and examples
provide an illustrative introduction into the usage of the DAT and thus into the exploration of the ESDC.

6.2. Use Cases and Examples

The below examples are all contained in a Jupyter notebook [https://github.com/CAB-LAB/cablab-shared/blob/master/notebooks/Python/Python_DAT.ipynb], which is also available in the E-Lab [https://cablab.earthsystemdatacube.net].

6.2.1. Data Access and Indexing

In the first step described above, a subset of five variables is loaded into the DataSet, which distinguishes
between Dimensions, Coordinated, and Data Variables, just like NetCDF.

dataset

[image: _images/dat1.png]
Addressing a single variable returns a xarray DataArray and reveals the metadata associated to the variable. Note the
similarity to the Pandas syntax here.

dataset.precipitation

[image: _images/dat2.png]
The actual data in a variable can be retrieved by calling dataset.precipitation.values, which returns a
numpy array.

isinstance (dataset.precipitation.values,np.ndarray)

[image: _images/dat3.png]
xarray offers different ways for indexing, both integer and label-based look-ups, and the reader is referred to the
exhaustive section in the respective section of the xarray documentation: xarray Indexing and selecting data [http://xarray.pydata.org/en/stable/indexing.html].
The following example, in which a chunk is cut out from the larger data set, demonstrates the convenience of xarrays
syntax. The result is again a xarray DataArray, but with only subset of variables and restricted to a smaller domain in
latitude and longitude.

dataset[['precipitation', 'evaporation']].sel(lat = slice(70.,30.), lon = slice(-20.,35.))

[image: _images/dat4.png]

6.2.2. Computation

It was a major objective of the Python DAT to facilitate processing and analysis of big, multivariate geophysical
data sets like the ESDC. Typical use cases include the execution of functions on all data in the ESDC, the aggregation
of data along a common axis, or analysing the relation between different variables in the data set. The following
examples shed a light on the capabilities of the DAT, more typical examples can be found in the Jupyter notebook [https://github.com/CAB-LAB/cablab-shared/blob/master/notebooks/Python/Python_DAT.ipynb] and
the documentation of xarray [http://xarray.pydata.org/en/stable/] provides an exhaustive reference to the package’s functionalities.

Many generic mathematical functions are implemented for DataSets and DataArrays. For example, an average over all
variables in the dataset can thus be easily calculated.

dataset.mean(skipna=True)

[image: _images/dat5.png]
Note that calculating a simple average on a big data set
may require more resources, particularly memory, than is available on the machine you are working at. In such cases,
xarray automatically involves a package called dask [http://dask.pydata.org/en/latest/] for out-of-core computations and automatic parallelisation. Make
sure that dask is installed to significantly improve the user experience with the DAT. Similar to pandas [http://pandas.pydata.org/], several
computation methods like groupby or apply have been implemented for DataSets and DataArrays. In
combination with the datetime [https://docs.python.org/3/library/datetime.html] data types, a monthly mean of a variable can be calculated as follows:

dataset.air_temperature_2m.groupby('time.month').mean(dim='time')

[image: _images/dat6.png]
In the resulting DataArray, a new dimension month has been automatically introduced.
Users may also define their own functions and apply them to the data. In the below example, zcores are computed for
the entire DataSet by usig the built-in functions mean and std. The user function
above_Nsigma is applied to all data to test if a zscore is above or below two sigma, i.e. is an outlier. The
result is again a DataSet with boolean variables.

def above_Nsigma(x,Nsigma):
 return xr.ufuncs.fabs(x)>Nsigma

zscores = (dataset-dataset.mean(dim='time'))/dataset.std(dim='time')
res = zscores.apply(above_Nsigma,Nsigma = 2)
res

[image: _images/dat7.png]
In addition to the functions and methods xarray is providing, we have begun to develop high-level functions that
simplify typical operations on the ESDC. The function corrcf computes the correlation coefficient between
two variables.

6.2.3. Plotting

Plotting is key for the explorative analysis of data and for the presentation of results. This is of course even more
so for Earth System Data. Python offers many powerful approaches to meet the diverse visualisation needs of different
use cases. Most of them can be used with the ESDC since the data can be easily transferred to numpy arrays or pandas
data frames. The following examples may provide a good starting point for developing more specific plots.

Calculating the correlation coefficient of two variables and plot the resulting 2D image af latitude and longitude.

cv = DAT_corr(dataset, 'precipitation', 'evaporation')
cv.plot.imshow(vmin = -1., vmax = 1.)

[image: _images/dat8.png]
Plotting monthly air temperature in twelve subplots.

Air_temp_monthly = dataset.air_temperature_2m.groupby('time.month').mean(dim='time')
Air_temp_monthly.plot.imshow(x='lon',y='lat',col='month',col_wrap=3)

[image: _images/dat9.png]
A simple time-series plot at a given location.

dataset.evaporation.sel(lon = 12.67,lat = 41.83, method = 'nearest').plot()

[image: _images/dat10.png]
Plotting a projected map using the DAT function map_plot.
.. code-block:: python

fig, ax, m = map_plot(dataset,’evaporation’,‘2006-03-01’,vmax = 6.)

[image: _images/dat11.png]
Generating a subplot of a time-series at a given location and the associated histogram of the data.

precip1d = dataset['precipitation'].sel(lon = 12.67,lat = 41.83, method = 'nearest')
fig, ax = plt.subplots(figsize = [12,5], ncols=2)
precip1d.plot(ax = ax[0], color ='red', marker ='.')
ax[0].set_title("Precipitation at ESRIN")
precip1d.plot.hist(ax = ax[1], color ='blue')
ax[1].set_xlabel("precipitation")
plt.tight_layout()

[image: _images/dat12.png]
Convert a DataSet into an pandas dataframe and generate a boxplot from the dataset.

zscore = (dataset-dataset.mean(dim='time'))/dataset.std(dim='time')
df = zscore.to_dataframe()
df.boxplot(column=["precipitation","evaporation","ozone"])

[image: _images/dat13.png]

6.3. Python API Reference

The low-level interface of the ESDC Python DAT is the xarray API [http://xarray.pydata.org/en/stable/api.html].

The following functions provide the high-level API of the ESDC Python DAT:

The following functions provide the high-level API of the ESDC Python DAT.
It provides additional analytical utility functions which work for xarray.Dataset [http://xarray.pydata.org/en/stable/data-structures.html#dataset] objects
which are used to represent the ESDC data.

	
cablab.dat.corrcf(ds, var1=None, var2=None, dim='time')

	Function calculating the correlation coefficient of two variables var1 and var2 in one xarray.Dataset [http://xarray.pydata.org/en/stable/data-structures.html#dataset]
ds.

	Parameters

	
	ds – an xarray.Dataset [http://xarray.pydata.org/en/stable/data-structures.html#dataset]

	var1 – Variable 1

	var2 – Variable 2, both have to be of identical size

	dim – dimension for aggregation, default is time.
In the default case, the result is an image

	Returns

	

	
cablab.dat.map_plot(ds, var=None, time=0, title_str='No title', projection='kav7', lon_0=0, resolution=None, **kwargs)

	Function plotting a projected map for a variable var in xarray.Dataset [http://xarray.pydata.org/en/stable/data-structures.html#dataset] ds.

	Parameters

	
	ds – an xarray.Dataset [http://xarray.pydata.org/en/stable/data-structures.html#dataset]

	var – variable to plot

	time – time step or datetime date to plot

	title_str – Title string

	projection – for Basemap

	lon_0 – longitude 0 for central

	resolution – resolution for Basemap object

	kwargs – Any other kwargs accepted by the pcolormap function of Basemap

	Returns

	

7. Collaboration

Collaboration is at the heart of science!

The CAB-LAB project explicitly aims at enabling more scientists from various disciplines to not only interact
with Earth System data, but also with each other.
The CAB-LAB team seeks active exchange with users of any background, data owners willing to add their data to the ESDC,
and developers who are interested in improving the ESDC.

There are several ways to get in contact with the CAB-LAB team and other users of the ESDC:

7.1. Code Repository

The source code is currently and will be for the foreseeable future under continuous development. Since the CAB-LAB team
takes collaboration, transparency, and reproducibility seriously, the project is open source and public from the very beginning.
Visit CAB-LAB’s github repository [https://github.com/CAB-LAB] and check out the current status of the project or even
contribute!

7.2. Website & Forum

Important updates on the project’s progress are frequently published on the CAB-LAB webpage: http://earthsystemdatacube.net.
Moreover, in the forum of the webpage [http://earthsystemdatacube.net/cab-lab/forum/cab-lab/] you can easily interact with project members and users!
Or simply write an email to info@earthsystemdatacube.net to get in contact with the project members.

 Python Module Index

 c

 		 	

 		
 c	

 	[image: -]
 	
 cablab	

 	
 	
 cablab.dat	

Index

 B
 | C
 | D
 | E
 | G
 | I
 | L
 | M
 | N
 | O
 | S
 | T
 | U

B

 	
 	base_dir (cablab.Cube attribute)

C

 	
 	cablab (module)

 	cablab.dat (module)

 	close() (cablab.Cube method)

 	closed (cablab.Cube attribute)

 	config (cablab.Cube attribute)

 	
 	corrcf() (in module cablab.dat)

 	create() (cablab.Cube static method)

 	Cube (class in cablab)

 	Cube Spatial and Temporal Coverage

 	CubeConfig (class in cablab)

D

 	
 	data (cablab.Cube attribute)

 	
 	Data Policy

 	date2num() (cablab.CubeConfig method)

E

 	
 	Earth System Data Cube

 	
 	easting (cablab.CubeConfig attribute)

 	ESDC Macro Structure

G

 	
 	geo_bounds (cablab.CubeConfig attribute)

I

 	
 	info() (cablab.Cube method)

L

 	
 	Legal information

 	
 	load() (cablab.CubeConfig static method)

M

 	
 	map_plot() (in module cablab.dat)

N

 	
 	northing (cablab.CubeConfig attribute)

 	
 	num_periods_per_year (cablab.CubeConfig attribute)

O

 	
 	open() (cablab.Cube static method)

S

 	
 	store() (cablab.CubeConfig method)

T

 	
 	time_units (cablab.CubeConfig attribute)

U

 	
 	update() (cablab.Cube method)

Annexes

Below you find a list of all data sets distributed through the Earth system Data Cube (ESDC).
In future versions of this document, this list will be automatically generated at ingestion of the source data sets
to the ESDC and provide a more detailed reference to the original data, its official name, and the data owner.
In the current version, it briefly summarizes the datasets that have been ingested to the ECDS so far (yes) or that are
planned to be available in later versions (V1 or V2). For some data sets, marked with tbc here, we are in the process of
clarifying technical or legal issues. We kindly remind you to respect the usage policy of the owners of the original data.
Read also our remarks on Data Policy.!

	Parameter Name

	Product Name

	Availability

	Albedo

	GlobAlbedo

	yes

	BRDF

	GlobAlbedo

	V2

	Burned area

	Global Fire Emissions Database (GFED4)

	yes

	Carbon and dry matter emission

	Global Fire Emissions Database (GFED4)

	yes

	Evapotranspiration

	WACMOS II, GLEAM-WACMOS

	tbc

	fAPAR

	fAPAR MERIS

	V1

	Fire hotspot

	ATSR world fire Atlas

	tbc

	Fractional contributions of various fire types

	Global Fire Emissions Database (GFED4)

	tbc

	Gross Primary Production

	FLUXCOM GPP

	V2

	LAI

	LAI

	V1

	Land Surface Temperature

	DUE GlobTemperature

	V1

	Latent Heat

	FLUXCOM AET

	V2

	Sensible Heat

	FLUXCOM H

	V2

	Soil Moisture

	CCI Soil Moisture (v 2.0)

	yes

	Sun induced fluorescence

	SFI SCIAMACHY

	tbc

	Snow areal extent

	Globsnow

	yes

	Snow water equivalent

	Globsnow

	V1

	Precipitation

	GPCP

	yes

	Air temperature

	ERA Interim

	yes

	Vapour

	DUE GlobVapour

	yes

	Ozone

	Ozone CCI

	yes

	XCO2, XCH4

	GHG CCI

	V1

	Aerosols

	Aerosol CCI

	yes

	Radiation

	JAXA

	tbc

	Population distribution

	LandScan Global Population Database

	tbc

	Gross Domestic Product

	GDP

	V1

	Human Development Index

	HDI

	V2

	Topographic Index

	HydroSHEDS based on GA2

	V1

	Biomass

	BIOMASAR

	tbc

	Climate indices

	ENSO, NAO, AO, QBD etc.

	tbc

	Land cover maps

	CCI Land Cover

	V1

 _static/ajax-loader.gif

_images/CABLAB_samp2.png
Discontiguous Oversampling

: |
et | [sowea o [sowes] | o[s]

_static/comment.png

_images/CABLAB_samp3.png
Contiguous Undersampling

Target-2 Target-3

_static/down-pressed.png

_static/comment-bright.png

_images/CABLAB_samp1.png
Contiguous Oversampling
\

_static/comment-close.png

_images/EarthDataCube3.png

_static/file.png

_images/dat1.png
<xarray.Dataset>
Dimensions:
Coordinates:

* lon
lon_bnds
lat_bnds

* lat

* time
time_bnds

Dimensions without coordinates:

Data variables:
precipitation
ozone
evaporation
soil_moisture
air_temperature_2m

(bnds:

(lon)
(lon,
(lat,
(lat)

2, la

t: 720, lon:

1440,

time:

506)

float32 -179.875 -179.625 -179.375
bnds) float32 -180.0 -179.75 -179.75 -179.5
bnds) float32 89.75 90.0 89.5 89.75 89.25 89.5
float32 89.875 89.625 89.375 89.125 88.875

-179.125

(time) datetime64[ns] 2001-01-05 2001-01-13

(time,

(time,
(time,
(time,
(time,
(time,

bnds) datetime64[ns] 2001-01-01 2001-01-09

bnds

lat,
lat,
lat,
lat,
lat,

lon)
lon)
lon)
lon)
lon)

floated
floated
floated
floated
floated

nan
nan
nan
nan

nan
nan
nan
nan

nan
nan
nan
nan

243.4 243.4

nan
nan
nan
nan

nan
nan
nan
nan

nan
nan
nan
nan

243.4 243.4

nan
nan
nan

nan

_static/minus.png

_images/CABLAB_samp4.png
Discontiguous Undersampling
1

Source-1 N >{< 4 Source-2

_static/down.png

_images/CABLAB_structure.png
temporal_res
o

spatlal res

s

grid_width

ref_time

grid_height

_images/dat10.png
‘evaporation

lon = 12.625, lat = 41.875

P

o e

»

_images/dat11.png
evaporation 2006-03-01

2 4
water_evaporation_flux (mm/day)

_images/dat12.png
precipitation

Precipitation at ESRIN Histogram of precipitation

® 10 g
precipitation

_static/up-pressed.png

nav.xhtml

 Table of Contents

 		
 Earth System Data Cube (ESDC)

 		
 Introduction

 		
 Motivation

 		
 ESDC Project

 		
 Purpose

 		
 Scope

 		
 References

 		
 Peer-reviewed Publications

 		
 Terms and Abbreviations

 		
 Data Policy

 		
 Legal information

 		
 ESDC Description

 		
 Macro Structure

 		
 Spatial and Temporal Coverage

 		
 Format and Structure

 		
 Processing Applied

 		
 Gap-Filling Approach

 		
 Temporal Resampling

 		
 Spatial Resampling

 		
 Land-Water Masking

 		
 Constraints and Limitations

 		
 Cube Data Variables

 		
 ESDC Access

 		
 Download ESDC Data

 		
 OPeNDAP and WCS Services

 		
 E-Laboratory

 		
 Using Python

 		
 Installation

 		
 Usage

 		
 Using Julia

 		
 Data Analysis

 		
 ESDC Generation

 		
 Command-Line Tool

 		
 Writing a new Provider

 		
 Sharing a Provider

 		
 Python Cube API Reference

 		
 DAT for Julia

 		
 Overview

 		
 Use Cases and Examples

 		
 DAT for Python

 		
 Overview

 		
 Use Cases and Examples

 		
 Data Access and Indexing

 		
 Computation

 		
 Plotting

 		
 Python API Reference

 		
 Collaboration

 		
 Code Repository

 		
 Website & Forum

_static/plus.png

_images/dat3.png
True

_images/dat4.png
<xarray.Dataset>
Dimensions:
Coordinates:
* time
* lat
* lon
Data variables:
precipitation
evaporation

(lat:

160,

lon: 220, time: 506)

(time) datetimeé4[ns] 2001-01-05 2001-01-13 2001-01-21 .
(lat) float32 69.875 69.625 69.375 69.125 €8.875 68.625
(lon) float32 -19.875 -19.625 -19.375 -19.125 -18.875 ..

(time,
(time,

lat,
lat,

lon) float64 nan nan nan nan nan nan nan nan
lon) float64 nan nan nan nan nan nan nan nan

_images/dat13.png
B

)

-10

-15

precipitation

‘evaporation

wzone

_static/up.png

_images/dat2.png
<xarray.DataArray 'precipitation' (time: 506, lat: 720, lon: 1440)>
dask.array<concatenate, shape=(506, 720, 1440), dtype=float64, chunksize=(46, 720, 1440)>
Coordinates:

* lon (lon) float32 -179.875 -179.625 -179.375 -179.125 -178.875 ...
* lat (lat) float32 89.875 89.625 89.375 89.125 88.875 88.625 88.375 ...
* time (time) datetime64[ns] 2001-01-05 2001-01-13 2001-01-21 ...
Attributes:
url: http://precip.gsfc.nasa.gov/
source_name: Precip
standard_name: precipitation_flux
comment : Precipitation based on the GPCP dataset.
units: mm/day

references: Adler, Robert F., et al. "The version-2 global precipitat...

_images/dat7.png
<xarray.Dataset>

Dimensions: (lat: 720, lon: 1440, time: 506)
Coordinates:

* lon (lon) float32 -179.875 -179.625 -179.375 -179.125 ...

* lat (lat) float32 89.875 89.625 89.375 89.125 88.875 88.625

* time (time) datetime64[ns] 2001-01-05 2001-01-13 2001-01-21 ...

Data variables:
precipitation (time, lat, lon) bool False False False False False False .
evaporation (time, lat, lon) bool False False False False False False .
ozone (time, lat, lon) bool False False False False False False .

_images/dat8.png
100
075
050
025
0.00
-0.25

-0.50

-0.75

-1.00

-150 -100 -50 0 50 100 150
lon

_images/dat5.png
<xarray.Dataset>

Dimensions:

Data variables:
precipitation
ozone
evaporation
soil moisture
air temperature 2m

[§]

floate4
floate4
floate4
floate4
floate4

1.24
268.5
0.8191
0.1674
278.7

_images/dat6.png
<xarray.DataArray 'air_ temperature 2m' (month: 12, lat: 160, lon: 220)>
dask.array<transpose, shape=(12, 160, 220), dtype=floaté4, chunksize=(1, 160, 220)>
Coordinates:

* lon (lon) float32 -19.875 -19.625 -19.375 -19.125 -18.875 -18.625 ...

* lat (lat) float32 €9.875 69.625 69.375 69.125 68.875 68.625 68.375 ...

* month (month) int64 1 234567 8 9 10 11 12

_images/dat9.png
3

air_temperature_2m

]

