
buildstrap Documentation
Release 0.4.0

Bernard ‘Guyzmo‘ Pratz

Sep 23, 2016

Contents

1 Buildstrap: generate a buildout config for any *env project 3

2 Quickstart Guide 5
2.1 Usage . 5
2.2 Installation . 6
2.3 Development . 6
2.4 Nota Bene . 6
2.5 License . 6

3 Buildout configuration 7

4 Usage 9

5 Multiple requirements.txt 11

6 Multiple packages 13
6.1 Control the output . 13

7 Configure the path 15
7.1 Root path: --root . 15
7.2 Sources path: --src . 16
7.3 Environment path: --env . 17
7.4 Bin path: --bin . 17

8 buildstrap package 19
8.1 Submodules . 19
8.2 buildstrap.buildstrap module . 19
8.3 Module contents . 23

Python Module Index 25

i

ii

buildstrap Documentation, Release 0.4.0

For those who want to hack on any project without having to hack around your shell environment, mess with your
python tools, pollute your home dotfiles, buildstrap is for you.

This project will bring the power of buildout, by generating in a simple command all you need to setup a buildout
configuration, that will then create a self contained python environment for all your hacking needs.

It’s as simple as:

% git clone https://github.com/guyzmo/buildstrap
% cd buildstrap
% buildstrap run buildstrap requirements.txt
...
% bin/buildstrap --version
0.1.1

What is being done here, is that you tell buildstrap the package’s name, and the requirements files to parse, and it will
generate the the following buildout.cfg file:

[buildout]
newest = false
parts = buildstrap
develop = .
eggs-directory = ${buildout:directory}/var/eggs
develop-eggs-directory = ${buildout:directory}/var/develop-eggs
develop-dir = ${buildout:directory}/var/develop
parts-directory = ${buildout:directory}/var/parts
requirements = ${buildout:develop}/requirements.txt

[buildstrap]
eggs = ${buildout:requirements-eggs}

buildstrap
recipe = zc.recipe.egg

That file is then used to configure buildout so it creates the environment in your project’s directory. You’ll find all your
dependencies downloaded into /var , and all the scripts you need populated in /bin .

So, it’s only two directories to add to your .gitignore , and to delete when you want to make your workspace
clean again. Then you can choose to either keep (and eventually tweak) your buildout.cfg file, or throw it away.

Yes, it’s as easy as it sounds!

Contents 1

https://github.com/buildout/buildout

buildstrap Documentation, Release 0.4.0

2 Contents

CHAPTER 1

Buildstrap: generate a buildout config for any *env project

There’s pyenv, pyvenv, venv, virtualenv. . . and who knows how many other ways to deal with development of python
programs in a per-project self-contained manner.

While most of the python community tried to keep up, and got their shell configuration or global pip changing regularly,
some have been quietly enjoying python development the same way for the last ten years, using buildout for their
development.

Though, it’s a fact that buildout is not the standard way to do things, even if it’s a very convenient tool. So to keep
your repositories compatible with most *env tools available — or get buildout with other projects. I wrote this tool to
make it easy to create a buildout environment within the project.

3

https://github.com/buildout/buildout/

buildstrap Documentation, Release 0.4.0

4 Chapter 1. Buildstrap: generate a buildout config for any *env project

CHAPTER 2

Quickstart Guide

Here we’ll see the most common usages, and refer to the full documentation for more details.

2.1 Usage

when you got a repository that has requirements files, at the root of your project’s directory, call buildstrap using:

% buildstrap run project requirements.txt

where project as second argument is the name of the package as you’ve set it up in your setup.py — and as
you’d import it from other python code.

Running that command will generate the buildout.cfg file, and run buildout in your current directory. Then
you’ll find all your scripts available in the newly created bin directory of your project.

If you have several requirements.txt files, depending on the task you want to do, it’s easy:

% buildstrap run project -p pytest -p sphinx requirements.txt requirements-test.txt
→˓requirements-doc.txt

which will create three sections in your buildout.cfg file, and get all the appropriate dependencies.

Here’s a real life example:

% git hub clone kennethreitz/requests # cf 'Nota Bene'
% cd requests
% buildstrap run requests requirements.txt
...
% bin/py.test
... (look at the tests result)
% bin/python3
>>> import requests
>>>

or another one:

% git hub clone jkbrzt/httpie # cf 'Nota Bene'
% cd httpie
% buildstrap run httpie requirements-dev.txt
...
% bin/py.test
... (look at the tests result)

5

https://buildstrap.readthedocs.io/

buildstrap Documentation, Release 0.4.0

% bin/http --version
1.0.0-dev

2.2 Installation

it’s as easy as any other python program:

% pip install buildstrap

or from the sources:

% git hub clone guyzmo/buildstrap
% cd buildstrap
% python3 setup.py install

2.3 Development

for development you just need to do:

% pip install buildstrap
% git clone https://github.com/guyzmo/buildstrap
% cd buildstrap
% builstrap run buildstrap -p pytest -p sphinx requirements.txt requirement-test.txt
→˓requirement-doc.txt
...
% bin/buildstrap

Yeah, I’m being evil here

You can have a look at the sources documentation.

2.4 Nota Bene

You might wonder where does the git hub clone command comes from, and I’m using here another project I
wrote: guyzmo/git-repo.

Simply put, git hub clone user/project is equivalent to git clone
https://github.com/user/project .

2.5 License

Copyright © 2016 Bernard `Guyzmo` Pratz <guyzmo+buildstrap+pub@m0g.net>
This work is free. You can redistribute it and/or modify it under the
terms of the Do What The Fuck You Want To Public License, Version 2,
as published by Sam Hocevar. See the LICENSE file for more details.

6 Chapter 2. Quickstart Guide

https://buildstrap.readthedocs.io/en/latest/buildstrap.html
https://github.com/guyzmo/git-repo

CHAPTER 3

Buildout configuration

Before going into more details, let’s have briefly a look at a buildout.cfg configuration. Each section of the
configuration file are called part s in buildout slang. The part configures a directive to run using a recipe. There are
many recipes you can lookup, but in a buildout.cfg freshly baked by buildstrap, you’ll only see two:

• zc.recipe.egg : which takes care of downloading and installing dependencies into the self-contained envi-
ronment ;

• gp.vcsdevelop : which parses a requirements.txt file and exposes the dependencies, so
zc.recipe.egg can do its job (in the context of buildstrap).

Then, to setup the environment, there’s a section named [buildout] that contains everything needed to setup the
self contained environment, like the list of parts to run (remove one from there and it’ll be ignored), the paths to the
used directories. . .

Once the buildout configuration file, buildout.cfg has been generated, you can tweak it as much as you like to
suit your needs. Buildout is much more than just setting up a self contained environment!

If you want to read more about buildout, check its documentation, or for more in depth info, check buildout.cfg
manual.

7

http://www.buildout.org/en/latest/docs/recipelist.html
http://www.buildout.org/en/latest/docs/
https://github.com/buildout/buildout/blob/master/src/zc/buildout/buildout.txt
https://github.com/buildout/buildout/blob/master/src/zc/buildout/buildout.txt

buildstrap Documentation, Release 0.4.0

8 Chapter 3. Buildout configuration

CHAPTER 4

Usage

Usage: buildstrap [-v...] [options] [run|show|debug|generate] [-p part...]<package>
→˓<requirements>...

Options:
run run buildout once buildout.cfg has been generated
show show the buildout.cfg (same as using `-o -`)
debug print internal representation of buildout config
generate create the buildout.cfg file (default action)
<package> use this name for the package being developed
<requirements> use this requirements file as main requirements
-p,--part <part> choose part template to use (use "list" to show all)
-i,--interpreter <python> use this python version
-o,--output <buildout.cfg> file to output [default: buildout.cfg]
-r,--root <path> path to the project root (where buildout.cfg will

be generated) (defaults to ./)
-s,--src <path> path to the sources (default is same as root path)

relative to the root path if not absolute
-e,--env <path> path to the environment data [default: var]

relative to directory if not absolute
-b,--bin <path> path to the bin directory [default: bin]

relative to directory if not absolute
-f,--force force overwrite output file if it exists
-c,--config <path> path to the configuration directory

[default: ~/.config/buildstrap]
-v,--verbose increase verbosity
-h,--help show this message
--version show version

9

buildstrap Documentation, Release 0.4.0

10 Chapter 4. Usage

CHAPTER 5

Multiple requirements.txt

Many projects offer multiple requirements.txt files, one for each task of the development cycle (which usually
are running, testing, documenting).

Well, just tell buildstrap what the extra requirements are:

% buildstrap run buildstrap -p pytest -p sphinx requirements.txt requirements-doc.txt
→˓requirements-test.txt

and that will generate the following buildout.cfg configuration:

[buildout]
newest = false
parts = buildstrap

pytest
sphinx

package = buildstrap
extensions = gp.vcsdevelop
develop = .
eggs-directory = ${buildout:directory}/var/eggs
develop-eggs-directory = ${buildout:directory}/var/develop-eggs
parts-directory = ${buildout:directory}/var/parts
develop-dir = ${buildout:directory}/var/develop
bin-directory = ${buildout:directory}/bin
requirements = ${buildout:develop}/requirements.txt

${buildout:develop}/requirements-doc.txt
${buildout:develop}/requirements-test.txt

[buildstrap]
recipe = zc.recipe.egg
eggs = ${buildout:requirements-eggs}

buildstrap

[pytest]
arguments = ['--cov={}/{}'.format('${buildout:develop}', package) for package in '$
→˓{buildout:pack
age}'.split(',')] \

+['--cov-report', 'term-missing', 'tests']+sys.argv[1:]
eggs = ${buildout:requirements-eggs}
recipe = zc.recipe.egg

[sphinx]
eggs = ${buildout:requirements-eggs}
source = ${buildout:directory}/doc

11

buildstrap Documentation, Release 0.4.0

recipe = collective.recipe.sphinxbuilder
build = ${buildout:directory}/doc/_build

and you’ll find all the tools you’ll need in bin:

% ls bin
buildout cm2html cm2man cm2xetex py.test sphinx sphinx-
→˓autogen sphinx-quickstart
buildstrap cm2latex cm2pseudoxml cm2xml py.test-2.7 sphinx-apidoc sphinx-build

12 Chapter 5. Multiple requirements.txt

CHAPTER 6

Multiple packages

Some projects will include several packages in the sources, so to support that, just list all your packages as a comma
seperated list, and they will all be included:

% buildstrap show dent,prefect,beeblebox requirements.txt
[buildout]
newest = false
parts = dent
package = dent prefect beeblebox
extensions = gp.vcsdevelop
develop = .
eggs-directory = ${buildout:directory}/var/eggs
develop-eggs-directory = ${buildout:directory}/var/develop-eggs
parts-directory = ${buildout:directory}/var/parts
develop-dir = ${buildout:directory}/var/develop
bin-directory = ${buildout:directory}/bin
requirements = ${buildout:develop}/requirements.txt

[dent]
recipe = zc.recipe.egg
eggs = ${buildout:requirements-eggs}

dent
prefect
beeblebox

6.1 Control the output

If you want to only generate the buildout.cfg file, simply use buildstrap with no subcommand, and you’ll get it
in your current directory!

% buildstrap slartibartfast requirements.txt
% cat buildout.cfg
[buildout]
newest = false
parts = slartibartfast
package = slartibartfast
extensions = gp.vcsdevelop
develop = .
eggs-directory = ${buildout:directory}/var/eggs
develop-eggs-directory = ${buildout:directory}/var/develop-eggs
parts-directory = ${buildout:directory}/var/parts

13

buildstrap Documentation, Release 0.4.0

develop-dir = ${buildout:directory}/var/develop
bin-directory = ${buildout:directory}/bin
requirements = ${buildout:develop}/requirements.txt

[slartibartfast]
recipe = zc.recipe.egg
eggs = ${buildout:requirements-eggs}

slartibartfast

but if you want to just test the command and print the configuration to stdout, without it doing nothing, use the show
subcommand:

% buildstrap show slartibartfast requirements.txt
[buildout]
newest = false
parts = slartibartfast
package = slartibartfast
extensions = gp.vcsdevelop
develop = .
eggs-directory = ${buildout:directory}/var/eggs
develop-eggs-directory = ${buildout:directory}/var/develop-eggs
parts-directory = ${buildout:directory}/var/parts
develop-dir = ${buildout:directory}/var/develop
bin-directory = ${buildout:directory}/bin
requirements = ${buildout:develop}/requirements.txt

[slartibartfast]
recipe = zc.recipe.egg
eggs = ${buildout:requirements-eggs}

slartibartfast

and if you want to write the buildout.cfg as another file, you can either redirect the show command with a pipe,
or use the --output argument:

% buildstrap -o foobar.cfg slartibartfast requirements.txt
% cat foobar.cfg
[buildout]
newest = false
parts = slartibartfast
package = slartibartfast
extensions = gp.vcsdevelop
develop = .
eggs-directory = ${buildout:directory}/var/eggs
develop-eggs-directory = ${buildout:directory}/var/develop-eggs
parts-directory = ${buildout:directory}/var/parts
develop-dir = ${buildout:directory}/var/develop
bin-directory = ${buildout:directory}/bin
requirements = ${buildout:develop}/requirements.txt

[slartibartfast]
recipe = zc.recipe.egg
eggs = ${buildout:requirements-eggs}

slartibartfast

N.B.: the show command is equivalent to --output - .

14 Chapter 6. Multiple packages

CHAPTER 7

Configure the path

For your project, there are three important path to configure:

• where your project root is,

• where your sources are (within your project),

• where your environment will be.

When you’re using buildstrap on a project, the default are safe, as long as you’re running while you’re doing it within
the sources of the project. Then what you’ll have is:

• root_path → ‘.’

• src_path → {root_path} → ‘.’

• env_path → {root_path}/var → ‘./var’

• bin_path → {root_path}/bin → ‘./bin’

But sometimes, you want to change the defaults, for the best (or the worst — most often, the worst, though).

So, you can set all those paths to values other than the default, and have it all in a very different setup than the default.

7.1 Root path: --root

The project’s root is where typically all other paths are being relative to. It’s where you’ll expect to find the
buildout.cfg file, and where the environment directory will be.

When passed, it’s setting up the directory directive of the buildout.cfg file, otherwise it’s keeping the
default.

% buildstrap -r /tmp/buildstrap-env/ show buildstrap requirements.txt
[buildout]
newest = false
parts = buildstrap
package = buildstrap
extensions = gp.vcsdevelop
directory = /tmp/buildstrap-env/
develop = .
eggs-directory = ${buildout:directory}/var/eggs
develop-eggs-directory = ${buildout:directory}/var/develop-eggs
parts-directory = ${buildout:directory}/var/parts
develop-dir = ${buildout:directory}/var/develop
bin-directory = ${buildout:directory}/bin

15

buildstrap Documentation, Release 0.4.0

requirements = ${buildout:develop}/requirements.txt

[buildstrap]
recipe = zc.recipe.egg
eggs = ${buildout:requirements-eggs}

buildstrap

7.2 Sources path: --src

Though, if you change the root directory, chances are (like in the former example) that it won’t be where your sources
are. Then, running buildout will end up in throwing an exception:

FileNotFoundError: [Errno 2] No such file or directory: '/tmp/builstrap-env/./setup.py
→˓'

The source path is where you’ll have your setup.py file that defines your project. So, if your setup.py is not at
the root of your project, you definitely want to use the --src argument.

% buildstrap -r /tmp/buildstrap-build -s `pwd`/buildstrap show buildstrap
→˓requirements.txt
[buildout]
newest = false
parts = buildstrap
package = buildstrap
extensions = gp.vcsdevelop
directory = /tmp
develop = /absolute/path/to/buildstrap
eggs-directory = ${buildout:directory}/var/eggs
develop-eggs-directory = ${buildout:directory}/var/develop-eggs
parts-directory = ${buildout:directory}/var/parts
develop-dir = ${buildout:directory}/var/develop
bin-directory = ${buildout:directory}/bin
requirements = ${buildout:develop}/requirements.txt

[buildstrap]
recipe = zc.recipe.egg
eggs = ${buildout:requirements-eggs}

buildstrap

Nota Bene: if you do not want to use a path relative to the root path, then use an absolute path, or you’ll have
surprises! As you can see in the example above the path is made absolute by using the pwd command.

So running this command with buildout will do:

% buildout
Creating directory '/tmp/buildstrap-build/var/eggs'.
Getting distribution for 'gp.vcsdevelop'.
warning: no previously-included files matching '*' found under directory 'docs/_build'
Got gp.vcsdevelop 2.2.3.
Creating directory '/tmp/buildstrap-build/bin'.
Creating directory '/tmp/buildstrap-build/var/parts'.
Creating directory '/tmp/buildstrap-build/var/develop-eggs'.
Develop: '/home/guyzmo/Workspace/Projects/buildstrap'
Getting distribution for 'zc.recipe.egg>=2.0.0a3'.
Got zc.recipe.egg 2.0.3.

16 Chapter 7. Configure the path

buildstrap Documentation, Release 0.4.0

Unused options for buildout: 'package'.
Installing buildstrap.
Generated script '/tmp/buildstrap-build/bin/buildout'.
Generated script '/tmp/buildstrap-build/bin/buildstrap'.

7.3 Environment path: --env

As seen in the previous example, the script is generating a bunch of directories used for setting up the environment in
{root_path}/var/ . You might want them to be named differently, so they’re not seen in listings for example:

% buildstrap -r /tmp -s `pwd`/buildstrap -e .var show buildstrap requirements.txt
[buildout]
newest = false
parts = buildstrap
package = buildstrap
extensions = gp.vcsdevelop
directory = /tmp
develop = /home/guyzmo/Workspace/Projects/buildstrap/buildstrap
eggs-directory = ${buildout:directory}/.var/eggs
develop-eggs-directory = ${buildout:directory}/.var/develop-eggs
parts-directory = ${buildout:directory}/.var/parts
develop-dir = ${buildout:directory}/.var/develop
bin-directory = ${buildout:directory}/bin
requirements = ${buildout:develop}/requirements.txt

[buildstrap]
recipe = zc.recipe.egg
eggs = ${buildout:requirements-eggs}

buildstrap

or you might want to put it at any other place, by using an absolute path:

% buildstrap -r /tmp -s `pwd`/buildstrap -e /tmp/buildstrap-var show buildstrap
→˓requirements.txt
[buildout]
directory = /tmp
develop = /home/guyzmo/Workspace/Projects/buildstrap/buildstrap
eggs-directory = /tmp/buildstrap-var/eggs
develop-eggs-directory = /tmp/buildstrap-var/develop-eggs
parts-directory = /tmp/buildstrap-var/parts
develop-dir = /tmp/buildstrap-var/develop
bin-directory = ${buildout:directory}/bin
...

7.4 Bin path: --bin

Finally, you might not like the default of having the bin directory at the root path position, so you can put it within
var the following way:

% buildstrap -b var/bin show buildstrap requirements.txt
[buildout]
develop = .
eggs-directory = ${buildout:directory}/var/eggs

7.3. Environment path: --env 17

buildstrap Documentation, Release 0.4.0

develop-eggs-directory = ${buildout:directory}/var/develop-eggs
parts-directory = ${buildout:directory}/var/parts
develop-dir = ${buildout:directory}/var/develop
bin-directory = ${buildout:directory}/var/bin
...

or same as before, to somewhere other place non relative to the sources:

% buildstrap -r /tmp -s `pwd`/buildstrap -e /tmp/buildstrap-var -b /tmp/buildstrap-
→˓bin show buildstrap requirements.txt
[buildout]
develop = .
directory = /tmp/buildstrap-env/
eggs-directory = /tmp/buildstrap-var/eggs
develop-eggs-directory = /tmp/buildstrap-var/develop-eggs
parts-directory = /tmp/buildstrap-var/parts
develop-dir = /tmp/buildstrap-var/develop
bin-directory = /tmp/buildstrap-bin
...

18 Chapter 7. Configure the path

CHAPTER 8

buildstrap package

8.1 Submodules

8.2 buildstrap.buildstrap module

Buildstrap: generate and run buildout in your projects

Usage: {} [-v...] [options] [run|show|debug|generate] [-p part...]<package>
→˓<requirements>...

Options:
run run buildout once buildout.cfg has been generated
show show the buildout.cfg (same as using `-o -`)
debug print internal representation of buildout config
generate create the buildout.cfg file (default action)
<package> use this name for the package being developed
<requirements> use this requirements file as main requirements
-p,--part <part> choose part template to use (use "list" to show all)
-i,--interpreter <python> use this python version
-o,--output <buildout.cfg> file to output [default: buildout.cfg]
-r,--root <path> path to the project root (where buildout.cfg will

be generated) (defaults to ./)
-s,--src <path> path to the sources (default is same as root path)

relative to the root path if not absolute
-e,--env <path> path to the environment data [default: var]

relative to directory if not absolute
-b,--bin <path> path to the bin directory [default: bin]

relative to directory if not absolute
-f,--force force overwrite output file if it exists
-c,--config <path> path to the configuration directory

[default: ~/.config/buildstrap]
-v,--verbose increase verbosity
-h,--help show this message
--version show version

For more detailed help, please read the documentation on https://readthedocs.org/buildstrap

class buildstrap.buildstrap. ListBuildout
Bases: list

Makes it possible to print a list the way buildout expects it.

19

https://readthedocs.org/buildstrap

buildstrap Documentation, Release 0.4.0

Because buildout uses a custom built parser for parsing ini style files, that has a major difference in list handling
from the standard config parser.

The standard configparser doesn’t anything about lists, and outputs python’s internal representation of strings:
['a','b','c'] as values. And the standard configparser consider multiline values as a multiline string.

On the other hand, buildout considers multiline values as lists, one value per line.

This class uses a context manager to define the behaviour of the string conversion method. The default behaviour
is the same as the standard list. But when within the context of the generate_context method, it prints
lists as multiline string, one value per line, the way buildout expects it.

classmethod generate_context ()
Context manager to change the string conversion behaviour on this class

buildstrap.buildstrap. build_part_buildout (root_path=None, src_path=None,
env_path=None, bin_path=None)

Generates the buildout part

This part is the entry point of a buildout configuration file, setting up general values for the environment. Here
we setup paths and defaults for buildout’s behaviour. Please refer to buildout documentation for more.

This will output a buildout header that can be considered as a good start:

[buildout]
newest=false
parts=
package=
extensions=gp.vcsdevelopc
directory=.
develop=${buildout:directory}
eggs-directory=${buildout:directory}/var/eggs
develop-eggs-directory=${buildout:directory}/var/develop-eggs
develop-dir=${buildout:directory}/var/develop
parts-directory=${buildout:directory}/var/parts
requirements=

Parameter root_path will change the path to the project’s root, which is where the enviroment will be based
on. If you’re placing the buildout.cfg file in another directory than the root of the project, set it to the path
that can get you from the buildout.cfg into the project, and it will all work ok.

Parameter src_path will change the path to the sources, so if you’ve got your sources in ./src , you can
set it up to src and it will generate:

develop=./src

Beware that all non-absolute paths given to src_path are relative to the root_path .

For parameter bin_path and env_path , it will respectively change path to the generated bin directory
and env directory, after running buildout.

Parameters

• root_path – path string to the root of the project (from which all other paths are relative
to)

• src_path – path string to the sources (where setup.py is)

• env_path – path string to the environment (where dependencies are downloaded)

• bin_path – path string to the runnable scripts

Returns the buildout part as a dict

20 Chapter 8. buildstrap package

buildstrap Documentation, Release 0.4.0

buildstrap.buildstrap. build_part_target (target, packages=[], interpreter=None)
Generates a part to run the currenctly develop package

This will output a part, that will make a script based on the current package developed, using the
zc.recipe.egg recipe, to populate the environment. The generated part follows the following template:

[<target>]
recipe=zc.recipe.egg
eggs=<package>
interpreter=<interpreter>

If no packages argument is given, the list only contains the reference to the requirements egg list, otherwise
the list of packages gets appended. If no interpreter argument is given, the directive is ignored.

Parameters

• target – name to be used for the part

• interpreter – if given, setup the interpreter directive, using the name of a python inter-
preter as a string.

• packages – if given, adds that package to the list of requirements.

Raises TypeError – if the packages is not a list of string

Returns dict representation of the part

buildstrap.buildstrap. build_part_template (name, config_path)
Creates a part out of a template file

Will resolve a part file based on its name, by looking through both package’s static directory, and through user
defined configuration path.

The template file will feature a section (which name is the same as the file name) and will be parsed, and then
added to the buildout file as is. It will also be named with the .part.cfg extension.

Parameters

• name – name of the template file (without extension)

• config_path – directory where to look for the template file

Returns dict representation of a part

Raises FileNotFoundError if no template can be found.

buildstrap.buildstrap. build_parts (packages, requirements, part_templates=[], inter-
preter=None, config_path=None, root_path=’.’,
src_path=None, env_path=None, bin_path=None)

Builds up the different parts of the buildout configuration

this is the workhorse of this code. It will build and return an internal dict representation of a buildout configu-
ration, following the values given by the arguments. The buildout configuration can be seen as a succession of
parts, each one being a section in the configuration file. For more, please refer to buildout’s documentation.

First, it generates the [buildout] part within the dict representation. Within it, it will setup the packages
value so we keep track of which packages you want to build, the requirements value will be used to find
and download all the eggs that are needed as dependencies. the parts list will keep track of each generated
part, only one part being generated for the code under development (even if there are several packages).

The first argument will define the first part’s name (the one that will be used to generate a script if an entry point
has been defined within the setup.py). Thus, it will append the package name to the list of packages within
the [buildout] section, and be added to the list of eggs that will be run:

8.2. buildstrap.buildstrap module 21

buildstrap Documentation, Release 0.4.0

[buildout]
package = marvin
parts = marvin
...

[marvin]
recipe = zc.recipe.egg
eggs = ${buildout:requirements-eggs}

marvin

The second argument is the list of requirements to be parsed and fed to gp.vcsdevelop so it can work out
downloading all your dependencies:

[buildout]
requirements = requirements.txt
...

Both can be lists (or comma separated list — as a string) of package names and requirements files, so if you
give packages and requirements being respectively:

•dent,prefect,beeblebrox and

•requirements.txt,requirements-dev.txt

it will generate:

[buildout]
...
parts = marvin
package = marvin prefect beeblebrox
requirements = requirements.txt

requirements-dev.txt

[marvin]
recipe = zc.recipe.egg
eggs = ${buildout:requirements-eggs}

marvin

The third argument enables to load a part template. It will load the part from the static path within the package,
or from config_path , which defaults to the user’s home config directory.

Parameters

• packages – the list of packages to target as first part (list or comma separated string)

• requirements – the list of requirements to target as first part (list or comma separated
string)

• part_templates – list of templates to load

• interpreter – string name of the python interpreter to use

• config_path – path string to the configuration directory where to find the template parts
files.

• root_path – path string to the root of the project (from which all other paths are relative
to)

• src_path – path string to the sources (where setup.py is)

• env_path – path string to the environment (where dependencies are downloaded)

22 Chapter 8. buildstrap package

buildstrap Documentation, Release 0.4.0

• bin_path – path string to the runnable scripts

Returns OrderedDict instance configured with all parts.

buildstrap.buildstrap. buildstrap (args)
Parses the command line arguments, build the parts, generate the config and runs buildout

refer to the __doc__ of this module for all arguments.

Parameters args – arguments to parse

Returns 0 on success, 1 otherwise

buildstrap.buildstrap. generate_buildout_config (parts, output, force=False)
Generates the buildout configuration

Using the custom ListBuildout context, lists will be printed as multilines. If output is set to - it will print
to stdout the file.

Parameters

• parts – dict based representation of the buildout file to generate

• output – name of the file to output

• force – if set, it won’t care whether the file exists

Raises FileExistsError – when a file already exists.

buildstrap.buildstrap. list_part_templates (config_path)
Iterates over the available part templates

Will get through both package’s templates path and user config path to check for .part.cfg files.

Parameters config_path – path to the user’s part template directory

Returns iterator over the list of templates

buildstrap.buildstrap. run ()
Parses arguments, gets current command name and version number

8.3 Module contents

8.3. Module contents 23

buildstrap Documentation, Release 0.4.0

24 Chapter 8. buildstrap package

Python Module Index

b
buildstrap, 23
buildstrap.buildstrap, 19

25

buildstrap Documentation, Release 0.4.0

26 Python Module Index

Index

B
build_part_buildout() (in module buildstrap.buildstrap),

20
build_part_target() (in module buildstrap.buildstrap), 20
build_part_template() (in module buildstrap.buildstrap),

21
build_parts() (in module buildstrap.buildstrap), 21
buildstrap (module), 23
buildstrap() (in module buildstrap.buildstrap), 23
buildstrap.buildstrap (module), 19

G
generate_buildout_config() (in module build-

strap.buildstrap), 23
generate_context() (buildstrap.buildstrap.ListBuildout

class method), 20

L
list_part_templates() (in module buildstrap.buildstrap), 23
ListBuildout (class in buildstrap.buildstrap), 19

R
run() (in module buildstrap.buildstrap), 23

27

	Buildstrap: generate a buildout config for any *env project
	Quickstart Guide
	Usage
	Installation
	Development
	Nota Bene
	License

	Buildout configuration
	Usage
	Multiple requirements.txt
	Multiple packages
	Control the output

	Configure the path
	Root path: --root
	Sources path: --src
	Environment path: --env
	Bin path: --bin

	buildstrap package
	Submodules
	buildstrap.buildstrap module
	Module contents

	Python Module Index

