

Welcome to bV5’s documentation!

Contents:

	Getting Started
	Getting Hold of bV5

	Introduction to bV5

	Where Next?

	The bV5 Command Line
	Installing

	Updating Firmare

	Building Your Project

	Uploading Your Project

	Cool V5 Utilities

	API Reference
	Global Variables

	Robot Management

	Controllers

	Motors

	Motor Reporting

	ADI Interface

	Robot Battery

	Graphics

	Task Management

	Examples

Indices and tables

	Index

	Module Index

	Search Page

Getting Started

Getting Hold of bV5

Right now there are no public repositories of binaries of bV5. If you
found this site, either you found a random site, or it was linked to
you. In the former case, welcome, stranger. In the, more likely,
latter, there should have been a template archive provided to you in
the same place. Take that archive, and un-archive it. And now you’re
done. 🎉.

Introduction to bV5

bV5 is a fun little library I wrote for V5. Why? Because I wanted to
have some fun, and I figured I might as well do something productive.

When you open your first project, you have a few files. The ones
you’re going to be interested in initially are include/main.h and
the ones in src/.

Here’s a sample from user.c:

#include "main.h"

void driver() {
 while (1) {
 /* [SNIP */

 /* Make sure to call delay so we can do other stuff */
 delay(20);
 }
}

If we have a look around, as well as driver, there are auton,
setup, init, and disabled.

If you’ve been following along, you’ve probably noticed the all have
a little comment saying what they do. Here’s what they do again,
anyway:

	driver: This is the code that is run when you are in driver
control mode.

	auton: And this is the code for when you’re in autonomous
mode.

	disabled: This code is run when the robot is disabled.

	setup: This function is called before entering any of the
previous three functions.

	init: This function is called once when the program starts.
This is a good place to do things like startup background tasks,
initialize sensors like ultrasonics, etc.

It’s important to note that any time you have a loop that will run
for a long (or infinite) time, you will need to call delay()
somewhere so that the rest of the system can tick along nicely.

main.h is a globally included header file. This is a nice place
to define things you want to be global.

Where Next?

Anywhere, really. If you want to dive right in, the API reference is
just for you, if you want to learn more about how to use the command
line, that section’ll help, and if you’re looking to run some extra
tasks or want to know a little about them, then have a look at Task
Management.

This is the part where I’d usually refer you over to the examples,
but they’re somewhat lacking because I’ve just spend 4 hours writing
all these pages. I don’t really feel like making any examples. When I
do, I’ll replace this.

The bV5 Command Line

bV5 makes use of a handy handy command line program called… bv5!
It manages all the interactions with the brain so you don’t have to.
It also has project management and updating.. maybe. I’ve not really
tested that part enough, so I’m not going to suggest using it and
expecting it to work :P. It’s under bv5 packages if you want to
have a peek though.

Installing

// TODO: This. Maybe.

Right now the best solution is to git clone <the repo> then use
pip install --user -e . to get setup. A proper solution will
probably come later.

Updating Firmare

The bv5 dfu command will open a firmware updater for you to use
to, you guessed it, update firmware. It doesn’t do anything fancy,
and doesn’t have any bells and whistles, but it’s a darn sight
smaller than the official one so is a nice way to save installing a
massive firmware updater from VEX.

Building Your Project

By way of a Makefile, you can just run the command make. If
you are on Windows, that command probably doesn’t exist. Using
bv5 make, it will search for a copy of make, then if it fails
to find it, it will attempt to use the Windows Subsystem for Linux.

If you need a copy of make, or instructions for how to setup the WSL,
Google is your friend.

bV5 also has a command named bv5 make watch, which will monitor
your project source, and then re-compile it when anything changes. It
can also optionally upload the new binary to the brain. Use
--help for more information on that.

Uploading Your Project

So you’ve compiled your program, ey? bv5 upload! As above, use
bv5 upload --help for more information about the options you can
pass to this command.

Cool V5 Utilities

There’s a lot of cool stuff in bv5 v5. Here are some of them:

	erase: Clear your brain

	name [robot name]: Set or get the robot’s name

	team [team name]: Set or get the robot’s team

	tree: List all the files on the robot.

	speedtest: Test the connection speed. This is useful for
wireless uploading (when you plug into the controller instead of
the brain)

	term: Open a serial terminal to the brain. You can use
printf() and getchar() to communicate from the
brain.

	set <variable> <value>/get <variable>: Modify system
variables. These are general purpose storage spaces on the brain.
Fun fact: They persist even after a factory reset of the brain!

	read <file>: Download a file off the brain. It’s like
upload, but cooler!

	last: Ever wondered when the last time you used bV5 on a robot
brain was? Of course not, but hey, there’s a command for it.

bv5 v5 is where I usually put random things, so it’s worth
running bv5 v5 --help if you get bored, to see if I’ve added
anything fun :).

API Reference

Global Variables

	
uint32_t systemVersion

	The current version of VEXos

	
uint32_t stdlibVersion

	The current version of the stdlib that is being used

	
uint32_t sdkVersion

	The current version of the sdk that is being used

	
uint64_t startupTime

	The time that the system was powered on

Robot Management

	
void delay(uint32_t ms)

	Delay the currently running task for a period of time

	Parameters

	
	ms – The number of milliseconds to delay (or 0 for as short
as possible)

	
bool isDriver()

	Check if we’re in driver control or not

	
bool isAuton()

	Check if we’re in auton mode or not

	
bool isCompetition()

	This will be true when we are in competiton mode (either field
control or a testing controller are connected).

	
bool fieldConnected()

	This will be true if we are connected to a field, but false if we
are at inspection or using a testing controller.

Warning

This clearly has a lot of room for abuse. Do what you
will with it, but it’s not my fault if you do something
stupid and get DQ’d.

	
void exit(int code)

	Quit the program.

	Parameters

	
	code – The exit code. This isn’t actually used, just added
for compatability with the normal exit function.

	
uint32_t getMillis()

	Get the current time in milliseconds

	
uint64_t getMicros()

	Get the current time in microseconds

	
uint32_t getUsbStatus()

	Get the USB connection status. The return value is a bit field,
as described below:

	Bit 1 (1): Is there a cabled plugged into the brain?

	Bit 2 (2): Is there an established connection from the
brain cable to a host computer?

	Bit 3 (4): Is there a cabled plugged into the controller?

	Bit 4 (8): Is there an established connection from the
controller cable to a host computer?

Bits 5 (16) and 6 (32) are possibly used like bit 3 and 4 but for
the partner controller, however I lack a second controller. It’s
worth noting that a connection from the controller and the
brain at the same time is possible.

Controllers

	
int32_t controllerGet(ControllerId id, ControllerChan channel)

	Query a “channel” from a controller. This usually just means
getting a joystick value or a button, but you can also use it to
get the current battery level of the controller, the power button
in the middle of the controller, etc.

	Parameters

	
	id – The controller to query. Either Master or
Partner.

	channel – The controller channel to query. This is one of:

	
	LeftX

	LeftY

	RightX

	RightY

	BtnL1

	BtnL2

	BtnR1

	
	BtnR2

	BtnUp

	BtnDown

	BtnLeft

	BtnRight

	BtnX

	BtnY

	
	BtnA

	BtnB

	BtnSel

	BattLevel

	BtnAll

	Flags

	BattCapacity

	
ControllerStatus controllerStatus(ControllerId id)

	Get the status of a controller. The return value is either:

	Offline

	Tethered

	VEXnet

This function does not differentaite between a VEXnet connection,
or a Bluetooth connection from the robot radio.

	Parameters

	
	id – The controller to query. Either Master or
Partner.

	
bool setControllerText(ControllerId id, uint32_t line, uint32_t col, const char *str)

	Set a line of text on the controller. The return value indicates
success.

Warning

This function must never be called more than once every 50ms
due to limitations in how the controller works.

	Parameters

	
	id – The controller to query. Either Master or
Partner.

	line – The line on the controller to set.

	col – The column to start writing at.

	str – A pointer to a char array, containing the string.

	
bool clearControllerLine(ControllerId id, uint8_t line)

	This is a helper function to fill a line of text on the
controller with spaces, effectively clearing that line.

	Parameters

	
	id – The controller to query. Either Master or
Partner.

	line – The line on the controller to clear.

	
bool controllerRumble(ControllerId id, const char *pattern)

	Make the controller V I B R A T E!!

	Parameters

	
	id – The controller to query. Either Master or
Partner.

	pattern – A pointer to a string containing the vibration
pattern.

Motors

Note

All of these functions assume that a motor has been plugged into
the specified port. If something other than a motor is plugged in
unexpected magic™ might happed!

	
void velocitySet(uint32_t port, int32_t velocity)

	Set the velocity of a motor. This will reset the motor’s internal
PID tracking, and is probably what you want.

	Parameters

	
	port – The port from 1-21 for the motor

	velocity – The velocity to set the motor to

	
void velocityUpdate(uint32_t port, int32_t velocity)

	Update the target velocity for a motor’s internal PID without
resetting the state.

	Parameters

	
	port – The port from 1-21 for the motor

	velocity – The velocity to update the motor to

	
void voltageSet(uint32_t port, int32_t voltage)

	Set the voltage to a motor. When using this function, the
internal PID for the motor will be ignored.

	Parameters

	
	port – The port from 1-21 for the motor

	voltage – The velocity to send to the motor (in mV)

	
int32_t velocityGet(uint32_t port)

	Get the current velocity that the motor is attempting to reach.

	Parameters

	
	port – The port from 1-21 for the motor

	
int32_t directionGet(uint32_t port)

	Get the current direction of travel for the given motor.

	Parameters

	
	port – The port from 1-21 for the motor

	
int32_t velocityGetReal(uint32_t port)

	Get the real velocity that a given motor is running at.

	Parameters

	
	port – The port from 1-21 for the motor

	
void pwmSet(uint32_t port, int32_t duty)

	Control a motor using a PWM duty cycle instead of voltage or
velocity.

	Parameters

	
	port – The port from 1-21 for the motor

	duty – The duty cycle the motor should be run at.

	
int32_t pwmGet(uint32_t port)

	Get the current PWM duty cycle that a motors is being driven at.

	Parameters

	
	port – The port from 1-21 for the motor

	
void currentLimitSet(uint32_t port, int32_t limit)

	Set the current draw limit for a motor.

	Parameters

	
	port – The port from 1-21 for the motor

	limit – The limit that should be set for the motor.

	
int32_t currentLimitGet(uint32_t port)

	Get the current draw limit for a motor.

	Parameters

	
	port – The port from 1-21 for the motor

	
void voltageLimitSet(uint32_t port, int32_t limit)

	Set the voltage limit for a motor.

	Parameters

	
	port – The port from 1-21 for the motor

	limit – The voltage that should be set for the motor.

	
int32_t voltageLimitGet(uint32_t port)

	Get the voltage limit for a motor.

	Parameters

	
	port – The port from 1-21 for the motor

	
void setEncoderUnits(uint32_t port, EncoderUnits units)

	Set the units that should be reported by getMotorPos().

	Parameters

	
	port – The port from 1-21 for the motor

	units – The units to use. One of:

	Degrees

	Rotations

	Counts

	
EncoderUnits getEncoderUnits(uint32_t port)

	Get the units that are being reported by getMotorPos().
See also setEncoderUnits().

	Parameters

	
	port – The port from 1-21 for the motor

	
void setBrake(uint32_t port, BrakeMode mode)

	Set the brake mode that the motor will use when stopping.

Note

The brake mode is not respected when setting the voltage
directly instead of using velocity control.

	Parameters

	
	port – The port from 1-21 for the motor

	mode – The brake mode to set the motor to. One of:

	BrakeCoast

	BrakeBrake

	BrakeHold

	
BrakeMode getBrake(uint32_t port)

	Get the brake mode that the motor is currently using.

	Parameters

	
	port – The port from 1-21 for the motor

	
void setMotorPos(uint32_t port, double position)

	Set the position of a given motor.

	Parameters

	
	port – The port from 1-21 for the motor

	position – The position the motor should be set to

	
double getMotorPos(uint32_t port)

	Get the position of a given motor.

	Parameters

	
	port – The port from 1-21 for the motor

	
void resetMotorPos(uint32_t port)

	Reset the position counter of a given motor to 0.

	Parameters

	
	port – The port from 1-21 for the motor

	
double getTarget(uint32_t port)

	Get the target that the motor PID is trying to achieve.

	Parameters

	
	port – The port from 1-21 for the motor

	
void setServo(uint32_t port, double position)

	Set the position of a given motor, as if it were acting as a
servo instead of a continuous motor.

	Parameters

	
	port – The port from 1-21 for the motor

	position – The postition that the motor should seek to

	
void targetSetAbs(uint32_t port, double position, int32_t velocity)

	Set the absolute target of a motor.

	Parameters

	
	port – The port from 1-21 for the motor

	position – The absolute position that the motor should
target.

	velocity – The velocity at which the motor should move to
that target.

	
void targetSetRel(uint32_t port, double position, int32_t velocity)

	Set the target of a motor, relative to its current location.

	Parameters

	
	port – The port from 1-21 for the motor

	position – The relative position that the motor should
target.

	velocity – The velocity at which the motor should move to
that target.

	
void setGears(uint32_t port, Gearset gears)

	Set the gear ration that the motor is using, used for when trying
to control the motor in terms of rotations or velocity. It is a
good idea to reset the known gearing of every motor using this
function in the setup() or init() function of
user code.

	Parameters

	
	port – The port from 1-21 for the motor

	gears – The gearset to set the motor to. One of:

	Gears36

	Gears18

	Gears06

	
Gearset getGears(uint32_t port)

	Get the current gearset that a given motor is set to. This might
not be the actual gearset installed in the motor! This is just
the gearset that has been set at some point previously.

	Parameters

	
	port – The port from 1-21 for the motor

Motor Reporting

The following functions report some form of status for a motor. They
can be useful when diagnosing problems, or maybe you could use them
in your workflow [https://xkcd.com/1172/].

	
int32_t motorCurrent(uint32_t port)

	Get the current that a motor is currently drawing.

	Parameters

	
	port – The port from 1-21 for the motor

	
int32_t motorVoltage(uint32_t port)

	Get the current voltage of a given motor.

	Parameters

	
	port – The port from 1-21 for the motor

	
double motorPower(uint32_t port)

	Get the current power for a given motor.

	Parameters

	
	port – The port from 1-21 for the motor

	
double motorEfficiency(uint32_t port)

	Get the current efficiency for a given motor.

	Parameters

	
	port – The port from 1-21 for the motor

	
double motorTemp(uint32_t port)

	Get the current temperature for a given motor.

	Parameters

	
	port – The port from 1-21 for the motor

	
bool isOverTemp(uint32_t port)

	Checks if a motor is exceeding its safe operating temperature. If
a motor is doing this, you might want to cool it down :).

	Parameters

	
	port – The port from 1-21 for the motor

	
bool isOverCurrent(uint32_t port)

	Checks if a motor is drawing too much current. If this happens,
you could increase the maximum, or check if there’s a mechanical
fault jamming the mechanism.

	Parameters

	
	port – The port from 1-21 for the motor

	
uint32_t getFaults(uint32_t port)

	Get faults for a particular motor. Your motors shouldn’t usually
fault, so if they do that’s probably bad.

	Parameters

	
	port – The port from 1-21 for the motor

ADI Interface

Genric ADI Devices

	
void setupAdi(uint32_t port, AdiType type)

	Set the type of device connected to a 3-wire port

	Parameters

	
	port – The 3-wire from ‘a’-‘h’ (or 1-8)

	type – The type of device connected. One of:

	
	AnalogIn

	AnalogOut

	DigitalIn

	DigitalOut

	SmartButton

	SmartPot

	LegacyButton

	LegacyPotentiometer

	LegacyLineSensor

	
	LegacyLightSensor

	LegacyGyro

	LegacyAccelerometer

	LegacyServo

	LegacyPwm

	QuadEncoder

	Sonar

	LegacyPwmSlew

	
void adiSet(uint32_t port, int32_t value)

	Set the output value of a 3-write port. What this does is
dependant on how setupAdi() was used.

	Parameters

	
	port – The 3-wire from ‘a’-‘h’ (or 1-8)

	value – The value to set the port to.

	
void adiGet(uint32_t port)

	Reads a value from the 3-wire interface. As with
adiSet(), this is heavily dependant on
setupAdi().

	Parameters

	
	port – The 3-wire from ‘a’-‘h’ (or 1-8)

Ultrasonics

	
ultra_t setupUltra(uint32_t ping, uint32_t echo)

	Sets up an ultrasonic (sonar) sensor on two ports.

Note

These two ports must be either AB, CD, EF or GH. Any other
combination will fail to work.

	Parameters

	
	ping – The 3-wire port the ping wire is in

	echo – The 3-wire port the echo wire is in

	
uint32_t ultraGet(ultra_t ultra)

	Read the value from an ultrasonic sensor.

	Parameters

	
	ultra – An ultrasonic sensor, as returned by
setupUltra().

	
void ultraStop(ultra_t ultra)

	Stop using a pair of ports as an ultrasonic sensor.

	Parameters

	
	ultra – An ultrasonic sensor, as returned by
setupUltra().

Robot Battery

If, for some reason, you are powering your robot brain through means
other than the official Robot Battery, these functions will return 0,
however this is undefined behaviour and should not be relied on.

	
int32_t batteryVoltage()

	Get the current voltage of the connected robot battery.

	
int32_t batteryCurrent()

	Get the current current draw on the connected robot battery from
the brain.

	
double betteryTemp()

	Get the temperature of the connected robot battery.

	
double betteryCapacity()

	Get the capacity of the connected robot battery.

Graphics

	
void foregroundColor(uint32_t col)

	Set the foreground colour to use in the following drawing
functions.

	Parameters

	
	col – The colour to use.

	
void backgroundColor(uint32_t col)

	Set the background colour to use in the following drawing
functions.

	Parameters

	
	col – The colour to use.

	
void clearDisplay()

	Clear the display

	
void printfDisplay(int32_t xpos, int32_t ypos, uint32_t opacity, const char *format, ...)

	Put text onto the display. See also setFont().

	Parameters

	
	xpos – The X position on the display

	ypos – The Y position on the display

	opacity – The opacity of the text being rendered

	format – A printf-style format string

	
void drawLine(int32_t x1, int32_t y1, int32_t x2, int32_t y2)

	Draw a line onto the display.

	Parameters

	
	x1 – The starting X coordinate

	y1 – The starting Y coordinate

	x2 – The ending X coordinate

	y2 – The ending Y coordinate

	
void drawRect(int32_t x1, int32_t y1, int32_t x2, int32_t y2)

	Draw a rectangle’s outline onto the display.

	Parameters

	
	x1 – The X coordinate of the top left

	y1 – The Y coordinate of the top left

	x2 – The X coordinate of the bottom right

	y2 – The Y coordinate of the bottom right

	
void fillRect(int32_t x1, int32_t y1, int32_t x2, int32_t y2)

	Draw a filled rectangle onto the display.

	Parameters

	
	x1 – The X coordinate of the top left

	y1 – The Y coordinate of the top left

	x2 – The X coordinate of the bottom right

	y2 – The Y coordinate of the bottom right

	
void drawCircle(int32_t xc, int32_t yc, int32_t radius)

	Draw the outline of a circle onto the display.

	Parameters

	
	xc – The X coordinate of the centre

	yc – The Y coordinate of the centre

	radius – The radius of the circle to draw

	
void fillCircle(int32_t xc, int32_t yc, int32_t radius)

	Draw a filled circle onto the display.

	Parameters

	
	xc – The X coordinate of the centre

	yc – The Y coordinate of the centre

	radius – The radius of the circle to draw

	
void setAt(uint32_t x, uint32_t y)

	Set a single pixel on the display.

	Parameters

	
	x – The X coordinate

	y – The Y coordinate

	
bool setFont(FontFace face)

	Set the font that should be used when putting text onto the
display.

	Parameters

	
	face – The font face to use. One of:

	Monospace

	Proportional

Task Management

bV5 currently uses a cooperative scheduler to run tasks. This means
you have to cooperate with the code. If you never call
delay(), the system will never get a chance to think, and
crash, so make sure you call it!

	
Mutex new_mutex()

	Create a new mutex that can be locked and unlocked.

	
void take_mutex(Mutex mutex)

	Lock a mutex. This will prevent other tasks that also want to
lock it from running until you release it (or the contray, if
it’s already locked).

	Parameters

	
	mutex – The mutex that should be locked.

	
void release_mutex(Mutex mutex)

	Unlock a mutex. This allows other tasks to lock the mutex again.

	Parameters

	
	mutex – The mutex that should be unlocked.

	
tid_t start_new_task(void (*taskf)(void), uint8_t priority)

	Create a new task, and start it. It’s best explained with an example:

void my_task() {
 while (1) {
 delay(10); // Do nothing!
 }
}

tid_t my_task = start_new_task(&my_task, 5);

The slightly odd name tid_t is just short for “Task ID Type”.

	Parameters

	
	taskf – A pointer to a task function.

	priority – The task priority. This should probably be
between 4 and 10. Lower priority gets precedence.

	
void swap_task()

	Releases execution to the scheduler. This allows another taks to
run. This is essentially the same as using delay(0);

	
void stop_current_task()

	Kills the current task. This function will never return.

	
void stop_task(tid_t task_id)

	Stops and cleans up given task.

	Parameters

	
	task_id – The tid_t returned from
start_new_task()

Examples

Idk. DM me on Discord or smth.

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | I
 | M
 | N
 | P
 | R
 | S
 | T
 | U
 | V

A

 	
 	adiGet (C function)

 	
 	adiSet (C function)

B

 	
 	backgroundColor (C function)

 	batteryCurrent (C function)

 	
 	batteryVoltage (C function)

 	betteryCapacity (C function)

 	betteryTemp (C function)

C

 	
 	clearControllerLine (C function)

 	clearDisplay (C function)

 	controllerGet (C function)

 	
 	controllerRumble (C function)

 	controllerStatus (C function)

 	currentLimitGet (C function)

 	currentLimitSet (C function)

D

 	
 	delay (C function)

 	directionGet (C function)

 	
 	drawCircle (C function)

 	drawLine (C function)

 	drawRect (C function)

E

 	
 	exit (C function)

F

 	
 	fieldConnected (C function)

 	fillCircle (C function)

 	
 	fillRect (C function)

 	foregroundColor (C function)

G

 	
 	getBrake (C function)

 	getEncoderUnits (C function)

 	getFaults (C function)

 	getGears (C function)

 	
 	getMicros (C function)

 	getMillis (C function)

 	getMotorPos (C function)

 	getTarget (C function)

 	getUsbStatus (C function)

I

 	
 	isAuton (C function)

 	isCompetition (C function)

 	
 	isDriver (C function)

 	isOverCurrent (C function)

 	isOverTemp (C function)

M

 	
 	motorCurrent (C function)

 	motorEfficiency (C function)

 	
 	motorPower (C function)

 	motorTemp (C function)

 	motorVoltage (C function)

N

 	
 	new_mutex (C function)

P

 	
 	printfDisplay (C function)

 	
 	pwmGet (C function)

 	pwmSet (C function)

R

 	
 	release_mutex (C function)

 	
 	resetMotorPos (C function)

S

 	
 	sdkVersion (C variable)

 	setAt (C function)

 	setBrake (C function)

 	setControllerText (C function)

 	setEncoderUnits (C function)

 	setFont (C function)

 	setGears (C function)

 	setMotorPos (C function)

 	setServo (C function)

 	
 	setupAdi (C function)

 	setupUltra (C function)

 	start_new_task (C function)

 	startupTime (C variable)

 	stdlibVersion (C variable)

 	stop_current_task (C function)

 	stop_task (C function)

 	swap_task (C function)

 	systemVersion (C variable)

T

 	
 	take_mutex (C function)

 	
 	targetSetAbs (C function)

 	targetSetRel (C function)

U

 	
 	ultraGet (C function)

 	
 	ultraStop (C function)

V

 	
 	velocityGet (C function)

 	velocityGetReal (C function)

 	velocitySet (C function)

 	
 	velocityUpdate (C function)

 	voltageLimitGet (C function)

 	voltageLimitSet (C function)

 	voltageSet (C function)

 _static/up.png

nav.xhtml

 Table of Contents

 		
 Welcome to bV5’s documentation!

 		
 Getting Started

 		
 Getting Hold of bV5

 		
 Introduction to bV5

 		
 Where Next?

 		
 The bV5 Command Line

 		
 Installing

 		
 Updating Firmare

 		
 Building Your Project

 		
 Uploading Your Project

 		
 Cool V5 Utilities

 		
 API Reference

 		
 Global Variables

 		
 Robot Management

 		
 Controllers

 		
 Motors

 		
 Motor Reporting

 		
 ADI Interface

 		
 Genric ADI Devices

 		
 Ultrasonics

 		
 Robot Battery

 		
 Graphics

 		
 Task Management

 		
 Examples

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/minus.png

_static/plus.png

_static/file.png

_static/up-pressed.png

_static/ajax-loader.gif

_static/comment-bright.png

