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CHAPTER

ONE

GETTING STARTED

Bumps is a set of routines for curve fitting and uncertainty analysis from a Bayesian perspective. In addition to tra-
ditional optimizers which search for the best minimum they can find in the search space, bumps provides uncertainty
analysis which explores all viable minima and finds confidence intervals on the parameters based on uncertainty in
the measured values. Bumps has been used for systems of up to 100 parameters with tight constraints on the parame-
ters. Full uncertainty analysis requires hundreds of thousands of function evaluations, which is only feasible for cheap
functions, systems with many processors, or lots of patience.

Bumps includes several traditional local optimizers such as Nelder-Mead simplex, BFGS and differential evolution.
Bumps uncertainty analysis uses Markov chain Monte Carlo to explore the parameter space. Although it was created
for curve fitting problems, Bumps can explore any probability density function, such as those defined by PyMC. In
particular, the bumps uncertainty analysis works well with correlated parameters.

Bumps can be used as a library within your own applications, or as a framework for fitting, complete with a graphical
user interface to manage your models.

1.1 Installing the application

• Building from source

– Windows

– Linux

– OS/X

• Fast Stepper for DREAM on MPI

• Building Documentation

• Windows Installer

Bumps 0.9.1 is provided as a Windows installer or as source:

• Windows installer: bumps-0.9.1-win32.exe

• Apple installer: Bumps 0.9.1.dmg

• Source: bumps-0.9.1.zip

The Windows installer walks through the steps of setting the program up to run on your machine and provides the
sample data to be used in the tutorial.
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1.1.1 Building from source

Before building bumps, you will need to set up your python environment. We depend on many external packages. The
versions listed below are a snapshot of a configuration that we are using. The program may work with older versions
of the package, and we will try to keep it compatible with the latest versions.

Our base scientific python environment contains:

• python 2.7 (also tested on 2.6 and 3.5)

• matplotlib 1.4.3

• numpy 1.9.2

• scipy 0.14.0

• wxPython 3.0.0.0

• setuptools 20.1.1

To run tests we use:

• nose 1.3.0

To build the HTML documentation we use:

• sphinx 1.3.1

• docutils 0.12

• jinja2 2.8

The PDF documentation requires a working LaTeX installation.

You can install directly from PyPI using pip:

pip install bumps

If this fails, then follow the instructions to install from the source archive directly. Platform specific details for setting
up your environment are given below.

Windows

There are a number of python environments for windows, including:

• Anaconda

• Canopy

• Python(X,Y)

• WinPython

You can also build your environment from the individually distributed python packages.

You may want a C compiler to speed up parts of bumps. Microsoft Visual C++ for Python 2.7 is one option. Once it
is installed, you will need to enable the compiler using vcvarsall 64.

Alternatively, your python environment may supply the MinGW C/C++ compiler, but fail to set it as the de-
fault compiler. To do so you will need to create distutils configuration file in the python lib directory (usually
C:Python27Libdistutilsdistutils.cfg) with the following content:

[build]
compiler=mingw32

2 Chapter 1. Getting Started
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Next start a Windows command prompt in the directory containing the source. This will be a command like the
following:

cd "C:\Documents and Settings\<username>\My Documents\bumps-src"

Now type the command to build and install:

python setup.py install
python test.py

Now change to your data directory:

cd "C:\Documents and Settings\<username>\My Documents\data"

To run the program use:

python -m bumps.cli -h

Linux

Many linux distributions will provide the base required packages. You will need to refer to your distribution documen-
tation for details.

On Ubuntu you can use:

sudo apt-get install python-matplotlib python-scipy python-nose python-sphinx sudo apt-get install python-
wxgtk3.0

From a terminal, change to the directory containing the bumps source and type:

python setup.py build
python test.py
sudo python setup.py install

This should install the application somewhere on your path.

To run the program use:

bumps -h

OS/X

Building a useful python environment on OS/X is somewhat involved, and frequently evolving so this document will
likely be out of date. We’ve had success using the Anaconda 64-bit python 2.7 environment from Continuum Analytics,
which provides the required packages, but other distributions should work as well.

You will need to install XCode from the app store, and set the preferences to install the command line tools so that a
C compiler is available (look in the Downloads tab of the preferences window). If any of your models require fortran,
you can download gfortran binaries from r.research.att.com/tools (scroll down to the Apple Xcode gcc-42 add-ons).
This sets up the basic development environment.

From a terminal, change to the directory containing the source and type:

1.1. Installing the application 3
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conda create -n bumps numpy scipy matplotlib nose sphinx wxpython
source activate bumps
python setup.py install
python test.py
cd ..

# Optional: allow bumps to run from outside the bumps environment
mkdir ~/bin # create user terminal app directory if it doesn't already exist

ln -s `python -c "import sys;print sys.prefix"`/bin/bumps ~/bin

To run the program, start a new Terminal shell and type:

bumps -h

1.1.2 Fast Stepper for DREAM on MPI

When running DREAM on larger clusters, we found a significant slowdown as the number of processes increased. This
is due to Amdahl’s law, where the run time speedup is limited by the slowest serial portion of the code. In our case, the
DE stepper and the bounds check. Compiling this in C with OpenMP allows us to scale to hundreds of nodes until the
stepper again becomes a bottleneck.

To use the compiled DE stepper and bounds checks use:

(cd bumps/dream && cc compiled.c -I ../../Random123/include/ -O2 -fopenmp -shared -lm -o␣
→˓_compiled.so -fPIC)

Note: clang doesn’t support OpenMP, so on OS/X use:

(cd bumps/dream && cc compiled.c -I ../../Random123/include/ -O2 -shared -lm -o _
→˓compiled.so -fPIC)

This only works when _compiled.so is in the bumps/dream directory. If running from a pip installed version, you will
need to fetch the bumps repository:

$ git clone https://github.com/bumps/bumps.git
$ cd bumps

Compile as above, then find the bumps install path using the following:

$ python -c "import bumps.dream; print(bumps.dream.__file__)"
#dream/path/__init__.py

Copy the compiled module to the install (substituting #dream/path above):

$ cp bumps/dream/_compiled.so #dream/path

There is no provision for using _compiled.so in a frozen application.

Run with no more than 64 OMP threads. If the number of processors is more than 64, then use:

OMP_NUM_THREADS=64 ./run.py . . .

I don’t know how OMP_NUM_THREADS behaves if it is larger than the number of processors.
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1.1.3 Building Documentation

Building the package documentation requires a working Sphinx installation and a working LaTex installation. Your
latex distribution should include the following packages:

multirow, titlesec, framed, threeparttable, wrapfig, collection-fontsrecommended

You can then build the documentation as follows:

(cd doc && make clean html pdf)

Windows users please note that this only works with a unix-like environment such as gitbash, msys or cygwin. There
is a skeleton make.bat in the directory that will work using the cmd console, but it doesn’t yet build PDF files.

You can see the result of the doc build by pointing your browser to:

bumps/doc/_build/html/index.html
bumps/doc/_build/latex/Bumps.pdf

ReStructured text format does not have a nice syntax for superscripts and subscripts. Units such as g·cm-3 are entered
using macros such as |g/cm^3| to hide the details. The complete list of macros is available in

doc/sphinx/rst_prolog

In addition to macros for units, we also define cdot, angstrom and degrees unicode characters here. The corresponding
latex symbols are defined in doc/sphinx/conf.py.

There is a bug in older sphinx versions (1.0.7 as of this writing) in which latex tables cannot be created. You can fix
this by changing:

self.body.append(self.table.colspec)

to:

self.body.append(self.table.colspec.lower())

in site-packages/sphinx/writers/latex.py. This may have been fixed in newer versions.

1.1.4 Windows Installer

To build a windows standalone executable with py2exe you may first need to create an empty file named
C:\Python27\Lib\numpy\distutils\tests\__init__.py. Without this file, py2exe raises an error when it is searching for
the parts of the numpy package. This may be fixed on recent versions of numpy. Next, update the __version__ tag in
bumps/__init__.py to mark it as your own.

Now you can build the standalone executable using:

python setup_py2exe

This creates a dist subdirectory in the source tree containing everything needed to run the application including python
and all required packages.

To build the Windows installer, you will need two more downloads:

• Visual C++ 2008 Redistributable Package (x86) 11/29/2007

• Inno Setup 5.3.10 QuickStart Pack

1.1. Installing the application 5
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The C++ redistributable package is needed for programs compiled with the Microsoft Visual C++ compiler, includ-
ing the standard build of the Python interpreter for Windows. It is available as vcredist_x86.exe from the Microsoft
Download Center. Be careful to select the version that corresponds to the one used to build the Python interpreter —
different versions can have the same name. For the Python 2.7 standard build, the file is 1.7 Mb and is dated 11/29/2007.
We have a copy (vcredist_x86.exe) on our website for your convenience. Save it to the C:\Python27 directory so the
installer script can find it.

Inno Setup creates the installer executable. When installing Inno Setup, be sure to choose the ‘Install Inno Setup
Preprocessor’ option.

With all the pieces in place, you can run through all steps of the build and install by changing to the top level python
directory and typing:

python master_builder.py

This creates the redistributable installer bumps-<version>-win32.exe for Windows one level up in the directory tree. In
addition, source archives in zip and tar.gz format are produced as well as text files listing the contents of the installer
and the archives.

1.2 Server installation

Warning: The remote fitting feature is not actively maintained and will likely not work.

• Job Controller

• Cluster

• Security

Bumps jobs can be submitted to a remote batch queue for processing. This allows users to share large clusters for faster
processing of the data. The queue consists of several components.

• job controller

http service layer which allows users to submit jobs and view results

• queue

cluster management layer which distributes jobs to the working nodes

• worker

process monitor which runs a job on the working nodes

• mapper

mechanism for evaluating R(x_i) for different x_i on separate CPUs

If you are setting up a local cluster for performing Bumps analysis then you will need to read this section, otherwise
you can continue to the next section.

Assuming that the bumps server is installed as user ‘bumps’ in a virtualenv of ~/bumpserve, MPLCONFIGDIR is set
to ~/bumpserve/.matplotlib, and bumpworkd has been configured, you can start with the following profile:

TODO: fill in some details on bumps server

6 Chapter 1. Getting Started
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1.2.1 Job Controller

extra/jobqueue is an independent package within bumps. It implements an http API for interacting with jobs.

It is implemented as a WSGI python application using Flask

Here is our WSGI setup for apache for our reflectometry modeling service:

<VirtualHost *:80>
ServerAdmin pkienzle@nist.gov
ServerName www.reflectometry.org
ServerAlias reflectometry.org
ErrorLog logs/bumps-error_log
CustomLog logs/bumps-access_log common

WSGIDaemonProcess bumps_serve user=pkienzle group=refl threads=3
WSGIScriptAlias /queue /home/pkienzle/bumps/www/jobqueue.wsgi

<Directory "/home/pkienzle/bumps/www">
WSGIProcessGroup bumps_serve
WSGIApplicationGroup %{GLOBAL}
Order deny,allow
Allow from all

</Directory>

DocumentRoot /var/www/bumps
<Directory "/var/www/bumps/">

AllowOverride All
</Directory>

</VirtualHost>

There is a choice of two different queuing systems to configure. If your environment supports a traditional batch queue
you can use it to manage cluster resources. New jobs are added to the queue, and when they are complete, they leave
their results in the job results directory. Currently only slurm is supported, but supporting torque as well would only
require a few changes.

You can also set up a central dispatcher. In that case, you will have remote clusters pull jobs from the server when they
are available, and post the results to the job results directory when they are complete. The remote cluster may be set up
with its own queuing system such as slurm, only taking a few jobs at a time from the dispatcher so that other clusters
can share the load.

1.2. Server installation 7
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1.2.2 Cluster

If you are using the dispatcher queuing system, you will need to set up a work daemon on your cluster to pull jobs from
the queue. This requires adding bumpworkd to your OS initialization scripts.

1.2.3 Security

Because the jobqueue can run without authentication we need to be especially concerned about the security of our
system. Techniques such as AppArmor or virtual machines with memory mapped file systems provide a relatively safe
environment to support anonymous computing.

To successfully set up AppArmor, there are a few operations you need.

Each protected application needs a profile, usually stored in /etc/apparmor.d/path.to.application. With the reflenv vir-
tural environment in the reflectometry user, the following profile would be appropriate for the worker daemon:

-- /etc/apparmor.d/home.bumps.bumpsenv.bin.bumpworkd
#include <tunables/global>

/home/bumps/bumpsenv/bin/bumpworkd {
#include <abstractions/base>
#include <abstractions/python>

/bin/dash cx,
/home/bumps/bumpsenv/bin/python cx,
/home/bumps/bumpsenv/** r,
/home/bumps/bumpsenv/**.{so,pyd} mr,
/home/bumps/.bumpserve/.matplotlib/* rw,
/home/bumps/.bumpserve/worker/** rw,
}

This gives read/execute access to python and its C extensions, and read access to everything else in the bumps virtual
environment.

The rw access to .bumpserve is potentially problematic. Hostile models can interfere with each other if they are running
at the same time. In particular, they could inject html into the returned data set which can effectively steal authentication
credentials from other users through cross site scripting attacks, and so would not be appropriate on an authenticated
service. Restricting individual models to their own job directory at .bumpserve/worker/jobid/** would reduce this risk,
but this author does not know how to do so without elevating bumpworkd privileges to root.

Once the profile is in place, restart the apparmor.d daemon to enable it:

sudo service apparmor restart

You can debug the profile by running a trace while the program runs unrestricted. To start the trace, use:

sudo genprof /path/to/application

Switch to another window then run:

/path/to/app

When your application is complete, return to the genprof window and hit ‘S’ to scan /var/log/syslog for file and network
access. Follow the prompts to update the profile. The documentation on AppArmor on Ubuntu and AppArmor on SUSE
is very helpful here.

To reload a profile after running the trace, use:
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sudo apparmor_parser -r /etc/apparmor.d/path.to.application

To delete a profile that you no longer need:

sudo rm /etc/apparmor.d/path.to.application
sudo service apparmor restart

Similar profiles could be created for the job server, and indeed, any web service you have on your machine to reduce
the risk that bugs in your code can be used to compromise your security, but this is less critical since your code is not
running in general running with arbitrary user defined functions.

1.3 Contributing Changes

The best way to contribute to the Bumps package is to work from a copy of the source tree in the revision control
system.

The bumps project is hosted on github at:

http://github.com/bumps

You can obtain a copy via git using:

git clone https://github.com/bumps/bumps.git
cd bumps
python setup.py develop

By using the develop keyword on setup.py, changes to the files in the package are immediately available without the
need to run setup each time you change the code.

Track updates to the original package using:

git pull

If you find you need to modify the package, please update the documentation and add tests for your changes. We use
doctests on all of our examples to help keep the documentation synchronized with the code. More thorough tests are
found in the test directory. Using the the nose test package, you can run both sets of tests:

pip install nose
python2.5 tests.py
python2.6 tests.py

When all the tests run, generate a patch and send it to pkienzle@nist.gov:

git diff > patch

Windows user can use TortoiseGit package which provides similar operations.

Instead of sending patches, you can set up a github account and create your own bumps fork. This allows you to develop
code at your leisure with the safety of source control, and issue pull requests when your code is ready to merge with
the main repository.

Please make sure that the documentation is up to date, and can be properly processed by the sphinx documentation
system. See _docbuild for details.
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1.4 License

Bumps is in the public domain.

Code in individual files has copyright and license set by the authors. Only free and open source software is used in this
package.

1.4.1 Bumps GUI

Copyright (C) 2006-2011, University of Maryland

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documen-
tation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/ or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

1.4.2 DREAM

Copyright (c) 2008, Los Alamos National Security, LLC All rights reserved.

Copyright 2008. Los Alamos National Security, LLC. This software was produced under U.S. Government contract DE-
AC52-06NA25396 for Los Alamos National Laboratory (LANL), which is operated by Los Alamos National Security,
LLC for the U.S. Department of Energy. The U.S. Government has rights to use, reproduce, and distribute this software.

NEITHER THE GOVERNMENT NOR LOS ALAMOS NATIONAL SECURITY, LLC MAKES A NY WARRANTY,
EXPRESS OR IMPLIED, OR ASSUMES ANY LIABILITY FOR THE USE OF THIS SOFTWARE. If software is
modified to produce derivative works, such modified software should be clearly marked, so as not to confuse it with
the version available from LANL.

Additionally, redistribution and use in source and binary forms, with or without modification, are permitted provided
that the following conditions are met:

• Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

• Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided with the distribution.

• Neither the name of Los Alamos National Security, LLC, Los Alamos National Laboratory, LANL the U.S.
Government, nor the names of its contributors may be used to endorse or promote products derived from this
software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY LOS ALAMOS NATIONAL SECURITY, LLC AND CONTRIBUTORS “AS
IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
IN NO EVENT SHALL LOS ALAMOS NATIONAL SECURITY, LLC OR CONTRIBUTORS BE LIABLE FOR
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ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (IN-
CLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

1.5 Credits

Bumps package was developed under DANSE project and is maintained by its user community.

Please cite:

Kienzle, P.A., Krycka, J., Patel, N., & Sahin, I. (2011). Bumps (Version 0.9.1) [Computer Software].
College Park, MD: University of Maryland. Retrieved Dec 15, 2023.

We are grateful for the existence of many fine open source packages such as NumPy and Python without which this
package would be much more difficult to write.
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CHAPTER

TWO

TUTORIAL

This tutorial will describe walk through the steps of setting up a model with Python scripting. Scripting allows the user
to create complex models with many constraints relatively easily.

2.1 Simple functions

Bumps allows fits with varying levels of complexity. Simple fits accept a function 𝑓(𝑥; 𝑝) and data 𝑥, 𝑦, 𝜎𝑦 , where
vector 𝑦 is the value measured in conditions 𝑥, and 𝜎𝑦 is the 1 − 𝜎 uncertainty in the measurement. Bumps also
provides a simple wrapper for poisson data taken from counting statistics, with function 𝑓(𝑥; 𝑝) and data 𝑥, 𝑦. sim.py
is a simulation of data from a poisson process, showing maximum likelihood, expected value and variance.

The ode2 example shows how to fit a system of coupled differential equations where multiple values are tracked at each
time step.

2.1.1 Fitting a curve

Fitting a curve to a data set and getting uncertainties on the parameters was the main reason that bumps was created,
so it should be very easy to do. Let’s see if it is.

First let’s import the standard names:

from bumps.names import *

Next we need some data. The x values represent the independent variable, and the y values represent the value measured
for condition x. In this case x is 1-D, but it could be a sequence of tuples instead. We also need the uncertainty on each
measurement if we want to get a meaningful uncertainty on the fitted parameters.

x = [1, 2, 3, 4, 5, 6]
y = [2.1, 4.0, 6.3, 8.03, 9.6, 11.9]
dy = [0.05, 0.05, 0.2, 0.05, 0.2, 0.2]

Instead of using lists we could have loaded the data from a three-column text file using:

data = np.loadtxt("data.txt").T
x, y, dy = data[0, :], data[1, :], data[2, :]

The variations are endless — cleaning the data so that it is in a fit state to model is often the hardest part in the analysis.

We now define the function we want to fit. The first argument to the function names the independent variable, and
the remaining arguments are the fittable parameters. The parameter arguments can use a bare name, or they can use
name=value to indicate the default value for each parameter. Our function defines a straight like of slope 𝑚 with
intercept 𝑏 defaulting to 0.

13
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def line(x, m, b=0):
return m*x + b

We can build a curve fitting object from our function and our data. This assumes that the measurement uncertainty is
normally distributed, with a 1-𝜎 confidence interval dy for each point. We specify initial values for 𝑚 and 𝑏 when we
define the model, and then constrain the fit to 𝑚 ∈ [0, 4] # and 𝑏 ∈ [−5, 5] with the parameter range method.

M = Curve(line, x, y, dy, m=2, b=2)
M.m.range(0, 4)
M.b.range(-5, 5)

Every model file ends with a problem definition including a list of all models and datasets which are to be fitted.

problem = FitProblem(M)

The complete model file curve.py looks as follows:

from bumps.names import *

x = [1, 2, 3, 4, 5, 6]
y = [2.1, 4.0, 6.3, 8.03, 9.6, 11.9]
dy = [0.05, 0.05, 0.2, 0.05, 0.2, 0.2]

def line(x, m, b=0):
return m*x + b

M = Curve(line, x, y, dy, m=2, b=2)
M.m.range(0, 4)
M.b.range(-5, 5)

problem = FitProblem(M)

We can now load and run the fit:

$ bumps.py curve.py --fit=newton --steps=100 --store=T1

The --fit=newton option says to use the quasi-newton optimizer for not more than 100 steps. The --store=T1
option says to store the initial model, the fit results and any monitoring information in the directory T1.

As the fit progresses, we are shown an iteration number and a cost value. The cost value is approximately the normalized
𝜒2
𝑁 . The value in parentheses is like the uncertainty in 𝜒2

𝑁 , in that a 1-𝜎 change in parameter values should increase
𝜒2
𝑁 by that amount.

Here is the resulting fit:

All is well: Normalized 𝜒2
𝑁 is close to 1 and the line goes nicely through the data.
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2.1.2 Fitting Poisson data

Data from poisson processes, such as the number of counts per unit time or counts per unit area, do not have the same
pattern of uncertainties as data from gaussian processes. Poisson data consists of natural numbers occurring at some
underlying rate. The fitting process checks if the number of counts observed is consistent with the proposed rate for
each point in the dataset, much like the fitting process for gaussian data checks if the observed value is consistent with
the proposed value within the measurement uncertainty.

Using bumps.curve.PoissonCurve instead of bumps.curve.Curve, we can fit a set of counts at conditions x using
a function f(x, p1, p2, . . . ) to propose rates for the various x values given the parameters, yielding parameter values
p1, p2, . . . that are most consistent with the counts at x. When measuring poisson processes, the underlying rate is
not known, so the measurement variance, which is a property of the rate, is not associated with the data but instead
associated with the theory function which predicts the rates. This is opposite from what we have with gaussian data,
in which the uncertainty is associated with the measurement device, and explains why the call to PoissonCurve only
accepts x and counts, not x, y, and dy.

One property of the Poisson distribution is that it is well approximated by a gaussian distribution for values above about
10. It will never be perfect match since numbers from a poisson distribution can never be negative, whereas gaussian
numbers can always be negative, albeit with vanishingly small probability some of the time. Below 10, there are various
ways you can approximate the poisson distribution with a gaussian. This example explores some of the options.

In particular, the handling of zero counts can be problematic when treating the measurement as gaussian. You cannot
simply drop the points with zero counts. Once you’ve done various reduction steps, the resulting non-zero value for the
uncertainty will carry meaning. The longer you count, the smaller the uncertainty should be, once you’ve normalized
for counting time or monitor. Being off by a factor of 2 on the residuals is much better than being off by a factor of
infinity using uncertainty = zero, and better than dropping the point altogether.

There are a few things you can do with zero counts without being completely arbitrary:

1) 𝜆 = (𝑘 + 1)±
√
𝑘 + 1 for all 𝑘

2) 𝜆 = (𝑘 + 1/2)±
√︀
𝑘 + 1/4 for all k

3) 𝜆 = 𝑘 ±
√
𝑘 + 1 for all k

4) 𝜆 = 𝑘 ±
√
𝑘 for 𝑘 > 0, 1/2± 1/2 for 𝑘 = 0

5) 𝜆 = 𝑘 ±
√
𝑘 for 𝑘 > 0, 0± 1 for 𝑘 = 0

See the notes from the CDF Statistics Committee for details at https://www-cdf.fnal.gov/physics/statistics/notes/pois_
eb.txt.

Of these, option 5 works slightly better for fitting, giving the best estimate of the background.

The ideal case is to have your model produce an expected number of counts on the detector. It is then trivial to compute
the probability of seeing the observed counts from the expected counts and fit the parameters using PoissonCurve.
Unfortunately, this means incorporating all instrumental effects when modelling the measurement rather than correcting
for instrumental effects in a data reduction program, and using a common sample model independent of instrument.

Setting 𝜆 = 𝑘 is good since that is the maximum likelihood value for 𝜆 given observed 𝑘, but this breaks down at
𝑘 = 0, giving zero uncertainty regardless of how long we measured.

Since the Poisson distribution is slightly skew, a good estimate is 𝜆 = 𝑘 + 1 (option 1 above). This follows from the
formula for the expected value of a distribution:

𝐸[𝑥] =

∫︁ ∞

−∞
𝑥𝑃 (𝑥)𝑑𝑥

For the poisson distribution, this is:

𝐸[𝜆] =

∫︁ ∞

0

𝜆
𝜆𝑘𝑒−𝜆

𝑘!
𝑑𝜆
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Running some simulations, we can see that �̂� = (𝑘 + 1)±
√
𝑘 + 1 (see sim.py). This is the best fit RMS value to the

distribution of possible 𝜆 values that could give rise to the observed 𝑘.

The current practice is to use �̂� = 𝑘 ±
√
𝑘. Convincing the world to accept 𝜆 = 𝑘 + 1 would be challenging since the

expected value is not the most likely value. As a compromise, one can use 0± 1 for zero counts, and 𝑘±
√
𝑘 for other

values. This provides a reasonable estimate for the uncertainty on zero counts, which after normalization becomes
smaller for longer counting times or higher incident flux.

Another option is to choose the center and bounds so that the uncertainty covers 1 − 𝜎 from the distribution (68%).
A simple approximation which does this is (𝑛 + 1/2) ±

√︀
𝑛+ 1/4. Again, hard to convince the world to do, so one

could compromise and choose 1/2± 1/2 for 𝑘 = 0 and 𝑘 ±
√
𝑘 otherwise.

What follows is a model which allows us to fit a simulated peak using these various definitions of 𝜆 and see which
version best recovers the true parameters which generated the peak.

from bumps.names import *

Define the peak shape. We are using a simple gaussian with center, width, scale and background.

def peak(x, scale, center, width, background):
return scale*np.exp(-0.5*(x-center)**2/width**2) + background

Generate simulated peak data with poisson noise. When running the fit, you can choose various values for the peak
intensity. We are using a large number of points so that the peak is highly constrained by the data, and the returned
parameters are consistent from run to run. Real data is likely not so heavily sampled.

x = np.linspace(5, 20, 345)
#y = np.random.poisson(peak(x, 1000, 12, 1.0, 1))
#y = np.random.poisson(peak(x, 300, 12, 1.5, 1))
y = np.random.poisson(peak(x, 3, 12, 1.5, 1))

Define the various conditions. These can be selected on the command line by listing the condition name after the
model file. Note that bumps will make any option not preceded by “-” available to the model file as elements of
sys.argv. sys.argv[0] is the model file itself.

The options correspond to the five options listed above, with an additional option “poisson” which is used to select
PoissonCurve rather than Curve in the fit.

cond = sys.argv[1] if len(sys.argv) > 1 else "pearson"
if cond == "poisson": # option 0: use PoissonCurve rather than Curve to fit

pass
elif cond == "expected": # option 1: L = (y+1) +/- sqrt(y+1)

y += 1
dy = np.sqrt(y)

elif cond == "pearson": # option 2: L = (y + 0.5) +/- sqrt(y + 1/4)
dy = np.sqrt(y+0.25)
y = y + 0.5

elif cond == "expected_mle": # option 3: L = y +/- sqrt(y+1)
dy = np.sqrt(y+1)

elif cond == "pearson_zero": # option 4: L = y +/- sqrt(y); L[0] = 0.5 +/- 0.5
dy = np.sqrt(y)
y = np.asarray(y, 'd')
y[y == 0] = 0.5
dy[y == 0] = 0.5

elif cond=="expected_zero": # option 5: L = y +/- sqrt(y); L[0] = 0 +/- 1
dy = np.sqrt(y)

(continues on next page)
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(continued from previous page)

dy[y == 0] = 1.0
else:

raise RuntimeError("Need to select uncertainty: pearson, pearson_zero, expected,␣
→˓expected_zero, expected_mle, poisson")

Build the fitter, and set the range on the fit parameters.

if cond == "poisson":
M = PoissonCurve(peak, x, y, scale=1, center=2, width=2, background=0)

else:
M = Curve(peak, x, y, dy, scale=1, center=2, width=2, background=0)

dx = max(x)-min(x)
M.scale.range(0, max(y)*1.5)
M.center.range(min(x)-0.2*dx, max(x)+0.2*dx)
M.width.range(0, 0.7*dx)
M.background.range(0, max(y))

Set the fit problem as usual.

problem = FitProblem(M)

We can now load and run the fit. Be sure to substitute COND for one of the conditions defined above:

$ bumps.py poisson.py --fit=dream --burn=600 --store=/tmp/T1 COND

Comparing the results for the various conditions, we can see that all methods yield a good fit to the underlying center,
scale and width. It is only the background that causes problems. Using poisson statistics for the fit gives the proper
background estimate, and using the traditional method of 𝜆 = 𝑘 ±

√
𝑘 for 𝑘 > 0, and 0 ± 1 for 𝑘 = 1 gives the best

gaussian approximation.

Table 1: Fit results

# method background
0 poisson 1.0
1 expected 1.55
2 pearson 0.16
3 expected_mle 0.55
4 pearson_zero 0.34
5 expected_zero 0.75

2.1.3 Poisson simulation

For the poisson background estimation problem, poisson.py, we explore different options for estimating the rate param-
eter 𝜆 from an observed number of counts. This program uses a Monte Carlo method to generate the true probability
distribution 𝑃 (𝜆) of the observed number of counts 𝑘 coming from an underly rate 𝜆. We do this by running a Poisson
generator to draw thousands of samples of 𝑘 from each of a range of values 𝜆. By counting the number of times 𝑘
occurs in each 𝜆 bin, and normalizing by the bin size and by the total number of times that 𝑘 occurs across all bins, the
resulting vector is a histogram of the 𝜆 probability distribution.

With this histogram we can compute the expected value as:

�̂� =

∫︁ ∞

0

𝜆𝑃 (𝜆|𝑘)𝑑𝜆
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and the variance as:

𝑑�̂�2 =

∫︁ ∞

0

(𝜆− �̂�)2𝑃 (𝜆|𝑘)𝑑𝜆

from __future__ import division, print_function
import numpy as np
from pylab import *

Generate a bunch of samples from different underlying rate parameters L in the range 0 to 20

P = np.random.poisson
L = linspace(0, 20, 1000)
X = P(L, size=(10000, len(L)))

Generate the distributions

P = dict((k, sum(X == k, axis=0)/sum(X == k)) for k in range(4))

Show the expected value of L for each observed value k

print("Expected value of L for a given observed k")
for k,Pi in sorted(P.items()):

print(k, sum(L*Pi))

Show the variance. Note that we are using �̂� = 𝑘 + 1 as observed from the expected value table. This is not strictly
correct since we have lost a degree of freedom by using �̂� estimated from the data, but good enough for an approximate
value of the variance.

print("Variance of L for a given observed k")
for k, Pi in sorted(P.items()):

print(k, sum((L-(k+1))**2*Pi))

Plot the distribution of 𝜆 that give rise to each observed value 𝑘.

for k, Pi in sorted(P.items()):
plot(L, Pi/(L[1]-L[0]), label="k=%d"%k)

xlabel(r'$\lambda$')
ylabel(r'$P(\lambda|k)$')
xticks([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10])
axis([0, 10, 0, 0.5])
title('Probability of underlying rate :math:`\lambda` for different observed $k$')
legend()
grid(True)
show()

Output:

Expected value of L for a given observed k
0 0.989473184121
1 2.00279003084
2 2.99802515025
3 3.9990621889
Variance of L for a given observed k

(continues on next page)
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(continued from previous page)

0 0.998074244206
1 2.00796671097
2 2.99095589399
3 3.99952301552

Fig. 1: The figure clearly shows that the maximum likelihood value for 𝜆 is equal to the observed counts 𝑘. Because the
histogram is skew right, the expected value is a little larger, with an estimated value of 𝑘 + 1, as seen from the output.

2.1.4 Fitting an ODE

Bumps can fit black-box functions, such as odeint from scipy.

The following example is adapted from:

https://people.duke.edu/~ccc14/sta-663/CalibratingODEs.html.

Instructor: Cliburn Chan cliburn.chan@duke..edu
Instructor: Janice McCarthy janice.mccarthy@duke.edu
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from bumps.names import *
import numpy as np
from scipy.integrate import odeint

Define the ODE

def g(t, x0, a, b):
"""
Solution to the ODE x'(t) = f(t,x,k) with initial condition x(0) = x0
"""
return odeint(dfdt, x0, t, args=(a, b)).flatten()

def dfdt(x, t, a, b):
"""Receptor synthesis-internalization model."""
return a - b*x

Simulate some data.

Note that the function bumps.util.push_seed() is to set the random number generator to a known state so that this
function will create the same data every time the simulation is run. If not, then you wouldn’t be able to resume a fit
since each time you resumed you would be fitting different data.

def simulate():
from bumps.util import push_seed

# Fake some data
a = 2.0
b = 0.5
x0 = 10.0
t = np.linspace(0, 10, 10)
dy = 0.2*np.ones_like(t)
with push_seed(1):

y = g(t, x0, a, b) + dy*np.random.normal(size=t.shape)
#print(a, b, x0, t, dt, gt)
return t, y, dy

t, y, dy = simulate()

Define the fit problem.

In this case bumps.curve.Curve is initialized with plot_x as a vector of length 1000. This is so that a smooth curve
is drawn between the ten data points that were simulated in the fit.

M = Curve(g, t, y, dy, x0=1., a=1., b=1.,
plot_x=np.linspace(t[0], t[-1], 1000))

M.x0.range(0, 100)
M.a.range(0, 10)
M.b.range(0, 10)

problem = FitProblem(M)
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2.1.5 Fitting a multi-valued function

Like the ODE fit function, but this example fits a set of coupled ODEs. In this case, there are multiple values reported
at each time step, two of which are measured and fitted.

From SciPy cookbook coupled spring mass example:

https://scipy-cookbook.readthedocs.io/items/CoupledSpringMassSystem.html

from bumps.names import *
from scipy.integrate import odeint

Use ODEINT to solve the differential equations defined by the vector field

def vectorfield(w, t, p):
"""
Defines the differential equations for the coupled spring-mass system.

Arguments:
w : vector of the state variables:

w = [x1,y1,x2,y2]
t : time
p : vector of the parameters:

p = [m1,m2,k1,k2,L1,L2,b1,b2]
"""
x1, y1, x2, y2 = w
m1, m2, k1, k2, L1, L2, b1, b2 = p

# Create f = (x1',y1',x2',y2'):
f = [y1,

(-b1 * y1 - k1 * (x1 - L1) + k2 * (x2 - x1 - L2)) / m1,
y2,
(-b2 * y2 - k2 * (x2 - x1 - L2)) / m2]

return f

ODE solver parameters

abserr = 1.0e-8
relerr = 1.0e-6

Curve function with all parameters exposed so that bumps knows their names. Only tracking x1, x2 with our measure-
ments and not y1, y2, so returning components 0 and 2 of the vectorfield result. The multi-valued y values are stacked
into an array whose first axis matches t. This is needed so that the plotter can sort out the different lines.

def f(t, x1, y1, x2, y2, m1, m2, k1, k2, L1, L2, b1, b2):
# Pack up the parameters and initial conditions:
p = [m1, m2, k1, k2, L1, L2, b1, b2]
w0 = [x1, y1, x2, y2]

# Call the ODE solver.
wsol = odeint(vectorfield, w0, t, args=(p,),

atol=abserr, rtol=relerr)
return np.vstack((wsol[:, 0], wsol[:, 2]))

Simulation parameter values
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# Masses
m1 = 1.0
m2 = 1.5

# Spring constants
k1 = 8.0
k2 = 40.0

# Natural lengths
L1 = 0.5
L2 = 1.0

# Friction coefficients
b1 = 0.8
b2 = 0.5

Initial conditions

# x1 and x2 are the initial displacements; y1 and y2 are the initial velocities
x1 = 0.5
y1 = 0.0
x2 = 2.25
y2 = 0.0

Simulate data

def simulate():
from bumps.util import push_seed

# Create the time samples for the output of the ODE solver.
# These are the times that the data is sampled, not the times at
# which to evaluate the ode solver.
t = np.linspace(0, 10, 100)

# Pack up the parameters and initial conditions:
p = [m1, m2, k1, k2, L1, L2, b1, b2]
w0 = [x1, y1, x2, y2]
ft = f(t, *(w0 + p))

noise = 0.1*np.ones_like(ft)
with push_seed(1): # Make sure that the simulated data is the same each run

data = ft + noise*np.random.randn(*ft.shape)
return t, data, noise

t, y, dy = simulate()

Initial values for most parameters are known from system configuration. We are not including the spring constants or
the friction coefficients since these will be fitted to the measured position over time. labels allow you to set the labels
for the x-axis and y-axis and the legend for the two data lines on the plot.

M = Curve(f, t, y, dy, m1=m1, m2=m2, L1=L1, L2=L2, x1=x1, y1=y1, x2=x2, y2=y2,
labels=['time', 'value', 'x1', 'x2'], plot_x=np.linspace(0, 10, 1000))

Fitted parameters
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Only fitting spring constants and friction coefficients since these are not immediately measurable. If we wanted to be
fancy, we could set the prior on position and mass according to the uncertainty in our initial configuration and allow
them to vary slightly.

# Masses: Allow mass estimate to be off by +/- 2% (1-sigma) *untested*
#M.m1.dev(0.02*m1)
#M.m2.dev(0.02*m2)

# Spring constants
M.k1.range(0, 100)
M.k2.range(0, 100)

# Natural lengths
#M.L1.range(0, 10)
#M.L2.range(0, 10)

# Friction coefficients
M.b1.range(0, 1)
M.b2.range(0, 1)

# Initial conditions
# x1 and x2 are the initial displacements; y1 and y2 are the initial velocities
#M.x1.range(0, 10)
#M.x2.range(0, 10)
#M.y1.range(0, 10)
#M.y2.range(0, 10)

problem = FitProblem(M)

2.2 Peak Fitting

This example shows how to develop multipart models using bumps parameters. The data format is 2D, so the usual 1D
x-y plots are not sufficient, and a special plot method is needed to display the data.

2.3 Test functions

Test a variety of more difficult problems to see how well DREAM can recover the correct probability definition.

2.3.1 Anticorrelation demo

Model with strong correlations between the fitted parameters.

We use a*x = y + N(0,1) made complicated by defining a=p1+p2.

The expected distribution for p1 and p2 will be uniform, with p2 = a-p1 in each sample. Because this distribution is
inherently unbounded, artificial bounds are required on a least one of the parameters for finite duration simulations.

The expected distribution for p1+p2 can be determined from the linear model y = a*x. This is reported along with the
values estimated from MCMC.
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from bumps.names import *

Anticorrelated function

def fn(x, a, b): return (a+b)*x

Fake data

sigma = 1
x = np.linspace(-1., 1, 40)
dy = sigma*np.ones_like(x)
y = fn(x,5,5) + np.random.randn(*x.shape)*dy

Wrap it in a curve fitter

M = Curve(fn, x, y, dy, a=(-20,20), b=(-20,20))

Alternative representation, fitting a and S=a+b, and setting b=S-a.

S = Parameter((-20,20), name="sum")
M.b = S-M.a

problem = FitProblem(M)

2.3.2 Boundary check

Check probability at boundaries.

In this case we define the probability density function (PDF) directly in an n-dimensional uniform box.

Ideally, the correlation plots and variable distributions will be uniform.

from bumps.names import *

Adjust domain from 1e-150 to 1e+150 and you will see that DREAM is equally adept at filling the box.

domain = 1

Uniform cost function.

def box(x):
"""
A flat top mesa with a square border in [-1, 1].
"""
return 0 if np.all(np.abs(x) <= domain) else np.inf

def ramp(x):
"""
A ramp in the first parameter, all other parameters uniform over [-1, 1].
"""
p = abs(x[0])/domain
return -log(p) if np.all(np.abs(x) <= domain) else np.inf

(continues on next page)
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(continued from previous page)

def cone(x):
"""
An inverted cone with peak probability at the rim of radius 1.
"""
#r = np.sqrt(sum(xk**2 for xk in x[:2]))
r = np.sqrt(sum(xk**2 for xk in x))
return -log(r) if r <= domain else np.inf

def diamond(x):
"""
A flat top mesa with a diamond border.
"""
return 0 if np.sum(np.abs(x)) <= domain else np.inf

def sawtooth(x):
"""
A symmetric sawtooth of frequency 1, phase 0, so f(0)=1, f(1/2)=0.
"""
p = [2*abs(xk/domain%1 - 1/2) for xk in x]
return -sum(np.log(pk) for pk in p)

def triangle_constraints():
"""
The triangle below y=x.
"""
a, b = M.a.value, M.b.value
return 0 if a < b else 1e6 + (b-a)**2

def box_constraints():
"""
A square over [-1/2, 1/2].
"""
a, b = M.a.value, M.b.value
return 0 if abs(a) <= domain/2 and abs(b) <= domain/2 else np.inf

def circle_constraints():
"""
A circle of radius 1.
"""
a, b = M.a.value, M.b.value
r = np.sqrt(a**2 + b**2)
return 0 if r <= domain*2/3 else np.inf

def ring_constraints():
"""
A ring of inner radius 2/3.
"""
a, b = M.a.value, M.b.value
r = np.sqrt(a**2 + b**2)
return 0 if domain*2/3 <= r <= domain else 1e6 + (r/domain - 1)**2

(continues on next page)
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(continued from previous page)

def sawtooth_constraints():
"""
Sets one peak at the edge of the domain and another in the middle. Use
this to investigate whether rejection outside the domain leads to
distortion of the density at the boundary of the domain. You will need
to modify the parameter view to show 100% of the range rather than
the 95% CI cutoff in current plots (code in bumps.dream.varplot.plot_var).
"""
a, b = M.a.value, M.b.value
return (0 if all(0.0 < xk/domain < 1.5 for xk in (a, b))

else 1e6 + sum((xk/domain)**2 for xk in (a, b)))

Wrap it in a PDF object which turns an arbitrary probability density into a fitting function. Give it a valid initial value,
and set the bounds to a unit cube with one corner at the origin.

#M = PDF(lambda a, b: box([a, b]))
M = PDF(lambda a, b: diamond([a, b]))
#M = PDF(lambda a, b: ramp([a, b]))
#M = PDF(lambda a, b: cone([a, b]))
#M = PDF(lambda a, b: sawtooth([a, b]))

constraints = None
#constraints = triangle_constraints
constraints = box_constraints
#constraints = circle_constraints
#constraints = ring_constraints
#constraints = sawtooth_constraints

M.a.range(-2*domain, 2*domain)
M.b.range(-2*domain, 2*domain)

# Make the PDF a fit problem that bumps can process.
problem = FitProblem(M, constraints=constraints)

2.3.3 Cross-shaped anti-correlation

Example model with strong correlations between the fitted parameters.

In this case we define the probability density function (PDF) directly as an ‘X’ pattern, with width sigma.

Ideally, the a-b correlation plot will show the ‘X’ completely filled within the bounds.

from bumps.names import *

Adjust scale from 1e-150 to 1e+150 and you will see that DREAM is equally adept at filling the cross. However, if
sigma gets too small relative to scale the fit will get stuck on one of the arms, and if sigma gets too large, then the whole
space will be filled and the x will not form.

scale = 10
sigma = 0.1*scale
#sigma = 0.001*scale # Too small
#sigma = 10*scale # Too large
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Simple gaussian cost function based on the distance to the closest ridge x=y or x=-y.

def fn(a, b):
return 0.5*min(abs(a+b),abs(a-b))**2/sigma**2 + 1

Wrap it in a PDF object which turns an arbitrary probability density into a fitting function. Give it an initial value away
from the cross.

M = PDF(fn, a=3*scale, b=1.2*scale)

Set the range of values to include the cross. You can skip the center of the cross by setting b.range to (1,3), and
for reasonable values of sigma both arms will still be covered. Extend the range too far (e.g., a.range(-3000,3000),
b.range(-1000,3000)), and like a value of sigma that is too small, only one arm of the cross will be filled.

M.a.range(-3*scale,3*scale)
M.b.range(-1*scale,3*scale)

Make the PDF a fit problem that bumps can process.

problem = FitProblem(M)

2.4 Check the entropy calculator

A single measure for a multivariate distribution is the entropy

By comparing the entropy of the prior distribution (usually a box uniform distribution with entropy
∑︀𝑛

𝑖=1 log(𝑤𝑖)
where 𝑤𝑖 is the range on parameter 𝑖 and 𝑛 is the number of paramters, but maybe lower if explicit priors are given for
any of the parameters based on information from other sources) to the entropy computed from the posterior, you can
estimate the number of bits of information from the fit to the data.

Note that bumps calculates the entropy expected from the closest multivariate normal distribution (MVN) as well as
directly from the samples. The sample derived entropy has more variability, particularly in high dimensions.

Many of the probability distributions in scipy.stats include a method to compute the entropy of the distribution. We
can use these to test the values from bumps against known good values.

import numpy as np
from math import log
from scipy.stats import distributions, multivariate_normal
from bumps.names import *
from bumps.dream.entropy import Box, MultivariateT, Joint

Create the distribution using the name and parameters from the command line. Provide some handy help if the no
distribution is given.

TODO: create version of dirichlet that we can sample from. For dirichlet, need to enforce x_k in [0,1] and sum(x) = 1.
By reducing the number of parameters by 1 and setting

USAGE = """
Usage: bumps check_entropy.py dist p1 p2 ...

where dist is one of the distributions in scipy.stats.distributions and
p1, p2, ... are the arguments for the distribution in the order that they
appear. For example, for the normal distribution, x ~ N(3, 0.8), use:

(continues on next page)
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(continued from previous page)

bumps --fit=dream --entropy --store=/tmp/T1 check_entropy.py norm 3 0.2
"""
def _mu_sigma(mu, sigma):

sigma = np.asarray(sigma)
if len(sigma.shape) == 1:

sigma = np.diag(sigma**2)
if mu is None:

mu = np.zeros(sigma.shape[0])
return mu, sigma

def mvn(sigma, mu=None):
mu, sigma = _mu_sigma(mu, sigma)
return multivariate_normal(mean=mu, cov=sigma)

def mvskewn(alpha, sigma, mu=None):
sigma = np.asarray(sigma)
assert len(sigma.shape) == 1
if mu is None:

mu = np.zeros(sigma.shape[0])
Dk = [distributions.skewnorm(alpha, m, s) for m, s in zip(mu, sigma)]
return Joint(Dk)

def mvt(df, sigma, mu=None):
mu, sigma = _mu_sigma(mu, sigma)
return MultivariateT(mu=mu, sigma=sigma, df=df)

def mvcauchy(sigma, mu=None):
mu, sigma = _mu_sigma(mu, sigma)
return MultivariateT(mu=mu, sigma=sigma, df=1)

DISTS = {
'mvn': mvn,
'mvt': mvt,
'mvskewn': mvskewn,
'mvcauchy': mvcauchy,
'mvu': Box,

}
if len(sys.argv) > 1:

dist_name = sys.argv[1]
D_class = DISTS.get(dist_name, None)
if D_class is None:

D_class = getattr(distributions, dist_name, None)
if D_class is None:

print("unknown distribution " + dist_name)
sys.exit()

args = [[[float(vjk) for vjk in vj.split(',')] for vj in v.split(',')] if ';' in v
else [float(vj) for vj in v.split(',')] if ',' in v
else float(v)
for v in sys.argv[2:]]

D = D_class(*args)
else:

(continues on next page)
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(continued from previous page)

print(USAGE)
sys.exit()

Set the fitting problem using the direct PDF method. In this case, bumps is not being used to fit data, but instead to
explore the probability distribution directly through the negative log likelihood function. The only argument to this
function is the parameter value x, which becomes the fitting parameter. This model file will not work for multivariate
distributions.

def D_nllf(x):
return -D.logpdf(x)

dim = getattr(D, 'dim', 1)
if dim == 1:

M = PDF(D_nllf, x=0.9)
M.x.range(-inf, inf)

else:
M = VectorPDF(D_nllf, np.ones(dim))
for k in range(dim):

getattr(M, 'p'+str(k)).range(-inf, inf)

if dist_name == "mvskewn":
for k in range(dim):

getattr(M, 'p'+str(k)).value = D.distributions[k].mean()

problem = FitProblem(M)

Before fitting, print the expected entropy from the fit.

entropy = D.entropy()
print("*** Expected entropy: %.4f bits %.4f nats"%(entropy/log(2), entropy))

To exercise the entropy calculator, try fitting some non-normal distributions:

t 84 # close to normal
t 4 # high kurtosis
uniform -5 100 # high entropy
cauchy 0 1 # undefined variance
expon 0.1 0.2 # asymmetric, narrow
beta 0.5 0.5 # 'antimodal' u-shaped pdf
beta 2 5 # skewed
mvn 1,1,1 1,2,3 # 3-D multivariate standard normal at (1,2,3)
mvt 4 1,1,1,1,1 # 5-D multivariate t-distribution with df=4 at origin
mvu 1,1,1,1,1 # 5-D unit uniform distribution centered at origin
mvcauchy 1,1,1 # 3-D multivariate Cauchy distribution at origin
mvskewn 5 1,1,1 # 3-D multivariate skew normal with alpha=5 at origin

Ideally, the entropy estimated by bumps will match the predicted entropy when using –fit=dream. This is not the
case for beta 0.5 0.5. For the other distributions, the estimated entropy is within uncertainty of actual value, but the
uncertainty is a bit high.

The other fitters, which use the curvature at the peak to estimate the entropy, do not work reliably when the fit is not
normal. Try the same distributions with –fit=amoeba to see this.
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2.5 Bayesian Experimental Design

Perform a tradeoff comparison between point density and counting time when measuring a peak in a poisson process.

Usage:

bumps peak.py N --entropy --store=/tmp/T1 --fit=dream

The parameter N is the number of data points to use within the range.

from bumps.names import *
from numpy import exp, sqrt, pi, inf

# Define the peak shape as a gaussian plus background
def peak(x, scale, center, width, background):

return scale*exp(-0.5*(x-center)**2/width**2)/sqrt(2*pi*width**2) + background

# Get the number of points from the command line
if len(sys.argv) == 2:

npoints = int(sys.argv[1])
else:

raise ValueError("Expected number of points n in the fit")

# set a constant number of counts, equally divided between points
x = np.linspace(5, 20, npoints)
scale = 10000/npoints

# Build the model, along with the valid fitting range. there is no data yet,
# so y is None
M = PoissonCurve(peak, x, y=None, scale=scale, center=15, width=1.5, background=1)
M.scale.range(0, inf)
dx = max(x)-min(x)
M.center.range(min(x) - 0.2*dx, max(x) + 0.2*dx)
M.width.range(0, 0.7*dx)
M.background.range(0, inf)

# Make a fake dataset from the give x spacing
M.simulate_data()

problem = FitProblem(M)

Running this problem for a few values of the number of points is showing that adding points and reducing counting
time per point is better able to recover the peak parameters.

2.5. Bayesian Experimental Design 31



Bumps: Curve Fitting and Uncertainty Analysis, Release 0.9.1

2.6 Calling fit from scripts

Revisiting our curve fit example, let’s call the optimizer directly from the script.

Setting up the problem remains the same:

from __future__ import print_function
from bumps.names import *

x = [1, 2, 3, 4, 5, 6]
y = [2.1, 4.0, 6.3, 8.03, 9.6, 11.9]
dy = [0.05, 0.05, 0.2, 0.05, 0.2, 0.2]

def line(x, m, b=0):
return m*x + b

M = Curve(line, x, y, dy, m=2, b=2)
M.m.range(0, 4)
M.b.range(-5, 5)

problem = FitProblem(M)

With the problem defined, we can now call the fitter. The following uses the minimalist fit interface defined in bumps,
which takes a problem definition and returns a results object with x, dx attributes for the best value and the estimated
uncertainty. The ‘dream’ fitter will additionally return the dream state, which allows for more detailed uncertainty
analysis.

from bumps.fitters import fit
from bumps.formatnum import format_uncertainty

# Allow choice of fitter from the command line
method = 'amoeba' if len(sys.argv) < 2 else sys.argv[1]

print("initial chisq", problem.chisq_str())
result = fit(problem, method=method, xtol=1e-6, ftol=1e-8)
print("final chisq", problem.chisq_str())
for k, v, dv in zip(problem.labels(), result.x, result.dx):

print(k, ":", format_uncertainty(v, dv))

2.7 Inequality constraints

The usual pattern for constraints within bumps is to set the value for one parameter to be some function of the other
parameters. This does not allow contraints of the form 𝑎 < 𝑏 for parameters 𝑎 and paramter 𝑏.

Instead, along with the fit problem definition, you can supply your own penalty constraints function which adds an
artificial value to the probability function for points outside the feasible region. The ideal constraints function will
incorporate the distance from the boundary of the feasible region so that if the fitter is started outside forces the fit back
into the feasible region.

The soft_limit value can be used in conjunction with the penalty to avoid evaluating the function outside the feasible
region. For example, the function log(𝑎 − 𝑏) is only defined for 𝑎 > 𝑏, so setting a constraint such as 106 + (𝑎 − 𝑏)2

for 𝑎 <= 𝑏 and 0 along with a soft limit of 106 will keep the function defined everywhere. With the penalty value
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sufficiently large, the probability of any evaluation in the infeasible region will be neglible, and will not skew the
posterior distribution statistics.

Define the model as usual

from bumps.names import *

def line(x, m, b):
return m*x + b

x = [1, 2, 3, 4, 5, 6]
y = [2.1, 4.0, 6.3, 8.03, 9.6, 11.9]
dy = [0.05, 0.05, 0.2, 0.05, 0.2, 0.2]

M = Curve(line, x, y, dy, m=2, b=0)
M.m.range(0, 4)
M.b.range(0, 5)

Define the constraints as a function which takes no parameters and returns a floating point value. Note the value 1e6
in the penalty condition: this is the soft limit value which we will use to avoid evaluating the curve in the infeasible
region.

def constraints():
m, b = M.m.value, M.b.value
return 0 if m < b else 1e6 + (m-b)**6

Attach the constraints to the problem. Give the soft limit value that is used for the constraints. Without the soft limit,
the fit would stall since we started it at a deep local minimum near the true solution without constraints.

problem = FitProblem(M, constraints=constraints, soft_limit=1e6)

The constraint relies on the ability for python to access the parameters from the module. Furthermore, the parameters
still “boxed”, and so you need to reference the value attribute to get the parameter value at the time the constraint is
evaluated. Not an elegant solution, but it works. Eventually we will add constraint expressions such as M.m < M.b or
M.m + M.b < 10 using the same infrastructure as equality constraints.
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CHAPTER

THREE

USER’S GUIDE

Bumps is designed to determine the ideal model parameters for a given set of measurements, and provide uncertainty
on the parameter values. This is an inverse problem, where measured data can be predicted from theory, but theory
cannot be directly inferred from measured data. This means that bumps must search through parameter space, calling
the theory function many times to find the parameter values that are most consistent with the data.

Unlike traditional Levenburg-Marquardt fitting programs, Bumps does not require normally distributed measurement
uncertainty. If a measurement comes from counting statistics, for example, you can define your model with poisson
probability rather than gaussian probability. Parameter values can have constraints. For example, if the size of a sample
is known to within 5%, the size parameter in the model can set to a gaussian distribution with a standard deviation of
5%. Simple bounds are also supported. Parameter expressions allow you to set the value of a parameter based on
other parameters, which allows simultaneous fitting of multiple datasets to different models without having to define a
specialized fit function.

Bumps includes Markov chain Monte Carlo (MCMC) methods to compute the joint distribution of parameter prob-
abilities. These methods require hundreds of thousand function calls to explore the search space, so for moderately
complex problems, you need to run in parallel. Bumps can fully utilize multiple cores on one computer, or through
MPI, it runs on supercomputing clusters.

# Data handling has been removed so that we can ship a pure python package. In addition to inverse
problem solving, bumps has acquired code for theory building and data handling. For example, many
problems have measurements in which the instrument resolution plays a role, and the theory function must
be convolved with a data dependent resolution function.

Using Bumps

Model scripts associate a sample description with data and fitting options to define the system you wish to
refine.

Data Representation

Data management is the responsibility of the modeller. Bumps provides a generic data loader bumps.
data with a key-value header section followed by columns of numeric data, but it is up to the model
script to compute the theory along with any resolution effects and compare that with the data. The
bumps.curve.Curve class associates a theory function with measurements with Gaussian uncertainty,
and bumps.curve.PoissonCurve does the same for measurements following Poisson statistics.

Parameters

The adjustable values in each component of the system are defined by Parameter objects. When you set
the range on a parameter, the system will be able to automatically adjust the value in order to find the best
match between theory and data.

Fitting

One or more experiments can be combined into a FitProblem . This is then given to one of the many fitters,
such as DEFit, which adjust the fitting parameters, trying to find the best fit. See Optimizer Selection for
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a description of available optimizers and Bumps Options for a description of the bumps options. Entropy
can be calculated when the fit is complete. See Calculating Entropy.

3.1 Using Bumps

The first step in using Bumps is to define a fit file. This is python code defining the function, the fitting parameters and
any data that is being fitted.

A fit file usually starts with an import statement:

from bumps.names import *

This imports names from bumps.names and makes the available to the model definition.

Next the fit file should load the data with something like np.loadtxt which loads columnar ASCII data into an array.
This data feeds into a Fitness function for a particular model that gives the probability of seeing the data for a given
set of model parameters. These model functions can be quite complex, involving not only the calculation of the theory
function, but also simulating instrumental resolution and background signal.

The fitness function will have Parameter objects defining the fittable parameters. Usually the model is initialized
without any fitted parameters, allowing the user to set a range on each parameter that needs to be fitted. Although it is
a little tedious to set up, keeping the fitted ranges separate from the model definition works better in the fitting process,
which usually involves multiple iterations with different configurations. It is convenient to be able to turn on and off
fitting for individual parameter with a simple comment character (‘#’) at the start of the line.

Every fit file ends with a FitProblem definition:

problem = FitProblem(model)

In fact, this is the only requirement of the fit file. The Bumps engine loads the fit file, retieves the problem symbol and
feeds it to one of the fitters. Some fit files do not even use FitProblem to define problem, or use Parameter objects
for the fitted parameters, so long as problem implements the BaseFitProblem interface, which provides getp to get
the existing parameter vector, setp to set a new parameter vector, bounds to return the parameter bounds, and nllf to to
compute the negative log likelihood function. The remaining methods are optional.

Note that the pattern of importing all names from a file using from bumps.names import *, while convenient for simple
scripts, can make the code more difficult to understand later, and can lead to unexpected results when moving code
around to other files. The alternative pattern to use is:

import bumps.names as bmp
...
problem = bmp.FitProblem(model)

This documents to the reader unfamiliar with your code (such as you, dear reader, when looking at your model files
two years from now) exactly where the name comes from.

The Tutorial walks through the process for several different data sets.
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3.2 Data Representation

Data is x,y,dy. Anything more complicated you will need to define yourself.

3.3 Experiment

• Simple experiments

• Likelihood functions

• Complex models

• Linear models

• Foreign models

• External constraints

It is the responsibility of the user to define their own experiment structure. The usual definition will describe the sample
of interest, the instrument configuration, and the measured data, and will provide a theory function which computes the
expected data given the sample and instrument parameters. The theory function frequently has a physics component
for computing the ideal data given the sample and an instrument effects component which computes the expected data
from the ideal data. Together, sample, instrument, and theory function define the fitting model which needs to match
the data.

The curve fitting problem can be expressed as:

𝑃 (model | data) =
𝑃 (data | model)𝑃 (model)

𝑃 (data)

That is, the probability of seeing a particular set of model parameter values given the observed data depends on the
probability of seeing the measured data given a proposed set of parameter values scaled by the probability of those
parameter values and the probability of that data being measured. The experiment definition must return the negative
log likelihood as computed using the expression on the right. Bumps will explore the space of the sample and instrument
parameters in the model, returning the maximum likelihood and confidence intervals on the parameters.

There is a strong relationship between the usual 𝜒2 optimization problem and the maximum likelihood problem. Given
Gaussian uncertainty for data measurements, we find that data 𝑦𝑖 measured with uncertainty 𝜎𝑖 will be observed for
sample parameters 𝑝 when the instrument is at position 𝑥𝑖 with probability

𝑃 (𝑦𝑖 | 𝑓(𝑥𝑖; 𝑝)) =
1√︀
2𝜋𝜎2

𝑖

exp

(︂
− (𝑦𝑖 − 𝑓(𝑥𝑖; 𝑝))

2

2𝜎2
𝑖

)︂
The negative log likelihood of observing all points in the data set for the given set of sample parameters is

− log
∏︁
𝑖

𝑃 (𝑦𝑖 | 𝑓(𝑥𝑖; 𝑝)) =
1
2

∑︁
𝑖

(𝑦𝑖 − 𝑓(𝑥𝑖; 𝑝))
2

𝜎2
𝑖

− 1
2

∑︁
𝑖

log 2𝜋𝜎2
𝑖 = 1

2𝜒
2 + 𝐶

Note that this is the unnormalized 𝜒2, whose expected value is the number of degrees of freedom in the model, not the
reduced 𝜒2

𝑅 whose expected value is 1. The Bumps fitting process is not sensitive to the constant 𝐶 and it can be safely
ignored.

Casting the problem as a log likelihood problem rather than 𝜒2 provides several advantages. We can support a richer set
of measurement techniques whose uncertainties do not follow a Gaussian distribution. For example, if we have a Poisson
process with a low count rate, the likelihood function will be asymmetric, and a gaussian fit will tend to overestimate
the rate. Furthermore, we can properly handle background rates since we can easily compute the probability of seeing
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the observed number of counts given the proposed signal plus background rate. Gaussian modeling can lead to negative
rates for signal or background, which is fundamentally wrong. See Simple functions for a demonstration of this effect.

We can systematically incorporate prior information into our models, such as uncertainty in instrument configuration.
For example, if our sample angle control motor position follows a Gaussian distribution with a target position of 3∘ and
an uncertainty of 0.2∘, we can set

− log𝑃 (model) = −1

2

(𝜃 − 3)2

0.22

ignoring the scaling constant as before, and add this to 1
2𝜒

2 to get log of the product of the uncertainties. Similarly,
if we know that our sample should have a thickness of 100 ± 3.5 Å based on how we constructed the sample, we can
incorporate this information into our model in the same way.

3.3.1 Simple experiments

The simplest experiment is defined by a python function which takes a list of instrument configuration and has arguments
defining the parameters. For example, to fit a line you would need:

def line(x, m, b):
return m*x + b

Assuming the data was in a 3 column ascii file with x, y and uncertainty, you would turn this into a bumps model file
using:

# 3 column data file with x, y and uncertainty
x,y,dy = numpy.loadtxt('line.txt').T
M = Curve(line, x, y, dy)

Using the magic of python introspection, Curve is able to determine the names of the fittable parameters from the
arguments to the function. These are converted to Parameter objects, the basis of the Bumps modeling system. For
each parameter, we can set bounds or values:

M.m.range(0,1) # limit slope between 0 and 45 degrees
M.b.value = 1 # the intercept is set to 1.

We could even set a parameter to a probability distribution, using Parameter.dev for Gaussian distributions or setting
parameter.bounds to Distribution for other distributions.

Bumps includes code for polynomial interpolation including B-splines, monotonic splines, and chebyshev
polynomials.

For counts data, PoissonCurve is also available.

3.3.2 Likelihood functions

If you are already have the negative log likelihood function and you don’t need to manage data, you can use it with PDF:

x,y,dy = numpy.loadtxt('line.txt').T
def nllf(m, b):

return numpy.sum(((y - (m*x + b))/dy)**2)
M = PDF(nllf)

You can use M.m and M.b to the parameter ranges as usual, then return the model as a fitting problem:
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M.m.range(-inf,inf)
M.b.range(-inf,inf)
problem = FitProblem(M)

3.3.3 Complex models

More sophisticated models, with routines for data handling and specialized plotting should define the Fitness in-
terface. The Peak Fitting example sets up a problem for fitting multiple peaks plus a background against a 2-D data
set.

Models are parameterized using Parameter objects, which identify the fitted parameters in the model, and the bounds
over which they may vary. The fitness object must provide a set of fitting parameters to the fit problem using the
parameters method. Usually this returns a dictionary, with the key corresponding to the attribute name for the pa-
rameter and the value corresponding to a parameter object. This allows the user of the model to guess that parameter
“p1” for example can be referenced using model.p1. If the model consists of parts, the parameters for each part must be
returned. The usual approach is to define a parameters method for each part and build up the dictionary when needed
(the parameters function is only called at the start of the fit, so it does not need to be efficient). This allows the user to
guess that parameter “p1” of part “a” can be referenced using model.a.p1. A set of related parameters, p1, p2, . . . can
be placed in a list and referenced using, e.g., model.a.p[i].

The fitness constructor should accept keyword arguments for each parameter giving reasonable defaults for the initial
value. The parameter attribute should be created using Parameter.default. This method allows the user to set an
initial parameter value when the model is defined, or set the value to be another parameter in the fitting problem, or
to a parameter expression. The name given to the default method should include the name of the model. That way
when the same type of model is used for different data sets, the two sets of parameters can be distinguished. Ideally
the model name would be based on the data set name so that you can more easily figure out which parameter goes with
which data.

During an analysis, the optimizer will ask to evaluate a series of points in parameter space. Once the parameters have
been set, the update method will be called, if there is one. This method should clear any cached results from the
last fit point. Next the nllf method will be called to compute the negative log likelihood of observing the data given
the current values of the parameters. This is usually just

∑︀
(𝑦𝑖 − 𝑓(𝑥𝑖))

2/(2𝜎2
𝑖 ) for data measured with Gaussian

uncertainty, but any probability distribution can be used.

For the Levenberg-Marquardt optimizer, the residuals method will be called instead of nllf. If residuals are unavail-
able, then the L-M method cannot be used.

The numpoints method is used to report fitting progress. With Gaussian measurement uncertainty, the nllf return
value is 𝜒2/2, which has an expected value of the number of degrees of freedom in the fit. Since this is an awkward
number, the normalized chi-square, 𝜒2

𝑁 = 𝜒2/DoF = −2 ln(𝑃 )/(𝑛 − 𝑝), is shown instead, where − ln𝑃 is the nllf
value, 𝑛 is the of points and 𝑝 is the number of fitted parameters. 𝜒2

𝑁 has a value near 1 for a good fit. The same
calculation is used for non-gaussian distributions even though nllf is not returning sum squared residuals.

The save and plot methods will be called at the end of the fit. The save method should save the model for the current
point. This may include things such as the calculated scattering curve and the real space model for scattering inverse
problems, or it may be a save of the model parameters in a format that can be loaded by other programs. The plot
method should use the current matplotlib figure to draw the model, data, theory and residuals.

The resynth_data method is used for an alternative monte carlo error analysis where random data sets are generated
from the measured value and the uncertainty then fitted. The resulting fitted parameters can be processed much like
the MCMC datasets, yielding a different estimate on the uncertainties in the parameters. The restore_data method
restores the data to the originally measured values. These methods are optional, and only used if the alternative error
analysis is requested.
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3.3.4 Linear models

Linear problems with normally distributed measurement error can be solved directly. Bumps provides bumps.wsolve.
wsolve(), which weights values according to the uncertainty. The corresponding bumps.wsolve.wpolyfit() func-
tion fits polynomials with measurement uncertainty.

3.3.5 Foreign models

If your modeling environment already contains a sophisticated parameter handling system (e.g. sympy or PyMC) you
may want to tie into the Bumps system at a higher level. In this case you will need to define a class which implements
the FitProblem interface. This has been done already for PyMCProblem and interested parties are directed therein
for a working example.

3.3.6 External constraints

3.4 Parameters

• Free Variables

Bumps fitting is centered on Parameter objects. Parameters define the search space, the uncertainty analysis and even
the user interface. Constraints within and between models are implemented through parameters. Prior probabilities are
defined by for parameters.

Model classes for Bumps should make it easy to define the initial value of fitting parameters and tie parameters together.
When creating a model, you should be able specify parameter=value for each of the model parameters. Later, you
should be able to reference the parameter within the model using M.parameter. Parameters can also be tied together by
assigning the same Parameter object to two different parameters. For example, a hollow cylinder can be created using:

solvent = Parameter("solvent", value=1.2)
shell = Parameter("shell", value=4.5)
M = CoreShellCylinder(core=solvent, shell=shell, solvent=solvent,

radius=95, thickness=10, length=100)

The model parameter can also be a derived value that is the result of a parameter expression. For example, the following
creates a cylinder whose length is twice the radius:

radius = Parameter("radius", value=3)
M = Cylinder(radius=radius, length=2*radius)

Any time you ask for M.length.value it will compute the result as 2*radius.value and return that.

You can also tie parameters together after the fact. For example, you can create the constrained cylinder using:

M = Cylinder(radius=3, length=6)
M.length = 2*M.radius

The advantage of this method is that you can easily comment out the constraint when exploring the model space, and
fit length and radius freely.

Once you have defined your models and constraints you can set up you fitting parameters. There are several parameter
methods which are helpful:
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• range forces the parameter to lie within a fixed range. The parameter value can take on any value within the
range with equal probability, and has zero probability outside the range.

• pm is a convenient way to set up a range based on the initial value of parameter. For example, M.thickness.pm(10)
will allow the thickness parameter to vary by plus or minus 10. You can do asymmetric ranges by calling pm with
plus and minus values, such as M.thickness.pm(-3,2). The actual range gets set to a nice_range that includes
the bounds.

• pmp is like pm but the range is specified as a percent. For example, to let thickness vary by 10%, use
M.thickness.pmp(10). Again, a nice_range is used.

• dev sets up a parameter whose prior probability is not equal across its range, but instead follows a normal
distribution. If for example, you have measure the thickness to be 32.1± 0.6 by some other technique, you can
use this information to constrain your model by initializing thickness to 32.1 and setting M.thickness.dev(0.6) as
a fitting constraint. The dev method also accepts absolute limits, creating a truncated normal distribution. You
can set the central value mu as well, but you probably want to do this in the model initialization so that you are
free to turn fitting of the parameter on and off by commenting out the dev line.

• soft_range is a combination of range and dev in that the parameter has equal probability within [low,*high*]
but Gaussian probability of width std as it strays outside of the range.

• pdf is like dev but works with any continuous scipy.stats distribution.

All these methods set the bounds attribute on the parameter in one way or another. See bumps.bounds for details.
Technically, setting the parameter to dev, soft_range or pdf is equivalent to creating a probability distribution model
with a single data point and Fitness.nllf equal to the negative log likelihood of seeing the parameter value in the
distribution. This PDF model would be fit simultaneously with your target model with the parameter shared between
them. The result is statistically sound (it is just more prior information), and conveniently, it does not affect the number
of degrees of freedom in the fit.

When defining new model classes, use the static method Parameter.default() to initialize the parameter. This will
accept the input argument passed in by the user and depending on its type, either create a new parameter slot and set
its initial value, or link the slot to another parameter.

3.4.1 Free Variables

When fitting multiple datasets, you will undoubtedly have models with many shared parameters, and some parameters
that differ between the models. Common patterns include:

• different measurements may use the same material but different contrast agents,

• they may use the same contrast agent but different materials,

• the same material and contrast, but different sizes, or

• a cross product with several materials and several sizes.

Often with complex models the parameter of interest is buried within the model structure. One approach is to clone
the models using a deep copy of the entire structure, then tie together parameters for the bits that are changing. This
proves to be confusing and difficult for new python programmers, so instead FitProblem was extended to support
FreeVariables. The FreeVariables class allows you to use the same model structure with different data sets, but have
some parameters that vary between the models. Each varying parameter is a slot, and FreeVariables keeps an array of
parameters (actually a ParameterSet) to fill that slot, one for each model.

To define the free variables, you need the names of the different models, a parameter slot to hold the values, and a list
of the different parameter values for each model. You then define the free variables as follows:

free = FreeVariables(names=["model1", "model2", ...],
p1=model.p1, p2=model.p2, ...)

(continues on next page)
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(continued from previous page)

...
problem = FitProblem(experiments, freevars=free)

The slots can be referenced by name, with the underlying parameters referenced by variable number. In the
above, free.p1[1] refers to the parameter p1 when fitting data2. You can also refer to the slots by name, such as
free.p1[data2.name]. The parameters in the slots have the usual properties of parameters, such as values and fit ranges.
Setting the fit range makes the parameter a fitted parameter, and the fit will give the uncertainty on each parameter
independently. Parameters can be copied, so that a pair of models can share the same value.

The following examples shows a neutron scattering problems with two datasets, one measured with light water and the
other measured with heavy water, you can share the same material object, but use the light water scattering factors in
the first and the heavy water scattering factors in the second. The problem would be composed as follows:

material = SLD('silicon', rho=2.07)
solvent = SLD('solvent') # unspecified rho
model = Sphere(radius=10, material=material, solvent=solvent)
M1 = ScatteringFitness(model, hydrogenated_data)
M2 = ScatteringFitness(model, deuterated_data)
free = FreeVariables(names=['hydrogenated', 'deuterated'],

solvent=solvent.sld)
free.solvent.values = [-0.561, 6.402]
model.radius.range(1,35)
problem = FitProblem([M1, M2], freevars=free)

In this particular example, the solvent is fixed for each measurement, and the sphere radius is allowed to vary between 1
and 35. Since the radius is not a free variable, the fitted radius will be chosen such that it minimizes the combined fitness
of both models. In a more complicated situation, we may not know either the sphere radius or the solvent densities, but
still the radius is shared between the two models. In this case we could set:

fv.solvent.range(-1,7)

and the SLD of the solvent would be fitted independently in the two data sets. Notice that we did not refer to the
individual model index when setting the range. This is a convenience—range, pm and pmp can be set on the entire set
as above, or individually using, e.g.,

fv.solvent[0].range(-1,0)
fv.solvent[1].range(6,7)

3.5 Fitting

• Quick Fit

• Uncertainty Analysis

• Using the posterior distribution

• Publication Graphics

• Tough Problems

• Command Line

Obtaining a good fit depends foremost on having the correct model to fit.
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For example, if you are modeling a curve with spline, you will overfit the data if you have too many spline points, or
underfit it if you do not have enough. If the underlying data is ultimately an exponential, then the spline order required
to model it will require many more parameters than the corresponding exponential.

Even with the correct model, there are systematic errors to address (see Data Representation). A distorted sample can
lead to broader resolution than expected for the measurement technique, and you will need to adjust your resolution
function. Imprecise instrument control will lead to uncertainty in the position of the sample, and corresponding changes
to the measured values. For high precision experiments, your models will need to incorporate these instrument effects so
that the uncertainty in instrument configuration can be properly accounted for in the uncertainty in the fitted parameter
values.

3.5.1 Quick Fit

While generating an appropriate model, you will want to perform a number of quick fits. The Nelder-Mead Simplex
works well for this. You will want to run enough iterations --steps=1000 so the algorithm has a chance to converge.
Restarting a number of times --starts=10 gives a reasonably thorough search of the fit space. Once the fit converges,
additional starts are very quick. From the graphical user interface, using --starts=1 and clicking the fit button to
improve the fit as needed works pretty well. From the command line interface, the command line will be something
like:

bumps --fit=amoeba --steps=1000 --starts=20 --parallel model.py --store=T1

Here, the results are kept in a directory --store=T1 relative to the current directory, with files containing the current
model in model.py, the fit result in model.par and a plots in model-*.png. The parallel option indicates that multiple
cores should be used on the cpu when running the fit.

The fit may be able to be improved by using the current best fit value as the starting point for a new fit:

bumps --fit=amoeba --steps=1000 --starts=20 --parallel model.py --store=T1 --pars=T1/
→˓model.par

If the fit is well behaved, and a numerical derivative exists, then switching to Quasi-Newton BFGS is useful, in that it
will very rapidly converge to a nearby local minimum.

bumps --fit=newton model.py --pars=T1/model.par --store=T1

Differential Evolution is an alternative to Nelder-Mead Simplex, perhaps a little more likely to find the global minimum
but somewhat slower. This is a population based algorithms in which several points from the current population are
selected, and based on the position and value, a new point is generated. The population is specified as a multiplier on
the number of parameters in the model, so for example an 8 parameter model with DE’s default population --pop=10
would create 80 points each generation. This algorithms can be called from the command line as follows:

bumps --fit=de --steps=3000 --parallel model.py --store=T1

Some fitters save the complete state of the fitter on termination so that the fit can be resumed. Use --resume=path/
to/previous/store to resume. The resumed fit also needs a --store=path/to/store, which could be the same
as the resume path if you want to update it, or it could be a completely new path.

See Optimizer Selection for a description of the available optimizers, and Bumps Options for a description of all the
bumps options.
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3.5.2 Uncertainty Analysis

More important than the optimal value of the parameters is an estimate of the uncertainty in those values. The best fit
is an accident of the measurement; perform the measurement again and you will get a different optimum. Given the
uncertainty in the measurement, there is a joint distribution of parameter values that are consistent with the measure-
ment. For example, when fitting a line, the choice of slope will affect the range of intercepts that fit the data. The goal
of uncertainty analysis is to determine this distribution and summarize it for the reader.

By casting our problem as the likelihood of seeing the data given the model, we not only give ourselves the ability to
incorporate prior information into the fit systematically, but we also give ourselves a strong foundation for assessing
the uncertainty of the parameters.

There are multiple ways to perform the analysis:

1. Bayesian inference. Given the probability on the parameters and the probability that the measured data will be
seen with those parameters, infer the probability of the parameters given the measured data. This is the primary
method in Bumps and will be discussed at length below.

2. Sensitivity analysis. Given the best fit parameter values, look at the curvature around that point as a normal
distribution with covariance computed from the Hessian matrix. Further, pretend that there is no interaction
between the parameters (that is they are uncorrelated and independent), and report the uncertainty as the square
root of the diagonal. This is the default method for most optimizers in Bumps.

3. Uncertainty contour. Assuming the measurement data is independent and normally distributed, a given increase
in 𝜒2 above the minimum corresponds to 1-$sigma$ confidence interval. By following this contour you can find
the set of all points 𝜉 such that 𝜒2(𝜉) = 𝜒2(𝑥) + 𝐶 where 𝑥 is the point of maximum likelihood. Look in
Numerical Recipes chapter on nonlinear least squares for a more complete discussion. Bumps does not include
algorithms for this kind of analysis.

4. Forward Monte Carlo. Bumps has the option --resynth to perform a forward Monte Carlo estimate of the max-
imum likelihood. That is, you can use the measurement uncertainty to “rerun” the experiment, synthesizing a
new dataset with the same uncertainty but slightly different values, then find the new maximum likelihood. After
𝑛 runs you will be able to estimate the uncertainty in the best fit parameters. This method can be applied with
any of the optimizers.

5. Repeated measurement. A direct way to estimate the parameter uncertainty is to repeat the experiment many
times and look at the distribution of best fit results. This is the classic approach which you need to follow if
you don’t know anything about the uncertainty in your measurement processes (other than the assumption of
independence between measurements). You can use this during experimental design, simulating the experiment
in different conditions to figure out the best strategy to retrieve the quantity of interest. For example, to plan a
reflectometry experiment you want to know if it would be better to measure with a pair of contrast agents, or to
spend twice as long on a single contrast. The result gives the expected uncertainty in the parameters before the
measurement is ever performed. You might call this model driven forward Monte Carlo as opposed to the data
driven forward MC listed above.

Bayesian inference is performed using DREAM. This is a Markov chain Monte Carlo (MCMC) method with a differ-
ential evolution step generator. Like simulated annealing, the MCMC explores the space using a random walk, always
accepting a better point, but sometimes accepting a worse point depending on how much worse it is.

DREAM can be started with a variety of initial populations. The random population --init=random distributes the
initial points using a uniform distribution across the space of the parameters. Latin hypersquares --init=lhs im-
proves on random by making sure that there is on value for each subrange of every variable. The covariance population
--init=cov selects points from the uncertainty ellipse computed from the derivative at the initial point. This method
will fail if the fitting parameters are highly correlated and the covariance matrix is singular. The $epsilon$-ball pop-
ulation --init=eps starts DREAM from a tiny region near the initial point and lets it expand from there. It can be
useful to start with an epsilon ball from the previous best point when DREAM fails to converge using a more diverse
initial population.

44 Chapter 3. User’s Guide



Bumps: Curve Fitting and Uncertainty Analysis, Release 0.9.1

The Markov chain will take time to converge on a stable population. This burn in time needs to be specified at the start
of the analysis. After burn, DREAM will collect all points visited for N iterations of the algorithm. If the burn time
was long enough, the resulting points can be used to estimate uncertainty on parameters.

A common command line for running DREAM is:

bumps --fit=dream --burn=1000 --samples=1e5 --init=cov --parallel --pars=T1/model.par␣
→˓model.py --store=T2

Bayesian uncertainty analysis is described in the GUM Supplement 1,[8] and is a valid technique for reporting pa-
rameter uncertainties in NIST publications. Given sufficient burn time, points in the search space will be visited with
probability proportional to the goodness of fit. The file T1/model.err contains a table showing for each parameter the
mean(std), median and best values, and the 68% and 95% credible intervals. The mean and standard deviation are
computed from all the samples in the returned distribution. These statistics are not robust: if the Markov process has
not yet converged, then outliers will significantly distort the reported values. Standard deviation is reported in compact
notation, with the two digits in parentheses representing uncertainty in the last two digits of the mean. Thus, for ex-
ample, 24.9(28) is 24.9± 2.8. Median is the best value in the distribution. Best is the best value ever seen. The 68%
and 95% intervals are the shortest intervals that contain 68% and 95% of the points respectively. In order to report 2
digits of precision on the 95% interval, approximately 1000000 samples drawn from the distribution are required, or
steps = 1000000/(#parameters #pop). The 68% interval will require fewer draws, though how many has not yet been
determined.

Histogramming the set of points visited will gives a picture of the probability density function for each parameter. This
histogram is generated automatically and saved in T1/model-var.png. The histogram range represents the 95% credible
interval, and the shaded region represents the 68% credible interval. The green line shows the highest probability
observed given that the parameter value is restricted to that bin of the histogram. With enough samples, this will
correspond to the maximum likelihood value of the function given that one parameter is restricted to that bin. In
practice, the analysis has converged when the green line follows the general shape of the histogram.
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The correlation plots show that the parameters are not uniquely determined from the data. For example, the thickness
of lamellae 3 and 4 are strongly anti-correlated, yielding a 95% CI of about 1 nm for each compared to the bulk nafion
thickness CI of 0.2 nm. Summing lamellae thickness in the sampled points, we see the overall lamellae thickness has
a CI of about 0.3 nm. The correlation plot is saved in T1/model-corr.png.

To assure ourselves that the uncertainties produced by DREAM do indeed correspond to the underlying uncertainty in
the model, we perform a Monte Carlo forward uncertainty analysis by selecting 50 samples from the computed posterior
distribution, computing the corresponding theory function and calculating the normalized residuals. Assuming that our
measurement uncertainties are approximately normally distributed, approximately 68% of the normalized residuals
should be within +/- 1 of the residual for the best model, and 98% should be within +/- 2. Note that our best fit does
not capture all the details of the data, and the underlying systematic bias is not included in the uncertainty estimates.
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Plotting the profiles generated from the above sampling method, aligning them such that the cross correlation with the
best profile is maximized, we see that the precise details of the lamellae are uncertain but the total thickness of the
lamellae structure is well determined. Bayesian analysis can also be used to determine relative likelihood of different
number of layers, but we have not yet performed this analysis. This plot is stored in T1/model-errors.png.

The trace plot, T1/model-trace.png, shows the mixing properties of the first fitting parameter. If the Markov process is
well behaved, the trace plot will show a lot of mixing. If it is ill behaved, and each chain is stuck in its own separate
local minimum, then distinct lines will be visible in this plot.

The convergence plot, T1/model-logp.png, shows the log likelihood values for each member of the population. When
the Markov process has converged, this plot will be flat with no distinct lines visible. If it shows a general upward
sweep, then the burn time was not sufficient, and the analysis should be restarted. The ability to continue to burn from
the current population is not yet implemented.

Just because all the plots are well behaved does not mean that the Markov process has converged on the best result. It is
practically impossible to rule out a deep minimum with a narrow acceptance region in an otherwise unpromising part
of the search space.

In order to assess the DREAM algorithm for suitability for our problem space we did a number of tests. Given that
our fit surface is multimodal, we need to know that the uncertainty analysis can return multiple modes. Because the
fit problems may also be ill-conditioned, with strong correlations or anti-correlations between some parameters, the
uncertainty analysis needs to be able to correctly indicate that the correlations exist. Simple Metropolis-Hastings
sampling does not work well in these conditions, but we found that DREAM is able to handle them. We are still
affected by the curse of dimensionality. For correlated parameters in high dimensional spaces, even DREAM has
difficulty taking steps which lead to improved likelihood. For example, we can recover an eight point spline with
generous ranges on its 14 free parameters close to 100% of the time, but a 10 point spline is rarely recovered.

3.5.3 Using the posterior distribution

You can load the DREAM output population an perform uncertainty analysis operations after the fact. To run an
interactive bumps session use the following:

bumps -i

First you need to import some functions:

import os
import matplotlib.pyplot as plt

from bumps.dream.state import load_state
from bumps.dream.views import plot_corrmatrix
from bumps.dream.stats import var_stats, format_vars
from bumps.dream.varplot import plot_vars

Then you need to reload the MCMC chains:

store = "/tmp/t1" # path to the --store=/tmp/t1 directory
modelname = "model" # model file name without .py extension

# Reload the MCMC data
basename = os.path.join(store, modelname)
state = load_state(basename)
state.mark_outliers() # ignore outlier chains

# Attach the labels from the .par file:
(continues on next page)
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(continued from previous page)

with open(basename+".par") as fid:
state.labels = [" ".join(line.strip().split()[:-1]) for line in fid]

Now you can plot the data:

state.show() # Create the standard plots

You can choose to plot only some of the variables:

# Select the data to plot (the 3rd and the last two in this case):
draw = state.draw(vars=[2, -2, -1])

# Histograms
stats = var_stats(draw) # Compute statistics such as the 90% interval
print(format_vars(stats))
plt.figure()
plot_vars(draw, stats)

# Correlation plots
plt.figure()
plot_corrmatrix(draw)

You can restrict those variables to a certain range. For example, to restrict the third parameter to [0.8, 1.0] and the last
to [0.2, 0.4]:

from bumps.dream import views
selection={2: (0.8,1.0), -1:(0.2,0.4),...}
draw = state.draw(vars=[2, -2, -1], selection=selection)
...

You can add create derived variables using a function to generate the new variable from some combination of existing
variables. For example, to add the first two variables together to create the derived variable “x+y” use:

state.derive_vars(lambda p: p[0]+p[1], labels=["x+y"])

You can generate multiple derived parameters at a time with a function that returns a sequence:

state.derive_vars(lambda p: (p[0]*p[1],p[0]-p[1]), labels=["x*y","x-y"])

These new parameters will show up in the plots:

state.show()

Here is an example from a fit to bovine serum albumin with a two layer model. The parameter of interest ($Gamma$) is
derived from the SLD 𝜌 and thickness 𝑡 of the constituent layers using Γ = 0.06955(𝜌1𝑡1 + 𝜌2𝑡2). Using intermediate
values for 𝜌1𝑡1 and 𝜌2𝑡2 to show the difference between gaussian error propagation and full correlation analysis, the
derived parameters as set up as follows:

from bumps.dream.state import load_state
state = load_state("1000ppm_Ph4.9 NRW_0M_2layer model")
state.labels = ["r1", "t1", "r2", "t2"]
state.derive_vars(lambda p: (p[0]*p[1],p[2]*p[3],0.06955*(p[0]*p[1]+p[2]*p[3])),

labels=["r1t1","r2t2","G"])
state.show()
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This gives the following output:

Parameter mean median best [ 68% interval] [ 95% interval]
1 r1 0.3321(98) 0.3322 0.3327 [ 0.322 0.342] [ 0.312 0.351]
2 t1 50.37(89) 50.381 50.286 [ 49.47 51.21] [ 48.49 52.21]
3 r2 1.199(22) 1.1976 1.1980 [ 1.177 1.224] [ 1.158 1.242]
4 t2 24.90(80) 24.892 24.901 [ 24.06 25.76] [ 23.37 26.44]
5 r1t1 16.73(58) 16.712 16.729 [ 16.16 17.30] [ 15.61 17.86]
6 r2t2 29.84(48) 29.863 29.832 [ 29.36 30.33] [ 28.87 30.78]
7 G 3.239(27) 3.238 3.238 [ 3.21 3.27] [ 3.19 3.29]

Using simple gaussian propagation of errors (from the wonderfully convenient uncertainties package) can compare the
computed uncertainties:

from uncertainties import ufloat as U
C = 0.06955
r1t1 = U(0.3321, 0.0098) * U(50.37, 0.89)
r2t2 = U(1.199, 0.022) * U(24.90, 0.80)
G = C*(r1t1 + r2t2)
print("r1*t1 =", r1t1)
print("r2*t2 =", r2t2)
print("G =", C*(r1t1 + r2t2))

which produces:

r1*t1 = 16.7 ± 0.6 # same as forward MC
r2*t2 = 29.9 ± 1.1 # compared to 29.8 ± 0.5 from forward MC
G = 3.24 ± 0.09 # compared to 3.24 ± 0.03 from forward MC

That is, the gaussian approximation assuming uncorrelated uncertainties is 3x larger than the forward Monte Carlo
approximation from the joint distribution of the fitted parameters. Much of the reduction comes from the strong negative
correlation between 𝜌2 and 𝑡2, with the remainder coming from the negative correlation between the products 𝜌1𝑡1 and
𝜌2𝑡2.

You can see this in the correlation plots, with r2:t2 having a very narrow diagonal (hence strong correlation) and
r1t1:r2×t2 having a somewhat wider diagonal (hence weaker correlation).

The plotting code is somewhat complicated, and matplotlib doesn’t have a good way of changing plots interactively.
If you are running directly from the source tree, you can modify the dream plotting libraries as you need for a one-off
plot, then replot the graph:
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# ... change the plotting code in dream.views/dream.corrplot
reload(dream.views)
reload(dream.corrplot)
state.show()

Be sure to restore the original versions when you are done. If the change is so good that everyone should use it, be sure
to feed it back to the community via the bumps source control system at github.

3.5.4 Publication Graphics

The matplotlib package is capable of producing publication quality graphics for your models and fit results, but it
requires you to write scripts to get the control that you need. These scripts can be run from the Bumps application by
first loading the model and the fit results then accessing their data directly to produce the plots that you need.

The model file (call it plot.py) will start with the following:

import sys
from bumps.cli import load_problem, load_best

model, store = sys.argv[1:3]

problem = load_problem([model])
load_best(problem, os.path.join(store, model[:-3]+".par"))
chisq = problem.chisq

print("chisq", chisq)

Assuming your model script is in model.py and you have run a fit with --store=X5, you can run this file using:

$ bumps plot.py model.py X5

Now model.py is loaded and the best fit parameters are set.

To produce plots, you will need access to the data and the theory. This can be complex depending on how many models
you are fitting and how many datasets there are per model. For single experiment models defined by FitProblem , your
original experiment object is referenced by problem.fitness. For simultaneous refinement defined by FitProblem with
multiple Fitness objects, use problem.models[k].fitness to access the experiment for model k. Your experiment
object should provide methods for retrieving the data and plotting data vs. theory.

How does this work in practice? Consider the reflectivity modeling problem where we have a simple model such as
nickel film on a silicon substrate. We measure the specular reflectivity as various angles and try to recover the film
thickness. We want to make sure that our model fits the data within the uncertainty of our measurements, and we want
some graphical representation of the uncertainty in our film of interest. The refl1d package provides tools for generating
the sample profile uncertainty plots. We access the experiment information as follows:

experiment = problem.fitness
z,rho,irho = experiment.smooth_profile(dz=0.2)
# ... insert profile plotting code here ...
QR = experiment.reflectivity()
for p,th in self.parts(QR):

Q,dQ,R,dR,theory = p.Q, p.dQ, p.R, p.dR, th[1]
# ... insert reflectivity plotting code here ...

Next we can reload the the error sample data from the DREAM MCMC sequence:

50 Chapter 3. User’s Guide

https://github.com/bumps


Bumps: Curve Fitting and Uncertainty Analysis, Release 0.9.1

import dream.state
from bumps.errplot import calc_errors_from_state, align_profiles

state = load_state(os.path.join(store, model[:-3]))
state.mark_outliers()
# ... insert correlation plots, etc. here ...
profiles,slabs,Q,residuals = calc_errors_from_state(problem, state)
aligned_profiles = align_profiles(profiles, slabs, 2.5)
# ... insert profile and residuals uncertainty plots here ...

The function bumps.errplot.calc_errors_from_state() calls the calc_errors function defined by the reflectivity
model. The return value is arbitrary, but should be suitable for the show_errors function defined by the reflectivity
model.

Putting the pieces together, here is a skeleton for a specialized plotting script:

import sys
import pylab
from bumps.dream.state import load_state
from bumps.cli import load_problem, load_best
from bumps.errplot import calc_errors_from_state
from refl1d.align import align_profiles

model, store = sys.argv[1:3]

problem = load_problem([model])
load_best(problem, os.path.join(store, model[:-3]+".par"))

chisq = problem.chisq
experiment = problem.fitness
z,rho,irho = experiment.smooth_profile(dz=0.2)
# ... insert profile plotting code here ...
QR = experiment.reflectivity()
for p,th in self.parts(QR):

Q,dQ,R,dR,theory = p.Q, p.dQ, p.R, p.dR, th[1]
# ... insert reflectivity plotting code here ...

if 1: # Loading errors is expensive; may not want to do so all the time.
state = load_state(os.path.join(store, model[:-3]))
state.mark_outliers()
# ... insert correlation plots, etc. here ...
profiles,slabs,Q,residuals = calc_errors_from_state(problem, state)
aligned_profiles = align_profiles(profiles, slabs, 2.5)
# ... insert profile and residuals uncertainty plots here ...

pylab.show()
raise Exception() # We are just plotting; don't run the model
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3.5.5 Tough Problems

Note: DREAM is currently our most robust fitting algorithm. We are exploring other algorithms such as parallel
tempering, but they are not currently competitive with DREAM.

With the toughest fits, for example freeform models with arbitrary control points, DREAM only succeeds if the model
is small or the control points are constrained. We have developed a parallel tempering (fit=pt) extension to DREAM.
Whereas DREAM runs with a constant temperature, 𝑇 = 1, parallel tempering runs with multiple temperatures con-
currently. The high temperature points are able to walk up steep hills in the search space, possibly crossing over into a
neighbouring valley. The low temperature points agressively seek the nearest local minimum, rejecting any proposed
point that is worse than the current. Differential evolution helps adapt the steps to the shape of the search space, in-
creasing the chances that the random step will be a step in the right direction. The current implementation uses a fixed
set of temperatures defaulting to --Tmin=0.1 through --Tmax=10 in --nT=25 steps; future versions should adapt the
temperature based on the fitting problem.

Parallel tempering is run like dream, but with optional temperature controls:

bumps --fit=dream --burn=1000 --samples=1e5 --init=cov --parallel --pars=T1/model.par␣
→˓model.py --store=T2

Parallel tempering does not yet generate the uncertainty plots provided by DREAM. The state is retained along the
temperature for each point, but the code to generate histograms from points weighted by inverse temperature has not
yet been written.

Parallel tempering performance has been disappointing. In theory it should be more robust than DREAM, but in
practice, we are using a restricted version of differential evolution with the population defined by the current chain rather
than a set of chains running in parallel. When the Markov chain has converged these populations should be equivalent,
but apparently this optimization interferes with convergence. Time permitting, we will improve this algorithm and look
for other ways to improve upon the robustness of DREAM.

3.5.6 Command Line

The GUI version of Bumps is slower because it frequently updates the graphs showing the best current fit.

Run multiple models overnight, starting one after the last is complete by creating a batch file (e.g., run.bat) with one
line per model. Append the parameter –batch to the end of the command lines so the program doesn’t stop to show
interactive graphs:

bumps model.py ... --parallel --batch

You can view the fitted results in the GUI the next morning using:

bumps --edit model.py --pars=T1/model.par
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3.6 Optimizer Selection

Bumps has a number of different optimizers available, each with its own control parameters:

• Levenberg-Marquardt

• Nelder-Mead Simplex

• DREAM

• Differential Evolution

• Quasi-Newton BFGS

• Random Lines [experimental]

• Particle Swarm [experimental]

• Parallel Tempering [experimental]

In general there is a trade-off between convergence rate and robustness, with the fastest algorithms most likely to find a
local minimum rather than a global minimum. The gradient descent algorithms (Levenberg-Marquardt, Quasi-Newton
BFGS) tend to be fast but they will find local minima only, while the population algorithms (DREAM, Differential
Evolution) are more robust and likely slower. Nelder-Mead Simplex is somewhere between, with a small population
keeping the search local but more robust than the gradient descent algorithms.

Each algorithm has its own set of control parameters for adjusting the search process and the stopping conditions. The
same option may mean slightly different things to different optimizers. The Bumps package provides a dialog box for
selecting the optimizer and its options when running the fit wx application. This only includes the common options for
the most useful optimizers. For full control, the fit will need to be run from the command line interface or through a
python script.

For parameter uncertainty, most algorithms use the covariance matrix at the optimum to estimate an uncertainty ellipse.
This is okay for a preliminary analysis, but only works reliably for weakly correlated parameters. For full uncertainty
analysis, DREAM uses a random walk to explore the parameter space near the minimum, showing pair-wise correlations
amongst the parameter values. In order for DREAM to return the correct uncertainty, the function to be optimized should
be a conditional probability density, with nllf as the negative log likelihood function of seeing point 𝑥 in the parameter
space. Other functions can be fitted, but uncertainty estimates will be meaningless.

Most algorithms have been adapted to run in parallel at least to some degree. The implementation is not heavily tuned,
either in terms of minimizing the overhead per function evaluation or for distributing the problem across multiple
processors. If the theory function is implemented in parallel, then the optimizer should be run in serial. Mixed mode
is also possible when running on a cluster with a multi-threaded theory function. In this case, only one theory function
will be evaluated on each cluster node, but the optimizer will distribute the parameters values to the cluster nodes in
parallel. Do not run serial algorithms (Levenberg-Marquardt, Quasi-Newton BFGS) on a cluster.

We have included a number of optimizers in Bumps that did not perform particularly well on our problem sets. However,
they may be perfect for your problem, so we have left them in the package for you to explore. They are not available in
the GUI selection.
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3.6.1 Levenberg-Marquardt

The Levenberg-Marquardt12 algorithm has been the standard method for non-linear data fitting. As a gradient descent
trust region method, it starts at the initial value of the function and steps in the direction of the derivative until it reaches
the minimum. Set up as an explicit minimization of the sum of square differences between theory and model, it uses
a numerical approximation of the Jacobian matrix to set the step direction and an adaptive algorithm to set the size of
the trust region.

1 Levenberg, K. Quarterly Journal of Applied Mathematics 1944, II (2), 164–168.
2 Marquardt, D. W. Journal of the Society for Industrial and Applied Mathematics 1963, 11 (2), 431–441. DOI: 10.1137/0111030
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When to use

Use this method when you have a reasonable fit near the minimum, and you want to get the best possible value. This
can then be used as the starting point for uncertainty analysis using DREAM. This method requires that the problem
definition includes a residuals method, but this should always be true when fitting data.

When modeling the results of an experiment, the best fit value is an accident of the measurement. Redo the same
measurement, and the slightly different values you measure will lead to a different best fit. The important quantity to
report is the credible interval covering 68% (1-𝜎) or 95% (2-𝜎) of the range of parameter values that are somewhat
consistent with the data.

This method uses lmfit from scipy, and does not run in parallel.

Options

Steps is the number of gradient steps to take. Each step requires a calculation of the Jacobian matrix to determine the
direction. This needs 2𝑚𝑛 function evaluations, where 𝑛 is the number of parameters and each function is evaluated
and 𝑚 data points (assuming center point formula for finite difference estimate of the derivative). The resulting linear
equation is then solved, but for small 𝑛 and expensive function evaluation this overhead can be ignored. Use --steps=n
from the command line.

f(x) tolerance and x tolerance are used to determine when the fit has reached the point where no significant improvement
is expected. If the function value does not improve significantly within the step, or the step is too short, then the fit will
terminate. Use --ftol=v and --xtol=v from the command line.

From the command line, --starts=n will automatically restart the algorithm after it has converged so that a slightly
better value can be found. If --keep_best is included then restart will use a value near the minimum, otherwise it
will restart the fit from a random point in the parameter space.

Use --fit=lm to select the Levenberg-Marquardt fitter from the command line.

Notes

v0.8.2 Changed from scipy.leastsq to mpfit for better bounds handling. Use --fit=scipy.leastsq to restore the
previous behaviour.
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3.6.2 Nelder-Mead Simplex

The Nelder-Mead3 downhill simplex algorithm is a robust optimizer which does not require the function to be contin-
uous or differentiable.

It uses the relative values of the function at the corners of a simplex (an n-dimensional triangle) to decide which points
of the simplex to update. It will take the worst value and try moving it inward or outward, or reflect it through the
centroid of the remaining values stopping if it finds a better value. If none of these values are better, then it will shrink
the simplex and start again. The name amoeba comes from the book Numerical Recipes4 wherein they describe the

3 Nelder, J. A.; Mead, R. The Computer Journal 1965, 7 (4), 308–313. DOI: 10.1093/comjnl/7.4.308
4 Press, W. H.; Flannery, B. P.; Teukolsky, S. A.; Vetterling, W. T. In Numerical Recipes in C: The Art of Scientific Computing, Second Edition;

Cambridge University Press: Cambridge; New York, 1992; pp 408–412.
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search as acting like an amoeba, squeezing through narrow valleys as it makes its way down to the minimum.

When to use

Use this method as a first fit to your model. If your fitting function is well behaved with few local minima this will give
a quick estimate of the model, and help you decide if the model needs to be refined. If your function is poorly behaved,
you will need to select a good initial value before fitting, or use a more robust method such as Differential Evolution or
DREAM.

The uncertainty reported comes from a numerical derivative estimate at the minimum.

This method requires a series of function updates, and does not benefit much from running in parallel.

Options

Steps is the simplex update iterations to perform. Most updates require one or two function evaluations, but shrinking
the simplex evaluates every value in the simplex. Use --steps=n from the command line.

Starts tells the optimizer to restart a given number of times. Each time it restarts it uses a random starting point. Use
--starts=n from the command line.

Simplex radius is the initial size of the simplex, as a portion of the bounds defining the parameter space. If a parameter
is unbounded, then the radius will be treated as a portion of the parameter value. Use --radius=n from the command
line.

x tolerance and f(x) tolerance are used to determine when the fit has reached the point where no significant improvement
is expected. If the simplex is tiny (that is, the corners are close to each other) and flat (that is, the values at the corners
are close to each other), then the fit will terminate. Use --xtol=v and --ftol=v from the command line.

From the command line, use --keep_best so that restarts are centered on a value near the minimum rather than
restarting from a random point within the parameter bounds.

Use --fit=amoeba to select the Nelder-Mead simplex fitter from the command line.
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3.6.3 Quasi-Newton BFGS

Broyden-Fletcher-Goldfarb-Shanno5 is a gradient descent method which uses the gradient to determine the step direc-
tion and an approximation of the Hessian matrix to estimate the curvature and guess a step size. The step is further
refined with a one-dimensional search in the direction of the gradient.

5 Dennis, J. E.; Schnabel, R. B. Numerical Methods for Unconstrained Optimization and Nonlinear Equations; Society for Industrial and Applied
Mathematics: Philadelphia, 1987.
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When to use

Like Levenberg-Marquardt, this method converges quickly to the minimum. It does not assume that the problem is in
the form of a sum of squares and does not require a residuals method.

The 𝑛 partial derivatives are computed in parallel.

Options

Steps is the number of gradient steps to take. Each step requires a calculation of the Jacobian matrix to determine the
direction. This needs 2𝑚𝑛 function evaluations, where 𝑛 is the number of parameters and each function is evaluated
and 𝑚 data points (assuming center point formula for finite difference estimate of the derivative). The resulting linear
equation is then solved, but for small 𝑛 and expensive function evaluation this overhead can be ignored. Use --steps=n
from the command line.

Starts tells the optimizer to restart a given number of times. Each time it restarts it uses a random starting point. Use
--starts=n from the command line.

f(x) tolerance and x tolerance are used to determine when the fit has reached the point where no significant improvement
is expected. If the function is small or the step is too short then the fit will terminate. Use --ftol=v and --xtol=v
from the command line.

From the command line, --keep_best uses a value near the previous minimum when restarting instead of using a
random value within the parameter bounds.

Use --fit=newton to select BFGS from the command line.
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3.6.4 Differential Evolution

Differential evolution6 is a population based algorithm which uses differences between points as a guide to selecting
new points. For each member of the population a pair of points is chosen at random, and a difference vector is computed.
This vector is scaled, and a random subset of its components are added to the current point based on crossover ratio.
This new point is evaluated, and if its value is lower than the current point, it replaces it in the population. There
are many variations available within DE that have not been exposed in Bumps. Interested users can modify bumps.
fitters.DEFit and experiment with different crossover and mutation algorithms, and perhaps add them as command
line options.

6 Storn, R.; Price, K. Journal of Global Optimization 1997, 11 (4), 341–359. DOI: 10.1023/A:1008202821328
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Differential evolution is a robust directed search strategy. Early in the search, when the population is disperse, the
difference vectors are large and the search remains broad. As the search progresses, more of the population goes into
the valleys and eventually all the points end up in local minima. Now the differences between random pairs will often
be small and the search will become more localized.

The population is initialized according to the prior probability distribution for each each parameter. That is, if the
parameter is bounded, it will use a uniform random number generate within the bounds. If it is unbounded, it will use a
uniform value in [0,1]. If the parameter corresponds to the result of a previous measurement with mean 𝜇 and standard
deviation 𝜎, then the initial values will be pulled from a Gaussian random number generator.

When to use

Convergence with differential evolution will be slower, but more robust.

Each update will evaluate 𝑘 points in parallel, where 𝑘 is the size of the population.

Options

Steps is the number of iterations. Each step updates each member of the population. The population size scales with
the number of fitted parameters. Use --steps=n from the command line.

Population determines the size of the population. The number of individuals, 𝑘, is equal to the number of fitted
parameters times the population scale factor. Use --pop=k from the command line.

Crossover ratio determines what proportion of the dimensions to update at each step. Smaller values will likely lead
to slower convergence, but more robust results. Values must be between 0 and 1. Use --CR=v from the command line.

Scale determines how much to scale each difference vector before adding it to the candidate point. The selected mutation
algorithm chooses a scale factor uniformly in [0, 𝐹 ]. Use --F=v from the command line.

f(x) tolerance and x tolerance are used to determine when the fit has reached the point where no significant improvement
is expected. If the population is flat (that is, the minimum and maximum values are within tolerance) and tiny (that is,
all the points are close to each other) then the fit will terminate. Use ftol=v and xtol=v from the command line.

Use --fit=de to select differential evolution from the command line.
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3.6.5 DREAM

DREAM7 is a population based algorithm like differential evolution, but instead of only keeping individuals which
improve each generation, it will sometimes keep individuals which get worse. Although it is not fast and does not give
the very best value for the function, we have found it to be a robust fitting engine which will give a good value given
enough time.

The progress of each individual in the population from generation to generation can considered a Markov chain, whose
transition probability is equal to the probability of taking the step times the probability that it keeps the step based on
the difference in value between the points. By including a purely random stepper with some probability, the detailed
balance condition is preserved, and the Markov chain converges onto the underlying equilibrium distribution. If the
theory function represents the conditional probability of selecting each point in the parameter space, then the resulting
chain is a random draw from the posterior distribution.

This means that the DREAM algorithm can be used to determine the parameter uncertainties. Unlike the hessian
estimate at the minimum that is used to report uncertainties from the other fitters, the resulting uncertainty need not
Gaussian. Indeed, the resulting distribution can even be multi-modal. Fits to measured data using theory functions that
have symmetric solutions have shown all equivalent solutions with approximately equal probability.

7 Vrugt, J. A.; Ter Braak, C. J. F.; Diks, C. G. H.; Robinson, B. A.; Hyman, J. M.; Higdon, D. International Journal of Nonlinear Sciences and
Numerical Simulation, 2009, 10 (3), 273–290. DOI: 10.1515/IJNSNS.2009.10.3.273
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When to use

Use DREAM when you need a robust fitting algorithm. It takes longer but it does an excellent job of exploring different
minima and getting close to the global optimum.

Use DREAM when you want a detailed analysis of the parameter uncertainty.

Like differential evolution, DREAM will evaluate 𝑘 points in parallel, where 𝑘 is the size of the population.

Options

Samples is the number of points to be drawn from the Markov chain. To estimate the 68% interval to two digits of
precision, at least 1e5 (or 100,000) samples are needed. For the 95% interval, 1e6 (or 1,000,000) samples are needed.
The default 1e4 samples gives a rough approximation of the uncertainty relatively quickly. Use --samples=n from
the command line.

Burn-in Steps is the number of iterations to required for the Markov chain to converge to the equilibrium distribution.
If the fit ends early, the tail of the burn will be saved to the start of the steps. Use --burn=n from the command line.

Population determines the size of the population. The number of individuals, 𝑘, is equal to the number of fitted
parameters times the population scale factor. Use --pop=k from the command line.

Initializer determines how the population will be initialized. The options are as follows:

eps (epsilon ball), in which the entire initial population is chosen at random from within a tiny hypersphere
centered about the initial point

lhs (latin hypersquare), which chops the bounds within each dimension in 𝑘 equal sized chunks where 𝑘
is the size of the population and makes sure that each parameter has at least one value within each chunk
across the population.

cov (covariance matrix), in which the uncertainty is estimated using the covariance matrix at the initial
point, and points are selected at random from the corresponding Gaussian ellipsoid

random (uniform random), in which the points are selected at random within the bounds of the parameters

Use --init=type from the command line.

Thinning is the amount of thinning to use when collecting the population. If the fit is somewhat stuck, with most
steps not improving the fit, then you will need to thin the population to get proper statistics. Use --thin=k from the
command line.

Convergence gives a cutoff value 𝛼 for determining when the Markov chain has converged. The default is --alpha=0.
00 for no convergence tests. Various tests are used, such as comparing the distribution of points in the first part of the
chain to the last part and looking for trends in the log-likelihood values. You may need to use smaller 𝛼 for shorter
sequences (samples over variables times population) since the test statistics will have higher variance. Convergence is
tested every 𝑛 steps.

Outliers is the test to use to check for outlier chains. Default is --outliers=none for no outlier test. Options are
iqr, which uses the inter-quartile range on the likelihoods, grubbs, which uses a t-test on the likelihoods, and mahal
which looks at the distance from the best chain in parameter space. Outlier removal occurs every 2𝑛 steps where 𝑛
is #samples/(#pars #pop), or when the convergence test indicates the chains are stable. Outliers are replaced by non-
outlier chains at random. These new chains need at least 𝑛 steps to mix before being used. If the MCMC exploration
stops due to time, some of the chains may not be properly mixed.

Burn-in trim is used to clear spurious samples from the Markov chains. If --trim=true then Bumps finds the “burn
point” after which the chains appear to have converged. Samples before this point are ignored when computed statistics
and making plots. The trimmed samples are still written to the MCMC output files so they will be available when the
fit is resumed.
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Calculate entropy, if true, computes the entropy for the fit. This is an estimate of the amount of information in the data.
Use --entropy=method from the command line, where method is one of llf (default), gmm, mvn or wnn. See below
for details.

Steps, if not zero, determines the number of iterations to use for drawing samples after burn in. Each iteration updates the
full population, which is (population x number of fitted parameters) points. This option is available for compatibility;
it is more useful to set the number of samples directly. Use --steps=n from the command line.

Use --fit=dream to select DREAM from the command line. Consider using --parallel and --checkpoint as
well. When running in a batch queue, add --batch and use --mpi rather than --parallel.

Output

DREAM produces a number of different outputs, and there are a number of things to check before using its reported
uncertainty values. The main goal of selecting --burn=n is to wait long enough to reach the equilibrium distribution.

Fig. 1: This DREAM fit is incomplete, as can be seen on all four plots. The Convergence plot is still decreasing, the
Parameter Trace plot shows a reduction in the mixing of Markov chain values, the Correlation plots are fuzzy and
mostly empty, or show obvious correlations, and the Uncertainty plot shows black histograms (indicating that there
are a few stray values far away from the best) whilst the green maximum likelihood spikes do not match the histogram
(indicating that the region around the best value has not been adequately explored).

For each parameter in the fit, DREAM finds the mean, median and best value, as well as the 68% and 95% credible
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Fig. 2: This DREAM fit completed successfully. The Convergence plot is flat, the Parameter Trace plot is flat and
messy indicating good mixing of the Markov chain values, the Correlation plots show nice defined blobs (with a bit
of correlation between the M1.radius parameter and the M1.radius. width parameter), and the uncertainty plots show
a narrow range of -log(P) values in the mostly brown histograms well-matched to the green constrained maximum
likelihood line.
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intervals. The mean value is defined as
∫︀
𝑥𝑃 (𝑥)𝑑𝑥, which is just the expected value of the probability distribution for

the parameter. The median value is the 50% point in the probability distribution, and the best value is the maximum
likelihood value seen in the random walk. The credible intervals are the central intervals which capture 68% and 95%
of the parameter values respectively. You need approximately 100,000 samples to get two digits of precision on the
68% interval, and 1,000,000 samples for the 95% interval.9

Table 1: Example fit output

# Parameter mean median best [ 68% interval] [ 95% interval]
1 M1.background 0.059925(41) 0.059924 0.059922 [0.05988 0.05997] [0.05985 0.06000]
2 M1.radius 2345.3(15) 2345.234 2345.174 [2343.83 2346.74] [2342.36 2348.29]
3 M1.radius.width 0.00775(41) 0.00774 0.00777 [ 0.0074 0.0081] [ 0.0070 0.0086]
4 M1.scale 0.21722(20) 0.217218 0.217244 [0.21702 0.21743] [0.21681 0.21761]

The Convergence plot shows the range of 𝜒2 values in the population for each iteration. The band shows the 68% of
values around the median, and the solid line shows the minimum value. If the distribution has reached equilibrium,
then convergence graph should be roughly flat, with little change in the minimum value throughout the graph. If there
is no convergence, then the remaining plots don’t mean much.

The Correlations plot shows cross correlation between each pair of parameters. If the parameters are completely
uncorrelated then the boxes should contain circles. Diagonals indicate strong correlation. Square blocks indicate that
the fit is not sensitive to one of the parameters. The range plotted on the correlation plot is determined by the 95%
interval of the data. The individual correlation plots are too small to show the range of values for the parameters. These
can instead be read from the Uncertainty plot for each parameter, which covers the same range of values and indicates
68% and 95% intervals. If there are some chains that are wandering around away from the minimum, then the plot
will look fuzzy, and not have a nice blob in the center. If a correlation plot has multiple blobs, then there are multiple
minima in your problem space, usually because there are symmetries in the problem definition. For example, a model
fitting 𝑥+ 𝑎2 will have identical solutions for ± 𝑎.

The Uncertainty plot shows histograms for each fitted parameter generated from the values for that parameter across
all chains. Within each histogram bar the values are sorted and displayed as a gradient from black to copper, with black
values having the lowest 𝜒2 and copper values having the highest. The resulting histogram should be dark brown, with
a black hump in the center and light brown tips. If there are large lumps of light brown, or excessive black then its
likely that the optimizer did not converge. The green line over the histogram shows the best value seen within each
histogram bin (the maximum likelihood given 𝑝𝑘 == 𝑥). With enough samples and proper convergence, it should
roughly follow the outline of the histogram. The yellow band in the center of the plot represents the 68% interval for
the data. The histogram cuts off at 95%. These values along with the median are shown as labels along the x axis. The
green asterisk represents the best value, the green E the mean value and the vertical green line the median value. If the
fit is not sensitive to a parameter, or if two parameters are strongly correlated, the parameter histogram will show a box
rather than a hump. Spiky shapes (either in the histogram or the maximum likelihood line) indicate lack of convergence
or maybe not enough steps. A chopped histograms indicates that the range for that parameter is too small.

The Parameter Trace plot is diagnostic for models which have poor mixing. In this cases no matter how the parameter
values are changing, they are landing on much worse values for the 𝜒2. This can happen if the problem is highly
constrained with many tight and twisty values.

The Data and Theory plot should show theory and data lining up pretty well, with the theory overlaying about 2/3 of
the error bars on the data (1-𝜎 = 68%). The Residuals plot shows the difference between theory and data divided by
uncertainty. The residuals should be 2/3 within [-1, 1], They should not show any structure, such as humps where the
theory misses the data for long stretches. This indicates some feature missing from the model, or a lack of convergence
to the best model.

9 JCGM. Evaluation of measurement data — Supplement 1 to the “Guide to the expression of uncertainty in measurement” — Propagation of
distributions using a Monte Carlo method; Joint Committee for Guides in Metrology, JCGM 101:2008; Geneva, Switzerland, 2008; p 90. http:
//www.bipm.org/utils/common/documents/jcgm/JCGM_101_2008_E.pdf
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If entropy is requested, then Bumps will show the total number of bits of information in the fit, where entropy is defined
as:

Since we already have a sample from the posterior distribution 𝑝(Θ) the Monte Carlo integral should be 𝑆 ≈∑︀
𝑘 log2 𝑝(𝜃𝑘). However, we do not know 𝑝(𝜃𝑘), especially when we are integrating over nuisance parameters and

only computing entropy for the parameters of interest. There are numerous methods in the literature for performing
this calculation, and we have implemented the following:

• gmm fits the MCMC sample to a Gaussian mixture model (GMM) and then estimates the entropy of the GMM
through Monte Carlo integration.

• llf finds the average ratio between the unnormalized negative log likelihood (NLLF) and a kernel density estimate
(sklearn KernelDensity with default options), then estimates the entropy from the normalized likelihood through
Monte Carlo integration.8 This technique will not work for marginal likelihood estimates.

• mvn fits the MCMC sample to a multivariate Gaussian and returns the entropy of that Gaussian. This is fast and
accurate when the sample is well behaved (i.e., the uncertainty distribution is approximately Gaussian).

• wnn estimates entropy from nearest-neighbour distances in the sample.10

Using entropy and simulation we hope to be able to make experiment planning decisions in a way that maximizes
information, by estimating whether it is better to measure more precisely or to measure different but related values and
fit them with shared parameters.

References

3.6.6 Particle Swarm

Inspired by bird flocking behaviour, the particle swarm11 algorithm is a population-based method which updates an
individual according to its momentum and a force toward the current best fit parameter values. We did not explore
variations of this algorithm in any detail.

When to use

Particle swarm performed well enough in our low dimensional test problems, but made little progress when more fit
parameters were added.

The population updates can run in parallel, but the tiny population size limits the amount of parallelism.

Options

--steps=n is the number of iterations. Each step updates each member of the population. The population size scales
with the number of fitted parameters.

--pop=k determines the size of the population. The number of individuals, 𝑘, is equal to the number of fitted parameters
times the population scale factor. The default scale factor is 1.

Use --fit=ps to select particle swarm from the command line.

Add a few more lines
8 Kramer, A.; Hasenauer, J.; Allgower, F.; Radde, N. In 2010 IEEE International Conference on Control Applications (CCA) 2010; pp 493–498.

DOI: 10.1109/CCA.2010.5611198
10 Berrett, T. B.; Samworth, R.J.; Yuan, M.; Efficient multivariate entropy estimation via k-nearest neighbour distances. Annals of Statistics 2019,

47 (1), 288-318. DOI: 10.1214/18-AOS1688
11 Kennedy, J.; Eberhart, R. Particle Swarm Optimization Proceedings of IEEE International Conference on Neural Networks. IV. 1995; pp

1942–1948. DOI: 10.1109/ICNN.1995.48896
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References

3.6.7 Random Lines

Most of the population based algorithms ignore the value of the function when choosing the points in the next iteration.
Random lines12 is a new style of algorithm which fits a quadratic model to a selection from the population, and uses
that model to propose a new point in the next generation of the population. The hope is that the method will inherit the
robustness of the population based algorithms as well as the rapid convergence of the newton descent algorithms.

When to use

Random lines works very well for some of our test problems, showing rapid convergence to the optimum, but on other
problems it makes very little progress.

The population updates can run in parallel.

Options

--steps=n is the number of iterations. Each step updates each member of the population. The population size scales
with the number of fitted parameters.

--pop=k determines the size of the population. The number of individuals, 𝑘, is equal to the number of fitted parameters
times the population scale factor. The default scale factor is 0.5.

--CR=v is the crossover ratio, determining what proportion of the dimensions to update at each step. Values must be
between 0 and 1.

--starts=n tells the optimizer to restart a given number of times. Each time it restarts it uses a random starting point.

--keep_best uses a value near the previous minimum when restarting instead of using a random value within the
parameter bounds. This option is not available in the options dialog.

Use --fit=rl to select random lines from the command line.

References

3.6.8 Parallel Tempering

Parallel tempering13 is an MCMC algorithm for uncertainty analysis. This version runs at multiple temperatures si-
multaneously, with chains at high temperature able to more easily jump between minima and chains at low temperature
to fully explore the minima. Like DREAM it has a differential evolution stepper, but this version uses the chain history
as the population rather than maintaining a population at each temperature.

This is an experimental algorithm which does not yet perform well.
12 Sahin, I. An International Journal of Optimization and Control: Theories & Applications (IJOCTA) 2013, 3 (2), 111–119.
13 Swendsen, R. H.; Wang J. S. Replica Monte Carlo simulation of spin glasses Physical Review Letters 1986, 57, 2607-2609
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When to use

When complete, parallel tempering should be used for problems with widely spaced local minima which dream cannot
fit.

Options

--steps=n is the number of iterations to include in the Markov chain. Each iteration updates the full population. The
population size scales with the number of fitted parameters.

--burn=n is the number of iterations to required for the Markov chain to converge to the equilibrium distribution. If
the fit ends early, the tail of the burn will be saved to the start of the steps.

--CR=v is the differential evolution crossover ratio to use when computing step size and direction. Use a small value
to step through the dimensions one at a time, or a large value to step through all at once.

-nT=k, -Tmin=v and --Tmax=v specify a log-spaced initial distribution of temperatures. The default is 25 points
between 0.1 and 10. DREAM runs at a fixed temperature of 1.0.

Use --fit=pt to select parallel tempering from the command line.

References

3.7 Bumps Options

Bumps has a number of options available to control the fits and the output. On the command line, each option is either
–option if it is True/False or –option=value if the option takes a value. The fit control form is used by graphical users
interfaces to set the optimizer and its controls and stopping conditions. The long form name of the the option will be
used on the form. Not all controls will appear on the form, and will be set from the command line.

Need to describe the array of output files produced by optimizers, particularly dream. Some of them (conver-
gence plot, model plot, par file, model file) are common to all. Others (mcmc points) are specific to one optimizer

3.7.1 Bumps Command Line

Usage:

bumps [options] modelfile [modelargs]

The modelfile is a Python script (i.e., a series of Python commands) which sets up the data, the models, and the fittable
parameters. The model arguments are available in the modelfile as sys.argv[1:]. Model arguments may not start with
‘-’. The options all start with ‘-’ and can appear in any order anywhere on the command line.
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3.7.2 Problem Setup

--pars

Set initial parameter values from a previous fit. The par file is a list of lines with parameter name followed by parameter
value on each line. The parameters must appear with the same name and in the same order as the fitted parameters
in the model. Additional parameters are ignored. Missing parameters are filled using LHS. --preview will show the
model parameters.

--shake

Set random initial values for the parameters in the model. Note that shake happens after --simulate so that you can
simulate a random model, shake it, then try to recover its initial values.

--simulate

Simulate a dataset using the initial problem parameters. This is useful when setting up a model before an experiment
to see what data it might produce, and for seeing how well the fitting program might recover the parameters of interest.

--simrandom

Simulate a dataset using random initial parameters. Because --shake is applied after --simulate, we need a separate
way to shake the parameters before simulating the model.

--noise

Set the noise percentage on the simulated data. The default is 5 for 5% normally distributed uncertainty in the measured
values. Use --noise=data to use the uncertainty on a dataset in the simulation.

--seed

Set a specific seed to the random number generator. This happens before shaking and simulating so that fitting tests,
and particularly failures, can be reliably reproduced. The numpy random number generator is used for all values, so
any consistency guarantees between versions of bumps over time and across platforms depends on the consistency of
the numpy generators. If no seed is specified then one will be generated and printed so that the fit can be rerun with
the same random sequence.

3.7.3 Stopping Conditions

--steps

Steps is the number of iterations that the algorithm will perform. The meaning of iterations will differ from optimizer
to optimizer. In the case of population based optimizers such as Differential Evolution, each step is an update to every
member of the population. For local descent optimizers such as Nelder-Mead Simplex each step is an iteration of the
algorithm. DREAM uses steps plus --burn for the total number of iterations.
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--samples

Samples sets the number of function evaluations. This is an alternative for setting the number of iterations of the al-
gorithm, used when --steps is zero. Population optimizers perform --pop times the number of parameters in the fit for
each step of the operation, so given the desired number of samples, you can control the number of steps. The number of
samples is particularly convenient for DREAM (the only optimizer for which it is implemented at the moment), where
100,000 samples are needed to estimate the 1-sigma interval to 2 digits of accuracy (assuming an approximately gaus-
sian distribution), and 1,000,000 samples are needed for the 95% confidence interval. Like --steps, the total evaluations
does not include any --burn iterations.

--ftol

f(x) tolerance uses differences in the function value to decide when the fit is complete. The different fitters will interpret
this in different ways. The Newton descent algorithms (Quasi-Newton BFGS, Levenberg-Marquardt) will use this as the
minimum improvement of the function value with each step. The population-based algorithms (Differential Evolution,
Nelder-Mead Simplex) will use the maximum difference between highest and lowest value in the population. DREAM
does not use this stopping condition.

--xtol

x tolerance uses differences in the parameter value to decide when the fit is complete. The different fitters will interpret
this in different ways. The Newton descent algorithms (Quasi-Newton BFGS, Levenberg-Marquardt) will use this as
the minimum change in the parameter values with each step. The population-based algorithgms (Differential Evolu-
tion, Nelder-Mead Simplex) will use the maximum difference between highest and lowest parameter in the population.
DREAM does not use this stopping condition.

--time

Max time is the maximum running time of the optimizer. This forces the optimizer to stop even if tolerance or steps
conditions are not met. It is particularly useful for batch jobs run in an environment where the queuing system stops
the job unceremoniously when the time allocation is complete. Time is checked between iterations, so be sure to set it
well below the queue allocation so that it does not stop in the middle of an iteration, and so that it has time to save its
state.

--alpha

Convergence is the test criterion to use when deciding if stopping conditions are met. This is for the variety of stopping
tests built into the DREAM algorithm. Usual values are –alpha=0.01 or –alpha=0.05. Note that various stopping
criteria depend on the the number samples and the chain length (where chain length x #pars x #pop = #samples), so
there is no definitive value to use for alpha, but larger values will allow the fit to stop sooner.
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3.7.4 Optimizer Controls

--fit

Fit Algorithm selects the optimizer. The available optimizers are:

amoeba Nelder-Mead Simplex
de Differential Evolution
dream DREAM
lm Levenberg-Marquardt
newton Quasi-Newton BFGS
pt Parallel Tempering
ps Particle Swarm
rl Random Lines

The default fit method is --fit=amoeba.

--pop

Population determines the size of the population. For Differential Evolution and DREAM it is a scale factor, where the
number of individuals, 𝑘, is equal to the number of fitted parameters times pop. For Nelder-Mead Simplex the number
of individuals is one plus the number of fitted parameters, as determined by the size of the simplex.

--init

Initializer is used by population-based algorithms (DREAM) to set the initial population. The options are as follows:

lhs (latin hypersquare), which chops the bounds within each dimension in 𝑘 equal sized chunks where 𝑘
is the size of the population and makes sure that each parameter has at least one value within each chunk
across the population.

eps (epsilon ball), in which the entire initial population is chosen at random from within a tiny hypersphere
centered about the initial point

cov (covariance matrix), in which the uncertainty is estimated using the covariance matrix at the initial
point, and points are selected at random from the corresponding gaussian ellipsoid

rand (uniform random), in which the points are selected at random within the bounds of the parameters

Nelder-Mead Simplex uses --radius to initialize its simplex. Differential Evolution uses a random number from the
prior distribution for the parameter, if any.

--burn

Burn-in Steps is the number of iterations to required for the Markov chain to converge to the equilibrium distribution.
If the fit ends early, the tail of the burn will be saved to the start of the steps. DREAM uses burn plus steps as the total
number of iterations to run.
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--thin

Thinning is used by the Markov chain analysis to give samples time to wander to different points in parameter space.
In an ideal chain, there would be no correlation between points in the chain other than that which is dictated by the
equilibrium distribution. However, if the space has complicated boundaries and taking a step can easily lead to a highly
improbable point, then the chain may be stuck at the same value for long periods of time. If this is observed, then
thinning can be used to only keep every 𝑛th step, giving the saved chain a better opportunity for good mixing.

--CR

Crossover ratio indicates the proportion of mixing which occurs with each iteration. This is a value in [0,1] giving the
probability that each individual dimension will be selected for update in the next generation.

--outliers

Outliers is used to identify chains that are stuck in high local minima during dream burn-in. Options are:

• iqr: Use the interquartile range to determine the width of the distribution then exclude all chains whose log
likelihood is more that two standard deviations below the first quartile.

• grubbs: Use a t-test to determine whether the samples in each chain are significantly different from the mean.

• mahal: Use the mahalanobis distance to determine whether the lowest probability chain is close to the remaining
chain in parameter space. Only this chain will be marked as an outlier if the test fails.

• none: Don’t do any outlier trimming.

The default is --outliers=none. Outlier removal occurs every 2𝑛 steps where 𝑛 is #samples/(#pars #pop), or when
the convergence test indicates the chains are stable.

Note that outliers are marked at the end of the fit using IQR and not included in the statistics, though they are saved in
the MCMC files. This is independent of the --outliers setting.

--F

Scale is a factor applied to the difference vector before adding it to the parent in differential evolution.

--radius

Simplex radius is the radius of the initial simplex in Nelder-Mead Simplex

--nT

# Temperatures is the number of temperature chains to run using parallel tempering. Default is 25.
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--Tmin

Min temperature is the minimum temperature in the log-spaced series of temperatures to run using parallel tempering.
Default is 0.1.

--Tmax

Max temperature is the maximum temperature in the log-spaced series of temperatures to run using parallel tempering.
Default is 10.

--starts

Starts is the number of times to run the fit from random starting points.

--keep_best

If Keep best is set, then the each subsequent restart for the multi-start fitter keeps the best value from the previous fit(s).

3.7.5 Execution Controls

--store

Directory in which to store the results of the fit. Fits produce multiple files and plots. Rather than cluttering up the
current directory, all the outputs are written to the store directory along with a copy of the model file.

--overwrite

If the store directory already exists then you need to include overwrite on the command line to reuse it. While incon-
venient, this prevents accidental overwriting of fits that may have taken hours to generate.

--checkpoint

Save fit state every --checkpoint=n hours. [dream only]

--resume

Continue fit from a previous store directory. Use --resume or --resume=- to reuse the existing store directory.

--parallel

Run fit using multiprocessing for parallelism. Use “–parallel=0” for all CPUs or “–parallel=n” for only “n” CPUs.
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--mpi

Run fit using MPI for parallelism. Use command “mpirun -n cpus . . . ” to run bumps for MPI. This will usually be the
last line of a queue submission script. Be sure to include --time=... to limit the fit to run within the queue allocation
time.

--batch

Run fit in batch mode. Progress updates are sent to STORE/MODEL.mon, and can be monitored using tail -f (unix,
mac). When the fit is complete, the plot png files are created as usual, but the interactive plots are not shown. This
allows you to set up a sequence of runs in a shell script where the first run completes before the next run starts. Batch
is also useful for cluster computing where the cluster nodes do not have access to the outside network and can’t display
an interactive window. Batch is automatic when running with --mpi.

--stepmon

Create a log file tracking each point examined during the fit. This does not provide any real utility except for generating
plots of the population over time, which can be useful for understanding the different fitting methods.

3.7.6 Output Controls

`--err

Show uncertainties at the end of the fit using the square root of the diagonals of the covariance matrix. See --cov.

--cov

Compute the covariance matrix for the model at the minimum. With gaussian uncertainties on the data, bumps is
minimizing the sum of squares, so the Jacobian matrix is used for the covariance, formed from the numerical derivative
of each residual with respect to each parameter. If the likelihood function is not a simple sum of squared residuals,
then the Hessian matrix is used for the covariance, formed from the numerical derivative of the likelihood with respect
to pairs of parameters.

--entropy

Calculate entropy is a flag which indicates whether entropy should be computed for the final fit. Entropy an estimate
of the number of bits of information available from the fit. Use “–entropy=method” to specify the entropy calcualation
method. This can be one of:

• gmm: fit sample to a gaussian mixture model (GMM) with 5
√
𝑑 components where 𝑑 is the number fitted pa-

rameters and estimate entropy by sampling from the GMM.

• llf: estimates likelihood scale factor from ratio of density estimate to model likelihood, then com-
putes Monte Carlo entropy from sample; this does not work for marginal likelihood estimates.
DOI:10.1109/CCA.2010.5611198

• mvn: fit sample to a multi-variate Gaussian and return the entropy of the best fit gaussian; uses bootstrap to
estimate uncertainty. This method is only valid if the sample distribution is approximately Gaussian.

• wnn: estimate entropy from weighted nearest-neighbor distances in sample. Note: use with caution. The results
from this implementation are not consistent with other methods. DOI:10.1214/18-AOS1688
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--plot

For problems that have different view options for plotting, select the default option to display. For example, when fitting
a power law to a dataset, you may want to choose log or linear as the output plot type.

--trim

Burn-in trim finds the “burn point” after which the DREAM Markov chains appear to have converged and ignores all
points before it when plotting or computing covariance and entropy. The trimmed points are still written to the MCMC
output files so they will be available when the fit is resumed. Use --trim=true to set trimming.

--noshow

No show suppresses the plot window after the fit. This is done automatically when --batch is selected.

3.7.7 Bumps Controls

--preview

If the command contains preview then display model but do not perform a fitting operation. Use this to see the initial
model before running a fit. It will also show the fit range.

--chisq

If the command contains chisq then show 𝜒2 and exit. Use this to check that the model does not have any syntax errors.

--resynth

Run a resynth uncertainty analysis on the model. After finding a good minimum, you can rerun bumps with:

bumps –store=T1 –pars=T1/model.par –fit=amoeba –resynth=20 model.py

This will generate 20 data simulated datasets using the initial data values as the mean and the data uncertainty as the
standard deviation. Each of these datasets will be fit with the specified optimizer, and the resulting parameters saved
in T1/model.rsy. On completion, the parameter values can be loaded into python and averaged or histogrammed.

--time_model

Run the model --steps times and find the average run time per step. If --parallel is used, then the models will be run in
parallel.
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--profile

Run the model --steps times using the python profiler. This can be useful for identifying slow parts of your model
definition, or alternatively, finding out that the model runtime is smaller than the Bumps overhead. Use a larger value
of steps for better statistics.

3.7.8 Special Options

--edit

If the command contains edit then start the Bumps user interface so that you can interact with the model, adjusting
fitted parameters with a slider and seeing how they impact the result.

--help, -h, -?

Use -?, -h or --help to show a brief description of each command line option.

-i, -m, -c, -p

The bumps program can be used as a python interpreter with numpy, scipy, matplotlib and bumps packages available.
This is useful if you do not have python set up on your system, and you are using a bundled executable like Bumps or
Refl1D on windows. Even if you have python, you may want to run the bumps post-analysis scripts through the bumps
command which already has the appropriate path set up to bumps on your system.

The options are:

• -i: run an interactive interpreter.

• -m package.module: run a module as main. This is similar to python -m package.module with the python
interpreter.

• -c expression: run a python command and quit.

• -p script.py: run a python script.

3.8 Calculating Entropy

Entropy is a measure of how much uncertainty is in the parameters. We can start with the simple case of a discrete
parameter which can take on limited set of values. Using the formula for discrete entropy:

𝐻(𝑥) = −
∑︁
𝑥

𝑝(𝑥) log2(𝑥)

where 𝑥 is the set of possible states of the parameter, we can examine a simple system with four states of equal proba-
bility:
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Before the experiment, the entropy is −4(1/4) log2(1/4) = 2 bits. After the experiment, which eliminates the states
on the right, only two states are remaining with an entropy of 1 bit. The difference in entropy before and after the
experiment is the information gain, which is 1 bit in this case.

Extending this concept to continuous parameters, we use:

ℎ(𝑥) = −
∫︁
𝑥∈𝑋

𝑝(𝑥) log2(𝑥)𝑑𝑥

For a parameter which is normally distributed, 𝑥 ∼ 𝑁(𝜇, 𝜎), the entropy is:

ℎ(𝑥) = 1
2 log2(2𝜋𝑒𝜎

2)

Consider an experiment in which the parameter uncertainty 𝜎 is reduced from 𝜎 = 1 before the experiment to 𝜎 = 1
2

after the experiment:

This experiment reduces the entropy from 2.05 bits to 1.05 bits, for an information gain of 1 bit.

For a multivariate normal 𝑁(�̄�,Σ), the entropy is

ℎ(𝑁) = 𝑛
2 log2(2𝜋𝑒) +

1
2 log2|Σ|

where 𝑛 is the number of fitting parameters and Σ is the covariance matrix relating the parameters. For an uncorrelated
system, this is proportional to

∑︀𝑛
𝑖=1 log2 𝜎𝑖, with the individual parameter uncertainties 𝜎𝑖. In effect, the entropy is a

measure of overall uncertainty resulting after the fit.

Within bumps, most models start with a uniform prior distribution for the parameters set using the x.range(low,high) or
x.pm(delta) for some parameter x. Some models set the prior probability to a normal distribution using x.dev(sigma).
Arbitrary prior probability distributions can be set using x.bounds = Distribution(D) where D is a distribution following
the scipy.stats interface. The uncertainty on the data points does not directly enter into the entropy calculation. Instead,
it has a direct influence on the calculation of the probability of seeing the data given the parameter, and so it influences
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the probability of the parameters after the fit. Increasing the error bars will increase the variance in the parameter
estimation which will increase the entropy.

There are three ways that bumps can evaluate entropy. For the fitters which return a sample from the posterior distribu-
tion, such as DREAM, BUMPS can estimate the entropy directly from the sample. If the distribution is approximately
normal, we can compute the covariance matrix from the sample and use the formula above for the multivariate normal.
For the remaining fitters, we can use an estimate of the covariance matrix that results from the fit (Levenberg-Marquardt,
BFGS), or we can compute the Hessian at the minimum (differential evolution, Nelder-Mead simplex). Again, this can
be used in the formula above to give an estimate of the entropy.

We can use the difference in entropy between fits for experimental design. After setting up the model system, we can
simulate a dataset using the expected statistics from the experiment, then fit the simulated data. This will give us the the
expected uncertainty on our individual parameters, and the overall entropy. We can then play with different experimental
parameters such as instrument configurations, sample variants and measurement time and select a combination which
provides the most information about the parameters of interest. This can be done from the command line using --
simulate, --noise and --entropy.

The information gain from the fit is not quite meaningful. We can calculate the prior entropy by looking at the fitting
range of the parameters, and the particular choice of fitting ranges can alter the output of the fit. So for example, if
we set the fitting range to eliminate solutions, we will have reduced the prior entropy as well as the posterior entropy,
and likely decreased the number of bits of information gain. Conversely, if the fit converges to the same distribution
regardless of the parameter range, we can drive the information gain to infinity by setting an unbounded input range.
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CHAPTER

FOUR

REFERENCE: BUMPS

4.1 bounds - Parameter constraints

pm Return the tuple (~v-dv,~v+dv), where ~expr is a 'nice'
number near to to the value of expr. For example::.

pmp Return the tuple (~v-%v,~v+%v), where ~expr is a 'nice'
number near to the value of expr. For example::.

pm_raw Return the tuple [v-dv,v+dv].
pmp_raw Return the tuple [v-%v,v+%v]
nice_range Given a range, return an enclosing range accurate to two

digits.
init_bounds Returns a bounds object of the appropriate type given the

arguments.
Bounds Bounds abstract base class.
Unbounded Unbounded parameter.
Bounded Bounded range.
BoundedAbove Semidefinite range bounded above.
BoundedBelow Semidefinite range bounded below.
Distribution Parameter is pulled from a distribution.
Normal Parameter is pulled from a normal distribution.
BoundedNormal truncated normal bounds
SoftBounded Parameter is pulled from a stretched normal distribution.

Parameter bounds and prior probabilities.

Parameter bounds encompass several features of our optimizers.

First and most trivially they allow for bounded constraints on parameter values.

Secondly, for parameter values known to follow some distribution, the bounds encodes a penalty function as the value
strays from its nominal value. Using a negative log likelihood cost function on the fit, then this value naturally con-
tributes to the overall likelihood measure.

Predefined bounds are:

Unbounded
range (-inf, inf)

BoundedBelow
range (base, inf)

BoundedAbove
range (-inf, base)

(continues on next page)
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(continued from previous page)

Bounded
range (low, high)

Normal
range (-inf, inf) with gaussian probability

BoundedNormal
range (low, high) with gaussian probability within

SoftBounded
range (low, high) with gaussian probability outside

New bounds can be defined following the abstract base class interface defined in Bounds, or using Distribution(rv)
where rv is a scipy.stats continuous distribution.

For generating bounds given a value, we provide a few helper functions:

v +/- d: pm(x,dx) or pm(x,-dm,+dp) or pm(x,+dp,-dm)
return (x-dm,x+dm) limited to 2 significant digits

v +/- p%: pmp(x,p) or pmp(x,-pm,+pp) or pmp(x,+pp,-pm)
return (x-pm*x/100, x+pp*x/100) limited to 2 sig. digits

pm_raw(x,dx) or raw_pm(x,-dm,+dp) or raw_pm(x,+dp,-dm)
return (x-dm,x+dm)

pmp_raw(x,p) or raw_pmp(x,-pm,+pp) or raw_pmp(x,+pp,-pm)
return (x-pm*x/100, x+pp*x/100)

nice_range(lo,hi)
return (lo,hi) limited to 2 significant digits

class bumps.bounds.Bounded(lo, hi)
Bases: Bounds

Bounded range.

[lo,hi] <-> [0,1] scale is simple linear [lo,hi] <-> (-inf,inf) scale uses exponential expansion

While technically the probability of seeing any value within the range is 1/range, for consistency with the semi-
infinite ranges and for a more natural mapping between nllf and chisq, we instead set the probability to 0. This
choice will not affect the fits.

get01(x)
Convert value into [0,1] for optimizers which are bounds constrained.

This can also be used as a scale bar to show approximately how close to the end of the range the value is.

getfull(x)
Convert value into (-inf,inf) for optimizers which are unconstrained.

limits = (-inf, inf)

nllf(value)
Return the negative log likelihood of seeing this value, with likelihood scaled so that the maximum proba-
bility is one.

For uniform bounds, this either returns zero or inf. For bounds based on a probability distribution, this
returns values between zero and inf. The scaling is necessary so that indefinite and semi-definite ranges re-
turn a sensible value. The scaling does not affect the likelihood maximization process, though the resulting
likelihood is not easily interpreted.

put01(v)
Convert [0,1] into value for optimizers which are bounds constrained.
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putfull(v)
Convert (-inf,inf) into value for optimizers which are unconstrained.

random(n=1, target=1.0)
Return a randomly generated valid value.

target gives some scale independence to the random number generator, allowing the initial value of the
parameter to influence the randomly generated value. Otherwise fits without bounds have too large a space
to search through.

residual(value)
Return the parameter ‘residual’ in a way that is consistent with residuals in the normal distribution. The
primary purpose is to graphically display exceptional values in a way that is familiar to the user. For fitting,
the scaled likelihood should be used.

To do this, we will match the cumulative density function value with that for N(0,1) and find the corre-
sponding percent point function from the N(0,1) distribution. In this way, for example, a value to the right
of 2.275% of the distribution would correspond to a residual of -2, or 2 standard deviations below the mean.

For uniform distributions, with all values equally probable, we use a value of +/-4 for values outside the
range, and 0 for values inside the range.

start_value()

Return a default starting value if none given.

to_dict()

class bumps.bounds.BoundedAbove(base)
Bases: Bounds

Semidefinite range bounded above.

[-inf,base] <-> [0,1] uses logarithmic compression [-inf,base] <-> (-inf,inf) is direct below base-1, 1/(base-x)
above

Logarithmic compression works by converting sign*m*2^e+base to sign*(e+1023+m), yielding a value in
[0,2048]. This can then be converted to a value in [0,1].

Note that the likelihood function is problematic: the true probability of seeing any particular value in the range
is infinitesimal, and that is indistinguishable from values outside the range. Instead we say that P = 1 in range,
and 0 outside.

get01(x)
Convert value into [0,1] for optimizers which are bounds constrained.

This can also be used as a scale bar to show approximately how close to the end of the range the value is.

getfull(x)
Convert value into (-inf,inf) for optimizers which are unconstrained.

limits = (-inf, inf)

nllf(value)
Return the negative log likelihood of seeing this value, with likelihood scaled so that the maximum proba-
bility is one.

For uniform bounds, this either returns zero or inf. For bounds based on a probability distribution, this
returns values between zero and inf. The scaling is necessary so that indefinite and semi-definite ranges re-
turn a sensible value. The scaling does not affect the likelihood maximization process, though the resulting
likelihood is not easily interpreted.
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put01(v)
Convert [0,1] into value for optimizers which are bounds constrained.

putfull(v)
Convert (-inf,inf) into value for optimizers which are unconstrained.

random(n=1, target=1.0)
Return a randomly generated valid value.

target gives some scale independence to the random number generator, allowing the initial value of the
parameter to influence the randomly generated value. Otherwise fits without bounds have too large a space
to search through.

residual(value)
Return the parameter ‘residual’ in a way that is consistent with residuals in the normal distribution. The
primary purpose is to graphically display exceptional values in a way that is familiar to the user. For fitting,
the scaled likelihood should be used.

To do this, we will match the cumulative density function value with that for N(0,1) and find the corre-
sponding percent point function from the N(0,1) distribution. In this way, for example, a value to the right
of 2.275% of the distribution would correspond to a residual of -2, or 2 standard deviations below the mean.

For uniform distributions, with all values equally probable, we use a value of +/-4 for values outside the
range, and 0 for values inside the range.

start_value()

Return a default starting value if none given.

to_dict()

class bumps.bounds.BoundedBelow(base)
Bases: Bounds

Semidefinite range bounded below.

The random initial condition is assumed to be within 1 of the maximum.

[base,inf] <-> (-inf,inf) is direct above base+1, -1/(x-base) below [base,inf] <-> [0,1] uses logarithmic compres-
sion.

Logarithmic compression works by converting sign*m*2^e+base to sign*(e+1023+m), yielding a value in
[0,2048]. This can then be converted to a value in [0,1].

Note that the likelihood function is problematic: the true probability of seeing any particular value in the range
is infinitesimal, and that is indistinguishable from values outside the range. Instead we say that P = 1 in range,
and 0 outside.

get01(x)
Convert value into [0,1] for optimizers which are bounds constrained.

This can also be used as a scale bar to show approximately how close to the end of the range the value is.

getfull(x)
Convert value into (-inf,inf) for optimizers which are unconstrained.

limits = (-inf, inf)

nllf(value)
Return the negative log likelihood of seeing this value, with likelihood scaled so that the maximum proba-
bility is one.
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For uniform bounds, this either returns zero or inf. For bounds based on a probability distribution, this
returns values between zero and inf. The scaling is necessary so that indefinite and semi-definite ranges re-
turn a sensible value. The scaling does not affect the likelihood maximization process, though the resulting
likelihood is not easily interpreted.

put01(v)
Convert [0,1] into value for optimizers which are bounds constrained.

putfull(v)
Convert (-inf,inf) into value for optimizers which are unconstrained.

random(n=1, target=1.0)
Return a randomly generated valid value.

target gives some scale independence to the random number generator, allowing the initial value of the
parameter to influence the randomly generated value. Otherwise fits without bounds have too large a space
to search through.

residual(value)
Return the parameter ‘residual’ in a way that is consistent with residuals in the normal distribution. The
primary purpose is to graphically display exceptional values in a way that is familiar to the user. For fitting,
the scaled likelihood should be used.

To do this, we will match the cumulative density function value with that for N(0,1) and find the corre-
sponding percent point function from the N(0,1) distribution. In this way, for example, a value to the right
of 2.275% of the distribution would correspond to a residual of -2, or 2 standard deviations below the mean.

For uniform distributions, with all values equally probable, we use a value of +/-4 for values outside the
range, and 0 for values inside the range.

start_value()

Return a default starting value if none given.

to_dict()

class bumps.bounds.BoundedNormal(mean=0, std=1, limits=(-inf, inf))
Bases: Bounds

truncated normal bounds

get01(x)
Convert value into [0,1] for optimizers which are bounds constrained.

This can also be used as a scale bar to show approximately how close to the end of the range the value is.

getfull(x)
Convert value into (-inf,inf) for optimizers which are unconstrained.

limits = (-inf, inf)

nllf(value)
Return the negative log likelihood of seeing this value, with likelihood scaled so that the maximum proba-
bility is one.

put01(v)
Convert [0,1] into value for optimizers which are bounds constrained.

putfull(v)
Convert (-inf,inf) into value for optimizers which are unconstrained.
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random(n=1, target=1.0)
Return a randomly generated valid value, or an array of values

residual(value)
Return the parameter ‘residual’ in a way that is consistent with residuals in the normal distribution. The
primary purpose is to graphically display exceptional values in a way that is familiar to the user. For fitting,
the scaled likelihood should be used.

For the truncated normal distribution, we can just use the normal residuals.

start_value()

Return a default starting value if none given.

to_dict()

class bumps.bounds.Bounds

Bases: object

Bounds abstract base class.

A range is used for several purposes. One is that it transforms parameters between unbounded and bounded
forms depending on the needs of the optimizer.

Another is that it generates random values in the range for stochastic optimizers, and for initialization.

A third is that it returns the likelihood of seeing that particular value for optimizers which use soft constraints.
Assuming the cost function that is being optimized is also a probability, then this is an easy way to incorporate
information from other sorts of measurements into the model.

get01(x)
Convert value into [0,1] for optimizers which are bounds constrained.

This can also be used as a scale bar to show approximately how close to the end of the range the value is.

getfull(x)
Convert value into (-inf,inf) for optimizers which are unconstrained.

limits = (-inf, inf)

nllf(value)
Return the negative log likelihood of seeing this value, with likelihood scaled so that the maximum proba-
bility is one.

For uniform bounds, this either returns zero or inf. For bounds based on a probability distribution, this
returns values between zero and inf. The scaling is necessary so that indefinite and semi-definite ranges re-
turn a sensible value. The scaling does not affect the likelihood maximization process, though the resulting
likelihood is not easily interpreted.

put01(v)
Convert [0,1] into value for optimizers which are bounds constrained.

putfull(v)
Convert (-inf,inf) into value for optimizers which are unconstrained.

random(n=1, target=1.0)
Return a randomly generated valid value.

target gives some scale independence to the random number generator, allowing the initial value of the
parameter to influence the randomly generated value. Otherwise fits without bounds have too large a space
to search through.
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residual(value)
Return the parameter ‘residual’ in a way that is consistent with residuals in the normal distribution. The
primary purpose is to graphically display exceptional values in a way that is familiar to the user. For fitting,
the scaled likelihood should be used.

To do this, we will match the cumulative density function value with that for N(0,1) and find the corre-
sponding percent point function from the N(0,1) distribution. In this way, for example, a value to the right
of 2.275% of the distribution would correspond to a residual of -2, or 2 standard deviations below the mean.

For uniform distributions, with all values equally probable, we use a value of +/-4 for values outside the
range, and 0 for values inside the range.

start_value()

Return a default starting value if none given.

to_dict()

class bumps.bounds.Distribution(dist)
Bases: Bounds

Parameter is pulled from a distribution.

dist must implement the distribution interface from scipy.stats. In particular, it should define methods rvs, nnlf,
cdf and ppf and attributes args and dist.name.

get01(x)
Convert value into [0,1] for optimizers which are bounds constrained.

This can also be used as a scale bar to show approximately how close to the end of the range the value is.

getfull(x)
Convert value into (-inf,inf) for optimizers which are unconstrained.

limits = (-inf, inf)

nllf(value)
Return the negative log likelihood of seeing this value, with likelihood scaled so that the maximum proba-
bility is one.

For uniform bounds, this either returns zero or inf. For bounds based on a probability distribution, this
returns values between zero and inf. The scaling is necessary so that indefinite and semi-definite ranges re-
turn a sensible value. The scaling does not affect the likelihood maximization process, though the resulting
likelihood is not easily interpreted.

put01(v)
Convert [0,1] into value for optimizers which are bounds constrained.

putfull(v)
Convert (-inf,inf) into value for optimizers which are unconstrained.

random(n=1, target=1.0)
Return a randomly generated valid value.

target gives some scale independence to the random number generator, allowing the initial value of the
parameter to influence the randomly generated value. Otherwise fits without bounds have too large a space
to search through.
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residual(value)
Return the parameter ‘residual’ in a way that is consistent with residuals in the normal distribution. The
primary purpose is to graphically display exceptional values in a way that is familiar to the user. For fitting,
the scaled likelihood should be used.

To do this, we will match the cumulative density function value with that for N(0,1) and find the corre-
sponding percent point function from the N(0,1) distribution. In this way, for example, a value to the right
of 2.275% of the distribution would correspond to a residual of -2, or 2 standard deviations below the mean.

For uniform distributions, with all values equally probable, we use a value of +/-4 for values outside the
range, and 0 for values inside the range.

start_value()

Return a default starting value if none given.

to_dict()

class bumps.bounds.Normal(mean=0, std=1)
Bases: Distribution

Parameter is pulled from a normal distribution.

If you have measured a parameter value with some uncertainty (e.g., the film thickness is 35+/-5 according to
TEM), then you can use this measurement to restrict the values given to the search, and to penalize choices of
this fitting parameter which are different from this value.

mean is the expected value of the parameter and std is the 1-sigma standard deviation.

get01(x)
Convert value into [0,1] for optimizers which are bounds constrained.

This can also be used as a scale bar to show approximately how close to the end of the range the value is.

getfull(x)
Convert value into (-inf,inf) for optimizers which are unconstrained.

limits = (-inf, inf)

nllf(value)
Return the negative log likelihood of seeing this value, with likelihood scaled so that the maximum proba-
bility is one.

For uniform bounds, this either returns zero or inf. For bounds based on a probability distribution, this
returns values between zero and inf. The scaling is necessary so that indefinite and semi-definite ranges re-
turn a sensible value. The scaling does not affect the likelihood maximization process, though the resulting
likelihood is not easily interpreted.

put01(v)
Convert [0,1] into value for optimizers which are bounds constrained.

putfull(v)
Convert (-inf,inf) into value for optimizers which are unconstrained.

random(n=1, target=1.0)
Return a randomly generated valid value.

target gives some scale independence to the random number generator, allowing the initial value of the
parameter to influence the randomly generated value. Otherwise fits without bounds have too large a space
to search through.
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residual(value)
Return the parameter ‘residual’ in a way that is consistent with residuals in the normal distribution. The
primary purpose is to graphically display exceptional values in a way that is familiar to the user. For fitting,
the scaled likelihood should be used.

To do this, we will match the cumulative density function value with that for N(0,1) and find the corre-
sponding percent point function from the N(0,1) distribution. In this way, for example, a value to the right
of 2.275% of the distribution would correspond to a residual of -2, or 2 standard deviations below the mean.

For uniform distributions, with all values equally probable, we use a value of +/-4 for values outside the
range, and 0 for values inside the range.

start_value()

Return a default starting value if none given.

to_dict()

class bumps.bounds.SoftBounded(lo, hi, std=None)
Bases: Bounds

Parameter is pulled from a stretched normal distribution.

This is like a rectangular distribution, but with gaussian tails.

The intent of this distribution is for soft constraints on the values. As such, the random generator will return
values like the rectangular distribution, but the likelihood will return finite values based on the distance from the
from the bounds rather than returning infinity.

Note that for bounds constrained optimizers which force the value into the range [0,1] for each parameter we
don’t need to use soft constraints, and this acts just like the rectangular distribution.

get01(x)
Convert value into [0,1] for optimizers which are bounds constrained.

This can also be used as a scale bar to show approximately how close to the end of the range the value is.

getfull(x)
Convert value into (-inf,inf) for optimizers which are unconstrained.

limits = (-inf, inf)

nllf(value)
Return the negative log likelihood of seeing this value, with likelihood scaled so that the maximum proba-
bility is one.

For uniform bounds, this either returns zero or inf. For bounds based on a probability distribution, this
returns values between zero and inf. The scaling is necessary so that indefinite and semi-definite ranges re-
turn a sensible value. The scaling does not affect the likelihood maximization process, though the resulting
likelihood is not easily interpreted.

put01(v)
Convert [0,1] into value for optimizers which are bounds constrained.

putfull(v)
Convert (-inf,inf) into value for optimizers which are unconstrained.

random(n=1, target=1.0)
Return a randomly generated valid value.
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target gives some scale independence to the random number generator, allowing the initial value of the
parameter to influence the randomly generated value. Otherwise fits without bounds have too large a space
to search through.

residual(value)
Return the parameter ‘residual’ in a way that is consistent with residuals in the normal distribution. The
primary purpose is to graphically display exceptional values in a way that is familiar to the user. For fitting,
the scaled likelihood should be used.

To do this, we will match the cumulative density function value with that for N(0,1) and find the corre-
sponding percent point function from the N(0,1) distribution. In this way, for example, a value to the right
of 2.275% of the distribution would correspond to a residual of -2, or 2 standard deviations below the mean.

For uniform distributions, with all values equally probable, we use a value of +/-4 for values outside the
range, and 0 for values inside the range.

start_value()

Return a default starting value if none given.

to_dict()

class bumps.bounds.Unbounded

Bases: Bounds

Unbounded parameter.

The random initial condition is assumed to be between 0 and 1

The probability is uniformly 1/inf everywhere, which means the negative log likelihood of P is inf everywhere.
A value inf will interfere with optimization routines, and so we instead choose P == 1 everywhere.

get01(x)
Convert value into [0,1] for optimizers which are bounds constrained.

This can also be used as a scale bar to show approximately how close to the end of the range the value is.

getfull(x)
Convert value into (-inf,inf) for optimizers which are unconstrained.

limits = (-inf, inf)

nllf(value)
Return the negative log likelihood of seeing this value, with likelihood scaled so that the maximum proba-
bility is one.

For uniform bounds, this either returns zero or inf. For bounds based on a probability distribution, this
returns values between zero and inf. The scaling is necessary so that indefinite and semi-definite ranges re-
turn a sensible value. The scaling does not affect the likelihood maximization process, though the resulting
likelihood is not easily interpreted.

put01(v)
Convert [0,1] into value for optimizers which are bounds constrained.

putfull(v)
Convert (-inf,inf) into value for optimizers which are unconstrained.

random(n=1, target=1.0)
Return a randomly generated valid value.
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target gives some scale independence to the random number generator, allowing the initial value of the
parameter to influence the randomly generated value. Otherwise fits without bounds have too large a space
to search through.

residual(value)
Return the parameter ‘residual’ in a way that is consistent with residuals in the normal distribution. The
primary purpose is to graphically display exceptional values in a way that is familiar to the user. For fitting,
the scaled likelihood should be used.

To do this, we will match the cumulative density function value with that for N(0,1) and find the corre-
sponding percent point function from the N(0,1) distribution. In this way, for example, a value to the right
of 2.275% of the distribution would correspond to a residual of -2, or 2 standard deviations below the mean.

For uniform distributions, with all values equally probable, we use a value of +/-4 for values outside the
range, and 0 for values inside the range.

start_value()

Return a default starting value if none given.

to_dict()

bumps.bounds.init_bounds(v)
Returns a bounds object of the appropriate type given the arguments.

This is a helper factory to simplify the user interface to parameter objects.

bumps.bounds.nice_range(bounds)
Given a range, return an enclosing range accurate to two digits.

bumps.bounds.pm(v, plus, minus=None, limits=None)
Return the tuple (~v-dv,~v+dv), where ~expr is a ‘nice’ number near to to the value of expr. For example:

>>> r = pm(0.78421, 0.0023145)
>>> print("%g - %g"%r)
0.7818 - 0.7866

If called as pm(value, +dp, -dm) or pm(value, -dm, +dp), return (~v-dm, ~v+dp).

bumps.bounds.pm_raw(v, plus, minus=None)
Return the tuple [v-dv,v+dv].

If called as pm_raw(value, +dp, -dm) or pm_raw(value, -dm, +dp), return (v-dm, v+dp).

bumps.bounds.pmp(v, plus, minus=None, limits=None)
Return the tuple (~v-%v,~v+%v), where ~expr is a ‘nice’ number near to the value of expr. For example:

>>> r = pmp(0.78421, 10)
>>> print("%g - %g"%r)
0.7 - 0.87
>>> r = pmp(0.78421, 0.1)
>>> print("%g - %g"%r)
0.7834 - 0.785

If called as pmp(value, +pp, -pm) or pmp(value, -pm, +pp), return (~v-pm%v, ~v+pp%v).

bumps.bounds.pmp_raw(v, plus, minus=None)
Return the tuple [v-%v,v+%v]

If called as pmp_raw(value, +pp, -pm) or pmp_raw(value, -pm, +pp), return (v-pm%v, v+pp%v).
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4.2 bspline - B-Spline interpolation library

bspline Evaluate the B-spline with control points y at positions
xt in [0,1].

pbs Evaluate the parametric B-spline px(t),py(t).

BSpline calculator.

Given a set of knots, compute the cubic B-spline interpolation.

bumps.bspline.bspline(y, xt, clamp=True)
Evaluate the B-spline with control points y at positions xt in [0,1].

The spline goes through the control points at the ends. If clamp is True, the derivative of the spline at both ends is
zero. If clamp is False, the derivative at the ends is equal to the slope connecting the final pair of control points.

B-spline knots are chosen to be equally spaced within [0,1].

bumps.bspline.pbs(x, y, t, clamp=True, parametric=True)
Evaluate the parametric B-spline px(t),py(t).

x and y are the control points, and t are the points in [0,1] at which they are evaluated. The x values are sorted
so that the spline describes a function.

The spline goes through the control points at the ends. If clamp is True, the derivative of the spline at both ends is
zero. If clamp is False, the derivative at the ends is equal to the slope connecting the final pair of control points.

If parametric is False, then parametric points t’ are chosen such that x(t’) = t.

The B-spline knots are chosen to be equally spaced within [0,1].

4.3 cheby - Freeform - Chebyshev

profile Evaluate the chebyshev approximation c at points x.
cheby_approx Return the coefficients for the order n chebyshev approx-

imation to function f evaluated over the range [low,high].
cheby_val Evaluate the chebyshev approximation c at points x.
cheby_points Return the points in at which a function must be eval-

uated to generate the order 𝑛 Chebyshev approximation
function.

cheby_coeff Compute chebyshev coefficients for a polynomial of or-
der n given the function evaluated at the chebyshev
points for order n.

Freeform modeling with Chebyshev polynomials.

Chebyshev polynomials 𝑇𝑘 form a basis set for functions over [−1, 1]. The truncated interpolating polynomial 𝑃𝑛 is a
weighted sum of Chebyshev polynomials up to degree 𝑛:

𝑓(𝑥) ≈ 𝑃𝑛(𝑥) =

𝑛∑︁
𝑘=0

𝑐𝑖𝑇𝑘(𝑥)
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The interpolating polynomial exactly matches 𝑓(𝑥) at the chebyshev nodes 𝑧𝑘 and is near the optimal polynomial
approximation to 𝑓 of degree 𝑛 under the maximum norm. For well behaved functions, the coefficients 𝑐𝑘 decrease
rapidly, and furthermore are independent of the degree 𝑛 of the polynomial.

The models can either be defined directly in terms of the Chebyshev coefficients 𝑐𝑘 with method = ‘direct’, or in terms of
control points (𝑧𝑘, 𝑓(𝑧𝑘)) at the Chebyshev nodes cheby_points()with method = ‘interp’. Bounds on the parameters
are easier to control using ‘interp’, but the function may oscillate wildly outside the bounds. Bounds on the oscillation
are easier to control using ‘direct’, but the shape of the profile is difficult to control.

bumps.cheby.cheby_approx(n, f , range=(0, 1))
Return the coefficients for the order n chebyshev approximation to function f evaluated over the range [low,high].

bumps.cheby.cheby_coeff(fx)
Compute chebyshev coefficients for a polynomial of order n given the function evaluated at the chebyshev points
for order n.

This can be used as the basis of a direct interpolation method where the n control points are positioned at
cheby_points(n).

bumps.cheby.cheby_points(n, range=(0, 1))
Return the points in at which a function must be evaluated to generate the order 𝑛 Chebyshev approximation
function.

Over the range [-1,1], the points are 𝑝𝑘 = cos(𝜋(2𝑘 + 1)/(2𝑛)). Adjusting the range to [𝑥𝐿, 𝑥𝑅], the points
become 𝑥𝑘 = 1

2 (𝑝𝑘 − 𝑥𝐿 + 1)/(𝑥𝑅 − 𝑥𝐿).

bumps.cheby.cheby_val(c, x)
Evaluate the chebyshev approximation c at points x.

The values 𝑐𝑖 are the coefficients for the chebyshev polynomials 𝑇𝑖 yielding 𝑝(𝑥) =
∑︀

𝑖 𝑐𝑖𝑇𝑖(𝑥).

bumps.cheby.profile(c, t, method)
Evaluate the chebyshev approximation c at points x.

If method is ‘direct’ then 𝑐𝑖 are the coefficients for the chebyshev polynomials 𝑇𝑖 yielding 𝑃 =
∑︀

𝑖 𝑐𝑖𝑇𝑖(𝑥).

If method is ‘interp’ then 𝑐𝑖 are the values of the interpolated function 𝑓 evaluated at the chebyshev points
returned by cheby_points().

4.4 cli - Command line interface

main Run the bumps program with the command line inter-
face.

install_plugin Replace symbols in bumps.plugin with application
specific methods.

set_mplconfig Point the matplotlib config dir to %LOCALAPP-
DATA%{appdatadir}mplconfig.

config_matplotlib Setup matplotlib to use a particular backend.
load_model Load a model file.
preview Show the problem plots and parameters.
load_best Reload individual parameter values from a saved .par

file.
save_best Save the fit data, including parameter values, uncertain-

ties and plots.
resynth Generate maximum likelihood fits to resynthesized data

sets.
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Bumps command line interface.

The functions in this module are used by the bumps command to implement the command line interface. Bumps plugin
models can use them to create stand alone applications with a similar interface. For example, the Refl1D application
uses the following:

from . import fitplugin
import bumps.cli
bumps.cli.set_mplconfig(appdatadir='Refl1D')
bumps.cli.install_plugin(fitplugin)
bumps.cli.main()

After completing a set of fits on related systems, a post-analysis script can use load_model() to load the problem
definition and load_best() to load the best value found in the fit. This can be used for example in experiment design,
where you look at the expected parameter uncertainty when fitting simulated data from a range of experimental systems.

bumps.cli.config_matplotlib(backend=None)
Setup matplotlib to use a particular backend.

The backend should be ‘WXAgg’ for interactive use, or ‘Agg’ for batch. This distinction allows us to run in
environments such as cluster computers which do not have wx installed on the compute nodes.

This function must be called before any imports to pylab. To allow this, modules should not import pylab at the
module level, but instead import it for each function/method that uses it. Exceptions can be made for modules
which are completely dedicated to plotting, but these modules should never be imported at the module level.

bumps.cli.install_plugin(p)
Replace symbols in bumps.plugin with application specific methods.

bumps.cli.load_best(problem, path)
Reload individual parameter values from a saved .par file.

If the label does not exist in the file, use the value from the model as the default value. Ignore labels that do not
exist in the model. In that way we can load parameters from an old fit with minimal fuss, even as we add, delete
and move parameters in the model. If any parameters are missing, set problem.undefined to the a boolean index
of the undefined parameters.

There is an interaction with –init=eps and the par file. If any parameters are missing from the par file they will
be randomized across the entire parameter range using the equivalent of –init=lhs. That means you can drop a
# at the beginning of the line in the .par file and that parameter will be shuffled on restart, with the remaining
parameters starting near the initial value.

bumps.cli.load_model(path, model_options=None)
Load a model file.

path contains the path to the model file.

model_options are any additional arguments to the model. The sys.argv variable will be set such that sys.argv[1:]
== model_options.

bumps.cli.main()

Run the bumps program with the command line interface.

Input parameters are taken from sys.argv.

bumps.cli.preview(problem, view=None)
Show the problem plots and parameters.
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bumps.cli.resynth(fitdriver, problem, mapper, opts)
Generate maximum likelihood fits to resynthesized data sets.

fitdriver is a bumps.fitters.FitDriver object with a fitter already chosen.

problem is a bumps.fitproblem.FitProblem() object. It should be initialized with optimal values for the
parameters.

mapper is one of the available bumps.mapper classes.

opts is a bumps.options.BumpsOpts object representing the command line parameters.

bumps.cli.save_best(fitdriver, problem, best, view=None)
Save the fit data, including parameter values, uncertainties and plots.

fitdriver is the fitter that was used to drive the fit.

problem is a FitProblem instance.

best is the parameter set to save.

bumps.cli.set_mplconfig(appdatadir)
Point the matplotlib config dir to %LOCALAPPDATA%{appdatadir}mplconfig.

4.5 curve - Model a fit function

Curve Model a measurement with a user defined function.
PoissonCurve Model a measurement with Poisson uncertainty.
plot_err DEPRECATED: subclass Curve and override the plot

function.

Build a bumps model from a function and data.

4.5.1 Example

Given a function sin_model which computes a sine wave at times t:

from numpy import sin
def sin_model(t, freq, phase):

return sin(2*pi*(freq*t + phase))

and given data (y,dy) measured at times t, we can define the fit problem as follows:

from bumps.names import *
M = Curve(sin_model, t, y, dy, freq=20)

The freq and phase keywords are optional initial values for the model parameters which otherwise default to zero. The
model parameters can be accessed as attributes on the model to set fit range:

M.freq.range(2, 100)
M.phase.range(0, 1)
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As usual, you can initialize or assign parameter expressions to the the parameters if you want to tie parameters together
within or between models.

Note: there is sometimes difficulty getting bumps to recognize the function during fits, which can be addressed by
putting the definition in a separate file on the python path. With the windows binary distribution of bumps, this can be
done in the problem definition file with the following code:

import os
from bumps.names import *
sys.path.insert(0, os.getcwd())

The model function can then be imported from the external module as usual:

from sin_model import sin_model

class bumps.curve.Curve(fn, x, y, dy=None, name='', labels=None, plot=None, plot_x=None, **kwargs)
Bases: object

Model a measurement with a user defined function.

The function fn(x,p1,p2,. . . ) should return the expected value y for each point x given the parameters p1, p2, etc.
dy is the uncertainty for each measured value y. If not specified, it defaults to 1. Multi-valued functions, which
return multiple y values for each x value, should have x as a vector of length n and y, dy as arrays of size [n, k].

Initial values for the parameters can be set as p=value arguments to Curve. If no value is set, then the initial value
will be taken from the default value given in the definition of fn, or set to 0 if the parameter is not defined with
an initial value. Arbitrary non-fittable data can be passed to the function as parameters, but only if the parameter
is given a default value of None in the function definition, and has the initial value set as an argument to Curve.
Defining state=dict(key=value, . . . ) before Curve, and calling Curve as Curve(. . . , **state) works pretty well.

Curve takes the following special keyword arguments:

• name is added to each parameter name when the parameter is defined. The filename for the data is a good
choice, since this allows you to keep the parameters straight when fitting multiple datasets simultaneously.

• plot is an alternative plotting function. The function should be defined as plot(x,y,dy,fy,**kw). The key-
word arguments will be filled with the values of the parameters used to compute fy. It will be easiest to list
the parameters you need to make your plot as positional arguments after x,y,dy,fy in the plot function dec-
laration. For example, plot(x,y,dy,fy,p3,**kw) will make the value of parameter p3 available as a variable
in your function. The special keyword view will be a string containing linear, log, logx, or loglog. If only
showing the residuals, the string will be residual.

• plot_x is an array giving the sample points to use when plotting the theory function, if different from the x
values at which the function is sampled. Use this to draw a smooth curve between the fitted points. This
value is ignored if you provide your own plot function.

• labels are the axis labels for the plot. This should include units in parentheses. If the function is multi-
valued then use [‘x axis’, ‘y axis’, ‘line 1’, ‘line 2’, . . . ].

The data uncertainty is assumed to follow a gaussian distribution. If measurements draw from some other un-
certainty distribution, then subclass Curve and replace nllf with the correct probability given the residuals. See
the implementation of PoissonCurve for an example.

nllf()

numpoints()

parameters()
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plot(view=None)

residuals()

save(basename)

simulate_data(noise=None)

theory(x=None)

update()

class bumps.curve.PoissonCurve(fn, x, y, name='', **fnkw)
Bases: Curve

Model a measurement with Poisson uncertainty.

The nllf is calculated using Poisson probabilities, but the curve itself is displayed using the approximation that
𝜎𝑦 ≈

√︀
(𝑦).

See Curve for details.

nllf()

numpoints()

parameters()

plot(view=None)

residuals()

save(basename)

simulate_data(noise=None)

theory(x=None)

update()

bumps.curve.plot_err(x, y, dy, fy, view=None, **kw)
DEPRECATED: subclass Curve and override the plot function.

Plot data y and error dy against x.

view is one of linear, log, logx or loglog.

4.6 data - Data handling utilities

indfloat Convert string to float, with support for inf and nan.
parse_file Parse a file into a header and data.

Data handling utilities.
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bumps.data.indfloat(s)
Convert string to float, with support for inf and nan.

Example:

>>> from numpy import isinf, isnan
>>> print(isinf(indfloat('inf')))
True
>>> print(isinf(indfloat('-inf')))
True
>>> print(isnan(indfloat('nan')))
True

bumps.data.parse_file(file, keysep=None, sep=None, comment='#')
Parse a file into a header and data.

Return a (header, data) pair, where header is a key: value dictionary and data is a numpy array.

The header section is list of key value pairs, with the comment character at the start of each line. Key and value
will be separated by keysep, or by spaces if keysep = None. The data section is a sequence of floating point
numbers separated by sep, or by spaces if sep is None. inf and nan are parsed as inf and nan. Comments at the
end of the data line will be ignored. Data points can be commented out by including a comment character at the
start of the data line, assuming the next character is a digit, plus, or decimal separator.

Quotes around keys are removed. For compatibility with the old interface, quotes around values are removed as
well.

Special hack for binned data: if the first column contains bin edges, then the last row will only have the bin edge.
To make the array square, we replace the bin edges with bin centers. The original bins can be found in the header
using the ‘bins’ key (unless that key already exists in the header, in which case the key will be ignored).

4.7 errplot - Plot sample profile uncertainty

reload_errors Reload the MCMC state and compute the model confi-
dence intervals.

calc_errors_from_state Compute confidence regions for a problem from the
Align the sample profiles and compute the residual dif-
ference from the measured data for a set of points re-
turned from DREAM.

calc_errors Align the sample profiles and compute the residual dif-
ference from the measured data for a set of points.

show_errors Display the confidence regions returned by
calc_errors().

Estimate model uncertainty from random sample.

MCMC uncertainty analysis gives the uncertainty on the model parameters rather than the model itself. For example,
when fitting a line to a set of data, the uncertainty on the slope and the intercept does not directly give you the uncertainty
in the expected value of y for a given value of x.

The routines in bumps.errplot allow you to generate confidence intervals on the model using a random sample of
MCMC parameters. After calculating the model y values for each sample, one can generate 68% and 95% contours for
a set of sampling points x. This can apply even to models which are not directly measured. For example, in scattering
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inverse problems the scattered intensity is the value measured, but the fitting parameters describe the real space model
that is being probed. It is the uncertainty in the real space model that is of primary interest.

Since bumps knows only the probability of seeing the measured value given the input parameters, it is up to the model
itself to calculate and display the confidence intervals on the model and the expected values for the data points. This is
done using the bumps.plugin architecture, so application writers can provide the appropriate functions for their data
types. Eventually this capability will move to the model definition so that different types of models can be processed
in the same fit.

For a completed MCMC run, four steps are required:

1. reload the fitting problem and the MCMC state

2. select a set of sample points

3. evaluate model confidence intervals from sample points

4. show model confidence intervals

reload_errors() performs steps 1, 2 and 3, returning errs. If the fitting problem and the MCMC state are already
loaded, then use calc_errors_from_state() to perform steps 2 and 3, returning errs. If alternative sampling is
desired, then use calc_errors() on a given set of points to perform step 3, returning errs. Once errs has been
calculated and returned by one of these methods, call show_errors() to perform step 4.

bumps.errplot.calc_errors(problem, points)
Align the sample profiles and compute the residual difference from the measured data for a set of points.

The return value is arbitrary. It is passed to the show_errors() plugin for the application. Returns errs for
show_errors().

bumps.errplot.calc_errors_from_state(problem, state, nshown=50, random=True, portion=1.0)
Compute confidence regions for a problem from the Align the sample profiles and compute the residual difference
from the measured data for a set of points returned from DREAM.

nshown is the number of samples to include from the state.

random is True if the samples are randomly selected, or False if the most recent samples should be used. Use
random if you have poor mixing (i.e., the parameters tend to stay fixed from generation to generation), but not
random if your burn-in was too short, and you want to select from the end.

Returns errs for show_errors().

bumps.errplot.reload_errors(model, store, nshown=50, random=True)
Reload the MCMC state and compute the model confidence intervals.

The loaded error data is a sample from the fit space according to the fit parameter uncertainty. This is a subset
of the samples returned by the DREAM MCMC sampling process.

model is the name of the model python file

store is the name of the store directory containing the dream results

nshown and random are as for calc_errors_from_state().

Returns errs for show_errors().

bumps.errplot.show_errors(errs)
Display the confidence regions returned by calc_errors().

The content of errs depends on the active plugin.
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4.8 fitproblem - Interface between models and fitters

Fitness Manage parameters, data, and theory function evalua-
tion.

FitProblem Return a fit problem instance for the fitness function(s).
load_problem Load a problem definition from a python script file.
BaseFitProblem See FitProblem()
MultiFitProblem Weighted fits for multiple models.

Interface between the models and the fitters.

Fitness defines the interface that model evaluators can follow. These models can be bundled together into a
FitProblem() and sent to bumps.fitters.FitDriver for optimization and uncertainty analysis.

Summary of problem attributes:

# Used by fitters
nllf(p: Optional[Vector]) -> float # main calculation
bounds() -> Tuple(Vector, Vector) # or equivalent sequence
setp(p: Vector) -> None
getp() -> Vector
residuals() -> Vector # for LM, MPFit
parameter_residuals() -> Vector # for LM, MPFit
constraints_nllf() -> float # for LM, MPFit; constraint cost is spread across the␣
→˓individual residuals
randomize() -> None # for multistart
resynth_data() -> None # for Monte Carlo resampling of maximum likelihood
restore_data() -> None # for Monte Carlo resampling of maximum likelihood
name: str # DREAM uses this
chisq() -> float
chisq_str() -> str
labels() -> List[str]
summarize() -> str
show() -> None
load(input_path: str) -> None
save(output_path: str) -> None
plot(figfile: str, view: str) -> None

# Set/used by bumps.cli
model_reset() -> None # called by load_model
path: str # set by load_model
name: str # set by load_model
title: str = filename # set by load_moel
options: List[str] # from sys.argv[1:]
undefined:List[int] # when loading a save .par file, these parameters weren't defined
store: str # set by make_store
output_path: str # set by make_store
simulate_data(noise: float) -> None # for --simulate in opts
cov() -> Matrix # for --cov in opts

class bumps.fitproblem.BaseFitProblem(fitness, name=None, constraints=None, penalty_nllf=inf ,
soft_limit=inf , partial=False)

Bases: object
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See FitProblem()

bounds()

Return the bounds fore each parameter a 2 x N array

chisq()

Return sum squared residuals normalized by the degrees of freedom.

In the context of a composite fit, the reduced chisq on the individual models only considers the points and
the fitted parameters within the individual model.

Note that this does not include cost factors due to constraints on the parameters, such as sample_offset ~
N(0,0.01).

chisq_str()

Return a string representing the chisq equivalent of the nllf.

If the model has strictly gaussian independent uncertainties then the negative log likelihood function will
return 0.5*sum(residuals**2), which is 1/2*chisq. Since we are printing normalized chisq, we multiply
the model nllf by 2/DOF before displaying the value. This is different from the problem nllf function,
which includes the cost of the prior parameters and the cost of the penalty constraints in the total nllf. The
constraint value is displayed separately.

constraints_nllf()

Returns the cost of all constraints.

cov()

Return the covariance matrix as computed from the Hessian matrix for the problem at the current parameter
values estimated by numerical differentiation.

getp()

Returns the current value of the parameter vector.

property has_residuals

True if the underlying fitness function defines residuals.

labels()

Return the list of labels, one per fitted parameter.

model_nllf()

Negative log likelihood of seeing data given model.

model_parameters()

Parameters associated with the model.

model_points()

Number of data points associated with the model.

model_reset()

Prepare for the fit.

This sets the parameters and the bounds properties that the solver is expecting from the fittable object. We
also compute the degrees of freedom so that we can return a normalized fit likelihood.

If the set of fit parameters changes, then model_reset must be called.

model_update()

Update the model according to the changed parameters.
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nllf(pvec=None)
compute the cost function for a new parameter set p.

this is not simply the sum-squared residuals, but instead is the negative log likelihood of seeing the data
given the model parameters plus the negative log likelihood of seeing the model parameters. the value is
used for a likelihood ratio test so normalization constants can be ignored. there is an additional penalty
value provided by the model which can be used to implement inequality constraints. any penalty should be
large enough that it is effectively excluded from the parameter space returned from uncertainty analysis.

the model is not actually calculated if the parameter nllf plus the constraint nllf are bigger than soft_limit,
but instead it is assigned a value of penalty_nllf. this will prevent expensive models from spending time
computing values in the unfeasible region.

parameter_nllf()

Returns negative log likelihood of seeing parameters p.

parameter_residuals()

Returns negative log likelihood of seeing parameters p.

plot(p=None, fignum=None, figfile=None, view=None)
Plot the problem state for the current parameter set.

The underlying Fitness object plot method is called with view. It should produce its plot on the current
matplotlib figure. This method will add chisq to the plot and save it to a file.

randomize(n=None)
Generates a random model.

randomize() sets the model to a random value.

randomize(n) returns a population of n random models.

For indefinite bounds, the random population distribution is centered on initial value of the parameter, or
1. if the initial parameter is not finite.

residuals()

Return the model residuals.

If the model is defined by 𝑦 = 𝑓(𝑥) + 𝜖 for normally distributed error in the measurement 𝑦 equal to
𝜖 ∼ 𝑁(0, 𝜎2), then residuals will be defined by 𝑅 = (𝑦 − 𝑓(𝑥))/𝜎. If the measurement uncertainty is not
normal, then the normal equivalent residuals should be defined so that the Levenberg-Marquardt fit behaves
reasonably, and the plot of residuals gives an indication of which points are driving the fit.

restore_data()

Restore original data after resynthesis.

resynth_data()

Resynthesize data with noise from the uncertainty estimates.

save(basename)
Save the problem state for the current parameter set.

The underlying Fitness object save method is called, if it exists, so that theory values can be saved in a
format suitable to the problem.

Uses basename as the base of any files that are created.

setp(pvec)
Set a new value for the parameters into the model. If the model is valid, calls model_update to signal that
the model should be recalculated.

Returns True if the value is valid and the parameters were set, otherwise returns False.
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show(_subs={})
Print the available parameters to the console as a tree.

simulate_data(noise=None)
Simulate data with added noise

stderr()

Return the 1-sigma uncertainty estimate for each parameter and the correlation matrix R as computed from
the covariance returned by cov.

summarize()

Return a table of current parameter values with range bars.

to_dict()

valid(pvec)
Return true if the point is in the feasible region

bumps.fitproblem.FitProblem(*args, **kw)
Return a fit problem instance for the fitness function(s).

For an individual model:

fitness is a Fitness instance.

For a set of models:

models is a sequence of Fitness instances.

weights is an optional scale factor for each model. A weighted fit returns nllf 𝐿 =
∑︀

𝑤2
𝑘𝐿𝑘. If

an individual nllf is the sum squared residuals then this is equivalent to scaling the measurement
uncertainty by 1/𝑤. Unless the measurement uncertainty is unknown, weights should be in [0, 1],
representing an unknown systematic uncertainty spread across the individual measurements.

freevars is parameter.FreeVariables instance defining the per-model parameter assignments. See
Free Variables for details.

Additional parameters:

name name of the problem

constraints is a function which returns the negative log likelihood of seeing the parameters indepen-
dent from the fitness function. Use this for example to check for feasible regions of the search space,
or to add constraints that cannot be easily calculated per parameter. Ideally, the constraints nllf will
increase as you go farther from the feasible region so that the fit will be directed toward feasible values.

soft_limit is the constraints function cutoff, beyond which the penalty_nllf will be used and fitness
nllf will not be calculated.

penalty_nllf is the nllf to use for fitness when constraints is greater than soft_limit.

Total nllf is the sum of the parameter nllf, the constraints nllf and the depending on whether constraints is greater
than soft_limit, either the fitness nllf or the penalty nllf.

New in 0.9.0: weights are now squared when computing the sum rather than linear.

class bumps.fitproblem.Fitness

Bases: object

Manage parameters, data, and theory function evaluation.

See Complex models for a detailed explanation.
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nllf()

Return the negative log likelihood value of the current parameter set.

numpoints()

Return the number of data points.

parameters()

return the parameters in the model.

model parameters are a hierarchical structure of lists and dictionaries.

plot(view='linear')
Plot the model to the current figure. You only get one figure, but you can make it as complex as you want.
This will be saved as a png on the server, and composed onto a results web page.

residuals()

Return residuals for current theory minus data.

Used for Levenburg-Marquardt, and for plotting.

restore_data()

Restore the original data in the model (after resynth).

resynth_data()

Generate fake data based on uncertainties in the real data. For Monte Carlo resynth-refit uncertainty anal-
ysis. Bootstrapping?

save(basename)
Save the model to a file based on basename+extension. This will point to a path to a directory on a remote
machine; don’t make any assumptions about information stored on the server. Return the set of files saved
so that the monitor software can make a pretty web page.

to_dict()

update()

Called when parameters have been updated. Any cached values will need to be cleared and the model
reevaluated.

class bumps.fitproblem.MultiFitProblem(models, weights=None, name=None, constraints=None,
soft_limit=inf , penalty_nllf=1000000.0, freevars=None)

Bases: BaseFitProblem

Weighted fits for multiple models. See FitProblem() for an explanation of weights.

bounds()

Return the bounds fore each parameter a 2 x N array

chisq()

Return sum squared residuals normalized by the degrees of freedom.

In the context of a composite fit, the reduced chisq on the individual models only considers the points and
the fitted parameters within the individual model.

Note that this does not include cost factors due to constraints on the parameters, such as sample_offset ~
N(0,0.01).
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chisq_str()

Return a string representing the chisq equivalent of the nllf.

If the model has strictly gaussian independent uncertainties then the negative log likelihood function will
return 0.5*sum(residuals**2), which is 1/2*chisq. Since we are printing normalized chisq, we multiply
the model nllf by 2/DOF before displaying the value. This is different from the problem nllf function,
which includes the cost of the prior parameters and the cost of the penalty constraints in the total nllf. The
constraint value is displayed separately.

constraints_nllf()

Return the cost function for all constraints

cov()

Return the covariance matrix as computed from the Hessian matrix for the problem at the current parameter
values estimated by numerical differentiation.

getp()

Returns the current value of the parameter vector.

property has_residuals

True if all underlying fitness functions define residuals.

labels()

Return the list of labels, one per fitted parameter.

model_nllf()

Return cost function for all data sets

model_parameters()

Return parameters from all models

model_points()

Return number of points in all models

model_reset()

Prepare for the fit.

This sets the parameters and the bounds properties that the solver is expecting from the fittable object. We
also compute the degrees of freedom so that we can return a normalized fit likelihood.

If the set of fit parameters changes, then model_reset must be called.

model_update()

Let all models know they need to be recalculated

property models

Iterate over models, with free parameters set from model values

nllf(pvec=None)
compute the cost function for a new parameter set p.

this is not simply the sum-squared residuals, but instead is the negative log likelihood of seeing the data
given the model parameters plus the negative log likelihood of seeing the model parameters. the value is
used for a likelihood ratio test so normalization constants can be ignored. there is an additional penalty
value provided by the model which can be used to implement inequality constraints. any penalty should be
large enough that it is effectively excluded from the parameter space returned from uncertainty analysis.

the model is not actually calculated if the parameter nllf plus the constraint nllf are bigger than soft_limit,
but instead it is assigned a value of penalty_nllf. this will prevent expensive models from spending time
computing values in the unfeasible region.
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parameter_nllf()

Returns negative log likelihood of seeing parameters p.

parameter_residuals()

Returns negative log likelihood of seeing parameters p.

plot(p=None, fignum=1, figfile=None, view=None)
Plot the problem state for the current parameter set.

The underlying Fitness object plot method is called with view. It should produce its plot on the current
matplotlib figure. This method will add chisq to the plot and save it to a file.

randomize(n=None)
Generates a random model.

randomize() sets the model to a random value.

randomize(n) returns a population of n random models.

For indefinite bounds, the random population distribution is centered on initial value of the parameter, or
1. if the initial parameter is not finite.

residuals()

Return the model residuals.

If the model is defined by 𝑦 = 𝑓(𝑥) + 𝜖 for normally distributed error in the measurement 𝑦 equal to
𝜖 ∼ 𝑁(0, 𝜎2), then residuals will be defined by 𝑅 = (𝑦 − 𝑓(𝑥))/𝜎. If the measurement uncertainty is not
normal, then the normal equivalent residuals should be defined so that the Levenberg-Marquardt fit behaves
reasonably, and the plot of residuals gives an indication of which points are driving the fit.

restore_data()

Restore original data after resynthesis.

resynth_data()

Resynthesize data with noise from the uncertainty estimates.

save(basename)
Save the problem state for the current parameter set.

The underlying Fitness object save method is called, if it exists, so that theory values can be saved in a
format suitable to the problem.

Uses basename as the base of any files that are created.

set_active_model(i)
Use free parameters from model i

setp(pvec)
Set a new value for the parameters into the model. If the model is valid, calls model_update to signal that
the model should be recalculated.

Returns True if the value is valid and the parameters were set, otherwise returns False.

show()

Print the available parameters to the console as a tree.

simulate_data(noise=None)
Simulate data with added noise
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stderr()

Return the 1-sigma uncertainty estimate for each parameter and the correlation matrix R as computed from
the covariance returned by cov.

summarize()

Return a table of current parameter values with range bars.

to_dict()

valid(pvec)
Return true if the point is in the feasible region

bumps.fitproblem.load_problem(filename, options=None)
Load a problem definition from a python script file.

sys.argv is set to [file] + options within the context of the script.

The user must define problem=FitProblem(...) within the script.

Raises ValueError if the script does not define problem.

4.9 fitservice - Remote job plugin for fit jobs

ServiceMonitor Display fit progress on the console
fitservice

Fit job definition for the distributed job queue.

class bumps.fitservice.ServiceMonitor(problem, path, progress=60, improvement=60)
Bases: TimedUpdate

Display fit progress on the console

config_history(history)
Indicate which fields are needed by the monitor and for what duration.

show_improvement(history)

show_progress(history)

bumps.fitservice.fitservice(request)
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4.10 fitters - Wrappers for various optimization algorithms

BFGSFit BFGS quasi-newton optimizer.
CheckpointMonitor Periodically save fit state so that it can be resumed later.
ConsoleMonitor Display fit progress on the console
DEFit Classic Storn and Price differential evolution optimizer.
DreamFit

DreamModel DREAM wrapper for fit problems.
FitBase FitBase defines the interface from bumps models to the

various fitting engines available within bumps.
FitDriver

LevenbergMarquardtFit Levenberg-Marquardt optimizer.
MPFit MPFit optimizer.
MonitorRunner Adaptor which allows solvers to accept progress moni-

tors.
MultiStart Multi-start monte carlo fitter.
PSFit Particle swarm optimizer.
PTFit Parallel tempering optimizer.
RLFit Random lines optimizer.
Resampler

SimplexFit Nelder-Mead simplex optimizer.
SnobFit

StepMonitor Collect information at every step of the fit and save it to
a file.

fit Simplified fit interface.
load_history Load fitter details from a history file.
parse_tolerance

register Register a new fitter with bumps, if it is not already there.
save_history Save fitter details to a history file as JSON.

Interfaces to various optimizers.

class bumps.fitters.BFGSFit(problem)

Bases: FitBase

BFGS quasi-newton optimizer.

BFGS estimates Hessian and its Cholesky decomposition, but initial tests give uncertainties quite different from
the directly computed Jacobian in Levenburg-Marquardt or the Hessian estimated at the minimum by numerical
differentiation.

To use the internal ‘H’ and ‘L’ and save some computation time, then use:

C = lsqerror.chol_cov(fit.result['L'])
stderr = lsqerror.stderr(C)

id = 'newton'
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name = 'Quasi-Newton BFGS'

settings = [('steps', 3000), ('starts', 1), ('ftol', 1e-06), ('xtol', 1e-12)]

solve(monitors=None, abort_test=None, mapper=None, **options)

class bumps.fitters.CheckpointMonitor(checkpoint, progress=1800)
Bases: TimedUpdate

Periodically save fit state so that it can be resumed later.

checkpoint: Callable[None, None] = None

Function to call at each checkpoint.

config_history(history)
Indicate which fields are needed by the monitor and for what duration.

show_improvement(history)

show_progress(history)

class bumps.fitters.ConsoleMonitor(problem, progress=1, improvement=30)
Bases: TimedUpdate

Display fit progress on the console

config_history(history)
Indicate which fields are needed by the monitor and for what duration.

show_improvement(history)

show_progress(history)

class bumps.fitters.DEFit(problem)

Bases: FitBase

Classic Storn and Price differential evolution optimizer.

id = 'de'

load(input_path)

name = 'Differential Evolution'

save(output_path)

settings = [('steps', 1000), ('pop', 10), ('CR', 0.9), ('F', 2.0), ('ftol', 1e-08),
('xtol', 1e-06)]

solve(monitors=None, abort_test=None, mapper=None, **options)

class bumps.fitters.DreamFit(problem)

Bases: FitBase

entropy(**kw)

error_plot(figfile)

id = 'dream'
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load(input_path)

name = 'DREAM'

plot(output_path)

save(output_path)

settings = [('samples', 10000), ('burn', 100), ('pop', 10), ('init', 'eps'),
('thin', 1), ('alpha', 0.01), ('outliers', 'none'), ('trim', False), ('steps', 0)]

show()

solve(monitors=None, abort_test=None, mapper=None, **options)

stderr()

Approximate standard error as 1/2 the 68% interval fo the sample, which is a more robust measure than the
mean of the sample for non-normal distributions.

class bumps.fitters.DreamModel(problem=None, mapper=None)
Bases: MCMCModel

DREAM wrapper for fit problems.

bounds = None

labels = None

log_density(x)

map(pop)

nllf(x)
Negative log likelihood of seeing models given x

plot(x)

class bumps.fitters.FitBase(problem)

Bases: object

FitBase defines the interface from bumps models to the various fitting engines available within bumps.

Each engine is defined in its own class with a specific set of attributes and methods.

The name attribute is the name of the optimizer. This is just a simple string.

The settings attribute is a list of pairs (name, default), where the names are defined as fields in FitOptions. A best
attempt should be made to map the fit options for the optimizer to the standard fit options, since each of these
becomes a new command line option when running bumps. If that is not possible, then a new option should be
added to FitOptions. A plugin architecture might be appropriate here, if there are reasons why specific problem
domains might need custom fitters, but this is not yet supported.

Each engine takes a fit problem in its constructor.

The solve()method runs the fit. It accepts a monitor to track updates, a mapper to distribute work and key-value
pairs defining the settings.

There are a number of optional methods for the fitting engines. Basically, all the methods in FitDriver first
check if they are specialized in the fit engine before performing a default action.

The load/save methods load and save the fitter state in a given directory with a specific base file name. The fitter
can choose a file extension to add to the base name. Some care is needed to be sure that the extension doesn’t
collide with other extensions such as .mon for the fit monitor.
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The plot method shows any plots to help understand the performance of the fitter, such as a convergence plot
showing the the range of values in the population over time, as well as plots of the parameter uncertainty if
available. The plot should work within is given a figure canvas to work with

The stderr/cov methods should provide summary statistics for the parameter uncertainties. Some fitters, such as
MCMC, will compute these directly from the population. Others, such as BFGS, will produce an estimate of
the uncertainty as they go along. If the fitter does not provide these estimates, then they will be computed from
numerical derivatives at the minimum in the FitDriver method.

solve(monitors=None, mapper=None, **options)

class bumps.fitters.FitDriver(fitclass=None, problem=None, monitors=None, abort_test=None,
mapper=None, **options)

Bases: object

chisq()

clip()

Force parameters within bounds so constraints are finite.

The problem is updated with the new parameter values.

Returns a list of parameter names that were clipped.

cov()

Return an estimate of the covariance of the fit.

Depending on the fitter and the problem, this may be computed from existing evaluations within the fitter,
or from numerical differentiation around the minimum.

If the problem uses 𝜒2/2 as its nllf, then the covariance is derived from the Jacobian:

x = fit.problem.getp()
J = bumps.lsqerror.jacobian(fit.problem, x)
cov = bumps.lsqerror.jacobian_cov(J)

Otherwise, the numerical differentiation will use the Hessian estimated from nllf:

x = fit.problem.getp()
H = bumps.lsqerror.hessian(fit.problem, x)
cov = bumps.lsqerror.hessian_cov(H)

entropy(method=None)

fit(resume=None)

load(input_path)

plot(output_path, view=None)

save(output_path)

show()

show_cov()

show_entropy(method=None)
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show_err()

Display the error approximation from the numerical derivative.

Warning: cost grows as the cube of the number of parameters.

stderr()

Return an estimate of the standard error of the fit.

Depending on the fitter and the problem, this may be computed from existing evaluations within the fitter,
or from numerical differentiation around the minimum.

stderr_from_cov()

Return an estimate of standard error of the fit from covariance matrix.

Unlike stderr, which uses the estimate from the underlying fitter (DREAM uses the MCMC sample for
this), stderr_from_cov estimates the error from the diagonal of the covariance matrix. Here, the covariance
matrix may have been estimated by the fitter instead of the Hessian.

class bumps.fitters.LevenbergMarquardtFit(problem)

Bases: FitBase

Levenberg-Marquardt optimizer.

cov()

id = 'scipy.leastsq'

name = 'Levenberg-Marquardt (scipy.leastsq)'

settings = [('steps', 200), ('ftol', 1.5e-08), ('xtol', 1.5e-08)]

solve(monitors=None, abort_test=None, mapper=None, **options)

class bumps.fitters.MPFit(problem)

Bases: FitBase

MPFit optimizer.

id = 'lm'

name = 'Levenberg-Marquardt'

settings = [('steps', 200), ('ftol', 1e-10), ('xtol', 1e-10)]

solve(monitors=None, abort_test=None, mapper=None, **options)

class bumps.fitters.MonitorRunner(monitors, problem)

Bases: object

Adaptor which allows solvers to accept progress monitors.

class bumps.fitters.MultiStart(fitter)
Bases: FitBase

Multi-start monte carlo fitter.

This fitter wraps a local optimizer, restarting it a number of times to give it a chance to find a different local
minimum. If the keep_best option is True, then restart near the best fit, otherwise restart at random.

name = 'Multistart Monte Carlo'
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settings = [('starts', 100)]

solve(monitors=None, mapper=None, **options)

class bumps.fitters.PSFit(problem)

Bases: FitBase

Particle swarm optimizer.

id = 'ps'

name = 'Particle Swarm'

settings = [('steps', 3000), ('pop', 1)]

solve(monitors=None, mapper=None, **options)

class bumps.fitters.PTFit(problem)

Bases: FitBase

Parallel tempering optimizer.

id = 'pt'

name = 'Parallel Tempering'

settings = [('steps', 400), ('nT', 24), ('CR', 0.9), ('burn', 100), ('Tmin', 0.1),
('Tmax', 10)]

solve(monitors=None, mapper=None, **options)

class bumps.fitters.RLFit(problem)

Bases: FitBase

Random lines optimizer.

id = 'rl'

name = 'Random Lines'

settings = [('steps', 3000), ('starts', 20), ('pop', 0.5), ('CR', 0.9)]

solve(monitors=None, abort_test=None, mapper=None, **options)

class bumps.fitters.Resampler(fitter)
Bases: FitBase

solve(**options)

class bumps.fitters.SimplexFit(problem)

Bases: FitBase

Nelder-Mead simplex optimizer.

id = 'amoeba'

name = 'Nelder-Mead Simplex'

settings = [('steps', 1000), ('starts', 1), ('radius', 0.15), ('xtol', 1e-06),
('ftol', 1e-08)]
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solve(monitors=None, abort_test=None, mapper=None, **options)

class bumps.fitters.SnobFit(problem)

Bases: FitBase

id = 'snobfit'

name = 'SNOBFIT'

settings = [('steps', 200)]

solve(monitors=None, mapper=None, **options)

class bumps.fitters.StepMonitor(problem, fid, fields=['step', 'time', 'value', 'point'])
Bases: Monitor

Collect information at every step of the fit and save it to a file.

fid is the file to save the information to fields is the list of “step|time|value|point” fields to save

The point field should be last in the list.

FIELDS = ['step', 'time', 'value', 'point']

config_history(history)
Indicate which fields are needed by the monitor and for what duration.

bumps.fitters.fit(problem, method='amoeba', verbose=False, **options)
Simplified fit interface.

Given a fit problem, the name of a fitter and the fitter options, it will run the fit and return the best value and
standard error of the parameters. If verbose is true, then the console monitor will be enabled, showing progress
through the fit and showing the parameter standard error at the end of the fit, otherwise it is completely silent.

Returns an OptimizeResult object containing “x” and “dx”. The dream fitter also includes the “state” object,
allowing for more detailed uncertainty analysis. Optimizer information such as the stopping condition and the
number of function evaluations are not yet included.

To run in parallel (with multiprocessing and dream):

from bumps.mapper import MPMapper
mapper = MPMapper.start_mapper(problem, None, cpu=0) #cpu=0 for all CPUs
result = fit(problem, method="dream", mapper=mapper)

bumps.fitters.load_history(path)
Load fitter details from a history file.

bumps.fitters.parse_tolerance(options)

bumps.fitters.register(fitter, active=True)
Register a new fitter with bumps, if it is not already there.

active is False if you don’t want it showing up in the GUI selector.

bumps.fitters.save_history(path, state)
Save fitter details to a history file as JSON.

The content of the details are fitter specific.
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4.11 formatnum - Format numbers and uncertainties

format_value Given value v and uncertainty dv, return a string v which
is the value formatted with the appropriate number of
digits.

format_uncertainty Value and uncertainty formatter.
format_uncertainty_compact Given value v and uncertainty dv, return the compact

representation v(##), where ## are the first two digits of
the uncertainty.

format_uncertainty_pm Given value v and uncertainty dv, return a string v +/-
dv.

Format values and uncertainties nicely for printing.

The formatted value uses only the number of digits warranted by the uncertainty in the measurement.

format_value() shows the value without the uncertainty.

format_uncertainty_pm() shows the expanded format v +/- err.

format_uncertainty_compact() shows the compact format v(##), where the number in parenthesis is the uncer-
tainty in the last two digits of v.

format_uncertainty() uses the compact format by default, but this can be changed to use the expanded +/- format
by setting format_uncertainty.compact to False. This is a global setting which should be considered a user preference.
Any library code that depends on a specific format style should use the corresponding formatting function.

If the uncertainty is 0 or not otherwise provided, the simple %g floating point format option is used.

Infinite and indefinite numbers are represented as inf and NaN.

Example:

>>> v,dv = 757.2356,0.01032
>>> print(format_uncertainty_pm(v,dv))
757.236 +/- 0.010
>>> print(format_uncertainty_compact(v,dv))
757.236(10)
>>> print(format_uncertainty(v,dv))
757.236(10)
>>> format_uncertainty.compact = False
>>> print(format_uncertainty(v,dv))
757.236 +/- 0.010
>>> format_uncertainty.compact = True # restore default

bumps.formatnum.format_uncertainty(value, uncertainty)
Value and uncertainty formatter.

Either the expanded v +/- dv form or the compact v(##) form will be used depending on whether for-
mat_uncertainty.compact is True or False. The default is True.

bumps.formatnum.format_uncertainty_compact(value, uncertainty)
Given value v and uncertainty dv, return the compact representation v(##), where ## are the first two digits of
the uncertainty.

bumps.formatnum.format_uncertainty_pm(value, uncertainty)
Given value v and uncertainty dv, return a string v +/- dv.
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bumps.formatnum.format_value(value, uncertainty)
Given value v and uncertainty dv, return a string v which is the value formatted with the appropriate number of
digits.

4.12 history - Optimizer evaluation trace

History Collection of traces.
Trace Value trace.

Log of progress through a computation.

Each cycle through a computation, a process can update its history, adding information about the number of function
evaluations, the total time taken, the set of points evaluated and their values, the current best value and so on. The
process can use this history when computing the next set of points to evaluate and when checking if the termination
conditions are met. Any values that may be useful outside the computation, e.g., for logging or for updating the user,
should be recorded. In the ideal case, the history is all that is needed to restart the process in case of a system crash.

History consists of a set of traces. The content of the traces themselves is provided by the computation, but various
stake holders can use them. For example, the user may wish to log the set of points that have been evaluated and their
values using the system logger and an optimizer may require a certain amount of history to calculate the next set of
values.

New traces are defined using History.provides(). For example, the following adds traces for ‘value’ and ‘point’ to
the history, and requires the value on the two previous cycles in order to do its work:

>>> from bumps.history import History
>>> h = History(value=2, point=0) # keep two values and zero points

Initially the history is empty:

>>> print(len(h.value))
0

After three updates we see that only two values are kept.

>>> h.update(value=2.6, point=[1,1,1])
>>> h.update(value=1, point=[1,0.5,1])
>>> h.update(value=0.5, point=[1,0.5,0.9])
>>> print(h.value)
Trace value: 0.5, 1
>>> print(len(h.value))
2

Since the required length of ‘point’ is zero no values are kept:

>>> print(h.point[0])
Traceback (most recent call last):

...
IndexError: point has not accumulated enough history

A history consumer can override this, and require a certain length of a trace. Then future values will be preserved:
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>>> h.requires(point=1)
>>> h.update(value=0.25, point=[1,0.5,0.92])
>>> print(h.point[0])
[1, 0.5, 0.92]

Traces are independent of each other. A new trace can be added to the history and updated separately from the existing
traces. This can be handy if there are separate sources of history though it may be difficult to keep the in sync. The
following adds a ‘step’ to the existing history, initialized to 15, without changing ‘value’ or ‘point’:

>>> h.provides(step=2) # keep two steps
>>> h.update(step=15) # initialize step to 15
>>> print(h.step)
Trace step: 15

Traces may be used as accumulators, with the delta added to the existing value before being stored in the trace. For
example:

>>> h.accumulate(step=1)
>>> print(h.step)
Trace step: 16, 15

Within bumps, history is used by monitors, with bumps.fitters.MonitorRunner managing updates to history and feeding
them to the fit progress monitors.

class bumps.history.History(**kw)
Bases: object

Collection of traces.

Provided traces can be specified as key word arguments, name=length.

accumulate(**kw)
Extend the given traces with the provided values. The traced value will be the old value plus the new value.

clear()

Clear history, removing all traces

provides(**kw)
Specify additional provided fields.

Raises AttributeError if trace is already provided or if the trace name matches the name of one of the history
methods.

requires(**kw)
Specify required fields, and their history length.

restore(state)
Restore history to the state returned by a call to snapshot

snapshot()

Return a dictionary of traces { ‘name’: [v[n], v[n-1], . . . , v[0]] }

update(**kw)
Extend the given traces with the provided values. The traced values are independent. Use accumulate if
you want to add the new value to the previous value in the trace.
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class bumps.history.Trace(keep=1, name='trace')
Bases: object

Value trace.

This is a stack-like object with items inserted at the beginning, and removed from the end once the maximum
length keep is reached.

len(trace) returns the number of items in the trace trace[i] returns the ith previous element in the history
trace.requires(n) says how much history to keep trace.put(value) stores value trace.accumulate(value) adds value
to the previous value before storing state = trace.snapeshot() returns the values as a stack, most recent last
trace.restore(state) restores a snapshot

Note that snapshot/restore uses lists to represent numpy arrays, which may cause problems if the trace is capturing
lists.

accumulate(value)

put(value)
Add an item to the trace, shifting off from the beginning when the trace is full.

requires(n)
Set the trace length to be at least n.

restore(state)
Restore a trace from a captured snapshot.

Lists are converted to numpy arrays.

snapshot()

Capture state of the trace.

Numpy arrays are converted to lists so that the trace can be easily converted to json.

4.13 initpop - Population initialization strategies

generate Population initializer.
cov_init Initialize n sets of random variables from a gaussian

model.
eps_init Generate a random population using an epsilon ball

around the current value.
lhs_init Latin hypercube sampling.
random_init Generate a random population from the problem param-

eters.

Population initialization strategies.

To start the analysis an initial population is required. This will be an array of size M x N, where M is the number of
dimensions in the fitting problem and N is the number of individuals in the population.

Normally the initialization will use a call to generate() with key-value pairs from the command line options. This
will include the ‘init’ option, with the name of the strategy used to initialize the population.

Additional strategies like uniform box in [0,1] or standard norm (rand(m,n) and randn(m,n) respectively), may also be
useful.
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bumps.initpop.cov_init(n: int, initial: ndarray, bounds: ndarray, use_point: bool = False, cov: ndarray | None
= None, dx: ndarray | None = None)→ ndarray

Initialize n sets of random variables from a gaussian model.

The center is at x with an uncertainty ellipse specified by the 1-sigma independent uncertainty values dx or the
full covariance matrix uncertainty cov.

For example, create an initial population for 20 sequences for a model with local minimum x with covariance
matrix C:

pop = cov_init(cov=C, pars=p, n=20)

If use_point is True, then the current value of the parameters is returned as the first point in the population.

bumps.initpop.eps_init(n: int, initial: ndarray, bounds: ndarray, use_point: bool = False, eps: float = 1e-06)
→ ndarray

Generate a random population using an epsilon ball around the current value.

Since the initial population is contained in a small volume, this method is useful for exploring a local minimum
around a point. Over time the ball will expand to fill the minimum, and perhaps tunnel through barriers to nearby
minima given enough burn-in time.

eps is in proportion to the bounds on the parameter, or the current value of the parameter if the parameter is
unbounded. This gives the initialization a bit of scale independence.

If use_point is True, then the current value of the parameters is returned as the first point in the population.

bumps.initpop.generate(problem: Any, init: str = 'eps', pop: int = 10, use_point: bool = True, **options: ...)
→ np.ndarray

Population initializer.

problem is a fit problem with getp and bounds methods.

init is ‘eps’, ‘cov’, ‘lhs’ or ‘random’, indicating which initializer should be used.

pop is the population scale factor, generating pop individuals for each parameter in the fit. If pop < 0, generate
a total of -pop individuals regardless of the number of parameters.

use_point is True if the initial value should be a member of the population.

Additional options are ignored so that generate can be called using all command line options.

bumps.initpop.lhs_init(n: int, initial: ndarray, bounds: ndarray, use_point: bool = False)→ ndarray
Latin hypercube sampling.

Returns an array whose columns and rows each have n samples from equally spaced bins between bounds=(xmin,
xmax) for the column. Unlike random, this method guarantees a certain amount of coverage of the parameter
space. Consider, though that the diagonal matrix satisfies the LHS condition, and you can see that the guarantees
are not very strong. A better methods, similar to sudoku puzzles, would guarantee coverage in each block of the
matrix, but this is not yet implmeneted.

If use_point is True, then the current value of the parameters is returned as the first point in the population,
preserving the the LHS property.

bumps.initpop.random_init(n, initial, bounds, use_point=False, problem=None)
Generate a random population from the problem parameters.

Values are selected at random from the bounds of the problem according to the underlying probability density
of each parameter. Uniform semi-definite and indefinite bounds use the standard normal distribution for the
underlying probability, with a scale factor determined by the initial value of the parameter.

If use_point is True, then the current value of the parameters is returned as the first point in the population.
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4.14 lsqerror - Least squares eorror analysis

chol_cov Given the cholesky decomposition of the Hessian matrix
H, compute the covariance matrix 𝐶 = 𝐻−1

chol_stderr Return parameter uncertainty from the Cholesky decom-
position of the Hessian matrix, as returned, e.g., from
the quasi-Newton optimizer BFGS or as calculated from
perturbed_hessian() on the output of hessian()
applied to the cost function problem.nllf.

comb n choose r combination function
corr Convert covariance matrix 𝐶 to correlation matrix 𝑅2.
demo_hessian

demo_jacobian

demo_stderr_hilbert

demo_stderr_perturbed

gradient

hessian Returns the derivative wrt to the fit parameters at point
p.

hessian_cov Given Hessian H, return the covariance matrix inv(H).
hilbert Generate ill-conditioned Hilbert matrix of size n x n
hilbertinv Analytical inverse for ill-conditioned Hilbert matrix of

size n x n
jacobian Returns the derivative wrt the fit parameters at point p.
jacobian_cov Given Jacobian J, return the covariance matrix inv(J'J).
max_correlation Return the maximum correlation coefficient for any pair

of variables in correlation matrix Rsq.
perturbed_hessian DEPRECATED Numerical testing has shown that the

perturbed Hessian is too aggressive with its perturba-
tion, and it is distorting the error too much, so use hes-
sian_cov(H) instead.

stderr Return parameter uncertainty from the covariance ma-
trix C.

Least squares error analysis.

Given a data set with gaussian uncertainty on the points, and a model which is differentiable at the minimum, the
parameter uncertainty can be estimated from the covariance matrix at the minimum. The model and data are wrapped
in a problem object, which must define the following methods:

getp() get the current value of the model
setp(p) set a new value in the model
nllf(p) negative log likelihood function
residuals(p) residuals around its current value
bounds() get the bounds on the parameter p [optional]

jacobian() computes the Jacobian matrix 𝐽 using numerical differentiation on residuals. Derivatives are computed
using the center point formula, with two evaluations per dimension. If the problem has analytic derivatives with respect
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to the fitting parameters available, then these should be used to compute the Jacobian instead.

hessian() computes the Hessian matrix 𝐻 using numerical differentiation on nllf.

jacobian_cov() takes the Jacobian and computes the covariance matrix 𝐶. hessian_cov() takes the Hessian and
computes the covariance matrix 𝐶.

corr() uses the off-diagonal elements of 𝐶 to compute correlation coefficients 𝑅2
𝑖𝑗 between the parameters.

stderr() computes the uncertain 𝜎𝑖 from covariance matrix 𝐶, assuming that the 𝐶diag contains 𝜎2
𝑖 , which should be

the case for functions which are approximately linear near the minimum.

max_correlation() takes 𝑅2 and returns the maximum correlation.

The user should be shown the uncertainty 𝜎𝑖 for each parameter, and if there are strong parameter correlations (e.g.,
𝑅2

max > 0.2), the correlation matrix as well.

The bounds method for the problem is optional, and is used only to determine the step size needed for the numerical
derivative. If bounds are not present and finite, the current value for the parameter is used as a basis to estimate step
size.

bumps.lsqerror.chol_cov(L)
Given the cholesky decomposition of the Hessian matrix H, compute the covariance matrix 𝐶 = 𝐻−1

Warning: assumes H = L@L.T (numpy default) not H = U.T@U (scipy default).

bumps.lsqerror.chol_stderr(L)
Return parameter uncertainty from the Cholesky decomposition of the Hessian matrix, as returned, e.g., from
the quasi-Newton optimizer BFGS or as calculated from perturbed_hessian() on the output of hessian()
applied to the cost function problem.nllf.

Note that this calls chol_cov to compute the inverse from the Cholesky decomposition, so use stderr(C) if you
are already computing C = chol_cov().

Warning: assumes H = L@L.T (numpy default) not H = U.T@U (scipy default).

bumps.lsqerror.comb(n, r)
n choose r combination function

bumps.lsqerror.corr(C)
Convert covariance matrix 𝐶 to correlation matrix 𝑅2.

Uses 𝑅 = 𝐷−1𝐶𝐷−1 where 𝐷 is the square root of the diagonal of the covariance matrix, or the standard error
of each variable.

bumps.lsqerror.demo_hessian()

bumps.lsqerror.demo_jacobian()

bumps.lsqerror.demo_stderr_hilbert(n=5)

bumps.lsqerror.demo_stderr_perturbed()

bumps.lsqerror.gradient(problem, p=None, step=None)

bumps.lsqerror.hessian(problem, p=None, step=None)
Returns the derivative wrt to the fit parameters at point p.

The current point is preserved.
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bumps.lsqerror.hessian_cov(H, tol=1e-15)
Given Hessian H, return the covariance matrix inv(H).

We provide some protection against singular matrices by setting singular values smaller than tolerance tol (rela-
tive to the largest singular value) to zero (see np.linalg.pinv for details).

bumps.lsqerror.hilbert(n)
Generate ill-conditioned Hilbert matrix of size n x n

bumps.lsqerror.hilbertinv(n)
Analytical inverse for ill-conditioned Hilbert matrix of size n x n

bumps.lsqerror.jacobian(problem, p=None, step=None)
Returns the derivative wrt the fit parameters at point p.

Numeric derivatives are calculated based on step, where step is the portion of the total range for parameter j, or
the portion of point value p_j if the range on parameter j is infinite.

The current point is preserved.

Note that the problem.residuals() method should not reuse memory for the returned value otherwise the derivative
calculation (f(x+dx) - f(x))/dx will always be zero. The returned value need not be 1D, but it should be contiguous
so that it can be reshaped to 1D without an extra copy. This will only be an issue for very large datasets.

bumps.lsqerror.jacobian_cov(J, tol=1e-08)
Given Jacobian J, return the covariance matrix inv(J’J).

We provide some protection against singular matrices by setting singular values smaller than tolerance tol to the
tolerance value.

bumps.lsqerror.max_correlation(Rsq)
Return the maximum correlation coefficient for any pair of variables in correlation matrix Rsq.

bumps.lsqerror.perturbed_hessian(H, scale=None)
DEPRECATED Numerical testing has shown that the perturbed Hessian is too aggressive with its perturbation,
and it is distorting the error too much, so use hessian_cov(H) instead.

Adjust Hessian matrix to be positive definite.

Returns the adjusted Hessian and its Cholesky decomposition.

bumps.lsqerror.stderr(C)
Return parameter uncertainty from the covariance matrix C.

This is just the square root of the diagonal, without any correction for covariance.

If measurement uncertainty is unknown, scale the returned uncertainties by
√︀
𝜒2
𝑁 , where 𝜒2

𝑁 is the sum squared
residuals divided by the degrees of freedom. This will match the uncertainty on the parameters to the observed
scatter assuming the model is correct and the fit is optimal. This will also be appropriate for weighted fits when
the true measurement uncertainty dy_i is known up to a scaling constant for all y_i.

Standard error on scipy.optimize.curve_fit always includes the chisq correction, whereas scipy.optimize.leastsq
never does.
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4.15 mapper - Parallel processing implementations

AMQPMapper

MPIMapper

MPMapper

SerialMapper

can_pickle Returns True if problem can be pickled.
nice

setpriority Set The Priority of a Windows Process.

Parallel and serial mapper implementations.

The API is a bit crufty since interprocess communication has evolved from the original implementation. And the names
are misleading.

Usage:

Mapper.start_worker(problem)
mapper = Mapper.start_mapper(problem, None, cpus)
result = mapper(points)
...
mapper = Mapper.start_mapper(problem, None, cpus)
result = mapper(points)
Mapper.stop_mapper(mapper)

class bumps.mapper.AMQPMapper

Bases: object

static start_mapper(problem, modelargs=None, cpus=0)

static start_worker(problem)

static stop_mapper(mapper)

class bumps.mapper.MPIMapper

Bases: object

static start_mapper(problem, modelargs=None, cpus=0)

static start_worker(problem)

Start the worker process.

For the main process this does nothing and returns immediately. The worker processes never return.

Each worker sits in a loop waiting for the next batch of points for the problem, or for the next problem. Set
t problem is set to None, then exit the process and never

static stop_mapper(mapper)

class bumps.mapper.MPMapper

Bases: object
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manager = None

namespace = None

pool = None

problem_id = 0

static start_mapper(problem, modelargs=None, cpus=0)

static start_worker(problem)

static stop_mapper(mapper)

class bumps.mapper.SerialMapper

Bases: object

static start_mapper(problem, modelargs=None, cpus=0)

static start_worker(problem)

static stop_mapper(mapper)

bumps.mapper.can_pickle(problem, check=False)
Returns True if problem can be pickled.

If this method returns False then MPMapper cannot be used and SerialMapper should be used instead.

If check is True then call nllf() on the duplicated object as a “smoke test” to verify that the function will run after
copying. This is not foolproof. For example, access to a database may work in the duplicated object because the
connection is open and available in the current process, but it will fail when trying to run on a remote machine.

bumps.mapper.nice()

bumps.mapper.setpriority(pid=None, priority=1)
Set The Priority of a Windows Process. Priority is a value between 0-5 where 2 is normal priority and 5 is
maximum. Default sets the priority of the current python process but can take any valid process ID.

4.16 monitor - Monitor fit progress

Monitor Base class for monitors.
Logger Keeps a record of all values for the desired fields.
TimedUpdate Indicate progress every n seconds.

Progress monitors.

Process monitors accept a bumps.history.History object each cycle and perform some sort of work.

Monitors have a Monitor.config_history() method which calls history.requires() to set the amount of history it
needs and a Monitor.__call__ method which takes the updated history and generates the monitor output.

Most monitors are subclassed from TimedUpdate to set a minimum time between updates and to only show updates
when there is an improvement. The TimedUpdate subclasses must override TimedUpdate.show_progress() and
TimedUpdate.show_improvement() to control the output form. History must be updated with time, value, point
and step. The bumps.fitters.MonitorRunner class manages history and updates.

124 Chapter 4. Reference: bumps



Bumps: Curve Fitting and Uncertainty Analysis, Release 0.9.1

class bumps.monitor.Logger(fields=(), table=None)
Bases: Monitor

Keeps a record of all values for the desired fields.

fields is a list of history fields to store.

table is an object with a store(field=value,. . . ) method, which gets the current value of each field every time the
history is updated.

Call config_history() with the bumps.history.History object before starting so that the correct fields
are stored.

config_history(history)
Make sure history records each logged field.

class bumps.monitor.Monitor

Bases: object

Base class for monitors.

config_history(history)
Indicate which fields are needed by the monitor and for what duration.

class bumps.monitor.TimedUpdate(progress=60, improvement=5)
Bases: Monitor

Indicate progress every n seconds.

The process should provide time, value, point, and step to the history update. Call config_history() with the
bumps.history.History object before starting so that these fields are stored.

progress is the number of seconds to go before showing progress, such as time or step number.

improvement is the number of seconds to go before showing improvements to value.

By default, the update only prints step number and improved value. Subclass TimedUpdate with replaced
show_progress() and show_improvement() to trigger GUI updates or show parameter values.

config_history(history)
Indicate which fields are needed by the monitor and for what duration.

show_improvement(history)

show_progress(history)

4.17 mono - Freeform - Monotonic Spline

monospline Monotonic cubic hermite interpolation.
hermite Computes the cubic hermite polynomial 𝑝(𝑥𝑡).
count_inflections Count the number of inflection points in a curve.
plot_inflections Plot inflection points in a curve.

Monotonic spline modeling.

bumps.mono.count_inflections(x, y)
Count the number of inflection points in a curve.
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bumps.mono.hermite(x, y, m, xt)
Computes the cubic hermite polynomial 𝑝(𝑥𝑡).

The polynomial goes through all points (𝑥𝑖, 𝑦𝑖) with slope 𝑚𝑖 at the point.

bumps.mono.monospline(x, y, xt)
Monotonic cubic hermite interpolation.

Returns 𝑝(𝑥𝑡) where 𝑝(𝑥𝑖) = 𝑦𝑖 and 𝑝(𝑥) ≤ 𝑝(𝑥𝑖) if 𝑦𝑖 ≤ 𝑦𝑖+1 for all 𝑦𝑖. Also works for decreasing values 𝑦,
resulting in decreasing 𝑝(𝑥). If 𝑦 is not monotonic, then 𝑝(𝑥) may peak higher than any 𝑦, so this function is not
suitable for a strict constraint on the interpolated function when 𝑦 values are unconstrained.

http://en.wikipedia.org/wiki/Monotone_cubic_interpolation

bumps.mono.plot_inflections(x, y)
Plot inflection points in a curve.

4.18 names - External interface

Exported names.

In model definition scripts, rather than importing symbols one by one, you can simply perform:

from bumps.names import *

This is bad style for library and applications but convenient for model scripts.

The following symbols are defined:

• np for the numpy array package

• sys for the python sys module

• inf for infinity

• pmath for parameter expressions like 2*pmath.sin(M.theta)

• Parameter for defining parameters

• FreeVariables for defining shared parameters

• Distribution for indicating prior
probability for a model parameter

• Curve for defining models from functions

• PoissonCurve for modelling data with Poisson uncertainty

• PDF for fitting a probability distribution directly

• FitProblem for defining the fit (see
BaseFitProblem or MultiFitProblem for details, depending on whether you are fitting a single model
or multiple models simultaneously).
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4.19 options - Command line options processor

BumpsOpts Option parser for bumps.
ChoiceList

FIT_CONFIG FitConfig singleton for the common case in which only
one config is needed.

FitConfig Fit settings configuration object.
ParseOpts Options parser.
getopts Process command line options.
parse_int

yesno

Option parser for bumps command line

class bumps.options.BumpsOpts(args)
Bases: ParseOpts

Option parser for bumps.

FLAGS = {'batch', 'chisq', 'cov', 'edit', 'err', 'i', 'keep_best', 'mpi',
'multiprocessing-fork', 'noshow', 'overwrite', 'preview', 'profile', 'remote',
'shake', 'simrandom', 'simulate', 'staj', 'stepmon', 'time_model', 'worker'}

IMPLICIT_VALUES = {'entropy': 'llf', 'parallel': '0', 'resume': '-'}

Value to use if a value flag is is present without ‘=’. This is different from the default value if the flag is not
present, which is the default value set in the calling class.

MINARGS = 1

PLOTTERS = ('linear', 'log', 'residuals')

TRANSPORTS = ('amqp', 'mp', 'mpi', 'celery')
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USAGE = 'Usage: bumps [options] modelfile [modelargs]\n\nThe modelfile is a Python
script (i.e., a series of Python commands)\nwhich sets up the data, the models, and
the fittable parameters.\nThe model arguments are available in the modelfile as
sys.argv[1:].\nModel arguments may not start with \'-\'.\n\nOptions:\n\n --preview\n
display model but do not perform a fitting operation\n --pars=filename or store
path\n initial parameter values; fit results are saved as path/<modelname>.par\n
--plot=log [linear|log|residuals]\n type of plot to display\n --trim=true\n trim any
remaining burn before displaying plots [dream only]\n --simulate\n simulate a
dataset using the initial problem parameters\n --simrandom\n simulate a dataset
using random problem parameters\n --shake\n set random parameters before fitting\n
--noise=5%\n percent noise to add to the simulated data\n --seed=integer\n random
number seed\n --err\n show uncertainty estimate from curvature at the minimum\n
--cov\n show the covariance matrix for the model when done\n
--entropy=gmm|mvn|wnn|llf\n compute entropy on posterior distribution [dream only]\n
--staj\n output staj file when done [Refl1D only]\n --edit\n start the gui\n
--view=linear|log\n one of the predefined problem views; reflectometry also has
fresnel,\n logfresnel, q4 and residuals\n\n --store=path\n output directory for
plots and models\n --overwrite\n if store already exists, replace it\n --resume=path
[dream]\n resume a fit from previous stored state; if path is \'-\' then use the\n
path given by --store, if it exists\n --parallel=n\n run fit using multiprocessing
for parallelism; use --parallel=0 for all cpus\n --mpi\n run fit using MPI for
parallelism (use command "mpirun -n cpus ...")\n --batch\n batch mode; save output
in .mon file and don\'t show plots after fit\n --noshow\n semi-batch; send output to
console but don\'t show plots after fit\n --time=inf\n run for a maximum number of
hours\n --checkpoint=0\n save fit state every n hours, or 0 for no checkpoints\n\n
--fit=amoeba [amoeba|de|dream|lm|newton|pt|scipy.leastsq]\n fitting engine to use;
see manual for details\n --steps=0 [amoeba|de|dream|lm|newton|pt|scipy.leastsq]\n
number of fit iterations after any burn-in time; use samples if steps=0\n
--samples=1e4 [dream]\n set steps=samples/(pop*#pars) so the target number of
samples is drawn\n --xtol=1e-4 [de, amoeba]\n minimum population diameter\n
--ftol=1e-4 [de, amoeba]\n minimum population flatness\n --alpha=0.0 [dream]\n
p-level for rejecting convergence; with fewer samples use a stricter\n stopping
condition, such as --alpha=0.01 --samples=20000\n --outliers=none [dream]\n name of
test used for removing outlier chains every N samples:\n none: no outlier removal\n
iqr: use interquartile range on likelihood\n grubbs: use t-test on likelihood\n
mahal: use distance from parameter values on the best chain\n --pop=10 [dream, de,
rl, ps]\n population size is pop times number of fitted parameters; if pop is\n
negative, then set population size to -pop.\n --burn=100 [dream, pt]\n number of
burn-in iterations before accumulating stats\n --thin=1 [dream]\n number of fit
iterations between steps\n --nT=25\n --Tmin=0.1\n --Tmax=10 [pt]\n temperatures
vector; use a higher maximum temperature and a larger\n nT if your fit is getting
stuck in local minima\n --CR=0.9 [de, rl, pt]\n crossover ratio for population
mixing\n --starts=1 [newton, rl, amoeba]\n number of times to run the fit from
random starting points.\n --keep_best\n when running with multiple starts, restart
from a point near the\n last minimum rather than using a completely random starting
point.\n --init=eps [dream]\n population initialization method:\n eps: ball around
initial parameter set\n lhs: latin hypercube sampling\n cov: normally distributed
according to covariance matrix\n random: uniformly distributed within parameter
ranges\n --stepmon\n show details for each step\n --resynth=0\n run resynthesis
error analysis for n generations\n\n --time_model\n run the model --steps times in
order to estimate total run time.\n --profile\n run the python profiler on the
model; use --steps to run multiple\n models for better statistics\n --chisq\n print
the model description and chisq value and exit\n -m/-c/-p command\n run the python
interpreter with bumps on the path:\n m: command is a module such as bumps.cli, run
as __main__\n c: command is a python one-line command\n p: command is the name of
a python script\n -i\n start the interactive interpreter\n -?/-h/--help\n display
this help\n'128 Chapter 4. Reference: bumps
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VALUES = {'CR', 'F', 'Tmax', 'Tmin', 'alpha', 'burn', 'c', 'checkpoint', 'entropy',
'fit', 'ftol', 'init', 'm', 'nT', 'noise', 'notify', 'outliers', 'p', 'parallel',
'pars', 'plot', 'pop', 'queue', 'radius', 'resume', 'resynth', 'samples', 'seed',
'starts', 'steps', 'stop', 'store', 'thin', 'time', 'transport', 'trim', 'view',
'xtol'}

alpha = 0.0

checkpoint = '0'

entropy = None

property fit

fit_config = <bumps.options.FitConfig object>

meshsteps = 40

noise = '5'

notify = ''

parallel = ''

pars = None

property plot

queue = None

resume = None

resynth = '0'

seed = ''

starts = '1'

store = None

time = 'inf'

property transport

trim = 'true'

view = None

class bumps.options.ChoiceList(*choices)
Bases: object

bumps.options.FIT_CONFIG = <bumps.options.FitConfig object>

FitConfig singleton for the common case in which only one config is needed. There may be other use cases, such
as saving the fit config along with the rest of the state so that on resume the fit options are restored, but in that
case the application will not be using the singleton.
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class bumps.options.FitConfig(default='amoeba', active=['amoeba', 'de', 'dream', 'newton', 'scipy.leastsq',
'lm'])

Bases: object

Fit settings configuration object.

The command line parser will define a FitConfig object which contains the fitter that was given on the command
line and all its options. For embedded bumps, which does not use the bumps command line parser, a new
FitConfig object can be created with its own selected options.

Attributes

ids = [id, id, . . . ] is a list available fitters in “preferred” order. Depending on usage, you may want to sort them,
or alternatively, sort by long name with [id for _,id in sorted((v,k) for k,v in self.names]

fitters = {id: fitclasss} maps ids to fitters.

names = {id: name}* maps ids to long names

settings = {id: [(option, default), . . . ]} maps ids to default settings. The order of the settings is the preferred
order to present the settings to the user in a GUI dialog for example.

values = {id: {option: value, . . . }} maps ids to the settings for each fitter. Note that in the GUI, different fitters
may have there settings recorded and preserved even when not selected.

active_ids = [id, id, . . . ] is the list of fitters to show the user in a GUI dialog for example. The other fitters should
still be available from the command line.

default_id = id is the fitter to use by default.

selected_id = id is the fitter that was selected, either by command line or by GUI.

selected_values = {option: value} returns the settings for the current fitter.

selected_name = name returns the name of the selected fitter.

selected_fitter = FitClass returns the class of the selected fitter.

property selected_fitter

property selected_name

property selected_values

set_from_cli(opts)
Use the BumpsOpts command line parser values to set the selected fitter and its configuration options.

class bumps.options.ParseOpts(args)
Bases: object

Options parser.

Subclass should define MINARGS, FLAGS, VALUES and USAGE.

MINARGS is the minimum number of positional arguments.

FLAGS is a set of arguments that may be present or absent.

VALUES is a set of arguments that take values. Value checking can be done in the setter for each argument in
the set. Default values should be set in the corresponding object attribute.

USAGE is the help string to display for option “help”.

The constructor will invoke the command line parser, leaving the values set by the command line as attribute
values. Flag options will be True or False.

130 Chapter 4. Reference: bumps



Bumps: Curve Fitting and Uncertainty Analysis, Release 0.9.1

FLAGS = {}

IMPLICIT_VALUES = {}

Value to use if a value flag is is present without ‘=’. This is different from the default value if the flag is not
present, which is the default value set in the calling class.

MINARGS = 0

USAGE = ''

VALUES = {}

bumps.options.getopts()

Process command line options.

Option values will be stored as attributes in the returned object.

bumps.options.parse_int(value)

bumps.options.yesno(value)

4.20 parameter - Optimization parameter definition

Alias Parameter alias.
BaseParameter Root of the parameter class, defining arithmetic on pa-

rameters
Constant An unmodifiable value.
Constraint

FreeVariables A collection of parameter sets for a group of models.
Function Delayed function evaluator.
IntegerParameter

Operator Parameter operator
Parameter A parameter is a symbolic value.
ParameterSet A parameter that depends on the model.
Reference Create an adaptor so that a model attribute can be treated

as if it were a parameter.
acosd Return the arc cosine (measured in in degrees) of x.
arccosd Return the arc cosine (measured in in degrees) of x.
arcsind Return the arc sine (measured in in degrees) of x.
arctan2d Return the arc tangent (measured in in degrees) of y/x.
arctand Return the arc tangent (measured in in degrees) of x.
asind Return the arc sine (measured in in degrees) of x.
atan2d Return the arc tangent (measured in in degrees) of y/x.
atand Return the arc tangent (measured in in degrees) of x.
boxed_function

cosd Return the cosine of x (measured in in degrees).
current

continues on next page
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Table 1 – continued from previous page
fittable Return the list of fittable parameters in no paraticular or-

der.
flatten

format Format parameter set for printing.
function Convert a function into a delayed evaluator.
randomize Set random values to the parameters in the parameter set,

with values chosen according to the bounds.
sind Return the sine of x (measured in in degrees).
substitute Return structure a with values substituted for all param-

eters.
summarize Return a stylized list of parameter names and values with

range bars suitable for printing.
tand Return the tangent of x (measured in in degrees).
test_operator

to_dict

unique Return the unique set of parameters
varying Return the list of fitted parameters in the model.

Fitting parameter objects.

Parameters are a big part of the interface between the model and the fitting engine. By saving and retrieving values and
ranges from the parameter, the fitting engine does not need to be aware of the structure of the model.

Users can also perform calculations with parameters, tying together different parts of the model, or different models.

class bumps.parameter.Alias(obj, attr, p=None, name=None)
Bases: object

Parameter alias.

Rather than modifying a model to contain a parameter slot, allow the parameter to exist outside the model. The
resulting parameter will have the full parameter semantics, including the ability to replace a fixed value with a
parameter expression.

Deprecated Reference does this better.

parameters()

to_dict()

update()

class bumps.parameter.BaseParameter

Bases: object

Root of the parameter class, defining arithmetic on parameters

arccos(**kw)
Return the arc cosine (measured in radians) of x.

The result is between 0 and pi.

arccosh(**kw)
Return the inverse hyperbolic cosine of x.
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arcsin(**kw)
Return the arc sine (measured in radians) of x.

The result is between -pi/2 and pi/2.

arcsinh(**kw)
Return the inverse hyperbolic sine of x.

arctan(**kw)
Return the arc tangent (measured in radians) of x.

The result is between -pi/2 and pi/2.

arctanh(**kw)
Return the inverse hyperbolic tangent of x.

property bounds

Fit bounds

ceil(**kw)
Return the ceiling of x as an Integral.

This is the smallest integer >= x.

cos(**kw)
Return the cosine of x (measured in radians).

cosh(**kw)
Return the hyperbolic cosine of x.

degrees(**kw)
Convert angle x from radians to degrees.

dev(std, mean=None, limits=None, sigma=None, mu=None)
Allow the parameter to vary according to a normal distribution, with deviations from the mean added to
the overall cost function for the model.

If mean is None, then it defaults to the current parameter value.

If limits are provide, then use a truncated normal distribution.

Note: sigma and mu have been replaced by std and mean, but are left in for backward compatibility.

discrete = False

exp(**kw)
Return e raised to the power of x.

expm1(**kw)
Return exp(x)-1.

This function avoids the loss of precision involved in the direct evaluation of exp(x)-1 for small x.

fittable = False

fixed = True

floor(**kw)
Return the floor of x as an Integral.

This is the largest integer <= x.
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format()

Format the parameter, value and range as a string.

log(x[, base=math.e])
Return the logarithm of x to the given base.

If the base not specified, returns the natural logarithm (base e) of x.

log10(**kw)
Return the base 10 logarithm of x.

log1p(**kw)
Return the natural logarithm of 1+x (base e).

The result is computed in a way which is accurate for x near zero.

name = None

nllf()

Return -log(P) for the current parameter value.

parameters()

pdf(dist)
Allow the parameter to vary according to any continuous scipy.stats distribution.

pm(plus, minus=None, limits=None)
Allow the parameter to vary as value +/- delta.

pm(delta) -> [value-delta, value+delta]

pm(plus, minus) -> [value+minus, value+plus]

In the plus/minus form, one of the numbers should be plus and the other minus, but it doesn’t matter which.

If limits are provided, bound the end points of the range to lie within the limits.

The resulting range is converted to “nice” numbers.

pmp(plus, minus=None, limits=None)
Allow the parameter to vary as value +/- percent.

pmp(percent) -> [value*(1-percent/100), value*(1+percent/100)]

pmp(plus, minus) -> [value*(1+minus/100), value*(1+plus/100)]

In the plus/minus form, one of the numbers should be plus and the other minus, but it doesn’t matter which.

If limits are provided, bound the end points of the range to lie within the limits.

The resulting range is converted to “nice” numbers.

radians(**kw)
Convert angle x from degrees to radians.

range(low, high)
Allow the parameter to vary within the given range.

residual()

Return the z score equivalent for the current parameter value.

That is, the given the value of the parameter in the underlying distribution, find the equivalent value in
the standard normal. For a gaussian, this is the z score, in which you subtract the mean and divide by the
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standard deviation to get the number of sigmas away from the mean. For other distributions, you need to
compute the cdf of value in the parameter distribution and invert it using the ppf from the standard normal
distribution.

sin(**kw)
Return the sine of x (measured in radians).

sinh(**kw)
Return the hyperbolic sine of x.

soft_range(low, high, std)
Allow the parameter to vary within the given range, or with Gaussian probability, stray from the range.

sqrt(**kw)
Return the square root of x.

tan(**kw)
Return the tangent of x (measured in radians).

tanh(**kw)
Return the hyperbolic tangent of x.

to_dict()

Return a dict represention of the object.

trunc(**kw)
Truncates the Real x to the nearest Integral toward 0.

Uses the __trunc__ magic method.

valid()

Return true if the parameter is within the valid range.

value = None

class bumps.parameter.Constant(value, name=None)
Bases: BaseParameter

An unmodifiable value.

arccos(**kw)
Return the arc cosine (measured in radians) of x.

The result is between 0 and pi.

arccosh(**kw)
Return the inverse hyperbolic cosine of x.

arcsin(**kw)
Return the arc sine (measured in radians) of x.

The result is between -pi/2 and pi/2.

arcsinh(**kw)
Return the inverse hyperbolic sine of x.

arctan(**kw)
Return the arc tangent (measured in radians) of x.

The result is between -pi/2 and pi/2.
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arctanh(**kw)
Return the inverse hyperbolic tangent of x.

property bounds

Fit bounds

ceil(**kw)
Return the ceiling of x as an Integral.

This is the smallest integer >= x.

cos(**kw)
Return the cosine of x (measured in radians).

cosh(**kw)
Return the hyperbolic cosine of x.

degrees(**kw)
Convert angle x from radians to degrees.

dev(std, mean=None, limits=None, sigma=None, mu=None)
Allow the parameter to vary according to a normal distribution, with deviations from the mean added to
the overall cost function for the model.

If mean is None, then it defaults to the current parameter value.

If limits are provide, then use a truncated normal distribution.

Note: sigma and mu have been replaced by std and mean, but are left in for backward compatibility.

discrete = False

exp(**kw)
Return e raised to the power of x.

expm1(**kw)
Return exp(x)-1.

This function avoids the loss of precision involved in the direct evaluation of exp(x)-1 for small x.

fittable = False

fixed = True

floor(**kw)
Return the floor of x as an Integral.

This is the largest integer <= x.

format()

Format the parameter, value and range as a string.

log(x[, base=math.e])
Return the logarithm of x to the given base.

If the base not specified, returns the natural logarithm (base e) of x.

log10(**kw)
Return the base 10 logarithm of x.
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log1p(**kw)
Return the natural logarithm of 1+x (base e).

The result is computed in a way which is accurate for x near zero.

name = None

nllf()

Return -log(P) for the current parameter value.

parameters()

pdf(dist)
Allow the parameter to vary according to any continuous scipy.stats distribution.

pm(plus, minus=None, limits=None)
Allow the parameter to vary as value +/- delta.

pm(delta) -> [value-delta, value+delta]

pm(plus, minus) -> [value+minus, value+plus]

In the plus/minus form, one of the numbers should be plus and the other minus, but it doesn’t matter which.

If limits are provided, bound the end points of the range to lie within the limits.

The resulting range is converted to “nice” numbers.

pmp(plus, minus=None, limits=None)
Allow the parameter to vary as value +/- percent.

pmp(percent) -> [value*(1-percent/100), value*(1+percent/100)]

pmp(plus, minus) -> [value*(1+minus/100), value*(1+plus/100)]

In the plus/minus form, one of the numbers should be plus and the other minus, but it doesn’t matter which.

If limits are provided, bound the end points of the range to lie within the limits.

The resulting range is converted to “nice” numbers.

radians(**kw)
Convert angle x from degrees to radians.

range(low, high)
Allow the parameter to vary within the given range.

residual()

Return the z score equivalent for the current parameter value.

That is, the given the value of the parameter in the underlying distribution, find the equivalent value in
the standard normal. For a gaussian, this is the z score, in which you subtract the mean and divide by the
standard deviation to get the number of sigmas away from the mean. For other distributions, you need to
compute the cdf of value in the parameter distribution and invert it using the ppf from the standard normal
distribution.

sin(**kw)
Return the sine of x (measured in radians).

sinh(**kw)
Return the hyperbolic sine of x.
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soft_range(low, high, std)
Allow the parameter to vary within the given range, or with Gaussian probability, stray from the range.

sqrt(**kw)
Return the square root of x.

tan(**kw)
Return the tangent of x (measured in radians).

tanh(**kw)
Return the hyperbolic tangent of x.

to_dict()

Return a dict represention of the object.

trunc(**kw)
Truncates the Real x to the nearest Integral toward 0.

Uses the __trunc__ magic method.

valid()

Return true if the parameter is within the valid range.

property value

class bumps.parameter.Constraint(a, b, op_name, op_str='')
Bases: object

class bumps.parameter.FreeVariables(names=None, **kw)
Bases: object

A collection of parameter sets for a group of models.

names is the set of model names.

The parameters themselves are specified as key=value pairs, with key being the attribute name which is used
to retrieve the parameter set and value being a Parameter containing the parameter that is shared between the
models.

In order to evaluate the log likelihood of all models simultaneously, the fitting program will need to call set_model
with the model index for each model in turn in order to substitute the values from the free variables into the model.
This allows us to share a common sample across multiple data sets, with each dataset having its own values for
some of the sample parameters. The alternative is to copy the entire sample structure, sharing references to
common parameters and creating new parameters for each model for the free parameters. Setting up these copies
was inconvenient.

get_model(i)
Get the parameters for model i as {reference: substitution}

parameters()

Return the set of free variables for all the models.

set_model(i)
Set the reference parameters for model i.

to_dict()
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class bumps.parameter.Function(op, *args, **kw)
Bases: BaseParameter

Delayed function evaluator.

f.value evaluates the function with the values of the parameter arguments at the time f.value is referenced rather
than when the function was invoked.

arccos(**kw)
Return the arc cosine (measured in radians) of x.

The result is between 0 and pi.

arccosh(**kw)
Return the inverse hyperbolic cosine of x.

arcsin(**kw)
Return the arc sine (measured in radians) of x.

The result is between -pi/2 and pi/2.

arcsinh(**kw)
Return the inverse hyperbolic sine of x.

arctan(**kw)
Return the arc tangent (measured in radians) of x.

The result is between -pi/2 and pi/2.

arctanh(**kw)
Return the inverse hyperbolic tangent of x.

args

property bounds

Fit bounds

ceil(**kw)
Return the ceiling of x as an Integral.

This is the smallest integer >= x.

cos(**kw)
Return the cosine of x (measured in radians).

cosh(**kw)
Return the hyperbolic cosine of x.

degrees(**kw)
Convert angle x from radians to degrees.

dev(std, mean=None, limits=None, sigma=None, mu=None)
Allow the parameter to vary according to a normal distribution, with deviations from the mean added to
the overall cost function for the model.

If mean is None, then it defaults to the current parameter value.

If limits are provide, then use a truncated normal distribution.

Note: sigma and mu have been replaced by std and mean, but are left in for backward compatibility.
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discrete = False

exp(**kw)
Return e raised to the power of x.

expm1(**kw)
Return exp(x)-1.

This function avoids the loss of precision involved in the direct evaluation of exp(x)-1 for small x.

fittable = False

fixed = True

floor(**kw)
Return the floor of x as an Integral.

This is the largest integer <= x.

format()

Format the parameter, value and range as a string.

kw

log(x[, base=math.e])
Return the logarithm of x to the given base.

If the base not specified, returns the natural logarithm (base e) of x.

log10(**kw)
Return the base 10 logarithm of x.

log1p(**kw)
Return the natural logarithm of 1+x (base e).

The result is computed in a way which is accurate for x near zero.

name = None

nllf()

Return -log(P) for the current parameter value.

op

parameters()

pdf(dist)
Allow the parameter to vary according to any continuous scipy.stats distribution.

pm(plus, minus=None, limits=None)
Allow the parameter to vary as value +/- delta.

pm(delta) -> [value-delta, value+delta]

pm(plus, minus) -> [value+minus, value+plus]

In the plus/minus form, one of the numbers should be plus and the other minus, but it doesn’t matter which.

If limits are provided, bound the end points of the range to lie within the limits.

The resulting range is converted to “nice” numbers.
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pmp(plus, minus=None, limits=None)
Allow the parameter to vary as value +/- percent.

pmp(percent) -> [value*(1-percent/100), value*(1+percent/100)]

pmp(plus, minus) -> [value*(1+minus/100), value*(1+plus/100)]

In the plus/minus form, one of the numbers should be plus and the other minus, but it doesn’t matter which.

If limits are provided, bound the end points of the range to lie within the limits.

The resulting range is converted to “nice” numbers.

radians(**kw)
Convert angle x from degrees to radians.

range(low, high)
Allow the parameter to vary within the given range.

residual()

Return the z score equivalent for the current parameter value.

That is, the given the value of the parameter in the underlying distribution, find the equivalent value in
the standard normal. For a gaussian, this is the z score, in which you subtract the mean and divide by the
standard deviation to get the number of sigmas away from the mean. For other distributions, you need to
compute the cdf of value in the parameter distribution and invert it using the ppf from the standard normal
distribution.

sin(**kw)
Return the sine of x (measured in radians).

sinh(**kw)
Return the hyperbolic sine of x.

soft_range(low, high, std)
Allow the parameter to vary within the given range, or with Gaussian probability, stray from the range.

sqrt(**kw)
Return the square root of x.

tan(**kw)
Return the tangent of x (measured in radians).

tanh(**kw)
Return the hyperbolic tangent of x.

to_dict()

Return a dict represention of the object.

trunc(**kw)
Truncates the Real x to the nearest Integral toward 0.

Uses the __trunc__ magic method.

valid()

Return true if the parameter is within the valid range.

property value

class bumps.parameter.IntegerParameter(value=None, bounds=None, fixed=None, name=None, **kw)
Bases: Parameter
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arccos(**kw)
Return the arc cosine (measured in radians) of x.

The result is between 0 and pi.

arccosh(**kw)
Return the inverse hyperbolic cosine of x.

arcsin(**kw)
Return the arc sine (measured in radians) of x.

The result is between -pi/2 and pi/2.

arcsinh(**kw)
Return the inverse hyperbolic sine of x.

arctan(**kw)
Return the arc tangent (measured in radians) of x.

The result is between -pi/2 and pi/2.

arctanh(**kw)
Return the inverse hyperbolic tangent of x.

property bounds

Fit bounds

ceil(**kw)
Return the ceiling of x as an Integral.

This is the smallest integer >= x.

clip_set(value)
Set a new value for the parameter, clipping it to the bounds.

cos(**kw)
Return the cosine of x (measured in radians).

cosh(**kw)
Return the hyperbolic cosine of x.

classmethod default(value, **kw)
Create a new parameter with the value and kw attributes, or return the existing parameter if value is already
a parameter.

The attributes are the same as those for Parameter, or whatever subclass cls of Parameter is being created.

degrees(**kw)
Convert angle x from radians to degrees.

dev(std, mean=None, limits=None, sigma=None, mu=None)
Allow the parameter to vary according to a normal distribution, with deviations from the mean added to
the overall cost function for the model.

If mean is None, then it defaults to the current parameter value.

If limits are provide, then use a truncated normal distribution.

Note: sigma and mu have been replaced by std and mean, but are left in for backward compatibility.

discrete = True
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exp(**kw)
Return e raised to the power of x.

expm1(**kw)
Return exp(x)-1.

This function avoids the loss of precision involved in the direct evaluation of exp(x)-1 for small x.

feasible()

Value is within the limits defined by the model

fittable = True

fixed = True

floor(**kw)
Return the floor of x as an Integral.

This is the largest integer <= x.

format()

Format the parameter, value and range as a string.

log(x[, base=math.e])
Return the logarithm of x to the given base.

If the base not specified, returns the natural logarithm (base e) of x.

log10(**kw)
Return the base 10 logarithm of x.

log1p(**kw)
Return the natural logarithm of 1+x (base e).

The result is computed in a way which is accurate for x near zero.

name = None

nllf()

Return -log(P) for the current parameter value.

parameters()

pdf(dist)
Allow the parameter to vary according to any continuous scipy.stats distribution.

pm(plus, minus=None, limits=None)
Allow the parameter to vary as value +/- delta.

pm(delta) -> [value-delta, value+delta]

pm(plus, minus) -> [value+minus, value+plus]

In the plus/minus form, one of the numbers should be plus and the other minus, but it doesn’t matter which.

If limits are provided, bound the end points of the range to lie within the limits.

The resulting range is converted to “nice” numbers.
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pmp(plus, minus=None, limits=None)
Allow the parameter to vary as value +/- percent.

pmp(percent) -> [value*(1-percent/100), value*(1+percent/100)]

pmp(plus, minus) -> [value*(1+minus/100), value*(1+plus/100)]

In the plus/minus form, one of the numbers should be plus and the other minus, but it doesn’t matter which.

If limits are provided, bound the end points of the range to lie within the limits.

The resulting range is converted to “nice” numbers.

radians(**kw)
Convert angle x from degrees to radians.

randomize(rng=None)
Set a random value for the parameter.

range(low, high)
Allow the parameter to vary within the given range.

residual()

Return the z score equivalent for the current parameter value.

That is, the given the value of the parameter in the underlying distribution, find the equivalent value in
the standard normal. For a gaussian, this is the z score, in which you subtract the mean and divide by the
standard deviation to get the number of sigmas away from the mean. For other distributions, you need to
compute the cdf of value in the parameter distribution and invert it using the ppf from the standard normal
distribution.

set(value)
Set a new value for the parameter, ignoring the bounds.

sin(**kw)
Return the sine of x (measured in radians).

sinh(**kw)
Return the hyperbolic sine of x.

soft_range(low, high, std)
Allow the parameter to vary within the given range, or with Gaussian probability, stray from the range.

sqrt(**kw)
Return the square root of x.

tan(**kw)
Return the tangent of x (measured in radians).

tanh(**kw)
Return the hyperbolic tangent of x.

to_dict()

Return a dict represention of the object.

trunc(**kw)
Truncates the Real x to the nearest Integral toward 0.

Uses the __trunc__ magic method.
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valid()

Return true if the parameter is within the valid range.

property value

class bumps.parameter.Operator(a, b, op_name, op_str)
Bases: BaseParameter

Parameter operator

arccos(**kw)
Return the arc cosine (measured in radians) of x.

The result is between 0 and pi.

arccosh(**kw)
Return the inverse hyperbolic cosine of x.

arcsin(**kw)
Return the arc sine (measured in radians) of x.

The result is between -pi/2 and pi/2.

arcsinh(**kw)
Return the inverse hyperbolic sine of x.

arctan(**kw)
Return the arc tangent (measured in radians) of x.

The result is between -pi/2 and pi/2.

arctanh(**kw)
Return the inverse hyperbolic tangent of x.

property bounds

Fit bounds

ceil(**kw)
Return the ceiling of x as an Integral.

This is the smallest integer >= x.

cos(**kw)
Return the cosine of x (measured in radians).

cosh(**kw)
Return the hyperbolic cosine of x.

degrees(**kw)
Convert angle x from radians to degrees.

dev(std, mean=None, limits=None, sigma=None, mu=None)
Allow the parameter to vary according to a normal distribution, with deviations from the mean added to
the overall cost function for the model.

If mean is None, then it defaults to the current parameter value.

If limits are provide, then use a truncated normal distribution.

Note: sigma and mu have been replaced by std and mean, but are left in for backward compatibility.

4.20. parameter - Optimization parameter definition 145



Bumps: Curve Fitting and Uncertainty Analysis, Release 0.9.1

discrete = False

property dvalue

exp(**kw)
Return e raised to the power of x.

expm1(**kw)
Return exp(x)-1.

This function avoids the loss of precision involved in the direct evaluation of exp(x)-1 for small x.

fittable = False

fixed = True

floor(**kw)
Return the floor of x as an Integral.

This is the largest integer <= x.

format()

Format the parameter, value and range as a string.

log(x[, base=math.e])
Return the logarithm of x to the given base.

If the base not specified, returns the natural logarithm (base e) of x.

log10(**kw)
Return the base 10 logarithm of x.

log1p(**kw)
Return the natural logarithm of 1+x (base e).

The result is computed in a way which is accurate for x near zero.

name = None

nllf()

Return -log(P) for the current parameter value.

parameters()

pdf(dist)
Allow the parameter to vary according to any continuous scipy.stats distribution.

pm(plus, minus=None, limits=None)
Allow the parameter to vary as value +/- delta.

pm(delta) -> [value-delta, value+delta]

pm(plus, minus) -> [value+minus, value+plus]

In the plus/minus form, one of the numbers should be plus and the other minus, but it doesn’t matter which.

If limits are provided, bound the end points of the range to lie within the limits.

The resulting range is converted to “nice” numbers.
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pmp(plus, minus=None, limits=None)
Allow the parameter to vary as value +/- percent.

pmp(percent) -> [value*(1-percent/100), value*(1+percent/100)]

pmp(plus, minus) -> [value*(1+minus/100), value*(1+plus/100)]

In the plus/minus form, one of the numbers should be plus and the other minus, but it doesn’t matter which.

If limits are provided, bound the end points of the range to lie within the limits.

The resulting range is converted to “nice” numbers.

radians(**kw)
Convert angle x from degrees to radians.

range(low, high)
Allow the parameter to vary within the given range.

residual()

Return the z score equivalent for the current parameter value.

That is, the given the value of the parameter in the underlying distribution, find the equivalent value in
the standard normal. For a gaussian, this is the z score, in which you subtract the mean and divide by the
standard deviation to get the number of sigmas away from the mean. For other distributions, you need to
compute the cdf of value in the parameter distribution and invert it using the ppf from the standard normal
distribution.

sin(**kw)
Return the sine of x (measured in radians).

sinh(**kw)
Return the hyperbolic sine of x.

soft_range(low, high, std)
Allow the parameter to vary within the given range, or with Gaussian probability, stray from the range.

sqrt(**kw)
Return the square root of x.

tan(**kw)
Return the tangent of x (measured in radians).

tanh(**kw)
Return the hyperbolic tangent of x.

to_dict()

Return a dict represention of the object.

trunc(**kw)
Truncates the Real x to the nearest Integral toward 0.

Uses the __trunc__ magic method.

valid()

Return true if the parameter is within the valid range.

property value
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class bumps.parameter.Parameter(value=None, bounds=None, fixed=None, name=None, **kw)
Bases: BaseParameter

A parameter is a symbolic value.

It can be fixed or it can vary within bounds.

p = Parameter(3).pmp(10) # 3 +/- 10% p = Parameter(3).pmp(-5,10) # 3 in [2.85,3.3] rounded to 2 digits p =
Parameter(3).pm(2) # 3 +/- 2 p = Parameter(3).pm(-1,2) # 3 in [2,5] p = Parameter(3).range(0,5) # 3 in [0,5]

It has hard limits on the possible values, and a range that should live within those hard limits. The value should
lie within the range for it to be valid. Some algorithms may drive the value outside the range in order to satisfy
soft It has a value which should lie within the range.

Other properties can decorate the parameter, such as tip for tool tip and units for units.

arccos(**kw)
Return the arc cosine (measured in radians) of x.

The result is between 0 and pi.

arccosh(**kw)
Return the inverse hyperbolic cosine of x.

arcsin(**kw)
Return the arc sine (measured in radians) of x.

The result is between -pi/2 and pi/2.

arcsinh(**kw)
Return the inverse hyperbolic sine of x.

arctan(**kw)
Return the arc tangent (measured in radians) of x.

The result is between -pi/2 and pi/2.

arctanh(**kw)
Return the inverse hyperbolic tangent of x.

property bounds

Fit bounds

ceil(**kw)
Return the ceiling of x as an Integral.

This is the smallest integer >= x.

clip_set(value)
Set a new value for the parameter, clipping it to the bounds.

cos(**kw)
Return the cosine of x (measured in radians).

cosh(**kw)
Return the hyperbolic cosine of x.

classmethod default(value, **kw)
Create a new parameter with the value and kw attributes, or return the existing parameter if value is already
a parameter.

The attributes are the same as those for Parameter, or whatever subclass cls of Parameter is being created.
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degrees(**kw)
Convert angle x from radians to degrees.

dev(std, mean=None, limits=None, sigma=None, mu=None)
Allow the parameter to vary according to a normal distribution, with deviations from the mean added to
the overall cost function for the model.

If mean is None, then it defaults to the current parameter value.

If limits are provide, then use a truncated normal distribution.

Note: sigma and mu have been replaced by std and mean, but are left in for backward compatibility.

discrete = False

exp(**kw)
Return e raised to the power of x.

expm1(**kw)
Return exp(x)-1.

This function avoids the loss of precision involved in the direct evaluation of exp(x)-1 for small x.

feasible()

Value is within the limits defined by the model

fittable = True

fixed = True

floor(**kw)
Return the floor of x as an Integral.

This is the largest integer <= x.

format()

Format the parameter, value and range as a string.

log(x[, base=math.e])
Return the logarithm of x to the given base.

If the base not specified, returns the natural logarithm (base e) of x.

log10(**kw)
Return the base 10 logarithm of x.

log1p(**kw)
Return the natural logarithm of 1+x (base e).

The result is computed in a way which is accurate for x near zero.

name = None

nllf()

Return -log(P) for the current parameter value.

parameters()

pdf(dist)
Allow the parameter to vary according to any continuous scipy.stats distribution.
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pm(plus, minus=None, limits=None)
Allow the parameter to vary as value +/- delta.

pm(delta) -> [value-delta, value+delta]

pm(plus, minus) -> [value+minus, value+plus]

In the plus/minus form, one of the numbers should be plus and the other minus, but it doesn’t matter which.

If limits are provided, bound the end points of the range to lie within the limits.

The resulting range is converted to “nice” numbers.

pmp(plus, minus=None, limits=None)
Allow the parameter to vary as value +/- percent.

pmp(percent) -> [value*(1-percent/100), value*(1+percent/100)]

pmp(plus, minus) -> [value*(1+minus/100), value*(1+plus/100)]

In the plus/minus form, one of the numbers should be plus and the other minus, but it doesn’t matter which.

If limits are provided, bound the end points of the range to lie within the limits.

The resulting range is converted to “nice” numbers.

radians(**kw)
Convert angle x from degrees to radians.

randomize(rng=None)
Set a random value for the parameter.

range(low, high)
Allow the parameter to vary within the given range.

residual()

Return the z score equivalent for the current parameter value.

That is, the given the value of the parameter in the underlying distribution, find the equivalent value in
the standard normal. For a gaussian, this is the z score, in which you subtract the mean and divide by the
standard deviation to get the number of sigmas away from the mean. For other distributions, you need to
compute the cdf of value in the parameter distribution and invert it using the ppf from the standard normal
distribution.

set(value)
Set a new value for the parameter, ignoring the bounds.

sin(**kw)
Return the sine of x (measured in radians).

sinh(**kw)
Return the hyperbolic sine of x.

soft_range(low, high, std)
Allow the parameter to vary within the given range, or with Gaussian probability, stray from the range.

sqrt(**kw)
Return the square root of x.

tan(**kw)
Return the tangent of x (measured in radians).
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tanh(**kw)
Return the hyperbolic tangent of x.

to_dict()

Return a dict represention of the object.

trunc(**kw)
Truncates the Real x to the nearest Integral toward 0.

Uses the __trunc__ magic method.

valid()

Return true if the parameter is within the valid range.

value = None

class bumps.parameter.ParameterSet(reference, names=None)
Bases: object

A parameter that depends on the model.

get_model(index)
Get the reference and underlying model parameter for the nth model.

pm(*args, **kw)
Like Parameter.pm(), but applied to all models.

pmp(*args, **kw)
Like Parameter.pmp(), but applied to all models.

range(*args, **kw)
Like Parameter.range(), but applied to all models.

set_model(index)
Set the underlying model parameter to the value of the nth model.

to_dict()

property values

class bumps.parameter.Reference(obj, attr, **kw)
Bases: Parameter

Create an adaptor so that a model attribute can be treated as if it were a parameter. This allows only direct access,
wherein the storage for the parameter value is provided by the underlying model.

Indirect access, wherein the storage is provided by the parameter, cannot be supported since the parameter has
no way to detect that the model is asking for the value of the attribute. This means that model attributes cannot
be assigned to parameter expressions without some trigger to update the values of the attributes in the model.

arccos(**kw)
Return the arc cosine (measured in radians) of x.

The result is between 0 and pi.

arccosh(**kw)
Return the inverse hyperbolic cosine of x.
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arcsin(**kw)
Return the arc sine (measured in radians) of x.

The result is between -pi/2 and pi/2.

arcsinh(**kw)
Return the inverse hyperbolic sine of x.

arctan(**kw)
Return the arc tangent (measured in radians) of x.

The result is between -pi/2 and pi/2.

arctanh(**kw)
Return the inverse hyperbolic tangent of x.

property bounds

Fit bounds

ceil(**kw)
Return the ceiling of x as an Integral.

This is the smallest integer >= x.

clip_set(value)
Set a new value for the parameter, clipping it to the bounds.

cos(**kw)
Return the cosine of x (measured in radians).

cosh(**kw)
Return the hyperbolic cosine of x.

classmethod default(value, **kw)
Create a new parameter with the value and kw attributes, or return the existing parameter if value is already
a parameter.

The attributes are the same as those for Parameter, or whatever subclass cls of Parameter is being created.

degrees(**kw)
Convert angle x from radians to degrees.

dev(std, mean=None, limits=None, sigma=None, mu=None)
Allow the parameter to vary according to a normal distribution, with deviations from the mean added to
the overall cost function for the model.

If mean is None, then it defaults to the current parameter value.

If limits are provide, then use a truncated normal distribution.

Note: sigma and mu have been replaced by std and mean, but are left in for backward compatibility.

discrete = False

exp(**kw)
Return e raised to the power of x.

expm1(**kw)
Return exp(x)-1.

This function avoids the loss of precision involved in the direct evaluation of exp(x)-1 for small x.
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feasible()

Value is within the limits defined by the model

fittable = True

fixed = True

floor(**kw)
Return the floor of x as an Integral.

This is the largest integer <= x.

format()

Format the parameter, value and range as a string.

log(x[, base=math.e])
Return the logarithm of x to the given base.

If the base not specified, returns the natural logarithm (base e) of x.

log10(**kw)
Return the base 10 logarithm of x.

log1p(**kw)
Return the natural logarithm of 1+x (base e).

The result is computed in a way which is accurate for x near zero.

name = None

nllf()

Return -log(P) for the current parameter value.

parameters()

pdf(dist)
Allow the parameter to vary according to any continuous scipy.stats distribution.

pm(plus, minus=None, limits=None)
Allow the parameter to vary as value +/- delta.

pm(delta) -> [value-delta, value+delta]

pm(plus, minus) -> [value+minus, value+plus]

In the plus/minus form, one of the numbers should be plus and the other minus, but it doesn’t matter which.

If limits are provided, bound the end points of the range to lie within the limits.

The resulting range is converted to “nice” numbers.

pmp(plus, minus=None, limits=None)
Allow the parameter to vary as value +/- percent.

pmp(percent) -> [value*(1-percent/100), value*(1+percent/100)]

pmp(plus, minus) -> [value*(1+minus/100), value*(1+plus/100)]

In the plus/minus form, one of the numbers should be plus and the other minus, but it doesn’t matter which.

If limits are provided, bound the end points of the range to lie within the limits.

The resulting range is converted to “nice” numbers.
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radians(**kw)
Convert angle x from degrees to radians.

randomize(rng=None)
Set a random value for the parameter.

range(low, high)
Allow the parameter to vary within the given range.

residual()

Return the z score equivalent for the current parameter value.

That is, the given the value of the parameter in the underlying distribution, find the equivalent value in
the standard normal. For a gaussian, this is the z score, in which you subtract the mean and divide by the
standard deviation to get the number of sigmas away from the mean. For other distributions, you need to
compute the cdf of value in the parameter distribution and invert it using the ppf from the standard normal
distribution.

set(value)
Set a new value for the parameter, ignoring the bounds.

sin(**kw)
Return the sine of x (measured in radians).

sinh(**kw)
Return the hyperbolic sine of x.

soft_range(low, high, std)
Allow the parameter to vary within the given range, or with Gaussian probability, stray from the range.

sqrt(**kw)
Return the square root of x.

tan(**kw)
Return the tangent of x (measured in radians).

tanh(**kw)
Return the hyperbolic tangent of x.

to_dict()

Return a dict represention of the object.

trunc(**kw)
Truncates the Real x to the nearest Integral toward 0.

Uses the __trunc__ magic method.

valid()

Return true if the parameter is within the valid range.

property value

bumps.parameter.acosd(v)
Return the arc cosine (measured in in degrees) of x.

bumps.parameter.arccosd(v)
Return the arc cosine (measured in in degrees) of x.
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bumps.parameter.arcsind(v)
Return the arc sine (measured in in degrees) of x.

bumps.parameter.arctan2d(dy, dx)
Return the arc tangent (measured in in degrees) of y/x. Unlike atan(y/x), the signs of both x and y are considered.

bumps.parameter.arctand(v)
Return the arc tangent (measured in in degrees) of x.

bumps.parameter.asind(v)
Return the arc sine (measured in in degrees) of x.

bumps.parameter.atan2d(dy, dx)
Return the arc tangent (measured in in degrees) of y/x. Unlike atan(y/x), the signs of both x and y are considered.

bumps.parameter.atand(v)
Return the arc tangent (measured in in degrees) of x.

bumps.parameter.boxed_function(f )

bumps.parameter.cosd(v)
Return the cosine of x (measured in in degrees).

bumps.parameter.current(s)

bumps.parameter.fittable(s)
Return the list of fittable parameters in no paraticular order.

Note that some fittable parameters may be fixed during the fit.

bumps.parameter.flatten(s)

bumps.parameter.format(p, indent=0, freevars={}, field=None)
Format parameter set for printing.

Note that this only says how the parameters are arranged, not how they relate to each other.

bumps.parameter.function(op)
Convert a function into a delayed evaluator.

The value of the function is computed from the values of the parameters at the time that the function value is
requested rather than when the function is created.

bumps.parameter.randomize(s)
Set random values to the parameters in the parameter set, with values chosen according to the bounds.

bumps.parameter.sind(v)
Return the sine of x (measured in in degrees).

bumps.parameter.substitute(a)
Return structure a with values substituted for all parameters.

The function traverses lists, tuples and dicts recursively. Things which are not parameters are returned directly.

bumps.parameter.summarize(pars, sorted=False)
Return a stylized list of parameter names and values with range bars suitable for printing.

If sorted, then print the parameters sorted alphabetically by name.
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bumps.parameter.tand(v)
Return the tangent of x (measured in in degrees).

bumps.parameter.test_operator()

bumps.parameter.to_dict(p)

bumps.parameter.unique(s)
Return the unique set of parameters

The ordering is stable. The same parameters/dependencies will always return the same ordering, with the first
occurrence first.

bumps.parameter.varying(s)
Return the list of fitted parameters in the model.

This is the set of parameters that will vary during the fit.

4.21 partemp - Parallel tempering optimizer

parallel_tempering Perform a MCMC walk using multiple temperatures in
parallel.

Parallel tempering for continuous function optimization and uncertainty analysis.

The program performs Markov chain Monte Carlo exploration of a probability density function using a combination
of random and differential evolution updates.

bumps.partemp.parallel_tempering(nllf , p, bounds, T=None, steps=1000, CR=0.9, burn=1000,
monitor=<function every_ten>, logfile=None)

Perform a MCMC walk using multiple temperatures in parallel.

Parameters

nllf
[function(vector) -> float] Negative log likelihood function to be minimized. 𝜒2/2 is a good choice for
curve fitting with no prior restraints on the possible input parameters.

p
[vector] Initial value

bounds
[vector, vector] Box constraints on the parameter values. No support for indefinite or semi-definite pro-
gramming at present

T
[vector | 0 < T[0] < T[1] < . . . ] Temperature vector. Something like logspace(-1,1,10) will give you 10
logarithmically spaced temperatures between 0.1 and 10. The maximum temperature T[-1] determines
the size of the barriers that can be easily jumped. Note that the number of temperature values limits the
amount of parallelism available in the algorithm, so it may gather statistics more quickly, though it will not
necessarily converge any faster.

steps = 1000
[int] Length of the accumulation vector. The returned history will store this many values for each temper-
ature. These values can be used in a weighted histogram to determine parameter uncertainty.
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burn = 1000
[int | [0,inf)] Number of iterations to perform in addition to steps. Only the last steps points will be preserved
for each temperature. Since the value should be in the same order as steps to be sure that the full history is
acquired.

CR = 0.9
[float | [0,1]] Cross-over ratio. This is the differential evolution crossover ratio to use when computing step
size and direction. Use a small value to step through the dimensions one at a time, or a large value to step
through all at once.

monitor = every_ten
[function(int step, vector x, float fx) -> None] Function to called at every iteration with the step number the
best point and the best value.

logfile = None
[string] Name of the file which will log the history of every accepted step. Note that this includes all of the
burn steps, so it can get very large.

Returns

history
[History] Structure containing best, best_point and buffer. best is the best nllf value seen and best_point is
the parameter vector which yielded best. The list buffer contains lists of tuples (step, temperature, nllf, x)
for each temperature.

4.22 pdfwrapper - Model a probability density function

DirectProblem Build model from negative log likelihood function f(p).
PDF Build a model from a function.
VectorPDF Build a model from a function.

Build a bumps model from a function.

The PDF class uses introspection to convert a negative log likelihood function nllf(m1,m2,. . . ) into a bumps.
fitproblem.Fitness class that has fittable parameters m1, m2, . . . .

There is no attempt to manage data or uncertainties, except that an additional plot function can be provided to display
the current value of the function in whatever way is meaningful.

The note regarding user defined functions in bumps.curve apply here as well.

class bumps.pdfwrapper.DirectProblem(f , p0, bounds=None, dof=1, labels=None, plot=None)
Bases: object

Build model from negative log likelihood function f(p).

Vector p of length n defines the initial value.

bounds defines limiting values for p as [(p1_low, p1_high), (p2_low, p2_high), . . . ]. If all parameters are have
the same bounds, use bounds=np.tile([low,high],[n,1]).

Unlike PDF, no parameter objects are defined for the elements of p, so all are fitting parameters.

bounds()

chisq()
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chisq_str()

getp()

has_residuals = False

labels()

model_parameters()

model_reset()

model_update()

nllf(pvec=None)

plot(p=None, fignum=None, figfile=None, view=None)
Plot the model to the current figure. You only get one figure, but you can make it as complex as you want.
This will be saved as a png on the server, and composed onto a results web page.

randomize(n=None)

setp(p)

show()

summarize()

class bumps.pdfwrapper.PDF(fn, name='', plot=None, dof=1, **kw)
Bases: object

Build a model from a function.

This model can be fitted with any of the bumps optimizers.

fn is a function that returns the negative log likelihood of seeing its input parameters.

The fittable parameters are derived from the parameter names in the function definition, with name prepended
to each parameter.

The optional plot function takes the same arguments as fn, with an additional view argument which may be
set from the bumps command line. If provide, it should provide a visual indication of the function value and
uncertainty on the current matplotlib.pyplot figure.

Additional keyword arguments are treated as the initial values for the parameters, or initial ranges if
par=(min,max). Otherwise, the default is taken from the function definition (if the function uses par=value
to define the parameter) or is set to zero if no default is given in the function.

chisq()

chisq_str()

has_residuals = False

nllf()

Call self as a function.

numpoints()

Return the number of data points.
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parameters()

return the parameters in the model.

model parameters are a hierarchical structure of lists and dictionaries.

plot(view=None)
Plot the model to the current figure. You only get one figure, but you can make it as complex as you want.
This will be saved as a png on the server, and composed onto a results web page.

class bumps.pdfwrapper.VectorPDF(fn, p, name='', plot=None, dof=1, labels=None, **kw)
Bases: object

Build a model from a function.

This model can be fitted with any of the bumps optimizers.

fn is a function that returns the negative log likelihood of seeing its input parameters.

Vector p of length n defines the initial value. Unlike PDF, VectorPDF operates on a parameter vector p rather
than individual parameters p1, p2, etc. Default parameter values p must be provided in order to determine the
number of parameters.

labels are the names of the individual parameters. If not present, the name for parameter k defaults to pk. Each
label is prefixed by name.

The optional plot function takes the same arguments as fn, with an additional view argument which may be
set from the bumps command line. If provide, it should provide a visual indication of the function value and
uncertainty on the current matplotlib.pyplot figure.

Additional keyword arguments are treated as the initial values for the parameters, or initial ranges if
par=(min,max). Otherwise, the default is taken from the function definition (if the function uses par=value
to define the parameter) or is set to zero if no default is given in the function.

chisq()

chisq_str()

has_residuals = False

nllf()

Call self as a function.

numpoints()

Return the number of data points.

parameters()

return the parameters in the model.

model parameters are a hierarchical structure of lists and dictionaries.

plot(view=None)
Plot the model to the current figure. You only get one figure, but you can make it as complex as you want.
This will be saved as a png on the server, and composed onto a results web page.

residuals()

Return residuals for current theory minus data.

Used for Levenburg-Marquardt, and for plotting.
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4.23 plotutil - Plotting utilities

auto_shift Return a y-offset coordinate transform for the current
axes.

coordinated_colors Return a set of coordinated colors as c['base|light|dark'].
dhsv Modify color on hsv scale.
next_color Return the next color in the plot color cycle.
plot_quantiles Plot quantile curves for a set of lines.
form_quantiles Return quantiles and values for a list of confidence inter-

vals.

Pylab plotting utilities.

bumps.plotutil.auto_shift(offset)
Return a y-offset coordinate transform for the current axes.

Each call to auto_shift increases the y-offset for the next line by the given number of points (with 72 points per
inch).

Example:

from matplotlib import pyplot as plt
from bumps.plotutil import auto_shift
trans = auto_shift(plt.gca())
plot(x, y, trans=trans)

bumps.plotutil.coordinated_colors(base=None)
Return a set of coordinated colors as c[‘base|light|dark’].

If base is not provided, use the next color in the color cycle as the base. Light is bright and pale, dark is dull and
saturated.

bumps.plotutil.dhsv(color, dh=0.0, ds=0.0, dv=0.0, da=0.0)
Modify color on hsv scale.

dv change intensity, e.g., +0.1 to brighten, -0.1 to darken. dh change hue ds change saturation da change trans-
parency

Color can be any valid matplotlib color. The hsv scale is [0,1] in each dimension. Saturation, value and alpha
scales are clipped to [0,1] after changing. The hue scale wraps between red to violet.

Example

Make sea green 10% darker:

>>> from bumps.plotutil import dhsv
>>> darker = dhsv('seagreen', dv=-0.1)
>>> print([int(v*255) for v in darker])
[37, 113, 71, 255]

bumps.plotutil.form_quantiles(y, contours)
Return quantiles and values for a list of confidence intervals.

contours is a list of confidence interfaces [a, b,. . . ] expressed as percents.

Returns:
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quantiles is a list of intervals [[a_low, a_high], [b_low, b_high], . . . ] in [0,1].

values is a list of intervals [[A_low, A_high], . . . ] with one entry in A for each row in y.

bumps.plotutil.next_color()

Return the next color in the plot color cycle.

Example:

from matplotlib import pyplot as plt
from bumps.plotutil import next_color, dhsv
color = next_color()
plt.errorbar(x, y, yerr=dy, fmt='.', color=color)
# Draw the theory line with the same color as the data, but darker
plt.plot(x, y, '-', color=dhsv(color, dv=-0.2))

bumps.plotutil.plot_quantiles(x, y, contours, color, alpha=None)
Plot quantile curves for a set of lines.

x is the x coordinates for all lines.

y is the y coordinates, one row for each line.

contours is a list of confidence intervals expressed as percents.

color is the color to use for the quantiles. Quantiles are draw as a filled region with alpha transparency. Higher
probability regions will be covered with multiple contours, which will make them lighter and more saturated.

alpha is the transparency level to use for all fill regions. The default value, alpha=2./(#contours+1), works pretty
well.

4.24 plugin - Domain branding

new_model Return a new empty model or None.
load_model Return a model stored within a file.
calc_errors Gather data needed to display uncertainty in the model

and the data.
show_errors Display the model with uncertainty on the current figure.
data_view Panel factory for the data tab in the GUI.
model_view Panel factory for the model tab in the GUI.

Bumps plugin architecture.

With sophisticated models, developers need to be able to provide tools such as model builders and data viewers.

Some of these will be tools for the GUI, such as views. Others will be tools to display results.

This file defines the interface that can be defined by your own application so that it interacts with models of your type.
Define your own model package with a module plugin.py.

Create a main program which looks like:

if __name__ == "__main__":
import multiprocessing
multiprocessing.freeze_support()

(continues on next page)
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(continued from previous page)

import bumps.cli
import mypackage.plugin
bumps.cli.install_plugin(mypackage.plugin)
bumps.cli.main()

You should be able to use this as a driver program for your application.

Note: the plugin architecture is likely to change radically as more models are added to the system, particularly so that
we can accommodate simultaneous fitting of data taken using different experimental techniques. For now, only only
one plugin at a time is supported.

bumps.plugin.calc_errors(problem, sample)
Gather data needed to display uncertainty in the model and the data.

Returns an object to be passed later to show_errors().

bumps.plugin.data_view()

Panel factory for the data tab in the GUI.

If your model has an adequate show() function this should not be necessary.

bumps.plugin.load_model(filename)
Return a model stored within a file.

This routine is for specialized model descriptions not defined by script.

If the filename does not contain a model of the appropriate type (e.g., because the extension is incorrect), then
return None.

No need to load pickles or script models. These will be attempted if load_model returns None.

bumps.plugin.model_view()

Panel factory for the model tab in the GUI.

Return None if not present.

bumps.plugin.new_model()

Return a new empty model or None.

Called in response to >File >New from the GUI. Creates a new empty model. Also triggered if GUI is started
without a model.

bumps.plugin.show_errors(errs)
Display the model with uncertainty on the current figure.

errs is the data returned from calc_errs.
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4.25 pmath - Parametric versions of standard functions

exp Return e raised to the power of x.
log Return the logarithm of x to the given base.
log10 Return the base 10 logarithm of x.
sqrt Return the square root of x.
sin Return the sine of x (measured in radians).
cos Return the cosine of x (measured in radians).
tan Return the tangent of x (measured in radians).
asin Return the arc sine (measured in radians) of x.
acos Return the arc cosine (measured in radians) of x.
atan Return the arc tangent (measured in radians) of x.
atan2 Return the arc tangent (measured in radians) of y/x.
sind Return the sine of x (measured in in degrees).
cosd Return the cosine of x (measured in in degrees).
tand Return the tangent of x (measured in in degrees).
asind Return the arc sine (measured in in degrees) of x.
acosd Return the arc cosine (measured in in degrees) of x.
atand Return the arc tangent (measured in in degrees) of x.
atan2d Return the arc tangent (measured in in degrees) of y/x.
sinh Return the hyperbolic sine of x.
cosh Return the hyperbolic cosine of x.
tanh Return the hyperbolic tangent of x.
asinh Return the inverse hyperbolic sine of x.
acosh Return the inverse hyperbolic cosine of x.
atanh Return the inverse hyperbolic tangent of x.
degrees Convert angle x from radians to degrees.
radians Convert angle x from degrees to radians.
sum Return the sum of a 'start' value (default: 0) plus an iter-

able of numbers
prod Return the product of a sequence of numbers.

Standard math functions for parameter expressions.

bumps.pmath.acos(*args, **kw)
Return the arc cosine (measured in radians) of x.

The result is between 0 and pi.

bumps.pmath.acosd(*args, **kw)
Return the arc cosine (measured in in degrees) of x.

bumps.pmath.acosh(*args, **kw)
Return the inverse hyperbolic cosine of x.

bumps.pmath.asin(*args, **kw)
Return the arc sine (measured in radians) of x.

The result is between -pi/2 and pi/2.

bumps.pmath.asind(*args, **kw)
Return the arc sine (measured in in degrees) of x.

bumps.pmath.asinh(*args, **kw)
Return the inverse hyperbolic sine of x.
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bumps.pmath.atan(*args, **kw)
Return the arc tangent (measured in radians) of x.

The result is between -pi/2 and pi/2.

bumps.pmath.atan2(*args, **kw)
Return the arc tangent (measured in radians) of y/x.

Unlike atan(y/x), the signs of both x and y are considered.

bumps.pmath.atan2d(*args, **kw)
Return the arc tangent (measured in in degrees) of y/x. Unlike atan(y/x), the signs of both x and y are considered.

bumps.pmath.atand(*args, **kw)
Return the arc tangent (measured in in degrees) of x.

bumps.pmath.atanh(*args, **kw)
Return the inverse hyperbolic tangent of x.

bumps.pmath.cos(*args, **kw)
Return the cosine of x (measured in radians).

bumps.pmath.cosd(*args, **kw)
Return the cosine of x (measured in in degrees).

bumps.pmath.cosh(*args, **kw)
Return the hyperbolic cosine of x.

bumps.pmath.degrees(*args, **kw)
Convert angle x from radians to degrees.

bumps.pmath.exp(*args, **kw)
Return e raised to the power of x.

bumps.pmath.log(x[, base=math.e])
Return the logarithm of x to the given base.

If the base not specified, returns the natural logarithm (base e) of x.

bumps.pmath.log10(*args, **kw)
Return the base 10 logarithm of x.

bumps.pmath.prod(*args, **kw)
Return the product of a sequence of numbers.

bumps.pmath.radians(*args, **kw)
Convert angle x from degrees to radians.

bumps.pmath.sin(*args, **kw)
Return the sine of x (measured in radians).

bumps.pmath.sind(*args, **kw)
Return the sine of x (measured in in degrees).

bumps.pmath.sinh(*args, **kw)
Return the hyperbolic sine of x.

bumps.pmath.sqrt(*args, **kw)
Return the square root of x.
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bumps.pmath.sum(*args, **kw)
Return the sum of a ‘start’ value (default: 0) plus an iterable of numbers

When the iterable is empty, return the start value. This function is intended specifically for use with numeric
values and may reject non-numeric types.

bumps.pmath.tan(*args, **kw)
Return the tangent of x (measured in radians).

bumps.pmath.tand(*args, **kw)
Return the tangent of x (measured in in degrees).

bumps.pmath.tanh(*args, **kw)
Return the hyperbolic tangent of x.

4.26 pymcfit - Wrapper for pyMC models

PyMCProblem

Bumps wrapper for PyMC models.

class bumps.pymcfit.PyMCProblem(input)
Bases: object

bounds()

chisq()

chisq_str()

getp()

labels()

model_reset()

nllf(pvec=None)

plot(p=None, fignum=None, figfile=None)

randomize(N=None)

setp(values)

show()

summarize()
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4.27 quasinewton - BFGS quasi-newton optimizer

quasinewton Run a quasinewton optimization on the problem.

BFGS quasi-newton optimizer.

All modules in this file are implemented from the book “Numerical Methods for Unconstrained Optimization and
Nonlinear Equations” by J.E. Dennis and Robert B. Schnabel (Only a few minor modifications are done).

The interface is through the quasinewton() function. Here is an example call:

n = 2
x0 = [-0.9 0.9]'
fn = lambda p: (1-p[0])**2 + 100*(p[1]-p[0]**2)**2
grad = lambda p: array([-2*(1-p[0]) - 400*(p[1]-p[0]**2)*p[0], 200*p[1]])
Sx = ones(n,1)
typf = 1 # todo. see what default value is the best
macheps = eps
eta = eps
maxstep = 100
gradtol = 1e-6
steptol = 1e-12 # do not let steptol larger than 1e-9
itnlimit = 1000
result = quasinewton(fn, x0, grad, Sx, typf,

macheps, eta, maxstep, gradtola, steptol, itnlimit)
print("status code %d"%result['status'])
print("x_min=%s, f(x_min)=%g"%(str(result['x']),result['fx']))
print("iterations, function calls, linesearch function calls",

result['iterations'],result['evals'],result['linesearch_evals'])

bumps.quasinewton.quasinewton(fn, x0=None, grad=None, Sx=None, typf=1, macheps=None, eta=None,
maxstep=100, gradtol=1e-06, steptol=1e-12, itnlimit=2000,
abort_test=None, monitor=<function <lambda>>)

Run a quasinewton optimization on the problem.

fn(x) is the cost function, which takes a point x and returns a scalar fx.

x0 is the initial point

grad is the analytic gradient (if available)

Sx is a scale vector indicating the typical values for parameters in the fitted result. This is used for a variety of
things such as setting the step size in the finite difference approximation to the gradient, and controlling numerical
accuracy in calculating the Hessian matrix. If for example some of your model parameters are in the order of
1e-6, then Sx for those parameters should be set to 1e-6. Default: [1, . . . ]

typf is the typical value for f(x) near the minimum. This is used along with gradtol to check the gradient stopping
condition. Default: 1

macheps is the minimum value that can be added to 1 to produce a number not equal to 1. Default:
numpy.finfo(float).eps

eta adapts the numerical gradient calculations to machine precision. Default: macheps

maxstep is the maximum step size in any gradient step, after normalizing by Sx. Default: 100

166 Chapter 4. Reference: bumps



Bumps: Curve Fitting and Uncertainty Analysis, Release 0.9.1

gradtol is a stopping condition for the fit based on the amount of improvement expected at the next step. Default:
1e-6

steptol is a stopping condition for the fit based on the size of the step. Default: 1e-12

itnlimit is the maximum number of steps to take before stopping. Default: 2000

abort_test is a function which tests whether the user has requested abort. Default: None.

monitor(x,fx,step) is called every iteration so that a user interface function can monitor the progress of the fit.
Default: lambda **kw: True

Returns the fit result as a dictionary:

status is a status code indicating why the fit terminated. Turn the status code into a string with STA-
TUS[result.status]. Status values vary from 1 to 9, with 1 and 2 indicating convergence and the remaining
codes indicating some form of premature termination.

x is the minimum point

fx is the value fn(x) at the minimum

H is the approximate Hessian matrix, which is the inverse of the covariance matrix

L is the cholesky decomposition of H+D, where D is a small correction to force H+D to be positive definite. To
compute parameter uncertainty

iterations is the number of iterations

evals is the number of function evaluations

linesearch_evals is the number of function evaluations for line search

4.28 random_lines - Random lines and particle swarm optimizers

random_lines Random lines is a population based optimizer which us-
ing quadratic fits along randomly oriented directions.

particle_swarm Particle swarm is a population based optimizer which
uses force and momentum to select candidate points.

Random Lines Algorithm finds the optimal minimum of a function.

Sahin, I. (2013). Minimization over randomly selected lines. An International Journal Of Optimization And Control:
Theories & Applications (IJOCTA), 3(2), 111-119. http://dx.doi.org/10.11121/ijocta.01.2013.00167

bumps.random_lines.particle_swarm(cfo, NP, epsilon=1e-10, maxiter=1000)
Particle swarm is a population based optimizer which uses force and momentum to select candidate points.

cfo is the cost function object. This is a dictionary which contains the following keys:

cost is the function to be optimized. If parallel_cost exists, it should accept a list of points, not just a
single point on each evaluation.

n is the problem dimension

x0 is the initial point

x1 and x2 are lower and upper bounds for each parameter
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monitor is a callable which is called each iteration using callback(step, x, fx, k), where step is the
iteration number, x is the population, fx is value of the cost function for each member of the population
and k is the index of the best point in the population.

f_opt is the target value of the optimization

NP is the number of fit parameters

epsilon is the convergence criterion.

abort_test is a callable which indicates whether an external processes requests the fit to stop.

maxiter is the maximum number of generations

Returns success, num_evals, f(x_best), x_best.

bumps.random_lines.random_lines(cfo, NP, CR=0.9, epsilon=1e-10, abort_test=None, maxiter=1000)
Random lines is a population based optimizer which using quadratic fits along randomly oriented directions.

cfo is the cost function object. This is a dictionary which contains the following keys:

cost is the function to be optimized. If parallel_cost exists, it should accept a list of points, not just a
single point on each evaluation.

n is the problem dimension

x0 is the initial point

x1 and x2 are lower and upper bounds for each parameter

monitor is a callable which is called each iteration using callback(step, x, fx, k), where step is the
iteration number, x is the population, fx is value of the cost function for each member of the population
and k is the index of the best point in the population.

f_opt is the target value of the optimization

NP is the number of fit parameters

CR is the cross-over ratio, which is the proportion of dimensions that participate in any random orientation vector.

epsilon is the convergence criterion.

abort_test is a callable which indicates whether an external processes requests the fit to stop.

maxiter is the maximum number of generations

Returns success, num_evals, f(x_best), x_best.

4.29 simplex - Nelder-Mead simplex optimizer (amoeba)

simplex Minimize a function using Nelder-Mead downhill sim-
plex algorithm.

Downhill simplex optimizer.

bumps.simplex.simplex(f , x0=None, bounds=None, radius=0.05, xtol=0.0001, ftol=0.0001, maxiter=None,
update_handler=None, abort_test=<function dont_abort>)

Minimize a function using Nelder-Mead downhill simplex algorithm.

This optimizer is also known as Amoeba (from Numerical Recipes) and the Nealder-Mead simplex algorithm.
This is not the simplex algorithm for solving constrained linear systems.
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Downhill simplex is a robust derivative free algorithm for finding minima. It proceeds by choosing a set of
points (the simplex) forming an n-dimensional triangle, and transforming that triangle so that the worst vertex
is improved, either by stretching, shrinking or reflecting it about the center of the triangle. This algorithm is not
known for its speed, but for its simplicity and robustness, and is a good algorithm to start your problem with.

Parameters:

f
[callable f(x,*args)] The objective function to be minimized.

x0
[ndarray] Initial guess.

bounds
[(ndarray,ndarray) or None] Bounds on the parameter values for the function.

radius: float
Size of the initial simplex. For bounded parameters (those which have finite lower and upper
bounds), radius is clipped to a value in (0,0.5] representing the portion of the range to use as the
size of the initial simplex.

Returns: Result (park.simplex.Result)

x
[ndarray] Parameter that minimizes function.

fx
[float] Value of function at minimum: fopt = func(xopt).

iters
[int] Number of iterations performed.

calls
[int] Number of function calls made.

success
[boolean] True if fit completed successfully.

Other Parameters:

xtol
[float] Relative error in xopt acceptable for convergence.

ftol
[number] Relative error in func(xopt) acceptable for convergence.

maxiter
[int=200*N] Maximum number of iterations to perform. Defaults

update_handler
[callable] Called after each iteration, as callback(k,n,xk,fxk), where k is the current iteration, n is
the maximum iteration, xk is the simplex and fxk is the value of the simplex vertices. xk[0],fxk[0]
is the current best.

abort_test
[callable] Called after each iteration, as callback(), to see if an external process has requested
stop.

Notes

Uses a Nelder-Mead simplex algorithm to find the minimum of function of one or more variables.
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4.30 util - Miscellaneous functions

kbhit Check whether a key has been pressed on the console.
profile Profile a function called with the given arguments.
pushdir Change directories for the duration of a with statement.
push_seed Set the seed value for the random number generator.
redirect_console Console output redirection context

Miscellaneous utility functions.

bumps.util.kbhit()

Check whether a key has been pressed on the console.

bumps.util.profile(fn, *args, **kw)
Profile a function called with the given arguments.

class bumps.util.push_seed(seed=None)
Bases: object

Set the seed value for the random number generator.

When used in a with statement, the random number generator state is restored after the with statement is complete.

Parameters

seed
[int or array_like, optional] Seed for RandomState

Example

Seed can be used directly to set the seed:

>>> from numpy.random import randint
>>> push_seed(24)
<...push_seed object at...>
>>> print(randint(0,1000000,3))
[242082 899 211136]

Seed can also be used in a with statement, which sets the random number generator state for the enclosed com-
putations and restores it to the previous state on completion:

>>> with push_seed(24):
... print(randint(0,1000000,3))
[242082 899 211136]

Using nested contexts, we can demonstrate that state is indeed restored after the block completes:

>>> with push_seed(24):
... print(randint(0,1000000))
... with push_seed(24):
... print(randint(0,1000000,3))
... print(randint(0,1000000))
242082
[242082 899 211136]
899
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The restore step is protected against exceptions in the block:

>>> with push_seed(24):
... print(randint(0,1000000))
... try:
... with push_seed(24):
... print(randint(0,1000000,3))
... raise Exception()
... except Exception:
... print("Exception raised")
... print(randint(0,1000000))
242082
[242082 899 211136]
Exception raised
899

class bumps.util.pushdir(path)
Bases: object

Change directories for the duration of a with statement.

Example

Show that the original directory is restored:

>>> import sys, os
>>> original_wd = os.getcwd()
>>> with pushdir(sys.path[0]):
... pushed_wd = os.getcwd()
... first_site = os.path.abspath(sys.path[0])
... assert pushed_wd == first_site
>>> restored_wd = os.getcwd()
>>> assert original_wd == restored_wd

class bumps.util.redirect_console(stdout=None, stderr=None)
Bases: object

Console output redirection context

The output can be redirected to a string, to an already opened file (anything with a write attribute), or to a filename
which will be opened for the duration of the with context. Unless stderr is specified, then both standard output
and standard error are redirected to the same file. The open file handle is returned on enter, and (if it was not an
already opened file) it is closed on exit.

If no file is specified, then output is redirected to a StringIO object, which has a getvalue() method which can
retrieve the string. The StringIO object is deleted when the context ends, so be sure to retrieve its value within
the redirect_console context.

Example

Show that output is captured in a file:

>>> from bumps.util import redirect_console
>>> print("hello")
hello
>>> with redirect_console("redirect_out.log"):
... print("captured")

(continues on next page)
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(continued from previous page)

>>> print("hello")
hello
>>> print(open("redirect_out.log").read()[:-1])
captured
>>> import os; os.unlink("redirect_out.log")

Output can also be captured to a string:

>>> with redirect_console() as fid:
... print("captured to string")
... captured_string = fid.getvalue()
>>> print(captured_string.strip())
captured to string

4.31 wsolve - Weighted linear and polynomial solver with uncertainty

wsolve Given a linear system 𝑦 = 𝐴𝑥+ 𝛿𝑦, estimates 𝑥 and 𝛿𝑥.
wpolyfit Return the polynomial of degree 𝑛 that minimizes∑︀

(𝑝(𝑥𝑖)− 𝑦𝑖)
2/𝜎2

𝑖 .
LinearModel Model evaluator for linear solution to 𝐴𝑥 = 𝑦.
PolynomialModel Model evaluator for best fit polynomial 𝑝(𝑥) = 𝑦 + /−

𝛿𝑦.

Weighted linear and polynomial solver with uncertainty.

Given 𝐴�̄� = 𝑦 ± 𝛿𝑦, solve using s = wsolve(A,y,dy)

wsolve uses the singular value decomposition for increased accuracy.

The uncertainty in the solution is estimated from the scatter in the data. Estimates the uncertainty for the solution from
the scatter in the data.

The returned model object s provides:

s.x solution
s.std uncertainty estimate assuming no correlation
s.rnorm residual norm
s.DoF degrees of freedom
s.cov covariance matrix
s.ci(p) confidence intervals at point p
s.pi(p) prediction intervals at point p
s(p) predicted value at point p
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4.31.1 Example

Weighted system:

>>> import numpy as np
>>> from bumps import wsolve
>>> A = np.array([[1,2,3],[2,1,3],[1,1,1]], dtype='d')
>>> dy = [0.2,0.01,0.1]
>>> y = [ 14.16, 13.01, 6.15]
>>> s = wsolve.wsolve(A,y,dy)
>>> print(", ".join("%0.2f +/- %0.2f"%(a,b) for a,b in zip(s.x,s.std)))
1.05 +/- 0.17, 2.20 +/- 0.12, 2.91 +/- 0.12

Note there is a counter-intuitive result that scaling the estimated uncertainty in the data does not affect the computed
uncertainty in the fit. This is the correct result — if the data were indeed selected from a process with ten times the
uncertainty, you would expect the scatter in the data to increase by a factor of ten as well. When this new data set is
fitted, it will show a computed uncertainty increased by the same factor. Monte carlo simulations bear this out. The
conclusion is that the dataset carries its own information about the variance in the data, and the weight vector serves
only to provide relative weighting between the points.

class bumps.wsolve.LinearModel(x=None, DoF=None, SVinv=None, rnorm=None)
Bases: object

Model evaluator for linear solution to 𝐴𝑥 = 𝑦.

Use s(A) to compute the predicted value of the linear model s at points given on the rows of 𝐴.

Computes a confidence interval (range of likely values for the mean at 𝑥) or a prediction interval (range of likely
values seen when measuring at 𝑥). The prediction interval gives the width of the distribution at 𝑥. This should
be the same regardless of the number of measurements you have for the value at 𝑥. The confidence interval gives
the uncertainty in the mean at 𝑥. It should get smaller as you increase the number of measurements. Error bars
in the physical sciences usually show a 1 − 𝛼 confidence value of erfc(1/

√
2), representing a 1 − 𝜎 standand

deviation of uncertainty in the mean.

Confidence intervals for the expected value of the linear system evaluated at a new point 𝑤 are given by the 𝑡
distribution for the selected interval 1− 𝛼, the solution 𝑥, and the number of degrees of freedom 𝑛− 𝑝:

𝑤𝑇𝑥± 𝑡
𝛼/2
𝑛−𝑝

√︀
var(𝑤)

where the variance var(𝑤) is given by:

var(𝑤) = 𝜎2(𝑤𝑇 (𝐴𝑇𝐴)−1𝑤)

Prediction intervals are similar, except the variance term increases to include both the uncertainty in the predicted
value and the variance in the data:

var(𝑤) = 𝜎2(1 + 𝑤𝑇 (𝐴𝑇𝐴)−1𝑤)

DoF

number of degrees of freedom in the solution

ci(A, sigma=1)
Compute the calculated values and the confidence intervals for the linear model evaluated at 𝐴.

sigma=1 corresponds to a 1− 𝜎 confidence interval

Confidence intervals are sometimes expressed as 1− 𝛼 values, where 𝛼 = erfc(𝜎/
√
2).
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property cov

covariance matrix [inv(A’A); O(n^3)]

property p

p-value probability of rejection

pi(A, p=0.05)
Compute the calculated values and the prediction intervals for the linear model evaluated at 𝐴.

p=0.05 corresponds to the 95% prediction interval.

rnorm

2-norm of the residuals ||𝑦 −𝐴𝑥||2
property std

solution standard deviation [sqrt(var); O(n^2)]

property var

solution variance [diag(cov); O(n^2)]

x

solution to the equation 𝐴𝑥 = 𝑦

class bumps.wsolve.PolynomialModel(x, y, dy, s, origin=False)
Bases: object

Model evaluator for best fit polynomial 𝑝(𝑥) = 𝑦 + /− 𝛿𝑦.

Use p(x) for PolynomialModel p to evaluate the polynomial at all points in the vector x.

DoF

number of degrees of freedom in the solution

ci(x, sigma=1)
Evaluate the polynomial and the confidence intervals at x.

sigma=1 corresponds to a 1-sigma confidence interval

coeff

polynomial coefficients

property cov

covariance matrix

Note that the ones column will be absent if origin is True.

degree

polynomial degree

der(x)
Evaluate the polynomial derivative at x.

origin

True if polynomial goes through the origin

property p

p-value probability of rejection
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pi(x, p=0.05)
Evaluate the polynomial and the prediction intervals at x.

p = 1-alpha = 0.05 corresponds to 95% prediction interval

plot(ci=1, pi=0)

rnorm

2-norm of the residuals ||𝑦 −𝐴𝑥||2
property std

solution standard deviation

property var

solution variance

bumps.wsolve.wpolyfit(x, y, dy=1, degree=None, origin=False)
Return the polynomial of degree 𝑛 that minimizes

∑︀
(𝑝(𝑥𝑖)− 𝑦𝑖)

2/𝜎2
𝑖 .

if origin is True, the fit should go through the origin.

Returns PolynomialModel.

bumps.wsolve.wsolve(A, y, dy=1, rcond=1e-12)
Given a linear system 𝑦 = 𝐴𝑥+ 𝛿𝑦, estimates 𝑥 and 𝛿𝑥.

A is an n x m array of measurement points.

y is an n x k array or vector of length n of measured values at A.

dy is a scalar or an n x 1 array of uncertainties in the values at A.

Returns LinearModel.

bounds Parameter bounds and prior probabilities.
bspline BSpline calculator.
cheby Freeform modeling with Chebyshev polynomials.
cli Bumps command line interface.
curve Build a bumps model from a function and data.
data Data handling utilities.
errplot Estimate model uncertainty from random sample.
fitproblem Interface between the models and the fitters.
fitservice Fit job definition for the distributed job queue.
fitters Interfaces to various optimizers.
formatnum Format values and uncertainties nicely for printing.
history Log of progress through a computation.
initpop Population initialization strategies.
lsqerror Least squares error analysis.
mapper Parallel and serial mapper implementations.
monitor Progress monitors.
mono Monotonic spline modeling.
names Exported names.
options Option parser for bumps command line
parameter Fitting parameter objects.
partemp Parallel tempering for continuous function optimization

and uncertainty analysis.
pdfwrapper Build a bumps model from a function.

continues on next page
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Table 2 – continued from previous page
plotutil Pylab plotting utilities.
plugin Bumps plugin architecture.
pmath Standard math functions for parameter expressions.
pymcfit Bumps wrapper for PyMC models.
quasinewton BFGS quasi-newton optimizer.
random_lines Random Lines Algorithm finds the optimal minimum of

a function.
simplex Downhill simplex optimizer.
util Miscellaneous utility functions.
wsolve Weighted linear and polynomial solver with uncertainty.
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CHAPTER

FIVE

REFERENCE: BUMPS.DREAM

5.1 acr - A C Rencher normal outlier test

ACR Return critical value for test of single multivariate nor-
mal outlier using the Mahalanobis distance metric.

ACR upper percentiles critical value for test of single multivariate normal outlier.

From the method given by Wilks (1963) and approaching to a F distribution function by the Yang and Lee (1987)
formulation, we compute the critical value of the maximum squared Mahalanobis distance to detect outliers from a
normal multivariate sample.

We can generate all the critical values of the maximum squared Mahalanobis distance presented on the Table XXXII
of by Barnett and Lewis (1978) and Table A.6 of Rencher (2002). Also with any given significance level (alpha).

Example:

>>> print("%.4f"%ACR(3, 25, 0.01))
13.1753

Created by:

A. Trujillo-Ortiz, R. Hernandez-Walls, A. Castro-Perez and K. Barba-Rojo
Facultad de Ciencias Marinas
Universidad Autonoma de Baja California
Apdo. Postal 453
Ensenada, Baja California
Mexico.
atrujo@uabc.mx

Copyright. August 20, 2006.

To cite this file, this would be an appropriate format:

Trujillo-Ortiz, A., R. Hernandez-Walls, A. Castro-Perez and K. Barba-Rojo.
(2006). *ACR:Upper percentiles critical value for test of single
multivariate normal outlier.* A MATLAB file. [WWW document]. URL
http://www.mathworks.com/matlabcentral/fileexchange/loadFile.do?objectId=12161

The function’s name is given in honour of Dr. Alvin C. Rencher for his invaluable contribution to multivariate statistics
with his text ‘Methods of Multivariate Analysis’.

References:

177



Bumps: Curve Fitting and Uncertainty Analysis, Release 0.9.1

[1] Barnett, V. and Lewis, T. (1978), Outliers on Statistical Data.
New-York:John Wiley & Sons.

[2] Rencher, A. C. (2002), Methods of Multivariate Analysis. 2nd. ed.
New-Jersey:John Wiley & Sons. Chapter 13 (pp. 408-450).

[3] Wilks, S. S. (1963), Multivariate Statistical Outliers. Sankhya,
Series A, 25: 407-426.

[4] Yang, S. S. and Lee, Y. (1987), Identification of a Multivariate
Outlier. Presented at the Annual Meeting of the American Statistical Association, San Francisco, August 1987.

bumps.dream.acr.ACR(p, n, alpha=0.05)
Return critical value for test of single multivariate normal outlier using the Mahalanobis distance metric.

p is the number of independent variables, n is the number of samples, and alpha is the significance level cutoff
(default=0.05).

5.2 bounds - Bounds handling

make_bounds_handler Return a bounds object which can update the bounds.
Bounds Base class for all times of bounds objects.
ReflectBounds Reflect parameter values into bounded region
ClipBounds Clip values to bounded region
FoldBounds Wrap values into the bounded region
RandomBounds Randomize values into the bounded region
IgnoreBounds Leave values outside the bounded region

Bounds handling.

Use bounds(low, high, style) to create a bounds handling object. This function operates on a point x, transforming
it so that all dimensions are within the bounds. Options are available, including reflecting, wrapping, clipping or
randomizing the point, or ignoring the bounds.

The returned bounds object should have an apply(x) method which transforms the point x.

class bumps.dream.bounds.Bounds

Bases: object

Base class for all times of bounds objects.

static apply(minn, maxn, pop)
Force pop (population) values within bounds

c_interface: Callable[[int, int, Any, Any, Any], None] = None

high: np.ndarray = None

low: np.ndarray = None

class bumps.dream.bounds.ClipBounds(low, high)
Bases: Bounds

Clip values to bounded region

static apply(minn, maxn, pop)
Force pop (population) values within bounds
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c_interface: Callable[[int, int, Any, Any, Any], None] = None

high: np.ndarray = None

low: np.ndarray = None

class bumps.dream.bounds.FoldBounds(low, high)
Bases: Bounds

Wrap values into the bounded region

static apply(minn, maxn, pop)
Force pop (population) values within bounds

c_interface: Callable[[int, int, Any, Any, Any], None] = None

high: np.ndarray = None

low: np.ndarray = None

class bumps.dream.bounds.IgnoreBounds(low=None, high=None)
Bases: Bounds

Leave values outside the bounded region

static apply(minn, maxn, pop)
Force pop (population) values within bounds

c_interface: Callable[[int, int, Any, Any, Any], None] = None

high: np.ndarray = None

low: np.ndarray = None

class bumps.dream.bounds.RandomBounds(low, high)
Bases: Bounds

Randomize values into the bounded region

static apply(minn, maxn, pop)
Force pop (population) values within bounds

c_interface: Callable[[int, int, Any, Any, Any], None] = None

high: np.ndarray = None

low: np.ndarray = None

class bumps.dream.bounds.ReflectBounds(low, high)
Bases: Bounds

Reflect parameter values into bounded region

static apply(minn, maxn, pop)
Update pop so all values lie within bounds

c_interface: Callable[[int, int, Any, Any, Any], None] = None

high: np.ndarray = None

low: np.ndarray = None
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bumps.dream.bounds.make_bounds_handler(bounds, style='reflect')
Return a bounds object which can update the bounds.

Bounds handling style name is one of:

reflect: reflect off the boundary
clip: stop at the boundary
fold: wrap values to the other side of the boundary
randomize: move to a random point in the bounds
none: ignore the bounds

With semi-infinite intervals folding and randomizing aren’t well defined, and reflection is used instead.

With finite intervals the the reflected or folded point may still be outside the bounds (which can happen if the
step size is too large), and a random uniform value is used instead.

5.3 core - DREAM core

Dream Data structure containing the details of the running
DREAM analysis code.

DiffeRential Evolution Adaptive Metropolis algorithm

DREAM runs multiple different chains simultaneously for global exploration, and automatically tunes the scale and
orientation of the proposal distribution using differential evolution. The algorithm maintains detailed balance and
ergodicity and works well and efficient for a large range of problems, especially in the presence of high-dimensionality
and multimodality.

DREAM developed by Jasper A. Vrugt and Cajo ter Braak

This algorithm has been described in:

Vrugt, J.A., C.J.F. ter Braak, M.P. Clark, J.M. Hyman, and B.A. Robinson,
Treatment of input uncertainty in hydrologic modeling: Doing hydrology backward with
Markov chain Monte Carlo simulation, Water Resources Research, 44, W00B09, 2008.
doi:10.1029/2007WR006720

Vrugt, J.A., C.J.F. ter Braak, C.G.H. Diks, D. Higdon, B.A. Robinson,
and J.M. Hyman, Accelerating Markov chain Monte Carlo simulation by differential evolution with
self-adaptive randomized subspace sampling, International Journal of Nonlinear Sciences and Nu-
merical Simulation, 10(3), 271-288, 2009.

Vrugt, J.A., C.J.F. ter Braak, H.V. Gupta, and B.A. Robinson,
Equifinality of formal (DREAM) and informal (GLUE) Bayesian approaches in hydrologic modeling,
Stochastic Environmental Research and Risk Assessment, 1-16, 2009, In Press. doi:10.1007/s00477-
008-0274-y

For more information please read:

Ter Braak, C.J.F.,
A Markov Chain Monte Carlo version of the genetic algorithm Differential Evolution: easy Bayesian
computing for real parameter spaces, Stat. Comput., 16, 239 - 249, 2006. doi:10.1007/s11222-006-
8769-1

Vrugt, J.A., H.V. Gupta, W. Bouten and S. Sorooshian,
A Shuffled Complex Evolution Metropolis algorithm for optimization and uncertainty assessment of
hydrologic model parameters, Water Resour. Res., 39 (8), 1201, 2003. doi:10.1029/2002WR001642

180 Chapter 5. Reference: bumps.dream

http://dx.doi.org/10.1029/2007WR006720
http://dx.doi.org/10.1007/s00477-008-0274-y
http://dx.doi.org/10.1007/s00477-008-0274-y
http://dx.doi.org/10.1007/s11222-006-8769-1
http://dx.doi.org/10.1007/s11222-006-8769-1
http://dx.doi.org/10.1029/2002WR001642


Bumps: Curve Fitting and Uncertainty Analysis, Release 0.9.1

Ter Braak, C.J.F., and J.A. Vrugt,
Differential Evolution Markov Chain with snooker updater and fewer chains, Statistics and Comput-
ing, 2008. doi:10.1007/s11222-008-9104-9

Vrugt, J.A., C.J.F. ter Braak, and J.M. Hyman,
Differential evolution adaptive Metropolis with snooker update and sampling from past states, SIAM
journal on Optimization, 2009.

Vrugt, J.A., C.J.F. ter Braak, and J.M. Hyman,
Parallel Markov chain Monte Carlo simulation on distributed computing networks using multi-try
Metropolis with sampling from past states, SIAM journal on Scientific Computing, 2009.

G. Schoups, and J.A. Vrugt,
A formal likelihood function for Bayesian inference of hydrologic models with correlated, het-
eroscedastic and non-Gaussian errors, Water Resources Research, 2010, In Press.

G. Schoups, J.A. Vrugt, F. Fenicia, and N.C. van de Giesen,
Inaccurate numerical solution of hydrologic models corrupts efficiency and robustness of
MCMC simulation, Water Resources Research, 2010, In Press.

Copyright (c) 2008, Los Alamos National Security, LLC All rights reserved.

Copyright 2008. Los Alamos National Security, LLC. This software was produced under U.S. Government contract DE-
AC52-06NA25396 for Los Alamos National Laboratory (LANL), which is operated by Los Alamos National Security,
LLC for the U.S. Department of Energy. The U.S. Government has rights to use, reproduce, and distribute this software.

NEITHER THE GOVERNMENT NOR LOS ALAMOS NATIONAL SECURITY, LLC MAKES ANY WARRANTY,
EXPRESS OR IMPLIED, OR ASSUMES ANY LIABILITY FOR THE USE OF THIS SOFTWARE. If software is
modified to produce derivative works, such modified software should be clearly marked, so as not to confuse it with
the version available from LANL.

Additionally, redistribution and use in source and binary forms, with or without modification, are permitted provided
that the following conditions are met:

• Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

• Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided with the distribution.

• Neither the name of Los Alamos National Security, LLC, Los Alamos National Laboratory, LANL the U.S.
Government, nor the names of its contributors may be used to endorse or promote products derived from this
software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY LOS ALAMOS NATIONAL SECURITY, LLC AND CONTRIBUTORS “AS
IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
IN NO EVENT SHALL LOS ALAMOS NATIONAL SECURITY, LLC OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (IN-
CLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

MATLAB code written by Jasper A. Vrugt, Center for NonLinear Studies (CNLS)

Written by Jasper A. Vrugt: vrugt@lanl.gov

Version 0.5: June 2008 Version 1.0: October 2008 Adaption updated and generalized CR implementation

2010-04-20 Paul Kienzle * Convert to python
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class bumps.dream.core.Dream(**kw)
Bases: object

Data structure containing the details of the running DREAM analysis code.

CR = None

CR_spacing = 'linear'

DE_eps = 0.05

DE_noise = 1e-06

DE_pairs = 3

DE_snooker_rate = 0.1

DE_steps = 10

DR_scale = 1

alpha = 0.01

convergence criteria

bounds_style = 'reflect'

burn = 0

draws = 100000

goalseek_interval = 1e+100

goalseek_minburn = 1000

goalseek_optimizer = None

model = None

outlier_test = 'none'

population = None

sample(state=None, abort_test=<function Dream.<lambda>>)
Pull the requisite number of samples from the distribution

state: MCMCDraw = None

thinning = 1

use_delayed_rejection = False
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5.4 corrplot - Correlation plots

Corr2d Generate and manage 2D correlation histograms.

2-D correlation histograms

Generate 2-D correlation histograms and display them in a figure.

Uses false color plots of density.

class bumps.dream.corrplot.Corr2d(data, labels=None, **kw)
Bases: object

Generate and manage 2D correlation histograms.

R()

plot(title=None)
Plot the correlation histograms on the specified figure

5.5 crossover - Adaptive crossover support

Crossover Fixed weight crossover ratios.
BaseAdaptiveCrossover Adapted weight crossover ratios.
AdaptiveCrossover Adapted weight crossover ratios.
LogAdaptiveCrossover Adapted weight crossover ratios, log-spaced.

Crossover ratios

The crossover ratio (CR) determines what percentage of parameters in the target vector are updated with difference
vector selected from the population. In traditional differential evolution a CR value is chosen somewhere in [0, 1] at
the start of the search and stays constant throughout. DREAM extends this by allowing multiple CRs at the same time
with different probabilities. Adaptive crossover adjusts the relative weights of the CRs based on the average distance of
the steps taken when that CR was used. This distance will be zero for unsuccessful metropolis steps, and so the relative
weights on those CRs which generate many unsuccessful steps will be reduced.

5.5.1 Usage

1. Traditional differential evolution:

crossover = Crossover(CR=CR)

2. Weighted crossover ratios:

crossover = Crossover(CR=[CR1, CR2, ...], weight=[weight1, weight2, ...])

The weights are normalized to one, and default to equally weighted CRs.

3. Adaptive weighted crossover ratios:

crossover = AdaptiveCrossover(N)
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The CRs are set to [1/N, 2/N, . . . 1], and start out equally weighted. The weights are adapted during burn-in (10% of
the runs) and fixed for the remainder of the analysis.

5.5.2 Compatibility Notes

For Extra.pCR == ‘Update’ in the matlab interface use:

CR = AdaptiveCrossover(Ncr=MCMCPar.nCR)

For Extra.pCR != ‘Update’ in the matlab interface use:

CR = Crossover(CR=[1./Ncr], pCR=[1])

class bumps.dream.crossover.AdaptiveCrossover(N)

Bases: BaseAdaptiveCrossover

Adapted weight crossover ratios.

N is the number of CRs to use. CR is set to [1/N, 2/N, . . . , 1], with initial weights [1/N, 1/N, . . . , 1/N].

adapt()

Update CR weights based on the available adaptation data.

reset()

update(xold, xnew, used)
Gather adaptation data on xold, xnew for each CR that was used in step N.

weight: ndarray = None

class bumps.dream.crossover.BaseAdaptiveCrossover

Bases: object

Adapted weight crossover ratios.

adapt()

Update CR weights based on the available adaptation data.

reset()

update(xold, xnew, used)
Gather adaptation data on xold, xnew for each CR that was used in step N.

weight: ndarray = None

class bumps.dream.crossover.Crossover(CR, weight=None)
Bases: object

Fixed weight crossover ratios.

CR is a scalar if there is a single crossover ratio, or a vector of numbers in (0, 1].

weight is the relative weighting of each CR, or None for equal weights.

adapt()

Update CR weights based on the available adaptation data.

reset()
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update(xold, xnew, used)
Gather adaptation data on xold, xnew for each CR that was used in step N.

class bumps.dream.crossover.LogAdaptiveCrossover(dim, N=4.5)
Bases: BaseAdaptiveCrossover

Adapted weight crossover ratios, log-spaced.

dim is the number of dimensions in the problem. N is the number of CRs to use per decade.

CR is set to [k/dim] where k is log-spaced from 1 to dim. The CRs start equally weighted as [1, . . . , 1]/len(CR).

N should be around 4.5. This gives good low end density, with 1, 2, 3, and 5 parameters changed at a time, and
proceeds up to 60% and 100% of parameters each time. Lower values of N give too few high density CRs, and
higher values give too many low density CRs.

adapt()

Update CR weights based on the available adaptation data.

reset()

update(xold, xnew, used)
Gather adaptation data on xold, xnew for each CR that was used in step N.

weight: ndarray = None

5.6 diffev - Differential evolution MCMC stepper

de_step Generates offspring using METROPOLIS HASTINGS
monte-carlo markov chain

Differential evolution MCMC stepper.

bumps.dream.diffev.de_step(Nchain, pop, CR, max_pairs=2, eps=0.05, snooker_rate=0.1, noise=1e-06,
scale=1.0)

Generates offspring using METROPOLIS HASTINGS monte-carlo markov chain

The number of chains may be smaller than the population size if the population is selected from both the current
generation and the ancestors.

5.7 entropy - Entropy calculation

entropy Return entropy estimate and uncertainty from a random
sample.

gmm_entropy Use sklearn.mixture.BayesianGaussianMixture to esti-
mate entropy.

cov_entropy Entropy estimate from covariance matrix C
wnn_entropy Weighted Kozachenko-Leonenko nearest-neighbour en-

tropy calculation.
MVNEntropy Multivariate normal entropy approximation.

Estimate entropy after a fit.

5.6. diffev - Differential evolution MCMC stepper 185



Bumps: Curve Fitting and Uncertainty Analysis, Release 0.9.1

The gmm_entropy() function computes the entropy from a Gaussian mixture model. This provides a reasonable
estimate even for non-Gaussian distributions. This is the recommended method for estimating the entropy of a sample.

The cov_entropy()method computes the entropy associated with the covariance matrix. This covariance matrix can
be estimated during the fitting procedure (BFGS updates an estimate of the Hessian matrix for example), or computed
by estimating derivatives when the fit is complete.

The MVNEntropy class estimates the covariance from an MCMC sample and uses this covariance to estimate the
entropy. This gives a better estimate of the entropy than the equivalent direct calculation, which requires many more
samples for a good kernel density estimate. The reject_normal attribute is True if the MCMC sample is significantly
different from normal. Unfortunately, this almost always the case for any reasonable sample size that isn’t strictly
gaussian.

The entropy() function computes the entropy directly from a set of MCMC samples, normalized by a scale factor
computed from the kernel density estimate at a subset of the points.1

There are many other entropy calculations implemented within this file, as well as a number of sampling distributions for
which the true entropy is known. Furthermore, entropy was computed against dream output and checked for consistency.
None of the methods is truly excellent in terms of minimum sample size, maximum dimensions and speed, but many
of them are pretty good.

The following is an informal summary of the results from different algorithms applied to DREAM output:

from .entropy import Timer as T

# Try MVN ... only good for normal distributions, but very fast
with T(): M = entropy.MVNEntropy(drawn.points)
print("Entropy from MVN: %s"%str(M))

# Try wnn ... no good.
with T(): S_wnn, Serr_wnn = entropy.wnn_entropy(drawn.points, n_est=20000)
print("Entropy from wnn: %s"%str(S_wnn))

# Try wnn with bootstrap ... still no good.
with T(): S_wnn, Serr_wnn = entropy.wnn_bootstrap(drawn.points)
print("Entropy from wnn bootstrap: %s"%str(S_wnn))

# Try wnn entropy with thinning ... still no good.
#drawn = self.draw(portion=portion, vars=vars,
# selection=selection, thin=10)
with T(): S_wnn, Serr_wnn = entropy.wnn_entropy(points)
print("Entropy from wnn: %s"%str(S_wnn))

# Try wnn with gmm ... still no good
with T(): S_wnn, Serr_wnn = entropy.wnn_entropy(drawn.points, n_est=20000, gmm=20)
print("Entropy from wnn with gmm: %s"%str(S_wnn))

# Try pure gmm ... pretty good
with T(): S_gmm, Serr_gmm = entropy.gmm_entropy(drawn.points, n_est=10000)
print("Entropy from gmm: %s"%str(S_gmm))

# Try kde from statsmodels ... pretty good
with T(): S_kde_stats = entropy.kde_entropy_statsmodels(drawn.points, n_est=10000)

(continues on next page)

1 Kramer, A., Hasenauer, J., Allgower, F., Radde, N., 2010. Computation of the posterior entropy in a Bayesian framework for parameter
estimation in biological networks, in: 2010 IEEE International Conference on Control Applications (CCA). Presented at the 2010 IEEE International
Conference on Control Applications (CCA), pp. 493-498. doi:10.1109/CCA.2010.5611198
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(continued from previous page)

print("Entropy from kde statsmodels: %s"%str(S_kde_stats))

# Try kde from sklearn ... pretty good
with T(): S_kde = entropy.kde_entropy_sklearn(drawn.points, n_est=10000)
print("Entropy from kde sklearn: %s"%str(S_kde))

# Try kde from sklearn at points from gmm ... pretty good
with T(): S_kde_gmm = entropy.kde_entropy_sklearn_gmm(drawn.points, n_est=10000)
print("Entropy from kde+gmm: %s"%str(S_kde_gmm))

# Try Kramer ... pretty good, but doesn't support marginal entropy
with T(): S, Serr = entropy.entropy(drawn.points, drawn.logp, N_entropy=n_est)
print("Entropy from Kramer: %s"%str(S))

class bumps.dream.entropy.MVNEntropy(x, alpha=0.05, max_points=1000)
Bases: object

Multivariate normal entropy approximation.

Uses Mardia’s multivariate skewness and kurtosis test to estimate normality.

x is a set of points

alpha is the cutoff for the normality test.

max_points is the maximum number of points to use when checking normality. Since the normality test is 𝑂(𝑛2)
in memory and time, where 𝑛 is the number of points, max_points defaults to 1000. The entropy is computed
from the full dataset.

The returned object has the following attributes:

p_kurtosis is the p-value for the kurtosis normality test

p_skewness is the p-value for the skewness normality test

reject_normal is True if either the the kurtosis or the skew test fails

entropy is the estimated entropy of the best normal approximation to the distribution

bumps.dream.entropy.cov_entropy(C)
Entropy estimate from covariance matrix C

bumps.dream.entropy.entropy(points, logp, N_entropy=10000, N_norm=2500)
Return entropy estimate and uncertainty from a random sample.

points is a set of draws from an underlying distribution, as returned by a Markov chain Monte Carlo process for
example.

logp is the log-likelihood for each draw.

N_norm is the number of points 𝑘 to use to estimate the posterior density normalization factor 𝑃 (𝐷) = �̂� ,
converting from log(𝑃 (𝐷|𝑀)𝑃 (𝑀)) to log(𝑃 (𝐷|𝑀)𝑃 (𝑀)/𝑃 (𝐷)). The relative uncertainty ∆𝑆/𝑆 scales
with

√
𝑘, with the default N_norm=2500 corresponding to 2% relative uncertainty. Computation cost is 𝑂(𝑛𝑘)

where 𝑛 is number of points in the draw.

N_entropy is the number of points used to estimate the entropy 𝑆 = −
∫︀
𝑃 (𝑀 |𝐷) log𝑃 (𝑀 |𝐷) from the nor-

malized log likelihood values.
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bumps.dream.entropy.gmm_entropy(points, n_est=None, n_components=None)
Use sklearn.mixture.BayesianGaussianMixture to estimate entropy.

points are the data points in the sample.

n_est are the number of points to use in the estimation; default is 10,000 points, or 0 for all the points.

n_components are the number of Gaussians in the mixture. Default is 5
√
𝑑 where 𝑑 is the number of dimensions.

Returns estimated entropy and uncertainty in the estimate.

This method uses BayesianGaussianMixture from scikit-learn to build a model of the point distribution, then uses
Monte Carlo sampling to determine the entropy of that distribution. The entropy uncertainty is computed from
the variance in the MC sample scaled by the number of samples. This does not incorporate any uncertainty in
the sampling that generated the point distribution or the uncertainty in the GMM used to model that distribution.

bumps.dream.entropy.wnn_entropy(points, k=None, weights=True, n_est=None, gmm=None)
Weighted Kozachenko-Leonenko nearest-neighbour entropy calculation.

k is the number of neighbours to consider, with default 𝑘 = 𝑛1/3

n_est is the number of points to use for estimating the entropy, with default 𝑛est=n

weights is True for default weights, False for unweighted (using the distance to the kth neighbour only), or a
vector of weights of length k.

gmm is the number of gaussians to use to model the distribution using a gaussian mixture model. Default is 0,
and the points represent an empirical distribution.

Returns entropy H in bits and its uncertainty.

Berrett, T. B., Samworth, R.J., Yuan, M., 2016. Efficient multivariate entropy estimation via k-nearest neighbour
distances. DOI:10.1214/18-AOS1688 https://arxiv.org/abs/1606.00304

5.8 exppow - Exponential power density parameter calculator

exppow_pars Return w(B) and c(B) for the exponential power density:

Exponential power density parameter calculator.

bumps.dream.exppow.exppow_pars(B)
Return w(B) and c(B) for the exponential power density:

𝑝(𝑣|𝑆,𝐵) =
𝑤(𝐵)

𝑆
exp

(︁
−𝑐(𝐵)|𝑣/𝑆|2/(1+𝐵)

)︁
B in (-1,1] is a measure of kurtosis:

B = 1: double exponential
B = 0: normal
B -> -1: uniform

[1] Thiemann, M., M. Trosser, H. Gupta, and S. Sorooshian (2001). Bayesian recursive parameter estimation
for hydrologic models, Water Resour. Res. 37(10) 2521-2535.
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5.9 formatnum - Format values and uncertainties nicely for printing

format_value Given value v and uncertainty dv, return a string v which
is the value formatted with the appropriate number of
digits.

format_uncertainty Value and uncertainty formatter.
format_uncertainty_compact Given value v and uncertainty dv, return the compact

representation v(##), where ## are the first two digits of
the uncertainty.

format_uncertainty_pm Given value v and uncertainty dv, return a string v +/-
dv.

Format values and uncertainties nicely for printing.

The formatted value uses only the number of digits warranted by the uncertainty in the measurement.

format_value() shows the value without the uncertainty.

format_uncertainty_pm() shows the expanded format v +/- err.

format_uncertainty_compact() shows the compact format v(##), where the number in parenthesis is the uncer-
tainty in the last two digits of v.

format_uncertainty() uses the compact format by default, but this can be changed to use the expanded +/- format
by setting format_uncertainty.compact to False. This is a global setting which should be considered a user preference.
Any library code that depends on a specific format style should use the corresponding formatting function.

If the uncertainty is 0 or not otherwise provided, the simple %g floating point format option is used.

Infinite and indefinite numbers are represented as inf and NaN.

Example:

>>> v,dv = 757.2356,0.01032
>>> print(format_uncertainty_pm(v,dv))
757.236 +/- 0.010
>>> print(format_uncertainty_compact(v,dv))
757.236(10)
>>> print(format_uncertainty(v,dv))
757.236(10)
>>> format_uncertainty.compact = False
>>> print(format_uncertainty(v,dv))
757.236 +/- 0.010
>>> format_uncertainty.compact = True # restore default

bumps.dream.formatnum.format_uncertainty(value, uncertainty)
Value and uncertainty formatter.

Either the expanded v +/- dv form or the compact v(##) form will be used depending on whether for-
mat_uncertainty.compact is True or False. The default is True.

bumps.dream.formatnum.format_uncertainty_compact(value, uncertainty)
Given value v and uncertainty dv, return the compact representation v(##), where ## are the first two digits of
the uncertainty.

bumps.dream.formatnum.format_uncertainty_pm(value, uncertainty)
Given value v and uncertainty dv, return a string v +/- dv.
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bumps.dream.formatnum.format_value(value, uncertainty)
Given value v and uncertainty dv, return a string v which is the value formatted with the appropriate number of
digits.

5.10 gelman - R-statistic convergence test

gelman Calculates the R-statistic convergence diagnostic

Convergence test statistic from Gelman and Rubin, 1992.[1]

[1] Gelman, Andrew, and Donald B. Rubin.
“Inference from Iterative Simulation Using Multiple Sequences.” Statistical Science 7, no. 4 (November 1, 1992):
457-72. https://doi.org/10.2307/2246093.

bumps.dream.gelman.gelman(sequences, portion=0.5)
Calculates the R-statistic convergence diagnostic

For more information please refer to: Gelman, A. and D.R. Rubin, 1992. Inference from Iterative Simulation
Using Multiple Sequences, Statistical Science, Volume 7, Issue 4, 457-472. doi:10.1214/ss/1177011136

5.11 geweke - Geweke convergence test

geweke Calculates the Geweke convergence diagnostic

Convergence test statistic from Gelman and Rubin, 1992.

bumps.dream.geweke.geweke(sequences, portion=0.25)
Calculates the Geweke convergence diagnostic

Refer to:

pymc-devs.github.com/pymc/modelchecking.html#informal-methods sup-
port.sas.com/documentation/cdl/en/statug/63033/HTML/default/viewer.htm#statug_introbayes_sect008.html

5.12 initpop - Population initialization routines

lhs_init Latin Hypercube Sampling
cov_init Initialize N sets of random variables from a gaussian

model.

Population initialization routines.

To start the analysis an initial population is required. This will be an array of size M x N, where M is the number of
dimensions in the fitting problem and N is the number of Markov chains.

Two functions are provided:

1. lhs_init(N, bounds) returns a latin hypercube sampling, which tests every parameter at each of N levels.
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2. cov_init(N, x, cov) returns a Gaussian sample along the ellipse defined by the covariance matrix, cov. Covariance
defaults to diag(dx) if dx is provided as a parameter, or to I if it is not.

Additional options are random box: rand(M, N) or random scatter: randn(M, N).

bumps.dream.initpop.cov_init(N , x, cov=None, dx=None)
Initialize N sets of random variables from a gaussian model.

The center is at x with an uncertainty ellipse specified by the 1-sigma independent uncertainty values dx or the
full covariance matrix uncertainty cov.

For example, create an initial population for 20 sequences for a model with local minimum x with covariance
matrix C:

pop = cov_init(cov=C, x=x, N=20)

bumps.dream.initpop.lhs_init(N , bounds)
Latin Hypercube Sampling

Returns an array whose columns each have N samples from equally spaced bins between bounds=(xmin, xmax)
for the column. DREAM bounds objects, with bounds.low and bounds.high can be used as well.

Note: Indefinite ranges are not supported.

5.13 ksmirnov - Kolmogorov-Smirnov test for MCMC convergence

ksmirnov Kolmogorov-Smirnov test of similarity between the em-
pirical distribution at the start and at the end of the chain.

Kolmogorov-Smirnov test for MCMC convergence.

Use the K-S tests to compare the distribution of values at the front of the chain to that at the end of the chain. If the
distributions are significantly different, then the MCMC chain has not converged.

bumps.dream.ksmirnov.ksmirnov(seq, portion=0.25, filter_order=15)
Kolmogorov-Smirnov test of similarity between the empirical distribution at the start and at the end of the chain.
Apply a median filter (filter=15) on neighbouring K-S values to reduce variation in the test statistic value.

5.14 mahal - Mahalanobis distance calculator

mahalanobis Returns the distances of the observations from a refer-
ence set.

Mahalanobis distance calculator

Compute the Mahalanobis distance between observations and a reference set. The principle components of the reference
set define the basis of the space for the observations. The simple Euclidean distance is used within this space.

bumps.dream.mahal.mahalanobis(Y , X)
Returns the distances of the observations from a reference set.

Observations are stored in rows Y and the reference set in X.
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5.15 metropolis - MCMC step acceptance test

metropolis Metropolis rule for acceptance or rejection
metropolis_dr Delayed rejection metropolis

MCMC step acceptance test.

bumps.dream.metropolis.metropolis(xtry, logp_try, xold, logp_old, step_alpha)
Metropolis rule for acceptance or rejection

Generates the next generation, newgen from:

x_new[k] = x[k] if U > alpha
= x_old[k] if U <= alpha

where alpha is p/p_old and accept is U > alpha.

Returns x_new, logp_new, alpha, accept

bumps.dream.metropolis.metropolis_dr(xtry, logp_try, x, logp, xold, logp_old, alpha12, R)
Delayed rejection metropolis

5.16 model - MCMC model types

MCMCModel MCMCM model abstract base class.
Density Construct an MCMC model from a probablility density

function.
LogDensity Construct an MCMC model from a log probablility den-

sity function.
Simulation Construct an MCMC model from a simulation function.
MVNormal multivariate normal negative log likelihood function
Mixture Create a mixture model from a list of weighted density

models.

MCMC model types

5.16.1 Usage

First create a bumps.dream.bounds.Bounds object. This stores the ranges available on the parameters, and controls
how values outside the range are handled:

M_bounds = bounds(minx, maxx, style='reflect|clip|fold|randomize|none')

For simple functions you can use one of the existing models.

If your model f computes the probability density, use Density:

M = Density(f, bounds=M_bounds)

If your model f computes the log probability density, use LogDensity:
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M = LogDensity(f, bounds=M_bounds)

If your model f computes a simulation which returns a vector, and you have data associated with the simulation, use
Simulation:

M = Simulation(f, data=data, bounds=M_bounds)

The measurement data can have a 1-sigma uncertainty associated with it, as well as a gamma factor if the uncertainty
distribution has non-Gaussian kurtosis associated with it.

Multivariate normal distribution:

M = MVNormal(mu, sigma)

Mixture models:

M = Mixture(M1, w1, M2, w2, ...)

For more complex functions, you can subclass MCMCModel:

class Model(MCMCModel):
def __init__(self, ..., bounds=None, ...):

...
self.bounds = bounds
...

def nnlf(self, x):
"Return the negative log likelihood of seeing x"
p = probability of seeing x
return -log(p)

M = Model(..., bounds=M_bounds, ...)

The MCMC program uses only two methods from the model:

apply_bounds(pop)
log_density(pop)

If your model provides these methods, you will not need to subclass MCMCModel in order to interact with DREAM.

5.16.2 Compatibility with matlab DREAM

First generate a bounds handling function:

M_bounds = bounds(ParRange.minn, ParRange.maxn)

Then generate a model, depending on what kind of function you have.

Option 1. Model directly computes posterior density:

model = Density(f, bounds=M_bounds)

Option 2. Model computes simulation, data has known 1-sigma uncertainty:

model = Simulation(f, data=Measurement.MeasData, bounds=M_bounds,
sigma=Measurement.Sigma, gamma = MCMCPar.Gamma)
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Option 3. Model computes simulation, data has unknown 1-sigma uncertainty:

model = Simulation(f, data=Measurement.MeasData, bounds=M_bounds,
gamma = MCMCPar.Gamma)

Option 4. Model directly computes log posterior density:

model = LogDensity(f, bounds=M_bounds)

Option 5 is like option 2 but the reported likelihoods do not take the 1-sigma uncertainty into account. The metropolis
steps are still based on the 1-sigma uncertainty, so use the style given in option 2 for this case.

class bumps.dream.model.Density(f , bounds=None, labels=None)
Bases: MCMCModel

Construct an MCMC model from a probablility density function.

f is the density function

bounds = None

labels = None

log_density(x)

map(pop)

nllf(x)

plot(x)

class bumps.dream.model.LogDensity(f , bounds=None, labels=None)
Bases: MCMCModel

Construct an MCMC model from a log probablility density function.

f is the log density function

bounds = None

labels = None

log_density(x)

map(pop)

nllf(x)

plot(x)

class bumps.dream.model.MCMCModel

Bases: object

MCMCM model abstract base class.

Each model must have a negative log likelihood function which operates on a point x, returning the negative log
likelihood, or inf if the point is outside the domain.

bounds = None

labels = None
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log_density(x)

map(pop)

nllf(x)

plot(x)

class bumps.dream.model.MVNormal(mu, sigma)
Bases: MCMCModel

multivariate normal negative log likelihood function

bounds = None

labels = None

log_density(x)

map(pop)

nllf(x)

plot(x)

class bumps.dream.model.Mixture(*args)
Bases: MCMCModel

Create a mixture model from a list of weighted density models.

MixtureModel( M1, w1, M2, w2, . . . )

Models M1, M2, . . . are MCMC models with M.nllf(x) returning the negative log likelihood of x. Weights w1,
w2, . . . are arbitrary scalars.

bounds = None

labels = None

log_density(x)

map(pop)

nllf(x)

plot(x)

class bumps.dream.model.Simulation(f=None, bounds=None, data=None, sigma=1, gamma=0,
labels=None)

Bases: MCMCModel

Construct an MCMC model from a simulation function.

f is the function which simulates the data data is the measurement(s) to compare it to sigma is the 1-sigma
uncertainty of the measurement(s). gamma in (-1, 1] represents kurtosis on the data measurement uncertainty.

Data is assumed to come from an exponential power density:

p(v|S, G) = w(G)/S exp(-c(G) |v/S|^(2/(1+G)))

where S is sigma and G is gamma.

The values of sigma and gamma can be uniform or can vary with the individual measurement points.
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Certain values of gamma select particular distributions::
G = 0: normal G = 1: double exponential G -> -1: uniform

bounds = None

labels = None

log_density(x)

map(pop)

nllf(x)

plot(x)

5.17 outliers - Chain outlier tests

identify_outliers Determine which chains have converged on a local max-
imum much lower than the maximum likelihood.

Chain outlier tests.

bumps.dream.outliers.identify_outliers(test, llf , x=None)
Determine which chains have converged on a local maximum much lower than the maximum likelihood.

test is the name of the test to use (one of IQR, Grubbs, Mahal or none). IQR rejects any chains with mean log
likelihood more than than twice the inter-quartile range below the value of the 25% quartile. The Grubbs method
uses a t-test to determine which chains have a mean log likelihood extremely far below the mean across all the
chains. The Mahal test looks at the head of the chain with the worst mean log likelihood and marks it as an outlier
if it is far from the centroid of the population. This assumes that the posterior is approximately gaussian, which
is not true in general.

llf is a set of log likelihood values for all chains, which is an array of shape (chain len, num chains)

x is the current population with one point for each each, which is an array of shape (num chains, num vars). This
is only used for the Mahal test.

Returns an integer array of outlier indices.

5.18 state - Sampling history for MCMC

MCMCDraw

load_state

save_state

Sampling history for MCMC.

MCMC keeps track of a number of things during sampling.

The results may be queried as follows:
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draws, generation, thinning
sample(condition) returns draws, points, logp
logp() returns draws, logp
acceptance_rate() returns draws, AR
chains() returns draws, chains, logp
CR_weight() returns draws, CR_weight
best() returns best_x, best_logp
outliers() returns outliers
show()/save(file)/load(file)

Data is stored in circular arrays, which keeps the last N generations and throws the rest away.

draws is the total number of draws from the sampler.

generation is the total number of generations.

thinning is the number of generations per stored sample.

draws[i] is the number of draws including those required to produce the information in the corresponding return vector.
Note that draw numbers need not be linearly spaced, since techniques like delayed rejection will result in a varying
number of samples per generation.

logp[i] is the set of log likelihoods, one for each member of the population. The logp() method returns the complete
set, and the sample() method returns a thinned set, with on element of logp[i] for each vector point[i, :].

AR[i] is the acceptance rate at generation i, showing the proportion of proposed points which are accepted into the
population.

chains[i, :, :] is the set of points in the differential evolution population at thinned generation i. Ideally, the thinning
rate of the MCMC process is chosen so that thinned generations i and i+1 are independent samples from the posterior
distribution, though there is a chance that this may not be the case, and indeed, some points in generation i+1 may be
identical to those in generation i. Actual generation number is i*thinning.

points[i, :] is the ith point in a returned sample. The i is just a place holder; there is no inherent ordering to the sample
once they have been extracted from the chains. Note that the sample may be from a marginal distribution.

R[i] is the Gelman R statistic measuring convergence of the Markov chain.

CR_weight[i] is the set of weights used for selecting between the crossover ratios available to the candidate generation
process of differential evolution. These will be fixed early in the sampling, even when adaptive differential evolution
is selected.

outliers[i] is a vector containing the thinned generation number at which an outlier chain was removed, the id of the
chain that was removed and the id of the chain that replaced it. We leave it to the reader to decide if the cloned samples,
point[:generation, :, removed_id], should be included in further analysis.

best_logp is the highest log likelihood observed during the analysis and best_x is the corresponding point at which it
was observed.

generation is the last generation number

class bumps.dream.state.MCMCDraw(Ngen, Nthin, Nupdate, Nvar, Npop, Ncr, thinning)
Bases: object

CR_weight()

Return the crossover ratio weights to be used in the next generation.

For example, to see if the adaptive CR is stable use:

draw, weight = state.CR_weight()
plot(draw, weight)
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See crossover for details.

property Ncr

property Ngen

property Npop

property Nsamples

property Nthin

property Nupdate

property Nvar

Number of parameters in the fit

acceptance_rate()

Return the iteration number and the acceptance rate for that iteration.

For example, to plot the acceptance rate over time:

draw, AR = state.acceptance_rate()
plot(draw, AR)

best()

Return the best point seen and its log likelihood.

chains()

Returns the observed Markov chains and the corresponding likelihoods.

The return value is a tuple (draws, chains, logp).

draws is the number of samples taken up to and including the samples for the current generation.

chains is a three dimensional array of generations X chains X vars giving the set of points observed for
each chain in every generation. Only the thinned samples are returned.

logp is a two dimensional array of generation X population giving the log likelihood of observing the set
of variable values given in chains.

derive_vars(fn, labels=None)
Generate derived variables from the current sample, adding columns for the derived variables to each sam-
ple of every chain.

The new columns are treated as part of the sample.

fn is a function taking points p[:, k] for k in 0 . . . samples and returning a set of derived variables pj[k] for
each sample k. The variables can be returned as any kind of sequence including an array or a tuple with
one entry per variable. The caller uses asarray to convert the returned variables into a vars X samples array.
For convenience, a single variable can be returned by itself.

labels are the labels to use for the derived variables.

The following example adds the new variable x+y = P[0] + P[1]:

state.derive_vars(lambda p: p[0]+p[1], labels=["x+y"])
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draw(portion=1.0, vars=None, selection=None, thin=1)
Return a sample from the posterior distribution.

portion is the portion of each chain to use

vars is a list of variables to return for each point

selection sets the range each parameter in the returned distribution, using {variable: (low, high)}. Missing
variables use the full range.

thin takes every nth item.

To plot the distribution for parameter p1:

draw = state.draw()
hist(draw.points[:, 0])

To plot the interdependence of p1 and p2:

draw = state.sample()
plot(draw.points[:, 0], draw.points[:, 1], '.')

entropy(vars=None, portion=1.0, selection=None, n_est=10000, thin=None, method=None)
Return entropy estimate and uncertainty from an MCMC draw.

portion is the portion of each chain to use

vars is the set of variables to marginalize over. It is None for the visible variables, or a list of variables.

vars is the list of variables to use for marginalization.

selection sets the range each parameter in the returned distribution, using {variable: (low, high)}. Missing
variables use the full range.

n_est is the number of points to use from the draw when estimating the entropy (default=10000).

thin is the amount of thinning to use when selecting points from the draw.

method determines which entropy calculation to use:

• gmm: fit sample to a gaussian mixture model (GMM) with 5
√
𝑑 components where 𝑑 is the number

fitted parameters and estimate entropy by sampling from the GMM.

• llf: estimates likelihood scale factor from ratio of density estimate to model likelihood, then com-
putes Monte Carlo entropy from sample; this does not work for marginal likelihood estimates.
DOI:10.1109/CCA.2010.5611198

• mvn: fit sample to a multi-variate Gaussian and return the entropy of the best fit gaussian; uses boot-
strap to estimate uncertainty.

• wnn: estimate entropy from nearest-neighbor distances in sample. DOI:10.1214/18-AOS1688

gelman()

Compute the R-statistic for the current frame

keep_best()

Place the best point at the end of the last good chain.

Good chains are defined by mark_outliers.

Because the Markov chain is designed to wander the parameter space, the best individual seen during the
random walk may have been observed during the burn-in period, and may no longer be present in the chain.
If this is the case, replace the final point with the best, otherwise swap the positions of the final and the best.
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property labels

logp(full=False)
Return the iteration number and the log likelihood for each point in the individual sequences in that iteration.

For example, to plot the convergence of each sequence:

draw, logp = state.logp()
plot(draw, logp)

Note that draw[i] represents the total number of samples taken, including those for the samples in logp[i].

If full is True, then return all chains, not just good chains.

logp_slice(n)
Return a slice of the logp chains, either the first n if n > 0 or the last n if n < 0. Avoids unrolling the circular
buffer if possible.

mark_outliers(test='IQR', portion=1.0)
Mark some chains as outliers but don’t remove them. This can happen after drawing is complete, so that
chains that did not converge are not included in the statistics.

test is ‘IQR’, ‘Mahol’ or ‘none’.

portion indicates what portion of the samples should be included in the outlier test. The default is to include
all of them.

min_slice(n)
Return the minimum logp for n slices, from the head if positive or the tail if negative.

This is a specialized function so it can be fast. Convergence can be quickly rejected if the min in a short
head is smaller than the min in a long tail. Unfortunately, if the data is wrapped, then the max function will
cost extra.

outliers()

Return a list of outlier removal operations.

Each outlier operation is a tuple giving the thinned generation in which it occurred, the old chain id and the
new chain id.

The chains themselves have already been updated to reflect the removal.

Curiously, it is possible for the maximum likelihood seen so far to be removed by this operation.

remove_outliers(x, logp, test='IQR')
Replace outlier chains with clones of good ones. This should happen early in the sampling processes so the
clones have an opportunity to evolve their own identity. Only the head of the chain is modified.

state contains the chains, with log likelihood for each point.

x, logp are the current population and the corresponding log likelihoods; these are updated with cloned
chain values.

test is the name of the test to use (one of IQR, Grubbs, Mahal or none). See outliers.
identify_outliers() for details.

Updates state, x and logp to reflect the changes.

Returns a list of the outliers that were removed.

resize(Ngen, Nthin, Nupdate, Nvar, Npop, Ncr, thinning)
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sample(**kw)
Return a sample from the posterior distribution.

Deprecated use draw() instead.

save(filename)

set_integer_vars(labels)
Indicate tha variables should be considered integer variables when computing statistics.

set_visible_vars(labels)

show(portion=1.0, figfile=None)

stable_best()

Return the best point seen and its log likelihood.

title = None

trim_portion()

bumps.dream.state.load_state(filename, skip=0, report=0, derived_vars=0)

bumps.dream.state.save_state(state, filename)

5.19 stats - Statistics helper functions

VarStats

var_stats

format_vars

parse_var Parse a line returned by format_vars back into the statis-
tics for the variable on that line.

stats Find mean and standard deviation of a set of weighted
samples.

credible_interval Find the credible interval covering the portion ci of the
data.

shortest_credible_interval Find the credible interval covering the portion ci of the
data.

Statistics helper functions.

class bumps.dream.stats.VarStats(**kw)
Bases: object

bumps.dream.stats.credible_interval(x, ci, weights=None)
Find the credible interval covering the portion ci of the data.

x are samples from the posterior distribution.

ci is a set of intervals in [0,1]. For a 1− 𝜎 interval use ci=erf(1/sqrt(2)), or 0.68. About 1e5 samples are needed
for 2 digits of precision on a 1 − 𝜎 credible interval. For a 95% interval, about 1e6 samples are needed for 2
digits of precision. At least 1000 points are needed for an unbiased result, otherwise the resulting interval will
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be shorter than expected (tested on a variety of distributions including exponential, cauchy, gaussian, beta and
gamma).

weights is a vector of weights for each x, or None for unweighted. One could weight points according to temper-
ature in a parallel tempering dataset.

Returns an array [[x1_low, x1_high], [l2_low, x2_high], . . . ] where [xi_low, xi_high] are the starting and ending
values for credible interval i.

This function is faster if the inputs are already sorted.

bumps.dream.stats.format_vars(all_vstats)

bumps.dream.stats.parse_var(line)
Parse a line returned by format_vars back into the statistics for the variable on that line.

bumps.dream.stats.shortest_credible_interval(x, ci=0.95, weights=None)
Find the credible interval covering the portion ci of the data.

x are samples from the posterior distribution. ci is the interval size in (0,1], and defaults to 0.95. For a 1-sigma
interval use ci=erf(1/sqrt(2)). weights is a vector of weights for each x, or None for unweighted.

Returns the minimum and maximum values of the interval. If ci is a vector, return a vector of intervals.

This function is faster if the inputs are already sorted.

About 1e6 samples are needed for 2 digits of precision on a 95% credible interval, or 1e5 for 2 digits on a 1-sigma
credible interval.

To remove bias towards toward smaller intervals, the midpoints between the surrounding intervals are used as
the end points.

bumps.dream.stats.stats(x, weights=None)
Find mean and standard deviation of a set of weighted samples.

Note that the median is not strictly correct (we choose an endpoint of the sample for the case where the median
falls between two values in the sample), but this is good enough when the sample size is large.

bumps.dream.stats.var_stats(draw, vars=None)

5.20 tile - Split a rectangle into n panes

max_tile_size Determine the maximum sized tile possible.

Split a rectangle into n panes.

bumps.dream.tile.max_tile_size(tile_count, rect_size)
Determine the maximum sized tile possible.

Keyword arguments: tile_count – Number of tiles to fit rect_size – 2-tuple of rectangle size as (width, height)
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5.21 util - Miscellaneous utilities

draw Select k things from a pool of n without replacement.
console Start the python console with the local variables avail-

able.

Miscellaneous utilities.

bumps.dream.util.console()

Start the python console with the local variables available.

console() should be the last thing in the file, after sampling and showing the default plots.

bumps.dream.util.draw(k, n)
Select k things from a pool of n without replacement.

5.22 varplot - Plot histograms for indiviual parameters

var_plot_size

plot_vars

plot_var

Build layout for histogram plots

bumps.dream.varplot.plot_var(draw, vstats, var, cbar, nbins=30)

bumps.dream.varplot.plot_vars(draw, all_vstats, **kw)

bumps.dream.varplot.var_plot_size(n)

5.23 views - MCMC plotting methods

plot_all

plot_corr

plot_corrmatrix

plot_trace

plot_logp

format_vars
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MCMC plotting methods.

bumps.dream.views.format_vars(all_vstats)

bumps.dream.views.plot_all(state, portion=1.0, figfile=None)

bumps.dream.views.plot_corr(draw, vars=(0, 1))

bumps.dream.views.plot_corrmatrix(draw, nbins=50)

bumps.dream.views.plot_logp(state, portion=None)

bumps.dream.views.plot_trace(state, var=0, portion=None)

acr ACR upper percentiles critical value for test of single
multivariate normal outlier.

bounds Bounds handling.
core DiffeRential Evolution Adaptive Metropolis algorithm
corrplot 2-D correlation histograms
crossover Crossover ratios
diffev Differential evolution MCMC stepper.
entropy Estimate entropy after a fit.
exppow Exponential power density parameter calculator.
formatnum Format values and uncertainties nicely for printing.
gelman Convergence test statistic from Gelman and Rubin,

1992.[1]
geweke Convergence test statistic from Gelman and Rubin, 1992.
initpop Population initialization routines.
ksmirnov Kolmogorov-Smirnov test for MCMC convergence.
mahal Mahalanobis distance calculator
metropolis MCMC step acceptance test.
model MCMC model types
outliers Chain outlier tests.
state Sampling history for MCMC.
stats Statistics helper functions.
tile Split a rectangle into n panes.
util Miscellaneous utilities.
varplot Build layout for histogram plots
views MCMC plotting methods.
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bumps.lsqerror, 120
bumps.mapper, 123
bumps.monitor, 124
bumps.mono, 125
bumps.names, 126

bumps.options, 127
bumps.parameter, 132
bumps.partemp, 156
bumps.pdfwrapper, 157
bumps.plotutil, 160
bumps.plugin, 161
bumps.pmath, 163
bumps.pymcfit, 165
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bumps.simplex, 168
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A
acceptance_rate() (bumps.dream.state.MCMCDraw

method), 198
accumulate() (bumps.history.History method), 117
accumulate() (bumps.history.Trace method), 118
acos() (in module bumps.pmath), 163
acosd() (in module bumps.parameter), 154
acosd() (in module bumps.pmath), 163
acosh() (in module bumps.pmath), 163
ACR() (in module bumps.dream.acr), 178
adapt() (bumps.dream.crossover.AdaptiveCrossover

method), 184
adapt() (bumps.dream.crossover.BaseAdaptiveCrossover

method), 184
adapt() (bumps.dream.crossover.Crossover method),

184
adapt() (bumps.dream.crossover.LogAdaptiveCrossover

method), 185
AdaptiveCrossover (class in bumps.dream.crossover),

184
Alias (class in bumps.parameter), 132
alpha (bumps.dream.core.Dream attribute), 182
alpha (bumps.options.BumpsOpts attribute), 129
AMQPMapper (class in bumps.mapper), 123
apply() (bumps.dream.bounds.Bounds static method),

178
apply() (bumps.dream.bounds.ClipBounds static

method), 178
apply() (bumps.dream.bounds.FoldBounds static

method), 179
apply() (bumps.dream.bounds.IgnoreBounds static

method), 179
apply() (bumps.dream.bounds.RandomBounds static

method), 179
apply() (bumps.dream.bounds.ReflectBounds static

method), 179
arccos() (bumps.parameter.BaseParameter method),

132
arccos() (bumps.parameter.Constant method), 135
arccos() (bumps.parameter.Function method), 139
arccos() (bumps.parameter.IntegerParameter method),

141

arccos() (bumps.parameter.Operator method), 145
arccos() (bumps.parameter.Parameter method), 148
arccos() (bumps.parameter.Reference method), 151
arccosd() (in module bumps.parameter), 154
arccosh() (bumps.parameter.BaseParameter method),

132
arccosh() (bumps.parameter.Constant method), 135
arccosh() (bumps.parameter.Function method), 139
arccosh() (bumps.parameter.IntegerParameter

method), 142
arccosh() (bumps.parameter.Operator method), 145
arccosh() (bumps.parameter.Parameter method), 148
arccosh() (bumps.parameter.Reference method), 151
arcsin() (bumps.parameter.BaseParameter method),

132
arcsin() (bumps.parameter.Constant method), 135
arcsin() (bumps.parameter.Function method), 139
arcsin() (bumps.parameter.IntegerParameter method),

142
arcsin() (bumps.parameter.Operator method), 145
arcsin() (bumps.parameter.Parameter method), 148
arcsin() (bumps.parameter.Reference method), 151
arcsind() (in module bumps.parameter), 154
arcsinh() (bumps.parameter.BaseParameter method),

133
arcsinh() (bumps.parameter.Constant method), 135
arcsinh() (bumps.parameter.Function method), 139
arcsinh() (bumps.parameter.IntegerParameter

method), 142
arcsinh() (bumps.parameter.Operator method), 145
arcsinh() (bumps.parameter.Parameter method), 148
arcsinh() (bumps.parameter.Reference method), 152
arctan() (bumps.parameter.BaseParameter method),

133
arctan() (bumps.parameter.Constant method), 135
arctan() (bumps.parameter.Function method), 139
arctan() (bumps.parameter.IntegerParameter method),

142
arctan() (bumps.parameter.Operator method), 145
arctan() (bumps.parameter.Parameter method), 148
arctan() (bumps.parameter.Reference method), 152
arctan2d() (in module bumps.parameter), 155
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arctand() (in module bumps.parameter), 155
arctanh() (bumps.parameter.BaseParameter method),

133
arctanh() (bumps.parameter.Constant method), 135
arctanh() (bumps.parameter.Function method), 139
arctanh() (bumps.parameter.IntegerParameter

method), 142
arctanh() (bumps.parameter.Operator method), 145
arctanh() (bumps.parameter.Parameter method), 148
arctanh() (bumps.parameter.Reference method), 152
args (bumps.parameter.Function attribute), 139
asin() (in module bumps.pmath), 163
asind() (in module bumps.parameter), 155
asind() (in module bumps.pmath), 163
asinh() (in module bumps.pmath), 163
atan() (in module bumps.pmath), 164
atan2() (in module bumps.pmath), 164
atan2d() (in module bumps.parameter), 155
atan2d() (in module bumps.pmath), 164
atand() (in module bumps.parameter), 155
atand() (in module bumps.pmath), 164
atanh() (in module bumps.pmath), 164
auto_shift() (in module bumps.plotutil), 160

B
BaseAdaptiveCrossover (class in

bumps.dream.crossover), 184
BaseFitProblem (class in bumps.fitproblem), 100
BaseParameter (class in bumps.parameter), 132
best() (bumps.dream.state.MCMCDraw method), 198
BFGSFit (class in bumps.fitters), 108
Bounded (class in bumps.bounds), 82
BoundedAbove (class in bumps.bounds), 83
BoundedBelow (class in bumps.bounds), 84
BoundedNormal (class in bumps.bounds), 85
bounds (bumps.dream.model.Density attribute), 194
bounds (bumps.dream.model.LogDensity attribute), 194
bounds (bumps.dream.model.MCMCModel attribute),

194
bounds (bumps.dream.model.Mixture attribute), 195
bounds (bumps.dream.model.MVNormal attribute), 195
bounds (bumps.dream.model.Simulation attribute), 196
bounds (bumps.fitters.DreamModel attribute), 110
bounds (bumps.parameter.BaseParameter property), 133
bounds (bumps.parameter.Constant property), 136
bounds (bumps.parameter.Function property), 139
bounds (bumps.parameter.IntegerParameter property),

142
bounds (bumps.parameter.Operator property), 145
bounds (bumps.parameter.Parameter property), 148
bounds (bumps.parameter.Reference property), 152
Bounds (class in bumps.bounds), 86
Bounds (class in bumps.dream.bounds), 178

bounds() (bumps.fitproblem.BaseFitProblem method),
101

bounds() (bumps.fitproblem.MultiFitProblem method),
104

bounds() (bumps.pdfwrapper.DirectProblem method),
157

bounds() (bumps.pymcfit.PyMCProblem method), 165
bounds_style (bumps.dream.core.Dream attribute),

182
boxed_function() (in module bumps.parameter), 155
bspline() (in module bumps.bspline), 92
bumps.bounds

module, 81
bumps.bspline

module, 92
bumps.cheby

module, 92
bumps.cli

module, 94
bumps.curve

module, 95
bumps.data

module, 97
bumps.dream.acr

module, 177
bumps.dream.bounds

module, 178
bumps.dream.core

module, 180
bumps.dream.corrplot

module, 183
bumps.dream.crossover

module, 183
bumps.dream.diffev

module, 185
bumps.dream.entropy

module, 185
bumps.dream.exppow

module, 188
bumps.dream.formatnum

module, 189
bumps.dream.gelman

module, 190
bumps.dream.geweke

module, 190
bumps.dream.initpop

module, 190
bumps.dream.ksmirnov

module, 191
bumps.dream.mahal

module, 191
bumps.dream.metropolis

module, 192
bumps.dream.model
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module, 192
bumps.dream.outliers

module, 196
bumps.dream.state

module, 196
bumps.dream.stats

module, 201
bumps.dream.tile

module, 202
bumps.dream.util

module, 203
bumps.dream.varplot

module, 203
bumps.dream.views

module, 203
bumps.errplot

module, 98
bumps.fitproblem

module, 100
bumps.fitservice

module, 107
bumps.fitters

module, 108
bumps.formatnum

module, 115
bumps.history

module, 116
bumps.initpop

module, 118
bumps.lsqerror

module, 120
bumps.mapper

module, 123
bumps.monitor

module, 124
bumps.mono

module, 125
bumps.names

module, 126
bumps.options

module, 127
bumps.parameter

module, 132
bumps.partemp

module, 156
bumps.pdfwrapper

module, 157
bumps.plotutil

module, 160
bumps.plugin

module, 161
bumps.pmath

module, 163
bumps.pymcfit

module, 165
bumps.quasinewton

module, 166
bumps.random_lines

module, 167
bumps.simplex

module, 168
bumps.util

module, 170
bumps.wsolve

module, 172
BumpsOpts (class in bumps.options), 127
burn (bumps.dream.core.Dream attribute), 182

C
c_interface (bumps.dream.bounds.Bounds attribute),

178
c_interface (bumps.dream.bounds.ClipBounds at-

tribute), 178
c_interface (bumps.dream.bounds.FoldBounds at-

tribute), 179
c_interface (bumps.dream.bounds.IgnoreBounds at-

tribute), 179
c_interface (bumps.dream.bounds.RandomBounds at-

tribute), 179
c_interface (bumps.dream.bounds.ReflectBounds at-

tribute), 179
calc_errors() (in module bumps.errplot), 99
calc_errors() (in module bumps.plugin), 162
calc_errors_from_state() (in module

bumps.errplot), 99
can_pickle() (in module bumps.mapper), 124
ceil() (bumps.parameter.BaseParameter method), 133
ceil() (bumps.parameter.Constant method), 136
ceil() (bumps.parameter.Function method), 139
ceil() (bumps.parameter.IntegerParameter method),

142
ceil() (bumps.parameter.Operator method), 145
ceil() (bumps.parameter.Parameter method), 148
ceil() (bumps.parameter.Reference method), 152
chains() (bumps.dream.state.MCMCDraw method),

198
cheby_approx() (in module bumps.cheby), 93
cheby_coeff() (in module bumps.cheby), 93
cheby_points() (in module bumps.cheby), 93
cheby_val() (in module bumps.cheby), 93
checkpoint (bumps.fitters.CheckpointMonitor at-

tribute), 109
checkpoint (bumps.options.BumpsOpts attribute), 129
CheckpointMonitor (class in bumps.fitters), 109
chisq() (bumps.fitproblem.BaseFitProblem method),

101
chisq() (bumps.fitproblem.MultiFitProblem method),

104
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chisq() (bumps.fitters.FitDriver method), 111
chisq() (bumps.pdfwrapper.DirectProblem method),

157
chisq() (bumps.pdfwrapper.PDF method), 158
chisq() (bumps.pdfwrapper.VectorPDF method), 159
chisq() (bumps.pymcfit.PyMCProblem method), 165
chisq_str() (bumps.fitproblem.BaseFitProblem

method), 101
chisq_str() (bumps.fitproblem.MultiFitProblem

method), 104
chisq_str() (bumps.pdfwrapper.DirectProblem

method), 157
chisq_str() (bumps.pdfwrapper.PDF method), 158
chisq_str() (bumps.pdfwrapper.VectorPDF method),

159
chisq_str() (bumps.pymcfit.PyMCProblem method),

165
ChoiceList (class in bumps.options), 129
chol_cov() (in module bumps.lsqerror), 121
chol_stderr() (in module bumps.lsqerror), 121
ci() (bumps.wsolve.LinearModel method), 173
ci() (bumps.wsolve.PolynomialModel method), 174
clear() (bumps.history.History method), 117
clip() (bumps.fitters.FitDriver method), 111
clip_set() (bumps.parameter.IntegerParameter

method), 142
clip_set() (bumps.parameter.Parameter method), 148
clip_set() (bumps.parameter.Reference method), 152
ClipBounds (class in bumps.dream.bounds), 178
coeff (bumps.wsolve.PolynomialModel attribute), 174
comb() (in module bumps.lsqerror), 121
config_history() (bumps.fitservice.ServiceMonitor

method), 107
config_history() (bumps.fitters.CheckpointMonitor

method), 109
config_history() (bumps.fitters.ConsoleMonitor

method), 109
config_history() (bumps.fitters.StepMonitor method),

114
config_history() (bumps.monitor.Logger method),

125
config_history() (bumps.monitor.Monitor method),

125
config_history() (bumps.monitor.TimedUpdate

method), 125
config_matplotlib() (in module bumps.cli), 94
console() (in module bumps.dream.util), 203
ConsoleMonitor (class in bumps.fitters), 109
Constant (class in bumps.parameter), 135
Constraint (class in bumps.parameter), 138
constraints_nllf() (bumps.fitproblem.BaseFitProblem

method), 101
constraints_nllf() (bumps.fitproblem.MultiFitProblem

method), 105

coordinated_colors() (in module bumps.plotutil),
160

corr() (in module bumps.lsqerror), 121
Corr2d (class in bumps.dream.corrplot), 183
cos() (bumps.parameter.BaseParameter method), 133
cos() (bumps.parameter.Constant method), 136
cos() (bumps.parameter.Function method), 139
cos() (bumps.parameter.IntegerParameter method), 142
cos() (bumps.parameter.Operator method), 145
cos() (bumps.parameter.Parameter method), 148
cos() (bumps.parameter.Reference method), 152
cos() (in module bumps.pmath), 164
cosd() (in module bumps.parameter), 155
cosd() (in module bumps.pmath), 164
cosh() (bumps.parameter.BaseParameter method), 133
cosh() (bumps.parameter.Constant method), 136
cosh() (bumps.parameter.Function method), 139
cosh() (bumps.parameter.IntegerParameter method),

142
cosh() (bumps.parameter.Operator method), 145
cosh() (bumps.parameter.Parameter method), 148
cosh() (bumps.parameter.Reference method), 152
cosh() (in module bumps.pmath), 164
count_inflections() (in module bumps.mono), 125
cov (bumps.wsolve.LinearModel property), 173
cov (bumps.wsolve.PolynomialModel property), 174
cov() (bumps.fitproblem.BaseFitProblem method), 101
cov() (bumps.fitproblem.MultiFitProblem method), 105
cov() (bumps.fitters.FitDriver method), 111
cov() (bumps.fitters.LevenbergMarquardtFit method),

112
cov_entropy() (in module bumps.dream.entropy), 187
cov_init() (in module bumps.dream.initpop), 191
cov_init() (in module bumps.initpop), 118
CR (bumps.dream.core.Dream attribute), 182
CR_spacing (bumps.dream.core.Dream attribute), 182
CR_weight() (bumps.dream.state.MCMCDraw

method), 197
credible_interval() (in module bumps.dream.stats),

201
Crossover (class in bumps.dream.crossover), 184
current() (in module bumps.parameter), 155
Curve (class in bumps.curve), 96

D
data_view() (in module bumps.plugin), 162
DE_eps (bumps.dream.core.Dream attribute), 182
DE_noise (bumps.dream.core.Dream attribute), 182
DE_pairs (bumps.dream.core.Dream attribute), 182
DE_snooker_rate (bumps.dream.core.Dream attribute),

182
de_step() (in module bumps.dream.diffev), 185
DE_steps (bumps.dream.core.Dream attribute), 182
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default() (bumps.parameter.IntegerParameter class
method), 142

default() (bumps.parameter.Parameter class method),
148

default() (bumps.parameter.Reference class method),
152

DEFit (class in bumps.fitters), 109
degree (bumps.wsolve.PolynomialModel attribute), 174
degrees() (bumps.parameter.BaseParameter method),

133
degrees() (bumps.parameter.Constant method), 136
degrees() (bumps.parameter.Function method), 139
degrees() (bumps.parameter.IntegerParameter

method), 142
degrees() (bumps.parameter.Operator method), 145
degrees() (bumps.parameter.Parameter method), 148
degrees() (bumps.parameter.Reference method), 152
degrees() (in module bumps.pmath), 164
demo_hessian() (in module bumps.lsqerror), 121
demo_jacobian() (in module bumps.lsqerror), 121
demo_stderr_hilbert() (in module bumps.lsqerror),

121
demo_stderr_perturbed() (in module

bumps.lsqerror), 121
Density (class in bumps.dream.model), 194
der() (bumps.wsolve.PolynomialModel method), 174
derive_vars() (bumps.dream.state.MCMCDraw

method), 198
dev() (bumps.parameter.BaseParameter method), 133
dev() (bumps.parameter.Constant method), 136
dev() (bumps.parameter.Function method), 139
dev() (bumps.parameter.IntegerParameter method), 142
dev() (bumps.parameter.Operator method), 145
dev() (bumps.parameter.Parameter method), 149
dev() (bumps.parameter.Reference method), 152
dhsv() (in module bumps.plotutil), 160
DirectProblem (class in bumps.pdfwrapper), 157
discrete (bumps.parameter.BaseParameter attribute),

133
discrete (bumps.parameter.Constant attribute), 136
discrete (bumps.parameter.Function attribute), 139
discrete (bumps.parameter.IntegerParameter at-

tribute), 142
discrete (bumps.parameter.Operator attribute), 145
discrete (bumps.parameter.Parameter attribute), 149
discrete (bumps.parameter.Reference attribute), 152
Distribution (class in bumps.bounds), 87
DoF (bumps.wsolve.LinearModel attribute), 173
DoF (bumps.wsolve.PolynomialModel attribute), 174
DR_scale (bumps.dream.core.Dream attribute), 182
draw() (bumps.dream.state.MCMCDraw method), 198
draw() (in module bumps.dream.util), 203
draws (bumps.dream.core.Dream attribute), 182
Dream (class in bumps.dream.core), 181

DreamFit (class in bumps.fitters), 109
DreamModel (class in bumps.fitters), 110
dvalue (bumps.parameter.Operator property), 146

E
entropy (bumps.options.BumpsOpts attribute), 129
entropy() (bumps.dream.state.MCMCDraw method),

199
entropy() (bumps.fitters.DreamFit method), 109
entropy() (bumps.fitters.FitDriver method), 111
entropy() (in module bumps.dream.entropy), 187
eps_init() (in module bumps.initpop), 119
error_plot() (bumps.fitters.DreamFit method), 109
exp() (bumps.parameter.BaseParameter method), 133
exp() (bumps.parameter.Constant method), 136
exp() (bumps.parameter.Function method), 140
exp() (bumps.parameter.IntegerParameter method), 142
exp() (bumps.parameter.Operator method), 146
exp() (bumps.parameter.Parameter method), 149
exp() (bumps.parameter.Reference method), 152
exp() (in module bumps.pmath), 164
expm1() (bumps.parameter.BaseParameter method), 133
expm1() (bumps.parameter.Constant method), 136
expm1() (bumps.parameter.Function method), 140
expm1() (bumps.parameter.IntegerParameter method),

143
expm1() (bumps.parameter.Operator method), 146
expm1() (bumps.parameter.Parameter method), 149
expm1() (bumps.parameter.Reference method), 152
exppow_pars() (in module bumps.dream.exppow), 188

F
feasible() (bumps.parameter.IntegerParameter

method), 143
feasible() (bumps.parameter.Parameter method), 149
feasible() (bumps.parameter.Reference method), 152
FIELDS (bumps.fitters.StepMonitor attribute), 114
fit (bumps.options.BumpsOpts property), 129
fit() (bumps.fitters.FitDriver method), 111
fit() (in module bumps.fitters), 114
fit_config (bumps.options.BumpsOpts attribute), 129
FIT_CONFIG (in module bumps.options), 129
FitBase (class in bumps.fitters), 110
FitConfig (class in bumps.options), 129
FitDriver (class in bumps.fitters), 111
Fitness (class in bumps.fitproblem), 103
FitProblem() (in module bumps.fitproblem), 103
fitservice() (in module bumps.fitservice), 107
fittable (bumps.parameter.BaseParameter attribute),

133
fittable (bumps.parameter.Constant attribute), 136
fittable (bumps.parameter.Function attribute), 140
fittable (bumps.parameter.IntegerParameter at-

tribute), 143
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fittable (bumps.parameter.Operator attribute), 146
fittable (bumps.parameter.Parameter attribute), 149
fittable (bumps.parameter.Reference attribute), 153
fittable() (in module bumps.parameter), 155
fixed (bumps.parameter.BaseParameter attribute), 133
fixed (bumps.parameter.Constant attribute), 136
fixed (bumps.parameter.Function attribute), 140
fixed (bumps.parameter.IntegerParameter attribute),

143
fixed (bumps.parameter.Operator attribute), 146
fixed (bumps.parameter.Parameter attribute), 149
fixed (bumps.parameter.Reference attribute), 153
FLAGS (bumps.options.BumpsOpts attribute), 127
FLAGS (bumps.options.ParseOpts attribute), 130
flatten() (in module bumps.parameter), 155
floor() (bumps.parameter.BaseParameter method), 133
floor() (bumps.parameter.Constant method), 136
floor() (bumps.parameter.Function method), 140
floor() (bumps.parameter.IntegerParameter method),

143
floor() (bumps.parameter.Operator method), 146
floor() (bumps.parameter.Parameter method), 149
floor() (bumps.parameter.Reference method), 153
FoldBounds (class in bumps.dream.bounds), 179
form_quantiles() (in module bumps.plotutil), 160
format() (bumps.parameter.BaseParameter method),

133
format() (bumps.parameter.Constant method), 136
format() (bumps.parameter.Function method), 140
format() (bumps.parameter.IntegerParameter method),

143
format() (bumps.parameter.Operator method), 146
format() (bumps.parameter.Parameter method), 149
format() (bumps.parameter.Reference method), 153
format() (in module bumps.parameter), 155
format_uncertainty() (in module

bumps.dream.formatnum), 189
format_uncertainty() (in module bumps.formatnum),

115
format_uncertainty_compact() (in module

bumps.dream.formatnum), 189
format_uncertainty_compact() (in module

bumps.formatnum), 115
format_uncertainty_pm() (in module

bumps.dream.formatnum), 189
format_uncertainty_pm() (in module

bumps.formatnum), 115
format_value() (in module bumps.dream.formatnum),

189
format_value() (in module bumps.formatnum), 115
format_vars() (in module bumps.dream.stats), 202
format_vars() (in module bumps.dream.views), 204
FreeVariables (class in bumps.parameter), 138
Function (class in bumps.parameter), 138

function() (in module bumps.parameter), 155

G
gelman() (bumps.dream.state.MCMCDraw method),

199
gelman() (in module bumps.dream.gelman), 190
generate() (in module bumps.initpop), 119
get01() (bumps.bounds.Bounded method), 82
get01() (bumps.bounds.BoundedAbove method), 83
get01() (bumps.bounds.BoundedBelow method), 84
get01() (bumps.bounds.BoundedNormal method), 85
get01() (bumps.bounds.Bounds method), 86
get01() (bumps.bounds.Distribution method), 87
get01() (bumps.bounds.Normal method), 88
get01() (bumps.bounds.SoftBounded method), 89
get01() (bumps.bounds.Unbounded method), 90
get_model() (bumps.parameter.FreeVariables method),

138
get_model() (bumps.parameter.ParameterSet method),

151
getfull() (bumps.bounds.Bounded method), 82
getfull() (bumps.bounds.BoundedAbove method), 83
getfull() (bumps.bounds.BoundedBelow method), 84
getfull() (bumps.bounds.BoundedNormal method), 85
getfull() (bumps.bounds.Bounds method), 86
getfull() (bumps.bounds.Distribution method), 87
getfull() (bumps.bounds.Normal method), 88
getfull() (bumps.bounds.SoftBounded method), 89
getfull() (bumps.bounds.Unbounded method), 90
getopts() (in module bumps.options), 131
getp() (bumps.fitproblem.BaseFitProblem method), 101
getp() (bumps.fitproblem.MultiFitProblem method), 105
getp() (bumps.pdfwrapper.DirectProblem method), 158
getp() (bumps.pymcfit.PyMCProblem method), 165
geweke() (in module bumps.dream.geweke), 190
gmm_entropy() (in module bumps.dream.entropy), 187
goalseek_interval (bumps.dream.core.Dream at-

tribute), 182
goalseek_minburn (bumps.dream.core.Dream at-

tribute), 182
goalseek_optimizer (bumps.dream.core.Dream

attribute), 182
gradient() (in module bumps.lsqerror), 121

H
has_residuals (bumps.fitproblem.BaseFitProblem

property), 101
has_residuals (bumps.fitproblem.MultiFitProblem

property), 105
has_residuals (bumps.pdfwrapper.DirectProblem at-

tribute), 158
has_residuals (bumps.pdfwrapper.PDF attribute), 158
has_residuals (bumps.pdfwrapper.VectorPDF at-

tribute), 159
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hermite() (in module bumps.mono), 125
hessian() (in module bumps.lsqerror), 121
hessian_cov() (in module bumps.lsqerror), 121
high (bumps.dream.bounds.Bounds attribute), 178
high (bumps.dream.bounds.ClipBounds attribute), 179
high (bumps.dream.bounds.FoldBounds attribute), 179
high (bumps.dream.bounds.IgnoreBounds attribute), 179
high (bumps.dream.bounds.RandomBounds attribute),

179
high (bumps.dream.bounds.ReflectBounds attribute), 179
hilbert() (in module bumps.lsqerror), 122
hilbertinv() (in module bumps.lsqerror), 122
History (class in bumps.history), 117

I
id (bumps.fitters.BFGSFit attribute), 108
id (bumps.fitters.DEFit attribute), 109
id (bumps.fitters.DreamFit attribute), 109
id (bumps.fitters.LevenbergMarquardtFit attribute), 112
id (bumps.fitters.MPFit attribute), 112
id (bumps.fitters.PSFit attribute), 113
id (bumps.fitters.PTFit attribute), 113
id (bumps.fitters.RLFit attribute), 113
id (bumps.fitters.SimplexFit attribute), 113
id (bumps.fitters.SnobFit attribute), 114
identify_outliers() (in module

bumps.dream.outliers), 196
IgnoreBounds (class in bumps.dream.bounds), 179
IMPLICIT_VALUES (bumps.options.BumpsOpts at-

tribute), 127
IMPLICIT_VALUES (bumps.options.ParseOpts attribute),

131
indfloat() (in module bumps.data), 97
init_bounds() (in module bumps.bounds), 91
install_plugin() (in module bumps.cli), 94
IntegerParameter (class in bumps.parameter), 141

J
jacobian() (in module bumps.lsqerror), 122
jacobian_cov() (in module bumps.lsqerror), 122

K
kbhit() (in module bumps.util), 170
keep_best() (bumps.dream.state.MCMCDraw

method), 199
ksmirnov() (in module bumps.dream.ksmirnov), 191
kw (bumps.parameter.Function attribute), 140

L
labels (bumps.dream.model.Density attribute), 194
labels (bumps.dream.model.LogDensity attribute), 194
labels (bumps.dream.model.MCMCModel attribute),

194

labels (bumps.dream.model.Mixture attribute), 195
labels (bumps.dream.model.MVNormal attribute), 195
labels (bumps.dream.model.Simulation attribute), 196
labels (bumps.dream.state.MCMCDraw property), 199
labels (bumps.fitters.DreamModel attribute), 110
labels() (bumps.fitproblem.BaseFitProblem method),

101
labels() (bumps.fitproblem.MultiFitProblem method),

105
labels() (bumps.pdfwrapper.DirectProblem method),

158
labels() (bumps.pymcfit.PyMCProblem method), 165
LevenbergMarquardtFit (class in bumps.fitters), 112
lhs_init() (in module bumps.dream.initpop), 191
lhs_init() (in module bumps.initpop), 119
limits (bumps.bounds.Bounded attribute), 82
limits (bumps.bounds.BoundedAbove attribute), 83
limits (bumps.bounds.BoundedBelow attribute), 84
limits (bumps.bounds.BoundedNormal attribute), 85
limits (bumps.bounds.Bounds attribute), 86
limits (bumps.bounds.Distribution attribute), 87
limits (bumps.bounds.Normal attribute), 88
limits (bumps.bounds.SoftBounded attribute), 89
limits (bumps.bounds.Unbounded attribute), 90
LinearModel (class in bumps.wsolve), 173
load() (bumps.fitters.DEFit method), 109
load() (bumps.fitters.DreamFit method), 109
load() (bumps.fitters.FitDriver method), 111
load_best() (in module bumps.cli), 94
load_history() (in module bumps.fitters), 114
load_model() (in module bumps.cli), 94
load_model() (in module bumps.plugin), 162
load_problem() (in module bumps.fitproblem), 107
load_state() (in module bumps.dream.state), 201
log() (bumps.parameter.BaseParameter method), 134
log() (bumps.parameter.Constant method), 136
log() (bumps.parameter.Function method), 140
log() (bumps.parameter.IntegerParameter method), 143
log() (bumps.parameter.Operator method), 146
log() (bumps.parameter.Parameter method), 149
log() (bumps.parameter.Reference method), 153
log() (in module bumps.pmath), 164
log10() (bumps.parameter.BaseParameter method), 134
log10() (bumps.parameter.Constant method), 136
log10() (bumps.parameter.Function method), 140
log10() (bumps.parameter.IntegerParameter method),

143
log10() (bumps.parameter.Operator method), 146
log10() (bumps.parameter.Parameter method), 149
log10() (bumps.parameter.Reference method), 153
log10() (in module bumps.pmath), 164
log1p() (bumps.parameter.BaseParameter method), 134
log1p() (bumps.parameter.Constant method), 136
log1p() (bumps.parameter.Function method), 140
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log1p() (bumps.parameter.IntegerParameter method),
143

log1p() (bumps.parameter.Operator method), 146
log1p() (bumps.parameter.Parameter method), 149
log1p() (bumps.parameter.Reference method), 153
log_density() (bumps.dream.model.Density method),

194
log_density() (bumps.dream.model.LogDensity

method), 194
log_density() (bumps.dream.model.MCMCModel

method), 194
log_density() (bumps.dream.model.Mixture method),

195
log_density() (bumps.dream.model.MVNormal

method), 195
log_density() (bumps.dream.model.Simulation

method), 196
log_density() (bumps.fitters.DreamModel method),

110
LogAdaptiveCrossover (class in

bumps.dream.crossover), 185
LogDensity (class in bumps.dream.model), 194
Logger (class in bumps.monitor), 124
logp() (bumps.dream.state.MCMCDraw method), 200
logp_slice() (bumps.dream.state.MCMCDraw

method), 200
low (bumps.dream.bounds.Bounds attribute), 178
low (bumps.dream.bounds.ClipBounds attribute), 179
low (bumps.dream.bounds.FoldBounds attribute), 179
low (bumps.dream.bounds.IgnoreBounds attribute), 179
low (bumps.dream.bounds.RandomBounds attribute),

179
low (bumps.dream.bounds.ReflectBounds attribute), 179

M
mahalanobis() (in module bumps.dream.mahal), 191
main() (in module bumps.cli), 94
make_bounds_handler() (in module

bumps.dream.bounds), 179
manager (bumps.mapper.MPMapper attribute), 123
map() (bumps.dream.model.Density method), 194
map() (bumps.dream.model.LogDensity method), 194
map() (bumps.dream.model.MCMCModel method), 195
map() (bumps.dream.model.Mixture method), 195
map() (bumps.dream.model.MVNormal method), 195
map() (bumps.dream.model.Simulation method), 196
map() (bumps.fitters.DreamModel method), 110
mark_outliers() (bumps.dream.state.MCMCDraw

method), 200
max_correlation() (in module bumps.lsqerror), 122
max_tile_size() (in module bumps.dream.tile), 202
MCMCDraw (class in bumps.dream.state), 197
MCMCModel (class in bumps.dream.model), 194
meshsteps (bumps.options.BumpsOpts attribute), 129

metropolis() (in module bumps.dream.metropolis),
192

metropolis_dr() (in module bumps.dream.metropolis),
192

min_slice() (bumps.dream.state.MCMCDraw
method), 200

MINARGS (bumps.options.BumpsOpts attribute), 127
MINARGS (bumps.options.ParseOpts attribute), 131
Mixture (class in bumps.dream.model), 195
model (bumps.dream.core.Dream attribute), 182
model_nllf() (bumps.fitproblem.BaseFitProblem

method), 101
model_nllf() (bumps.fitproblem.MultiFitProblem

method), 105
model_parameters() (bumps.fitproblem.BaseFitProblem

method), 101
model_parameters() (bumps.fitproblem.MultiFitProblem

method), 105
model_parameters() (bumps.pdfwrapper.DirectProblem

method), 158
model_points() (bumps.fitproblem.BaseFitProblem

method), 101
model_points() (bumps.fitproblem.MultiFitProblem

method), 105
model_reset() (bumps.fitproblem.BaseFitProblem

method), 101
model_reset() (bumps.fitproblem.MultiFitProblem

method), 105
model_reset() (bumps.pdfwrapper.DirectProblem

method), 158
model_reset() (bumps.pymcfit.PyMCProblem

method), 165
model_update() (bumps.fitproblem.BaseFitProblem

method), 101
model_update() (bumps.fitproblem.MultiFitProblem

method), 105
model_update() (bumps.pdfwrapper.DirectProblem

method), 158
model_view() (in module bumps.plugin), 162
models (bumps.fitproblem.MultiFitProblem property),

105
module

bumps.bounds, 81
bumps.bspline, 92
bumps.cheby, 92
bumps.cli, 94
bumps.curve, 95
bumps.data, 97
bumps.dream.acr, 177
bumps.dream.bounds, 178
bumps.dream.core, 180
bumps.dream.corrplot, 183
bumps.dream.crossover, 183
bumps.dream.diffev, 185
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bumps.dream.entropy, 185
bumps.dream.exppow, 188
bumps.dream.formatnum, 189
bumps.dream.gelman, 190
bumps.dream.geweke, 190
bumps.dream.initpop, 190
bumps.dream.ksmirnov, 191
bumps.dream.mahal, 191
bumps.dream.metropolis, 192
bumps.dream.model, 192
bumps.dream.outliers, 196
bumps.dream.state, 196
bumps.dream.stats, 201
bumps.dream.tile, 202
bumps.dream.util, 203
bumps.dream.varplot, 203
bumps.dream.views, 203
bumps.errplot, 98
bumps.fitproblem, 100
bumps.fitservice, 107
bumps.fitters, 108
bumps.formatnum, 115
bumps.history, 116
bumps.initpop, 118
bumps.lsqerror, 120
bumps.mapper, 123
bumps.monitor, 124
bumps.mono, 125
bumps.names, 126
bumps.options, 127
bumps.parameter, 132
bumps.partemp, 156
bumps.pdfwrapper, 157
bumps.plotutil, 160
bumps.plugin, 161
bumps.pmath, 163
bumps.pymcfit, 165
bumps.quasinewton, 166
bumps.random_lines, 167
bumps.simplex, 168
bumps.util, 170
bumps.wsolve, 172

Monitor (class in bumps.monitor), 125
MonitorRunner (class in bumps.fitters), 112
monospline() (in module bumps.mono), 126
MPFit (class in bumps.fitters), 112
MPIMapper (class in bumps.mapper), 123
MPMapper (class in bumps.mapper), 123
MultiFitProblem (class in bumps.fitproblem), 104
MultiStart (class in bumps.fitters), 112
MVNEntropy (class in bumps.dream.entropy), 187
MVNormal (class in bumps.dream.model), 195

N
name (bumps.fitters.BFGSFit attribute), 108
name (bumps.fitters.DEFit attribute), 109
name (bumps.fitters.DreamFit attribute), 110
name (bumps.fitters.LevenbergMarquardtFit attribute),

112
name (bumps.fitters.MPFit attribute), 112
name (bumps.fitters.MultiStart attribute), 112
name (bumps.fitters.PSFit attribute), 113
name (bumps.fitters.PTFit attribute), 113
name (bumps.fitters.RLFit attribute), 113
name (bumps.fitters.SimplexFit attribute), 113
name (bumps.fitters.SnobFit attribute), 114
name (bumps.parameter.BaseParameter attribute), 134
name (bumps.parameter.Constant attribute), 137
name (bumps.parameter.Function attribute), 140
name (bumps.parameter.IntegerParameter attribute), 143
name (bumps.parameter.Operator attribute), 146
name (bumps.parameter.Parameter attribute), 149
name (bumps.parameter.Reference attribute), 153
namespace (bumps.mapper.MPMapper attribute), 124
Ncr (bumps.dream.state.MCMCDraw property), 198
new_model() (in module bumps.plugin), 162
next_color() (in module bumps.plotutil), 161
Ngen (bumps.dream.state.MCMCDraw property), 198
nice() (in module bumps.mapper), 124
nice_range() (in module bumps.bounds), 91
nllf() (bumps.bounds.Bounded method), 82
nllf() (bumps.bounds.BoundedAbove method), 83
nllf() (bumps.bounds.BoundedBelow method), 84
nllf() (bumps.bounds.BoundedNormal method), 85
nllf() (bumps.bounds.Bounds method), 86
nllf() (bumps.bounds.Distribution method), 87
nllf() (bumps.bounds.Normal method), 88
nllf() (bumps.bounds.SoftBounded method), 89
nllf() (bumps.bounds.Unbounded method), 90
nllf() (bumps.curve.Curve method), 96
nllf() (bumps.curve.PoissonCurve method), 97
nllf() (bumps.dream.model.Density method), 194
nllf() (bumps.dream.model.LogDensity method), 194
nllf() (bumps.dream.model.MCMCModel method), 195
nllf() (bumps.dream.model.Mixture method), 195
nllf() (bumps.dream.model.MVNormal method), 195
nllf() (bumps.dream.model.Simulation method), 196
nllf() (bumps.fitproblem.BaseFitProblem method), 101
nllf() (bumps.fitproblem.Fitness method), 103
nllf() (bumps.fitproblem.MultiFitProblem method), 105
nllf() (bumps.fitters.DreamModel method), 110
nllf() (bumps.parameter.BaseParameter method), 134
nllf() (bumps.parameter.Constant method), 137
nllf() (bumps.parameter.Function method), 140
nllf() (bumps.parameter.IntegerParameter method),

143
nllf() (bumps.parameter.Operator method), 146
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nllf() (bumps.parameter.Parameter method), 149
nllf() (bumps.parameter.Reference method), 153
nllf() (bumps.pdfwrapper.DirectProblem method), 158
nllf() (bumps.pdfwrapper.PDF method), 158
nllf() (bumps.pdfwrapper.VectorPDF method), 159
nllf() (bumps.pymcfit.PyMCProblem method), 165
noise (bumps.options.BumpsOpts attribute), 129
Normal (class in bumps.bounds), 88
notify (bumps.options.BumpsOpts attribute), 129
Npop (bumps.dream.state.MCMCDraw property), 198
Nsamples (bumps.dream.state.MCMCDraw property),

198
Nthin (bumps.dream.state.MCMCDraw property), 198
numpoints() (bumps.curve.Curve method), 96
numpoints() (bumps.curve.PoissonCurve method), 97
numpoints() (bumps.fitproblem.Fitness method), 104
numpoints() (bumps.pdfwrapper.PDF method), 158
numpoints() (bumps.pdfwrapper.VectorPDF method),

159
Nupdate (bumps.dream.state.MCMCDraw property),

198
Nvar (bumps.dream.state.MCMCDraw property), 198

O
op (bumps.parameter.Function attribute), 140
Operator (class in bumps.parameter), 145
origin (bumps.wsolve.PolynomialModel attribute), 174
outlier_test (bumps.dream.core.Dream attribute),

182
outliers() (bumps.dream.state.MCMCDraw method),

200

P
p (bumps.wsolve.LinearModel property), 174
p (bumps.wsolve.PolynomialModel property), 174
parallel (bumps.options.BumpsOpts attribute), 129
parallel_tempering() (in module bumps.partemp),

156
Parameter (class in bumps.parameter), 147
parameter_nllf() (bumps.fitproblem.BaseFitProblem

method), 102
parameter_nllf() (bumps.fitproblem.MultiFitProblem

method), 106
parameter_residuals()

(bumps.fitproblem.BaseFitProblem method),
102

parameter_residuals()
(bumps.fitproblem.MultiFitProblem method),
106

parameters() (bumps.curve.Curve method), 96
parameters() (bumps.curve.PoissonCurve method), 97
parameters() (bumps.fitproblem.Fitness method), 104
parameters() (bumps.parameter.Alias method), 132

parameters() (bumps.parameter.BaseParameter
method), 134

parameters() (bumps.parameter.Constant method), 137
parameters() (bumps.parameter.FreeVariables

method), 138
parameters() (bumps.parameter.Function method), 140
parameters() (bumps.parameter.IntegerParameter

method), 143
parameters() (bumps.parameter.Operator method),

146
parameters() (bumps.parameter.Parameter method),

149
parameters() (bumps.parameter.Reference method),

153
parameters() (bumps.pdfwrapper.PDF method), 158
parameters() (bumps.pdfwrapper.VectorPDF method),

159
ParameterSet (class in bumps.parameter), 151
pars (bumps.options.BumpsOpts attribute), 129
parse_file() (in module bumps.data), 98
parse_int() (in module bumps.options), 131
parse_tolerance() (in module bumps.fitters), 114
parse_var() (in module bumps.dream.stats), 202
ParseOpts (class in bumps.options), 130
particle_swarm() (in module bumps.random_lines),

167
pbs() (in module bumps.bspline), 92
PDF (class in bumps.pdfwrapper), 158
pdf() (bumps.parameter.BaseParameter method), 134
pdf() (bumps.parameter.Constant method), 137
pdf() (bumps.parameter.Function method), 140
pdf() (bumps.parameter.IntegerParameter method), 143
pdf() (bumps.parameter.Operator method), 146
pdf() (bumps.parameter.Parameter method), 149
pdf() (bumps.parameter.Reference method), 153
perturbed_hessian() (in module bumps.lsqerror), 122
pi() (bumps.wsolve.LinearModel method), 174
pi() (bumps.wsolve.PolynomialModel method), 174
plot (bumps.options.BumpsOpts property), 129
plot() (bumps.curve.Curve method), 96
plot() (bumps.curve.PoissonCurve method), 97
plot() (bumps.dream.corrplot.Corr2d method), 183
plot() (bumps.dream.model.Density method), 194
plot() (bumps.dream.model.LogDensity method), 194
plot() (bumps.dream.model.MCMCModel method), 195
plot() (bumps.dream.model.Mixture method), 195
plot() (bumps.dream.model.MVNormal method), 195
plot() (bumps.dream.model.Simulation method), 196
plot() (bumps.fitproblem.BaseFitProblem method), 102
plot() (bumps.fitproblem.Fitness method), 104
plot() (bumps.fitproblem.MultiFitProblem method), 106
plot() (bumps.fitters.DreamFit method), 110
plot() (bumps.fitters.DreamModel method), 110
plot() (bumps.fitters.FitDriver method), 111
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plot() (bumps.pdfwrapper.DirectProblem method), 158
plot() (bumps.pdfwrapper.PDF method), 159
plot() (bumps.pdfwrapper.VectorPDF method), 159
plot() (bumps.pymcfit.PyMCProblem method), 165
plot() (bumps.wsolve.PolynomialModel method), 175
plot_all() (in module bumps.dream.views), 204
plot_corr() (in module bumps.dream.views), 204
plot_corrmatrix() (in module bumps.dream.views),

204
plot_err() (in module bumps.curve), 97
plot_inflections() (in module bumps.mono), 126
plot_logp() (in module bumps.dream.views), 204
plot_quantiles() (in module bumps.plotutil), 161
plot_trace() (in module bumps.dream.views), 204
plot_var() (in module bumps.dream.varplot), 203
plot_vars() (in module bumps.dream.varplot), 203
PLOTTERS (bumps.options.BumpsOpts attribute), 127
pm() (bumps.parameter.BaseParameter method), 134
pm() (bumps.parameter.Constant method), 137
pm() (bumps.parameter.Function method), 140
pm() (bumps.parameter.IntegerParameter method), 143
pm() (bumps.parameter.Operator method), 146
pm() (bumps.parameter.Parameter method), 149
pm() (bumps.parameter.ParameterSet method), 151
pm() (bumps.parameter.Reference method), 153
pm() (in module bumps.bounds), 91
pm_raw() (in module bumps.bounds), 91
pmp() (bumps.parameter.BaseParameter method), 134
pmp() (bumps.parameter.Constant method), 137
pmp() (bumps.parameter.Function method), 140
pmp() (bumps.parameter.IntegerParameter method), 143
pmp() (bumps.parameter.Operator method), 146
pmp() (bumps.parameter.Parameter method), 150
pmp() (bumps.parameter.ParameterSet method), 151
pmp() (bumps.parameter.Reference method), 153
pmp() (in module bumps.bounds), 91
pmp_raw() (in module bumps.bounds), 91
PoissonCurve (class in bumps.curve), 97
PolynomialModel (class in bumps.wsolve), 174
pool (bumps.mapper.MPMapper attribute), 124
population (bumps.dream.core.Dream attribute), 182
preview() (in module bumps.cli), 94
problem_id (bumps.mapper.MPMapper attribute), 124
prod() (in module bumps.pmath), 164
profile() (in module bumps.cheby), 93
profile() (in module bumps.util), 170
provides() (bumps.history.History method), 117
PSFit (class in bumps.fitters), 113
PTFit (class in bumps.fitters), 113
push_seed (class in bumps.util), 170
pushdir (class in bumps.util), 171
put() (bumps.history.Trace method), 118
put01() (bumps.bounds.Bounded method), 82
put01() (bumps.bounds.BoundedAbove method), 83

put01() (bumps.bounds.BoundedBelow method), 85
put01() (bumps.bounds.BoundedNormal method), 85
put01() (bumps.bounds.Bounds method), 86
put01() (bumps.bounds.Distribution method), 87
put01() (bumps.bounds.Normal method), 88
put01() (bumps.bounds.SoftBounded method), 89
put01() (bumps.bounds.Unbounded method), 90
putfull() (bumps.bounds.Bounded method), 82
putfull() (bumps.bounds.BoundedAbove method), 84
putfull() (bumps.bounds.BoundedBelow method), 85
putfull() (bumps.bounds.BoundedNormal method), 85
putfull() (bumps.bounds.Bounds method), 86
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R
R() (bumps.dream.corrplot.Corr2d method), 183
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method), 144
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radians() (in module bumps.pmath), 164
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method), 106
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randomize() (bumps.pdfwrapper.DirectProblem
method), 158

randomize() (bumps.pymcfit.PyMCProblem method),
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randomize() (in module bumps.parameter), 155
range() (bumps.parameter.BaseParameter method), 134
range() (bumps.parameter.Constant method), 137
range() (bumps.parameter.Function method), 141
range() (bumps.parameter.IntegerParameter method),
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range() (bumps.parameter.Operator method), 147
range() (bumps.parameter.Parameter method), 150
range() (bumps.parameter.ParameterSet method), 151
range() (bumps.parameter.Reference method), 154
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reload_errors() (in module bumps.errplot), 99
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method), 184
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method), 184
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method), 185
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residual() (bumps.parameter.Parameter method), 150
residual() (bumps.parameter.Reference method), 154
residuals() (bumps.curve.Curve method), 97
residuals() (bumps.curve.PoissonCurve method), 97
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residuals() (bumps.fitproblem.Fitness method), 104
residuals() (bumps.fitproblem.MultiFitProblem
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104
restore_data() (bumps.fitproblem.MultiFitProblem
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method), 102
resynth_data() (bumps.fitproblem.Fitness method),
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resynth_data() (bumps.fitproblem.MultiFitProblem

method), 106
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200
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save() (bumps.dream.state.MCMCDraw method), 201
save() (bumps.fitproblem.BaseFitProblem method), 102
save() (bumps.fitproblem.Fitness method), 104
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save() (bumps.fitters.DreamFit method), 110
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save_state() (in module bumps.dream.state), 201
seed (bumps.options.BumpsOpts attribute), 129
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selected_name (bumps.options.FitConfig property),

130
selected_values (bumps.options.FitConfig property),
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ServiceMonitor (class in bumps.fitservice), 107
set() (bumps.parameter.IntegerParameter method), 144
set() (bumps.parameter.Parameter method), 150
set() (bumps.parameter.Reference method), 154
set_active_model() (bumps.fitproblem.MultiFitProblem

method), 106
set_from_cli() (bumps.options.FitConfig method),
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setp() (bumps.pymcfit.PyMCProblem method), 165
setpriority() (in module bumps.mapper), 124
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settings (bumps.fitters.SnobFit attribute), 114
shortest_credible_interval() (in module

bumps.dream.stats), 202
show() (bumps.dream.state.MCMCDraw method), 201
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show() (bumps.fitproblem.MultiFitProblem method), 106
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simulate_data() (bumps.curve.PoissonCurve method),

97
simulate_data() (bumps.fitproblem.BaseFitProblem

method), 103
simulate_data() (bumps.fitproblem.MultiFitProblem

method), 106
Simulation (class in bumps.dream.model), 195
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SoftBounded (class in bumps.bounds), 89
solve() (bumps.fitters.BFGSFit method), 109
solve() (bumps.fitters.DEFit method), 109
solve() (bumps.fitters.DreamFit method), 110
solve() (bumps.fitters.FitBase method), 111
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solve() (bumps.fitters.MultiStart method), 113
solve() (bumps.fitters.PSFit method), 113
solve() (bumps.fitters.PTFit method), 113
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start_value() (bumps.bounds.BoundedAbove

method), 84
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method), 85
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method), 86
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start_value() (bumps.bounds.Unbounded method), 91
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method), 123
start_worker() (bumps.mapper.MPIMapper static

method), 123
start_worker() (bumps.mapper.MPMapper static

method), 124

start_worker() (bumps.mapper.SerialMapper static
method), 124

starts (bumps.options.BumpsOpts attribute), 129
state (bumps.dream.core.Dream attribute), 182
stats() (in module bumps.dream.stats), 202
std (bumps.wsolve.LinearModel property), 174
std (bumps.wsolve.PolynomialModel property), 175
stderr() (bumps.fitproblem.BaseFitProblem method),
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stderr() (bumps.fitproblem.MultiFitProblem method),
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stderr() (bumps.fitters.DreamFit method), 110
stderr() (bumps.fitters.FitDriver method), 112
stderr() (in module bumps.lsqerror), 122
stderr_from_cov() (bumps.fitters.FitDriver method),
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method), 123
stop_mapper() (bumps.mapper.MPIMapper static

method), 123
stop_mapper() (bumps.mapper.MPMapper static

method), 124
stop_mapper() (bumps.mapper.SerialMapper static

method), 124
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substitute() (in module bumps.parameter), 155
sum() (in module bumps.pmath), 164
summarize() (bumps.fitproblem.BaseFitProblem

method), 103
summarize() (bumps.fitproblem.MultiFitProblem

method), 107
summarize() (bumps.pdfwrapper.DirectProblem

method), 158
summarize() (bumps.pymcfit.PyMCProblem method),
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tan() (bumps.parameter.BaseParameter method), 135
tan() (bumps.parameter.Constant method), 138
tan() (bumps.parameter.Function method), 141
tan() (bumps.parameter.IntegerParameter method), 144
tan() (bumps.parameter.Operator method), 147
tan() (bumps.parameter.Parameter method), 150
tan() (bumps.parameter.Reference method), 154
tan() (in module bumps.pmath), 165
tand() (in module bumps.parameter), 155
tand() (in module bumps.pmath), 165
tanh() (bumps.parameter.BaseParameter method), 135
tanh() (bumps.parameter.Constant method), 138
tanh() (bumps.parameter.Function method), 141
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tanh() (bumps.parameter.Operator method), 147
tanh() (bumps.parameter.Parameter method), 150
tanh() (bumps.parameter.Reference method), 154
tanh() (in module bumps.pmath), 165
test_operator() (in module bumps.parameter), 156
theory() (bumps.curve.Curve method), 97
theory() (bumps.curve.PoissonCurve method), 97
thinning (bumps.dream.core.Dream attribute), 182
time (bumps.options.BumpsOpts attribute), 129
TimedUpdate (class in bumps.monitor), 125
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to_dict() (bumps.fitproblem.MultiFitProblem method),

107
to_dict() (bumps.parameter.Alias method), 132
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update() (bumps.curve.PoissonCurve method), 97
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method), 184
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method), 185
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V
valid() (bumps.fitproblem.BaseFitProblem method),
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107
valid() (bumps.parameter.BaseParameter method), 135
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values (bumps.parameter.ParameterSet property), 151
var (bumps.wsolve.LinearModel property), 174
var (bumps.wsolve.PolynomialModel property), 175
var_plot_size() (in module bumps.dream.varplot),
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VarStats (class in bumps.dream.stats), 201
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VectorPDF (class in bumps.pdfwrapper), 159
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weight (bumps.dream.crossover.BaseAdaptiveCrossover

attribute), 184
weight (bumps.dream.crossover.LogAdaptiveCrossover

attribute), 185
wnn_entropy() (in module bumps.dream.entropy), 188
wpolyfit() (in module bumps.wsolve), 175
wsolve() (in module bumps.wsolve), 175
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222 Index


	Getting Started
	Installing the application
	Building from source
	Windows
	Linux
	OS/X

	Fast Stepper for DREAM on MPI
	Building Documentation
	Windows Installer

	Server installation
	Job Controller
	Cluster
	Security

	Contributing Changes
	License
	Bumps GUI
	DREAM

	Credits

	Tutorial
	Simple functions
	Fitting a curve
	Fitting Poisson data
	Poisson simulation
	Fitting an ODE
	Fitting a multi-valued function

	Peak Fitting
	Test functions
	Anticorrelation demo
	Boundary check
	Cross-shaped anti-correlation

	Check the entropy calculator
	Bayesian Experimental Design
	Calling fit from scripts
	Inequality constraints

	User’s Guide
	Using Bumps
	Data Representation
	Experiment
	Simple experiments
	Likelihood functions
	Complex models
	Linear models
	Foreign models
	External constraints

	Parameters
	Free Variables

	Fitting
	Quick Fit
	Uncertainty Analysis
	Using the posterior distribution
	Publication Graphics
	Tough Problems
	Command Line

	Optimizer Selection
	Levenberg-Marquardt
	When to use
	Options
	Notes
	References

	Nelder-Mead Simplex
	When to use
	Options
	References

	Quasi-Newton BFGS
	When to use
	Options
	References

	Differential Evolution
	When to use
	Options
	References

	DREAM
	When to use
	Options
	Output
	References

	Particle Swarm
	When to use
	Options
	References

	Random Lines
	When to use
	Options
	References

	Parallel Tempering
	When to use
	Options
	References


	Bumps Options
	Bumps Command Line
	Problem Setup
	--pars
	--shake
	--simulate
	--simrandom
	--noise
	--seed

	Stopping Conditions
	--steps
	--samples
	--ftol
	--xtol
	--time
	--alpha

	Optimizer Controls
	--fit
	--pop
	--init
	--burn
	--thin
	--CR
	--outliers
	--F
	--radius
	--nT
	--Tmin
	--Tmax
	--starts
	--keep_best

	Execution Controls
	--store
	--overwrite
	--checkpoint
	--resume
	--parallel
	--mpi
	--batch
	--stepmon

	Output Controls
	`--err
	--cov
	--entropy
	--plot
	--trim
	--noshow

	Bumps Controls
	--preview
	--chisq
	--resynth
	--time_model
	--profile

	Special Options
	--edit
	--help, -h, -?
	-i, -m, -c, -p


	Calculating Entropy

	Reference: bumps
	bounds - Parameter constraints
	bspline - B-Spline interpolation library
	cheby - Freeform - Chebyshev
	cli - Command line interface
	curve - Model a fit function
	Example

	data - Data handling utilities
	errplot - Plot sample profile uncertainty
	fitproblem - Interface between models and fitters
	fitservice - Remote job plugin for fit jobs
	fitters - Wrappers for various optimization algorithms
	formatnum - Format numbers and uncertainties
	history - Optimizer evaluation trace
	initpop - Population initialization strategies
	lsqerror - Least squares eorror analysis
	mapper - Parallel processing implementations
	monitor - Monitor fit progress
	mono - Freeform - Monotonic Spline
	names - External interface
	options - Command line options processor
	parameter - Optimization parameter definition
	partemp - Parallel tempering optimizer
	pdfwrapper - Model a probability density function
	plotutil - Plotting utilities
	plugin - Domain branding
	pmath - Parametric versions of standard functions
	pymcfit - Wrapper for pyMC models
	quasinewton - BFGS quasi-newton optimizer
	random_lines - Random lines and particle swarm optimizers
	simplex - Nelder-Mead simplex optimizer (amoeba)
	util - Miscellaneous functions
	wsolve - Weighted linear and polynomial solver with uncertainty
	Example


	Reference: bumps.dream
	acr - A C Rencher normal outlier test
	bounds - Bounds handling
	core - DREAM core
	corrplot - Correlation plots
	crossover - Adaptive crossover support
	Usage
	Compatibility Notes

	diffev - Differential evolution MCMC stepper
	entropy - Entropy calculation
	exppow - Exponential power density parameter calculator
	formatnum - Format values and uncertainties nicely for printing
	gelman - R-statistic convergence test
	geweke - Geweke convergence test
	initpop - Population initialization routines
	ksmirnov - Kolmogorov-Smirnov test for MCMC convergence
	mahal - Mahalanobis distance calculator
	metropolis - MCMC step acceptance test
	model - MCMC model types
	Usage
	Compatibility with matlab DREAM

	outliers - Chain outlier tests
	state - Sampling history for MCMC
	stats - Statistics helper functions
	tile - Split a rectangle into n panes
	util - Miscellaneous utilities
	varplot - Plot histograms for indiviual parameters
	views - MCMC plotting methods

	Python Module Index
	Index

