
Buildbot Documentation
Release 0.9.7

Brian Warner

May 10, 2017

Contents

1 Buildbot Tutorial 3
1.1 First Run . 3
1.2 First Buildbot run with Docker . 7
1.3 A Quick Tour . 9
1.4 Further Reading . 16

2 Buildbot Manual 23
2.1 Introduction . 23
2.2 Installation . 29
2.3 Concepts . 44
2.4 Secret Management . 56
2.5 Configuration . 58
2.6 Transition to “worker” terminology . 234
2.7 Customization . 239
2.8 New-Style Build Steps . 264
2.9 Command-line Tool . 267
2.10 Resources . 278
2.11 Optimization . 278
2.12 Plugin Infrastructure in Buildbot . 278
2.13 Deployment . 279

3 Buildbot Development 283
3.1 General Documents . 283
3.2 APIs . 365
3.3 Python3 compatibility . 456
3.4 Classes . 459

4 Release Notes 497
4.1 Buildbot 0.9.7 (2017-05-09) . 497
4.2 Buildbot 0.9.6 (2017-04-19) . 498
4.3 Buildbot 0.9.5 (2017-03-18) . 499
4.4 Buildbot 0.9.4 (2017-02-08) . 500
4.5 Buildbot 0.9.3 (2017-01-11) . 501
4.6 Buildbot 0.9.2 (2016-12-13) . 502

5 Older Release Notes 505
5.1 Release Notes for Buildbot 0.9.1 . 505

i

5.2 Release Notes for Buildbot 0.9.0 . 508
5.3 Release Notes for Buildbot 0.9.0rc4 . 518
5.4 Release Notes for Buildbot 0.9.0rc3 . 519
5.5 Release Notes for Buildbot 0.9.0rc2 . 519
5.6 Release Notes for Buildbot 0.9.0rc1 . 521
5.7 Release Notes for Buildbot 0.9.0b9 . 522
5.8 Release Notes for Buildbot 0.9.0b8 . 524
5.9 Release Notes for Buildbot 0.9.0b7 . 531
5.10 Release Notes for Buildbot 0.9.0b6 . 532
5.11 Release Notes for Buildbot 0.9.0b5 . 533
5.12 Release Notes for Buildbot 0.9.0b4 . 533
5.13 Release Notes for Buildbot 0.9.0b3 . 534
5.14 Release Notes for Buildbot 0.9.0b2 . 535
5.15 Release Notes for Buildbot 0.9.0b1 . 536
5.16 Release Notes for Buildbot 0.8.11 . 543
5.17 Release Notes for Buildbot 0.8.10 . 546
5.18 Release Notes for Buildbot 0.8.9 . 546
5.19 Release Notes for Buildbot v0.8.8 . 553
5.20 Release Notes for Buildbot v0.8.7 . 555
5.21 Release Notes for Buildbot v0.8.6p1 . 560

6 Indices and Tables 565

7 Copyright 567

Buildmaster Configuration Index 569

Scheduler Index 571

Change Source Index 573

Build Step Index 575

Reporter Target Index 577

Configurator Target Index 579

Build Worker Index 581

Command Line Index 583

Data API Event Index 585

REST/Data API Resource Type Index 587

REST/Data API Path Index 589

REST/Data API Actions Index 591

Python Module Index 593

ii

Buildbot Documentation, Release 0.9.7

This is the Buildbot documentation for Buildbot version |version|.

If you are evaluating Buildbot and would like to get started quickly, start with the Tutorial. Regular users of Buildbot
should consult the Manual, and those wishing to modify Buildbot directly will want to be familiar with the Developer’s
Documentation.

Contents 1

Buildbot Documentation, Release 0.9.7

2 Contents

CHAPTER 1

Buildbot Tutorial

Contents:

First Run

Goal

This tutorial will take you from zero to running your first buildbot master and worker as quickly as possible, without
changing the default configuration.

This tutorial is all about instant gratification and the five minute experience: in five minutes we want to convince you
that this project works, and that you should seriously consider spending time learning the system. In this tutorial no
configuration or code changes are done.

This tutorial assumes that you are running Unix, but might be adaptable to Windows.

Thanks to virtualenv (https://pypi.python.org/pypi/virtualenv), installing buildbot in a standalone environment is very
easy. For those more familiar with Docker (https://docker.com), there also exists a docker version of these instructions.

You should be able to cut and paste each shell block from this tutorial directly into a terminal.

Getting ready

There are many ways to get the code on your machine. We will use the easiest one: via pip in a virtualenv
(https://pypi.python.org/pypi/virtualenv). It has the advantage of not polluting your operating system, as everything
will be contained in the virtualenv.

To make this work, you will need the following installed:

• Python (https://www.python.org/) and the development packages for it

• virtualenv (https://pypi.python.org/pypi/virtualenv)

3

https://pypi.python.org/pypi/virtualenv
https://docker.com
https://pypi.python.org/pypi/virtualenv
https://www.python.org/
https://pypi.python.org/pypi/virtualenv

Buildbot Documentation, Release 0.9.7

Preferably, use your distribution package manager to install these.

You will also need a working Internet connection, as virtualenv and pip will need to download other projects from the
Internet.

Note: Buildbot does not require root access. Run the commands in this tutorial as a normal, unprivileged user.

Creating a master

The first necessary step is to create a virtualenv for our master. We will also use a separate directory to demonstrate
the distinction between a master and worker:

cd
mkdir tmp
cd tmp
mkdir buildbot
cd buildbot

On Python 2:

virtualenv --no-site-packages sandbox
source sandbox/bin/activate

On Python 3:

python3 -m venv sandbox
source sandbox/bin/activate

Now that we are ready, we need to install buildbot:

pip install --upgrade pip
pip install 'buildbot[bundle]'

Now that buildbot is installed, it’s time to create the master:

buildbot create-master master

Buildbot’s activity is controlled by a configuration file. We will use the sample configuration file unchanged:

mv master/master.cfg.sample master/master.cfg

Finally, start the master:

buildbot start master

You will now see some log information from the master in this terminal. It should end with lines like these:

2014-11-01 15:52:55+0100 [-] BuildMaster is running
The buildmaster appears to have (re)started correctly.

From now on, feel free to visit the web status page running on the port 8010: http://localhost:8010/

Our master now needs (at least) a worker to execute its commands. For that, head on to the next section!

4 Chapter 1. Buildbot Tutorial

http://localhost:8010/

Buildbot Documentation, Release 0.9.7

Creating a worker

The worker will be executing the commands sent by the master. In this tutorial, we are using the pyflakes project as an
example. As a consequence of this, your worker will need access to the git (https://git-scm.com/) command in order
to checkout some code. Be sure that it is installed, or the builds will fail.

Same as we did for our master, we will create a virtualenv for our worker next to the other one. It would however be
completely ok to do this on another computer - as long as the worker computer is able to connect to the master one:

cd
mkdir tmp/bb-worker
cd tmp/bb-worker

On Python 2:

virtualenv --no-site-packages sandbox
source sandbox/bin/activate

On Python 3:

python3 -m venv sandbox
source sandbox/bin/activate

Install the buildbot-worker command:

pip install buildbot-worker
required for `runtests` build
pip install setuptools-trial

Now, create the worker:

buildbot-worker create-worker worker localhost example-worker pass

Note: If you decided to create this from another computer, you should replace localhost with the name of the
computer where your master is running.

The username (example-worker), and password (pass) should be the same as those in master/master.cfg;
verify this is the case by looking at the section for c['workers']:

cat ../bb-master/master/master.cfg

And finally, start the worker:

buildbot-worker start worker

Check the worker’s output. It should end with lines like these:

2014-11-01 15:56:51+0100 [-] Connecting to localhost:9989
2014-11-01 15:56:51+0100 [Broker,client] message from master: attached
The worker appears to have (re)started correctly.

Meanwhile, from the other terminal, in the master log (twisted.log in the master directory), you should see lines
like these:

1.1. First Run 5

https://git-scm.com/

Buildbot Documentation, Release 0.9.7

2014-11-01 15:56:51+0100 [Broker,1,127.0.0.1] worker 'example-worker' attaching from
→˓IPv4Address(TCP, '127.0.0.1', 54015)
2014-11-01 15:56:51+0100 [Broker,1,127.0.0.1] Got workerinfo from 'example-worker'
2014-11-01 15:56:51+0100 [-] bot attached

You should now be able to go to http://localhost:8010, where you will see a web page similar to:

Click on the Waterfall Display link (http://localhost:8010/waterfall) and you get this:

Your master is now quietly waiting for new commits to Pyflakes. This doesn’t happen very often though. In the next
section, we’ll see how to manually start a build.

We just wanted to get you to dip your toes in the water. It’s easy to take your first steps, but this is about as far as we
can go without touching the configuration.

You’ve got a taste now, but you’re probably curious for more. Let’s step it up a little in the second tutorial by changing
the configuration and doing an actual build. Continue on to A Quick Tour.

6 Chapter 1. Buildbot Tutorial

http://localhost:8010
http://localhost:8010/waterfall

Buildbot Documentation, Release 0.9.7

First Buildbot run with Docker

Note: Docker can be tricky to get working correctly if you haven’t used it before. If you’re having trouble, first
determine whether it is a Buildbot issue or a Docker issue by running:

docker run ubuntu:12.04 apt-get update

If that fails, look for help with your Docker install. On the other hand, if that succeeds, then you may have better luck
getting help from members of the Buildbot community.

Docker (https://www.docker.com) is a tool that makes building and deploying custom environments a breeze. It uses
lightweight linux containers (LXC) and performs quickly, making it a great instrument for the testing community. The
next section includes a Docker pre-flight check. If it takes more that 3 minutes to get the ‘Success’ message for you,
try the Buildbot pip-based first run instead.

Current Docker dependencies

• Linux system, with at least kernel 3.8 and AUFS support. For example, Standard Ubuntu, Debian and Arch
systems.

• Packages: lxc, iptables, ca-certificates, and bzip2 packages.

• Local clock on time or slightly in the future for proper SSL communication.

• This tutorial uses docker-compose to run a master, a worker, and a postgresql database server

Installation

• Use the Docker installation instructions (https://docs.docker.com/engine/installation/) for your operating system.

• Make sure you install docker-compose. As root or inside a virtualenv, run:

pip install docker-compose

• Test docker is happy in your environment:

sudo docker run -i busybox /bin/echo Success

Building and running Buildbot

clone the example repository
git clone --depth 1 https://github.com/buildbot/buildbot-docker-example-config

Build the Buildbot container (it will take a few minutes to download packages)
cd buildbot-docker-example-config/simple
docker-compose up

You should now be able to go to http://localhost:8010 and see a web page similar to:

1.2. First Buildbot run with Docker 7

https://www.docker.com
https://docs.docker.com/engine/installation/
http://localhost:8010

Buildbot Documentation, Release 0.9.7

Click on the Waterfall Display link (http://localhost:8010/#/waterfall) and you get this:

Overview of the docker-compose configuration

This docker-compose configuration is made as a basis for what you would put in production

• Separated containers for each component

• A solid database backend with postgresql

• A buildbot master that exposes its configuration to the docker host

• A buildbot worker that can be cloned in order to add additional power

• Containers are linked together so that the only port exposed to external is the web server

• The default master container is based on Alpine linux for minimal footprint

• The default worker container is based on more widely known Ubuntu distribution, as this is the container you
want to customize.

• Download the config from a tarball accessible via a web server

8 Chapter 1. Buildbot Tutorial

http://localhost:8010/#/waterfall

Buildbot Documentation, Release 0.9.7

Playing with your Buildbot containers

If you’ve come this far, you have a Buildbot environment that you can freely experiment with.

In order to modify the configuration, you need to fork the project on github https://github.com/buildbot/
buildbot-docker-example-config Then you can clone your own fork, and start the docker-compose again.

To modify your config, edit the master.cfg file, commit your changes, and push to your fork. You can use the com-
mand buildbot check-config in order to make sure the config is valid before the push. You will need to change
docker-compose.yml the variable BUILDBOT_CONFIG_URL in order to point to your github fork.

The BUILDBOT_CONFIG_URL may point to a .tar.gz file accessible from HTTP. Several git servers like github
can generate that tarball automatically from the master branch of a git repository If the BUILDBOT_CONFIG_URL
does not end with .tar.gz, it is considered to be the URL to a master.cfg file accessible from HTTP.

Customize your Worker container

It is advised to customize you worker container in order to suit your project’s build dependencies and need. An
example DockerFile is available which the buildbot community uses for its own CI purposes:

https://github.com/buildbot/metabbotcfg/blob/nine/docker/metaworker/Dockerfile

Multi-master

A multi-master environment can be setup using the multimaster/docker-compose.yml file in the example
repository

Build the Buildbot container (it will take a few minutes to download packages) cd buildbot-docker-
example-config/simple docker-compose up -d docker-compose scale buildbot=4

Going forward

You’ve got a taste now, but you’re probably curious for more. Let’s step it up a little in the second tutorial by changing
the configuration and doing an actual build. Continue on to A Quick Tour.

A Quick Tour

Goal

This tutorial will expand on the First Run tutorial by taking a quick tour around some of the features of buildbot that
are hinted at in the comments in the sample configuration. We will simply change parts of the default configuration
and explain the activated features.

As a part of this tutorial, we will make buildbot do a few actual builds.

This section will teach you how to:

• make simple configuration changes and activate them

• deal with configuration errors

• force builds

• enable and control the IRC bot

1.3. A Quick Tour 9

https://github.com/buildbot/buildbot-docker-example-config
https://github.com/buildbot/buildbot-docker-example-config
https://github.com/buildbot/metabbotcfg/blob/nine/docker/metaworker/Dockerfile

Buildbot Documentation, Release 0.9.7

• enable ssh debugging

• add a ‘try’ scheduler

Setting Project Name and URL

Let’s start simple by looking at where you would customize the buildbot’s project name and URL.

We continue where we left off in the First Run tutorial.

Open a new terminal, and first enter the same sandbox you created before (where $EDITOR is your editor of choice
like vim, gedit, or emacs):

cd
cd tmp/buildbot
source sandbox/bin/activate
$EDITOR master/master.cfg

Now, look for the section marked PROJECT IDENTITY which reads:

####### PROJECT IDENTITY

the 'title' string will appear at the top of this buildbot installation's
home pages (linked to the 'titleURL').

c['title'] = "Pyflakes"
c['titleURL'] = "http://divmod.org/trac/wiki/DivmodPyflakes"

If you want, you can change either of these links to anything you want to see what happens when you change them.

After making a change go into the terminal and type:

buildbot reconfig master

You will see a handful of lines of output from the master log, much like this:

2011-12-04 10:11:09-0600 [-] loading configuration from /home/dustin/tmp/buildbot/
→˓master/master.cfg
2011-12-04 10:11:09-0600 [-] configuration update started
2011-12-04 10:11:09-0600 [-] builder runtests is unchanged
2011-12-04 10:11:09-0600 [-] removing IStatusReceiver <WebStatus on port tcp:8010 at
→˓0x2aee368>
2011-12-04 10:11:09-0600 [-] (TCP Port 8010 Closed)
2011-12-04 10:11:09-0600 [-] Stopping factory <buildbot.status.web.baseweb.
→˓RotateLogSite instance at 0x2e36638>
2011-12-04 10:11:09-0600 [-] adding IStatusReceiver <WebStatus on port tcp:8010 at
→˓0x2c2d950>
2011-12-04 10:11:09-0600 [-] RotateLogSite starting on 8010
2011-12-04 10:11:09-0600 [-] Starting factory <buildbot.status.web.baseweb.
→˓RotateLogSite instance at 0x2e36e18>
2011-12-04 10:11:09-0600 [-] Setting up http.log rotating 10 files of 10000000 bytes
→˓each
2011-12-04 10:11:09-0600 [-] WebStatus using (/home/dustin/tmp/buildbot/master/public_
→˓html)
2011-12-04 10:11:09-0600 [-] removing 0 old schedulers, updating 0, and adding 0
2011-12-04 10:11:09-0600 [-] adding 1 new changesources, removing 1
2011-12-04 10:11:09-0600 [-] gitpoller: using workdir '/home/dustin/tmp/buildbot/
→˓master/gitpoller-workdir'
2011-12-04 10:11:09-0600 [-] GitPoller repository already exists

10 Chapter 1. Buildbot Tutorial

Buildbot Documentation, Release 0.9.7

2011-12-04 10:11:09-0600 [-] configuration update complete

Reconfiguration appears to have completed successfully.

The important lines are the ones telling you that it is loading the new configuration at the top, and the one at the bottom
saying that the update is complete.

Now, if you go back to the waterfall page (http://localhost:8010/waterfall), you will see that the project’s name is
whatever you may have changed it to and when you click on the URL of the project name at the bottom of the page it
should take you to the link you put in the configuration.

Configuration Errors

It is very common to make a mistake when configuring buildbot, so you might as well see now what happens in that
case and what you can do to fix the error.

Open up the config again and introduce a syntax error by removing the first single quote in the two lines you changed,
so they read:

c[title'] = "Pyflakes
c[titleURL'] = "http://divmod.org/trac/wiki/DivmodPyflakes"

This creates a Python SyntaxError. Now go ahead and reconfig the buildmaster:

buildbot reconfig master

This time, the output looks like:

2015-08-14 18:40:46+0000 [-] beginning configuration update
2015-08-14 18:40:46+0000 [-] Loading configuration from '/data/buildbot/master/master.
→˓cfg'
2015-08-14 18:40:46+0000 [-] error while parsing config file:

Traceback (most recent call last):
File "/usr/local/lib/python2.7/dist-packages/buildbot/master.py", line 265,

→˓in reconfig
d = self.doReconfig()

File "/usr/local/lib/python2.7/dist-packages/twisted/internet/defer.py",
→˓line 1274, in unwindGenerator

return _inlineCallbacks(None, gen, Deferred())
File "/usr/local/lib/python2.7/dist-packages/twisted/internet/defer.py",

→˓line 1128, in _inlineCallbacks
result = g.send(result)

File "/usr/local/lib/python2.7/dist-packages/buildbot/master.py", line 289,
→˓in doReconfig

self.configFileName)
--- <exception caught here> ---
File "/usr/local/lib/python2.7/dist-packages/buildbot/config.py", line 156,

→˓in loadConfig
exec f in localDict

exceptions.SyntaxError: EOL while scanning string literal (master.cfg, line
→˓103)

2015-08-14 18:40:46+0000 [-] error while parsing config file: EOL while scanning
→˓string literal (master.cfg, line 103) (traceback in logfile)
2015-08-14 18:40:46+0000 [-] reconfig aborted without making any changes

1.3. A Quick Tour 11

http://localhost:8010/waterfall

Buildbot Documentation, Release 0.9.7

Reconfiguration failed. Please inspect the master.cfg file for errors,
correct them, then try 'buildbot reconfig' again.

This time, it’s clear that there was a mistake in the configuration. Luckily, the Buildbot master will ignore the wrong
configuration and keep running with the previous configuration.

The message is clear enough, so open the configuration again, fix the error, and reconfig the master.

Your First Build

By now you’re probably thinking: “All this time spent and still not done a single build? What was the name of this
project again?”

On the waterfall (http://localhost:8010/waterfall) page, click on the runtests link. You’ll see a builder page, and an
option that allow you to force a build:

Click Start Build - there’s no need to fill in any of the fields in this case. Next, click on view in waterfall
(http://localhost:8010/waterfall?show=runtests).

You will now see:

12 Chapter 1. Buildbot Tutorial

http://localhost:8010/waterfall
http://localhost:8010/waterfall?show=runtests

Buildbot Documentation, Release 0.9.7

Enabling the IRC Bot

Buildbot includes an IRC bot that you can tell to join a channel and control to report on the status of buildbot.

Note: Security Note

Please note that any user having access to your irc channel or can PM the bot will be able to create or stop builds bug
#3377 (http://trac.buildbot.net/ticket/3377).

First, start an IRC client of your choice, connect to irc.freenode.net and join an empty channel. In this example we
will use #buildbot-test, so go join that channel. (Note: please do not join the main buildbot channel!)

Edit master.cfg and look for the BUILDBOT SERVICES section. At the end of that section add the lines:

c['services'].append(reporters.IRC(host="irc.freenode.net", nick="bbtest",
channels=["#buildbot-test"]))

Reconfigure the build master then do:

grep -i irc master/twistd.log

The log output should contain a line like this:

2016-11-13 15:53:06+0100 [-] Starting factory <buildbot.reporters.irc.
→˓IrcStatusFactory instance at 0x7ff2b4b72710>
2016-11-13 15:53:19+0100 [IrcStatusBot,client] <buildbot.reporters.irc.IrcStatusBot
→˓object at 0x7ff2b5075750>: I have joined #buildbot-test

1.3. A Quick Tour 13

http://trac.buildbot.net/ticket/3377
http://trac.buildbot.net/ticket/3377

Buildbot Documentation, Release 0.9.7

You should see the bot now joining in your IRC client. In your IRC channel, type:

bbtest: commands

to get a list of the commands the bot supports.

Let’s tell the bot to notify certain events, to learn which EVENTS we can notify on:

bbtest: help notify

Now let’s set some event notifications:

<@lsblakk> bbtest: notify on started finished failure
< bbtest> The following events are being notified: ['started', 'failure', 'finished']

Now, go back to the web interface and force another build. Alternatively, ask the bot to force a build:

<@lsblakk> bbtest: force build --codebase= runtests
< bbtest> build #1 of runtests started
< bbtest> Hey! build runtests #1 is complete: Success [finished]

You can also see the new builds in the web interface.

The full documentation is available at IRC.

Setting Authorized Web Users

The default configuration allows everyone to perform any task like creating or stopping builds via the web interface.
To restrict this to a user, look for:

14 Chapter 1. Buildbot Tutorial

Buildbot Documentation, Release 0.9.7

c['www'] = dict(port=8010,
plugins=dict(waterfall_view={}, console_view={}))

and append:

c['www']['authz'] = util.Authz(
allowRules = [

util.AnyEndpointMatcher(role="admins")
],
roleMatchers = [

util.RolesFromUsername(roles=['admins'], usernames=['Alice'])
]

)
c['www']['auth'] = util.UserPasswordAuth([('Alice','Password1')])

For more details, see Authentication plugins.

Debugging with Manhole

You can do some debugging by using manhole, an interactive Python shell. It exposes full access to the buildmaster’s
account (including the ability to modify and delete files), so it should not be enabled with a weak or easily guessable
password.

To use this you will need to install an additional package or two to your virtualenv:

cd
cd tmp/buildbot
source sandbox/bin/activate
pip install -U pip
pip install cryptography pyasn1

In your master.cfg find:

c = BuildmasterConfig = {}

Insert the following to enable debugging mode with manhole:

####### DEBUGGING
from buildbot import manhole
c['manhole'] = manhole.PasswordManhole("tcp:1234:interface=127.0.0.1","admin","passwd
→˓")

After restarting the master, you can ssh into the master and get an interactive Python shell:

ssh -p1234 admin@127.0.0.1
enter passwd at prompt

Note: The pyasn1-0.1.1 release has a bug which results in an exception similar to this on startup:

exceptions.TypeError: argument 2 must be long, not int

If you see this, the temporary solution is to install the previous version of pyasn1:

pip install pyasn1-0.0.13b

1.3. A Quick Tour 15

Buildbot Documentation, Release 0.9.7

If you wanted to check which workers are connected and what builders those workers are assigned to you could do:

>>> master.workers.workers
{'example-worker': <Worker 'example-worker', current builders: runtests>}

Objects can be explored in more depth using dir(x) or the helper function show(x).

Adding a ‘try’ scheduler

Buildbot includes a way for developers to submit patches for testing without committing them to the source code
control system. (This is really handy for projects that support several operating systems or architectures.)

To set this up, add the following lines to master.cfg:

from buildbot.scheduler import Try_Userpass
c['schedulers'] = []
c['schedulers'].append(Try_Userpass(

name='try',
builderNames=['runtests'],
port=5555,
userpass=[('sampleuser','samplepass')]))

Then you can submit changes using the try command.

Let’s try this out by making a one-line change to pyflakes, say, to make it trace the tree by default:

git clone git://github.com/buildbot/pyflakes.git pyflakes-git
cd pyflakes-git/pyflakes
$EDITOR checker.py
change "traceTree = False" on line 185 to "traceTree = True"

Then run buildbot’s try command as follows:

source ~/tmp/buildbot/sandbox/bin/activate
buildbot try --connect=pb --master=127.0.0.1:5555 --username=sampleuser --
→˓passwd=samplepass --vc=git

This will do git diff for you and send the resulting patch to the server for build and test against the latest sources
from Git.

Now go back to the waterfall (http://localhost:8010/waterfall) page, click on the runtests link, and scroll down. You
should see that another build has been started with your change (and stdout for the tests should be chock-full of parse
trees as a result). The “Reason” for the job will be listed as “‘try’ job”, and the blamelist will be empty.

To make yourself show up as the author of the change, use the --who=emailaddr option on buildbot try to
pass your email address.

To make a description of the change show up, use the --properties=comment="this is a comment"
option on buildbot try.

To use ssh instead of a private username/password database, see Try_Jobdir.

Further Reading

See the following user-contributed tutorials for other highlights and ideas:

16 Chapter 1. Buildbot Tutorial

http://localhost:8010/waterfall

Buildbot Documentation, Release 0.9.7

Buildbot in 5 minutes - a user-contributed tutorial

(Ok, maybe 10.)

Buildbot is really an excellent piece of software, however it can be a bit confusing for a newcomer (like me when I
first started looking at it). Typically, at first sight it looks like a bunch of complicated concepts that make no sense and
whose relationships with each other are unclear. After some time and some reread, it all slowly starts to be more and
more meaningful, until you finally say “oh!” and things start to make sense. Once you get there, you realize that the
documentation is great, but only if you already know what it’s about.

This is what happened to me, at least. Here I’m going to (try to) explain things in a way that would have helped me
more as a newcomer. The approach I’m taking is more or less the reverse of that used by the documentation, that is,
I’m going to start from the components that do the actual work (the builders) and go up the chain from there up to
change sources. I hope purists will forgive this unorthodoxy. Here I’m trying to clarify the concepts only, and will not
go into the details of each object or property; the documentation explains those quite well.

Installation

I won’t cover the installation; both Buildbot master and worker are available as packages for the major distributions,
and in any case the instructions in the official documentation are fine. This document will refer to Buildbot 0.8.5
which was current at the time of writing, but hopefully the concepts are not too different in other versions. All the
code shown is of course python code, and has to be included in the master.cfg master configuration file.

We won’t cover the basic things such as how to define the workers, project names, or other administrative information
that is contained in that file; for that, again the official documentation is fine.

Builders: the workhorses

Since Buildbot is a tool whose goal is the automation of software builds, it makes sense to me to start from where we
tell Buildbot how to build our software: the builder (or builders, since there can be more than one).

Simply put, a builder is an element that is in charge of performing some action or sequence of actions, normally
something related to building software (for example, checking out the source, or make all), but it can also run
arbitrary commands.

A builder is configured with a list of workers that it can use to carry out its task. The other fundamental piece of
information that a builder needs is, of course, the list of things it has to do (which will normally run on the chosen
worker). In Buildbot, this list of things is represented as a BuildFactory object, which is essentially a sequence of
steps, each one defining a certain operation or command.

Enough talk, let’s see an example. For this example, we are going to assume that our super software project can be
built using a simple make all, and there is another target make packages that creates rpm, deb and tgz packages
of the binaries. In the real world things are usually more complex (for example there may be a configure step, or
multiple targets), but the concepts are the same; it will just be a matter of adding more steps to a builder, or creating
multiple builders, although sometimes the resulting builders can be quite complex.

So to perform a manual build of our project we would type this from the command line (assuming we are at the root
of the local copy of the repository):

$ make clean # clean remnants of previous builds
...
$ svn update
...
$ make all
...
$ make packages
...

1.4. Further Reading 17

Buildbot Documentation, Release 0.9.7

optional but included in the example: copy packages to some central machine
$ scp packages/*.rpm packages/*.deb packages/*.tgz someuser@somehost:/repository
...

Here we’re assuming the repository is SVN, but again the concepts are the same with git, mercurial or any other VCS.

Now, to automate this, we create a builder where each step is one of the commands we typed above. A step can be
a shell command object, or a dedicated object that checks out the source code (there are various types for different
repositories, see the docs for more info), or yet something else:

from buildbot.plugins import steps, util

first, let's create the individual step objects

step 1: make clean; this fails if the worker has no local copy, but
is harmless and will only happen the first time
makeclean = steps.ShellCommand(name="make clean",

command=["make", "clean"],
description="make clean")

step 2: svn update (here updates trunk, see the docs for more
on how to update a branch, or make it more generic).
checkout = steps.SVN(baseURL='svn://myrepo/projects/coolproject/trunk',

mode="update",
username="foo",
password="bar",
haltOnFailure=True)

step 3: make all
makeall = steps.ShellCommand(name="make all",

command=["make", "all"],
haltOnFailure=True,
description="make all")

step 4: make packages
makepackages = steps.ShellCommand(name="make packages",

command=["make", "packages"],
haltOnFailure=True,
description="make packages")

step 5: upload packages to central server. This needs passwordless ssh
from the worker to the server (set it up in advance as part of worker setup)
uploadpackages = steps.ShellCommand(name="upload packages",

description="upload packages",
command="scp packages/*.rpm packages/*.deb

→˓packages/*.tgz someuser@somehost:/repository",
haltOnFailure=True)

create the build factory and add the steps to it
f_simplebuild = util.BuildFactory()
f_simplebuild.addStep(makeclean)
f_simplebuild.addStep(checkout)
f_simplebuild.addStep(makeall)
f_simplebuild.addStep(makepackages)
f_simplebuild.addStep(uploadpackages)

finally, declare the list of builders. In this case, we only have one builder
c['builders'] = [

18 Chapter 1. Buildbot Tutorial

Buildbot Documentation, Release 0.9.7

util.BuilderConfig(name="simplebuild", workernames=['worker1', 'worker2', 'worker3
→˓'], factory=f_simplebuild)
]

So our builder is called simplebuild and can run on either of worker1, worker2 and worker3. If our repos-
itory has other branches besides trunk, we could create another one or more builders to build them; in the example,
only the checkout step would be different, in that it would need to check out the specific branch. Depending on how
exactly those branches have to be built, the shell commands may be recycled, or new ones would have to be created if
they are different in the branch. You get the idea. The important thing is that all the builders be named differently and
all be added to the c['builders'] value (as can be seen above, it is a list of BuilderConfig objects).

Of course the type and number of steps will vary depending on the goal; for example, to just check that a commit
doesn’t break the build, we could include just up to the make all step. Or we could have a builder that performs
a more thorough test by also doing make test or other targets. You get the idea. Note that at each step except the
very first we use haltOnFailure=True because it would not make sense to execute a step if the previous one
failed (ok, it wouldn’t be needed for the last step, but it’s harmless and protects us if one day we add another step after
it).

Schedulers

Now this is all nice and dandy, but who tells the builder (or builders) to run, and when? This is the job of the scheduler,
which is a fancy name for an element that waits for some event to happen, and when it does, based on that information
decides whether and when to run a builder (and which one or ones). There can be more than one scheduler. I’m being
purposely vague here because the possibilities are almost endless and highly dependent on the actual setup, build
purposes, source repository layout and other elements.

So a scheduler needs to be configured with two main pieces of information: on one hand, which events to react to, and
on the other hand, which builder or builders to trigger when those events are detected. (It’s more complex than that,
but if you understand this, you can get the rest of the details from the docs).

A simple type of scheduler may be a periodic scheduler: when a configurable amount of time has passed, run a certain
builder (or builders). In our example, that’s how we would trigger a build every hour:

from buildbot.plugins import schedulers

define the periodic scheduler
hourlyscheduler = schedulers.Periodic(name="hourly",

builderNames=["simplebuild"],
periodicBuildTimer=3600)

define the available schedulers
c['schedulers'] = [hourlyscheduler]

That’s it. Every hour this hourly scheduler will run the simplebuild builder. If we have more than one builder
that we want to run every hour, we can just add them to the builderNames list when defining the scheduler
and they will all be run. Or since multiple scheduler are allowed, other schedulers can be defined and added to
c['schedulers'] in the same way.

Other types of schedulers exist; in particular, there are schedulers that can be more dynamic than the periodic one. The
typical dynamic scheduler is one that learns about changes in a source repository (generally because some developer
checks in some change), and triggers one or more builders in response to those changes. Let’s assume for now that the
scheduler “magically” learns about changes in the repository (more about this later); here’s how we would define it:

from buildbot.plugins import schedulers

define the dynamic scheduler

1.4. Further Reading 19

Buildbot Documentation, Release 0.9.7

trunkchanged = schedulers.SingleBranchScheduler(name="trunkchanged",
change_filter=util.

→˓ChangeFilter(branch=None),
treeStableTimer=300,
builderNames=["simplebuild"])

define the available schedulers
c['schedulers'] = [trunkchanged]

This scheduler receives changes happening to the repository, and among all of them, pays attention to those happening
in “trunk” (that’s what branch=None means). In other words, it filters the changes to react only to those it’s
interested in. When such changes are detected, and the tree has been quiet for 5 minutes (300 seconds), it runs the
simplebuild builder. The treeStableTimer helps in those situations where commits tend to happen in bursts,
which would otherwise result in multiple build requests queuing up.

What if we want to act on two branches (say, trunk and 7.2)? First we create two builders, one for each branch (see
the builders paragraph above), then we create two dynamic schedulers:

from buildbot.plugins import schedulers

define the dynamic scheduler for trunk
trunkchanged = schedulers.SingleBranchScheduler(name="trunkchanged",

change_filter=util.
→˓ChangeFilter(branch=None),

treeStableTimer=300,
builderNames=["simplebuild-trunk"])

define the dynamic scheduler for the 7.2 branch
branch72changed = schedulers.SingleBranchScheduler(name="branch72changed",

change_filter=util.
→˓ChangeFilter(branch='branches/7.2'),

treeStableTimer=300,
builderNames=["simplebuild-72"])

define the available schedulers
c['schedulers'] = [trunkchanged, branch72changed]

The syntax of the change filter is VCS-dependent (above is for SVN), but again once the idea is clear, the documenta-
tion has all the details. Another feature of the scheduler is that is can be told which changes, within those it’s paying
attention to, are important and which are not. For example, there may be a documentation directory in the branch the
scheduler is watching, but changes under that directory should not trigger a build of the binary. This finer filtering is
implemented by means of the fileIsImportant argument to the scheduler (full details in the docs and - alas - in
the sources).

Change sources

Earlier we said that a dynamic scheduler “magically” learns about changes; the final piece of the puzzle are change
sources, which are precisely the elements in Buildbot whose task is to detect changes in the repository and commu-
nicate them to the schedulers. Note that periodic schedulers don’t need a change source, since they only depend on
elapsed time; dynamic schedulers, on the other hand, do need a change source.

A change source is generally configured with information about a source repository (which is where changes happen);
a change source can watch changes at different levels in the hierarchy of the repository, so for example it is possible
to watch the whole repository or a subset of it, or just a single branch. This determines the extent of the information
that is passed down to the schedulers.

20 Chapter 1. Buildbot Tutorial

Buildbot Documentation, Release 0.9.7

There are many ways a change source can learn about changes; it can periodically poll the repository for changes, or
the VCS can be configured (for example through hook scripts triggered by commits) to push changes into the change
source. While these two methods are probably the most common, they are not the only possibilities; it is possible for
example to have a change source detect changes by parsing some email sent to a mailing list when a commit happens,
and yet other methods exist. The manual again has the details.

To complete our example, here’s a change source that polls a SVN repository every 2 minutes:

from buildbot.plugins import changes, util

svnpoller = changes.SVNPoller(repourl="svn://myrepo/projects/coolproject",
svnuser="foo",
svnpasswd="bar",
pollinterval=120,
split_file=util.svn.split_file_branches)

c['change_source'] = svnpoller

This poller watches the whole “coolproject” section of the repository, so it will detect changes in all the branches. We
could have said:

repourl = "svn://myrepo/projects/coolproject/trunk"

or:

repourl = "svn://myrepo/projects/coolproject/branches/7.2"

to watch only a specific branch.

To watch another project, you need to create another change source – and you need to filter changes by project. For
instance, when you add a change source watching project ‘superproject’ to the above example, you need to change:

trunkchanged = schedulers.SingleBranchScheduler(name="trunkchanged",
change_filter=filter.

→˓ChangeFilter(branch=None),
...
)

to e.g.:

trunkchanged = schedulers.SingleBranchScheduler(name="trunkchanged",
change_filter=filter.

→˓ChangeFilter(project="coolproject", branch=None),
...
)

else coolproject will be built when there’s a change in superproject.

Since we’re watching more than one branch, we need a method to tell in which branch the change occurred when we
detect one. This is what the split_file argument does, it takes a callable that Buildbot will call to do the job.
The split_file_branches function, which comes with Buildbot, is designed for exactly this purpose so that’s what the
example above uses.

And of course this is all SVN-specific, but there are pollers for all the popular VCSs.

But note: if you have many projects, branches, and builders it probably pays to not hardcode all the schedulers and
builders in the configuration, but generate them dynamically starting from list of all projects, branches, targets etc.
and using loops to generate all possible combinations (or only the needed ones, depending on the specific setup), as
explained in the documentation chapter about Customization.

1.4. Further Reading 21

Buildbot Documentation, Release 0.9.7

Status targets

Now that the basics are in place, let’s go back to the builders, which is where the real work happens. Status targets are
simply the means Buildbot uses to inform the world about what’s happening, that is, how builders are doing. There
are many status targets: a web interface, a mail notifier, an IRC notifier, and others. They are described fairly well in
the manual.

One thing I’ve found useful is the ability to pass a domain name as the lookup argument to a mailNotifier, which
allows you to take an unqualified username as it appears in the SVN change and create a valid email address by
appending the given domain name to it:

from buildbot.plugins import status

if jsmith commits a change, mail for the build is sent to jsmith@example.org
notifier = status.MailNotifier(fromaddr="buildbot@example.org",

sendToInterestedUsers=True,
lookup="example.org")

c['status'].append(notifier)

The mail notifier can be customized at will by means of the messageFormatter argument, which is a class that
Buildbot calls to format the body of the email, and to which it makes available lots of information about the build.
Here all the details.

Conclusion

Please note that this article has just scratched the surface; given the complexity of the task of build automation,
the possibilities are almost endless. So there’s much, much more to say about Buildbot. However, hopefully this
is a preparation step before reading the official manual. Had I found an explanation as the one above when I was
approaching Buildbot, I’d have had to read the manual just once, rather than multiple times. Hope this can help
someone else.

(Thanks to Davide Brini for permission to include this tutorial, derived from one he originally posted at http:
//backreference.org .)

This is the Buildbot manual for Buildbot version |version|.

22 Chapter 1. Buildbot Tutorial

http://backreference.org
http://backreference.org

CHAPTER 2

Buildbot Manual

Introduction

Buildbot is a system to automate the compile/test cycle required by most software projects to validate code changes. By
automatically rebuilding and testing the tree each time something has changed, build problems are pinpointed quickly,
before other developers are inconvenienced by the failure. The guilty developer can be identified and harassed without
human intervention. By running the builds on a variety of platforms, developers who do not have the facilities to test
their changes everywhere before checkin will at least know shortly afterwards whether they have broken the build or
not. Warning counts, lint checks, image size, compile time, and other build parameters can be tracked over time, are
more visible, and are therefore easier to improve.

The overall goal is to reduce tree breakage and provide a platform to run tests or code-quality checks that are too
annoying or pedantic for any human to waste their time with. Developers get immediate (and potentially public)
feedback about their changes, encouraging them to be more careful about testing before checkin.

Features:

• run builds on a variety of worker platforms

• arbitrary build process: handles projects using C, Python, whatever

• minimal host requirements: Python and Twisted

• workers can be behind a firewall if they can still do checkout

• status delivery through web page, email, IRC, other protocols

• track builds in progress, provide estimated completion time

• flexible configuration by subclassing generic build process classes

• debug tools to force a new build, submit fake Changes, query worker status

• released under the GPL (https://opensource.org/licenses/gpl-2.0.php)

23

https://opensource.org/licenses/gpl-2.0.php

Buildbot Documentation, Release 0.9.7

History and Philosophy

The Buildbot was inspired by a similar project built for a development team writing a cross-platform embedded system.
The various components of the project were supposed to compile and run on several flavors of unix (linux, solaris,
BSD), but individual developers had their own preferences and tended to stick to a single platform. From time to time,
incompatibilities would sneak in (some unix platforms want to use string.h, some prefer strings.h), and then
the tree would compile for some developers but not others. The buildbot was written to automate the human process of
walking into the office, updating a tree, compiling (and discovering the breakage), finding the developer at fault, and
complaining to them about the problem they had introduced. With multiple platforms it was difficult for developers to
do the right thing (compile their potential change on all platforms); the buildbot offered a way to help.

Another problem was when programmers would change the behavior of a library without warning its users, or change
internal aspects that other code was (unfortunately) depending upon. Adding unit tests to the codebase helps here: if
an application’s unit tests pass despite changes in the libraries it uses, you can have more confidence that the library
changes haven’t broken anything. Many developers complained that the unit tests were inconvenient or took too long
to run: having the buildbot run them reduces the developer’s workload to a minimum.

In general, having more visibility into the project is always good, and automation makes it easier for developers to do
the right thing. When everyone can see the status of the project, developers are encouraged to keep the tree in good
working order. Unit tests that aren’t run on a regular basis tend to suffer from bitrot just like code does: exercising
them on a regular basis helps to keep them functioning and useful.

The current version of the Buildbot is additionally targeted at distributed free-software projects, where resources and
platforms are only available when provided by interested volunteers. The workers are designed to require an absolute
minimum of configuration, reducing the effort a potential volunteer needs to expend to be able to contribute a new test
environment to the project. The goal is for anyone who wishes that a given project would run on their favorite platform
should be able to offer that project a worker, running on that platform, where they can verify that their portability code
works, and keeps working.

System Architecture

The Buildbot consists of a single buildmaster and one or more workers, connected in a star topology. The buildmaster
makes all decisions about what, when, and how to build. It sends commands to be run on the workers, which simply
execute the commands and return the results. (certain steps involve more local decision making, where the overhead
of sending a lot of commands back and forth would be inappropriate, but in general the buildmaster is responsible for
everything).

The buildmaster is usually fed Changes by some sort of version control system (Change Sources), which may cause
builds to be run. As the builds are performed, various status messages are produced, which are then sent to any
registered Reporters.

24 Chapter 2. Buildbot Manual

Buildbot Documentation, Release 0.9.7

The buildmaster is configured and maintained by the buildmaster admin, who is generally the project team member
responsible for build process issues. Each worker is maintained by a worker admin, who do not need to be quite as
involved. Generally workers are run by anyone who has an interest in seeing the project work well on their favorite
platform.

Worker Connections

The workers are typically run on a variety of separate machines, at least one per platform of interest. These machines
connect to the buildmaster over a TCP connection to a publically-visible port. As a result, the workers can live behind
a NAT box or similar firewalls, as long as they can get to buildmaster. The TCP connections are initiated by the worker
and accepted by the buildmaster, but commands and results travel both ways within this connection. The buildmaster
is always in charge, so all commands travel exclusively from the buildmaster to the worker.

To perform builds, the workers must typically obtain source code from a CVS/SVN/etc repository. Therefore they
must also be able to reach the repository. The buildmaster provides instructions for performing builds, but does not
provide the source code itself.

Buildmaster Architecture

The buildmaster consists of several pieces:

2.1. Introduction 25

Buildbot Documentation, Release 0.9.7

Change Sources Which create a Change object each time something is modified in the VC repository. Most
ChangeSources listen for messages from a hook script of some sort. Some sources actively poll the repository
on a regular basis. All Changes are fed to the schedulers.

Schedulers Which decide when builds should be performed. They collect Changes into BuildRequests, which
are then queued for delivery to Builders until a worker is available.

Builders Which control exactly how each build is performed (with a series of BuildSteps, configured in a
BuildFactory). Each Build is run on a single worker.

Status plugins Which deliver information about the build results through protocols like HTTP, mail, and IRC.

Each Builder is configured with a list of Workers that it will use for its builds. These workers are expected
to behave identically: the only reason to use multiple Workers for a single Builder is to provide a measure of
load-balancing.

Within a single Worker, each Builder creates its own WorkerForBuilder instance. These
WorkerForBuilders operate independently from each other. Each gets its own base directory to work in. It
is quite common to have many Builders sharing the same worker. For example, there might be two workers: one

26 Chapter 2. Buildbot Manual

Buildbot Documentation, Release 0.9.7

for i386, and a second for PowerPC. There may then be a pair of Builders that do a full compile/test run, one for
each architecture, and a lone Builder that creates snapshot source tarballs if the full builders complete successfully.
The full builders would each run on a single worker, whereas the tarball creation step might run on either worker (since
the platform doesn’t matter when creating source tarballs). In this case, the mapping would look like:

Builder(full-i386) -> Workers(worker-i386)
Builder(full-ppc) -> Workers(worker-ppc)
Builder(source-tarball) -> Workers(worker-i386, worker-ppc)

and each Worker would have two WorkerForBuilders inside it, one for a full builder, and a second for the
source-tarball builder.

Once a WorkerForBuilder is available, the Builder pulls one or more BuildRequests off its incoming
queue. (It may pull more than one if it determines that it can merge the requests together; for example, there may be
multiple requests to build the current HEAD revision). These requests are merged into a single Build instance, which
includes the SourceStamp that describes what exact version of the source code should be used for the build. The
Build is then randomly assigned to a free WorkerForBuilder and the build begins.

The behaviour when BuildRequests are merged can be customized, Collapsing Build Requests.

Status Delivery Architecture

The buildmaster maintains a central Status object, to which various status plugins are connected. Through this
Status object, a full hierarchy of build status objects can be obtained.

2.1. Introduction 27

Buildbot Documentation, Release 0.9.7

The configuration file controls which status plugins are active. Each status plugin gets a reference to the top-level
Status object. From there they can request information on each Builder, Build, Step, and LogFile. This
query-on-demand interface is used by the html.Waterfall plugin to create the main status page each time a web
browser hits the main URL.

The status plugins can also subscribe to hear about new Builds as they occur: this is used by the MailNotifier
to create new email messages for each recently-completed Build.

The Status object records the status of old builds on disk in the buildmaster’s base directory. This allows it to return
information about historical builds.

There are also status objects that correspond to Schedulers and Workers. These allow status plugins to report
information about upcoming builds, and the online/offline status of each worker.

28 Chapter 2. Buildbot Manual

Buildbot Documentation, Release 0.9.7

Control Flow

A day in the life of the buildbot:

• A developer commits some source code changes to the repository. A hook script or commit trigger of some
sort sends information about this change to the buildmaster through one of its configured Change Sources.
This notification might arrive via email, or over a network connection (either initiated by the buildmaster as it
subscribes to changes, or by the commit trigger as it pushes Changes towards the buildmaster). The Change
contains information about who made the change, what files were modified, which revision contains the change,
and any checkin comments.

• The buildmaster distributes this change to all of its configured schedulers. Any important changes cause the
tree-stable-timer to be started, and the Change is added to a list of those that will go into a new Build.
When the timer expires, a Build is started on each of a set of configured Builders, all compiling/testing the
same source code. Unless configured otherwise, all Builds run in parallel on the various workers.

• The Build consists of a series of Steps. Each Step causes some number of commands to be invoked on
the remote worker associated with that Builder. The first step is almost always to perform a checkout of
the appropriate revision from the same VC system that produced the Change. The rest generally perform a
compile and run unit tests. As each Step runs, the worker reports back command output and return status to
the buildmaster.

• As the Build runs, status messages like “Build Started”, “Step Started”, “Build Finished”, etc, are published
to a collection of Status Targets. One of these targets is usually the HTML Waterfall display, which shows
a chronological list of events, and summarizes the results of the most recent build at the top of each column.
Developers can periodically check this page to see how their changes have fared. If they see red, they know that
they’ve made a mistake and need to fix it. If they see green, they know that they’ve done their duty and don’t
need to worry about their change breaking anything.

• If a MailNotifier status target is active, the completion of a build will cause email to be sent to any devel-
opers whose Changes were incorporated into this Build. The MailNotifier can be configured to only
send mail upon failing builds, or for builds which have just transitioned from passing to failing. Other status
targets can provide similar real-time notification via different communication channels, like IRC.

Installation

Buildbot Components

Buildbot is shipped in two components: the buildmaster (called buildbot for legacy reasons) and the worker. The
worker component has far fewer requirements, and is more broadly compatible than the buildmaster. You will need
to carefully pick the environment in which to run your buildmaster, but the worker should be able to run just about
anywhere.

It is possible to install the buildmaster and worker on the same system, although for anything but the smallest installa-
tion this arrangement will not be very efficient.

Requirements

Common Requirements

At a bare minimum, you’ll need the following for both the buildmaster and a worker:

Python: https://www.python.org

2.2. Installation 29

https://www.python.org

Buildbot Documentation, Release 0.9.7

Buildbot master requires Python-2.7. Buildbot worker require Python-2.6, although Python-2.7 is recom-
mended.

Note: This should be a “normal” build of Python. Builds of Python with debugging enabled or other
unusual build parameters are likely to cause incorrect behavior.

Twisted: http://twistedmatrix.com

Buildbot requires Twisted-14.0.1 or later on the master, and Twisted-10.2.0 on the worker. In upcoming
versions of Buildbot, a newer Twisted will also be required on the worker. As always, the most recent
version is recommended. Note that Twisted requires ZopeInterface to be installed as well.

Future:

As part of ongoing (but as-yet incomplete) work to make Buildbot compatible with Python 3, the master
requires the future module.

Of course, your project’s build process will impose additional requirements on the workers. These hosts must have all
the tools necessary to compile and test your project’s source code.

Windows Support

Buildbot - both master and worker - runs well natively on Windows. The worker runs well on Cygwin, but because of
problems with SQLite on Cygwin, the master does not.

Buildbot’s windows testing is limited to the most recent Twisted and Python versions. For best results, use the most
recent available versions of these libraries on Windows.

Pywin32: http://sourceforge.net/projects/pywin32/

Twisted requires PyWin32 in order to spawn processes on Windows.

Buildmaster Requirements

Note that all of these requirements aside from SQLite can easily be installed from the Python package repository,
PyPI.

sqlite3: http://www.sqlite.org

Buildbot requires a database to store its state, and by default uses SQLite. Version 3.7.0 or higher is
recommended, although Buildbot will run down to 3.6.16 – at the risk of “Database is locked” errors. The
minimum version is 3.4.0, below which parallel database queries and schema introspection fail.

Please note that Python ships with sqlite3 by default since Python 2.6. Python2.6 for Windows ships with
sqlite 3.6.2, thus you will not be able to run buildbot with sqlite on Windows and Python 2.6.

If you configure a different database engine, then SQLite is not required. however note that Buildbot’s
own unit tests require SQLite.

Jinja2: http://jinja.pocoo.org/

Buildbot requires Jinja version 2.1 or higher.

Jinja2 is a general purpose templating language and is used by Buildbot to generate the HTML output.

SQLAlchemy: http://www.sqlalchemy.org/

Buildbot requires SQLAlchemy version 0.8.0 or higher. SQLAlchemy allows Buildbot to build database
schemas and queries for a wide variety of database systems.

30 Chapter 2. Buildbot Manual

http://twistedmatrix.com
http://sourceforge.net/projects/pywin32/
http://www.sqlite.org
http://jinja.pocoo.org/
http://www.sqlalchemy.org/

Buildbot Documentation, Release 0.9.7

SQLAlchemy-Migrate: https://sqlalchemy-migrate.readthedocs.io/en/latest/

Buildbot requires SQLAlchemy-Migrate version 0.9.0 or higher. Buildbot uses SQLAlchemy-Migrate to
manage schema upgrades from version to version.

Python-Dateutil: http://labix.org/python-dateutil

Buildbot requires Python-Dateutil in version 1.5 or higher (the last version to support Python-2.x). This
is a small, pure-Python library.

Autobahn:

The master requires Autobahn version 0.16.0 or higher with Python 2.7.

Installing the code

The Buildbot Packages

Buildbot comes in several parts: buildbot (the buildmaster), buildbot-worker (the worker),
buildbot-www, and several web plugins such as buildbot-waterfall-view.

The worker and buildmaster can be installed individually or together. The base web (buildbot.www) and web
plugins are required to run a master with a web interface (the common configuration).

Installation From PyPI

The preferred way to install Buildbot is using pip. For the master:

pip install buildbot

and for the worker:

pip install buildbot-worker

When using pip to install instead of distribution specific package manangers, e.g. via apt-get or ports, it is simpler
to choose exactly which version one wants to use. It may however be easier to install via distribution specific package
mangers but note that they may provide an earlier version than what is available via pip.

If you plan to use TLS or SSL in master configuration (e.g. to fetch resources over HTTPS using twisted.web.
client), you need to install Buildbot with tls extras:

pip install buildbot[tls]

Installation From Tarballs

Buildbot master and buildbot-worker are installed using the standard Python distutils
(http://docs.python.org/library/distutils.html) process. For either component, after unpacking the tarball, the
process is:

python setup.py build
python setup.py install

where the install step may need to be done as root. This will put the bulk of the code in somewhere like /usr/lib/
pythonx.y/site-packages/buildbot. It will also install the buildbot command-line tool in /usr/
bin/buildbot.

2.2. Installation 31

https://sqlalchemy-migrate.readthedocs.io/en/latest/
http://labix.org/python-dateutil
http://docs.python.org/library/distutils.html

Buildbot Documentation, Release 0.9.7

If the environment variable $NO_INSTALL_REQS is set to 1, then setup.py will not try to install Buildbot’s
requirements. This is usually only useful when building a Buildbot package.

To test this, shift to a different directory (like /tmp), and run:

buildbot --version
or
buildbot-worker --version

If it shows you the versions of Buildbot and Twisted, the install went ok. If it says “no such command” or it gets an
ImportError when it tries to load the libraries, then something went wrong. pydoc buildbot is another useful
diagnostic tool.

Windows users will find these files in other places. You will need to make sure that Python can find the libraries, and
will probably find it convenient to have buildbot on your PATH.

Installation in a Virtualenv

If you cannot or do not wish to install the buildbot into a site-wide location like /usr or /usr/local,
you can also install it into the account’s home directory or any other location using a tool like virtualenv
(http://pypi.python.org/pypi/virtualenv).

Running Buildbot’s Tests (optional)

If you wish, you can run the buildbot unit test suite. First, ensure you have the mock (http://pypi.python.org/pypi/mock)
Python module installed from PyPI. You must not be using a Python wheels packaged version of Buildbot or have
specified the bdist_wheel command when building. The test suite is not included with the PyPi packaged version.
This module is not required for ordinary Buildbot operation - only to run the tests. Note that this is not the same as the
Fedora mock package!

You can check with

python -mmock

Then, run the tests:

PYTHONPATH=. trial buildbot.test
or
PYTHONPATH=. trial buildbot_worker.test

Nothing should fail, although a few might be skipped.

If any of the tests fail for reasons other than a missing mock, you should stop and investigate the cause before
continuing the installation process, as it will probably be easier to track down the bug early. In most cases, the
problem is incorrectly installed Python modules or a badly configured PYTHONPATH. This may be a good time to
contact the Buildbot developers for help.

Upgrading to Nine

Upgrading a Buildbot instance from 0.8.x to 0.9.x may require a number of changes to the master configuration. Those
changes are summarized here. If you are starting fresh with 0.9.0 or later, you can safely skip this section.

First important note is that Buildbot does not support an upgrade of a 0.8.x instance to 0.9.x. Notably the build data
and logs will not be accessible anymore if you upgraded, thus the database migration scripts have been dropped.

32 Chapter 2. Buildbot Manual

http://pypi.python.org/pypi/virtualenv
http://pypi.python.org/pypi/mock

Buildbot Documentation, Release 0.9.7

You should not pip upgrade -U buildbot, but rather start from a clean virtualenv aside from your old master.
You can keep your old master instance to serve the old build status.

Buildbot is now composed of several Python packages and Javascript UI, and the easiest way to install it is to run the
following command within a virtualenv:

pip install 'buildbot[bundle]'

Config File Syntax

In preparation for compatibility with Python 3, Buildbot configuration files no longer allow the print statement:

print "foo"

To fix, simply enclose the print arguments in parentheses:

print("foo")

Plugins

Although plugin support was available in 0.8.12, its use is now highly recommended. Instead of importing modules
directly in master.cfg, import the plugin kind from buildbot.plugins:

from buildbot.plugins import steps

Then access the plugin itself as an attribute:

steps.SetProperty(..)

See Plugin Infrastructure in Buildbot for more information.

Web Status

The most prominent change is that the existing WebStatus class is now gone, replaced by the new www functionality.

Thus an html.WebStatus entry in c['status'] should be removed and replaced with configuration in
c['www']`. For example, replace:

from buildbot.status import html
c['status'].append(html.WebStatus(http_port=8010, allowForce=True)

with:

c['www'] = dict(port=8010,
plugins=dict(waterfall_view={},
console_view={}))

See www for more information.

Status Classes

Where in 0.8.x most of the data about a build was available synchronously, it must now be fetched dynamically using
the Data API. All classes under the Python package buildbot.status should be considered deprecated. Many

2.2. Installation 33

Buildbot Documentation, Release 0.9.7

have already been removed, and the remainder have limited functionality. Any custom code which refers to these
classes must be rewritten to use the Data API. Avoid the temptation to reach into the Buildbot source code to find other
useful-looking methods!

Common uses of the status API are:

• getBuild in a custom renderable

• MailNotifier message formatters (see below for upgrade hints)

• doIf functions on steps

Import paths for several classes under the buildbot.status package but which remain useful have changed. Most
of these are now available as plugins (see above), but for the remainder, consult the source code.

BuildRequest Merging

Buildbot 0.9.x has replaced the old concept of request merging (mergeRequests) with a more flexible request-
collapsing mechanism. See collapseRequests for more information.

Status Reporters

In fact, the whole c['status'] configuration parameter is gone.

Many of the status listeners used in the status hierarchy in 0.8.x have been replaced with “reporters” that are available
as buildbot plugins. However, note that not all status listeners have yet been ported. See the release notes for details.

Including the "status" key in the configuration object will cause a configuration error. All reporters should be
included in c['services'] as described in Reporters.

The available reporters as of 0.9.0 are

• MailNotifier

• IRC

• HttpStatusPush

• GerritStatusPush

• GitHubStatusPush (replaces buildbot.status.github.GitHubStatus)

See the reporter index for the full, current list.

A few notes on changes to the configuration of these reporters:

• MailNotifier argument messageFormatter should now be a buildbot.reporters.message.
MessageFormatter, due to the removal of the status classes (see above), such formatters must be re-
implemented using the Data API.

• MailNotifier argument previousBuildGetter is not supported anymore

• MailNotifier no longer forces SSL 3.0 when useTls is true.

• GerritStatusPush callbacks slightly changed signature, and include a master reference instead of a status
reference.

• GitHubStatusPush now accepts a context parameter to be passed to the GitHub Status API.

• buildbot.status.builder.Results and the constants buildbot.status.results.SUCCESS
should be imported from the buildbot.process.results module instead.

34 Chapter 2. Buildbot Manual

Buildbot Documentation, Release 0.9.7

Steps

Buildbot-0.8.9 introduced “new-style steps”, with an asynchronous run method. In the remaining 0.8.x releases, use
of new-style and old-style steps were supported side-by-side. In 0.9.x, old-style steps are emulated using a collection
of hacks to allow asynchronous calls to be called from synchronous code. This emulation is imperfect, and you are
strongly encouraged to rewrite any custom steps as New-Style Build Steps.

Note that new-style steps now “push” their status when it changes, so the describe method no longer exists.

Identifiers

Many strings in Buildbot must now be identifiers. Identifiers are designed to fit easily and unambiguously into URLs,
AMQP routes, and the like. An “identifier” is a nonempty unicode string of limited length, containing only ASCII
alphanumeric characters along with - (dash) and _ (underscore), and not beginning with a digit

Unfortunately, many existing names do not fit this pattern.

The following fields are identifiers:

• worker name (50-character)

• builder name (20-character)

• step name (50-character)

Serving static files

Since version 0.9.0 Buildbot doesn’t use and don’t serve master’s public_html directory. You need to use third-
party HTTP server for serving static files.

Transition to “worker” terminology

Since version 0.9.0 of Buildbot “slave”-based terminology is deprecated in favor of “worker”-based terminology.

All identifiers, messages and documentation were updated to use “worker” instead of “slave”. Old API names are still
available, but deprecated.

For details about changed API and how to control generated warnings see Transition to “worker” terminology.

Other Config Settings

The default master.cfg file contains some new changes, which you should look over:

• c['protocols'] = {'pb': {'port': 9989}} (the default port used by the workers)

• Waterfall View: requires installation (pip install buildbot-waterfall-view) and configuration
(c['www'] = { ..., 'plugins': {'waterfall_view': {} }).

Build History

There is no support for importing build history from 0.8.x (where the history was stored on-disk in pickle files) into
0.9.x (where it is stored in the database).

2.2. Installation 35

Buildbot Documentation, Release 0.9.7

Data LifeTime

Buildbot Nine data being implemented fully in an SQL database, the buildHorizon feature had to be reworked.
Instead of being number-of-things based, it is now time based. This makes more sense from a user perspective but
makes it harder to predict the database average size. Please be careful to provision enough disk space for your database.

The old c['logHorizon']way of configuring is not supported anymore. See JanitorConfigurator to learn
how to configure. A new __Janitor builder will be created to help keep an eye on the cleanup activities.

More Information

For minor changes not mentioned here, consult the release notes for the versions over which you are upgrading.

Buildbot-0.9.0 represents several years’ work, and as such we may have missed potential migration issues. To find the
latest “gotchas” and share with other users, see http://trac.buildbot.net/wiki/NineMigrationGuide.

Buildmaster Setup

Creating a buildmaster

As you learned earlier (System Architecture), the buildmaster runs on a central host (usually one that is publicly visible,
so everybody can check on the status of the project), and controls all aspects of the buildbot system

You will probably wish to create a separate user account for the buildmaster, perhaps named buildmaster. Do not
run the buildmaster as root!

You need to choose a directory for the buildmaster, called the basedir. This directory will be owned by the build-
master. It will contain configuration, the database, and status information - including logfiles. On a large buildmaster
this directory will see a lot of activity, so it should be on a disk with adequate space and speed.

Once you’ve picked a directory, use the buildbot create-master command to create the directory and populate
it with startup files:

buildbot create-master -r basedir

You will need to create a configuration file before starting the buildmaster. Most of the rest of this manual is dedicated
to explaining how to do this. A sample configuration file is placed in the working directory, named master.cfg.
sample, which can be copied to master.cfg and edited to suit your purposes.

(Internal details: This command creates a file named buildbot.tac that contains all the state necessary to create the
buildmaster. Twisted has a tool called twistd which can use this .tac file to create and launch a buildmaster instance.
Twistd takes care of logging and daemonization (running the program in the background). /usr/bin/buildbot
is a front end which runs twistd for you.)

Your master will need a database to store the various information about your builds, and its configuration. By default,
the sqlite3 backend will be used. This needs no configuration, neither extra software. All information will be
stored in the file state.sqlite. Buildbot however supports multiple backends. See Using A Database Server for
more options.

Buildmaster Options

This section lists options to the create-master command. You can also type buildbot create-master
--help for an up-to-the-moment summary.

--force
This option will allow to re-use an existing directory.

36 Chapter 2. Buildbot Manual

http://trac.buildbot.net/wiki/NineMigrationGuide

Buildbot Documentation, Release 0.9.7

--no-logrotate
This disables internal worker log management mechanism. With this option worker does not override the default
logfile name and its behaviour giving a possibility to control those with command-line options of twistd daemon.

--relocatable
This creates a “relocatable” buildbot.tac, which uses relative paths instead of absolute paths, so that the
buildmaster directory can be moved about.

--config
The name of the configuration file to use. This configuration file need not reside in the buildmaster directory.

--log-size
This is the size in bytes when to rotate the Twisted log files. The default is 10MiB.

--log-count
This is the number of log rotations to keep around. You can either specify a number or None to keep all
twistd.log files around. The default is 10.

--db
The database that the Buildmaster should use. Note that the same value must be added to the configuration file.

Upgrading an Existing Buildmaster

If you have just installed a new version of the Buildbot code, and you have buildmasters that were created using an
older version, you’ll need to upgrade these buildmasters before you can use them. The upgrade process adds and
modifies files in the buildmaster’s base directory to make it compatible with the new code.

buildbot upgrade-master basedir

This command will also scan your master.cfg file for incompatibilities (by loading it and printing any errors or
deprecation warnings that occur). Each buildbot release tries to be compatible with configurations that worked cleanly
(i.e. without deprecation warnings) on the previous release: any functions or classes that are to be removed will first
be deprecated in a release, to give you a chance to start using the replacement.

The upgrade-master command is idempotent. It is safe to run it multiple times. After each upgrade of the buildbot
code, you should use upgrade-master on all your buildmasters.

In general, Buildbot workers and masters can be upgraded independently, although some new features will not be
available, depending on the master and worker versions.

Beyond this general information, read all of the sections below that apply to versions through which you are upgrading.

Version-specific Notes

Upgrading from Buildbot-0.8.x to Buildbot-0.9.x

See Upgrading to Nine for a guide to upgrading from 0.8.x to 0.9.x

Upgrading a Buildmaster to Buildbot-0.7.6

The 0.7.6 release introduced the public_html/ directory, which contains index.html and other files served by
the WebStatus and Waterfall status displays. The upgrade-master command will create these files if they
do not already exist. It will not modify existing copies, but it will write a new copy in e.g. index.html.new if the
new version differs from the version that already exists.

2.2. Installation 37

Buildbot Documentation, Release 0.9.7

Upgrading a Buildmaster to Buildbot-0.8.0

Buildbot-0.8.0 introduces a database backend, which is SQLite by default. The upgrade-master command will
automatically create and populate this database with the changes the buildmaster has seen. Note that, as of this release,
build history is not contained in the database, and is thus not migrated.

Upgrading into a non-SQLite database

If you are not using sqlite, you will need to add an entry into your master.cfg to reflect the database version you
are using. The upgrade process does not edit your master.cfg for you. So something like:

for using mysql:
c['db_url'] = 'mysql://bbuser:<password>@localhost/buildbot'

Once the parameter has been added, invoke upgrade-master. This will extract the DB url from your configuration
file.

buildbot upgrade-master

See Database Specification for more options to specify a database.

Worker Setup

Creating a worker

Typically, you will be adding a worker to an existing buildmaster, to provide additional architecture coverage. The
buildbot administrator will give you several pieces of information necessary to connect to the buildmaster. You should
also be somewhat familiar with the project being tested, so you can troubleshoot build problems locally.

The buildbot exists to make sure that the project’s stated how to build it process actually works. To this end,
the worker should run in an environment just like that of your regular developers. Typically the project build process
is documented somewhere (README, INSTALL, etc), in a document that should mention all library dependencies and
contain a basic set of build instructions. This document will be useful as you configure the host and account in which
the worker runs.

Here’s a good checklist for setting up a worker:

1. Set up the account

It is recommended (although not mandatory) to set up a separate user account for the worker. This account
is frequently named buildbot or worker. This serves to isolate your personal working environment
from that of the worker’s, and helps to minimize the security threat posed by letting possibly-unknown
contributors run arbitrary code on your system. The account should have a minimum of fancy init scripts.

2. Install the buildbot code

Follow the instructions given earlier (Installing the code). If you use a separate worker account, and you
didn’t install the buildbot code to a shared location, then you will need to install it with --home=~ for
each account that needs it.

3. Set up the host

Make sure the host can actually reach the buildmaster. Usually the buildmaster is running a status web-
server on the same machine, so simply point your web browser at it and see if you can get there. Install
whatever additional packages or libraries the project’s INSTALL document advises. (or not: if your

38 Chapter 2. Buildbot Manual

Buildbot Documentation, Release 0.9.7

worker is supposed to make sure that building without optional libraries still works, then don’t install
those libraries.)

Again, these libraries don’t necessarily have to be installed to a site-wide shared location, but they must
be available to your build process. Accomplishing this is usually very specific to the build process, so
installing them to /usr or /usr/local is usually the best approach.

4. Test the build process

Follow the instructions in the INSTALL document, in the worker’s account. Perform a full CVS (or
whatever) checkout, configure, make, run tests, etc. Confirm that the build works without manual fussing.
If it doesn’t work when you do it by hand, it will be unlikely to work when the buildbot attempts to do it
in an automated fashion.

5. Choose a base directory

This should be somewhere in the worker’s account, typically named after the project which is being
tested. The worker will not touch any file outside of this directory. Something like ~/Buildbot or
~/Workers/fooproject is appropriate.

6. Get the buildmaster host/port, botname, and password

When the buildbot admin configures the buildmaster to accept and use your worker, they will provide you
with the following pieces of information:

• your worker’s name

• the password assigned to your worker

• the hostname and port number of the buildmaster, i.e. http://buildbot.example.org:8007

7. Create the worker

Now run the ‘worker’ command as follows:

buildbot-worker create-worker BASEDIR MASTERHOST:PORT
WORKERNAME PASSWORD

This will create the base directory and a collection of files inside, including the buildbot.tac file that
contains all the information you passed to the buildbot command.

8. Fill in the hostinfo files

When it first connects, the worker will send a few files up to the buildmaster which describe the host
that it is running on. These files are presented on the web status display so that developers have more
information to reproduce any test failures that are witnessed by the buildbot. There are sample files in the
info subdirectory of the buildbot’s base directory. You should edit these to correctly describe you and
your host.

BASEDIR/info/admin should contain your name and email address. This is the worker admin
address, and will be visible from the build status page (so you may wish to munge it a bit if address-
harvesting spambots are a concern).

BASEDIR/info/host should be filled with a brief description of the host: OS, version, memory size,
CPU speed, versions of relevant libraries installed, and finally the version of the buildbot code which is
running the worker.

The optional BASEDIR/info/access_uri can specify a URI which will connect a user to the ma-
chine. Many systems accept ssh://hostname URIs for this purpose.

If you run many workers, you may want to create a single ~worker/info file and share it among all
the workers with symlinks.

2.2. Installation 39

http://buildbot.example.org:8007

Buildbot Documentation, Release 0.9.7

Worker Options

There are a handful of options you might want to use when creating the worker with the buildbot-worker
create-worker <options> DIR <params> command. You can type buildbot-worker
create-worker --help for a summary. To use these, just include them on the buildbot-worker
create-worker command line, like this

buildbot-worker create-worker --umask=022 ~/worker buildmaster.example.org:42012
→˓{myworkername} {mypasswd}

--no-logrotate
This disables internal worker log management mechanism. With this option worker does not override the default
logfile name and its behaviour giving a possibility to control those with command-line options of twistd daemon.

--umask
This is a string (generally an octal representation of an integer) which will cause the worker process’ umask
value to be set shortly after initialization. The twistd daemonization utility forces the umask to 077 at startup
(which means that all files created by the worker or its child processes will be unreadable by any user other than
the worker account). If you want build products to be readable by other accounts, you can add --umask=022
to tell the worker to fix the umask after twistd clobbers it. If you want build products to be writable by other
accounts too, use --umask=000, but this is likely to be a security problem.

--keepalive
This is a number that indicates how frequently keepalive messages should be sent from the worker to the
buildmaster, expressed in seconds. The default (600) causes a message to be sent to the buildmaster at least once
every 10 minutes. To set this to a lower value, use e.g. --keepalive=120.

If the worker is behind a NAT box or stateful firewall, these messages may help to keep the connection alive:
some NAT boxes tend to forget about a connection if it has not been used in a while. When this happens, the
buildmaster will think that the worker has disappeared, and builds will time out. Meanwhile the worker will not
realize than anything is wrong.

--maxdelay
This is a number that indicates the maximum amount of time the worker will wait between connection attempts,
expressed in seconds. The default (300) causes the worker to wait at most 5 minutes before trying to connect to
the buildmaster again.

--log-size
This is the size in bytes when to rotate the Twisted log files.

--log-count
This is the number of log rotations to keep around. You can either specify a number or None to keep all
twistd.log files around. The default is 10.

--allow-shutdown
Can also be passed directly to the Worker constructor in buildbot.tac. If set, it allows the worker to initiate
a graceful shutdown, meaning that it will ask the master to shut down the worker when the current build, if any,
is complete.

Setting allow_shutdown to file will cause the worker to watch shutdown.stamp in basedir for updates to
its mtime. When the mtime changes, the worker will request a graceful shutdown from the master. The file does
not need to exist prior to starting the worker.

Setting allow_shutdown to signalwill set up a SIGHUP handler to start a graceful shutdown. When the signal
is received, the worker will request a graceful shutdown from the master.

The default value is None, in which case this feature will be disabled.

Both master and worker must be at least version 0.8.3 for this feature to work.

40 Chapter 2. Buildbot Manual

Buildbot Documentation, Release 0.9.7

Other Worker Configuration

unicode_encoding This represents the encoding that buildbot should use when converting unicode commandline
arguments into byte strings in order to pass to the operating system when spawning new processes.

The default value is what Python’s sys.getfilesystemencoding returns, which on Windows is ‘mbcs’,
on Mac OSX is ‘utf-8’, and on Unix depends on your locale settings.

If you need a different encoding, this can be changed in your worker’s buildbot.tac file by adding a
unicode_encoding argument to the Worker constructor.

s = Worker(buildmaster_host, port, workername, passwd, basedir,
keepalive, usepty, umask=umask, maxdelay=maxdelay,
unicode_encoding='utf-8', allow_shutdown='signal')

Upgrading an Existing Worker

Version-specific Notes

During project lifetime worker has transitioned over few states:

1. Before Buildbot version 0.8.1 worker were integral part of buildbot package distribution.

2. Starting from Buildbot version 0.8.1 worker were extracted from buildbot package to buildbot-slave
package.

3. Starting from Buildbot version 0.9.0 the buildbot-slave package was renamed to buildbot-worker.

Upgrading a Worker to buildbot-slave 0.8.1

Before Buildbot version 0.8.1, the Buildbot master and worker were part of the same distribution. As of version 0.8.1,
the worker is a separate distribution.

As of this release, you will need to install buildbot-slave to run a worker.

Any automatic startup scripts that had run buildbot start for previous versions should be changed to run
buildslave start instead.

If you are running a version later than 0.8.1, then you can skip the remainder of this section: the upgrade-slave
command will take care of this. If you are upgrading directly to 0.8.1, read on.

The existing buildbot.tac for any workers running older versions will need to be edited or replaced. If the loss
of cached worker state (e.g., for Source steps in copy mode) is not problematic, the easiest solution is to simply delete
the worker directory and re-run buildslave create-slave.

If deleting the worker directory is problematic, the change to buildbot.tac is simple. On line 3, replace:

from buildbot.slave.bot import BuildSlave

with:

from buildslave.bot import BuildSlave

After this change, the worker should start as usual.

2.2. Installation 41

Buildbot Documentation, Release 0.9.7

Upgrading from 0.8.1 to the latest 0.8.* version of buildbot-slave

If you have just installed a new version of Buildbot-slave, you may need to take some steps to upgrade it. If you are
upgrading to version 0.8.2 or later, you can run

buildslave upgrade-slave /path/to/worker/dir

Upgrading from the latest version of buildbot-slave to buildbot-worker

If the loss of cached worker state (e.g., for Source steps in copy mode) is not problematic, the easiest solution is to
simply delete the worker directory and re-run buildbot-worker create-worker.

If deleting the worker directory is problematic, you can change buildbot.tac in the following way:

1. Replace:

from buildslave.bot import BuildSlave

with:

from buildbot_worker.bot import Worker

2. Replace:

application = service.Application('buildslave')

with:

application = service.Application('buildbot-worker')

3. Replace:

s = BuildSlave(buildmaster_host, port, slavename, passwd, basedir,
keepalive, usepty, umask=umask, maxdelay=maxdelay,
numcpus=numcpus, allow_shutdown=allow_shutdown)

with:

s = Worker(buildmaster_host, port, slavename, passwd, basedir,
keepalive, umask=umask, maxdelay=maxdelay,
numcpus=numcpus, allow_shutdown=allow_shutdown)

See Transition to “Worker” Terminology for details of changes in version Buildbot 0.9.0.

Next Steps

Launching the daemons

Both the buildmaster and the worker run as daemon programs. To launch them, pass the working directory to the
buildbot and buildbot-worker commands, as appropriate:

start a master
buildbot start [BASEDIR]
start a worker
buildbot-worker start [WORKER_BASEDIR]

42 Chapter 2. Buildbot Manual

Buildbot Documentation, Release 0.9.7

The BASEDIR is option and can be omitted if the current directory contains the buildbot configuration (the
buildbot.tac file).

buildbot start

This command will start the daemon and then return, so normally it will not produce any output. To verify that the
programs are indeed running, look for a pair of files named twistd.log and twistd.pid that should be created
in the working directory. twistd.pid contains the process ID of the newly-spawned daemon.

When the worker connects to the buildmaster, new directories will start appearing in its base directory. The buildmaster
tells the worker to create a directory for each Builder which will be using that worker. All build operations are
performed within these directories: CVS checkouts, compiles, and tests.

Once you get everything running, you will want to arrange for the buildbot daemons to be started at boot time. One
way is to use cron, by putting them in a @reboot crontab entry1

@reboot buildbot start [BASEDIR]

When you run crontab to set this up, remember to do it as the buildmaster or worker account! If you add this to
your crontab when running as your regular account (or worse yet, root), then the daemon will run as the wrong user,
quite possibly as one with more authority than you intended to provide.

It is important to remember that the environment provided to cron jobs and init scripts can be quite different that your
normal runtime. There may be fewer environment variables specified, and the PATH may be shorter than usual. It is a
good idea to test out this method of launching the worker by using a cron job with a time in the near future, with the
same command, and then check twistd.log to make sure the worker actually started correctly. Common problems
here are for /usr/local or ~/bin to not be on your PATH, or for PYTHONPATH to not be set correctly. Sometimes
HOME is messed up too.

Some distributions may include conveniences to make starting buildbot at boot time easy. For instance, with the
default buildbot package in Debian-based distributions, you may only need to modify /etc/default/buildbot
(see also /etc/init.d/buildbot, which reads the configuration in /etc/default/buildbot).

Buildbot also comes with its own init scripts that provide support for controlling multi-worker and multi-master setups
(mostly because they are based on the init script from the Debian package). With a little modification these scripts can
be used both on Debian and RHEL-based distributions and may thus prove helpful to package maintainers who are
working on buildbot (or those that haven’t yet split buildbot into master and worker packages).

install as /etc/default/buildbot-worker
or /etc/sysconfig/buildbot-worker
worker/contrib/init-scripts/buildbot-worker.default

install as /etc/default/buildmaster
or /etc/sysconfig/buildmaster
master/contrib/init-scripts/buildmaster.default

install as /etc/init.d/buildbot-worker
worker/contrib/init-scripts/buildbot-worker.init.sh

install as /etc/init.d/buildmaster
master/contrib/init-scripts/buildmaster.init.sh

... and tell sysvinit about them
chkconfig buildmaster reset
... or
update-rc.d buildmaster defaults

1 This @reboot syntax is understood by Vixie cron, which is the flavor usually provided with Linux systems. Other unices may have a cron
that doesn’t understand @reboot

2.2. Installation 43

Buildbot Documentation, Release 0.9.7

Logfiles

While a buildbot daemon runs, it emits text to a logfile, named twistd.log. A command like tail -f twistd.
log is useful to watch the command output as it runs.

The buildmaster will announce any errors with its configuration file in the logfile, so it is a good idea to look at the log
at startup time to check for any problems. Most buildmaster activities will cause lines to be added to the log.

Shutdown

To stop a buildmaster or worker manually, use:

buildbot stop [BASEDIR]
or
buildbot-worker stop [WORKER_BASEDIR]

This simply looks for the twistd.pid file and kills whatever process is identified within.

At system shutdown, all processes are sent a SIGKILL. The buildmaster and worker will respond to this by shutting
down normally.

The buildmaster will respond to a SIGHUP by re-reading its config file. Of course, this only works on Unix-like
systems with signal support, and won’t work on Windows. The following shortcut is available:

buildbot reconfig [BASEDIR]

When you update the Buildbot code to a new release, you will need to restart the buildmaster and/or worker be-
fore it can take advantage of the new code. You can do a buildbot stop BASEDIR and buildbot start
BASEDIR in quick succession, or you can use the restart shortcut, which does both steps for you:

buildbot restart [BASEDIR]

Workers can similarly be restarted with:

buildbot-worker restart [BASEDIR]

There are certain configuration changes that are not handled cleanly by buildbot reconfig. If this occurs,
buildbot restart is a more robust tool to fully switch over to the new configuration.

buildbot restart may also be used to start a stopped Buildbot instance. This behaviour is useful when writing
scripts that stop, start and restart Buildbot.

A worker may also be gracefully shutdown from the web UI. This is useful to shutdown a worker without interrupting
any current builds. The buildmaster will wait until the worker is finished all its current builds, and will then tell the
worker to shutdown.

Concepts

This chapter defines some of the basic concepts that the Buildbot uses. You’ll need to understand how the Buildbot
sees the world to configure it properly.

Source Stamps

Source code comes from repositories, provided by version control systems. Repositories are generally identified by
URLs, e.g., git://github.com/buildbot/buildbot.git.

44 Chapter 2. Buildbot Manual

Buildbot Documentation, Release 0.9.7

In these days of distributed version control systems, the same codebase may appear in multiple repositories.
For example, https://github.com/mozilla/mozilla-central and http://hg.mozilla.org/
mozilla-release both contain the Firefox codebase, although not exactly the same code.

Many projects are built from multiple codebases. For example, a company may build several applications based on the
same core library. The “app” codebase and the “core” codebase are in separate repositories, but are compiled together
and constitute a single project. Changes to either codebase should cause a rebuild of the application.

Most version control systems define some sort of revision that can be used (sometimes in combination with a branch)
to uniquely specify a particular version of the source code.

To build a project, Buildbot needs to know exactly which version of each codebase it should build. It uses a source
stamp to do so for each codebase; the collection of sourcestamps required for a project is called a source stamp set.

Version Control Systems

Buildbot supports a significant number of version control systems, so it treats them abstractly.

For purposes of deciding when to perform builds, Buildbot’s change sources monitor repositories, and represent any
updates to those repositories as changes. These change sources fall broadly into two categories: pollers which period-
ically check the repository for updates; and hooks, where the repository is configured to notify Buildbot whenever an
update occurs.

This concept does not map perfectly to every version control system. For example, for CVS Buildbot must guess that
version updates made to multiple files within a short time represent a single change; for DVCS’s like Git, Buildbot
records a change when a commit is pushed to the monitored repository, not when it is initially committed. We assume
that the Changes arrive at the master in the same order in which they are committed to the repository.

When it comes time to actually perform a build, a scheduler prepares a source stamp set, as described above, based
on its configuration. When the build begins, one or more source steps use the information in the source stamp set to
actually check out the source code, using the normal VCS commands.

Tree Stability

Changes tend to arrive at a buildmaster in bursts. In many cases, these bursts of changes are meant to be taken together.
For example, a developer may have pushed multiple commits to a DVCS that comprise the same new feature or bugfix.
To avoid trying to build every change, Buildbot supports the notion of tree stability, by waiting for a burst of changes
to finish before starting to schedule builds. This is implemented as a timer, with builds not scheduled until no changes
have occurred for the duration of the timer.

How Different VC Systems Specify Sources

For CVS, the static specifications are repository and module. In addition to those, each build uses a timestamp (or
omits the timestamp to mean the latest) and branch tag (which defaults to HEAD). These parameters collectively
specify a set of sources from which a build may be performed.

Subversion (http://subversion.tigris.org), combines the repository, module, and branch into a single Subversion URL
parameter. Within that scope, source checkouts can be specified by a numeric revision number (a repository-wide
monotonically-increasing marker, such that each transaction that changes the repository is indexed by a different revi-
sion number), or a revision timestamp. When branches are used, the repository and module form a static baseURL,
while each build has a revision number and a branch (which defaults to a statically-specified defaultBranch). The
baseURL and branch are simply concatenated together to derive the repourl to use for the checkout.

Perforce (http://www.perforce.com/) is similar. The server is specified through a P4PORT parameter. Module and
branch are specified in a single depot path, and revisions are depot-wide. When branches are used, the p4base and
defaultBranch are concatenated together to produce the depot path.

2.3. Concepts 45

http://subversion.tigris.org
http://www.perforce.com/

Buildbot Documentation, Release 0.9.7

Bzr (http://bazaar-vcs.org) (which is a descendant of Arch/Bazaar, and is frequently referred to as “Bazaar”) has the
same sort of repository-vs-workspace model as Arch, but the repository data can either be stored inside the working
directory or kept elsewhere (either on the same machine or on an entirely different machine). For the purposes of
Buildbot (which never commits changes), the repository is specified with a URL and a revision number.

The most common way to obtain read-only access to a bzr tree is via HTTP, simply by making the repository visible
through a web server like Apache. Bzr can also use FTP and SFTP servers, if the worker process has sufficient
privileges to access them. Higher performance can be obtained by running a special Bazaar-specific server. None
of these matter to the buildbot: the repository URL just has to match the kind of server being used. The repoURL
argument provides the location of the repository.

Branches are expressed as subdirectories of the main central repository, which means that if branches are being used,
the BZR step is given a baseURL and defaultBranch instead of getting the repoURL argument.

Darcs (http://darcs.net/) doesn’t really have the notion of a single master repository. Nor does it really have branches.
In Darcs, each working directory is also a repository, and there are operations to push and pull patches from one of
these repositories to another. For the Buildbot’s purposes, all you need to do is specify the URL of a repository
that you want to build from. The worker will then pull the latest patches from that repository and build them. Multiple
branches are implemented by using multiple repositories (possibly living on the same server).

Builders which use Darcs therefore have a static repourl which specifies the location of the repository. If branches
are being used, the source Step is instead configured with a baseURL and a defaultBranch, and the two strings
are simply concatenated together to obtain the repository’s URL. Each build then has a specific branch which replaces
defaultBranch, or just uses the default one. Instead of a revision number, each build can have a context,
which is a string that records all the patches that are present in a given tree (this is the output of darcs changes
--context, and is considerably less concise than, e.g. Subversion’s revision number, but the patch-reordering
flexibility of Darcs makes it impossible to provide a shorter useful specification).

Mercurial (https://www.mercurial-scm.org/) is like Darcs, in that each branch is stored in a separate repository. The
repourl, baseURL, and defaultBranch arguments are all handled the same way as with Darcs. The revision,
however, is the hash identifier returned by hg identify.

Git (http://git.or.cz/) also follows a decentralized model, and each repository can have several branches and tags. The
source Step is configured with a static repourlwhich specifies the location of the repository. In addition, an optional
branch parameter can be specified to check out code from a specific branch instead of the default master branch.
The revision is specified as a SHA1 hash as returned by e.g. git rev-parse. No attempt is made to ensure that
the specified revision is actually a subset of the specified branch.

Monotone (http://www.monotone.ca/) is another that follows a decentralized model where each repository can have
several branches and tags. The source Step is configured with static repourl and branch parameters, which
specifies the location of the repository and the branch to use. The revision is specified as a SHA1 hash as returned by
e.g. mtn automate select w:. No attempt is made to ensure that the specified revision is actually a subset of
the specified branch.

Changes

Who

Each Change has a who attribute, which specifies which developer is responsible for the change. This is a string
which comes from a namespace controlled by the VC repository. Frequently this means it is a username on the host
which runs the repository, but not all VC systems require this. Each StatusNotifier will map the who attribute
into something appropriate for their particular means of communication: an email address, an IRC handle, etc.

This who attribute is also parsed and stored into Buildbot’s database (see User Objects). Currently, only who attributes
in Changes from git repositories are translated into user objects, but in the future all incoming Changes will have
their who parsed and stored.

46 Chapter 2. Buildbot Manual

http://bazaar-vcs.org
http://darcs.net/
https://www.mercurial-scm.org/
http://git.or.cz/
http://www.monotone.ca/

Buildbot Documentation, Release 0.9.7

Files

It also has a list of files, which are just the tree-relative filenames of any files that were added, deleted, or modified
for this Change. These filenames are used by the fileIsImportant function (in the scheduler) to decide whether
it is worth triggering a new build or not, e.g. the function could use the following function to only run a build if a C
file were checked in:

def has_C_files(change):
for name in change.files:

if name.endswith(".c"):
return True

return False

Certain BuildSteps can also use the list of changed files to run a more targeted series of tests, e.g. the
python_twisted.Trial step can run just the unit tests that provide coverage for the modified .py files instead of
running the full test suite.

Comments

The Change also has a comments attribute, which is a string containing any checkin comments.

Project

The project attribute of a change or source stamp describes the project to which it corresponds, as a short human-
readable string. This is useful in cases where multiple independent projects are built on the same buildmaster. In such
cases, it can be used to control which builds are scheduled for a given commit, and to limit status displays to only one
project.

Repository

This attribute specifies the repository in which this change occurred. In the case of DVCS’s, this information may
be required to check out the committed source code. However, using the repository from a change has security risks:
if Buildbot is configured to blindly trust this information, then it may easily be tricked into building arbitrary source
code, potentially compromising the workers and the integrity of subsequent builds.

Codebase

This attribute specifies the codebase to which this change was made. As described above, multiple repositories may
contain the same codebase. A change’s codebase is usually determined by the codebaseGenerator configuration.
By default the codebase is ‘’; this value is used automatically for single-codebase configurations.

Revision

Each Change can have a revision attribute, which describes how to get a tree with a specific state: a tree which
includes this Change (and all that came before it) but none that come after it. If this information is unavailable, the
revision attribute will be None. These revisions are provided by the ChangeSource.

Revisions are always strings.

CVS revision is the seconds since the epoch as an integer.

SVN revision is the revision number

2.3. Concepts 47

Buildbot Documentation, Release 0.9.7

Darcs revision is a large string, the output of darcs changes --context

Mercurial revision is a short string (a hash ID), the output of hg identify

P4 revision is the transaction number

Git revision is a short string (a SHA1 hash), the output of e.g. git rev-parse

Branches

The Change might also have a branch attribute. This indicates that all of the Change’s files are in the same named
branch. The schedulers get to decide whether the branch should be built or not.

For VC systems like CVS, Git and Monotone the branch name is unrelated to the filename. (That is, the branch name
and the filename inhabit unrelated namespaces.) For SVN, branches are expressed as subdirectories of the repository,
so the file’s repourl is a combination of some base URL, the branch name, and the filename within the branch. (In
a sense, the branch name and the filename inhabit the same namespace.) Darcs branches are subdirectories of a base
URL just like SVN. Mercurial branches are the same as Darcs.

CVS branch=’warner-newfeature’, files=[’src/foo.c’]

SVN branch=’branches/warner-newfeature’, files=[’src/foo.c’]

Darcs branch=’warner-newfeature’, files=[’src/foo.c’]

Mercurial branch=’warner-newfeature’, files=[’src/foo.c’]

Git branch=’warner-newfeature’, files=[’src/foo.c’]

Monotone branch=’warner-newfeature’, files=[’src/foo.c’]

Change Properties

A Change may have one or more properties attached to it, usually specified through the Force Build form or
sendchange. Properties are discussed in detail in the Build Properties section.

Scheduling Builds

Each Buildmaster has a set of scheduler objects, each of which gets a copy of every incoming Change. The Schedulers
are responsible for deciding when Builds should be run. Some Buildbot installations might have a single scheduler,
while others may have several, each for a different purpose.

For example, a quick scheduler might exist to give immediate feedback to developers, hoping to catch obvious prob-
lems in the code that can be detected quickly. These typically do not run the full test suite, nor do they run on a wide
variety of platforms. They also usually do a VC update rather than performing a brand-new checkout each time.

A separate full scheduler might run more comprehensive tests, to catch more subtle problems. configured to run after
the quick scheduler, to give developers time to commit fixes to bugs caught by the quick scheduler before running the
comprehensive tests. This scheduler would also feed multiple Builders.

Many schedulers can be configured to wait a while after seeing a source-code change - this is the tree stable timer.
The timer allows multiple commits to be “batched” together. This is particularly useful in distributed version control
systems, where a developer may push a long sequence of changes all at once. To save resources, it’s often desirable
only to test the most recent change.

Schedulers can also filter out the changes they are interested in, based on a number of criteria. For example, a scheduler
that only builds documentation might skip any changes that do not affect the documentation. Schedulers can also filter
on the branch to which a commit was made.

48 Chapter 2. Buildbot Manual

Buildbot Documentation, Release 0.9.7

There is some support for configuring dependencies between builds - for example, you may want to build packages
only for revisions which pass all of the unit tests. This support is under active development in Buildbot, and is referred
to as “build coordination”.

Periodic builds (those which are run every N seconds rather than after new Changes arrive) are triggered by a special
Periodic scheduler.

Each scheduler creates and submits BuildSet objects to the BuildMaster, which is then responsible for making
sure the individual BuildRequests are delivered to the target Builders.

Scheduler instances are activated by placing them in the schedulers list in the buildmaster config file. Each
scheduler must have a unique name.

BuildSets

A BuildSet is the name given to a set of Builds that all compile/test the same version of the tree on multiple
Builders. In general, all these component Builds will perform the same sequence of Steps, using the same
source code, but on different platforms or against a different set of libraries.

The BuildSet is tracked as a single unit, which fails if any of the component Builds have failed, and therefore can
succeed only if all of the component Builds have succeeded. There are two kinds of status notification messages that
can be emitted for a BuildSet: the firstFailure type (which fires as soon as we know the BuildSet will
fail), and the Finished type (which fires once the BuildSet has completely finished, regardless of whether the
overall set passed or failed).

A BuildSet is created with set of one or more source stamp tuples of (branch, revision, changes,
patch), some of which may be None, and a list of Builders on which it is to be run. They are then given to the
BuildMaster, which is responsible for creating a separate BuildRequest for each Builder.

There are a couple of different likely values for the SourceStamp:

(revision=None, changes=CHANGES, patch=None) This is a SourceStamp used when a series of
Changes have triggered a build. The VC step will attempt to check out a tree that contains CHANGES (and
any changes that occurred before CHANGES, but not any that occurred after them.)

(revision=None, changes=None, patch=None) This builds the most recent code on the default branch.
This is the sort of SourceStamp that would be used on a Build that was triggered by a user request, or a
Periodic scheduler. It is also possible to configure the VC Source Step to always check out the latest sources
rather than paying attention to the Changes in the SourceStamp, which will result in same behavior as this.

(branch=BRANCH, revision=None, changes=None, patch=None) This builds the most recent code
on the given BRANCH. Again, this is generally triggered by a user request or a Periodic scheduler.

(revision=REV, changes=None, patch=(LEVEL, DIFF, SUBDIR_ROOT)) This checks out the
tree at the given revision REV, then applies a patch (using patch -pLEVEL <DIFF) from inside the rel-
ative directory SUBDIR_ROOT. Item SUBDIR_ROOT is optional and defaults to the builder working directory.
The try command creates this kind of SourceStamp. If patch is None, the patching step is bypassed.

The buildmaster is responsible for turning the BuildSet into a set of BuildRequest objects and queueing them
on the appropriate Builders.

BuildRequests

A BuildRequest is a request to build a specific set of source code (specified by one ore more source stamps)
on a single Builder. Each Builder runs the BuildRequest as soon as it can (i.e. when an associated worker
becomes free). BuildRequests are prioritized from oldest to newest, so when a worker becomes free, the Builder
with the oldest BuildRequest is run.

2.3. Concepts 49

Buildbot Documentation, Release 0.9.7

The BuildRequest contains one SourceStamp specification per codebase. The actual process of running the
build (the series of Steps that will be executed) is implemented by the Build object. In the future this might be
changed, to have the Build define what gets built, and a separate BuildProcess (provided by the Builder) to
define how it gets built.

The BuildRequest may be mergeable with other compatible BuildRequests. Builds that are triggered by
incoming Changes will generally be mergeable. Builds that are triggered by user requests are generally not, unless
they are multiple requests to build the latest sources of the same branch. A merge of buildrequests is performed per
codebase, thus on changes having the same codebase.

Builders

The Buildmaster runs a collection of Builders, each of which handles a single type of build (e.g. full versus quick),
on one or more workers. Builders serve as a kind of queue for a particular type of build. Each Builder gets a
separate column in the waterfall display. In general, each Builder runs independently (although various kinds of
interlocks can cause one Builder to have an effect on another).

Each builder is a long-lived object which controls a sequence of Builds. Each Builder is created when the config
file is first parsed, and lives forever (or rather until it is removed from the config file). It mediates the connections to
the workers that do all the work, and is responsible for creating the Build objects - Builds.

Each builder gets a unique name, and the path name of a directory where it gets to do all its work (there is a buildmaster-
side directory for keeping status information, as well as a worker-side directory where the actual checkout/compile/test
commands are executed).

Build Factories

A builder also has a BuildFactory, which is responsible for creating new Build instances: because the Build
instance is what actually performs each build, choosing the BuildFactory is the way to specify what happens each
time a build is done (Builds).

Workers

Each builder is associated with one of more Workers. A builder which is used to perform Mac OS X builds (as
opposed to Linux or Solaris builds) should naturally be associated with a Mac worker.

If multiple workers are available for any given builder, you will have some measure of redundancy: in case one
worker goes offline, the others can still keep the Builder working. In addition, multiple workers will allow multiple
simultaneous builds for the same Builder, which might be useful if you have a lot of forced or try builds taking
place.

If you use this feature, it is important to make sure that the workers are all, in fact, capable of running the given build.
The worker hosts should be configured similarly, otherwise you will spend a lot of time trying (unsuccessfully) to
reproduce a failure that only occurs on some of the workers and not the others. Different platforms, operating systems,
versions of major programs or libraries, all these things mean you should use separate Builders.

Builds

A build is a single compile or test run of a particular version of the source code, and is comprised of a series of steps. It
is ultimately up to you what constitutes a build, but for compiled software it is generally the checkout, configure, make,
and make check sequence. For interpreted projects like Python modules, a build is generally a checkout followed by
an invocation of the bundled test suite.

50 Chapter 2. Buildbot Manual

Buildbot Documentation, Release 0.9.7

A BuildFactory describes the steps a build will perform. The builder which starts a build uses its configured build
factory to determine the build’s steps.

Users

Buildbot has a somewhat limited awareness of users. It assumes the world consists of a set of developers, each of
whom can be described by a couple of simple attributes. These developers make changes to the source code, causing
builds which may succeed or fail.

Users also may have different levels of authorization when issuing Buildbot commands, such as forcing a build from
the web interface or from an IRC channel.

Each developer is primarily known through the source control system. Each Change object that arrives is tagged with
a who field that typically gives the account name (on the repository machine) of the user responsible for that change.
This string is displayed on the HTML status pages and in each Build‘s blamelist.

To do more with the User than just refer to them, this username needs to be mapped into an address of some sort. The
responsibility for this mapping is left up to the status module which needs the address. In the future, the responsibility
for managing users will be transferred to User Objects.

The who fields in git Changes are used to create User Objects, which allows for more control and flexibility in how
Buildbot manages users.

User Objects

User Objects allow Buildbot to better manage users throughout its various interactions with users (see Change Sources
and Reporters). The User Objects are stored in the Buildbot database and correlate the various attributes that a user
might have: irc, Git, etc.

Changes

Incoming Changes all have a who attribute attached to them that specifies which developer is responsible for that
Change. When a Change is first rendered, the who attribute is parsed and added to the database if it doesn’t exist or
checked against an existing user. The who attribute is formatted in different ways depending on the version control
system that the Change came from.

git who attributes take the form Full Name <Email>.

svn who attributes are of the form Username.

hg who attributes are free-form strings, but usually adhere to similar conventions as git attributes (Full Name
<Email>).

cvs who attributes are of the form Username.

darcs who attributes contain an Email and may also include a Full Name like git attributes.

bzr who attributes are free-form strings like hg, and can include a Username, Email, and/or Full Name.

Tools

For managing users manually, use the buildbot user command, which allows you to add, remove, update, and
show various attributes of users in the Buildbot database (see Command-line Tool).

2.3. Concepts 51

Buildbot Documentation, Release 0.9.7

Uses

Correlating the various bits and pieces that Buildbot views as users also means that one attribute of a user can be
translated into another. This provides a more complete view of users throughout Buildbot.

One such use is being able to find email addresses based on a set of Builds to notify users through the
MailNotifier. This process is explained more clearly in Email Addresses.

Another way to utilize User Objects is through UsersAuth for web authentication. To use UsersAuth, you need to set
a bb_username and bb_password via the buildbot user command line tool to check against. The password will
be encrypted before storing in the database along with other user attributes.

Doing Things With Users

Each change has a single user who is responsible for it. Most builds have a set of changes: the build generally
represents the first time these changes have been built and tested by the Buildbot. The build has a blamelist that is the
union of the users responsible for all the build’s changes. If the build was created by a Try Schedulers this list will
include the submitter of the try job, if known.

The build provides a list of users who are interested in the build – the interested users. Usually this is equal to the
blamelist, but may also be expanded, e.g., to include the current build sherrif or a module’s maintainer.

If desired, the buildbot can notify the interested users until the problem is resolved.

Email Addresses

The MailNotifier is a status target which can send email about the results of each build. It accepts a static list of
email addresses to which each message should be delivered, but it can also be configured to send mail to the Build‘s
Interested Users. To do this, it needs a way to convert User names into email addresses.

For many VC systems, the User Name is actually an account name on the system which hosts the repository. As such,
turning the name into an email address is a simple matter of appending @repositoryhost.com. Some projects
use other kinds of mappings (for example the preferred email address may be at project.org despite the repository
host being named cvs.project.org), and some VC systems have full separation between the concept of a user
and that of an account on the repository host (like Perforce). Some systems (like Git) put a full contact email address
in every change.

To convert these names to addresses, the MailNotifier uses an EmailLookup object. This provides a
getAddress method which accepts a name and (eventually) returns an address. The default MailNotifier
module provides an EmailLookup which simply appends a static string, configurable when the notifier is created.
To create more complex behaviors (perhaps using an LDAP lookup, or using finger on a central host to determine
a preferred address for the developer), provide a different object as the lookup argument.

If an EmailLookup object isn’t given to the MailNotifier, the MailNotifier will try to find emails through User Objects.
This will work the same as if an EmailLookup object was used if every user in the Build’s Interested Users list has an
email in the database for them. If a user whose change led to a Build doesn’t have an email attribute, that user will not
receive an email. If extraRecipients is given, those users are still sent mail when the EmailLookup object is not
specified.

In the future, when the Problem mechanism has been set up, the Buildbot will need to send mail to arbitrary Users.
It will do this by locating a MailNotifier-like object among all the buildmaster’s status targets, and asking it
to send messages to various Users. This means the User-to-address mapping only has to be set up once, in your
MailNotifier, and every email message the buildbot emits will take advantage of it.

52 Chapter 2. Buildbot Manual

Buildbot Documentation, Release 0.9.7

IRC Nicknames

Like MailNotifier, the buildbot.status.words.IRC class provides a status target which can announce
the results of each build. It also provides an interactive interface by responding to online queries posted in the channel
or sent as private messages.

In the future, the buildbot can be configured map User names to IRC nicknames, to watch for the recent presence of
these nicknames, and to deliver build status messages to the interested parties. Like MailNotifier does for email
addresses, the IRC object will have an IRCLookup which is responsible for nicknames. The mapping can be set up
statically, or it can be updated by online users themselves (by claiming a username with some kind of buildbot:
i am user warner commands).

Once the mapping is established, the rest of the buildbot can ask the IRC object to send messages to various users. It
can report on the likelihood that the user saw the given message (based upon how long the user has been inactive on
the channel), which might prompt the Problem Hassler logic to send them an email message instead.

These operations and authentication of commands issued by particular nicknames will be implemented in User Ob-
jects.

Build Properties

Each build has a set of Build Properties, which can be used by its build steps to modify their actions. These properties,
in the form of key-value pairs, provide a general framework for dynamically altering the behavior of a build based on
its circumstances.

Properties form a simple kind of variable in a build. Some properties are set when the build starts, and properties can
be changed as a build progresses – properties set or changed in one step may be accessed in subsequent steps. Property
values can be numbers, strings, lists, or dictionaries - basically, anything that can be represented in JSON.

Properties are very flexible, and can be used to implement all manner of functionality. Here are some examples:

Most Source steps record the revision that they checked out in the got_revision property. A later step could use
this property to specify the name of a fully-built tarball, dropped in an easily-accessible directory for later testing.

Note: In builds with more than one codebase, the got_revision property is a dictionary, keyed by codebase.

Some projects want to perform nightly builds as well as building in response to committed changes. Such a project
would run two schedulers, both pointing to the same set of builders, but could provide an is_nightly property so
that steps can distinguish the nightly builds, perhaps to run more resource-intensive tests.

Some projects have different build processes on different systems. Rather than create a build factory for each worker,
the steps can use worker properties to identify the unique aspects of each worker and adapt the build process dynami-
cally.

Multiple-Codebase Builds

What if an end-product is composed of code from several codebases? Changes may arrive from different repositories
within the tree-stable-timer period. Buildbot will not only use the source-trees that contain changes but also needs the
remaining source-trees to build the complete product.

For this reason a Scheduler can be configured to base a build on a set of several source-trees that can (partly) be
overridden by the information from incoming Changes.

As described above, the source for each codebase is identified by a source stamp, containing its repository, branch and
revision. A full build set will specify a source stamp set describing the source to use for each codebase.

2.3. Concepts 53

Buildbot Documentation, Release 0.9.7

Configuring all of this takes a coordinated approach. A complete multiple repository configuration consists of:

a codebase generator

Every relevant change arriving from a VC must contain a codebase. This is done by a
codebaseGenerator that is defined in the configuration. Most generators examine the repository
of a change to determine its codebase, using project-specific rules.

some schedulers

Each scheduler has to be configured with a set of all required codebases to build a product. These
codebases indicate the set of required source-trees. In order for the scheduler to be able to produce a
complete set for each build, the configuration can give a default repository, branch, and revision for each
codebase. When a scheduler must generate a source stamp for a codebase that has received no changes, it
applies these default values.

multiple source steps - one for each codebase

A Builders‘s build factory must include a source step for each codebase. Each of the source steps has a
codebase attribute which is used to select an appropriate source stamp from the source stamp set for a
build. This information comes from the arrived changes or from the scheduler’s configured default values.

Note: Each source step has to have its own workdir set in order for the checkout to be done for each
codebase in its own directory.

Note: Ensure you specify the codebase within your source step’s Interpolate() calls (ex. http://...
/svn/%(src:codebase:branch)s). See Interpolate for details.

Warning: Defining a codebaseGenerator that returns non-empty (not '') codebases will change the be-
havior of all the schedulers.

Multimaster

Warning: Buildbot Multimaster is considered experimental. There are still some companies using it in produc-
tion. Don’t hesitate to use the mailing lists to share your experience.

54 Chapter 2. Buildbot Manual

Buildbot Documentation, Release 0.9.7

Buildbot supports interconnection of several masters. This has to be done through a multi-master enabled message
queue backend. As of now the only one supported is wamp and crossbar.io. see wamp

There are then several strategy for introducing multimaster in your buildbot infra. A simple way to say it is by adding
the concept of symmetrics and asymmetrics multimaster (like there is SMP and AMP for multi core CPUs)

Symmetric multimaster is when each master share the exact same configuration. They run the same builders, same
schedulers, same everything, the only difference is that workers are connected evenly between the masters (by any
means (e.g. DNS load balancing, etc)) Symmetric multimaster is good to use to scale buildbot horizontally.

Asymmetric multimaster is when each master have different configuration. Each master may have a specific respon-
sibility (e.g schedulers, set of builder, UI). This was more how you did in 0.8, also because of its own technical
limitations. A nice feature of asymmetric multimaster is that you can have the UI only handled by some masters.

Separating the UI from the controlling will greatly help in the performance of the UI, because badly written Build-
Steps?? can stall the reactor for several seconds.

The fanciest configuration would probably be a symmetric configuration for everything but the UI. You would scale
the number of UI master according to your number of UI users, and scale the number of engine masters to the number
of workers.

Depending on your workload and size of master host, it is probably a good idea to start thinking of multimaster starting
from a hundred workers connected.

Multimaster can also be used for high availability, and seamless upgrade of configuration code. Complex configuration
indeed requires sometimes to restart the master to reload custom steps or code, or just to upgrade the upstream buildbot
version.

In this case, you will implement following procedure:

• Start new master(s) with new code and configuration.

• Send a graceful shutdown to the old master(s).

2.3. Concepts 55

Buildbot Documentation, Release 0.9.7

• New master(s) will start taking the new jobs, while old master(s) will just finish managing the running builds.

• As an old master is finishing the running builds, it will drop the connections from the workers, who will then
reconnect automatically, and by the mean of load balancer will get connected to a new master to run new jobs.

As buildbot nine has been designed to allow such procedure, it has not been implemented in production yet as we
know. There is probably a new REST api needed in order to graceful shutdown a master, and the details of gracefully
dropping the connection to the workers to be sorted out.

Secret Management

Requirements

Buildbot steps might need secrets to execute their actions. Secrets are used to execute commands or to create authenti-
cated network connections. Secrets may be a SSH key, a password, or a file content like a wgetrc file or a public SSH
key. To preserve confidentiality, the secrets values must not be printed or logged in the twisted or steps logs. Secrets
must not be stored in the Buildbot configuration (master.cfg), as the source code is usually shared in SCM like git.

How to use Buildbot Secret Management

Secrets and providers

Buildbot implements several providers for secrets retrieval:

• File system based: secrets are written in a file. This is a simple solution for example when secrets are managed
by config management system like Ansible Vault.

• Third party backend based: secrets are stored by a specialized software. These solution are usually more secured.

Secrets providers are configured if needed in the master configuration. Multiple providers can be configured at once.
The secret manager is a Buildbot service. The secret manager returns the specific provider results related to the
providers registered in the configuration.

How to use secrets in Buildbot

The following example shows a basic usage of secrets in Buildbot.

First we declare that the secrets are stored in a directory of the filesystem
each file contain one secret identified by the filename
c['secretsProviders'] = [util.SecretInFile(directory="/path/toSecretsFiles"]

then in a buildfactory:

use a secret on a shell command via Interpolate
f1.addStep(ShellCommand(Interpolate("wget -u user -p %{secrets:userpassword}s %
→˓{prop:urltofetch}s")))

Secrets are also interpolated in the build like properties are, and will be used in a command line for example.

Secrets storages

56 Chapter 2. Buildbot Manual

Buildbot Documentation, Release 0.9.7

SecretInFile

c['secretsProviders'] = [util.SecretInFile(directory="/path/toSecretsFiles"]

In the passed directory, every file contains a secret identified by the filename.

e.g: a file user contains the text pa$$w0rd.

SecretInVault

c['secretsProviders'] = [util.SecretInVault(
vaultToken=open('VAULT_TOKEN').read(),
vaultServer="http://localhost:8200"

)]

Vault secures, stores, and tightly controls access to secrets. Vault presents a unified API to access multiple backends.
To be authenticated in Vault, Buildbot need to send a token to the vault server. The token is generated when the Vault
instance is initialized for the first time.

In the master configuration, the Vault provider is instantiated through the Buildbot service manager as a secret provider
with the the Vault server address and the Vault token. The provider SecretInVault allows Buildbot to read secrets in
Vault. For more informations about Vault please visit: Vault: https://www.vaultproject.io/

How to configure a Vault instance

Vault being a very generic system, it can be complex to install for the first time. Here is a simple tutorial to install the
minimal Vault for use with Buildbot.

Use Docker to install Vault

A Docker image is available to help users installing Vault. Without any arguments, the command launches a Docker
Vault developer instance, easy to use and test the functions. The developer version is already initialized and unsealed.
To launch a Vault server please refer to the VaultDocker (https://hub.docker.com/_/vault/) documentation:

In a shell:

docker run vault

Starting the vault instance

Once the Docker image is created, launch a shell terminal on the Docker image:

docker exec -i -t ``docker_vault_image_name`` /bin/sh

Then, export the environment variable VAULT_ADDR needed to init Vault.

export VAULT_ADDR='vault.server.adress'

2.4. Secret Management 57

https://www.vaultproject.io/
https://hub.docker.com/_/vault/

Buildbot Documentation, Release 0.9.7

Writing secrets

By default Vault is initialized with a mount named secret. To add a new secret:

vault write secret/new_secret_key value=new_secret_value

Configuration

The following sections describe the configuration of the various Buildbot components. The information available here
is sufficient to create basic build and test configurations, and does not assume great familiarity with Python.

In more advanced Buildbot configurations, Buildbot acts as a framework for a continuous-integration application. The
next section, Customization, describes this approach, with frequent references into the development documentation.

Configuring Buildbot

The buildbot’s behavior is defined by the config file, which normally lives in the master.cfg file in the buildmaster’s
base directory (but this can be changed with an option to the buildbot create-master command). This file
completely specifies which Builders are to be run, which workers they should use, how Changes should be tracked,
and where the status information is to be sent. The buildmaster’s buildbot.tac file names the base directory;
everything else comes from the config file.

A sample config file was installed for you when you created the buildmaster, but you will need to edit it before your
buildbot will do anything useful.

This chapter gives an overview of the format of this file and the various sections in it. You will need to read the later
chapters to understand how to fill in each section properly.

Config File Format

The config file is, fundamentally, just a piece of Python code which defines a dictionary named
BuildmasterConfig, with a number of keys that are treated specially. You don’t need to know Python to do
basic configuration, though, you can just copy the syntax of the sample file. If you are comfortable writing Python
code, however, you can use all the power of a full programming language to achieve more complicated configurations.

The BuildmasterConfig name is the only one which matters: all other names defined during the execution of
the file are discarded. When parsing the config file, the Buildmaster generally compares the old configuration with the
new one and performs the minimum set of actions necessary to bring the buildbot up to date: Builders which are
not changed are left untouched, and Builders which are modified get to keep their old event history.

The beginning of the master.cfg file typically starts with something like:

BuildmasterConfig = c = {}

Therefore a config key like change_source will usually appear in master.cfg as c['change_source'].

See cfg for a full list of BuildMasterConfig keys.

Basic Python Syntax

The master configuration file is interpreted as Python, allowing the full flexibility of the language. For the configura-
tions described in this section, a detailed knowledge of Python is not required, but the basic syntax is easily described.

58 Chapter 2. Buildbot Manual

Buildbot Documentation, Release 0.9.7

Python comments start with a hash character #, tuples are defined with (parenthesis, pairs), and lists (arrays)
are defined with [square, brackets]. Tuples and lists are mostly interchangeable. Dictionaries (data structures
which map keys to values) are defined with curly braces: {'key1': value1, 'key2': value2}. Function
calls (and object instantiation) can use named parameters, like steps.ShellCommand(command=["trial",
"pyflakes"]).

The config file starts with a series of import statements, which make various kinds of Steps and Status targets
available for later use. The main BuildmasterConfig dictionary is created, then it is populated with a variety of
keys, described section-by-section in subsequent chapters.

Predefined Config File Symbols

The following symbols are automatically available for use in the configuration file.

basedir the base directory for the buildmaster. This string has not been expanded, so it may start with a tilde. It
needs to be expanded before use. The config file is located in:

os.path.expanduser(os.path.join(basedir, 'master.cfg'))

__file__ the absolute path of the config file. The config file’s directory is located in os.path.
dirname(__file__).

Testing the Config File

To verify that the config file is well-formed and contains no deprecated or invalid elements, use the checkconfig
command, passing it either a master directory or a config file.

% buildbot checkconfig master.cfg
Config file is good!
or
% buildbot checkconfig /tmp/masterdir
Config file is good!

If the config file has deprecated features (perhaps because you’ve upgraded the buildmaster and need to update the
config file to match), they will be announced by checkconfig. In this case, the config file will work, but you should
really remove the deprecated items and use the recommended replacements instead:

% buildbot checkconfig master.cfg
/usr/lib/python2.4/site-packages/buildbot/master.py:559: DeprecationWarning: c[
→˓'sources'] is
deprecated as of 0.7.6 and will be removed by 0.8.0 . Please use c['change_source']
→˓instead.
Config file is good!

If you have errors in your configuration file, checkconfig will let you know:

% buildbot checkconfig master.cfg
Configuration Errors:
c['workers'] must be a list of Worker instances
no workers are configured
builder 'smoketest' uses unknown workers 'linux-002'

If the config file is simply broken, that will be caught too:

2.5. Configuration 59

Buildbot Documentation, Release 0.9.7

% buildbot checkconfig master.cfg
error while parsing config file:
Traceback (most recent call last):
File "/home/buildbot/master/bin/buildbot", line 4, in <module>

runner.run()
File "/home/buildbot/master/buildbot/scripts/runner.py", line 1358, in run

if not doCheckConfig(so):
File "/home/buildbot/master/buildbot/scripts/runner.py", line 1079, in doCheckConfig

return cl.load(quiet=quiet)
File "/home/buildbot/master/buildbot/scripts/checkconfig.py", line 29, in load

self.basedir, self.configFileName)
--- <exception caught here> ---
File "/home/buildbot/master/buildbot/config.py", line 147, in loadConfig

exec f in localDict
exceptions.SyntaxError: invalid syntax (master.cfg, line 52)
Configuration Errors:
error while parsing config file: invalid syntax (master.cfg, line 52) (traceback in
→˓logfile)

Loading the Config File

The config file is only read at specific points in time. It is first read when the buildmaster is launched.

Note: If the configuration is invalid, the master will display the errors in the console output, but will not exit.

Reloading the Config File (reconfig)

If you are on the system hosting the buildmaster, you can send a SIGHUP signal to it: the buildbot tool has a
shortcut for this:

buildbot reconfig BASEDIR

This command will show you all of the lines from twistd.log that relate to the reconfiguration. If there are any
problems during the config-file reload, they will be displayed in these lines.

When reloading the config file, the buildmaster will endeavor to change as little as possible about the running system.
For example, although old status targets may be shut down and new ones started up, any status targets that were not
changed since the last time the config file was read will be left running and untouched. Likewise any Builders
which have not been changed will be left running. If a Builder is modified (say, the build process is changed) while
a Build is currently running, that Build will keep running with the old process until it completes. Any previously
queued Builds (or Builds which get queued after the reconfig) will use the new process.

Warning: Buildbot’s reconfiguration system is fragile for a few difficult-to-fix reasons:

• Any modules imported by the configuration file are not automatically reloaded. Python modules such as
http://pypi.python.org/pypi/lazy-reload may help here, but reloading modules is fraught with subtleties and
difficult-to-decipher failure cases.

• During the reconfiguration, active internal objects are divorced from the service hierarchy, leading to trace-
backs in the web interface and other components. These are ordinarily transient, but with HTTP connection
caching (either by the browser or an intervening proxy) they can last for a long time.

60 Chapter 2. Buildbot Manual

http://pypi.python.org/pypi/lazy-reload

Buildbot Documentation, Release 0.9.7

• If the new configuration file is invalid, it is possible for Buildbot’s internal state to be corrupted, leading to
undefined results. When this occurs, it is best to restart the master.

• For more advanced configurations, it is impossible for Buildbot to tell if the configuration for a Builder
or Scheduler has changed, and thus the Builder or Scheduler will always be reloaded. This occurs
most commonly when a callable is passed as a configuration parameter.

The bbproto project (at https://github.com/dabrahams/bbproto) may help to construct large (multi-file) configura-
tions which can be effectively reloaded and reconfigured.

Global Configuration

The keys in this section affect the operations of the buildmaster globally.

• Database Specification

• MQ Specification

• Multi-master mode

• Site Definitions

• Log Handling

• Data Lifetime

• Merging Build Requests

• Prioritizing Builders

• Setting the PB Port for Workers

• Defining Global Properties

• Manhole

• Metrics Options

• Statistics Service

• secretsProviders

• BuildbotNetUsageData

• Users Options

• Input Validation

• Revision Links

• Codebase Generator

Database Specification

Buildbot requires a connection to a database to maintain certain state information, such as tracking pending build
requests. In the default configuration Buildbot uses a file-based SQLite database, stored in the state.sqlite file
of the master’s base directory. Override this configuration with the db_url parameter.

Buildbot accepts a database configuration in a dictionary named db. All keys are optional:

2.5. Configuration 61

https://github.com/dabrahams/bbproto

Buildbot Documentation, Release 0.9.7

c['db'] = {
'db_url' : 'sqlite:///state.sqlite',

}

The db_url key indicates the database engine to use. The format of this parameter is completely documented at
http://www.sqlalchemy.org/docs/dialects/, but is generally of the form:

"driver://[username:password@]host:port/database[?args]"

These parameters can be specified directly in the configuration dictionary, as c['db_url'] and
c['db_poll_interval'], although this method is deprecated.

The following sections give additional information for particular database backends:

SQLite

For sqlite databases, since there is no host and port, relative paths are specified with sqlite:/// and absolute paths
with sqlite:////. Examples:

c['db_url'] = "sqlite:///state.sqlite"

SQLite requires no special configuration.

MySQL

c['db_url'] = "mysql://user:pass@example.com/database_name?max_idle=300"

The max_idle argument for MySQL connections is unique to Buildbot, and should be set to something less than
the wait_timeout configured for your server. This controls the SQLAlchemy pool_recycle parameter, which
defaults to no timeout. Setting this parameter ensures that connections are closed and re-opened after the config-
ured amount of idle time. If you see errors such as _mysql_exceptions.OperationalError: (2006,
'MySQL server has gone away'), this means your max_idle setting is probably too high. show
global variables like 'wait_timeout'; will show what the currently configured wait_timeout is
on your MySQL server.

Buildbot requires use_unique=True and charset=utf8, and will add them automatically, so they do not need
to be specified in db_url.

MySQL defaults to the MyISAM storage engine, but this can be overridden with the storage_engine URL argu-
ment.

Postgres

c['db_url'] = "postgresql://username@hostname/dbname"

PosgreSQL requires no special configuration.

MQ Specification

Buildbot uses a message-queueing system to handle communication within the master. Messages are used to indicate
events within the master, and components that are interested in those events arrange to receive them.

62 Chapter 2. Buildbot Manual

http://www.sqlalchemy.org/docs/dialects/

Buildbot Documentation, Release 0.9.7

The message queueing implementation is configured as a dictionary in the mq option. The type key describes the
type of MQ implemetation to be used. Note that the implementation type cannot be changed in a reconfig.

The available implemenetation types are described in the following sections.

Simple

c['mq'] = {
'type' : 'simple',
'debug' : False,

}

This is the default MQ implementation. Similar to SQLite, it has no additional software dependencies, but does not
support multi-master mode.

Note that this implementation also does not support message persistence across a restart of the master. For example,
if a change is received, but the master shuts down before the schedulers can create build requests for it, then those
schedulers will not be notified of the change when the master starts again.

The debug key, which defaults to False, can be used to enable logging of every message produced on this master.

Wamp

Note: At the moment, wamp is the only message queue implementation for multimaster. It has been privileged as
this is the only message queue that have very solid support for Twisted. Other more common message queue systems
like RabbitMQ (using the AMQP protocol) do not have convincing driver for twisted, and this would require to run on
threads, which will add an important performance overhead.

c['mq'] = {
'type' : 'wamp',
'router_url': 'ws://localhost:8080/ws',
'realm': 'realm1',
'wamp_debug_level' : 'error' # valid are: none, critical, error, warn, info,

→˓debug, trace
}

This is a MQ implementation using wamp (http://wamp.ws/) protocol. This implementation uses Python Autobahn
(http://autobahn.ws) wamp client library, and is fully asynchronous (no use of threads). To use this implementation,
you need a wamp router like Crossbar (http://crossbar.io).

Please refer to Crossbar documentation for more details, but the default Crossbar setup will just work with Buildbot,
provided you use the example mq configuration above, and start Crossbar with:

of course, you should work in a virtualenv...
pip install crossbar
crossbar init
crossbar start

The implementation does not yet support wamp authentication. This MQ allows buildbot to run in multi-master mode.

Note that this implementation also does not support message persistence across a restart of the master. For example,
if a change is received, but the master shuts down before the schedulers can create build requests for it, then those
schedulers will not be notified of the change when the master starts again.

2.5. Configuration 63

http://wamp.ws/
http://autobahn.ws
http://crossbar.io

Buildbot Documentation, Release 0.9.7

router_url (mandatory): points to your router websocket url. Buildbot is only supporting wamp over web-
socket, which is a sub-protocol of http. SSL is supported using wss:// instead of ws://.

realm (optional, defaults to buildbot): defines the wamp realm to use for your buildbot messages.

wamp_debug_level (optional, defaults to error): defines the log level of autobahn.

You must use a router with very reliable connection to the master. If for some reason, the wamp connection is lost,
then the master will stop, and should be restarted via a process manager.

Multi-master mode

See Multimaster for details on the Multi-master mode in Buildbot Nine.

By default, Buildbot makes coherency checks that prevents typo in your master.cfg It make sure schedulers are
not referencing unknown builders, and enforces there is at least one builder.

In the case of a asymmetric multimaster, those coherency checks can be harmful and prevent you to implement what
you want. For example you might want to have one master dedicated to the UI, so that a big load generated by builds
will not impact page load times.

To enable multi-master mode in this configuration, you will need to set the multiMaster option so that buildbot
doesn’t warn about missing schedulers or builders.

Enable multiMaster mode; disables warnings about unknown builders and
schedulers
c['multiMaster'] = True
c['db'] = {

'db_url' : 'mysql://...',
}
c['mq'] = { # Need to enable multimaster aware mq. Wamp is the only option for now.

'type' : 'wamp',
'router_url': 'ws://localhost:8080',
'realm': 'realm1',
'wamp_debug_level' : 'error' # valid are: none, critical, error, warn, info,

→˓debug, trace
}

Site Definitions

Three basic settings describe the buildmaster in status reports:

c['title'] = "Buildbot"
c['titleURL'] = "http://buildbot.sourceforge.net/"

title is a short string that will appear at the top of this buildbot installation’s home page (linked to the titleURL).

titleURL is a URL string that must end with a slash (/). HTML status displays will show title as a link to
titleURL. This URL is often used to provide a link from buildbot HTML pages to your project’s home page.

The buildbotURL string should point to the location where the buildbot’s internal web server is visible. This URL
must end with a slash (/).

When status notices are sent to users (e.g., by email or over IRC), buildbotURL will be used to create a URL to the
specific build or problem that they are being notified about.

64 Chapter 2. Buildbot Manual

Buildbot Documentation, Release 0.9.7

Log Handling

c['logCompressionMethod'] = 'gz'
c['logMaxSize'] = 1024*1024 # 1M
c['logMaxTailSize'] = 32768
c['logEncoding'] = 'utf-8'

The logCompressionLimit enables compression of build logs on disk for logs that are bigger than the given size,
or disables that completely if set to False. The default value is 4096, which should be a reasonable default on most
file systems. This setting has no impact on status plugins, and merely affects the required disk space on the master for
build logs.

The logCompressionMethod controls what type of compression is used for build logs. The default is ‘gz’, and
the other valid option are ‘raw’ (no compression), ‘gz’ or ‘lz4’ (required lz4 package).

Please find below some stats extracted from 50x “Pyflakes” runs (results may differ according to log type).

Table 2.1: Space saving details

compression raw log size compressed log size space saving compression speed
bz2 2.981 MB 0.603 MB 79.77% 3.433 MB/s
gz 2.981 MB 0.568 MB 80.95% 6.604 MB/s
lz4 2.981 MB 0.844 MB 71.68% 77.668 MB/s

The logMaxSize parameter sets an upper limit (in bytes) to how large logs from an individual build step can be. The
default value is None, meaning no upper limit to the log size. Any output exceeding logMaxSize will be truncated,
and a message to this effect will be added to the log’s HEADER channel.

If logMaxSize is set, and the output from a step exceeds the maximum, the logMaxTailSize parameter controls
how much of the end of the build log will be kept. The effect of setting this parameter is that the log will contain the
first logMaxSize bytes and the last logMaxTailSize bytes of output. Don’t set this value too high, as the the
tail of the log is kept in memory.

The logEncoding parameter specifies the character encoding to use to decode bytestrings provided as logs. It
defaults to utf-8, which should work in most cases, but can be overridden if necessary. In extreme cases, a callable
can be specified for this parameter. It will be called with byte strings, and should return the corresponding Unicode
string.

This setting can be overridden for a single build step with the logEncoding step parameter. It can also be overridden
for a single log file by passing the logEncoding parameter to addLog.

Data Lifetime

Horizons

Previously Buildbot implemented a global configuration for horizons. Now it is implemented as an utility Builder, and
shall be configured via JanitorConfigurator

Caches

c['caches'] = {
'Changes' : 100, # formerly c['changeCacheSize']
'Builds' : 500, # formerly c['buildCacheSize']
'chdicts' : 100,
'BuildRequests' : 10,

2.5. Configuration 65

Buildbot Documentation, Release 0.9.7

'SourceStamps' : 20,
'ssdicts' : 20,
'objectids' : 10,
'usdicts' : 100,

}

The caches configuration key contains the configuration for Buildbot’s in-memory caches. These caches keep
frequently-used objects in memory to avoid unnecessary trips to the database. Caches are divided by object type, and
each has a configurable maximum size.

The default size for each cache is 1, except where noted below. A value of 1 allows Buildbot to make a number of
optimizations without consuming much memory. Larger, busier installations will likely want to increase these values.

The available caches are:

Changes the number of change objects to cache in memory. This should be larger than the number of changes that
typically arrive in the span of a few minutes, otherwise your schedulers will be reloading changes from the
database every time they run. For distributed version control systems, like Git or Hg, several thousand changes
may arrive at once, so setting this parameter to something like 10000 isn’t unreasonable.

This parameter is the same as the deprecated global parameter changeCacheSize. Its default value is 10.

Builds The buildCacheSize parameter gives the number of builds for each builder which are cached in mem-
ory. This number should be larger than the number of builds required for commonly-used status displays (the
waterfall or grid views), so that those displays do not miss the cache on a refresh.

This parameter is the same as the deprecated global parameter buildCacheSize. Its default value is 15.

chdicts The number of rows from the changes table to cache in memory. This value should be similar to the
value for Changes.

BuildRequests The number of BuildRequest objects kept in memory. This number should be higher than the
typical number of outstanding build requests. If the master ordinarily finds jobs for BuildRequests immediately,
you may set a lower value.

SourceStamps the number of SourceStamp objects kept in memory. This number should generally be similar to
the number BuildRequesets.

ssdicts The number of rows from the sourcestamps table to cache in memory. This value should be similar to
the value for SourceStamps.

objectids The number of object IDs - a means to correlate an object in the Buildbot configuration with an identity
in the database–to cache. In this version, object IDs are not looked up often during runtime, so a relatively low
value such as 10 is fine.

usdicts The number of rows from the users table to cache in memory. Note that for a given user there will be a
row for each attribute that user has.

c[’buildCacheSize’] = 15

Merging Build Requests

c['collapseRequests'] = True

This is a global default value for builders’ collapseRequests parameter, and controls the merging of build re-
quests.

This parameter can be overridden on a per-builder basis. See Collapsing Build Requests for the allowed values for this
parameter.

66 Chapter 2. Buildbot Manual

Buildbot Documentation, Release 0.9.7

Prioritizing Builders

def prioritizeBuilders(buildmaster, builders):
...

c['prioritizeBuilders'] = prioritizeBuilders

By default, buildbot will attempt to start builds on builders in order, beginning with the builder with the oldest pending
request. Customize this behavior with the prioritizeBuilders configuration key, which takes a callable. See
Builder Priority Functions for details on this callable.

This parameter controls the order that the build master can start builds, and is useful in situations where there is
resource contention between builders, e.g., for a test database. It does not affect the order in which a builder processes
the build requests in its queue. For that purpose, see Prioritizing Builds.

Setting the PB Port for Workers

c['protocols'] = {"pb": {"port": 10000}}

The buildmaster will listen on a TCP port of your choosing for connections from workers. It can also use this port for
connections from remote Change Sources, status clients, and debug tools. This port should be visible to the outside
world, and you’ll need to tell your worker admins about your choice.

It does not matter which port you pick, as long it is externally visible; however, you should probably use something
larger than 1024, since most operating systems don’t allow non-root processes to bind to low-numbered ports. If your
buildmaster is behind a firewall or a NAT box of some sort, you may have to configure your firewall to permit inbound
connections to this port.

c['protocols']['pb']['port'] is a strports specification string, defined in the twisted.
application.strports module (try pydoc twisted.application.strports to get documentation
on the format).

This means that you can have the buildmaster listen on a localhost-only port by doing:

c['protocols'] = {"pb": {"port": "tcp:10000:interface=127.0.0.1"}}

This might be useful if you only run workers on the same machine, and they are all configured to contact the build-
master at localhost:10000.

Note: In Buildbot versions <=0.8.8 you might see slavePortnum option. This option contains same value as
c['protocols']['pb']['port'] but not recomended to use.

Defining Global Properties

The properties configuration key defines a dictionary of properties that will be available to all builds started by
the buildmaster:

c['properties'] = {
'Widget-version' : '1.2',
'release-stage' : 'alpha'

}

2.5. Configuration 67

Buildbot Documentation, Release 0.9.7

Manhole

If you set manhole to an instance of one of the classes in buildbot.manhole, you can telnet or ssh into the
buildmaster and get an interactive Python shell, which may be useful for debugging buildbot internals. It is probably
only useful for buildbot developers. It exposes full access to the buildmaster’s account (including the ability to modify
and delete files), so it should not be enabled with a weak or easily guessable password.

There are three separate Manhole classes. Two of them use SSH, one uses unencrypted telnet. Two of them use
a username+password combination to grant access, one of them uses an SSH-style authorized_keys file which
contains a list of ssh public keys.

Note: Using any Manhole requires that pycrypto and pyasn1 be installed. These are not part of the normal
Buildbot dependencies.

manhole.AuthorizedKeysManhole You construct this with the name of a file that contains one SSH public key per
line, just like ~/.ssh/authorized_keys. If you provide a non-absolute filename, it will be interpreted
relative to the buildmaster’s base directory.

manhole.PasswordManhole This one accepts SSH connections but asks for a username and password when authen-
ticating. It accepts only one such pair.

manhole.TelnetManhole This accepts regular unencrypted telnet connections, and asks for a username/password
pair before providing access. Because this username/password is transmitted in the clear, and because Manhole
access to the buildmaster is equivalent to granting full shell privileges to both the buildmaster and all the workers
(and to all accounts which then run code produced by the workers), it is highly recommended that you use one
of the SSH manholes instead.

some examples:
from buildbot.plugins import util
c['manhole'] = util.AuthorizedKeysManhole(1234, "authorized_keys")
c['manhole'] = util.PasswordManhole(1234, "alice", "mysecretpassword")
c['manhole'] = util.TelnetManhole(1234, "bob", "snoop_my_password_please")

The Manhole instance can be configured to listen on a specific port. You may wish to have this listening port bind to
the loopback interface (sometimes known as lo0, localhost, or 127.0.0.1) to restrict access to clients which are running
on the same host.

from buildbot.plugins import util
c['manhole'] = util.PasswordManhole("tcp:9999:interface=127.0.0.1","admin","passwd")

To have the Manhole listen on all interfaces, use "tcp:9999" or simply 9999. This port specification uses
twisted.application.strports, so you can make it listen on SSL or even UNIX-domain sockets if you
want.

Note that using any Manhole requires that the TwistedConch (http://twistedmatrix.com/trac/wiki/TwistedConch)
package be installed.

The buildmaster’s SSH server will use a different host key than the normal sshd running on a typical unix host. This
will cause the ssh client to complain about a host key mismatch, because it does not realize there are two separate
servers running on the same host. To avoid this, use a clause like the following in your .ssh/config file:

Host remotehost-buildbot
HostName remotehost
HostKeyAlias remotehost-buildbot
Port 9999
use 'user' if you use PasswordManhole and your name is not 'admin'.

68 Chapter 2. Buildbot Manual

http://twistedmatrix.com/trac/wiki/TwistedConch

Buildbot Documentation, Release 0.9.7

if you use AuthorizedKeysManhole, this probably doesn't matter.
User admin

Using Manhole

After you have connected to a manhole instance, you will find yourself at a Python prompt. You have access to two
objects: master (the BuildMaster) and status (the master’s Status object). Most interesting objects on the master
can be reached from these two objects.

To aid in navigation, the show method is defined. It displays the non-method attributes of an object.

A manhole session might look like:

>>> show(master)
data attributes of <buildbot.master.BuildMaster instance at 0x7f7a4ab7df38>

basedir : '/home/dustin/code/buildbot/t/buildbot/'...
botmaster : <type 'instance'>

buildCacheSize : None
buildHorizon : None
buildbotURL : http://localhost:8010/

changeCacheSize : None
change_svc : <type 'instance'>

configFileName : master.cfg
db : <class 'buildbot.db.connector.DBConnector'>

db_url : sqlite:///state.sqlite
...

>>> show(master.botmaster.builders['win32'])
data attributes of <Builder ''builder'' at 48963528>

...
>>> win32 = _
>>> win32.category = 'w32'

Metrics Options

c['metrics'] = dict(log_interval=10, periodic_interval=10)

metrics can be a dictionary that configures various aspects of the metrics subsystem. If metrics is None, then
metrics collection, logging and reporting will be disabled.

log_interval determines how often metrics should be logged to twistd.log. It defaults to 60s. If set to 0 or None,
then logging of metrics will be disabled. This value can be changed via a reconfig.

periodic_interval determines how often various non-event based metrics are collected, such as memory usage,
uncollectable garbage, reactor delay. This defaults to 10s. If set to 0 or None, then periodic collection of this data is
disabled. This value can also be changed via a reconfig.

Read more about metrics in the Metrics section in the developer documentation.

Statistics Service

The Statistics Service (stats service for short) supports for collecting arbitrary data from within a running Buildbot
instance and export it do a number of storage backends. Currently, only InfluxDB (https://influxdata.com/time-series-
platform/influxdb/) is supported as a storage backend. Also, InfluxDB (or any other storage backend) is not a manda-
tory dependency. Buildbot can run without it although StatsService will be of no use in such a case. At present,

2.5. Configuration 69

https://influxdata.com/time-series-platform/influxdb/

Buildbot Documentation, Release 0.9.7

StatsService can keep track of build properties, build times (start, end, duration) and arbitrary data produced
inside Buildbot (more on this later).

Example usage:

captures = [stats.CaptureProperty('Builder1', 'tree-size-KiB'),
stats.CaptureBuildDuration('Builder2')]

c['services'] = []
c['services'].append(stats.StatsService(

storage_backends=[
stats.InfluxStorageService('localhost', 8086, 'root', 'root', 'test',

→˓captures)
], name="StatsService"))

The services configuration value should be initialized as a list and a StatsService instance should be appended
to it as shown in the example above.

Statistics Service

class buildbot.statistics.stats_service.StatsService
This is the main class for statistics service. It is initialized in the master configuration as show in the example
above. It takes two arguments:

storage_backends A list of storage backends (see Storage Backends). In the example above, stats.
InfluxStorageService is an instance of a storage backend. Each storage backend is an instances of
subclasses of statsStorageBase.

name The name of this service.

yieldMetricsValue: This method can be used to send arbitrary data for storage. (See Using StatsSer-
vice.yieldMetricsValue for more information.)

Capture Classes

class buildbot.statistics.capture.CaptureProperty
Instance of this class declares which properties must be captured and sent to the Storage Backends. It takes the
following arguments:

builder_name The name of builder in which the property is recorded.

property_name The name of property needed to be recorded as a statistic.

callback=None (Optional) A custom callback function for this class. This callback function should take in
two arguments - build_properties (dict) and property_name (str) and return a string that will be sent for
storage in the storage backends.

regex=False If this is set to True, then the property name can be a regular expression. All properties
matching this regular expression will be sent for storage.

class buildbot.statistics.capture.CapturePropertyAllBuilders
Instance of this class declares which properties must be captured on all builders and sent to the Storage Backends.
It takes the following arguments:

property_name The name of property needed to be recorded as a statistic.

callback=None (Optional) A custom callback function for this class. This callback function should take in
two arguments - build_properties (dict) and property_name (str) and return a string that will be sent for
storage in the storage backends.

70 Chapter 2. Buildbot Manual

Buildbot Documentation, Release 0.9.7

regex=False If this is set to True, then the property name can be a regular expression. All properties
matching this regular expression will be sent for storage.

class buildbot.statistics.capture.CaptureBuildStartTime
Instance of this class declares which builders’ start times are to be captured and sent to Storage Backends. It
takes the following arguments:

builder_name The name of builder whose times are to be recorded.

callback=None (Optional) A custom callback function for this class. This callback function should take in
a Python datetime object and return a string that will be sent for storage in the storage backends.

class buildbot.statistics.capture.CaptureBuildStartTimeAllBuilders
Instance of this class declares start times of all builders to be captured and sent to Storage Backends. It takes the
following arguments:

callback=None (Optional) A custom callback function for this class. This callback function should take in
a Python datetime object and return a string that will be sent for storage in the storage backends.

class buildbot.statistics.capture.CaptureBuildEndTime
Exactly like CaptureBuildStartTime except it declares the builders whose end time is to be recorded.
The arguments are same as CaptureBuildStartTime.

class buildbot.statistics.capture.CaptureBuildEndTimeAllBuilders
Exactly like CaptureBuildStartTimeAllBuilders except it declares all builders’ end time to be
recorded. The arguments are same as CaptureBuildStartTimeAllBuilders.

class buildbot.statistics.capture.CaptureBuildDuration
Instance of this class declares the builders whose build durations are to be recorded. It takes the following
arguments:

builder_name The name of builder whose times are to be recorded.

report_in='seconds' Can be one of three: 'seconds', 'minutes', or 'hours'. This is the units
in which the build time will be reported.

callback=None (Optional) A custom callback function for this class. This callback function should take in
two Python datetime objects - a start_time and an end_time and return a string that will be sent for
storage in the storage backends.

class buildbot.statistics.capture.CaptureBuildDurationAllBuilders
Instance of this class declares build durations to be recorded for all builders. It takes the following arguments:

report_in='seconds' Can be one of three: 'seconds', 'minutes', or 'hours'. This is the units
in which the build time will be reported.

callback=None (Optional) A custom callback function for this class. This callback function should take in
two Python datetime objects - a start_time and an end_time and return a string that will be sent for
storage in the storage backends.

class buildbot.statistics.capture.CaptureData
Instance of this capture class is for capturing arbitrary data that is not stored as build-data. Needs to be used
in conjunction with yieldMetricsValue (See Using StatsService.yieldMetricsValue). Takes the following
arguments:

data_name The name of data to be captured. Same as in yieldMetricsValue.

builder_name The name of builder whose times are to be recorded.

callback=None The callback function for this class. This callback receives the data sent to
yieldMetricsValue as post_data (See Using StatsService.yieldMetricsValue). It must return a
string that is to be sent to the storage backends for storage.

2.5. Configuration 71

Buildbot Documentation, Release 0.9.7

class buildbot.statistics.capture.CaptureDataAllBuilders
Instance of this capture class for capturing arbitrary data that is not stored as build-data on all builders. Needs
to be used in conjunction with yieldMetricsValue (See Using StatsService.yieldMetricsValue). Takes the
following arguments:

data_name The name of data to be captured. Same as in yieldMetricsValue.

callback=None The callback function for this class. This callback receives the data sent to
yieldMetricsValue as post_data (See Using StatsService.yieldMetricsValue). It must return a
string that is to be sent to the storage backends for storage.

Using StatsService.yieldMetricsValue

Advanced users can modify BuildSteps to use StatsService.yieldMetricsValue which will send arbi-
trary data for storage to the StatsService. It takes the following arguments:

data_name The name of the data being sent or storage.

post_data A dictionary of key value pair that is sent for storage. The keys will act as columns in a
database and the value is stored under that column.

buildid The integer build id of the current build. Obtainable in all BuildSteps.

Along with using yieldMetricsValue, the user will also need to use the CaptureData capture class. As an
example, we can add the following to a build step:

yieldMetricsValue('test_data_name', {'some_data': 'some_value'}, buildid)

Then, we can add in the master configuration a capture class like this:

captures = [CaptureBuildData('test_data_name', 'Builder1')]

Pass this captures list to a storage backend (as shown in the example at the top of this section) for capturing this
data.

Storage Backends

Storage backends are responsible for storing any statistics data sent to them. A storage backend will generally be
some sort of a database-server running on a machine. (Note: This machine may be different from the one running
BuildMaster)

Currently, only InfluxDB (https://influxdata.com/time-series-platform/influxdb/) is supported as a storage backend.

class buildbot.statistics.storage_backends.influxdb_client.InfluxStorageService
This class is a Buildbot client to the InfluxDB storage backend. InfluxDB (https://influxdata.com/time-series-
platform/influxdb/) is a distributed, time series database that employs a key-value pair storage system.

It requires the following arguments:

url The URL where the service is running.

port The port on which the service is listening.

user Username of a InfluxDB user.

password Password for user.

db The name of database to be used.

72 Chapter 2. Buildbot Manual

https://influxdata.com/time-series-platform/influxdb/
https://influxdata.com/time-series-platform/influxdb/

Buildbot Documentation, Release 0.9.7

captures A list of objects of Capture Classes. This tells which statistics are to be stored in this storage
backend.

name=None (Optional) The name of this storage backend.

secretsProviders

see Secret Management for details on secret concepts.

Example usage:

c['secretsProviders'] = [..]

secretsProviders is a list of secrets storage. See Secret Management to configure an available secret storage
provider.

BuildbotNetUsageData

Since buildbot 0.9.0, buildbot has a simple feature which sends usage analysis info to buildbot.net. This is very
important for buildbot developers to understand how the community is using the tools. This allows to better prioritize
issues, and understand what plugins are actually being used. This will also be a tool to decide whether to keep support
for very old tools. For example buildbot contains support for the venerable CVS, but we have no information whether
it actually works beyond the unit tests. We rely on the community to test and report issues with the old features.

With BuildbotNetUsageData, we can know exactly what combination of plugins are working together, how much
people are customizing plugins, what versions of the main dependencies people run.

We take your privacy very seriously.

BuildbotNetUsageData will never send information specific to your Code or Intellectual Property. No repository url,
shell command values, host names, ip address or custom class names. If it does, then this is a bug, please report.

We still need to track unique number for installation. This is done via doing a sha1 hash of master’s hostname,
installation path and fqdn. Using a secure hash means there is no way of knowing hostname, path and fqdn given the
hash, but still there is a different hash for each master.

You can see exactly what is sent in the master’s twisted.log. Usage data is sent every time the master is started.

BuildbotNetUsageData can be configured with 4 values:

• c['buildbotNetUsageData'] = None disables the feature

• c['buildbotNetUsageData'] = 'basic' sends the basic information to buildbot including:

– versions of buildbot, python and twisted

– platform information (CPU, OS, distribution, python flavor (i.e CPython vs PyPy))

– mq and database type (mysql or sqlite?)

– www plugins usage

– Plugins usages: This counts the number of time each class of buildbot is used in your con-
figuration. This counts workers, builders, steps, schedulers, change sources. If the plugin is
subclassed, then it will be prefixed with a >

example of basic report (for the metabuildbot):

2.5. Configuration 73

Buildbot Documentation, Release 0.9.7

{
'versions': {

'Python': '2.7.6',
'Twisted': '15.5.0',
'Buildbot': '0.9.0rc2-176-g5fa9dbf'

},
'platform': {

'machine': 'x86_64',
'python_implementation': 'CPython',
'version': '#140-Ubuntu SMP Mon Jul',
'processor':
'x86_64',
'distro:': ('Ubuntu', '14.04', 'trusty')
},

'db': 'sqlite',
'mq': 'simple',
'plugins': {

'buildbot.schedulers.forcesched.ForceScheduler': 2,
'buildbot.schedulers.triggerable.Triggerable': 1,
'buildbot.config.BuilderConfig': 4,
'buildbot.schedulers.basic.AnyBranchScheduler': 2,
'buildbot.steps.source.git.Git': 4,
'>>buildbot.steps.trigger.Trigger': 2,
'>>>buildbot.worker.base.Worker': 4,
'buildbot.reporters.irc.IRC': 1,
'>>>buildbot.process.buildstep.LoggingBuildStep': 2},

'www_plugins': ['buildbot_travis', 'waterfall_view']
}

• c['buildbotNetUsageData'] = 'full' sends the basic information plus additional information:

– configuration of each builders: how the steps are arranged together. for ex:

{
'builders': [

['buildbot.steps.source.git.Git', '>>>buildbot.process.buildstep.
→˓LoggingBuildStep'],

['buildbot.steps.source.git.Git', '>>buildbot.steps.trigger.
→˓Trigger'],

['buildbot.steps.source.git.Git', '>>>buildbot.process.buildstep.
→˓LoggingBuildStep'],

['buildbot.steps.source.git.Git', '>>buildbot.steps.trigger.
→˓Trigger']]
}

• c['buildbotNetUsageData'] = myCustomFunction. You can also specify exactly what to send
using a callback.

The custom function will take the generated data from full report in the form of a dictionary, and
return a customized report as a jsonable dictionary. You can use this to filter any information you
don’t want to disclose. You can use a custom http_proxy environment variable in order to not send
any data while developing your callback.

Users Options

from buildbot.plugins import util
c['user_managers'] = []

74 Chapter 2. Buildbot Manual

Buildbot Documentation, Release 0.9.7

c['user_managers'].append(util.CommandlineUserManager(username="user",
passwd="userpw",
port=9990))

user_managers contains a list of ways to manually manage User Objects within Buildbot (see User Objects).
Currently implemented is a commandline tool buildbot user, described at length in user. In the future, a web client
will also be able to manage User Objects and their attributes.

As shown above, to enable the buildbot user tool, you must initialize a CommandlineUserManager instance in your
master.cfg. CommandlineUserManager instances require the following arguments:

username This is the username that will be registered on the PB connection and need to be used when calling
buildbot user.

passwd This is the passwd that will be registered on the PB connection and need to be used when calling buildbot
user.

port The PB connection port must be different than c[’protocols’][’pb’][’port’] and be specified when calling
buildbot user

Input Validation

import re
c['validation'] = {

'branch' : re.compile(r'^[\w.+/~-]*$'),
'revision' : re.compile(r'^[\w\.\-\/]*$'),
'property_name' : re.compile(r'^[\w\.\-\/\~:]*$'),
'property_value' : re.compile(r'^[\w\.\-\/\~:]*$'),

}

This option configures the validation applied to user inputs of various types. This validation is important since these
values are often included in command-line arguments executed on workers. Allowing arbitrary input from untrusted
users may raise security concerns.

The keys describe the type of input validated; the values are compiled regular expressions against which the input will
be matched. The defaults for each type of input are those given in the example, above.

Revision Links

The revlink parameter is used to create links from revision IDs in the web status to a web-view of your source
control system. The parameter’s value must be a callable.

By default, Buildbot is configured to generate revlinks for a number of open source hosting platforms.

The callable takes the revision id and repository argument, and should return an URL to the revision. Note that the
revision id may not always be in the form you expect, so code defensively. In particular, a revision of ”??” may be
supplied when no other information is available.

Note that SourceStamps that are not created from version-control changes (e.g., those created by a Nightly or
Periodic scheduler) may have an empty repository string, if the repository is not known to the scheduler.

Revision Link Helpers

Buildbot provides two helpers for generating revision links. buildbot.revlinks.RevlinkMatcher takes a
list of regular expressions, and replacement text. The regular expressions should all have the same number of capture

2.5. Configuration 75

Buildbot Documentation, Release 0.9.7

groups. The replacement text should have sed-style references to that capture groups (i.e. ‘1’ for the first capture
group), and a single ‘%s’ reference, for the revision ID. The repository given is tried against each regular expression
in turn. The results are the substituted into the replacement text, along with the revision ID to obtain the revision link.

from buildbot.plugins import util
c['revlink'] = util.RevlinkMatch([r'git://notmuchmail.org/git/(.*)'],

r'http://git.notmuchmail.org/git/\1/commit/%s')

buildbot.revlinks.RevlinkMultiplexer takes a list of revision link callables, and tries each in turn,
returning the first successful match.

Codebase Generator

all_repositories = {
r'https://hg/hg/mailsuite/mailclient': 'mailexe',
r'https://hg/hg/mailsuite/mapilib': 'mapilib',
r'https://hg/hg/mailsuite/imaplib': 'imaplib',
r'https://github.com/mailinc/mailsuite/mailclient': 'mailexe',
r'https://github.com/mailinc/mailsuite/mapilib': 'mapilib',
r'https://github.com/mailinc/mailsuite/imaplib': 'imaplib',

}

def codebaseGenerator(chdict):
return all_repositories[chdict['repository']]

c['codebaseGenerator'] = codebaseGenerator

For any incoming change, the codebase is set to ‘’. This codebase value is sufficient if all changes come from the same
repository (or clones). If changes come from different repositories, extra processing will be needed to determine the
codebase for the incoming change. This codebase will then be a logical name for the combination of repository and or
branch etc.

The codebaseGenerator accepts a change dictionary as produced by the buildbot.db.changes.
ChangesConnectorComponent, with a changeid equal to None.

Change Sources

• Choosing a Change Source

• Configuring Change Sources

– Repository and Project

• Mail-parsing ChangeSources

– Subscribing the Buildmaster

– Using Maildirs

– Parsing Email Change Messages

– CVSMaildirSource

– SVNCommitEmailMaildirSource

– BzrLaunchpadEmailMaildirSource

76 Chapter 2. Buildbot Manual

Buildbot Documentation, Release 0.9.7

• PBChangeSource

– Bzr Hook

• P4Source

– Example

• SVNPoller

• Bzr Poller

• GitPoller

• HgPoller

• GitHubPullrequestPoller

• BitbucketPullrequestPoller

• GerritChangeSource

• GerritEventLogPoller

• GerritChangeFilter

• Change Hooks (HTTP Notifications)

A Version Control System maintains a source tree, and tells the buildmaster when it changes. The first step of each
Build is typically to acquire a copy of some version of this tree.

This chapter describes how the Buildbot learns about what Changes have occurred. For more information on VC
systems and Changes, see Version Control Systems.

Changes can be provided by a variety of ChangeSource types, although any given project will typically have only
a single ChangeSource active. This section provides a description of all available ChangeSource types and
explains how to set up each of them.

Choosing a Change Source

There are a variety of ChangeSource classes available, some of which are meant to be used in conjunction with
other tools to deliver Change events from the VC repository to the buildmaster.

As a quick guide, here is a list of VC systems and the ChangeSources that might be useful with
them. Note that some of these modules are in Buildbot’s master/contrib (https://github.com/buildbot/buildbot-
contrib/blob/master/master/contrib) directory, meaning that they have been offered by other users in hopes they may
be useful, and might require some additional work to make them functional.

CVS

• CVSMaildirSource (watching mail sent by master/contrib/buildbot_cvs_mail.py
(https://github.com/buildbot/buildbot-contrib/blob/master/master/contrib/buildbot_cvs_mail.py) script)

• PBChangeSource (listening for connections from buildbot sendchange run in a loginfo script)

• PBChangeSource (listening for connections from a long-running master/contrib/viewcvspoll.py
(https://github.com/buildbot/buildbot-contrib/blob/master/master/contrib/viewcvspoll.py) polling process
which examines the ViewCVS database directly)

• Change Hooks in WebStatus

SVN

2.5. Configuration 77

https://github.com/buildbot/buildbot-contrib/blob/master/master/contrib
https://github.com/buildbot/buildbot-contrib/blob/master/master/contrib/buildbot_cvs_mail.py
https://github.com/buildbot/buildbot-contrib/blob/master/master/contrib/viewcvspoll.py

Buildbot Documentation, Release 0.9.7

• PBChangeSource (listening for connections from master/contrib/svn_buildbot.py
(https://github.com/buildbot/buildbot-contrib/blob/master/master/contrib/svn_buildbot.py) run in a postcommit
script)

• PBChangeSource (listening for connections from a long-running master/contrib/svn_watcher.py
(https://github.com/buildbot/buildbot-contrib/blob/master/master/contrib/svn_watcher.py) or mas-
ter/contrib/svnpoller.py (https://github.com/buildbot/buildbot-contrib/blob/master/master/contrib/svnpoller.py)
polling process

• SVNCommitEmailMaildirSource (watching for email sent by commit-email.pl)

• SVNPoller (polling the SVN repository)

• Change Hooks in WebStatus

Darcs

• PBChangeSource (listening for connections from master/contrib/darcs_buildbot.py
(https://github.com/buildbot/buildbot-contrib/blob/master/master/contrib/darcs_buildbot.py) in a commit
script)

• Change Hooks in WebStatus

Mercurial

• Change Hooks in WebStatus (including master/contrib/hgbuildbot.py (https://github.com/buildbot/buildbot-
contrib/blob/master/master/contrib/hgbuildbot.py), configurable in a changegroup hook)

• BitBucket change hook (specifically designed for BitBucket notifications, but requiring a publicly-accessible
WebStatus)

• HgPoller (polling a remote Mercurial repository)

• BitbucketPullrequestPoller (polling Bitbucket for pull requests)

• Mail-parsing ChangeSources, though there are no ready-to-use recipes

Bzr (the newer Bazaar)

• PBChangeSource (listening for connections from master/contrib/bzr_buildbot.py
(https://github.com/buildbot/buildbot-contrib/blob/master/master/contrib/bzr_buildbot.py) run in a post-
change-branch-tip or commit hook)

• BzrPoller (polling the Bzr repository)

• Change Hooks in WebStatus

Git

• PBChangeSource (listening for connections from master/contrib/git_buildbot.py
(https://github.com/buildbot/buildbot-contrib/blob/master/master/contrib/git_buildbot.py) run in the post-
receive hook)

• PBChangeSource (listening for connections from master/contrib/github_buildbot.py
(https://github.com/buildbot/buildbot-contrib/blob/master/master/contrib/github_buildbot.py), which listens for
notifications from GitHub)

• Change Hooks in WebStatus

• GitHub change hook (specifically designed for GitHub notifications, but requiring a publicly-accessible Web-
Status)

• BitBucket change hook (specifically designed for BitBucket notifications, but requiring a publicly-accessible
WebStatus)

• GitPoller (polling a remote Git repository)

78 Chapter 2. Buildbot Manual

https://github.com/buildbot/buildbot-contrib/blob/master/master/contrib/svn_buildbot.py
https://github.com/buildbot/buildbot-contrib/blob/master/master/contrib/svn_watcher.py
https://github.com/buildbot/buildbot-contrib/blob/master/master/contrib/svnpoller.py
https://github.com/buildbot/buildbot-contrib/blob/master/master/contrib/svnpoller.py
https://github.com/buildbot/buildbot-contrib/blob/master/master/contrib/darcs_buildbot.py
https://github.com/buildbot/buildbot-contrib/blob/master/master/contrib/hgbuildbot.py
https://github.com/buildbot/buildbot-contrib/blob/master/master/contrib/bzr_buildbot.py
https://github.com/buildbot/buildbot-contrib/blob/master/master/contrib/git_buildbot.py
https://github.com/buildbot/buildbot-contrib/blob/master/master/contrib/github_buildbot.py

Buildbot Documentation, Release 0.9.7

• GitHubPullrequestPoller (polling GitHub API for pull requests)

• BitbucketPullrequestPoller (polling Bitbucket for pull requests)

Repo/Gerrit

• GerritChangeSource connects to Gerrit via SSH to get a live stream of changes

• GerritEventLogPoller connects to Gerrit via HTTP with the help of the plugin events-log
(https://gerrit.googlesource.com/plugins/events-log/)

Monotone

• PBChangeSource (listening for connections from monotone-buildbot.lua, which is available with
Monotone)

All VC systems can be driven by a PBChangeSource and the buildbot sendchange tool run from some form
of commit script. If you write an email parsing function, they can also all be driven by a suitable mail-parsing source.
Additionally, handlers for web-based notification (i.e. from GitHub) can be used with WebStatus’ change_hook mod-
ule. The interface is simple, so adding your own handlers (and sharing!) should be a breeze.

See chsrc for a full list of change sources.

Configuring Change Sources

The change_source configuration key holds all active change sources for the configuration.

Most configurations have a single ChangeSource, watching only a single tree, e.g.,

from buildbot.plugins import changes

c['change_source'] = changes.PBChangeSource()

For more advanced configurations, the parameter can be a list of change sources:

source1 = ...
source2 = ...
c['change_source'] = [

source1, source1
]

Repository and Project

ChangeSources will, in general, automatically provide the proper repository attribute for any changes they
produce. For systems which operate on URL-like specifiers, this is a repository URL. Other ChangeSources adapt
the concept as necessary.

Many ChangeSources allow you to specify a project, as well. This attribute is useful when building from sev-
eral distinct codebases in the same buildmaster: the project string can serve to differentiate the different codebases.
Schedulers can filter on project, so you can configure different builders to run for each project.

Mail-parsing ChangeSources

Many projects publish information about changes to their source tree by sending an email message out to a mailing list,
frequently named PROJECT-commits or PROJECT-changes. Each message usually contains a description of
the change (who made the change, which files were affected) and sometimes a copy of the diff. Humans can subscribe
to this list to stay informed about what’s happening to the source tree.

2.5. Configuration 79

https://gerrit.googlesource.com/plugins/events-log/

Buildbot Documentation, Release 0.9.7

The Buildbot can also be subscribed to a -commits mailing list, and can trigger builds in response to Changes that
it hears about. The buildmaster admin needs to arrange for these email messages to arrive in a place where the
buildmaster can find them, and configure the buildmaster to parse the messages correctly. Once that is in place,
the email parser will create Change objects and deliver them to the schedulers (see Schedulers) just like any other
ChangeSource.

There are two components to setting up an email-based ChangeSource. The first is to route the email messages to the
buildmaster, which is done by dropping them into a maildir. The second is to actually parse the messages, which is
highly dependent upon the tool that was used to create them. Each VC system has a collection of favorite change-
emailing tools, and each has a slightly different format, so each has a different parsing function. There is a separate
ChangeSource variant for each parsing function.

Once you’ve chosen a maildir location and a parsing function, create the change source and put it in
change_source:

from buildbot.plugins import changes

c['change_source'] = changes.CVSMaildirSource("~/maildir-buildbot",
prefix="/trunk/")

Subscribing the Buildmaster

The recommended way to install the Buildbot is to create a dedicated account for the buildmaster. If you do this, the
account will probably have a distinct email address (perhaps buildmaster@example.org). Then just arrange for this
account’s email to be delivered to a suitable maildir (described in the next section).

If the Buildbot does not have its own account, extension addresses can be used to distinguish between email intended
for the buildmaster and email intended for the rest of the account. In most modern MTAs, the e.g. foo@example.org
account has control over every email address at example.org which begins with “foo”, such that email addressed to
account-foo@example.org can be delivered to a different destination than account-bar@example.org. qmail does this
by using separate .qmail files for the two destinations (.qmail-foo and .qmail-bar, with .qmail controlling
the base address and .qmail-default controlling all other extensions). Other MTAs have similar mechanisms.

Thus you can assign an extension address like foo-buildmaster@example.org to the buildmaster, and retain
foo@example.org for your own use.

Using Maildirs

A maildir is a simple directory structure originally developed for qmail that allows safe atomic update without locking.
Create a base directory with three subdirectories: new, tmp, and cur. When messages arrive, they are put into a
uniquely-named file (using pids, timestamps, and random numbers) in tmp. When the file is complete, it is atomically
renamed into new. Eventually the buildmaster notices the file in new, reads and parses the contents, then moves it
into cur. A cronjob can be used to delete files in cur at leisure.

Maildirs are frequently created with the maildirmake tool, but a simple mkdir -p ~/MAILDIR/cur,new,
tmp is pretty much equivalent.

Many modern MTAs can deliver directly to maildirs. The usual .forward or .procmailrc syntax is to name the
base directory with a trailing slash, so something like ~/MAILDIR/. qmail and postfix are maildir-capable MTAs,
and procmail is a maildir-capable MDA (Mail Delivery Agent).

Here is an example procmail config, located in ~/.procmailrc:

.procmailrc
routes incoming mail to appropriate mailboxes
PATH=/usr/bin:/usr/local/bin

80 Chapter 2. Buildbot Manual

Buildbot Documentation, Release 0.9.7

MAILDIR=$HOME/Mail
LOGFILE=.procmail_log
SHELL=/bin/sh

:0

*
new

If procmail is not setup on a system wide basis, then the following one-line .forward file will invoke it.

!/usr/bin/procmail

For MTAs which cannot put files into maildirs directly, the safecat tool can be executed from a .forward file to
accomplish the same thing.

The Buildmaster uses the linux DNotify facility to receive immediate notification when the maildir’s new directory
has changed. When this facility is not available, it polls the directory for new messages, every 10 seconds by default.

Parsing Email Change Messages

The second component to setting up an email-based ChangeSource is to parse the actual notices. This is highly
dependent upon the VC system and commit script in use.

A couple of common tools used to create these change emails, along with the Buildbot tools to parse them, are:

CVS

Buildbot CVS MailNotifier CVSMaildirSource

SVN

svnmailer http://opensource.perlig.de/en/svnmailer/

commit-email.pl SVNCommitEmailMaildirSource

Bzr

Launchpad BzrLaunchpadEmailMaildirSource

Mercurial

NotifyExtension https://www.mercurial-scm.org/wiki/NotifyExtension

Git

post-receive-email http://git.kernel.org/?p=git/git.git;a=blob;f=contrib/hooks/post-receive-email;hb=HEAD

The following sections describe the parsers available for each of these tools.

Most of these parsers accept a prefix= argument, which is used to limit the set of files that the buildmaster pays
attention to. This is most useful for systems like CVS and SVN which put multiple projects in a single repository
(or use repository names to indicate branches). Each filename that appears in the email is tested against the prefix: if
the filename does not start with the prefix, the file is ignored. If the filename does start with the prefix, that prefix is
stripped from the filename before any further processing is done. Thus the prefix usually ends with a slash.

CVSMaildirSource

class buildbot.changes.mail.CVSMaildirSource

2.5. Configuration 81

http://opensource.perlig.de/en/svnmailer/
https://www.mercurial-scm.org/wiki/NotifyExtension
http://git.kernel.org/?p=git/git.git;a=blob;f=contrib/hooks/post-receive-email;hb=HEAD

Buildbot Documentation, Release 0.9.7

This parser works with the master/contrib/buildbot_cvs_mail.py (https://github.com/buildbot/buildbot-
contrib/blob/master/master/contrib/buildbot_cvs_mail.py) script.

The script sends an email containing all the files submitted in one directory. It is invoked by using the CVSROOT/
loginfo facility.

The Buildbot’s CVSMaildirSource knows how to parse these messages and turn them into Change objects. It
takes the directory name of the maildir root. For example:

from buildbot.plugins import changes

c['change_source'] = changes.CVSMaildirSource("/home/buildbot/Mail")

Configuration of CVS and buildbot_cvs_mail.py (https://github.com/buildbot/buildbot-
contrib/blob/master/master/contrib/buildbot_cvs_mail.py)

CVS must be configured to invoke the buildbot_cvs_mail.py (https://github.com/buildbot/buildbot-
contrib/blob/master/master/contrib/buildbot_cvs_mail.py) script when files are checked in. This is done via the
CVS loginfo configuration file.

To update this, first do:

cvs checkout CVSROOT

cd to the CVSROOT directory and edit the file loginfo, adding a line like:

SomeModule /cvsroot/CVSROOT/buildbot_cvs_mail.py --cvsroot :ext:example.com:/cvsroot -
→˓e buildbot -P SomeModule %@{sVv@}

Note: For cvs version 1.12.x, the --path %p option is required. Version 1.11.x and 1.12.x report the directory path
differently.

The above example you put the buildbot_cvs_mail.py (https://github.com/buildbot/buildbot-
contrib/blob/master/master/contrib/buildbot_cvs_mail.py) script under /cvsroot/CVSROOT. It can be anywhere.
Run the script with --help to see all the options. At the very least, the options -e (email) and -P (project) should
be specified. The line must end with %{sVv}. This is expanded to the files that were modified.

Additional entries can be added to support more modules.

See buildbot_cvs_mail.py --help for more information on the available options.

SVNCommitEmailMaildirSource

class buildbot.changes.mail.SVNCommitEmailMaildirSource

SVNCommitEmailMaildirSource parses message sent out by the commit-email.pl script, which is in-
cluded in the Subversion distribution.

It does not currently handle branches: all of the Change objects that it creates will be associated with the default (i.e.
trunk) branch.

from buildbot.plugins import changes

c['change_source'] = changes.SVNCommitEmailMaildirSource("~/maildir-buildbot")

82 Chapter 2. Buildbot Manual

https://github.com/buildbot/buildbot-contrib/blob/master/master/contrib/buildbot_cvs_mail.py
https://github.com/buildbot/buildbot-contrib/blob/master/master/contrib/buildbot_cvs_mail.py
https://github.com/buildbot/buildbot-contrib/blob/master/master/contrib/buildbot_cvs_mail.py

Buildbot Documentation, Release 0.9.7

BzrLaunchpadEmailMaildirSource

class buildbot.changes.mail.BzrLaunchpadEmailMaildirSource

BzrLaunchpadEmailMaildirSource parses the mails that are sent to addresses that subscribe to branch revi-
sion notifications for a bzr branch hosted on Launchpad.

The branch name defaults to lp:Launchpad path. For example lp:~maria-captains/maria/5.1.

If only a single branch is used, the default branch name can be changed by setting defaultBranch.

For multiple branches, pass a dictionary as the value of the branchMap option to map specific repository paths to
specific branch names (see example below). The leading lp: prefix of the path is optional.

The prefix option is not supported (it is silently ignored). Use the branchMap and defaultBranch instead to
assign changes to branches (and just do not subscribe the Buildbot to branches that are not of interest).

The revision number is obtained from the email text. The bzr revision id is not available in the mails sent by Launchpad.
However, it is possible to set the bzr append_revisions_only option for public shared repositories to avoid new pushes
of merges changing the meaning of old revision numbers.

from buildbot.plugins import changes

bm = {
'lp:~maria-captains/maria/5.1': '5.1',
'lp:~maria-captains/maria/6.0': '6.0'

}
c['change_source'] = changes.BzrLaunchpadEmailMaildirSource("~/maildir-buildbot",

branchMap=bm)

PBChangeSource

class buildbot.changes.pb.PBChangeSource

PBChangeSource actually listens on a TCP port for clients to connect and push change notices into the Buildmaster.
This is used by the built-in buildbot sendchange notification tool, as well as several version-control hook
scripts. This change is also useful for creating new kinds of change sources that work on a push model instead of some
kind of subscription scheme, for example a script which is run out of an email .forward file. This ChangeSource
always runs on the same TCP port as the workers. It shares the same protocol, and in fact shares the same space of
“usernames”, so you cannot configure a PBChangeSource with the same name as a worker.

If you have a publicly accessible worker port, and are using PBChangeSource, you must establish a secure user-
name and password for the change source. If your sendchange credentials are known (e.g., the defaults), then your
buildmaster is susceptible to injection of arbitrary changes, which (depending on the build factories) could lead to
arbitrary code execution on workers.

The PBChangeSource is created with the following arguments.

port which port to listen on. If None (which is the default), it shares the port used for worker connections.

user The user account that the client program must use to connect. Defaults to change

passwd The password for the connection - defaults to changepw. Do not use this default on a publicly exposed
port!

prefix The prefix to be found and stripped from filenames delivered over the connection, defaulting to None. Any
filenames which do not start with this prefix will be removed. If all the filenames in a given Change are removed,
the that whole Change will be dropped. This string should probably end with a directory separator.

2.5. Configuration 83

Buildbot Documentation, Release 0.9.7

This is useful for changes coming from version control systems that represent branches as parent directo-
ries within the repository (like SVN and Perforce). Use a prefix of trunk/ or project/branches/
foobranch/ to only follow one branch and to get correct tree-relative filenames. Without a prefix, the
PBChangeSource will probably deliver Changes with filenames like trunk/foo.c instead of just foo.c.
Of course this also depends upon the tool sending the Changes in (like buildbot sendchange) and what
filenames it is delivering: that tool may be filtering and stripping prefixes at the sending end.

For example:

from buildbot.plugins import changes

c['change_source'] = changes.PBChangeSource(port=9999, user='laura', passwd='fpga')

The following hooks are useful for sending changes to a PBChangeSource:

Bzr Hook

Bzr is also written in Python, and the Bzr hook depends on Twisted to send the changes.

To install, put master/contrib/bzr_buildbot.py (https://github.com/buildbot/buildbot-
contrib/blob/master/master/contrib/bzr_buildbot.py) in one of your plugins locations a bzr plugins directory
(e.g., ~/.bazaar/plugins). Then, in one of your bazaar conf files (e.g., ~/.bazaar/locations.conf),
set the location you want to connect with Buildbot with these keys:

• buildbot_on one of ‘commit’, ‘push, or ‘change’. Turns the plugin on to report changes via commit, changes
via push, or any changes to the trunk. ‘change’ is recommended.

• buildbot_server (required to send to a Buildbot master) the URL of the Buildbot master to which you will
connect (as of this writing, the same server and port to which workers connect).

• buildbot_port (optional, defaults to 9989) the port of the Buildbot master to which you will connect (as of
this writing, the same server and port to which workers connect)

• buildbot_pqm (optional, defaults to not pqm) Normally, the user that commits the revision is the user that
is responsible for the change. When run in a pqm (Patch Queue Manager, see https://launchpad.net/pqm) en-
vironment, the user that commits is the Patch Queue Manager, and the user that committed the parent revision
is responsible for the change. To turn on the pqm mode, set this value to any of (case-insensitive) “Yes”, “Y”,
“True”, or “T”.

• buildbot_dry_run (optional, defaults to not a dry run) Normally, the post-commit hook will attempt to
communicate with the configured Buildbot server and port. If this parameter is included and any of (case-
insensitive) “Yes”, “Y”, “True”, or “T”, then the hook will simply print what it would have sent, but not attempt
to contact the Buildbot master.

• buildbot_send_branch_name (optional, defaults to not sending the branch name) If your Buildbot’s bzr
source build step uses a repourl, do not turn this on. If your buildbot’s bzr build step uses a baseURL, then you
may set this value to any of (case-insensitive) “Yes”, “Y”, “True”, or “T” to have the Buildbot master append
the branch name to the baseURL.

Note: The bzr smart server (as of version 2.2.2) doesn’t know how to resolve bzr:// urls into absolute paths
so any paths in locations.conf won’t match, hence no change notifications will be sent to Buildbot. Setting
configuration parameters globally or in-branch might still work. When Buildbot no longer has a hardcoded password,
it will be a configuration option here as well.

Here’s a simple example that you might have in your ~/.bazaar/locations.conf.

84 Chapter 2. Buildbot Manual

https://github.com/buildbot/buildbot-contrib/blob/master/master/contrib/bzr_buildbot.py
https://launchpad.net/pqm

Buildbot Documentation, Release 0.9.7

[chroot-*:///var/local/myrepo/mybranch]
buildbot_on = change
buildbot_server = localhost

P4Source

The P4Source periodically polls a Perforce (http://www.perforce.com/) depot for changes. It accepts the following
arguments:

p4port The Perforce server to connect to (as host:port).

p4user The Perforce user.

p4passwd The Perforce password.

p4base The base depot path to watch, without the trailing ‘/...’.

p4bin An optional string parameter. Specify the location of the perforce command line binary (p4). You only need
to do this if the perforce binary is not in the path of the Buildbot user. Defaults to p4.

split_file A function that maps a pathname, without the leading p4base, to a (branch, filename) tuple. The
default just returns (None, branchfile), which effectively disables branch support. You should supply a
function which understands your repository structure.

pollInterval How often to poll, in seconds. Defaults to 600 (10 minutes).

project Set the name of the project to be used for the P4Source. This will then be set in any changes generated
by the P4Source, and can be used in a Change Filter for triggering particular builders.

pollAtLaunch Determines when the first poll occurs. True = immediately on launch, False = wait for one pollInter-
val (default).

histmax The maximum number of changes to inspect at a time. If more than this number occur since the last poll,
older changes will be silently ignored.

encoding The character encoding of p4‘s output. This defaults to “utf8”, but if your commit messages are in
another encoding, specify that here. For example, if you’re using Perforce on Windows, you may need to use
“cp437” as the encoding if “utf8” generates errors in your master log.

server_tz The timezone of the Perforce server, using the usual timezone format (e.g: "Europe/Stockholm")
in case it’s not in UTC.

use_tickets Set to True to use ticket-based authentication, instead of passwords (but you still need to specify
p4passwd).

ticket_login_interval How often to get a new ticket, in seconds, when use_tickets is enabled. Defaults
to 86400 (24 hours).

Example

This configuration uses the P4PORT, P4USER, and P4PASSWD specified in the buildmaster’s environment. It watches
a project in which the branch name is simply the next path component, and the file is all path components after.

from buildbot.plugins import changes

s = changes.P4Source(p4base='//depot/project/',
split_file=lambda branchfile: branchfile.split('/',1))

c['change_source'] = s

2.5. Configuration 85

http://www.perforce.com/

Buildbot Documentation, Release 0.9.7

SVNPoller

class buildbot.changes.svnpoller.SVNPoller

The SVNPoller is a ChangeSource which periodically polls a Subversion (http://subversion.tigris.org/) repository
for new revisions, by running the svn log command in a subshell. It can watch a single branch or multiple branches.

SVNPoller accepts the following arguments:

repourl The base URL path to watch, like svn://svn.twistedmatrix.com/svn/Twisted/trunk,
or http://divmod.org/svn/Divmo/, or even file:///home/svn/Repository/ProjectA/
branches/1.5/. This must include the access scheme, the location of the repository (both the hostname
for remote ones, and any additional directory names necessary to get to the repository), and the sub-path within
the repository’s virtual filesystem for the project and branch of interest.

The SVNPoller will only pay attention to files inside the subdirectory specified by the complete repourl.

split_file A function to convert pathnames into (branch, relative_pathname) tuples. Use this to
explain your repository’s branch-naming policy to SVNPoller. This function must accept a single string
(the pathname relative to the repository) and return a two-entry tuple. Directory pathnames always end with
a right slash to distinguish them from files, like trunk/src/, or src/. There are a few utility functions in
buildbot.changes.svnpoller that can be used as a split_file function; see below for details.

For directories, the relative pathname returned by split_file should end with a right slash but an empty
string is also accepted for the root, like ("branches/1.5.x", "") being converted from "branches/
1.5.x/".

The default value always returns (None, path), which indicates that all files are on the trunk.

Subclasses of SVNPoller can override the split_file method instead of using the split_file= argu-
ment.

project Set the name of the project to be used for the SVNPoller. This will then be set in any changes generated
by the SVNPoller, and can be used in a Change Filter for triggering particular builders.

svnuser An optional string parameter. If set, the option –user argument will be added to all svn commands. Use
this if you have to authenticate to the svn server before you can do svn info or svn log commands.

svnpasswd Like svnuser, this will cause a option –password argument to be passed to all svn commands.

pollInterval How often to poll, in seconds. Defaults to 600 (checking once every 10 minutes). Lower this if you
want the Buildbot to notice changes faster, raise it if you want to reduce the network and CPU load on your svn
server. Please be considerate of public SVN repositories by using a large interval when polling them.

pollAtLaunch Determines when the first poll occurs. True = immediately on launch, False = wait for one pollInter-
val (default).

histmax The maximum number of changes to inspect at a time. Every pollInterval seconds, the SVNPoller
asks for the last histmax changes and looks through them for any revisions it does not already know about. If
more than histmax revisions have been committed since the last poll, older changes will be silently ignored.
Larger values of histmax will cause more time and memory to be consumed on each poll attempt. histmax
defaults to 100.

svnbin This controls the svn executable to use. If subversion is installed in a weird place on your system (outside
of the buildmaster’s PATH), use this to tell SVNPoller where to find it. The default value of svn will almost
always be sufficient.

revlinktmpl This parameter is deprecated in favour of specifying a global revlink option. This parameter allows a
link to be provided for each revision (for example, to websvn or viewvc). These links appear anywhere changes
are shown, such as on build or change pages. The proper form for this parameter is an URL with the portion
that will substitute for a revision number replaced by ‘’%s’‘. For example, 'http://myserver/websvn/
revision.php?rev=%s' could be used to cause revision links to be created to a websvn repository viewer.

86 Chapter 2. Buildbot Manual

http://subversion.tigris.org/

Buildbot Documentation, Release 0.9.7

cachepath If specified, this is a pathname of a cache file that SVNPoller will use to store its state between
restarts of the master.

extra_args If specified, the extra arguments will be added to the svn command args.

Several split file functions are available for common SVN repository layouts. For a poller that is only monitoring
trunk, the default split file function is available explicitly as split_file_alwaystrunk:

from buildbot.plugins import changes, util

c['change_source'] = changes.SVNPoller(
repourl="svn://svn.twistedmatrix.com/svn/Twisted/trunk",
split_file=util.svn.split_file_alwaystrunk)

For repositories with the /trunk and /branches/BRANCH layout, split_file_branches will do the job:

from buildbot.plugins import changes, util

c['change_source'] = changes.SVNPoller(
repourl="https://amanda.svn.sourceforge.net/svnroot/amanda/amanda",
split_file=util.svn.split_file_branches)

When using this splitter the poller will set the project attribute of any changes to the project attribute of the
poller.

For repositories with the PROJECT/trunk and PROJECT/branches/BRANCH layout,
split_file_projects_branches will do the job:

from buildbot.plugins import changes, util

c['change_source'] = changes.SVNPoller(
repourl="https://amanda.svn.sourceforge.net/svnroot/amanda/",
split_file=util.svn.split_file_projects_branches)

When using this splitter the poller will set the project attribute of any changes to the project determined by the
splitter.

The SVNPoller is highly adaptable to various Subversion layouts. See Customizing SVNPoller for details and some
common scenarios.

Bzr Poller

If you cannot insert a Bzr hook in the server, you can use the BzrPoller. To use it, put mas-
ter/contrib/bzr_buildbot.py (https://github.com/buildbot/buildbot-contrib/blob/master/master/contrib/bzr_buildbot.py)
somewhere that your Buildbot configuration can import it. Even putting it in the same directory as the master.cfg
should work. Install the poller in the Buildbot configuration as with any other change source. Minimally, provide a
URL that you want to poll (bzr://, bzr+ssh://, or lp:), making sure the Buildbot user has necessary privileges.

put bzr_buildbot.py file to the same directory as master.cfg
from bzr_buildbot import BzrPoller

c['change_source'] = BzrPoller(
url='bzr://hostname/my_project',
poll_interval=300)

The BzrPoller parameters are:

url The URL to poll.

2.5. Configuration 87

https://github.com/buildbot/buildbot-contrib/blob/master/master/contrib/bzr_buildbot.py
https://github.com/buildbot/buildbot-contrib/blob/master/master/contrib/bzr_buildbot.py

Buildbot Documentation, Release 0.9.7

poll_interval The number of seconds to wait between polls. Defaults to 10 minutes.

branch_name Any value to be used as the branch name. Defaults to None, or specify a
string, or specify the constants from bzr_buildbot.py (https://github.com/buildbot/buildbot-
contrib/blob/master/master/contrib/bzr_buildbot.py) SHORT or FULL to get the short branch name or
full branch address.

blame_merge_author normally, the user that commits the revision is the user that is responsible for the change.
When run in a pqm (Patch Queue Manager, see https://launchpad.net/pqm) environment, the user that commits
is the Patch Queue Manager, and the user that committed the merged, parent revision is responsible for the
change. Set this value to True if this is pointed against a PQM-managed branch.

GitPoller

If you cannot take advantage of post-receive hooks as provided by master/contrib/git_buildbot.py
(https://github.com/buildbot/buildbot-contrib/blob/master/master/contrib/git_buildbot.py) for example, then you
can use the GitPoller.

The GitPoller periodically fetches from a remote Git repository and processes any changes. It requires its own
working directory for operation. The default should be adequate, but it can be overridden via the workdir property.

Note: There can only be a single GitPoller pointed at any given repository.

The GitPoller requires Git-1.7 and later. It accepts the following arguments:

repourl the git-url that describes the remote repository, e.g. git@example.com:foobaz/myrepo.git (see
the git fetch help for more info on git-url formats)

branches One of the following:

• a list of the branches to fetch.

• True indicating that all branches should be fetched

• a callable which takes a single argument. It should take a remote refspec (such as 'refs/heads/
master', and return a boolean indicating whether that branch should be fetched.

branch accepts a single branch name to fetch. Exists for backwards compatibility with old configurations.

pollInterval interval in seconds between polls, default is 10 minutes

pollAtLaunch Determines when the first poll occurs. True = immediately on launch, False = wait for one pollInter-
val (default).

buildPushesWithNoCommits Determine if a push on a new branch or update of an already known branch with
already known commits should trigger a build. This is useful in case you have build steps depending on the name
of the branch and you use topic branches for development. When you merge your topic branch into “master”
(for instance), a new build will be triggered. (defaults to False).

gitbin path to the Git binary, defaults to just 'git'

category Set the category to be used for the changes produced by the GitPoller. This will then be set in any
changes generated by the GitPoller, and can be used in a Change Filter for triggering particular builders.

project Set the name of the project to be used for the GitPoller. This will then be set in any changes generated
by the GitPoller, and can be used in a Change Filter for triggering particular builders.

usetimestamps parse each revision’s commit timestamp (default is True), or ignore it in favor of the current time
(so recently processed commits appear together in the waterfall page)

88 Chapter 2. Buildbot Manual

https://github.com/buildbot/buildbot-contrib/blob/master/master/contrib/bzr_buildbot.py
https://launchpad.net/pqm
https://github.com/buildbot/buildbot-contrib/blob/master/master/contrib/git_buildbot.py

Buildbot Documentation, Release 0.9.7

encoding Set encoding will be used to parse author’s name and commit message. Default encoding is 'utf-8'.
This will not be applied to file names since Git will translate non-ascii file names to unreadable escape sequences.

workdir the directory where the poller should keep its local repository. The default is gitpoller_work. If this
is a relative path, it will be interpreted relative to the master’s basedir. Multiple Git pollers can share the same
directory.

only_tags Determines if the GitPoller should poll for new tags in the git repository.

A configuration for the Git poller might look like this:

from buildbot.plugins import changes

c['change_source'] = changes.GitPoller(repourl='git@example.com:foobaz/myrepo.git',
branches=['master', 'great_new_feature'])

HgPoller

The HgPoller periodically pulls a named branch from a remote Mercurial repository and processes any changes. It
requires its own working directory for operation, which must be specified via the workdir property.

The HgPoller requires a working hg executable, and at least a read-only access to the repository it polls (possibly
through ssh keys or by tweaking the hgrc of the system user Buildbot runs as).

The HgPoller will not transmit any change if there are several heads on the watched named branch. This is similar
(although not identical) to the Mercurial executable behaviour. This exceptional condition is usually the result of a
developer mistake, and usually does not last for long. It is reported in logs. If fixed by a later merge, the buildmaster
administrator does not have anything to do: that merge will be transmitted, together with the intermediate ones.

The HgPoller accepts the following arguments:

name the name of the poller. This must be unique, and defaults to the repourl.

repourl the url that describes the remote repository, e.g. http://hg.example.com/projects/myrepo.
Any url suitable for hg pull can be specified.

branch the desired branch to pull, will default to 'default'

workdir the directory where the poller should keep its local repository. It is mandatory for now, although later
releases may provide a meaningful default.

It also serves to identify the poller in the buildmaster internal database. Changing it may result in re-processing
all changes so far.

Several HgPoller instances may share the same workdir for mutualisation of the common history between
two different branches, thus easing on local and remote system resources and bandwidth.

If relative, the workdir will be interpreted from the master directory.

pollInterval interval in seconds between polls, default is 10 minutes

pollAtLaunch Determines when the first poll occurs. True = immediately on launch, False = wait for one pollInter-
val (default).

hgbin path to the Mercurial binary, defaults to just 'hg'

category Set the category to be used for the changes produced by the HgPoller. This will then be set in any
changes generated by the HgPoller, and can be used in a Change Filter for triggering particular builders.

project Set the name of the project to be used for the HgPoller. This will then be set in any changes generated
by the HgPoller, and can be used in a Change Filter for triggering particular builders.

2.5. Configuration 89

Buildbot Documentation, Release 0.9.7

usetimestamps parse each revision’s commit timestamp (default is True), or ignore it in favor of the current time
(so recently processed commits appear together in the waterfall page)

encoding Set encoding will be used to parse author’s name and commit message. Default encoding is 'utf-8'.

A configuration for the Mercurial poller might look like this:

from buildbot.plugins import changes

c['change_source'] = changes.HgPoller(repourl='http://hg.example.org/projects/myrepo',
branch='great_new_feature',
workdir='hg-myrepo')

GitHubPullrequestPoller

class buildbot.changes.github.GitHubPullrequestPoller

This GitHubPullrequestPoller periodically polls the GitHub API for new or updated pull requests. The
author, revision, revlink, branch and files fields in the recorded changes are populated with information extracted from
the pull request. This allows to filter for certain changes in files and create a blamelist based on the authors in the
GitHub pull request.

The GitHubPullrequestPoller accepts the following arguments:

owner The owner of the GitHub repository. This argument is required.

repo The name of the GitHub repository. This argument is required.

branches List of branches to accept as base branch (e.g. master). Defaults to None and accepts all branches as
base.

pollInterval Poll interval between polls in seconds. Default is 10 minutes.

pollAtLaunch Whether to poll on startup of the buildbot master. Default is False and first poll will occur pollInter-
val seconds after the master start.

category Set the category to be used for the changes produced by the GitHubPullrequestPoller. This will
then be set in any changes generated by the GitHubPullrequestPoller, and can be used in a Change
Filter for triggering particular builders.

project Set the name of the project to be used for the GitHubPullrequestPoller. This will then be set
in any changes generated by the GitHubPullrequestPoller, and can be used in a Change Filter for
triggering particular builders.

baseURL GitHub API endpoint. Default is https://api.github.com.

pullrequest_filter A callable which takes a dict which contains the decoded JSON object of the GitHub pull
request as argument. All fields specified by the GitHub API are accessible. If the callable returns False the pull
request is ignored. Default is True which does not filter any pull requests.

token A GitHub API token to execute all requests to the API authenticated. It is strongly recommended to use a
API token since it increases GitHub API rate limits significantly.

repository_type Set which type of repository link will be in the repository property. Possible values https,
svn, git or svn. This link can then be used in a Source Step to checkout the source.

magic_link Set to True if the changes should contain refs/pulls/<PR #>/merge in the branch property
and a link to the base repository in the repository property. These properties can be used by the GitHub source
to pull from the special branch in the base repository. Default is False.

90 Chapter 2. Buildbot Manual

Buildbot Documentation, Release 0.9.7

github_property_whitelist A list of fnmatch expressions which match against the flattened pull request
information JSON prefixed with github. For example github.number represents the pull request number.
Available entries can be looked up in the GitHub API Documentation or by examining the data returned for a
pull request by the API.

BitbucketPullrequestPoller

class buildbot.changes.bitbucket.BitbucketPullrequestPoller

This BitbucketPullrequestPoller periodically polls Bitbucket for new or up-
dated pull requests. It uses Bitbuckets powerful Pull Request REST API
(https://confluence.atlassian.com/display/BITBUCKET/pullrequests+Resource) to gather the information needed.

The BitbucketPullrequestPoller accepts the following arguments:

owner The owner of the Bitbucket repository. All Bitbucket Urls are of the form https://bitbucket.org/
owner/slug/.

slug The name of the Bitbucket repository.

branch A single branch or a list of branches which should be processed. If it is None (the default) all pull requests
are used.

pollInterval Interval in seconds between polls, default is 10 minutes.

pollAtLaunch Determines when the first poll occurs. True = immediately on launch, False = wait for one
pollInterval (default).

category Set the category to be used for the changes produced by the BitbucketPullrequestPoller. This
will then be set in any changes generated by the BitbucketPullrequestPoller, and can be used in a
Change Filter for triggering particular builders.

project Set the name of the project to be used for the BitbucketPullrequestPoller. This will then be set
in any changes generated by the BitbucketPullrequestPoller, and can be used in a Change Filter for
triggering particular builders.

pullrequest_filter A callable which takes one parameter, the decoded Python object of the pull request JSON.
If the it returns False the pull request is ignored. It can be used to define custom filters based on the content
of the pull request. See the Bitbucket documentation for more information about the format of the response. By
default the filter always returns True.

usetimestamps parse each revision’s commit timestamp (default is True), or ignore it in favor of the current time
(so recently processed commits appear together in the waterfall page)

encoding Set encoding will be used to parse author’s name and commit message. Default encoding is 'utf-8'.

A minimal configuration for the Bitbucket pull request poller might look like this:

from buildbot.plugins import changes

c['change_source'] = changes.BitbucketPullrequestPoller(
owner='myname',
slug='myrepo',

)

Here is a more complex configuration using a pullrequest_filter. The pull request is only processed if at least
3 people have already approved it:

def approve_filter(pr, threshold):
approves = 0
for participant in pr['participants']:

2.5. Configuration 91

https://confluence.atlassian.com/display/BITBUCKET/pullrequests+Resource

Buildbot Documentation, Release 0.9.7

if participant['approved']:
approves = approves + 1

if approves < threshold:
return False

return True

from buildbot.plugins import changes
c['change_source'] = changes.BitbucketPullrequestPoller(

owner='myname',
slug='myrepo',
branch='mybranch',
project='myproject',
pullrequest_filter=lambda pr : approve_filter(pr,3),
pollInterval=600,

)

Warning: Anyone who can create pull requests for the Bitbucket repository can initiate a change, potentially
causing the buildmaster to run arbitrary code.

GerritChangeSource

class buildbot.changes.gerritchangesource.GerritChangeSource

The GerritChangeSource class connects to a Gerrit server by its SSH interface and uses its event source mech-
anism, gerrit stream-events (https://gerrit-documentation.storage.googleapis.com/Documentation/2.2.1/cmd-stream-
events.html).

The GerritChangeSource accepts the following arguments:

gerritserver the dns or ip that host the Gerrit ssh server

gerritport the port of the Gerrit ssh server

username the username to use to connect to Gerrit

identity_file ssh identity file to for authentication (optional). Pay attention to the ssh passphrase

handled_events event to be handled (optional). By default processes patchset-created and ref-updated

debug Print Gerrit event in the log (default False). This allows to debug event content, but will eventually fill your
logs with useless Gerrit event logs.

By default this class adds a change to the Buildbot system for each of the following events:

patchset-created A change is proposed for review. Automatic checks like checkpatch.pl can be auto-
matically triggered. Beware of what kind of automatic task you trigger. At this point, no trusted human has
reviewed the code, and a patch could be specially crafted by an attacker to compromise your workers.

ref-updated A change has been merged into the repository. Typically, this kind of event can lead to a complete
rebuild of the project, and upload binaries to an incremental build results server.

But you can specify how to handle events:

• Any event with change and patchSet will be processed by universal collector by default.

• In case you’ve specified processing function for the given kind of events, all events of this kind will be processed
only by this function, bypassing universal collector.

92 Chapter 2. Buildbot Manual

https://gerrit-documentation.storage.googleapis.com/Documentation/2.2.1/cmd-stream-events.html

Buildbot Documentation, Release 0.9.7

An example:

from buildbot.plugins import changes

class MyGerritChangeSource(changes.GerritChangeSource):
"""Custom GerritChangeSource
"""
def eventReceived_patchset_created(self, properties, event):

"""Handler events without properties
"""
properties = {}
self.addChangeFromEvent(properties, event)

This class will populate the property list of the triggered build with the info received from Gerrit server in JSON
format.

Warning: If you selected GerritChangeSource, you must use Gerrit source step: the branch property
of the change will be target_branch/change_id and such a ref cannot be resolved, so the Git source step
would fail.

In case of patchset-created event, these properties will be:

event.change.branch Branch of the Change

event.change.id Change’s ID in the Gerrit system (the ChangeId: in commit comments)

event.change.number Change’s number in Gerrit system

event.change.owner.email Change’s owner email (owner is first uploader)

event.change.owner.name Change’s owner name

event.change.project Project of the Change

event.change.subject Change’s subject

event.change.url URL of the Change in the Gerrit’s web interface

event.patchSet.number Patchset’s version number

event.patchSet.ref Patchset’s Gerrit “virtual branch”

event.patchSet.revision Patchset’s Git commit ID

event.patchSet.uploader.email Patchset uploader’s email (owner is first uploader)

event.patchSet.uploader.name Patchset uploader’s name (owner is first uploader)

event.type Event type (patchset-created)

event.uploader.email Patchset uploader’s email

event.uploader.name Patchset uploader’s name

In case of ref-updated event, these properties will be:

event.refUpdate.newRev New Git commit ID (after merger)

event.refUpdate.oldRev Previous Git commit ID (before merger)

event.refUpdate.project Project that was updated

event.refUpdate.refName Branch that was updated

event.submitter.email Submitter’s email (merger responsible)

2.5. Configuration 93

Buildbot Documentation, Release 0.9.7

event.submitter.name Submitter’s name (merger responsible)

event.type Event type (ref-updated)

event.submitter.email Submitter’s email (merger responsible)

event.submitter.name Submitter’s name (merger responsible)

A configuration for this source might look like:

from buildbot.plugins import changes

c['change_source'] = changes.GerritChangeSource(
"gerrit.example.com",
"gerrit_user",
handled_events=["patchset-created", "change-merged"])

See master/docs/examples/git_gerrit.cfg or master/docs/examples/repo_gerrit.cfg in
the Buildbot distribution for a full example setup of Git+Gerrit or Repo+Gerrit of GerritChangeSource.

GerritEventLogPoller

class buildbot.changes.gerritchangesource.GerritEventLogPoller

The GerritEventLogPoller class is similar to GerritChangeSource but connects to the Gerrit server by
its HTTP interface and uses the events-log (https://gerrit.googlesource.com/plugins/events-log/) plugin.

The GerritEventLogPoller accepts the following arguments:

baseURL the HTTP url where to find Gerrit

auth a requests authentication configuration. if Gerrit is configured with BasicAuth, then it shall be
('login', 'password') if Gerrit is configured with DigestAuth, then it shall be requests.auth.
HTTPDigestAuth('login', 'password') from the requests module.

handled_events event to be handled (optional). By default processes patchset-created and ref-updated

pollInterval interval in seconds between polls, default is 30 seconds

pollAtLaunch Determines when the first poll occurs. True = immediately on launch (default), False = wait for
one pollInterval.

gitBaseURL The git URL where Gerrit is accessible via git+ssh protocol

debug Print Gerrit event in the log (default False). This allows to debug event content, but will eventually fill your
logs with useless Gerrit event logs.

The same customization can be done as GerritChangeSource for handling special events.

GerritChangeFilter

class buildbot.changes.gerritchangesource.GerritChangeFilter

GerritChangeFilter is a ready to use ChangeFilter you can pass to AnyBranchScheduler in order to
filter changes, to create pre-commit builders or post-commit schedulers. It has the same api as Change Filter, except
it has additional eventtype set of filter (can as well be specified as value, list, regular expression or callable)

An example is following:

94 Chapter 2. Buildbot Manual

https://gerrit.googlesource.com/plugins/events-log/

Buildbot Documentation, Release 0.9.7

from buildbot.plugins import schedulers, util

this scheduler will create builds when a patch is uploaded to gerrit
but only if it is uploaded to the "main" branch
schedulers.AnyBranchScheduler(name="main-precommit",

change_filter=util.GerritChangeFilter(branch="main",
eventtype=

→˓"patchset-created"),
treeStableTimer=15*60,
builderNames=["main-precommit"])

this scheduler will create builds when a patch is merged in the "main" branch
for post-commit tests
schedulers.AnyBranchScheduler(name="main-postcommit",

change_filter=util.GerritChangeFilter("main", "ref-
→˓updated"),

treeStableTimer=15*60,
builderNames=["main-postcommit"])

Change Hooks (HTTP Notifications)

Buildbot already provides a web frontend, and that frontend can easily be used to receive HTTP push notifications of
commits from services like GitHub. See Change Hooks for more information.

Schedulers

• Configuring Schedulers

• Scheduler Resiliency

• Change Filters

• Scheduler Types

– SingleBranchScheduler

– AnyBranchScheduler

– Dependent Scheduler

– Periodic Scheduler

– Nightly Scheduler

– Try Schedulers

– Triggerable Scheduler

– NightlyTriggerable Scheduler

– ForceScheduler Scheduler

Schedulers are responsible for initiating builds on builders.

Some schedulers listen for changes from ChangeSources and generate build sets in response to these changes. Others
generate build sets without changes, based on other events in the buildmaster.

2.5. Configuration 95

Buildbot Documentation, Release 0.9.7

Configuring Schedulers

The schedulers configuration parameter gives a list of scheduler instances, each of which causes builds to
be started on a particular set of Builders. The two basic scheduler classes you are likely to start with are
SingleBranchScheduler and Periodic, but you can write a customized subclass to implement more compli-
cated build scheduling.

Scheduler arguments should always be specified by name (as keyword arguments), to allow for future expansion:

sched = SingleBranchScheduler(name="quick", builderNames=['lin', 'win'])

There are several common arguments for schedulers, although not all are available with all schedulers.

name Each Scheduler must have a unique name. This is used in status displays, and is also available in the build
property scheduler.

builderNames This is the set of builders which this scheduler should trigger, specified as a list of names (strings).

properties This is a dictionary specifying properties that will be transmitted to all builds started by this scheduler.
The owner property may be of particular interest, as its contents (as a list) will be added to the list of “interested
users” (Doing Things With Users) for each triggered build. For example

sched = Scheduler(...,
properties = {

'owner': ['zorro@example.com', 'silver@example.com']
})

fileIsImportant A callable which takes one argument, a Change instance, and returns True if the change is
worth building, and False if it is not. Unimportant Changes are accumulated until the build is triggered by an
important change. The default value of None means that all Changes are important.

change_filter The change filter that will determine which changes are recognized by this scheduler; Change
Filters. Note that this is different from fileIsImportant: if the change filter filters out a Change, then it
is completely ignored by the scheduler. If a Change is allowed by the change filter, but is deemed unimportant,
then it will not cause builds to start, but will be remembered and shown in status displays.

codebases When the scheduler processes data from more than one repository at the same time, a corresponding
codebase definition should be passed for each repository.

This parameter can be specified either as a list of strings (simplest form; use if no special overrides are needed)
or as a dictionary of dictionaries (where each dict is a codebase definition as described next).

Each codebase definition is a dictionary with any of the keys: repository, branch, revision. The
codebase definitions are combined in a dictionary keyed by the name of the codebase.

codebases = {'codebase1': {'repository':'....',
'branch':'default',
'revision': None},

'codebase2': {'repository':'....'} }

Important: The codebases parameter is only used to fill in missing details about a codebases when schedul-
ing a build. For example, when a change to codebase A occurs, a scheduler must invent a sourcestamp for
codebase B. The parameter does not act as a filter on incoming changes – use a change filter for that purpose.

Source steps can specify a codebase to which they will apply, and will use the sourcestamp for that codebase.

onlyImportant A boolean that, when True, only adds important changes to the buildset as specified in
the fileIsImportant callable. This means that unimportant changes are ignored the same way a

96 Chapter 2. Buildbot Manual

Buildbot Documentation, Release 0.9.7

change_filter filters changes. This defaults to False and only applies when fileIsImportant is
given.

reason A string that will be used as the reason for the triggered build.

The remaining subsections represent a catalog of the available scheduler types. All these schedulers are defined in
modules under buildbot.schedulers, and the docstrings there are the best source of documentation on the
arguments taken by each one.

Scheduler Resiliency

In a multi-master configuration, schedulers with the same name can be configured on multiple masters. Only one
instance of the scheduler will be active. If that instance becomes inactive, due to its master being shut down or failing,
then another instance will become active after a short delay. This provides resiliency in scheduler configurations, so
that schedulers are not a single point of failure in a Buildbot infrastructure.

The Data API and web UI display the master on which each scheduler is running.

There is currently no mechanism to control which master’s scheduler instance becomes active. The behavior is non-
deterministic, based on the timing of polling by inactive schedulers. The failover is non-revertive.

Change Filters

Several schedulers perform filtering on an incoming set of changes. The filter can most generically be specified as a
ChangeFilter. Set up a ChangeFilter like this:

from buildbot.plugins import util
my_filter = util.ChangeFilter(project_re="^baseproduct/.*", branch="devel")

and then add it to a scheduler with the change_filter parameter:

sch = SomeSchedulerClass(...,
change_filter=my_filter)

There are five attributes of changes on which you can filter:

project the project string, as defined by the ChangeSource.

repository the repository in which this change occurred.

branch the branch on which this change occurred. Note that ‘trunk’ or ‘master’ is often denoted by None.

category the category, again as defined by the ChangeSource.

codebase the change’s codebase.

For each attribute, the filter can look for a single, specific value:

my_filter = util.ChangeFilter(project='myproject')

or accept any of a set of values:

my_filter = util.ChangeFilter(project=['myproject', 'jimsproject'])

or apply a regular expression, using the attribute name with a “_re” suffix:

2.5. Configuration 97

Buildbot Documentation, Release 0.9.7

my_filter = util.ChangeFilter(category_re='.*deve.*')
or, to use regular expression flags:
import re
my_filter = util.ChangeFilter(category_re=re.compile('.*deve.*', re.I))

buildbot.status.web.hooks.github.GitHubEventHandler has a special github_distinct
property that can be used to filter whether or not non-distinct changes should be considered. For example, if a commit
is pushed to a branch that is not being watched and then later pushed to a watched branch, by default, this will be
recorded as two separate Changes. In order to record a change only the first time the commit appears, you can install
a custom ChangeFilter like this:

ChangeFilter(filter_fn = lambda c: c.properties.getProperty('github_distinct')

For anything more complicated, define a Python function to recognize the strings you want:

def my_branch_fn(branch):
return branch in branches_to_build and branch not in branches_to_ignore

my_filter = util.ChangeFilter(branch_fn=my_branch_fn)

The special argument filter_fn can be used to specify a function that is given the entire Change object, and returns
a boolean.

The entire set of allowed arguments, then, is

project project_re project_fn
repository repository_re repository_fn
branch branch_re branch_fn
category category_re category_fn
codebase codebase_re codebase_fn
filter_fn

A Change passes the filter only if all arguments are satisfied. If no filter object is given to a scheduler, then all changes
will be built (subject to any other restrictions the scheduler enforces).

Scheduler Types

The remaining subsections represent a catalog of the available Scheduler types. All these Schedulers are defined in
modules under buildbot.schedulers, and the docstrings there are the best source of documentation on the
arguments taken by each one.

SingleBranchScheduler

This is the original and still most popular scheduler class. It follows exactly one branch, and starts a configurable
tree-stable-timer after each change on that branch. When the timer expires, it starts a build on some set of Builders.
This scheduler accepts a fileIsImportant function which can be used to ignore some Changes if they do not
affect any important files.

If treeStableTimer is not set, then this scheduler starts a build for every Change that matches its
change_filter and statsfies fileIsImportant. If treeStableTimer is set, then a build is triggered for
each set of Changes which arrive within the configured time, and match the filters.

Note: The behavior of this scheduler is undefined, if treeStableTimer is set, and changes from multiple
branches, repositories or codebases are accepted by the filter.

98 Chapter 2. Buildbot Manual

Buildbot Documentation, Release 0.9.7

Note: The codebases argument will filter out codebases not specified there, but won’t filter based on the branches
specified there.

The arguments to this scheduler are:

name

builderNames

properties

fileIsImportant

change_filter

onlyImportant

reason

treeStableTimer The scheduler will wait for this many seconds before starting the build. If new changes are
made during this interval, the timer will be restarted, so really the build will be started after a change and then
after this many seconds of inactivity.

If treeStableTimer is None, then a separate build is started immediately for each Change.

fileIsImportant A callable which takes one argument, a Change instance, and returns True if the change is
worth building, and False if it is not. Unimportant Changes are accumulated until the build is triggered by an
important change. The default value of None means that all Changes are important.

categories (deprecated; use change_filter) A list of categories of changes that this scheduler will respond to. If
this is specified, then any non-matching changes are ignored.

branch (deprecated; use change_filter) The scheduler will pay attention to this branch, ignoring Changes that oc-
cur on other branches. Setting branch equal to the special value of None means it should only pay attention
to the default branch.

Note: None is a keyword, not a string, so write None and not "None".

Example:

from buildbot.plugins import schedulers, util
quick = schedulers.SingleBranchScheduler(

name="quick",
change_filter=util.ChangeFilter(branch='master'),
treeStableTimer=60,
builderNames=["quick-linux", "quick-netbsd"])

full = schedulers.SingleBranchScheduler(
name="full",
change_filter=util.ChangeFilter(branch='master'),
treeStableTimer=5*60,
builderNames=["full-linux", "full-netbsd", "full-OSX"])

c['schedulers'] = [quick, full]

In this example, the two quick builders are triggered 60 seconds after the tree has been changed. The full builds do
not run quite so quickly (they wait 5 minutes), so hopefully if the quick builds fail due to a missing file or really
simple typo, the developer can discover and fix the problem before the full builds are started. Both schedulers only
pay attention to the default branch: any changes on other branches are ignored. Each scheduler triggers a different set
of Builders, referenced by name.

2.5. Configuration 99

Buildbot Documentation, Release 0.9.7

Note: The old names for this scheduler, buildbot.scheduler.Scheduler and buildbot.schedulers.
basic.Scheduler, are deprecated in favor of using buildbot.plugins:

from buildbot.plugins import schedulers

However if you must use a fully qualified name, it is buildbot.schedulers.basic.
SingleBranchScheduler.

AnyBranchScheduler

This scheduler uses a tree-stable-timer like the default one, but uses a separate timer for each branch.

If treeStableTimer is not set, then this scheduler is indistinguishable from SingleBranchScheduler. If
treeStableTimer is set, then a build is triggered for each set of Changes which arrive within the configured time,
and match the filters.

The arguments to this scheduler are:

name

builderNames

properties

fileIsImportant

change_filter

onlyImportant

reason See Configuring Schedulers.

treeStableTimer The scheduler will wait for this many seconds before starting the build. If new changes are
made on the same branch during this interval, the timer will be restarted.

branches (deprecated; use change_filter) Changes on branches not specified on this list will be ignored.

categories (deprecated; use change_filter) A list of categories of changes that this scheduler will respond to. If
this is specified, then any non-matching changes are ignored.

Dependent Scheduler

It is common to wind up with one kind of build which should only be performed if the same source code was suc-
cessfully handled by some other kind of build first. An example might be a packaging step: you might only want
to produce .deb or RPM packages from a tree that was known to compile successfully and pass all unit tests. You
could put the packaging step in the same Build as the compile and testing steps, but there might be other reasons to
not do this (in particular you might have several Builders worth of compiles/tests, but only wish to do the packaging
once). Another example is if you want to skip the full builds after a failing quick build of the same source code. Or, if
one Build creates a product (like a compiled library) that is used by some other Builder, you’d want to make sure the
consuming Build is run after the producing one.

You can use dependencies to express this relationship to the Buildbot. There is a special kind of scheduler named
Dependent that will watch an upstream scheduler for builds to complete successfully (on all of its Builders). Each
time that happens, the same source code (i.e. the same SourceStamp) will be used to start a new set of builds, on a
different set of Builders. This downstream scheduler doesn’t pay attention to Changes at all. It only pays attention to
the upstream scheduler.

100 Chapter 2. Buildbot Manual

Buildbot Documentation, Release 0.9.7

If the build fails on any of the Builders in the upstream set, the downstream builds will not fire. Note that, for
SourceStamps generated by a Dependent scheduler, the revision is None, meaning HEAD. If any changes are
committed between the time the upstream scheduler begins its build and the time the dependent scheduler begins its
build, then those changes will be included in the downstream build. See the Triggerable scheduler for a more
flexible dependency mechanism that can avoid this problem.

The keyword arguments to this scheduler are:

name

builderNames

properties See Configuring Schedulers.

upstream The upstream scheduler to watch. Note that this is an instance, not the name of the scheduler.

Example:

from buildbot.plugins import schedulers
tests = schedulers.SingleBranchScheduler(name="just-tests",

treeStableTimer=5*60,
builderNames=["full-linux",

"full-netbsd",
"full-OSX"])

package = schedulers.Dependent(name="build-package",
upstream=tests, # <- no quotes!
builderNames=["make-tarball", "make-deb",

"make-rpm"])
c['schedulers'] = [tests, package]

Periodic Scheduler

This simple scheduler just triggers a build every N seconds.

The arguments to this scheduler are:

name

builderNames

properties

onlyImportant

createAbsoluteSourceStamps This option only has effect when using multiple codebases. When True, it
uses the last seen revision for each codebase that does not have a change. When False, the default value,
codebases without changes will use the revision from the codebases argument.

onlyIfChanged If this is true, then builds will not be scheduled at the designated time unless the specified branch
has seen an important change since the previous build.

reason See Configuring Schedulers.

periodicBuildTimer The time, in seconds, after which to start a build.

Example:

from buildbot.plugins import schedulers
nightly = schedulers.Periodic(name="daily",

builderNames=["full-solaris"],
periodicBuildTimer=24*60*60)

c['schedulers'] = [nightly]

2.5. Configuration 101

Buildbot Documentation, Release 0.9.7

The scheduler in this example just runs the full solaris build once per day. Note that this scheduler only lets you control
the time between builds, not the absolute time-of-day of each Build, so this could easily wind up an evening or every
afternoon scheduler depending upon when it was first activated.

Nightly Scheduler

This is highly configurable periodic build scheduler, which triggers a build at particular times of day, week, month, or
year. The configuration syntax is very similar to the well-known crontab format, in which you provide values for
minute, hour, day, and month (some of which can be wildcards), and a build is triggered whenever the current time
matches the given constraints. This can run a build every night, every morning, every weekend, alternate Thursdays,
on your boss’s birthday, etc.

Pass some subset of minute, hour, dayOfMonth, month, and dayOfWeek; each may be a single number or
a list of valid values. The builds will be triggered whenever the current time matches these values. Wildcards are
represented by a ‘*’ string. All fields default to a wildcard except ‘minute’, so with no fields this defaults to a build
every hour, on the hour. The full list of parameters is:

name

builderNames

properties

fileIsImportant

change_filter

onlyImportant

reason

codebases

createAbsoluteSourceStamps This option only has effect when using multiple codebases. When True, it
uses the last seen revision for each codebase that does not have a change. When False, the default value,
codebases without changes will use the revision from the codebases argument.

onlyIfChanged If this is true, then builds will not be scheduled at the designated time unless the change filter has
accepted an important change since the previous build.

branch (deprecated; use change_filter and codebases) The branch to build when the time comes, and the
branch to filter for if change_filter is not specified. Remember that a value of None here means the default
branch, and will not match other branches!

minute The minute of the hour on which to start the build. This defaults to 0, meaning an hourly build.

hour The hour of the day on which to start the build, in 24-hour notation. This defaults to *, meaning every hour.

dayOfMonth The day of the month to start a build. This defaults to *, meaning every day.

month The month in which to start the build, with January = 1. This defaults to *, meaning every month.

dayOfWeek The day of the week to start a build, with Monday = 0. This defaults to *, meaning every day of the
week.

For example, the following master.cfg clause will cause a build to be started every night at 3:00am:

from buildbot.plugins import schedulers
c['schedulers'].append(

schedulers.Nightly(name='nightly',
branch='master',

102 Chapter 2. Buildbot Manual

Buildbot Documentation, Release 0.9.7

builderNames=['builder1', 'builder2'],
hour=3, minute=0))

This scheduler will perform a build each Monday morning at 6:23am and again at 8:23am, but only if someone has
committed code in the interim:

c['schedulers'].append(
schedulers.Nightly(name='BeforeWork',

branch=`default`,
builderNames=['builder1'],
dayOfWeek=0, hour=[6,8], minute=23,
onlyIfChanged=True))

The following runs a build every two hours, using Python’s range function:

c.schedulers.append(
timed.Nightly(name='every2hours',

branch=None, # default branch
builderNames=['builder1'],
hour=range(0, 24, 2)))

Finally, this example will run only on December 24th:

c['schedulers'].append(
timed.Nightly(name='SleighPreflightCheck',

branch=None, # default branch
builderNames=['flying_circuits', 'radar'],
month=12,
dayOfMonth=24,
hour=12,
minute=0))

Try Schedulers

This scheduler allows developers to use the buildbot try command to trigger builds of code they have not yet
committed. See try for complete details.

Two implementations are available: Try_Jobdir and Try_Userpass. The former monitors a job directory,
specified by the jobdir parameter, while the latter listens for PB connections on a specific port, and authenticates
against userport.

The buildmaster must have a scheduler instance in the config file’s schedulers list to receive try requests. This lets
the administrator control who may initiate these trial builds, which branches are eligible for trial builds, and which
Builders should be used for them.

The scheduler has various means to accept build requests. All of them enforce more security than the usual buildmaster
ports do. Any source code being built can be used to compromise the worker accounts, but in general that code must
be checked out from the VC repository first, so only people with commit privileges can get control of the workers.
The usual force-build control channels can waste worker time but do not allow arbitrary commands to be executed by
people who don’t have those commit privileges. However, the source code patch that is provided with the trial build
does not have to go through the VC system first, so it is important to make sure these builds cannot be abused by a
non-committer to acquire as much control over the workers as a committer has. Ideally, only developers who have
commit access to the VC repository would be able to start trial builds, but unfortunately the buildmaster does not, in
general, have access to VC system’s user list.

As a result, the try scheduler requires a bit more configuration. There are currently two ways to set this up:

2.5. Configuration 103

Buildbot Documentation, Release 0.9.7

jobdir (ssh) This approach creates a command queue directory, called the jobdir, in the buildmaster’s working
directory. The buildmaster admin sets the ownership and permissions of this directory to only grant write
access to the desired set of developers, all of whom must have accounts on the machine. The buildbot try
command creates a special file containing the source stamp information and drops it in the jobdir, just like a
standard maildir. When the buildmaster notices the new file, it unpacks the information inside and starts the
builds.

The config file entries used by ‘buildbot try’ either specify a local queuedir (for which write and mv are used)
or a remote one (using scp and ssh).

The advantage of this scheme is that it is quite secure, the disadvantage is that it requires fiddling outside the
buildmaster config (to set the permissions on the jobdir correctly). If the buildmaster machine happens to also
house the VC repository, then it can be fairly easy to keep the VC userlist in sync with the trial-build userlist.
If they are on different machines, this will be much more of a hassle. It may also involve granting developer
accounts on a machine that would not otherwise require them.

To implement this, the worker invokes ssh -l username host buildbot tryserver ARGS, pass-
ing the patch contents over stdin. The arguments must include the inlet directory and the revision information.

user+password (PB) In this approach, each developer gets a username/password pair, which are all listed in the
buildmaster’s configuration file. When the developer runs buildbot try, their machine connects to the
buildmaster via PB and authenticates themselves using that username and password, then sends a PB command
to start the trial build.

The advantage of this scheme is that the entire configuration is performed inside the buildmaster’s config file.
The disadvantages are that it is less secure (while the cred authentication system does not expose the password
in plaintext over the wire, it does not offer most of the other security properties that SSH does). In addition,
the buildmaster admin is responsible for maintaining the username/password list, adding and deleting entries as
developers come and go.

For example, to set up the jobdir style of trial build, using a command queue directory of MASTERDIR/jobdir (and
assuming that all your project developers were members of the developers unix group), you would first set up that
directory:

mkdir -p MASTERDIR/jobdir MASTERDIR/jobdir/new MASTERDIR/jobdir/cur MASTERDIR/jobdir/
→˓tmp
chgrp developers MASTERDIR/jobdir MASTERDIR/jobdir/*
chmod g+rwx,o-rwx MASTERDIR/jobdir MASTERDIR/jobdir/*

and then use the following scheduler in the buildmaster’s config file:

from buildbot.plugins import schedulers
s = schedulers.Try_Jobdir(name="try1",

builderNames=["full-linux", "full-netbsd",
"full-OSX"],

jobdir="jobdir")
c['schedulers'] = [s]

Note that you must create the jobdir before telling the buildmaster to use this configuration, otherwise you will get an
error. Also remember that the buildmaster must be able to read and write to the jobdir as well. Be sure to watch the
twistd.log file (Logfiles) as you start using the jobdir, to make sure the buildmaster is happy with it.

Note: Patches in the jobdir are encoded using netstrings, which place an arbitrary upper limit on patch size of 99999
bytes. If your submitted try jobs are rejected with BadJobfile, try increasing this limit with a snippet like this in your
master.cfg:

from twisted.protocols.basic import NetstringReceiver
NetstringReceiver.MAX_LENGTH = 1000000

104 Chapter 2. Buildbot Manual

Buildbot Documentation, Release 0.9.7

To use the username/password form of authentication, create a Try_Userpass instance instead. It takes the same
builderNames argument as the Try_Jobdir form, but accepts an additional port argument (to specify the TCP
port to listen on) and a userpass list of username/password pairs to accept. Remember to use good passwords for
this: the security of the worker accounts depends upon it:

from buildbot.plugins import schedulers
s = schedulers.Try_Userpass(name="try2",

builderNames=["full-linux", "full-netbsd",
"full-OSX"],

port=8031,
userpass=[("alice","pw1"), ("bob", "pw2")])

c['schedulers'] = [s]

Like most places in the buildbot, the port argument takes a strports specification. See twisted.application.
strports for details.

Triggerable Scheduler

The Triggerable scheduler waits to be triggered by a Trigger step (see Triggering Schedulers) in another
build. That step can optionally wait for the scheduler’s builds to complete. This provides two advantages over
Dependent schedulers. First, the same scheduler can be triggered from multiple builds. Second, the ability to
wait for Triggerable‘s builds to complete provides a form of “subroutine call”, where one or more builds can
“call” a scheduler to perform some work for them, perhaps on other workers. The Triggerable scheduler sup-
ports multiple codebases. The scheduler filters out all codebases from Trigger steps that are not configured in the
scheduler.

The parameters are just the basics:

name

builderNames

properties

reason

codebases See Configuring Schedulers.

This class is only useful in conjunction with the Trigger step. Here is a fully-worked example:

from buildbot.plugins import schedulers, util, steps

checkin = schedulers.SingleBranchScheduler(name="checkin",
branch=None,
treeStableTimer=5*60,
builderNames=["checkin"])

nightly = schedulers.Nightly(name='nightly',
branch=None,
builderNames=['nightly'],
hour=3, minute=0)

mktarball = schedulers.Triggerable(name="mktarball", builderNames=["mktarball"])
build = schedulers.Triggerable(name="build-all-platforms",

builderNames=["build-all-platforms"])
test = schedulers.Triggerable(name="distributed-test",

builderNames=["distributed-test"])
package = schedulers.Triggerable(name="package-all-platforms",

2.5. Configuration 105

Buildbot Documentation, Release 0.9.7

builderNames=["package-all-platforms"])
c['schedulers'] = [mktarball, checkin, nightly, build, test, package]

on checkin, make a tarball, build it, and test it
checkin_factory = util.BuildFactory()
checkin_factory.addStep(steps.Trigger(schedulerNames=['mktarball'],

waitForFinish=True))
checkin_factory.addStep(steps.Trigger(schedulerNames=['build-all-platforms'],

waitForFinish=True))
checkin_factory.addStep(steps.Trigger(schedulerNames=['distributed-test'],

waitForFinish=True))

and every night, make a tarball, build it, and package it
nightly_factory = util.BuildFactory()
nightly_factory.addStep(steps.Trigger(schedulerNames=['mktarball'],

waitForFinish=True))
nightly_factory.addStep(steps.Trigger(schedulerNames=['build-all-platforms'],

waitForFinish=True))
nightly_factory.addStep(steps.Trigger(schedulerNames=['package-all-platforms'],

waitForFinish=True))

NightlyTriggerable Scheduler

class buildbot.schedulers.timed.NightlyTriggerable

The NightlyTriggerable scheduler is a mix of the Nightly and Triggerable schedulers. This scheduler
triggers builds at a particular time of day, week, or year, exactly as the Nightly scheduler. However, the source
stamp set that is used that provided by the last Trigger step that targeted this scheduler.

The parameters are just the basics:

name

builderNames

properties

codebases See Configuring Schedulers.

minute

hour

dayOfMonth

month

dayOfWeek See Nightly .

This class is only useful in conjunction with the Trigger step. Note that waitForFinish is ignored by Trigger
steps targeting this scheduler.

Here is a fully-worked example:

from buildbot.plugins import schedulers, util, steps

checkin = schedulers.SingleBranchScheduler(name="checkin",
branch=None,
treeStableTimer=5*60,
builderNames=["checkin"])

nightly = schedulers.NightlyTriggerable(name='nightly',

106 Chapter 2. Buildbot Manual

Buildbot Documentation, Release 0.9.7

builderNames=['nightly'],
hour=3, minute=0)

c['schedulers'] = [checkin, nightly]

on checkin, run tests
checkin_factory = util.BuildFactory([

steps.Test(),
steps.Trigger(schedulerNames=['nightly'])

])

and every night, package the latest successful build
nightly_factory = util.BuildFactory([

steps.ShellCommand(command=['make', 'package'])
])

ForceScheduler Scheduler

The ForceScheduler scheduler is the way you can configure a force build form in the web UI.

In the /#/builders/:builderid web page, you will see, on the top right of the page, one button for each
ForceScheduler scheduler that was configured for this builder. If you click on that button, a dialog will let you
choose various parameters for requesting a new build.

The Buildbot framework allows you to customize exactly how the build form looks, which builders have a force build
form (it might not make sense to force build every builder), and who is allowed to force builds on which builders.

How you do so is by configuring a ForceScheduler, and add it into the list schedulers.

The scheduler takes the following parameters:

name

Name of the scheduler (should be an Identifier).

builderNames

List of builders where the force button should appear. See Configuring Schedulers.

reason

A parameter allowing the user to specify the reason for the build. The default value is a string parameter
with a default value “force build”.

reasonString

A string that will be used to create the build reason for the forced build. This string can contain the
placeholders %(owner)s and %(reason)s, which represents the value typed into the reason field.

username

A parameter specifying the username associated with the build (aka owner). The default value is a
username parameter.

codebases

A list of strings or CodebaseParameter specifying the codebases that should be presented. The default is
a single codebase with no name (i.e. codebases=[’‘]).

properties

2.5. Configuration 107

Buildbot Documentation, Release 0.9.7

A list of parameters, one for each property. These can be arbitrary parameters, where the parameter’s
name is taken as the property name, or AnyPropertyParameter, which allows the web user to spec-
ify the property name. The default value is an empty list.

buttonName

The name of the “submit” button on the resulting force-build form. This defaults to the name of scheduler.

An example may be better than long explanation. What you need in your config file is something like:

from buildbot.plugins import schedulers, util

sch = schedulers.ForceScheduler(
name="force",
buttonName="pushMe!",
label="My nice Force form",
builderNames=["my-builder"],

codebases=[
util.CodebaseParameter(

"",
name="Main repository",
will generate a combo box
branch=util.ChoiceStringParameter(

name="branch",
choices=["master", "hest"],
default="master"),

will generate nothing in the form, but revision, repository,
and project are needed by buildbot scheduling system so we
need to pass a value ("")
revision=util.FixedParameter(name="revision", default=""),
repository=util.FixedParameter(name="repository", default=""),
project=util.FixedParameter(name="project", default=""),

),
],

will generate a text input
reason=util.StringParameter(name="reason",

label="reason:",
required=True, size=80),

in case you don't require authentication this will display
input for user to type his name
username=util.UserNameParameter(label="your name:",

size=80),
A completely customized property list. The name of the
property is the name of the parameter
properties=[

util.NestedParameter(name="options", label="Build Options", layout="vertical",
→˓ fields=[

util.StringParameter(name="pull_url",
label="optionally give a public Git pull url:",
default="", size=80),

util.BooleanParameter(name="force_build_clean",
label="force a make clean",
default=False)

])
])

108 Chapter 2. Buildbot Manual

Buildbot Documentation, Release 0.9.7

This will result in the following UI:

Authorization

The force scheduler uses the web interface’s authorization framework to determine which user has the right to force
which build. Here is an example of code on how you can define which user has which right:

user_mapping = {
re.compile("project1-builder"): ["project1-maintainer", "john"] ,
re.compile("project2-builder"): ["project2-maintainer", "jack"],
re.compile(".*"): ["root"]

}
def force_auth(user, status):

global user_mapping
for r,users in user_mapping.items():

if r.match(status.name):
if user in users:

return True
return False

use authz_cfg in your WebStatus setup
authz_cfg=authz.Authz(

auth=my_auth,
forceBuild = force_auth,

)

2.5. Configuration 109

Buildbot Documentation, Release 0.9.7

ForceScheduler Parameters

Most of the arguments to ForceScheduler are “parameters”. Several classes of parameters are available, each
describing a different kind of input from a force-build form.

All parameter types have a few common arguments:

name (required)

The name of the parameter. For properties, this will correspond to the name of the property that your
parameter will set. The name is also used internally as the identifier for in the HTML form.

label (optional; default is same as name)

The label of the parameter. This is what is displayed to the user.

tablabel (optional; default is same as label)

The label of the tab if this parameter is included into a tab layout NestedParameter. This is what is
displayed to the user.

default (optional; default: “”)

The default value for the parameter, that is used if there is no user input.

required (optional; default: False)

If this is true, then an error will be shown to user if there is no input in this field

The parameter types are:

NestedParameter

NestedParameter(name="options", label="Build options" layout="vertical", fields=[...
→˓]),

This parameter type is a special parameter which contains other parameters. This can be used to group a set of param-
eters together, and define the layout of your form. You can recursively include NestedParameter into NestedParameter,
to build very complex UI.

It adds the following arguments:

layout (optional, default: “vertical”)

The layout defines how the fields are placed in the form.

The layouts implemented in the standard web application are:

• simple: fields are displayed one by one without alignment. They take the horizontal space that
they need.

• vertical: all fields are displayed vertically, aligned in columns (as per the column attribute of
the NestedParameter)

• tabs: Each field gets its own tab (http://getbootstrap.com/components/#nav-tabs). This can
be used to declare complex build forms which won’t fit into one screen. The children fields are
usually other NestedParameters with vertical layout.

columns (optional, accepted values are 1,2,3,4)

The number of columns to use for a vertical layout. If omitted, it is set to 1 unless there are more than 3
visible child fields in which case it is set to 2.

110 Chapter 2. Buildbot Manual

http://getbootstrap.com/components/#nav-tabs

Buildbot Documentation, Release 0.9.7

FixedParameter

FixedParameter(name="branch", default="trunk"),

This parameter type will not be shown on the web form, and always generate a property with its default value.

StringParameter

StringParameter(name="pull_url",
label="optionally give a public Git pull url:",
default="", size=80)

This parameter type will show a single-line text-entry box, and allow the user to enter an arbitrary string. It adds the
following arguments:

regex (optional)

A string that will be compiled as a regex, and used to validate the input of this parameter.

size (optional; default: 10)

The width of the input field (in characters).

TextParameter

StringParameter(name="comments",
label="comments to be displayed to the user of the built binary",
default="This is a development build", cols=60, rows=5)

This parameter type is similar to StringParameter, except that it is represented in the HTML form as a textarea,
allowing multi-line input. It adds the StringParameter arguments, this type allows:

cols (optional; default: 80)

The number of columns the textarea will have.

rows (optional; default: 20)

The number of rows the textarea will have

This class could be subclassed in order to have more customization e.g.

• developer could send a list of Git branches to pull from

• developer could send a list of Gerrit changes to cherry-pick,

• developer could send a shell script to amend the build.

Beware of security issues anyway.

IntParameter

IntParameter(name="debug_level",
label="debug level (1-10)", default=2)

This parameter type accepts an integer value using a text-entry box.

2.5. Configuration 111

Buildbot Documentation, Release 0.9.7

BooleanParameter

BooleanParameter(name="force_build_clean",
label="force a make clean", default=False)

This type represents a boolean value. It will be presented as a checkbox.

UserNameParameter

UserNameParameter(label="your name:", size=80)

This parameter type accepts a username. If authentication is active, it will use the authenticated user instead of
displaying a text-entry box.

size (optional; default: 10) The width of the input field (in characters).

need_email (optional; default True) If true, require a full email address rather than arbitrary text.

ChoiceStringParameter

ChoiceStringParameter(name="branch",
choices=["main","devel"], default="main")

This parameter type lets the user choose between several choices (e.g the list of branches you are supporting, or the
test campaign to run). If multiple is false, then its result is a string - one of the choices. If multiple is true, then
the result is a list of strings from the choices.

Note that for some use cases, the choices need to be generated dynamically. This can be done via subclass-
ing and overriding the ‘getChoices’ member function. An example of this is provided by the source for the
InheritBuildParameter class.

Its arguments, in addition to the common options, are:

choices

The list of available choices.

strict (optional; default: True)

If true, verify that the user’s input is from the list. Note that this only affects the validation of the form
request; even if this argument is False, there is no HTML form component available to enter an arbitrary
value.

multiple

If true, then the user may select multiple choices.

Example:

ChoiceStringParameter(name="forced_tests",
label="smoke test campaign to run",
default=default_tests,
multiple=True,
strict=True,
choices=["test_builder1", "test_builder2",

"test_builder3"])

112 Chapter 2. Buildbot Manual

Buildbot Documentation, Release 0.9.7

.. and later base the schedulers to trigger off this property:

triggers the tests depending on the property forced_test
builder1.factory.addStep(Trigger(name="Trigger tests",

schedulerNames=Property("forced_tests")))

CodebaseParameter

CodebaseParameter(codebase="myrepo")

This is a parameter group to specify a sourcestamp for a given codebase.

codebase

The name of the codebase.

branch (optional; default: StringParameter)

A parameter specifying the branch to build. The default value is a string parameter.

revision (optional; default: StringParameter)

A parameter specifying the revision to build. The default value is a string parameter.

repository (optional; default: StringParameter)

A parameter specifying the repository for the build. The default value is a string parameter.

project (optional; default: StringParameter)

A parameter specifying the project for the build. The default value is a string parameter.

InheritBuildParameter

Note: InheritBuildParameter is not yet ported to data API, and cannot be used with buildbot nine yet(bug #3521
(http://trac.buildbot.net/ticket/3521)).

This is a special parameter for inheriting force build properties from another build. The user is presented with a list of
compatible builds from which to choose, and all forced-build parameters from the selected build are copied into the
new build. The new parameter is:

compatible_builds

A function to find compatible builds in the build history. This function is given the master Status
instance as first argument, and the current builder name as second argument, or None when forcing all
builds.

Example:

def get_compatible_builds(status, builder):
if builder is None: # this is the case for force_build_all

return ["cannot generate build list here"]
find all successful builds in builder1 and builder2
builds = []
for builder in ["builder1","builder2"]:

builder_status = status.getBuilder(builder)
for num in range(1,40): # 40 last builds

2.5. Configuration 113

http://trac.buildbot.net/ticket/3521

Buildbot Documentation, Release 0.9.7

b = builder_status.getBuild(-num)
if not b:

continue
if b.getResults() == FAILURE:

continue
builds.append(builder+"/"+str(b.getNumber()))

return builds

...

sched = Scheduler(...,
properties=[

InheritBuildParameter(
name="inherit",
label="promote a build for merge",
compatible_builds=get_compatible_builds,
required = True),
])

WorkerChoiceParameter

Note: WorkerChoiceParameter is not yet ported to data API, and cannot be used with buildbot nine yet(bug #3521
(http://trac.buildbot.net/ticket/3521)).

This parameter allows a scheduler to require that a build is assigned to the chosen worker. The choice is as-
signed to the workername property for the build. The enforceChosenWorker functor must be assigned to the
canStartBuild parameter for the Builder.

Example:

from buildbot.plugins import util

schedulers:
ForceScheduler(

...
properties=[

WorkerChoiceParameter(),
]

)

builders:
BuilderConfig(

...
canStartBuild=util.enforceChosenWorker,

)

AnyPropertyParameter

This parameter type can only be used in properties, and allows the user to specify both the property name and
value in the web form.

This Parameter is here to reimplement old Buildbot behavior, and should be avoided. Stricter parameter name and
type should be preferred.

114 Chapter 2. Buildbot Manual

http://trac.buildbot.net/ticket/3521

Buildbot Documentation, Release 0.9.7

Workers

The workers configuration key specifies a list of known workers. In the common case, each worker is defined by an
instance of the Worker class. It represents a standard, manually started machine that will try to connect to the buildbot
master as a worker. Buildbot also supports “on-demand”, or latent, workers, which allow buildbot to dynamically start
and stop worker instances.

• Defining Workers

• Worker Options

• Local Workers

• Latent Workers

Defining Workers

A Worker instance is created with a workername and a workerpassword. These are the same two values that
need to be provided to the worker administrator when they create the worker.

The workername must be unique, of course. The password exists to prevent evildoers from interfering with the buildbot
by inserting their own (broken) workers into the system and thus displacing the real ones.

Workers with an unrecognized workername or a non-matching password will be rejected when they attempt to connect,
and a message describing the problem will be written to the log file (see Logfiles).

A configuration for two workers would look like:

from buildbot.plugins import worker
c['workers'] = [

worker.Worker('bot-solaris', 'solarispasswd'),
worker.Worker('bot-bsd', 'bsdpasswd'),

]

Worker Options

Worker objects can also be created with an optional properties argument, a dictionary specifying properties that
will be available to any builds performed on this worker. For example:

c['workers'] = [
worker.Worker('bot-solaris', 'solarispasswd',

properties={ 'os':'solaris' }),
]

The Worker constructor can also take an optional max_builds parameter to limit the number of builds that it will
execute simultaneously:

c['workers'] = [
worker.Worker("bot-linux", "linuxpassword", max_builds=2)

]

2.5. Configuration 115

Buildbot Documentation, Release 0.9.7

Master-Worker TCP Keepalive

By default, the buildmaster sends a simple, non-blocking message to each worker every hour. These keepalives ensure
that traffic is flowing over the underlying TCP connection, allowing the system’s network stack to detect any problems
before a build is started.

The interval can be modified by specifying the interval in seconds using the keepalive_interval parameter of
Worker:

c['workers'] = [
worker.Worker('bot-linux', 'linuxpasswd',

keepalive_interval=3600)
]

The interval can be set to None to disable this functionality altogether.

When Workers Go Missing

Sometimes, the workers go away. One very common reason for this is when the worker process is started once
(manually) and left running, but then later the machine reboots and the process is not automatically restarted.

If you’d like to have the administrator of the worker (or other people) be notified by email when the worker has been
missing for too long, just add the notify_on_missing= argument to the Worker definition. This value can be a
single email address, or a list of addresses:

c['workers'] = [
worker.Worker('bot-solaris', 'solarispasswd',

notify_on_missing="bob@example.com")
]

By default, this will send email when the worker has been disconnected for more than one hour. Only one email per
connection-loss event will be sent. To change the timeout, use missing_timeout= and give it a number of seconds
(the default is 3600).

You can have the buildmaster send email to multiple recipients: just provide a list of addresses instead of a single one:

c['workers'] = [
worker.Worker('bot-solaris', 'solarispasswd',

notify_on_missing=["bob@example.com",
"alice@example.org"],

missing_timeout=300) # notify after 5 minutes
]

The email sent this way will use a MailNotifier (see MailNotifier) status target, if one is configured. This
provides a way for you to control the from address of the email, as well as the relayhost (aka smarthost) to use as an
SMTP server. If no MailNotifier is configured on this buildmaster, the worker-missing emails will be sent using
a default configuration.

Note that if you want to have a MailNotifier for worker-missing emails but not for regular build emails, just
create one with builders=[], as follows:

from buildbot.plugins import status, worker
m = status.MailNotifier(fromaddr="buildbot@localhost", builders=[],

relayhost="smtp.example.org")
c['status'].append(m)

c['workers'] = [

116 Chapter 2. Buildbot Manual

Buildbot Documentation, Release 0.9.7

worker.Worker('bot-solaris', 'solarispasswd',
notify_on_missing="bob@example.com")

]

Local Workers

For smaller setups, you may want to just run the workers on the same machine as the master. To simplify the main-
tainance, you may even want to run them in the same process.

This is what LocalWorker is for. Instead of configuring a worker.Worker, you have to configure a worker.
LocalWorker. As the worker is running on the same process, password is not necessary. You can run as many local
workers as long as your machine CPU and memory is allowing.

A configuration for two workers would look like:

from buildbot.plugins import worker
c['workers'] = [

worker.LocalWorker('bot1'),
worker.LocalWorker('bot2'),

]

In order to use local workers you need to have buildbot-worker package installed.

Latent Workers

The standard buildbot model has workers started manually. The previous section described how to configure the master
for this approach.

Another approach is to let the buildbot master start workers when builds are ready, on-demand. Thanks to services
such as Amazon Web Services’ Elastic Compute Cloud (“AWS EC2”), this is relatively easy to set up, and can be very
useful for some situations.

The workers that are started on-demand are called “latent” workers. As of this writing, buildbot ships with an abstract
base class for building latent workers, and a concrete implementation for AWS EC2 and for libvirt.

Common Options

The following options are available for all latent workers.

build_wait_timeout This option allows you to specify how long a latent worker should wait after a build for
another build before it shuts down. It defaults to 10 minutes. If this is set to 0 then the worker will be shut down
immediately. If it is less than 0 it will never automatically shutdown.

Supported Latent Workers

As of time of writing, Buildbot supports the following latent workers:

Amazon Web Services Elastic Compute Cloud (“AWS EC2”)

class buildbot.worker.ec2.EC2LatentWorker

2.5. Configuration 117

Buildbot Documentation, Release 0.9.7

EC2 (http://aws.amazon.com/ec2/) is a web service that allows you to start virtual machines in an Amazon data center.
Please see their website for details, including costs. Using the AWS EC2 latent workers involves getting an EC2
account with AWS and setting up payment; customizing one or more EC2 machine images (“AMIs”) on your desired
operating system(s) and publishing them (privately if needed); and configuring the buildbot master to know how to
start your customized images for “substantiating” your latent workers.

This document will guide you through setup of a AWS EC2 latent worker:

• Get an AWS EC2 Account

• Create an AMI

• Configure the Master with an EC2LatentWorker

• Volumes

• VPC Support

• Spot instances

Get an AWS EC2 Account

To start off, to use the AWS EC2 latent worker, you need to get an AWS developer account and sign up for EC2.
Although Amazon often changes this process, these instructions should help you get started:

1. Go to http://aws.amazon.com/ and click to “Sign Up Now” for an AWS account.

2. Once you are logged into your account, you need to sign up for EC2. Instructions for how to do this have
changed over time because Amazon changes their website, so the best advice is to hunt for it. After signing up
for EC2, it may say it wants you to upload an x.509 cert. You will need this to create images (see below) but it
is not technically necessary for the buildbot master configuration.

3. You must enter a valid credit card before you will be able to use EC2. Do that under ‘Payment Method’.

4. Make sure you’re signed up for EC2 by going to Your Account → Account Activity and verifying EC2 is listed.

Create an AMI

Now you need to create an AMI and configure the master. You may need to run through this cycle a few times to get
it working, but these instructions should get you started.

Creating an AMI is out of the scope of this document. The EC2 Getting Started Guide
(http://docs.amazonwebservices.com/AWSEC2/latest/GettingStartedGuide/) is a good resource for this task.
Here are a few additional hints.

• When an instance of the image starts, it needs to automatically start a buildbot worker that connects to your
master (to create a buildbot worker, Creating a worker; to make a daemon, Launching the daemons).

• You may want to make an instance of the buildbot worker, configure it as a standard worker in the master (i.e.,
not as a latent worker), and test and debug it that way before you turn it into an AMI and convert to a latent
worker in the master.

Configure the Master with an EC2LatentWorker

Now let’s assume you have an AMI that should work with the EC2LatentWorker. It’s now time to set up your
buildbot master configuration.

118 Chapter 2. Buildbot Manual

http://aws.amazon.com/ec2/
http://aws.amazon.com/
http://docs.amazonwebservices.com/AWSEC2/latest/GettingStartedGuide/

Buildbot Documentation, Release 0.9.7

You will need some information from your AWS account: the Access Key Id and the Secret Access Key. If you’ve built
the AMI yourself, you probably already are familiar with these values. If you have not, and someone has given you
access to an AMI, these hints may help you find the necessary values:

• While logged into your AWS account, find the “Access Identifiers” link (either on the left, or via Your Account
→ Access Identifiers.

• On the page, you’ll see alphanumeric values for “Your Access Key Id:” and “Your Secret Access Key:”.
Make a note of these. Later on, we’ll call the first one your identifier and the second one your
secret_identifier.

When creating an EC2LatentWorker in the buildbot master configuration, the first three arguments are required.
The name and password are the first two arguments, and work the same as with normal workers. The next argument
specifies the type of the EC2 virtual machine (available options as of this writing include m1.small, m1.large,
m1.xlarge, c1.medium, and c1.xlarge; see the EC2 documentation for descriptions of these machines).

Here is the simplest example of configuring an EC2 latent worker. It specifies all necessary remaining values explicitly
in the instantiation.

from buildbot.plugins import worker
c['workers'] = [

worker.EC2LatentWorker('bot1', 'sekrit', 'm1.large',
ami='ami-12345',
identifier='publickey',
secret_identifier='privatekey'
keypair_name='latent_buildbot_worker',
security_name='latent_buildbot_worker',
)

]

The ami argument specifies the AMI that the master should start. The identifier argument specifies the AWS
Access Key Id, and the secret_identifier specifies the AWS Secret Access Key. Both the AMI and the account
information can be specified in alternate ways.

Note: Whoever has your identifier and secret_identifier values can request AWS work charged to your
account, so these values need to be carefully protected. Another way to specify these access keys is to put them in a
separate file. Buildbot supports the standard AWS credentials file. You can then make the access privileges stricter for
this separate file, and potentially let more people read your main configuration file. If your master is running in EC2,
you can also use IAM roles for EC2 to delegate permissions.

keypair_name and security_name allow you to specify different names for these AWS EC2 values.

You can make an .aws directory in the home folder of the user running the buildbot master. In that directory,
create a file called credentials. The format of the file should be as follows, replacing identifier and
secret_identifier with the credentials obtained before.

[default]
aws_access_key_id = identifier
aws_secret_access_key = secret_identifier

If you are using IAM roles, no config file is required. Then you can instantiate the worker as follows.

from buildbot.plugins import worker
c['workers'] = [

worker.EC2LatentWorker('bot1', 'sekrit', 'm1.large',
ami='ami-12345',
keypair_name='latent_buildbot_worker',

2.5. Configuration 119

Buildbot Documentation, Release 0.9.7

security_name='latent_buildbot_worker',
)

]

Previous examples used a particular AMI. If the Buildbot master will be deployed in a process-controlled environment,
it may be convenient to specify the AMI more flexibly. Rather than specifying an individual AMI, specify one or two
AMI filters.

In all cases, the AMI that sorts last by its location (the S3 bucket and manifest name) will be preferred.

One available filter is to specify the acceptable AMI owners, by AWS account number (the 12 digit number, usually
rendered in AWS with hyphens like “1234-5678-9012”, should be entered as in integer).

from buildbot.plugins import worker
bot1 = worker.EC2LatentWorker('bot1', 'sekrit', 'm1.large',

valid_ami_owners=[11111111111,
22222222222],

identifier='publickey',
secret_identifier='privatekey',
keypair_name='latent_buildbot_worker',
security_name='latent_buildbot_worker',
)

The other available filter is to provide a regular expression string that will be matched against each AMI’s location
(the S3 bucket and manifest name).

from buildbot.plugins import worker
bot1 = worker.EC2LatentWorker(

'bot1', 'sekrit', 'm1.large',
valid_ami_location_regex=r'buildbot\-.*/image.manifest.xml',
identifier='publickey',
secret_identifier='privatekey',
keypair_name='latent_buildbot_worker',
security_name='latent_buildbot_worker',
)

The regular expression can specify a group, which will be preferred for the sorting. Only the first group is used;
subsequent groups are ignored.

from buildbot.plugins import worker
bot1 = worker.EC2LatentWorker(

'bot1', 'sekrit', 'm1.large',
valid_ami_location_regex=r'buildbot\-.*\-(.*)/image.manifest.xml',
identifier='publickey',
secret_identifier='privatekey',
keypair_name='latent_buildbot_worker',
security_name='latent_buildbot_worker',
)

If the group can be cast to an integer, it will be. This allows 10 to sort after 1, for instance.

from buildbot.plugins import worker
bot1 = worker.EC2LatentWorker(

'bot1', 'sekrit', 'm1.large',
valid_ami_location_regex=r'buildbot\-.*\-(\d+)/image.manifest.xml',
identifier='publickey',
secret_identifier='privatekey',
keypair_name='latent_buildbot_worker',

120 Chapter 2. Buildbot Manual

Buildbot Documentation, Release 0.9.7

security_name='latent_buildbot_worker',
)

In addition to using the password as a handshake between the master and the worker, you may want to use a firewall
to assert that only machines from a specific IP can connect as workers. This is possible with AWS EC2 by using the
Elastic IP feature. To configure, generate a Elastic IP in AWS, and then specify it in your configuration using the
elastic_ip argument.

from buildbot.plugins import worker
c['workers'] = [

worker.EC2LatentWorker('bot1', 'sekrit', 'm1.large',
'ami-12345',
identifier='publickey',
secret_identifier='privatekey',
elastic_ip='208.77.188.166',
keypair_name='latent_buildbot_worker',
security_name='latent_buildbot_worker',
)

]

One other way to configure a worker is by settings AWS tags. They can for example be used to have a more restrictive
security IAM (http://aws.amazon.com/iam/) policy. To get Buildbot to tag the latent worker specify the tag keys and
values in your configuration using the tags argument.

from buildbot.plugins import worker
c['workers'] = [

worker.EC2LatentWorker('bot1', 'sekrit', 'm1.large',
'ami-12345',
identifier='publickey',
secret_identifier='privatekey',
keypair_name='latent_buildbot_worker',
security_name='latent_buildbot_worker',
tags={'SomeTag': 'foo'})

]

If the worker needs access to additional AWS resources, you can also enable your workers to access them via an EC2
instance profile. To use this capability, you must first create an instance profile separately in AWS. Then specify its
name on EC2LatentWorker via instance_profile_name.

from buildbot.plugins import worker
c['workers'] = [

worker.EC2LatentWorker('bot1', 'sekrit', 'm1.large',
ami='ami-12345',
keypair_name='latent_buildbot_worker',
security_name='latent_buildbot_worker',
instance_profile_name='my_profile'
)

]

You may also supply your own boto3.Session object to allow for more flexible session options (ex. cross-account) To
use this capability, you must first create a boto3.Session object. Then provide it to EC2LatentWorker via session
argument.

import boto3
from buildbot.plugins import worker

session = boto3.session.Session()

2.5. Configuration 121

http://aws.amazon.com/iam/

Buildbot Documentation, Release 0.9.7

c['workers'] = [
worker.EC2LatentWorker('bot1', 'sekrit', 'm1.large',

ami='ami-12345',
keypair_name='latent_buildbot_worker',
security_name='latent_buildbot_worker',
session=session
)

]

The EC2LatentWorker supports all other configuration from the standard Worker. The missing_timeout
and notify_on_missing specify how long to wait for an EC2 instance to attach before considering the attempt to
have failed, and email addresses to alert, respectively. missing_timeout defaults to 20 minutes.

Volumes

If you want to attach existing volumes to an ec2 latent worker, use the volumes attribute. This mechanism can be
valuable if you want to maintain state on a conceptual worker across multiple start/terminate sequences. volumes
expects a list of (volume_id, mount_point) tuples to attempt attaching when your instance has been created.

If you want to attach new ephemeral volumes, use the the block_device_map attribute. This follows the AWS API
syntax, essentially acting as a passthrough. The only distinction is that the volumes default to deleting on termination
to avoid leaking volume resources when workers are terminated. See boto documentation for further details.

from buildbot.plugins import worker
c['workers'] = [

worker.EC2LatentWorker('bot1', 'sekrit', 'm1.large',
ami='ami-12345',
keypair_name='latent_buildbot_worker',
security_name='latent_buildbot_worker',
block_device_map= [

"DeviceName": "/dev/xvdb",
"Ebs" : {

"VolumeType": "io1",
"Iops": 1000,
"VolumeSize": 100

}
]
)

]

VPC Support

If you are managing workers within a VPC, your worker configuration must be modified from above. You must specify
the id of the subnet where you want your worker placed. You must also specify security groups created within your
VPC as opposed to classic EC2 security groups. This can be done by passing the ids of the vpc security groups. Note,
when using a VPC, you can not specify classic EC2 security groups (as specified by security_name).

from buildbot.plugins import worker
c['workers'] = [

worker.EC2LatentWorker('bot1', 'sekrit', 'm1.large',
ami='ami-12345',
keypair_name='latent_buildbot_worker',
subnet_id='subnet-12345',
security_group_ids=['sg-12345','sg-67890']

122 Chapter 2. Buildbot Manual

Buildbot Documentation, Release 0.9.7

)
]

Spot instances

If you would prefer to use spot instances for running your builds, you can accomplish that by passing in a True value
to the spot_instance parameter to the EC2LatentWorker constructor. Additionally, you may want to specify
max_spot_price and price_multiplier in order to limit your builds’ budget consumption.

from buildbot.plugins import worker
c['workers'] = [

worker.EC2LatentWorker('bot1', 'sekrit', 'm1.large',
'ami-12345', region='us-west-2',
identifier='publickey',
secret_identifier='privatekey',
elastic_ip='208.77.188.166',
keypair_name='latent_buildbot_worker',
security_name='latent_buildbot_worker',
placement='b', spot_instance=True,
max_spot_price=0.09,
price_multiplier=1.15,
product_description='Linux/UNIX')

]

This example would attempt to create a m1.large spot instance in the us-west-2b region costing no more than
$0.09/hour. The spot prices for ‘Linux/UNIX’ spot instances in that region over the last 24 hours will be averaged
and multiplied by the price_multiplier parameter, then a spot request will be sent to Amazon with the above
details. If the multiple exceeds the max_spot_price, the bid price will be the max_spot_price.

Either max_spot_price or price_multiplier, but not both, may be None. If price_multiplier is
None, then no historical price information is retrieved; the bid price is simply the specified max_spot_price. If
the max_spot_price is None, then the multiple of the historical average spot prices is used as the bid price with
no limit.

Libvirt

class buildbot.worker.libvirt.LibVirtWorker

libvirt (http://www.libvirt.org/) is a virtualization API for interacting with the virtualization capabilities of recent
versions of Linux and other OSes. It is LGPL and comes with a stable C API, and Python bindings.

This means we know have an API which when tied to buildbot allows us to have workers that run under Xen, QEMU,
KVM, LXC, OpenVZ, User Mode Linux, VirtualBox and VMWare.

The libvirt code in Buildbot was developed against libvirt 0.7.5 on Ubuntu Lucid. It is used with KVM to test Python
code on VMs, but obviously isn’t limited to that. Each build is run on a new VM, images are temporary and thrown
away after each build.

This document will guide you through setup of a libvirt latent worker:

• Setting up libvirt

• Configuring your base image

2.5. Configuration 123

http://www.libvirt.org/

Buildbot Documentation, Release 0.9.7

• Configuring your Master

Setting up libvirt

We won’t show you how to set up libvirt as it is quite different on each platform, but there are a few things you should
keep in mind.

• If you are using the system libvirt, your buildbot master user will need to be in the libvirtd group.

• If you are using KVM, your buildbot master user will need to be in the KVM group.

• You need to think carefully about your virtual network first. Will NAT be enough? What IP will my VMs need
to connect to for connecting to the master?

Configuring your base image

You need to create a base image for your builds that has everything needed to build your software. You need to
configure the base image with a buildbot worker that is configured to connect to the master on boot.

Because this image may need updating a lot, we strongly suggest scripting its creation.

If you want to have multiple workers using the same base image it can be annoying to duplicate the image just to
change the buildbot credentials. One option is to use libvirt’s DHCP server to allocate an identity to the worker:
DHCP sets a hostname, and the worker takes its identity from that.

Doing all this is really beyond the scope of the manual, but there is a vmbuilder (https://github.com/buildbot/buildbot-
contrib/blob/master/master/contrib/libvirt/vmbuilder) script and a network.xml (https://github.com/buildbot/buildbot-
contrib/blob/master/master/contrib/libvirt/network.xml) file to create such a DHCP server in master/contrib/
(https://github.com/buildbot/buildbot-contrib/blob/master/master/contrib/) (Contrib Scripts) that should get you
started:

sudo apt-get install ubuntu-vm-builder
sudo contrib/libvirt/vmbuilder

Should create an ubuntu/ folder with a suitable image in it.

virsh net-define contrib/libvirt/network.xml
virsh net-start buildbot-network

Should set up a KVM compatible libvirt network for your buildbot VM’s to run on.

Configuring your Master

If you want to add a simple on demand VM to your setup, you only need the following. We set the username to
minion1, the password to sekrit. The base image is called base_image and a copy of it will be made for the
duration of the VM’s life. That copy will be thrown away every time a build is complete.

from buildbot.plugins import worker, util
c['workers'] = [

worker.LibVirtWorker('minion1', 'sekrit',
util.Connection("qemu:///session"),
'/home/buildbot/images/minion1',
'/home/buildbot/images/base_image')

]

124 Chapter 2. Buildbot Manual

https://github.com/buildbot/buildbot-contrib/blob/master/master/contrib/libvirt/vmbuilder
https://github.com/buildbot/buildbot-contrib/blob/master/master/contrib/libvirt/network.xml
https://github.com/buildbot/buildbot-contrib/blob/master/master/contrib/

Buildbot Documentation, Release 0.9.7

You can use virt-manager to define minion1 with the correct hardware. If you don’t, buildbot won’t be able to find
a VM to start.

LibVirtWorker accepts the following arguments:

name Both a buildbot username and the name of the virtual machine.

password A password for the buildbot to login to the master with.

connection Connection instance wrapping connection to libvirt.

hd_image The path to a libvirt disk image, normally in qcow2 format when using KVM.

base_image If given a base image, buildbot will clone it every time it starts a VM. This means you always have a
clean environment to do your build in.

xml If a VM isn’t predefined in virt-manager, then you can instead provide XML like that used with virsh
define. The VM will be created automatically when needed, and destroyed when not needed any longer.

OpenStack

class buildbot.worker.openstack.OpenStackLatentWorker

OpenStack (http://openstack.org/) is a series of interconnected components that facilitates managing compute, storage,
and network resources in a data center. It is available under the Apache License and has a REST interface along with
a Python client.

This document will guide you through setup of an OpenStack latent worker:

• Install dependencies

• Get an Account in an OpenStack cloud

• Create an Image

• Configure the Master with an OpenStackLatentWorker

Install dependencies

OpenStackLatentWorker requires python-novaclient to work, you can install it with pip install python-novaclient.

Get an Account in an OpenStack cloud

Setting up OpenStack is outside the domain of this document. There are four account details necessary for the Buildbot
master to interact with your OpenStack cloud: username, password, a tenant name, and the auth URL to use.

Create an Image

OpenStack supports a large number of image formats. OpenStack maintains a short list of prebuilt images; if the de-
sired image is not listed, The OpenStack Compute Administration Manual (http://docs.openstack.org/trunk/openstack-
compute/admin/content/index.html) is a good resource for creating new images. You need to configure the image with
a buildbot worker to connect to the master on boot.

2.5. Configuration 125

http://openstack.org/
http://docs.openstack.org/trunk/openstack-compute/admin/content/index.html

Buildbot Documentation, Release 0.9.7

Configure the Master with an OpenStackLatentWorker

With the configured image in hand, it is time to configure the buildbot master to create OpenStack instances of it. You
will need the aforementioned account details. These are the same details set in either environment variables or passed
as options to an OpenStack client.

OpenStackLatentWorker accepts the following arguments:

name The worker name.

password A password for the worker to login to the master with.

flavor The flavor ID to use for the instance.

image A string containing the image UUID to use for the instance. A callable may instead be passed. It will be
passed the list of available images and must return the image to use.

os_username

os_password

os_tenant_name

os_auth_url The OpenStack authentication needed to create and delete instances. These are the same as the
environment variables with uppercase names of the arguments.

block_devices A list of dictionaries. Each dictionary specifies a block device to set up during instance creation.
The values support using properties from the build and will be rendered when the instance is started.

Supported keys

uuid (required): The image, snapshot, or volume UUID.

volume_size (optional): Size of the block device in GiB. If not specified, the minimum size in GiB to
contain the source will be calculated and used.

device_name (optional): defaults to vda. The name of the device in the instance; e.g. vda or xda.

source_type (optional): defaults to image. The origin of the block device. Valid values are image,
snapshot, or volume.

destination_type (optional): defaults to volume. Destination of block device: volume or local.

delete_on_termination (optional): defaults to True. Controls if the block device will be deleted when
the instance terminates.

boot_index (optional): defaults to 0. Integer used for boot order.

meta A dictionary of string key-value pairs to pass to the instance. These will be available under the metadata key
from the metadata service.

nova_args (optional) A dict that will be appended to the arguments when creating a VM. Buildbot uses the Open-
Stack Nova version 2 API by default (see client_version).

client_version (optional) A string containing the Nova client version to use. Defaults to 2. Supports using
2.X, where X is a micro-version. Use 1.1 for the previous, deprecated, version. If using 1.1, note that an
older version of novaclient will be needed so it won’t switch to using 2.

Here is the simplest example of configuring an OpenStack latent worker.

from buildbot.plugins import worker
c['workers'] = [

worker.OpenStackLatentWorker('bot2', 'sekrit',
flavor=1, image='8ac9d4a4-5e03-48b0-acde-77a0345a9ab1',
os_username='user', os_password='password',

126 Chapter 2. Buildbot Manual

Buildbot Documentation, Release 0.9.7

os_tenant_name='tenant',
os_auth_url='http://127.0.0.1:35357/v2.0')

]

The image argument also supports being given a callable. The callable will be passed the list of available images and
must return the image to use. The invocation happens in a separate thread to prevent blocking the build master when
interacting with OpenStack.

from buildbot.plugins import worker

def find_image(images):
Sort oldest to newest.
def key_fn(x):

return x.created

candidate_images = sorted(images, key=key_fn)
Return the oldest candiate image.
return candidate_images[0]

c['workers'] = [
worker.OpenStackLatentWorker('bot2', 'sekrit',

flavor=1, image=find_image,
os_username='user', os_password='password',
os_tenant_name='tenant',
os_auth_url='http://127.0.0.1:35357/v2.0')

]

The block_devices argument is minimally manipulated to provide some defaults and passed directly to novaclient.
The simplest example is an image that is converted to a volume and the instance boots from that volume. When the
instance is destroyed, the volume will be terminated as well.

from buildbot.plugins import worker
c['workers'] = [

worker.OpenStackLatentWorker('bot2', 'sekrit',
flavor=1, image='8ac9d4a4-5e03-48b0-acde-77a0345a9ab1',
os_username='user', os_password='password',
os_tenant_name='tenant',
os_auth_url='http://127.0.0.1:35357/v2.0',
block_devices=[

{'uuid': '3f0b8868-67e7-4a5b-b685-2824709bd486',
'volume_size': 10}])

]

The nova_args can be used to specify additional arguments for the novaclient. For example network mappings,
which is required if your OpenStack tenancy has more than one network, and default cannot be determined. Please
refer to your OpenStack manual whether it wants net-id or net-name.

Other useful parameters are availability_zone, security_groups and config_drive. Refer to Python
bindings to the OpenStack Nova API (http://docs.openstack.org/developer/python-novaclient/) for more information.
It is found on section Servers, method create.

from buildbot.plugins import worker
c['workers'] = [

worker.OpenStackLatentWorker('bot2', 'sekrit',
flavor=1, image='8ac9d4a4-5e03-48b0-acde-77a0345a9ab1',
os_username='user', os_password='password',
os_tenant_name='tenant',
os_auth_url='http://127.0.0.1:35357/v2.0',

2.5. Configuration 127

http://docs.openstack.org/developer/python-novaclient/
http://docs.openstack.org/developer/python-novaclient/

Buildbot Documentation, Release 0.9.7

nova_args={
'nics': [

{'net-id':'uid-of-network'}
]})

]

OpenStackLatentWorker supports all other configuration from the standard Worker. The
missing_timeout and notify_on_missing specify how long to wait for an OpenStack instance to at-
tach before considering the attempt to have failed and email addresses to alert, respectively. missing_timeout
defaults to 20 minutes.

Docker latent worker

class buildbot.worker.docker.DockerLatentWorker

class buildbot.plugins.worker.DockerLatentWorker

Docker (https://docker.com) is an open-source project that automates the deployment of applications inside software
containers. The DockerLatentWorker attempts to instantiate a fresh image for each build to assure consistency
of the environment between builds. Each image will be discarded once the worker finished processing the build queue
(i.e. becomes idle). See build_wait_timeout to change this behavior.

This document will guide you through the setup of such workers.

• Docker Installation

• Image Creation

• Reuse same image for different workers

• Master Setup

Docker Installation

An easy way to try Docker is through installation of dedicated Virtual machines. Two of them stands out:

• CoreOS (https://coreos.com/)

• boot2docker (http://boot2docker.io/)

Beside, it is always possible to install Docker next to the buildmaster. Beware that in this case, overall performance
will depend on how many builds the computer where you have your buildmaster can handle as everything will happen
on the same one.

Note: It is not necessary to install Docker in the same environment as your master as we will make use to the Docker
API through docker-py (https://pypi.python.org/pypi/docker-py). More in master setup.

CoreOS

CoreOS is targeted at building infrastructure and distributed systems. In order to get the latent worker
working with CoreOS, it is necessary to expose the docker socket (https://coreos.com/docs/launching-
containers/building/customizing-docker/) outside of the Virtual Machine. If you installed it via Vagrant

128 Chapter 2. Buildbot Manual

https://docker.com
https://coreos.com/
http://boot2docker.io/
https://pypi.python.org/pypi/docker-py
https://coreos.com/docs/launching-containers/building/customizing-docker/
https://coreos.com/docs/running-coreos/platforms/vagrant/

Buildbot Documentation, Release 0.9.7

(https://coreos.com/docs/running-coreos/platforms/vagrant/), it is also necessary to uncomment the following line in
your config.rb file:

$expose_docker_tcp=2375

The following command should allow you to confirm that your Docker socket is now available via the network:

docker -H tcp://127.0.0.1:2375 ps

boot2docker

boot2docker is one of the fastest ways to boot to Docker. As it is meant to be used from outside of the Virtual Machine,
the socket is already exposed. Please follow the installation instructions on how to find the address of your socket.

Image Creation

Our build master will need the name of an image to perform its builds. Each time a new build will be requested, the
same base image will be used again and again, actually discarding the result of the previous build. If you need some
persistant storage between builds, you can use Volumes.

Each Docker image has a single purpose. Our worker image will be running a buildbot worker.

Docker uses Dockerfiles to describe the steps necessary to build an image. The following example will build
a minimal worker. This example is voluntarily simplistic, and should probably not be used in production, see next
paragraph.

1 FROM debian:stable
2 RUN apt-get update && apt-get install -y \
3 python-dev \
4 python-pip
5 RUN pip install buildbot-worker
6 RUN groupadd -r buildbot && useradd -r -g buildbot buildbot
7 RUN mkdir /worker && chown buildbot:buildbot /worker
8 # Install your build-dependencies here ...
9 USER buildbot

10 WORKDIR /worker
11 RUN buildbot-worker create-worker . <master-hostname> <workername> <workerpassword>
12 ENTRYPOINT ["/usr/local/bin/buildbot-worker"]
13 CMD ["start", "--nodaemon"]

On line 11, the hostname for your master instance, as well as the worker name and password is setup. Don’t forget to
replace those values with some valid ones for your project.

It is a good practice to set the ENTRYPOINT to the worker executable, and the CMD to ["start",
"--nodaemon"]. This way, no parameter will be required when starting the image.

When your Dockerfile is ready, you can build your first image using the following command (replace myworkername
with a relevant name for your case):

docker build -t myworkername - < Dockerfile

2.5. Configuration 129

Buildbot Documentation, Release 0.9.7

Reuse same image for different workers

Previous simple example hardcodes the worker name into the dockerfile, which will not work if you want to share
your docker image between workers.

You can find in buildbot source code in master/contrib/docker (https://github.com/buildbot/buildbot-
contrib/blob/master/master/contrib/docker) one example configurations:

pythonnode_worker (https://github.com/buildbot/buildbot-contrib/blob/master/master/contrib/docker/pythonnode_worker/)
a worker with Python and node installed, which demonstrate how to reuse the base worker to create variations
of build environments. It is based on the official buildbot/buildbot-worker image.

The master setups several environment variables before starting the workers:

BUILDMASTER The address of the master the worker shall connect to

BUILDMASTER_PORT The port of the master’s worker ‘pb’ protocol.

WORKERNAME The name the worker should use to connect to master

WORKERPASS The password the worker should use to connect to master

Master Setup

We will rely on docker-py to connect our master with docker. Now is the time to install it in your master environment.

Before adding the worker to your master configuration, it is possible to validate the previous steps by starting the newly
created image interactively. To do this, enter the following lines in a Python prompt where docker-py is installed:

>>> import docker
>>> docker_socket = 'tcp://localhost:2375'
>>> client = docker.client.Client(base_url=docker_socket)
>>> worker_image = 'my_project_worker'
>>> container = client.create_container(worker_image)
>>> client.start(container['Id'])
>>> # Optionally examine the logs of the master
>>> client.stop(container['Id'])
>>> client.wait(container['Id'])
0

It is now time to add the new worker to the master configuration under workers.

The following example will add a Docker latent worker for docker running at the following address: tcp://
localhost:2375, the worker name will be docker, its password: password, and the base image name will
be my_project_worker:

from buildbot.plugins import worker
c['workers'] = [

worker.DockerLatentWorker('docker', 'password',
docker_host='tcp://localhost:2375',
image='my_project_worker')

]

password (mandatory) The worker password part of the Latent Workers API. If the password is None, then it will
be automatically generated from random number, and transmitted to the container via environment variable.

In addition to the arguments available for any Latent Workers, DockerLatentWorker will accept the following
extra ones:

docker_host (mandatory) This is the address the master will use to connect with a running Docker instance.

130 Chapter 2. Buildbot Manual

https://github.com/buildbot/buildbot-contrib/blob/master/master/contrib/docker
https://github.com/buildbot/buildbot-contrib/blob/master/master/contrib/docker/pythonnode_worker/

Buildbot Documentation, Release 0.9.7

image

This is the name of the image that will be started by the build master. It should start a worker. This option
can be a renderable, like Interpolate, so that it generates from the build request properties.

command (optional) This will override the command setup during image creation.

volumes (optional) See Setting up Volumes

dockerfile (optional if image is given) This is the content of the Dockerfile that will be used to build the specified
image if the image is not found by Docker. It should be a multiline string.

Note: In case image and dockerfile are given, no attempt is made to compare the image with the content
of the Dockerfile parameter if the image is found.

version (optional, default to the highest version known by docker-py) This will indicates wich API version must
be used to communicate with Docker.

tls (optional) This allow to use TLS when connecting with the Docker socket. This should be a docker.tls.
TLSConfig object. See docker-py’s own documentation (https://docker-py.readthedocs.io/en/1.10.4/tls/) for
more details on how to initialise this object.

followStartupLogs (optional, defaults to false) This transfers docker container’s log inside master logs during
worker startup (before connection). This can be useful to debug worker startup. e.g network issues, etc.

masterFQDN (optional, defaults to socket.getfqdn()) Address of the master the worker should connect to. Use if you
master machine does not have proper fqdn. This value is passed to the docker image via environment variable
BUILDMASTER

hostconfig (optional) Extra host configuration parameters passed as a dictionary used to create HostConfig object.
See docker-py’s HostConfig documentation (https://docker-py.readthedocs.io/en/1.10.4/hostconfig/) for all the
supported options.

Setting up Volumes

The volume parameter allows to share directory between containers, or between a container and the host system.
Refer to Docker documentation for more information about Volumes.

The format of that variable has to be an array of string. Each string specify a volume in the following format:
volumename:bindname. The volume name has to be appended with :ro if the volume should be mounted
read-only.

Note: This is the same format as when specifying volumes on the command line for docker’s own -v option.

Hyper latent worker

Hyper (https://hyper.sh) is a CaaS solution for hosting docker container in the cloud, billed to the second. It forms a
very cost efficient solution to run your CI in the cloud.

Buildbot supports using Hyper (https://hyper.sh) to host your latent workers.

class buildbot.worker.hyper.HyperLatentWorker

class buildbot.plugins.worker.HyperLatentWorker

2.5. Configuration 131

https://docker-py.readthedocs.io/en/1.10.4/tls/
https://docker-py.readthedocs.io/en/1.10.4/hostconfig/
https://hyper.sh
https://hyper.sh

Buildbot Documentation, Release 0.9.7

The HyperLatentWorker attempts to instantiate a fresh image for each build to assure consistency of the environ-
ment between builds. Each image will be discarded once the worker finished processing the build queue (i.e. becomes
idle). See build_wait_timeout to change this behavior.

In addition to the arguments available for any Latent Workers, HyperLatentWorkerwill accept the following extra
ones:

password (mandatory) The worker password part of the Latent Workers API. If the password is None, then it will
be automatically generated from random number, and transmitted to the container via environment variable.

hyper_host (mandatory) This is the address the hyper infra endpoint will use to start docker containers.

image (mandatory) This is the name of the image that will be started by the build master. It should start a worker.
This option can be a renderable, like Interpolate, so that it generates from the build request properties. Images
are by default pulled from the public DockerHub (https://hub.docker.com/) docker registry. You can consult the
hyper documentation to know how to configure a custom registry. HyperLatentWorker does not support starting
a worker built from a Dockerfile.

masterFQDN (optional, defaults to socket.getfqdn()) Address of the master the worker should connect to. Use if you
master machine does not have proper fqdn. This value is passed to the docker image via environment variable
BUILDMASTER

If the value contains a colon (:), then BUILDMASTER and BUILDMASTER_PORT environment variables
will be passed, following scheme: masterFQDN="$BUILDMASTER:$BUILDMASTER_PORT"

This feature is useful for testing behind a proxy using ngrok command like: ngrok tcp 9989 ngrok
config can the be retrieved with following snippet:

from future.moves.urllib.parse import urlparse
import requests
r = requests.get("http://localhost:4040/api/tunnels/command_line").json()
masterFQDN = urlparse(r['public_url']).netloc

hyper_accesskey (mandatory) Access key to use as part of the creds to access hyper.

hyper_secretkey (mandatory) Secret key to use as part of the creds to access hyper.

hyper_size (optional, defaults to s3) Size of the container to use as per HyperPricing
(https://hyper.sh/pricing.html)

Marathon latent worker

Marathon (https://mesosphere.github.io/marathon/) Marathon is a production-grade container orchestration platform
for Mesosphere’s Data-center Operating System (DC/OS) and Apache Mesos.

Buildbot supports using Marathon (https://mesosphere.github.io/marathon/) to host your latent workers. It requires
either txrequests (https://pypi.python.org/pypi/txrequests) or treq (https://pypi.python.org/pypi/treq) to be installed to
allow interaction with http server. See HTTPClientService for details.

class buildbot.worker.marathon.MarathonLatentWorker

class buildbot.plugins.worker.MarathonLatentWorker

The MarathonLatentWorker attempts to instantiate a fresh image for each build to assure consistency of the
environment between builds. Each image will be discarded once the worker finished processing the build queue (i.e.
becomes idle). See build_wait_timeout to change this behavior.

In addition to the arguments available for any Latent Workers, MarathonLatentWorker will accept the following
extra ones:

132 Chapter 2. Buildbot Manual

https://hub.docker.com/
https://hyper.sh/pricing.html
https://mesosphere.github.io/marathon/
https://mesosphere.github.io/marathon/
https://pypi.python.org/pypi/txrequests
https://pypi.python.org/pypi/treq

Buildbot Documentation, Release 0.9.7

marathon_url (mandatory) This is the URL to Marathon (https://mesosphere.github.io/marathon/) server. Its
REST API will be used to start docker containers.

marathon_auth (optional) This is the optional ('userid', 'password') BasicAuth credential. If
txrequests (https://pypi.python.org/pypi/txrequests) is installed, this can be a requests authentication plugin
(http://docs.python-requests.org/en/master/user/authentication/).

image (mandatory) This is the name of the image that will be started by the build master. It should start a worker.
This option can be a renderable, like Interpolate, so that it generates from the build request properties. Images
are by pulled from the default docker registry. MarathonLatentWorker does not support starting a worker built
from a Dockerfile.

masterFQDN (optional, defaults to socket.getfqdn()) Address of the master the worker should connect to. Use if you
master machine does not have proper fqdn. This value is passed to the docker image via environment variable
BUILDMASTER

If the value contains a colon (:), then BUILDMASTER and BUILDMASTER_PORT environment variables
will be passed, following scheme: masterFQDN="$BUILDMASTER:$BUILDMASTER_PORT"

marathon_extra_config (optional, defaults to {}`) Extra configuration to be passed to Marathon API
(http://mesosphere.github.io/marathon/docs/rest-api.html#post-v2-apps). This implementation will setup the
minimal configuration to run a worker (docker image, BRIDGED network) It will let the default for everything
else, including memory size, volume mounting, etc. This configuration is voluntarily very raw so that it is easy
to use new marathon features. This dictionary will be merged into the Buildbot generated config, and recur-
sively override it. See Marathon API (http://mesosphere.github.io/marathon/docs/rest-api.html#post-v2-apps)
documentation to learn what to include in this config.

Dangers with Latent Workers

Any latent worker that interacts with a for-fee service, such as the EC2LatentWorker, brings significant risks.
As already identified, the configuration will need access to account information that, if obtained by a criminal, can
be used to charge services to your account. Also, bugs in the buildbot software may lead to unnecessary charges.
In particular, if the master neglects to shut down an instance for some reason, a virtual machine may be running
unnecessarily, charging against your account. Manual and/or automatic (e.g. nagios with a plugin using a library like
boto) double-checking may be appropriate.

A comparatively trivial note is that currently if two instances try to attach to the same latent worker, it is likely that the
system will become confused. This should not occur, unless, for instance, you configure a normal worker to connect
with the authentication of a latent buildbot. If this situation does occurs, stop all attached instances and restart the
master.

Builder Configuration

• Collapsing Build Requests

• Prioritizing Builds

• Virtual Builders

The builders configuration key is a list of objects giving configuration for the Builders. For more information on
the function of Builders in Buildbot, see the Concepts chapter. The class definition for the builder configuration is in
buildbot.config. However there is a much simpler way to use it, so in the configuration file, its use looks like:

2.5. Configuration 133

https://mesosphere.github.io/marathon/
https://pypi.python.org/pypi/txrequests
http://docs.python-requests.org/en/master/user/authentication/
http://mesosphere.github.io/marathon/docs/rest-api.html#post-v2-apps
http://mesosphere.github.io/marathon/docs/rest-api.html#post-v2-apps

Buildbot Documentation, Release 0.9.7

from buildbot.plugins import util
c['builders'] = [

util.BuilderConfig(name='quick', workernames=['bot1', 'bot2'], factory=f_quick),
util.BuilderConfig(name='thorough', workername='bot1', factory=f_thorough),

]

BuilderConfig takes the following keyword arguments:

name This specifies the Builder’s name, which is used in status reports.

workername

workernames These arguments specify the worker or workers that will be used by this Builder. All workers names
must appear in the workers configuration parameter. Each worker can accommodate multiple builders. The
workernames parameter can be a list of names, while workername can specify only one worker.

factory This is a buildbot.process.factory.BuildFactory instance which controls how the build is
performed by defining the steps in the build. Full details appear in their own section, Build Factories.

Other optional keys may be set on each BuilderConfig:

builddir Specifies the name of a subdirectory of the master’s basedir in which everything related to this builder
will be stored. This holds build status information. If not set, this parameter defaults to the builder name, with
some characters escaped. Each builder must have a unique build directory.

workerbuilddir Specifies the name of a subdirectory (under the worker’s configured base directory) in which
everything related to this builder will be placed on the worker. This is where checkouts, compiles, and tests
are run. If not set, defaults to builddir. If a worker is connected to multiple builders that share the same
workerbuilddir, make sure the worker is set to run one build at a time or ensure this is fine to run multiple
builds from the same directory simultaneously.

tags If provided, this is a list of strings that identifies tags for the builder. Status clients can limit themselves to a
subset of the available tags. A common use for this is to add new builders to your setup (for a new module, or
for a new worker) that do not work correctly yet and allow you to integrate them with the active builders. You
can tag these new builders with a test tag, make your main status clients ignore them, and have only private
status clients pick them up. As soon as they work, you can move them over to the active tag.

nextWorker If provided, this is a function that controls which worker will be assigned future jobs. The function
is passed three arguments, the Builder object which is assigning a new job, a list of WorkerForBuilder
objects and the BuildRequest. The function should return one of the WorkerForBuilder objects, or
None if none of the available workers should be used. As an example, for each worker in the list, worker.
worker will be a Worker object, and worker.worker.workername is the worker’s name. The function
can optionally return a Deferred, which should fire with the same results.

nextBuild If provided, this is a function that controls which build request will be handled next. The function
is passed two arguments, the Builder object which is assigning a new job, and a list of BuildRequest
objects of pending builds. The function should return one of the BuildRequest objects, or None if none of
the pending builds should be started. This function can optionally return a Deferred which should fire with the
same results.

canStartBuild If provided, this is a function that can veto whether a particular worker should be used for a given
build request. The function is passed three arguments: the Builder, a Worker, and a BuildRequest. The
function should return True if the combination is acceptable, or False otherwise. This function can optionally
return a Deferred which should fire with the same results.

See canStartBuild Functions for a concrete example.

locks This argument specifies a list of locks that apply to this builder; see Interlocks.

env A Builder may be given a dictionary of environment variables in this parameter. The variables are used in
ShellCommand steps in builds created by this builder. The environment variables will override anything in

134 Chapter 2. Buildbot Manual

Buildbot Documentation, Release 0.9.7

the worker’s environment. Variables passed directly to a ShellCommand will override variables of the same
name passed to the Builder.

For example, if you have a pool of identical workers it is often easier to manage variables like PATH from
Buildbot rather than manually editing it inside of the workers’ environment.

f = factory.BuildFactory
f.addStep(ShellCommand(

command=['bash', './configure']))
f.addStep(Compile())

c['builders'] = [
BuilderConfig(name='test', factory=f,

workernames=['worker1', 'worker2', 'worker3', 'worker4'],
env={'PATH': '/opt/local/bin:/opt/app/bin:/usr/local/bin:/usr/bin'}),

]

Unlike most builder configuration arguments, this argument can contain renderables.

collapseRequests Specifies how build requests for this builder should be collapsed. See Collapsing Build Re-
quests, below.

properties A builder may be given a dictionary of Build Properties specific for this builder in this parameter.
Those values can be used later on like other properties. Interpolate.

description A builder may be given an arbitrary description, which will show up in the web status on the builder’s
page.

Collapsing Build Requests

When more than one build request is available for a builder, Buildbot can “collapse” the requests into a single build.
This is desirable when build requests arrive more quickly than the available workers can satisfy them, but has the
drawback that separate results for each build are not available.

Requests are only candidated for a merge if both requests have exactly the same codebases.

This behavior can be controlled globally, using the collapseRequests parameter, and on a per-Builder basis,
using the collapseRequests argument to the Builder configuration. If collapseRequests is given, it
completely overrides the global configuration.

Possible values for both collapseRequests configurations are:

True Requests will be collapsed if their sourcestamp are compatible (see below for definition of compatible).

False Requests will never be collapsed.

callable(builder, req1, req2) Requests will be collapsed if the callable returns true. See Collapse Re-
quest Functions for detailed example.

Sourcestamps are compatible if all of the below conditions are met:

• Their codebase, branch, project, and repository attributes match exactly

• Neither source stamp has a patch (e.g., from a try scheduler)

• Either both source stamps are associated with changes, or neither are associated with changes but they have
matching revisions.

2.5. Configuration 135

Buildbot Documentation, Release 0.9.7

Prioritizing Builds

The BuilderConfig parameter nextBuild can be use to prioritize build requests within a builder. Note that this
is orthogonal to Prioritizing Builders, which controls the order in which builders are called on to start their builds. The
details of writing such a function are in Build Priority Functions.

Such a function can be provided to the BuilderConfig as follows:

def pickNextBuild(builder, requests):
...

c['builders'] = [
BuilderConfig(name='test', factory=f,

nextBuild=pickNextBuild,
workernames=['worker1', 'worker2', 'worker3', 'worker4']),

]

Virtual Builders

Dynamic Trigger is a method which allows to trigger the same builder, with different parameters. This
method is used by frameworks which store the build config along side the source code like Buildbot_travis
(https://github.com/buildbot/buildbot_travis). The drawback of this method is that it is difficult to extract statistics
for similar builds. The standard dashboards are not working well due to the fact that all the builds are on the same
builder.

In order to overcome those drawbacks, Buildbot has the concept of virtual builder. If a build has the property
virtual_builder_name, it will automatically attach to that builder instead of the original builder. That cre-
ated virtual builder is not attached to any master and is only used for better sorting in the UI and better statistics. The
original builder and worker configuration is still used for all other build behaviors.

The virtual builder metadata is configured with the following properties:

• virtual_builder_name: The name of the virtual builder.

• virtual_builder_description: The description of the virtual builder.

• virtual_builder_tags: The tags for the virtual builder.

Build Factories

Each Builder is equipped with a build factory, which defines the steps used to perform that particular type of
build. This factory is created in the configuration file, and attached to a Builder through the factory element of its
dictionary.

The steps used by these builds are defined in the next section, Build Steps.

Note: Build factories are used with builders, and are not added directly to the buildmaster configuration dictionary.

• Defining a Build Factory

• Dynamic Build Factories

• Predefined Build Factories

136 Chapter 2. Buildbot Manual

https://github.com/buildbot/buildbot_travis

Buildbot Documentation, Release 0.9.7

Defining a Build Factory

A BuildFactory defines the steps that every build will follow. Think of it as a glorified script. For example, a
build factory which consists of an SVN checkout followed by a make build would be configured as follows:

from buildbot.plugins import util, steps

f = util.BuildFactory()
f.addStep(steps.SVN(repourl="http://..", mode="incremental"))
f.addStep(steps.Compile(command=["make", "build"]))

This factory would then be attached to one builder (or several, if desired):

c['builders'].append(
BuilderConfig(name='quick', workernames=['bot1', 'bot2'], factory=f))

It is also possible to pass a list of steps into the BuildFactory when it is created. Using addStep is usually
simpler, but there are cases where it is more convenient to create the list of steps ahead of time, perhaps using some
Python tricks to generate the steps.

from buildbot.plugins import steps, util

all_steps = [
steps.CVS(cvsroot=CVSROOT, cvsmodule="project", mode="update"),
steps.Compile(command=["make", "build"]),

]
f = util.BuildFactory(all_steps)

Finally, you can also add a sequence of steps all at once:

f.addSteps(all_steps)

Attributes

The following attributes can be set on a build factory after it is created, e.g.,

f = util.BuildFactory()
f.useProgress = False

useProgress (defaults to True): if True, the buildmaster keeps track of how long each step takes, so it can
provide estimates of how long future builds will take. If builds are not expected to take a consistent amount of
time (such as incremental builds in which a random set of files are recompiled or tested each time), this should
be set to False to inhibit progress-tracking.

workdir (defaults to ‘build’): workdir given to every build step created by this factory as default. The workdir can
be overridden in a build step definition.

If this attribute is set to a string, that string will be used for constructing the workdir (worker base + builder
builddir + workdir). The attribute can also be a Python callable, for more complex cases, as described in
Factory Workdir Functions.

Dynamic Build Factories

In some cases you may not know what commands to run until after you checkout the source tree. For those cases you
can dynamically add steps during a build from other steps.

2.5. Configuration 137

Buildbot Documentation, Release 0.9.7

The Build object provides 2 functions to do this:

addStepsAfterCurrentStep(self, step_factories) This adds the steps after the step that is cur-
rently executing.

addStepsAfterLastStep(self, step_factories) This adds the steps onto the end of the build.

Both functions only accept as an argument a list of steps to add to the build.

For example lets say you have a script checked in into your source tree called build.sh. When this script is called with
the argument --list-stages it outputs a newline separated list of stage names. This can be used to generate at
runtime a step for each stage in the build. Each stage is then run in this example using ./build.sh --run-stage
<stage name>.

from buildbot.plugins import util, steps
from buildbot.process import buildstep, logobserver
from twisted.internet import defer

class GenerateStagesCommand(buildstep.ShellMixin, steps.BuildStep):

def __init__(self, **kwargs):
kwargs = self.setupShellMixin(kwargs)
steps.BuildStep.__init__(self, **kwargs)
self.observer = logobserver.BufferLogObserver()
self.addLogObserver('stdio', self.observer)

def extract_stages(self, stdout):
stages = []
for line in stdout.split('\n'):

stage = str(line.strip())
if stage:

stages.append(stage)
return stages

@defer.inlineCallbacks
def run(self):

run './build.sh --list-stages' to generate the list of stages
cmd = yield self.makeRemoteShellCommand()
yield self.runCommand(cmd)

if the command passes extract the list of stages
result = cmd.results()
if result == util.SUCCESS:

create a ShellCommand for each stage and add them to the build
self.build.addStepsAfterCurrentStep([

steps.ShellCommand(name=stage, command=["./build.sh", "--run-stage",
→˓stage])

for stage in self.extract_stages(self.observer.getStdout())
])

defer.returnValue(result)

f = util.BuildFactory()
f.addStep(steps.Git(repourl=repourl))
f.addStep(GenerateStagesCommand(

name="Generate build stages",
command=["./build.sh", "--list-stages"],
haltOnFailure=True))

138 Chapter 2. Buildbot Manual

Buildbot Documentation, Release 0.9.7

Predefined Build Factories

Buildbot includes a few predefined build factories that perform common build sequences. In practice, these are rarely
used, as every site has slightly different requirements, but the source for these factories may provide examples for
implementation of those requirements.

GNUAutoconf

class buildbot.process.factory.GNUAutoconf

GNU Autoconf (http://www.gnu.org/software/autoconf/) is a software portability tool, intended to make it possible to
write programs in C (and other languages) which will run on a variety of UNIX-like systems. Most GNU software is
built using autoconf. It is frequently used in combination with GNU automake. These tools both encourage a build
process which usually looks like this:

% CONFIG_ENV=foo ./configure --with-flags
% make all
% make check
make install

(except of course the Buildbot always skips the make install part).

The Buildbot’s buildbot.process.factory.GNUAutoconf factory is designed to build projects which use
GNU autoconf and/or automake. The configuration environment variables, the configure flags, and command lines
used for the compile and test are all configurable, in general the default values will be suitable.

Example:

f = util.GNUAutoconf(source=source.SVN(repourl=URL, mode="copy"),
flags=["--disable-nls"])

Required Arguments:

source This argument must be a step specification tuple that provides a BuildStep to generate the source tree.

Optional Arguments:

configure The command used to configure the tree. Defaults to ./configure. Accepts either a string or a list
of shell argv elements.

configureEnv The environment used for the initial configuration step. This accepts a dictionary which will be
merged into the worker’s normal environment. This is commonly used to provide things like CFLAGS="-O2
-g" (to turn off debug symbols during the compile). Defaults to an empty dictionary.

configureFlags A list of flags to be appended to the argument list of the configure command. This is commonly
used to enable or disable specific features of the autoconf-controlled package, like ["--without-x"] to
disable windowing support. Defaults to an empty list.

reconf use autoreconf to generate the ./configure file, set to True to use a buildbot default autoreconf command, or
define the command for the ShellCommand.

compile this is a shell command or list of argv values which is used to actually compile the tree. It defaults to make
all. If set to None, the compile step is skipped.

test this is a shell command or list of argv values which is used to run the tree’s self-tests. It defaults to make
check. If set to None, the test step is skipped.

distcheck this is a shell command or list of argv values which is used to run the packaging test. It defaults to
make distcheck. If set to None, the test step is skipped.

2.5. Configuration 139

http://www.gnu.org/software/autoconf/

Buildbot Documentation, Release 0.9.7

BasicBuildFactory

class buildbot.process.factory.BasicBuildFactory

This is a subclass of GNUAutoconf which assumes the source is in CVS, and uses mode='full' and
method='clobber' to always build from a clean working copy.

BasicSVN

class buildbot.process.factory.BasicSVN

This class is similar to QuickBuildFactory, but uses SVN instead of CVS.

QuickBuildFactory

class buildbot.process.factory.QuickBuildFactory

The QuickBuildFactory class is a subclass of GNUAutoconf which assumes the source is in CVS, and uses
mode='incremental' to get incremental updates.

The difference between a full build and a quick build is that quick builds are generally done incrementally, starting
with the tree where the previous build was performed. That simply means that the source-checkout step should be
given a mode='incremental' flag, to do the source update in-place.

In addition to that, this class sets the useProgress flag to False. Incremental builds will (or at least the ought
to) compile as few files as necessary, so they will take an unpredictable amount of time to run. Therefore it would be
misleading to claim to predict how long the build will take.

This class is probably not of use to new projects.

CPAN

class buildbot.process.factory.CPAN

Most Perl modules available from the CPAN (http://www.cpan.org/) archive use the MakeMaker module to provide
configuration, build, and test services. The standard build routine for these modules looks like:

% perl Makefile.PL
% make
% make test
make install

(except again Buildbot skips the install step)

Buildbot provides a CPAN factory to compile and test these projects.

Arguments:

source (required): A step specification tuple, like that used by GNUAutoconf.

perl A string which specifies the perl executable to use. Defaults to just perl.

Distutils

class buildbot.process.factory.Distutils

140 Chapter 2. Buildbot Manual

http://www.cpan.org/

Buildbot Documentation, Release 0.9.7

Most Python modules use the distutils package to provide configuration and build services. The standard build
process looks like:

% python ./setup.py build
% python ./setup.py install

Unfortunately, although Python provides a standard unit-test framework named unittest, to the best of my knowl-
edge distutils does not provide a standardized target to run such unit tests. (Please let me know if I’m wrong, and
I will update this factory.)

The Distutils factory provides support for running the build part of this process. It accepts the same source=
parameter as the other build factories.

Arguments:

source (required): A step specification tuple, like that used by GNUAutoconf.

python A string which specifies the python executable to use. Defaults to just python.

test Provides a shell command which runs unit tests. This accepts either a string or a list. The default value is None,
which disables the test step (since there is no common default command to run unit tests in distutils modules).

Trial

class buildbot.process.factory.Trial

Twisted provides a unit test tool named trialwhich provides a few improvements over Python’s built-in unittest
module. Many Python projects which use Twisted for their networking or application services also use trial for their
unit tests. These modules are usually built and tested with something like the following:

% python ./setup.py build
% PYTHONPATH=build/lib.linux-i686-2.3 trial -v PROJECTNAME.test
% python ./setup.py install

Unfortunately, the build/lib directory into which the built/copied .py files are placed is actually architecture-
dependent, and I do not yet know of a simple way to calculate its value. For many projects it is sufficient to import
their libraries in place from the tree’s base directory (PYTHONPATH=.).

In addition, the PROJECTNAME value where the test files are located is project-dependent: it is usually just the
project’s top-level library directory, as common practice suggests the unit test files are put in the test sub-module.
This value cannot be guessed, the Trial class must be told where to find the test files.

The Trial class provides support for building and testing projects which use distutils and trial. If the test module
name is specified, trial will be invoked. The library path used for testing can also be set.

One advantage of trial is that the Buildbot happens to know how to parse trial output, letting it identify which tests
passed and which ones failed. The Buildbot can then provide fine-grained reports about how many tests have failed,
when individual tests fail when they had been passing previously, etc.

Another feature of trial is that you can give it a series of source .py files, and it will search them for special
test-case-name tags that indicate which test cases provide coverage for that file. Trial can then run just the
appropriate tests. This is useful for quick builds, where you want to only run the test cases that cover the changed
functionality.

Arguments:

testpath Provides a directory to add to PYTHONPATH when running the unit tests, if tests are being run. Defaults
to . to include the project files in-place. The generated build library is frequently architecture-dependent, but
may simply be build/lib for pure-Python modules.

2.5. Configuration 141

Buildbot Documentation, Release 0.9.7

python which Python executable to use. This list will form the start of the argv array that will launch trial. If you use
this, you should set trial to an explicit path (like /usr/bin/trial or ./bin/trial). The parameter
defaults to None, which leaves it out entirely (running trial args instead of python ./bin/trial
args). Likely values are ['python'], ['python2.2'], or ['python', '-Wall'].

trial provides the name of the trial command. It is occasionally useful to use an alternate executable, such as
trial2.2 which might run the tests under an older version of Python. Defaults to trial.

trialMode a list of arguments to pass to trial, specifically to set the reporting mode. This defaults to
['--reporter=bwverbose'], which only works for Twisted-2.1.0 and later.

trialArgs a list of arguments to pass to trial, available to turn on any extra flags you like. Defaults to [].

tests Provides a module name or names which contain the unit tests for this project. Accepts a string, typically
PROJECTNAME.test, or a list of strings. Defaults to None, indicating that no tests should be run. You must
either set this or testChanges.

testChanges if True, ignore the tests parameter and instead ask the Build for all the files that make up the
Changes going into this build. Pass these filenames to trial and ask it to look for test-case-name tags, running
just the tests necessary to cover the changes.

recurse If True, tells Trial (with the --recurse argument) to look in all subdirectories for additional test cases.

reactor which reactor to use, like ‘gtk’ or ‘java’. If not provided, the Twisted’s usual platform-dependent default
is used.

randomly If True, tells Trial (with the --random=0 argument) to run the test cases in random order, which
sometimes catches subtle inter-test dependency bugs. Defaults to False.

The step can also take any of the ShellCommand arguments, e.g., haltOnFailure.

Unless one of tests or testChanges are set, the step will generate an exception.

Properties

Build properties are a generalized way to provide configuration information to build steps; see Build Properties for the
conceptual overview of properties.

• Common Build Properties

• Source Stamp Attributes

• Using Properties in Steps

Some build properties come from external sources and are set before the build begins; others are set during the build,
and available for later steps. The sources for properties are:

global configuration These properties apply to all builds.

schedulers A scheduler can specify properties that become available to all builds it starts.

changes A change can have properties attached to it, supplying extra information gathered by the change source. This
is most commonly used with the sendchange command.

forced builds The “Force Build” form allows users to specify properties

workers A worker can pass properties on to the builds it performs.

builds A build automatically sets a number of properties on itself.

builders A builder can set properties on all the builds it runs.

142 Chapter 2. Buildbot Manual

Buildbot Documentation, Release 0.9.7

steps The steps of a build can set properties that are available to subsequent steps. In particular, source steps set the
got_revision property.

If the same property is supplied in multiple places, the final appearance takes precedence. For example, a property set
in a builder configuration will override one supplied by a scheduler.

Properties are stored internally in JSON format, so they are limited to basic types of data: numbers, strings, lists, and
dictionaries.

Common Build Properties

The following build properties are set when the build is started, and are available to all steps.

got_revision This property is set when a Source step checks out the source tree, and provides the revision
that was actually obtained from the VC system. In general this should be the same as revision, except for
non-absolute sourcestamps, where got_revision indicates what revision was current when the checkout
was performed. This can be used to rebuild the same source code later.

Note: For some VC systems (Darcs in particular), the revision is a large string containing newlines, and is not
suitable for interpolation into a filename.

For multi-codebase builds (where codebase is not the default ‘’), this property is a dictionary, keyed by codebase.

buildername This is a string that indicates which Builder the build was a part of. The combination of builder-
name and buildnumber uniquely identify a build.

buildnumber Each build gets a number, scoped to the Builder (so the first build performed on any given
Builder will have a build number of 0). This integer property contains the build’s number.

workername This is a string which identifies which worker the build is running on.

scheduler If the build was started from a scheduler, then this property will contain the name of that scheduler.

builddir The absolute path of the base working directory on the worker, of the current builder.

For single codebase builds, where the codebase is ‘’, the following Source Stamp Attributes are also available as
properties: branch, revision, repository, and project .

Source Stamp Attributes

branch revision repository project codebase

For details of these attributes see Concepts.

changes

This attribute is a list of dictionaries representing the changes that make up this sourcestamp.

Using Properties in Steps

For the most part, properties are used to alter the behavior of build steps during a build. This is done by using
renderables (objects implementing the IRenderable interface) as step parameters. When the step is started, each
such object is rendered using the current values of the build properties, and the resultant rendering is substituted as the
actual value of the step parameter.

Buildbot offers several renderable object types covering common cases. It’s also possible to create custom renderables.

2.5. Configuration 143

Buildbot Documentation, Release 0.9.7

Note: Properties are defined while a build is in progress; their values are not available when the configuration file is
parsed. This can sometimes confuse newcomers to Buildbot! In particular, the following is a common error:

if Property('release_train') == 'alpha':
f.addStep(...)

This does not work because the value of the property is not available when the if statement is executed. However,
Python will not detect this as an error - you will just never see the step added to the factory.

You can use renderables in most step parameters. Please file bugs for any parameters which do not accept renderables.

Property

The simplest renderable is Property, which renders to the value of the property named by its argument:

from buildbot.plugins import steps, util

f.addStep(steps.ShellCommand(command=['echo', 'buildername:',
util.Property('buildername')]))

You can specify a default value by passing a default keyword argument:

f.addStep(steps.ShellCommand(command=['echo', 'warnings:',
util.Property('warnings', default='none')]))

The default value is used when the property doesn’t exist, or when the value is something Python regards as False.
The defaultWhenFalse argument can be set to False to force buildbot to use the default argument only if the
parameter is not set:

f.addStep(steps.ShellCommand(command=['echo', 'warnings:',
util.Property('warnings', default='none',

defaultWhenFalse=False)]))

The default value can be a renderable itself, e.g.,

command=util.Property('command', default=util.Property('default-command'))

Interpolate

Property can only be used to replace an entire argument: in the example above, it replaces an argument to echo.
Often, properties need to be interpolated into strings, instead. The tool for that job is Interpolate.

The more common pattern is to use Python dictionary-style string interpolation by using the
%(prop:<propname>)s syntax. In this form, the property name goes in the parentheses, as above. A
common mistake is to omit the trailing “s”, leading to a rather obscure error from Python (“ValueError: unsupported
format character”).

from buildbot.plugins import steps, util
f.addStep(steps.ShellCommand(command=['make',

util.Interpolate('REVISION=%(prop:got_revision)s
→˓'),

'dist']))

144 Chapter 2. Buildbot Manual

Buildbot Documentation, Release 0.9.7

This example will result in a make command with an argument like REVISION=12098. The syntax of dictionary-
style interpolation is a selector, followed by a colon, followed by a selector specific key, optionally followed by a colon
and a string indicating how to interpret the value produced by the key.

The following selectors are supported.

prop The key is the name of a property.

src The key is a codebase and source stamp attribute, separated by a colon. Note, it is
%(src:<codebase>:<ssattr>)s syntax, which differs from other selectors.

kw The key refers to a keyword argument passed to Interpolate. Those keyword arguments may be ordinary
values or renderables.

secrets The key refers to a secret provided by a provider declared in secretsProviders .

The following ways of interpreting the value are available.

-replacement If the key exists, substitute its value; otherwise, substitute replacement. replacement may
be empty (%(prop:propname:-)s). This is the default.

~replacement Like -replacement, but only substitutes the value of the key if it is something Python regards as
True. Python considers None, 0, empty lists, and the empty string to be false, so such values will be replaced
by replacement.

+replacement If the key exists, substitute replacement; otherwise, substitute an empty string.

?|sub_if_exists|sub_if_missing

#?|sub_if_true|sub_if_false Ternary substitution, depending on either the key being present (with ?, sim-
ilar to +) or being True (with #?, like ~). Notice that there is a pipe immediately following the question mark
and between the two substitution alternatives. The character that follows the question mark is used as the de-
limiter between the two alternatives. In the above examples, it is a pipe, but any character other than (can be
used.

Note: Although these are similar to shell substitutions, no other substitutions are currently supported.

Example:

from buildbot.plugins import steps, util
f.addStep(steps.ShellCommand(

command=[
'save-build-artifacts-script.sh',
util.Interpolate('-r %(prop:repository)s'),
util.Interpolate('-b %(src::branch)s'),
util.Interpolate('-d %(kw:data)s', data="some extra needed data")

]))

Note: We use %(src::branch)s in most of examples, because codebase is empty by default.

Example:

from buildbot.plugins import steps, util
f.addStep(steps.ShellCommand(

command=[
'make',
util.Interpolate('REVISION=%(prop:got_revision:-%(src::revision:-unknown)s)s

→˓'),

2.5. Configuration 145

Buildbot Documentation, Release 0.9.7

'dist'
]))

In addition, Interpolate supports using positional string interpolation. Here, %s is used as a placeholder, and the
substitutions (which may be renderables), are given as subsequent arguments:

TODO

Note: Like Python, you can use either positional interpolation or dictionary-style interpolation, not both. Thus you
cannot use a string like Interpolate("foo-%(src::revision)s-%s", "branch").

Renderer

While Interpolate can handle many simple cases, and even some common conditionals, more complex cases are best
handled with Python code. The renderer decorator creates a renderable object whose rendering is obtained by
calling the decorated function when the step it’s passed to begins. The function receives an IProperties object,
which it can use to examine the values of any and all properties. For example:

from buildbot.plugins import steps, util

@util.renderer
def makeCommand(props):

command = ['make']
cpus = props.getProperty('CPUs')
if cpus:

command.extend(['-j', str(cpus+1)])
else:

command.extend(['-j', '2'])
command.extend([Interpolate('%(prop:MAKETARGET)s')])
return command

f.addStep(steps.ShellCommand(command=makeCommand))

You can think of renderer as saying “call this function when the step starts”.

Note: Since 0.9.3, renderer can itself return IRenderable objects or containers containing IRenderable.

Note: Config errors with Renderables may not always be caught via checkconfig

Transform

Transform is an alternative to renderer. While renderer is useful for creating new renderables, Transform
is easier to use when you want to transform or combine the renderings of preexisting ones.

Transform takes a function and any number of positional and keyword arguments. The function must either be a
callable object or a renderable producing one. When rendered, a Transform first replaces all of its arguments that
are renderables with their renderings, then calls the function, passing it the positional and keyword arguments, and
returns the result as its own rendering.

146 Chapter 2. Buildbot Manual

Buildbot Documentation, Release 0.9.7

For example, suppose my_path is a path on the worker, and you want to get it relative to the build directory. You can
do it like this:

import os.path
from buildbot.plugins import util

my_path_rel = util.Transform(os.path.relpath, my_path, start=util.Property('builddir
→˓'))

This works whether my_path is an ordinary string or a renderable. my_path_rel will be a renderable in either
case, however.

FlattenList

If nested list should be flatten for some renderables, FlattenList could be used. For example:

f.addStep(ShellCommand(command=['make'], descriptionDone=FlattenList(['make ', [
→˓'done']])))

descriptionDone would be set to ['make', 'done'] when the ShellCommand executes. This is useful
when a list-returning property is used in renderables.

Note: ShellCommand automatically flattens nested lists in its command argument, so there is no need to use
FlattenList for it.

WithProperties

Warning: This class is deprecated. It is an older version of Interpolate. It exists for compatibility with older
configs.

The simplest use of this class is with positional string interpolation. Here, %s is used as a placeholder, and property
names are given as subsequent arguments:

from buildbot.plugins import steps, util
f.addStep(steps.ShellCommand(

command=["tar", "czf",
util.WithProperties("build-%s-%s.tar.gz", "branch", "revision"),
"source"]))

If this BuildStep were used in a tree obtained from Git, it would create a tarball with a name like
build-master-a7d3a333db708e786edb34b6af646edd8d4d3ad9.tar.gz.

The more common pattern is to use Python dictionary-style string interpolation by using the %(propname)s syntax.
In this form, the property name goes in the parentheses, as above. A common mistake is to omit the trailing “s”,
leading to a rather obscure error from Python (“ValueError: unsupported format character”).

from buildbot.plugins import steps, util
f.addStep(steps.ShellCommand(command=['make',

util.WithProperties('REVISION=%(got_revision)s
→˓'),

'dist']))

2.5. Configuration 147

Buildbot Documentation, Release 0.9.7

This example will result in a make command with an argument like REVISION=12098. The dictionary-style
interpolation supports a number of more advanced syntaxes in the parentheses.

propname:-replacement If propname exists, substitute its value; otherwise, substitute replacement.
replacement may be empty (%(propname:-)s)

propname:~replacement Like propname:-replacement, but only substitutes the value of property
propname if it is something Python regards as True. Python considers None, 0, empty lists, and the empty
string to be false, so such values will be replaced by replacement.

propname:+replacement If propname exists, substitute replacement; otherwise, substitute an empty
string.

Although these are similar to shell substitutions, no other substitutions are currently supported, and replacement
in the above cannot contain more substitutions.

Note: like Python, you can use either positional interpolation or dictionary-style interpolation, not both. Thus you
cannot use a string like WithProperties("foo-%(revision)s-%s", "branch").

Custom Renderables

If the options described above are not sufficient, more complex substitutions can be achieved by writing custom
renderables.

The IRenderable interface is simple - objects must provide a getRenderingFor method. The method should take
one argument - an IProperties provider - and should return the rendered value or a deferred firing with one. Pass
instances of the class anywhere other renderables are accepted. For example:

@implementer(IRenderable)
class DetermineFoo(object):

def getRenderingFor(self, props):
if props.hasProperty('bar'):

return props['bar']
elif props.hasProperty('baz'):

return props['baz']
return 'qux'

ShellCommand(command=['echo', DetermineFoo()])

or, more practically,

@implementer(IRenderable)
class Now(object):

def getRenderingFor(self, props):
return time.clock()

ShellCommand(command=['make', Interpolate('TIME=%(kw:now)s', now=Now())])

This is equivalent to:

@renderer
def now(props):

return time.clock()
ShellCommand(command=['make', Interpolate('TIME=%(kw:now)s', now=now)])

Note that a custom renderable must be instantiated (and its constructor can take whatever arguments you’d like),
whereas a function decorated with renderer can be used directly.

148 Chapter 2. Buildbot Manual

Buildbot Documentation, Release 0.9.7

URL for build

Its common to need to use the URL for the build in a step. For this you can use a special custom renderer as following:

from buildbot.plugins import *

ShellCommand(command=['make', Interpolate('BUILDURL=%(kw:url)s', url=util.
→˓URLForBuild)])

Build Steps

BuildSteps are usually specified in the buildmaster’s configuration file, in a list that goes into the BuildFactory.
The BuildStep instances in this list are used as templates to construct new independent copies for each build (so
that state can be kept on the BuildStep in one build without affecting a later build). Each BuildFactory can be
created with a list of steps, or the factory can be created empty and then steps added to it using the addStep method:

from buildbot.plugins import util, steps

f = util.BuildFactory()
f.addSteps([

steps.SVN(repourl="http://svn.example.org/Trunk/"),
steps.ShellCommand(command=["make", "all"]),
steps.ShellCommand(command=["make", "test"])

])

The basic behavior for a BuildStep is to:

• run for a while, then stop

• possibly invoke some RemoteCommands on the attached worker

• possibly produce a set of log files

• finish with a status described by one of four values defined in buildbot.status.builder: SUCCESS,
WARNINGS, FAILURE, SKIPPED

• provide a list of short strings to describe the step

The rest of this section describes all the standard BuildStep objects available for use in a Build, and the parameters
which can be used to control each. A full list of build steps is available in the step.

• Common Parameters

• Source Checkout

– Common Parameters

– Mercurial

– Git

– SVN

– CVS

– Bzr

– P4

2.5. Configuration 149

Buildbot Documentation, Release 0.9.7

– Repo

– Gerrit

– GitHub

– Darcs

– Monotone

• ShellCommand

– Using ShellCommands

– Shell Sequence

– Configure

– CMake

– Compile

– Visual C++

– Cppcheck

– Robocopy

– Test

– TreeSize

– PerlModuleTest

– MTR (mysql-test-run)

– SubunitShellCommand

• Worker Filesystem Steps

– FileExists

– CopyDirectory

– RemoveDirectory

– MakeDirectory

• Python BuildSteps

– BuildEPYDoc

– PyFlakes

– Sphinx

– PyLint

– Trial

– RemovePYCs

• Transferring Files

– Other Parameters

– Transfering Directories

– Transferring Multiple Files At Once

150 Chapter 2. Buildbot Manual

Buildbot Documentation, Release 0.9.7

• Transfering Strings

• Running Commands on the Master

– LogRenderable

• Setting Properties

– SetProperty

– SetProperties step

– SetPropertyFromCommand

– SetPropertiesFromEnv

• Triggering Schedulers

– Dynamic Trigger

• RPM-Related Steps

– RpmBuild

– RpmLint

– Mock Steps

– MockBuildSRPM Step

– MockRebuild Step

• Debian Build Steps

– DebPbuilder

– DebCowbuilder

– DebLintian

• Miscellaneous BuildSteps

– HLint

– MaxQ

– HTTP Requests

Common Parameters

All BuildSteps accept some common parameters. Some of these control how their individual status affects the
overall build. Others are used to specify which Locks (see Interlocks) should be acquired before allowing the step to
run.

Arguments common to all BuildStep subclasses:

name the name used to describe the step on the status display. It is also used to give a name to any LogFiles created
by this step.

haltOnFailure if True, a FAILURE of this build step will cause the build to halt immediately. Steps with
alwaysRun=True are still run. Generally speaking, haltOnFailure implies flunkOnFailure (the
default for most BuildSteps). In some cases, particularly series of tests, it makes sense to haltOnFailure
if something fails early on but not flunkOnFailure. This can be achieved with haltOnFailure=True,
flunkOnFailure=False.

2.5. Configuration 151

Buildbot Documentation, Release 0.9.7

flunkOnWarnings when True, a WARNINGS or FAILURE of this build step will mark the overall build as
FAILURE. The remaining steps will still be executed.

flunkOnFailure when True, a FAILURE of this build step will mark the overall build as a FAILURE. The
remaining steps will still be executed.

warnOnWarnings when True, a WARNINGS or FAILURE of this build step will mark the overall build as having
WARNINGS. The remaining steps will still be executed.

warnOnFailure when True, a FAILURE of this build step will mark the overall build as having WARNINGS. The
remaining steps will still be executed.

alwaysRun if True, this build step will always be run, even if a previous buildstep with haltOnFailure=True
has failed.

description This will be used to describe the command (on the Waterfall display) while the command is still
running. It should be a single imperfect-tense verb, like compiling or testing. The preferred form is a single,
short string, but for historical reasons a list of strings is also acceptable.

descriptionDone This will be used to describe the command once it has finished. A simple noun like compile
or tests should be used. Like description, this may either be a string or a list of short strings.

If neither description nor descriptionDone are set, the actual command arguments will be used to
construct the description. This may be a bit too wide to fit comfortably on the Waterfall display.

All subclasses of BuildStep will contain the description attributes. Consequently, you could add a
ShellCommand step like so:

from buildbot.plugins import steps

f.addStep(steps.ShellCommand(command=["make", "test"],
description="testing",
descriptionDone="tests"))

descriptionSuffix This is an optional suffix appended to the end of the description (ie, after description
and descriptionDone). This can be used to distinguish between build steps that would display the same
descriptions in the waterfall. This parameter may be a string, a list of short strings or None.

For example, a builder might use the Compile step to build two different codebases. The
descriptionSuffix could be set to projectFoo and projectBar, respectively for each step, which will result
in the full descriptions compiling projectFoo and compiling projectBar to be shown in the waterfall.

doStepIf A step can be configured to only run under certain conditions. To do this, set the step’s doStepIf to a
boolean value, or to a function that returns a boolean value or Deferred. If the value or function result is false,
then the step will return SKIPPED without doing anything. Otherwise, the step will be executed normally. If
you set doStepIf to a function, that function should accept one parameter, which will be the Step object
itself.

hideStepIf A step can be optionally hidden from the waterfall and build details web pages. To do this, set
the step’s hideStepIf to a boolean value, or to a function that takes two parameters – the results and the
BuildStep – and returns a boolean value. Steps are always shown while they execute, however after the step
as finished, this parameter is evaluated (if a function) and if the value is True, the step is hidden. For example,
in order to hide the step if the step has been skipped:

factory.addStep(Foo(..., hideStepIf=lambda results, s: results==SKIPPED))

locks a list of Locks (instances of buildbot.locks.WorkerLock or buildbot.locks.MasterLock)
that should be acquired before starting this BuildStep. Alternatively this could be a renderable that returns
this list during build execution. This lets you defer picking the locks to acquire until the build step is about to

152 Chapter 2. Buildbot Manual

Buildbot Documentation, Release 0.9.7

start running. The Locks will be released when the step is complete. Note that this is a list of actual Lock
instances, not names. Also note that all Locks must have unique names. See Interlocks.

logEncoding The character encoding to use to decode logs produced during the execution of this step. This
overrides the default logEncoding; see Log Handling.

updateBuildSummaryPolicy The policy to use to propagate the step summary to the build summary. If False,
the build summary will never include step summary If True, the build summary will always include step sum-
mary If set to a list (e.g. [FAILURE, EXCEPTION]), it will propagate if the step results id is present in
that list. If not set or None, the default is computed according to other BuildStep parameters using following
algorithm:

self.updateBuildSummaryPolicy = [EXCEPTION, RETRY, CANCELLED]
if self.flunkOnFailure or self.haltOnFailure or self.warnOnFailure:

self.updateBuildSummaryPolicy.append(FAILURE)
if self.warnOnWarnings or self.flunkOnWarnings:

self.updateBuildSummaryPolicy.append(WARNINGS)

Note that in a custom step, if BuildStep.getResultSummary is overridden and setting the build sum-
mary, updateBuildSummaryPolicy is ignored and build summary will be used regardless.

Source Checkout

Caution: Support for the old worker-side source checkout steps was removed in Buildbot-0.9.0.

The old source steps used to be imported like this:

from buildbot.steps.source.oldsource import Git

... Git ...

or:
from buildbot.steps.source import Git

while new source steps are in separate Python modules for each version-control system and, using the plugin
infrastructure are available as:

from buildbot.plugins import steps

... steps.Git ...

Common Parameters

All source checkout steps accept some common parameters to control how they get the sources and where they should
be placed. The remaining per-VC-system parameters are mostly to specify where exactly the sources are coming from.

mode method

These two parameters specify the means by which the source is checked out. mode specifies the type of
checkout and method tells about the way to implement it.

from buildbot.plugins import steps

factory = BuildFactory()
factory.addStep(steps.Mercurial(repourl='path/to/repo', mode='full',

method='fresh'))

2.5. Configuration 153

Buildbot Documentation, Release 0.9.7

The mode parameter a string describing the kind of VC operation that is desired, defaulting to
incremental. The options are

incremental Update the source to the desired revision, but do not remove any other files generated by
previous builds. This allows compilers to take advantage of object files from previous builds. This
mode is exactly same as the old update mode.

full Update the source, but delete remnants of previous builds. Build steps that follow will need to
regenerate all object files.

Methods are specific to the version-control system in question, as they may take advantage of special
behaviors in that version-control system that can make checkouts more efficient or reliable.

workdir like all Steps, this indicates the directory where the build will take place. Source Steps are special in that
they perform some operations outside of the workdir (like creating the workdir itself).

alwaysUseLatest if True, bypass the usual behavior of checking out the revision in the source stamp, and always
update to the latest revision in the repository instead.

retry If set, this specifies a tuple of (delay, repeats) which means that when a full VC checkout fails, it
should be retried up to repeats times, waiting delay seconds between attempts. If you don’t provide this,
it defaults to None, which means VC operations should not be retried. This is provided to make life easier for
workers which are stuck behind poor network connections.

repository The name of this parameter might vary depending on the Source step you are running. The concept
explained here is common to all steps and applies to repourl as well as for baseURL (when applicable).

A common idiom is to pass Property('repository', 'url://default/repo/path') as repos-
itory. This grabs the repository from the source stamp of the build. This can be a security issue, if you allow
force builds from the web, or have the WebStatus change hooks enabled; as the worker will download code
from an arbitrary repository.

codebase This specifies which codebase the source step should use to select the right source stamp. The default
codebase value is ''. The codebase must correspond to a codebase assigned by the codebaseGenerator.
If there is no codebaseGenerator defined in the master then codebase doesn’t need to be set, the default value
will then match all changes.

timeout Specifies the timeout for worker-side operations, in seconds. If your repositories are particularly large,
then you may need to increase this value from its default of 1200 (20 minutes).

logEnviron If this option is true (the default), then the step’s logfile will describe the environment variables
on the worker. In situations where the environment is not relevant and is long, it may be easier to set
logEnviron=False.

env a dictionary of environment strings which will be added to the child command’s environment. The usual property
interpolations can be used in environment variable names and values - see Properties.

Mercurial

class buildbot.steps.source.mercurial.Mercurial

The Mercurial build step performs a Mercurial (https://www.mercurial-scm.org/) (aka hg) checkout or update.

Branches are available in two modes: dirname, where the name of the branch is a suffix of the name of the repository,
or inrepo, which uses Hg’s named-branches support. Make sure this setting matches your changehook, if you have
that installed.

154 Chapter 2. Buildbot Manual

https://www.mercurial-scm.org/

Buildbot Documentation, Release 0.9.7

from buildbot.plugins import steps

factory.addStep(steps.Mercurial(repourl='path/to/repo', mode='full',
method='fresh', branchType='inrepo'))

The Mercurial step takes the following arguments:

repourl where the Mercurial source repository is available.

defaultBranch this specifies the name of the branch to use when a Build does not provide one of its own. This
will be appended to repourl to create the string that will be passed to the hg clone command.

branchType either ‘dirname’ (default) or ‘inrepo’ depending on whether the branch name should be appended to
the repourl or the branch is a Mercurial named branch and can be found within the repourl.

clobberOnBranchChange boolean, defaults to True. If set and using inrepos branches, clobber the tree at each
branch change. Otherwise, just update to the branch.

mode method

Mercurial’s incremental mode does not require a method. The full mode has three methods defined:

clobber It removes the build directory entirely then makes full clone from repo. This can be slow as it
need to clone whole repository

fresh This remove all other files except those tracked by VCS. First it does hg purge --all then
pull/update

clean All the files which are tracked by Mercurial and listed ignore files are not deleted. Remaining all
other files will be deleted before pull/update. This is equivalent to hg purge then pull/update.

Git

class buildbot.steps.source.git.Git

The Git build step clones or updates a Git (http://git.or.cz/) repository and checks out the specified branch or revision.

Note: The Buildbot supports Git version 1.2.0 and later: earlier versions (such as the one shipped in Ubuntu ‘Dapper’)
do not support the git init command that the Buildbot uses.

from buildbot.plugins import steps

factory.addStep(steps.Git(repourl='git://path/to/repo', mode='full',
method='clobber', submodules=True))

The Git step takes the following arguments:

repourl (required): the URL of the upstream Git repository.

branch (optional): this specifies the name of the branch to use when a Build does not provide one of its own. If this
parameter is not specified, and the Build does not provide a branch, the default branch of the remote repository
will be used.

submodules (optional): when initializing/updating a Git repository, this tells Buildbot whether to handle Git sub-
modules. Default: False.

shallow (optional): instructs git to attempt shallow clones (--depth 1). The depth defaults to 1 and can be
changed by passing an integer instead of True. This option can be used only in full builds with clobber
method.

2.5. Configuration 155

http://git.or.cz/

Buildbot Documentation, Release 0.9.7

reference (optional): use the specified string as a path to a reference repository on the local machine. Git will try
to grab objects from this path first instead of the main repository, if they exist.

origin (optional): By default, any clone will use the name “origin” as the remote repository (eg, “origin/master”).
This renderable option allows that to be configured to an alternate name.

progress (optional): passes the (--progress) flag to (git fetch). This solves issues of long fetches being
killed due to lack of output, but requires Git 1.7.2 or later.

retryFetch (optional): defaults to False. If true, if the git fetch fails then buildbot retries to fetch again
instead of failing the entire source checkout.

clobberOnFailure (optional): defaults to False. If a fetch or full clone fails we can checkout source removing
everything. This way new repository will be cloned. If retry fails it fails the source checkout step.

mode

(optional): defaults to 'incremental'. Specifies whether to clean the build tree or not.

incremental The source is update, but any built files are left untouched.

full The build tree is clean of any built files. The exact method for doing this is controlled
by the method argument.

method

(optional): defaults to fresh when mode is full. Git’s incremental mode does not require a method.
The full mode has four methods defined:

clobber It removes the build directory entirely then makes full clone from repo. This can be slow as it
need to clone whole repository. To make faster clones enable shallow option. If shallow options
is enabled and build request have unknown revision value, then this step fails.

fresh This remove all other files except those tracked by Git. First it does git clean -d -f -f
-x then fetch/checkout to a specified revision(if any). This option is equal to update mode with
ignore_ignores=True in old steps.

clean All the files which are tracked by Git and listed ignore files are not deleted. Remaining all other
files will be deleted before fetch/checkout. This is equivalent to git clean -d -f -f then
fetch. This is equivalent to ignore_ignores=False in old steps.

copy This first checkout source into source directory then copy the source directory to build direc-
tory then performs the build operation in the copied directory. This way we make fresh builds with
very less bandwidth to download source. The behavior of source checkout follows exactly same as
incremental. It performs all the incremental checkout behavior in source directory.

getDescription

(optional) After checkout, invoke a git describe on the revision and save the result in a property; the
property’s name is either commit-description or commit-description-foo, depending on
whether the codebase argument was also provided. The argument should either be a bool or dict,
and will change how git describe is called:

• getDescription=False: disables this feature explicitly

• getDescription=True or empty dict(): Run git describe with no args

• getDescription={...}: a dict with keys named the same as the Git option. Each key’s value
can be False or None to explicitly skip that argument.

For the following keys, a value of True appends the same-named Git argument:

– all : –all

– always: –always

156 Chapter 2. Buildbot Manual

Buildbot Documentation, Release 0.9.7

– contains: –contains

– debug: –debug

– long: –long‘

– exact-match: –exact-match

– tags: –tags

– dirty: –dirty

For the following keys, an integer or string value (depending on what Git expects) will set the
argument’s parameter appropriately. Examples show the key-value pair:

– match=foo: –match foo

– abbrev=7: –abbrev=7

– candidates=7: –candidates=7

– dirty=foo: –dirty=foo

config

(optional) A dict of git configuration settings to pass to the remote git commands.

SVN

class buildbot.steps.source.svn.SVN

The SVN build step performs a Subversion (http://subversion.tigris.org) checkout or update. There are two basic ways
of setting up the checkout step, depending upon whether you are using multiple branches or not.

The SVN step should be created with the repourl argument:

repourl (required): this specifies the URL argument that will be given to the svn checkout command. It dic-
tates both where the repository is located and which sub-tree should be extracted. One way to specify the
branch is to use Interpolate. For example, if you wanted to check out the trunk repository, you could use
repourl=Interpolate("http://svn.example.com/repos/%(src::branch)s"). Alterna-
tively, if you are using a remote Subversion repository which is accessible through HTTP at a URL of http:/
/svn.example.com/repos, and you wanted to check out the trunk/calc sub-tree, you would directly
use repourl="http://svn.example.com/repos/trunk/calc" as an argument to your SVN step.

If you are building from multiple branches, then you should create the SVN step with the repourl and provide
branch information with Interpolate:

from buildbot.plugins import steps, util

factory.addStep(steps.SVN(mode='incremental',
repourl=util.Interpolate('svn://svn.example.org/svn/%(src::branch)s/

→˓myproject')))

Alternatively, the repourl argument can be used to create the SVN step without Interpolate:

from buildbot.plugins import steps

factory.addStep(steps.SVN(mode='full',
repourl='svn://svn.example.org/svn/myproject/trunk'))

username (optional): if specified, this will be passed to the svn binary with a --username option.

password (optional): if specified, this will be passed to the svn binary with a --password option.

2.5. Configuration 157

http://subversion.tigris.org

Buildbot Documentation, Release 0.9.7

extra_args (optional): if specified, an array of strings that will be passed as extra arguments to the svn binary.

keep_on_purge (optional): specific files or directories to keep between purges, like some build outputs that can
be reused between builds.

depth (optional): Specify depth argument to achieve sparse checkout. Only available if worker has Subversion 1.5
or higher.

If set to empty updates will not pull in any files or subdirectories not already present. If set to files, updates
will pull in any files not already present, but not directories. If set to immediates, updates will pull in any
files or subdirectories not already present, the new subdirectories will have depth: empty. If set to infinity,
updates will pull in any files or subdirectories not already present; the new subdirectories will have depth-infinity.
Infinity is equivalent to SVN default update behavior, without specifying any depth argument.

preferLastChangedRev (optional): By default, the got_revision property is set to the repository’s global
revision (“Revision” in the svn info output). Set this parameter to True to have it set to the “Last Changed Rev”
instead.

mode method

SVN’s incremental mode does not require a method. The full mode has five methods defined:

clobber It removes the working directory for each build then makes full checkout.

fresh This always always purges local changes before updating. This deletes unversioned files and
reverts everything that would appear in a svn status --no-ignore. This is equivalent to the
old update mode with always_purge.

clean This is same as fresh except that it deletes all unversioned files generated by svn status.

copy This first checkout source into source directory then copy the source directory to build direc-
tory then performs the build operation in the copied directory. This way we make fresh builds with
very less bandwidth to download source. The behavior of source checkout follows exactly same as
incremental. It performs all the incremental checkout behavior in source directory.

export Similar to method='copy', except using svn export to create build directory so that
there are no .svn directories in the build directory.

If you are using branches, you must also make sure your ChangeSource will report the correct branch names.

CVS

class buildbot.steps.source.cvs.CVS

The CVS build step performs a CVS (http://www.nongnu.org/cvs/) checkout or update.

from buildbot.plugins import steps

factory.addStep(steps.CVS(mode='incremental',
cvsroot=':pserver:me@cvs.example.net:/cvsroot/myproj',
cvsmodule='buildbot'))

This step takes the following arguments:

cvsroot (required): specify the CVSROOT value, which points to a CVS repository, probably on a remote machine.
For example, if Buildbot was hosted in CVS then the CVSROOT value you would use to get a copy of the
Buildbot source code might be :pserver:anonymous@cvs.example.net:/cvsroot/buildbot.

cvsmodule (required): specify the cvs module, which is generally a subdirectory of the CVSROOT. The cvsmodule
for the Buildbot source code is buildbot.

158 Chapter 2. Buildbot Manual

http://www.nongnu.org/cvs/

Buildbot Documentation, Release 0.9.7

branch a string which will be used in a -r argument. This is most useful for specifying a branch to work on.
Defaults to HEAD.

global_options a list of flags to be put before the argument checkout in the CVS command.

extra_options a list of flags to be put after the checkout in the CVS command.

mode method

No method is needed for incremental mode. For full mode, method can take the values shown below. If
no value is given, it defaults to fresh.

clobber This specifies to remove the workdir and make a full checkout.

fresh This method first runs cvsdisard in the build directory, then updates it. This requires
cvsdiscard which is a part of the cvsutil package.

clean This method is the same as method='fresh', but it runs cvsdiscard --ignore instead
of cvsdiscard.

copy This maintains a source directory for source, which it updates copies to the build directory. This
allows Buildbot to start with a fresh directory, without downloading the entire repository on every
build.

login Password to use while performing login to the remote CVS server. Default is None meaning that no login
needs to be peformed.

Bzr

class buildbot.steps.source.bzr.Bzr

bzr (http://bazaar.canonical.com/en/) is a descendant of Arch/Baz, and is frequently referred to as simply Bazaar. The
repository-vs-workspace model is similar to Darcs, but it uses a strictly linear sequence of revisions (one history per
branch) like Arch. Branches are put in subdirectories. This makes it look very much like Mercurial.

from buildbot.plugins import steps

factory.addStep(steps.Bzr(mode='incremental',
repourl='lp:~knielsen/maria/tmp-buildbot-test'))

The step takes the following arguments:

repourl (required unless baseURL is provided): the URL at which the Bzr source repository is available.

baseURL (required unless repourl is provided): the base repository URL, to which a branch name will be ap-
pended. It should probably end in a slash.

defaultBranch (allowed if and only if baseURL is provided): this specifies the name of the branch to use when
a Build does not provide one of its own. This will be appended to baseURL to create the string that will be
passed to the bzr checkout command.

mode method

No method is needed for incremental mode. For full mode, method can take the values shown below. If
no value is given, it defaults to fresh.

clobber This specifies to remove the workdir and make a full checkout.

fresh This method first runs bzr clean-tree to remove all the unversioned files then update the
repo. This remove all unversioned files including those in .bzrignore.

2.5. Configuration 159

http://bazaar.canonical.com/en/

Buildbot Documentation, Release 0.9.7

clean This is same as fresh except that it doesn’t remove the files mentioned in .bzrginore i.e, by
running bzr clean-tree --ignore.

copy A local bzr repository is maintained and the repo is copied to build directory for each build.
Before each build the local bzr repo is updated then copied to build for next steps.

P4

class buildbot.steps.source.p4.P4

The P4 build step creates a Perforce (http://www.perforce.com/) client specification and performs an update.

from buildbot.plugins import steps, util

factory.addStep(steps.P4(p4port=p4port,
p4client=util.WithProperties('%(P4USER)s-%(workername)s-

→˓%(buildername)s'),
p4user=p4user,
p4base='//depot',
p4viewspec=p4viewspec,
mode='incremental'))

You can specify the client spec in two different ways. You can use the p4base, p4branch, and (optionally)
p4extra_views to build up the viewspec, or you can utilize the p4viewspec to specify the whole viewspec
as a set of tuples.

Using p4viewspec will allow you to add lines such as:

//depot/branch/mybranch/... //<p4client>/...
-//depot/branch/mybranch/notthisdir/... //<p4client>/notthisdir/...

If you specify p4viewspec and any of p4base, p4branch, and/or p4extra_views you will receive a config-
uration error exception.

p4base A view into the Perforce depot without branch name or trailing /.... Typically //depot/proj.

p4branch (optional): A single string, which is appended to the p4base as follows <p4base>/<p4branch>/...
to form the first line in the viewspec

p4extra_views (optional): a list of (depotpath, clientpath) tuples containing extra views to be mapped
into the client specification. Both will have /... appended automatically. The client name and source directory
will be prepended to the client path.

p4viewspec This will override any p4branch, p4base, and/or p4extra_views specified. The viewspec will be an
array of tuples as follows:

[('//depot/main/','')]

It yields a viewspec with just:

//depot/main/... //<p4client>/...

p4viewspec_suffix (optional): The p4viewspec lets you customize the client spec for a builder but, as the
previous example shows, it automatically adds ... at the end of each line. If you need to also specify file-level
remappings, you can set the p4viewspec_suffix to None so that nothing is added to your viewspec:

[('//depot/main/...', '...'),
('-//depot/main/config.xml', 'config.xml'),
('//depot/main/config.vancouver.xml', 'config.xml')]

160 Chapter 2. Buildbot Manual

http://www.perforce.com/

Buildbot Documentation, Release 0.9.7

It yields a viewspec with:

//depot/main/... //<p4client>/...
-//depot/main/config.xml //<p4client/main/config.xml
//depot/main/config.vancouver.xml //<p4client>/main/config.xml

Note how, with p4viewspec_suffix set to None, you need to manually add ... where you need it.

p4client_spec_options (optional): By default, clients are created with the allwrite rmdir options. This
string lets you change that.

p4port (optional): the host:port string describing how to get to the P4 Depot (repository), used as the option -p
argument for all p4 commands.

p4user (optional): the Perforce user, used as the option -u argument to all p4 commands.

p4passwd (optional): the Perforce password, used as the option -p argument to all p4 commands.

p4client (optional): The name of the client to use. In mode='full' and mode='incremental', it’s
particularly important that a unique name is used for each checkout directory to avoid incorrect syn-
chronization. For this reason, Python percent substitution will be performed on this value to replace
%(prop:workername)s with the worker name and %(prop:buildername)s with the builder name.
The default is buildbot_%(prop:workername)s_%(prop:buildername)s.

p4line_end (optional): The type of line ending handling P4 should use. This is added directly to the client spec’s
LineEnd property. The default is local.

p4extra_args (optional): Extra arguments to be added to the P4 command-line for the sync command. So for
instance if you want to sync only to populate a Perforce proxy (without actually syncing files to disk), you can
do:

P4(p4extra_args=['-Zproxyload'], ...)

use_tickets Set to True to use ticket-based authentication, instead of passwords (but you still need to specify
p4passwd).

Repo

class buildbot.steps.source.repo.Repo

The Repo build step performs a Repo (http://lwn.net/Articles/304488/) init and sync.

The Repo step takes the following arguments:

manifestURL (required): the URL at which the Repo’s manifests source repository is available.

manifestBranch (optional, defaults to master): the manifest repository branch on which repo will take its
manifest. Corresponds to the -b argument to the repo init command.

manifestFile (optional, defaults to default.xml): the manifest filename. Corresponds to the -m argument to
the repo init command.

tarball (optional, defaults to None): the repo tarball used for fast bootstrap. If not present the tarball will be
created automatically after first sync. It is a copy of the .repo directory which contains all the Git objects.
This feature helps to minimize network usage on very big projects with lots of workers.

jobs (optional, defaults to None): Number of projects to fetch simultaneously while syncing. Passed to repo sync
subcommand with “-j”.

syncAllBranches (optional, defaults to False): renderable boolean to control whether repo syncs all branches.
I.e. repo sync -c

2.5. Configuration 161

http://lwn.net/Articles/304488/

Buildbot Documentation, Release 0.9.7

depth (optional, defaults to 0): Depth argument passed to repo init. Specifies the amount of git history to store. A
depth of 1 is useful for shallow clones. This can save considerable disk space on very large projects.

updateTarballAge (optional, defaults to “one week”): renderable to control the policy of updating of the tarball
given properties. Returns: max age of tarball in seconds, or None, if we want to skip tarball update. The default
value should be good trade off on size of the tarball, and update frequency compared to cost of tarball creation

repoDownloads (optional, defaults to None): list of repo download commands to perform at the end of the
Repo step each string in the list will be prefixed repo download, and run as is. This means you can include
parameter in the string. For example:

• ["-c project 1234/4"] will cherry-pick patchset 4 of patch 1234 in project project

• ["-f project 1234/4"] will enforce fast-forward on patchset 4 of patch 1234 in project project

class buildbot.steps.source.repo.RepoDownloadsFromProperties

util.repo.DownloadsFromProperties can be used as a renderable of the repoDownload parameter it
will look in passed properties for string with following possible format:

• repo download project change_number/patchset_number

• project change_number/patchset_number

• project/change_number/patchset_number

All of these properties will be translated into a repo download. This feature allows integrators to build with
several pending interdependent changes, which at the moment cannot be described properly in Gerrit, and can only be
described by humans.

class buildbot.steps.source.repo.RepoDownloadsFromChangeSource

util.repo.DownloadsFromChangeSource can be used as a renderable of the repoDownload parameter

This rendereable integrates with GerritChangeSource, and will automatically use the repo download com-
mand of repo to download the additional changes introduced by a pending changeset.

Note: You can use the two above Rendereable in conjunction by using the class buildbot.process.
properties.FlattenList

For example:

from buildbot.plugins import steps, util

factory.addStep(steps.Repo(manifestURL='git://gerrit.example.org/manifest.git',
repoDownloads=util.FlattenList([

util.RepoDownloadsFromChangeSource(),
util.RepoDownloadsFromProperties("repo_downloads")

])))

Gerrit

class buildbot.steps.source.gerrit.Gerrit

Gerrit step is exactly like the Git step, except that it integrates with GerritChangeSource, and will automat-
ically checkout the additional changes.

Gerrit integration can be also triggered using forced build with property named gerrit_change with values in
format change_number/patchset_number. This property will be translated into a branch name. This feature

162 Chapter 2. Buildbot Manual

Buildbot Documentation, Release 0.9.7

allows integrators to build with several pending interdependent changes, which at the moment cannot be described
properly in Gerrit, and can only be described by humans.

GitHub

class buildbot.steps.source.github.GitHub

GitHub step is exactly like the Git step, except that it will ignore the revision sent by GitHub change hook, and
rather take the branch if the branch ends with /merge.

This allows to test github pull requests merged directly into the mainline.

GitHub indeed provides refs/origin/pull/NNN/merge on top of refs/origin/pull/NNN/head which
is a magic ref that always create a merge commit to the latest version of the mainline (i.e. the target branch for the pull
request).

The revision in the GitHub event points to /head is important for the GitHub reporter as this is the revision that will
be tagged with a CI status when the build is finished.

If you want to use Trigger to create sub tests and want to have the GitHub reporter still update the original revision,
make sure you set updateSourceStamp=False in the Trigger configuration.

Darcs

class buildbot.steps.source.darcs.Darcs

The Darcs build step performs a Darcs (http://darcs.net/) checkout or update.

from buildbot.plugins import steps

factory.addStep(steps.Darcs(repourl='http://path/to/repo',
mode='full', method='clobber', retry=(10, 1)))

Darcs step takes the following arguments:

repourl (required): The URL at which the Darcs source repository is available.

mode

(optional): defaults to 'incremental'. Specifies whether to clean the build tree or not.

incremental The source is update, but any built files are left untouched.

full The build tree is clean of any built files. The exact method for doing this is controlled by the
method argument.

method (optional): defaults to copy when mode is full. Darcs’ incremental mode does not require a method. The
full mode has two methods defined:

clobber It removes the working directory for each build then makes full checkout.

copy This first checkout source into source directory then copy the source directory to build directory
then performs the build operation in the copied directory. This way we make fresh builds with very less
bandwidth to download source. The behavior of source checkout follows exactly same as incremental. It
performs all the incremental checkout behavior in source directory.

2.5. Configuration 163

http://darcs.net/

Buildbot Documentation, Release 0.9.7

Monotone

class buildbot.steps.source.mtn.Monotone

The Monotone build step performs a Monotone (http://www.monotone.ca/) checkout or update.

from buildbot.plugins import steps

factory.addStep(steps.Monotone(repourl='http://path/to/repo',
mode='full', method='clobber',
branch='some.branch.name', retry=(10, 1)))

Monotone step takes the following arguments:

repourl the URL at which the Monotone source repository is available.

branch this specifies the name of the branch to use when a Build does not provide one of its own.

progress this is a boolean that has a pull from the repository use --ticker=dot instead of the default
--ticker=none.

mode

(optional): defaults to 'incremental'. Specifies whether to clean the build tree or not. In any case,
the worker first pulls from the given remote repository to synchronize (or possibly initialize) its local
database. The mode and method only affect how the build tree is checked-out or updated from the local
database.

incremental The source is update, but any built files are left untouched.

full The build tree is clean of any built files. The exact method for doing this is controlled
by the method argument. Even in this mode, the revisions already pulled remain in the
database and a fresh pull is rarely needed.

method

(optional): defaults to copy when mode is full. Monotone’s incremental mode does not require a
method. The full mode has four methods defined:

clobber It removes the build directory entirely then makes fresh checkout from the database.

clean This remove all other files except those tracked and ignored by Monotone. It will remove all
the files that appear in mtn ls unknown. Then it will pull from remote and update the working
directory.

fresh This remove all other files except those tracked by Monotone. It will remove all the files that
appear in mtn ls ignored and mtn ls unknows. Then pull and update similar to clean

copy This first checkout source into source directory then copy the source directory to build direc-
tory then performs the build operation in the copied directory. This way we make fresh builds with
very less bandwidth to download source. The behavior of source checkout follows exactly same as
incremental. It performs all the incremental checkout behavior in source directory.

ShellCommand

Most interesting steps involve executing a process of some sort on the worker. The ShellCommand class handles
this activity.

Several subclasses of ShellCommand are provided as starting points for common build steps.

164 Chapter 2. Buildbot Manual

http://www.monotone.ca/

Buildbot Documentation, Release 0.9.7

Using ShellCommands

class buildbot.steps.shell.ShellCommand

This is a useful base class for just about everything you might want to do during a build (except for the initial source
checkout). It runs a single command in a child shell on the worker. All stdout/stderr is recorded into a LogFile. The
step usually finishes with a status of FAILURE if the command’s exit code is non-zero, otherwise it has a status of
SUCCESS.

The preferred way to specify the command is with a list of argv strings, since this allows for spaces in filenames and
avoids doing any fragile shell-escaping. You can also specify the command with a single string, in which case the
string is given to /bin/sh -c COMMAND for parsing.

On Windows, commands are run via cmd.exe /c which works well. However, if you’re running a batch file, the
error level does not get propagated correctly unless you add ‘call’ before your batch file’s name: cmd=['call',
'myfile.bat', ...].

The ShellCommand arguments are:

command a list of strings (preferred) or single string (discouraged) which specifies the command to be run. A list
of strings is preferred because it can be used directly as an argv array. Using a single string (with embedded
spaces) requires the worker to pass the string to /bin/sh for interpretation, which raises all sorts of difficult
questions about how to escape or interpret shell metacharacters.

If command contains nested lists (for example, from a properties substitution), then that list will be flattened
before it is executed.

workdir All ShellCommands are run by default in the workdir, which defaults to the build subdirectory of the
worker builder’s base directory. The absolute path of the workdir will thus be the worker’s basedir (set as an
option to buildbot-worker create-worker, Creating a worker) plus the builder’s basedir (set in the
builder’s builddir key in master.cfg) plus the workdir itself (a class-level attribute of the BuildFactory,
defaults to build).

For example:

from buildbot.plugins import steps

f.addStep(steps.ShellCommand(command=["make", "test"],
workdir="build/tests"))

env a dictionary of environment strings which will be added to the child command’s environment. For example, to
run tests with a different i18n language setting, you might use:

from buildbot.plugins import steps

f.addStep(steps.ShellCommand(command=["make", "test"],
env={'LANG': 'fr_FR'}))

These variable settings will override any existing ones in the worker’s environment or the environment specified
in the Builder. The exception is PYTHONPATH, which is merged with (actually prepended to) any exist-
ing PYTHONPATH setting. The following example will prepend /home/buildbot/lib/python to any
existing PYTHONPATH:

from buildbot.plugins import steps

f.addStep(steps.ShellCommand(
command=["make", "test"],
env={'PYTHONPATH': "/home/buildbot/lib/python"}))

2.5. Configuration 165

Buildbot Documentation, Release 0.9.7

To avoid the need of concatenating path together in the master config file, if the value is a list, it will be joined
together using the right platform dependent separator.

Those variables support expansion so that if you just want to prepend /home/buildbot/bin to the PATH
environment variable, you can do it by putting the value ${PATH} at the end of the value like in the example
below. Variables that don’t exist on the worker will be replaced by "".

from buildbot.plugins import steps

f.addStep(steps.ShellCommand(
command=["make", "test"],
env={'PATH': ["/home/buildbot/bin",

"${PATH}"]}))

Note that environment values must be strings (or lists that are turned into strings). In particular, numeric prop-
erties such as buildnumber must be substituted using Interpolate.

want_stdout if False, stdout from the child process is discarded rather than being sent to the buildmaster for
inclusion in the step’s LogFile.

want_stderr like want_stdout but for stderr. Note that commands run through a PTY do not have separate
stdout/stderr streams: both are merged into stdout.

usePTY Should this command be run in a pty? False by default. This option is not available on Windows.

In general, you do not want to use a pseudo-terminal. This is is only useful for running commands that require a
terminal - for example, testing a command-line application that will only accept passwords read from a terminal.
Using a pseudo-terminal brings lots of compatibility problems, and prevents Buildbot from distinguishing the
standard error (red) and standard output (black) streams.

In previous versions, the advantage of using a pseudo-terminal was that grandchild processes were more
likely to be cleaned up if the build was interrupted or times out. This occurred because using a pseudo-terminal
incidentally puts the command into its own process group.

As of Buildbot-0.8.4, all commands are placed in process groups, and thus grandchild processes will be cleaned
up properly.

logfiles Sometimes commands will log interesting data to a local file, rather than emitting everything to stdout or
stderr. For example, Twisted’s trial command (which runs unit tests) only presents summary information to
stdout, and puts the rest into a file named _trial_temp/test.log. It is often useful to watch these files as
the command runs, rather than using /bin/cat to dump their contents afterwards.

The logfiles= argument allows you to collect data from these secondary logfiles in near-real-time, as the
step is running. It accepts a dictionary which maps from a local Log name (which is how the log data is
presented in the build results) to either a remote filename (interpreted relative to the build’s working directory),
or a dictionary of options. Each named file will be polled on a regular basis (every couple of seconds) as the
build runs, and any new text will be sent over to the buildmaster.

If you provide a dictionary of options instead of a string, you must specify the filename key. You can
optionally provide a follow key which is a boolean controlling whether a logfile is followed or concatenated
in its entirety. Following is appropriate for logfiles to which the build step will append, where the pre-existing
contents are not interesting. The default value for follow is False, which gives the same behavior as just
providing a string filename.

from buildbot.plugins import steps

f.addStep(steps.ShellCommand(
command=["make", "test"],
logfiles={"triallog": "_trial_temp/test.log"}))

166 Chapter 2. Buildbot Manual

Buildbot Documentation, Release 0.9.7

The above example will add a log named ‘triallog’ on the master, based on _trial_temp/test.log on the
worker.

from buildbot.plugins import steps

f.addStep(steps.ShellCommand(command=["make", "test"],
logfiles={

"triallog": {
"filename": "_trial_temp/test.log",
"follow": True

}
}))

lazylogfiles If set to True, logfiles will be tracked lazily, meaning that they will only be added when and if
something is written to them. This can be used to suppress the display of empty or missing log files. The default
is False.

timeout if the command fails to produce any output for this many seconds, it is assumed to be locked up and will
be killed. This defaults to 1200 seconds. Pass None to disable.

maxTime if the command takes longer than this many seconds, it will be killed. This is disabled by default.

logEnviron If this option is True (the default), then the step’s logfile will describe the environment variables
on the worker. In situations where the environment is not relevant and is long, it may be easier to set
logEnviron=False.

interruptSignal If the command should be interrupted (either by buildmaster or timeout etc.), what signal
should be sent to the process, specified by name. By default this is “KILL” (9). Specify “TERM” (15) to give
the process a chance to cleanup. This functionality requires a 0.8.6 worker or newer.

sigtermTime

If set, when interrupting, try to kill the command with SIGTERM and wait for sigtermTime seconds before
firing interuptSignal. If None, interruptSignal will be fired immediately on interrupt.

initialStdin If the command expects input on stdin, that can be supplied a a string with this parameter. This
value should not be excessively large, as it is handled as a single string throughout Buildbot – for example, do
not pass the contents of a tarball with this parameter.

decodeRC This is a dictionary that decodes exit codes into results value. For example, {0:SUCCESS,
1:FAILURE,2:WARNINGS}, will treat the exit code 2 as WARNINGS. The default is to treat just 0 as
successful. ({0:SUCCESS}) any exit code not present in the dictionary will be treated as FAILURE

Shell Sequence

Some steps have a specific purpose, but require multiple shell commands to implement them. For example, a build is
often configure; make; make install. We have two ways to handle that:

• Create one shell command with all these. To put the logs of each commands in separate logfiles, we need to
re-write the script as configure 1> configure_log; ... and to add these configure_log files
as logfiles argument of the buildstep. This has the drawback of complicating the shell script, and making it
harder to maintain as the logfile name is put in different places.

• Create three ShellCommand instances, but this loads the build UI unnecessarily.

ShellSequence is a class to execute not one but a sequence of shell commands during a build. It takes as argument
a renderable, or list of commands which are ShellArg objects. Each such object represents a shell invocation.

The single ShellSequence argument aside from the common parameters is:

2.5. Configuration 167

Buildbot Documentation, Release 0.9.7

commands

A list of ShellArg objects or a renderable the returns a list of ShellArg objects.

from buildbot.plugins import steps, util

f.addStep(steps.ShellSequence(
commands=[

util.ShellArg(command=['configure']),
util.ShellArg(command=['make'], logfile='make'),
util.ShellArg(command=['make', 'check_warning'], logfile='warning',

→˓warnOnFailure=True),
util.ShellArg(command=['make', 'install'], logfile='make install')

]))

All these commands share the same configuration of environment, workdir and pty usage that can be setup the
same way as in ShellCommand.

class buildbot.steps.shellsequence.ShellArg(self, command=None, logfile=None, haltOnFail-
ure=False, flunkOnWarnings=False, flunkOn-
Failure=False, warnOnWarnings=False,
warnOnFailure=False)

Parameters

• command – (see the ShellCommand command argument),

• logfile – optional log file name, used as the stdio log of the command

The haltOnFailure, flunkOnWarnings, flunkOnFailure, warnOnWarnings,
warnOnFailure parameters drive the execution of the sequence, the same way steps are scheduled in
the build. They have the same default values as for buildsteps - see Common Parameters.

Any of the arguments to this class can be renderable.

Note that if logfile name does not start with the prefix stdio, that prefix will be set like stdio
<logfile>.

The two ShellSequence methods below tune the behavior of how the list of shell commands are executed, and can
be overridden in subclasses.

class buildbot.steps.shellsequence.ShellSequence

shouldRunTheCommand(oneCmd)

Parameters oneCmd – a string or a list of strings, as rendered from a ShellArg instance’s
command argument.

Determine whether the command oneCmd should be executed. If shouldRunTheCommand returns
False, the result of the command will be recorded as SKIPPED. The default methods skips all empty
strings and empty lists.

getFinalState()
Return the status text of the step in the end. The default value is to set the text describing the execution of
the last shell command.

runShellSequence(commands):

Parameters commands – list of shell args

This method actually runs the shell sequence. The default run method calls runShellSequence, but
subclasses can override run to perform other operations, if desired.

168 Chapter 2. Buildbot Manual

Buildbot Documentation, Release 0.9.7

Configure

class buildbot.steps.shell.Configure

This is intended to handle the ./configure step from autoconf-style projects, or the perl Makefile.PL step
from perl MakeMaker.pm-style modules. The default command is ./configure but you can change this by
providing a command= parameter. The arguments are identical to ShellCommand.

from buildbot.plugins import steps

f.addStep(steps.Configure())

CMake

class buildbot.steps.cmake.CMake

This is intended to handle the cmake step for projects that use CMake-based build systems (http://cmake.org).

Note: Links below point to the latest CMake documentation. Make sure that you check the documentation for the
CMake you use.

In addition to the parameters ShellCommand supports, this step accepts the following parameters:

path Either a path to a source directory to (re-)generate a build system for it in the current working directory. Or an
existing build directory to re-generate its build system.

generator A build system generator. See cmake-generators(7) (https://cmake.org/cmake/help/latest/manual/cmake-
generators.7.html) for available options.

definitions A dictionary that contains parameters that will be converted to -D{name}={value} when passed
to CMake. Refer to cmake(1) (https://cmake.org/cmake/help/latest/manual/cmake.1.html) for more information.

options A list or a tuple that contains options that will be passed to CMake as is. Refer to cmake(1)
(https://cmake.org/cmake/help/latest/manual/cmake.1.html) for more information.

cmake Path to the CMake binary. Default is cmake

from buildbot.plugins import steps

...

factory.addStep(
steps.CMake(

generator='Ninja',
definitions={

'CMAKE_BUILD_TYPE': Property('BUILD_TYPE')
},
options=[

'-Wno-dev'
]

)
)

...

2.5. Configuration 169

http://cmake.org
https://cmake.org/cmake/help/latest/manual/cmake-generators.7.html
https://cmake.org/cmake/help/latest/manual/cmake.1.html
https://cmake.org/cmake/help/latest/manual/cmake.1.html

Buildbot Documentation, Release 0.9.7

Compile

This is meant to handle compiling or building a project written in C. The default command is make all. When
the compilation is finished, the log file is scanned for GCC warning messages, a summary log is created with
any problems that were seen, and the step is marked as WARNINGS if any were discovered. Through the
WarningCountingShellCommand superclass, the number of warnings is stored in a Build Property named
warnings-count, which is accumulated over all Compile steps (so if two warnings are found in one step, and three
are found in another step, the overall build will have a warnings-count property of 5). Each step can be optionally
given a maximum number of warnings via the maxWarnCount parameter. If this limit is exceeded, the step will be
marked as a failure.

The default regular expression used to detect a warning is '.*warning[:].*' , which is fairly liberal and may
cause false-positives. To use a different regexp, provide a warningPattern= argument, or use a subclass which
sets the warningPattern attribute:

from buildbot.plugins import steps

f.addStep(steps.Compile(command=["make", "test"],
warningPattern="^Warning: "))

The warningPattern= can also be a pre-compiled Python regexp object: this makes it possible to add flags like
re.I (to use case-insensitive matching).

Note that the compiled warningPattern will have its match method called, which is subtly different from a
search. Your regular expression must match the from the beginning of the line. This means that to look for the word
“warning” in the middle of a line, you will need to prepend '.*' to your regular expression.

The suppressionFile= argument can be specified as the (relative) path of a file inside the workdir defining
warnings to be suppressed from the warning counting and log file. The file will be uploaded to the master from the
worker before compiling, and any warning matched by a line in the suppression file will be ignored. This is useful
to accept certain warnings (e.g. in some special module of the source tree or in cases where the compiler is being
particularly stupid), yet still be able to easily detect and fix the introduction of new warnings.

The file must contain one line per pattern of warnings to ignore. Empty lines and lines beginning with # are ignored.
Other lines must consist of a regexp matching the file name, followed by a colon (:), followed by a regexp matching
the text of the warning. Optionally this may be followed by another colon and a line number range. For example:

Sample warning suppression file

mi_packrec.c : .*result of 32-bit shift implicitly converted to 64 bits.* : 560-600
DictTabInfo.cpp : .*invalid access to non-static.*
kernel_types.h : .*only defines private constructors and has no friends.* : 51

If no line number range is specified, the pattern matches the whole file; if only one number is given it matches only on
that line.

The default warningPattern regexp only matches the warning text, so line numbers and file names are ignored. To
enable line number and file name matching, provide a different regexp and provide a function (callable) as the argument
of warningExtractor=. The function is called with three arguments: the BuildStep object, the line in the log
file with the warning, and the SRE_Match object of the regexp search for warningPattern. It should return a
tuple (filename, linenumber, warning_test). For example:

f.addStep(Compile(command=["make"],
warningPattern="^(.*?):([0-9]+): [Ww]arning: (.*)$",
warningExtractor=Compile.warnExtractFromRegexpGroups,
suppressionFile="support-files/compiler_warnings.supp"))

170 Chapter 2. Buildbot Manual

Buildbot Documentation, Release 0.9.7

(Compile.warnExtractFromRegexpGroups is a pre-defined function that returns the filename, linenumber,
and text from groups (1,2,3) of the regexp match).

In projects with source files in multiple directories, it is possible to get full path names for file names matched in the
suppression file, as long as the build command outputs the names of directories as they are entered into and left again.
For this, specify regexps for the arguments directoryEnterPattern= and directoryLeavePattern=.
The directoryEnterPattern= regexp should return the name of the directory entered into in the first matched
group. The defaults, which are suitable for GNU Make, are these:

directoryEnterPattern="make.*: Entering directory [\"`'](.*)['`\"]"
directoryLeavePattern="make.*: Leaving directory"

(TODO: this step needs to be extended to look for GCC error messages as well, and collect them into a separate logfile,
along with the source code filenames involved).

Visual C++

These steps are meant to handle compilation using Microsoft compilers. VC++ 6-14 (aka Visual Studio 2003-2015
and VCExpress9) are supported via calling devenv. Msbuild as well as Windows Driver Kit 8 are supported via
the MsBuild4, MsBuild12, and MsBuild14 steps. These steps will take care of setting up a clean compilation
environment, parsing the generated output in real time, and delivering as detailed as possible information about the
compilation executed.

All of the classes are in buildbot.steps.vstudio. The available classes are:

• VC6

• VC7

• VC8

• VC9

• VC10

• VC11

• VC12

• VC14

• VS2003

• VS2005

• VS2008

• VS2010

• VS2012

• VS2013

• VS2015

• VCExpress9

• MsBuild4

• MsBuild12

• MsBuild14

The available constructor arguments are

2.5. Configuration 171

Buildbot Documentation, Release 0.9.7

mode The mode default to rebuild, which means that first all the remaining object files will be cleaned by the
compiler. The alternate values are build, where only the updated files will be recompiled, and clean, where
the current build files are removed and no compilation occurs.

projectfile This is a mandatory argument which specifies the project file to be used during the compilation.

config This argument defaults to release an gives to the compiler the configuration to use.

installdir This is the place where the compiler is installed. The default value is compiler specific and is the
default place where the compiler is installed.

useenv This boolean parameter, defaulting to False instruct the compiler to use its own settings or the one defined
through the environment variables PATH, INCLUDE, and LIB. If any of the INCLUDE or LIB parameter is
defined, this parameter automatically switches to True.

PATH This is a list of path to be added to the PATH environment variable. The default value is the one defined in the
compiler options.

INCLUDE This is a list of path where the compiler will first look for include files. Then comes the default paths
defined in the compiler options.

LIB This is a list of path where the compiler will first look for libraries. Then comes the default path defined in the
compiler options.

arch That one is only available with the class VS2005 (VC8). It gives the target architecture of the built artifact. It
defaults to x86 and does not apply to MsBuild4 or MsBuild12. Please see platform below.

project This gives the specific project to build from within a workspace. It defaults to building all projects. This is
useful for building cmake generate projects.

platform This is a mandatory argument for MsBuild4 and MsBuild12 specifying the target platform such as
‘Win32’, ‘x64’ or ‘Vista Debug’. The last one is an example of driver targets that appear once Windows Driver
Kit 8 is installed.

Here is an example on how to drive compilation with Visual Studio 2013:

from buildbot.plugins import steps

f.addStep(
steps.VS2013(projectfile="project.sln", config="release",

arch="x64", mode="build",
INCLUDE=[r'C:\3rd-party\libmagic\include'],
LIB=[r'C:\3rd-party\libmagic\lib-x64']))

Here is a similar example using “MsBuild12”:

from buildbot.plugins import steps

Build one project in Release mode for Win32
f.addStep(

steps.MsBuild12(projectfile="trunk.sln", config="Release", platform="Win32",
workdir="trunk",
project="tools\\protoc"))

Build the entire solution in Debug mode for x64
f.addStep(

steps.MsBuild12(projectfile="trunk.sln", config='Debug', platform='x64',
workdir="trunk"))

172 Chapter 2. Buildbot Manual

Buildbot Documentation, Release 0.9.7

Cppcheck

This step runs cppcheck, analyse its output, and set the outcome in Properties.

from buildbot.plugins import steps

f.addStep(steps.Cppcheck(enable=['all'], inconclusive=True]))

This class adds the following arguments:

binary (Optional, default to cppcheck) Use this if you need to give the full path to the cppcheck binary or if your
binary is called differently.

source (Optional, default to ['.']) This is the list of paths for the sources to be checked by this step.

enable (Optional) Use this to give a list of the message classes that should be in cppcheck report. See the cppcheck
man page for more information.

inconclusive (Optional) Set this to True if you want cppcheck to also report inconclusive results. See the
cppcheck man page for more information.

extra_args (Optional) This is the list of extra arguments to be given to the cppcheck command.

All other arguments are identical to ShellCommand.

Robocopy

class buildbot.steps.mswin.Robocopy

This step runs robocopy on Windows.

Robocopy (https://technet.microsoft.com/en-us/library/cc733145.aspx) is available in versions of Windows starting
with Windows Vista and Windows Server 2008. For previous versions of Windows, it’s available as part of the
Windows Server 2003 Resource Kit Tools (https://www.microsoft.com/en-us/download/details.aspx?id=17657).

from buildbot.plugins import steps, util

f.addStep(
steps.Robocopy(

name='deploy_binaries',
description='Deploying binaries...',
descriptionDone='Deployed binaries.',
source=util.Interpolate('Build\\Bin\\%(prop:configuration)s'),
destination=util.Interpolate('%(prop:deploy_dir)\\Bin\\%(prop:configuration)s

→˓'),
mirror=True

)
)

Available constructor arguments are:

source The path to the source directory (mandatory).

destination The path to the destination directory (mandatory).

files An array of file names or patterns to copy.

recursive Copy files and directories recursively (/E parameter).

mirror Mirror the source directory in the destination directory, including removing files that don’t exist anymore
(/MIR parameter).

2.5. Configuration 173

https://technet.microsoft.com/en-us/library/cc733145.aspx
https://www.microsoft.com/en-us/download/details.aspx?id=17657

Buildbot Documentation, Release 0.9.7

move Delete the source directory after the copy is complete (/MOVE parameter).

exclude_files An array of file names or patterns to exclude from the copy (/XF parameter).

exclude_dirs An array of directory names or patterns to exclude from the copy (/XD parameter).

custom_opts An array of custom parameters to pass directly to the robocopy command.

verbose Whether to output verbose information (/V /TS /FP parameters).

Note that parameters /TEE /NP will always be appended to the command to signify, respectively, to output logging
to the console, use Unicode logging, and not print any percentage progress information for each file.

Test

from buildbot.plugins import steps

f.addStep(steps.Test())

This is meant to handle unit tests. The default command is make test, and the warnOnFailure flag is set. The
other arguments are identical to ShellCommand.

TreeSize

from buildbot.plugins import steps

f.addStep(steps.TreeSize())

This is a simple command that uses the du tool to measure the size of the code tree. It puts the size (as a count of 1024-
byte blocks, aka ‘KiB’ or ‘kibibytes’) on the step’s status text, and sets a build property named tree-size-KiB
with the same value. All arguments are identical to ShellCommand.

PerlModuleTest

from buildbot.plugins import steps

f.addStep(steps.PerlModuleTest())

This is a simple command that knows how to run tests of perl modules. It parses the output to determine the number of
tests passed and failed and total number executed, saving the results for later query. The command is prove --lib
lib -r t, although this can be overridden with the command argument. All other arguments are identical to those
for ShellCommand.

MTR (mysql-test-run)

The MTR class is a subclass of Test. It is used to run test suites using the mysql-test-run program, as used in MySQL,
Drizzle, MariaDB, and MySQL storage engine plugins.

The shell command to run the test suite is specified in the same way as for the Test class. The MTR class will parse
the output of running the test suite, and use the count of tests executed so far to provide more accurate completion time
estimates. Any test failures that occur during the test are summarized on the Waterfall Display.

Server error logs are added as additional log files, useful to debug test failures.

174 Chapter 2. Buildbot Manual

Buildbot Documentation, Release 0.9.7

Optionally, data about the test run and any test failures can be inserted into a database for further anal-
ysis and report generation. To use this facility, create an instance of twisted.enterprise.adbapi.
ConnectionPool with connections to the database. The necessary tables can be created automatically
by setting autoCreateTables to True, or manually using the SQL found in the mtrlogobserver.py
(https://github.com/buildbot/buildbot/blob/master/master/buildbot/steps/mtrlogobserver.py) source file.

One problem with specifying a database is that each reload of the configuration will get a new instance of
ConnectionPool (even if the connection parameters are the same). To avoid that Buildbot thinks the builder
configuration has changed because of this, use the steps.mtrlogobserver.EqConnectionPool subclass of
ConnectionPool, which implements an equality operation that avoids this problem.

Example use:

from buildbot.plugins import steps, util

myPool = util.EqConnectionPool("MySQLdb", "host", "buildbot", "password", "db")
myFactory.addStep(steps.MTR(workdir="mysql-test", dbpool=myPool,

command=["perl", "mysql-test-run.pl", "--force"]))

The MTR step’s arguments are:

textLimit Maximum number of test failures to show on the waterfall page (to not flood the page in case of a large
number of test failures. Defaults to 5.

testNameLimit Maximum length of test names to show unabbreviated in the waterfall page, to avoid excessive
column width. Defaults to 16.

parallel Value of option –parallel option used for mysql-test-run.pl (number of processes used to run the
test suite in parallel). Defaults to 4. This is used to determine the number of server error log files to download
from the worker. Specifying a too high value does not hurt (as nonexisting error logs will be ignored), however
if using option –parallel value greater than the default it needs to be specified, or some server error logs will be
missing.

dbpool An instance of twisted.enterprise.adbapi.ConnectionPool, or None. Defaults to None. If
specified, results are inserted into the database using the ConnectionPool.

autoCreateTables Boolean, defaults to False. If True (and dbpool is specified), the nec-
essary database tables will be created automatically if they do not exist already. Alterna-
tively, the tables can be created manually from the SQL statements found in the mtrlogobserver.py
(https://github.com/buildbot/buildbot/blob/master/master/buildbot/steps/mtrlogobserver.py) source file.

test_type Short string that will be inserted into the database in the row for the test run. Defaults to the empty
string, but can be specified to identify different types of test runs.

test_info Descriptive string that will be inserted into the database in the row for the test run. Defaults to the empty
string, but can be specified as a user-readable description of this particular test run.

mtr_subdir The subdirectory in which to look for server error log files. Defaults to mysql-test, which is
usually correct. Interpolate is supported.

SubunitShellCommand

class buildbot.steps.subunit.SubunitShellCommand

This buildstep is similar to ShellCommand, except that it runs the log content through a subunit filter to extract test
and failure counts.

2.5. Configuration 175

https://github.com/buildbot/buildbot/blob/master/master/buildbot/steps/mtrlogobserver.py
https://github.com/buildbot/buildbot/blob/master/master/buildbot/steps/mtrlogobserver.py

Buildbot Documentation, Release 0.9.7

from buildbot.plugins import steps

f.addStep(steps.SubunitShellCommand(command="make test"))

This runs make test and filters it through subunit. The ‘tests’ and ‘test failed’ progress metrics will now accumulate
test data from the test run.

If failureOnNoTests is True, this step will fail if no test is run. By default failureOnNoTests is False.

Worker Filesystem Steps

Here are some buildsteps for manipulating the worker’s filesystem.

FileExists

This step will assert that a given file exists, failing if it does not. The filename can be specified with a property.

from buildbot.plugins import steps

f.addStep(steps.FileExists(file='test_data'))

This step requires worker version 0.8.4 or later.

CopyDirectory

This command copies a directory on the worker.

from buildbot.plugins import steps

f.addStep(steps.CopyDirectory(src="build/data", dest="tmp/data"))

This step requires worker version 0.8.5 or later.

The CopyDirectory step takes the following arguments:

timeout if the copy command fails to produce any output for this many seconds, it is assumed to be locked up and
will be killed. This defaults to 120 seconds. Pass None to disable.

maxTime if the command takes longer than this many seconds, it will be killed. This is disabled by default.

RemoveDirectory

This command recursively deletes a directory on the worker.

from buildbot.plugins import steps

f.addStep(steps.RemoveDirectory(dir="build/build"))

This step requires worker version 0.8.4 or later.

176 Chapter 2. Buildbot Manual

Buildbot Documentation, Release 0.9.7

MakeDirectory

This command creates a directory on the worker.

from buildbot.plugins import steps

f.addStep(steps.MakeDirectory(dir="build/build"))

This step requires worker version 0.8.5 or later.

Python BuildSteps

Here are some BuildSteps that are specifically useful for projects implemented in Python.

BuildEPYDoc

class buildbot.steps.python.BuildEPYDoc

epydoc (http://epydoc.sourceforge.net/) is a tool for generating API documentation for Python modules from their
docstrings. It reads all the .py files from your source tree, processes the docstrings therein, and creates a large tree of
.html files (or a single .pdf file).

The BuildEPYDoc step will run epydoc to produce this API documentation, and will count the errors and warnings
from its output.

You must supply the command line to be used. The default is make epydocs, which assumes that your project
has a Makefile with an epydocs target. You might wish to use something like epydoc -o apiref source/
PKGNAME instead. You might also want to add option –pdf to generate a PDF file instead of a large tree of HTML
files.

The API docs are generated in-place in the build tree (under the workdir, in the subdirectory controlled by the option
-o argument). To make them useful, you will probably have to copy them to somewhere they can be read. For example
if you have server with configured nginx web server, you can place generated docs to it’s public folder with command
like rsync -ad apiref/ dev.example.com:~/usr/share/nginx/www/current-apiref/. You
might instead want to bundle them into a tarball and publish it in the same place where the generated install tarball is
placed.

from buildbot.plugins import steps

f.addStep(steps.BuildEPYDoc(command=["epydoc", "-o", "apiref", "source/mypkg"]))

PyFlakes

class buildbot.steps.python.PyFlakes

PyFlakes (https://launchpad.net/pyflakes) is a tool to perform basic static analysis of Python code to look for simple
errors, like missing imports and references of undefined names. It is like a fast and simple form of the C lint
program. Other tools (like pychecker (http://pychecker.sourceforge.net/)) provide more detailed results but take longer
to run.

The PyFlakes step will run pyflakes and count the various kinds of errors and warnings it detects.

You must supply the command line to be used. The default is make pyflakes, which assumes you have a top-level
Makefile with a pyflakes target. You might want to use something like pyflakes . or pyflakes src.

2.5. Configuration 177

http://epydoc.sourceforge.net/
https://launchpad.net/pyflakes
http://pychecker.sourceforge.net/

Buildbot Documentation, Release 0.9.7

from buildbot.plugins import steps

f.addStep(steps.PyFlakes(command=["pyflakes", "src"]))

Sphinx

class buildbot.steps.python.Sphinx

Sphinx (http://sphinx.pocoo.org/) is the Python Documentation Generator. It uses RestructuredText
(http://docutils.sourceforge.net/rst.html) as input format.

The Sphinx step will run sphinx-build or any other program specified in its sphinx argument and count the
various warnings and error it detects.

from buildbot.plugins import steps

f.addStep(steps.Sphinx(sphinx_builddir="_build"))

This step takes the following arguments:

sphinx_builddir (required) Name of the directory where the documentation will be generated.

sphinx_sourcedir (optional, defaulting to .), Name the directory where the conf.py file will be found

sphinx_builder (optional) Indicates the builder to use.

sphinx (optional, defaulting to sphinx-build) Indicates the executable to run.

tags (optional) List of tags to pass to sphinx-build

defines (optional) Dictionary of defines to overwrite values of the conf.py file.

mode (optional) String, one of full or incremental (the default). If set to full, indicates to Sphinx to rebuild
everything without re-using the previous build results.

PyLint

Similarly, the PyLint step will run pylint and analyze the results.

You must supply the command line to be used. There is no default.

from buildbot.plugins import steps

f.addStep(steps.PyLint(command=["pylint", "src"]))

Trial

class buildbot.steps.python_twisted.Trial

This step runs a unit test suite using trial, a unittest-like testing framework that is a component of Twisted Python.
Trial is used to implement Twisted’s own unit tests, and is the unittest-framework of choice for many projects that use
Twisted internally.

Projects that use trial typically have all their test cases in a ‘test’ subdirectory of their top-level library directory. For
example, for a package petmail, the tests might be in petmail/test/test_*.py. More complicated packages
(like Twisted itself) may have multiple test directories, like twisted/test/test_*.py for the core functionality
and twisted/mail/test/test_*.py for the email-specific tests.

178 Chapter 2. Buildbot Manual

http://sphinx.pocoo.org/
http://docutils.sourceforge.net/rst.html

Buildbot Documentation, Release 0.9.7

To run trial tests manually, you run the trial executable and tell it where the test cases are located. The most common
way of doing this is with a module name. For petmail, this might look like trial petmail.test, which would
locate all the test_*.py files under petmail/test/, running every test case it could find in them. Unlike the
unittest.py that comes with Python, it is not necessary to run the test_foo.py as a script; you always let trial
do the importing and running. The step’s tests` parameter controls which tests trial will run: it can be a string or a
list of strings.

To find the test cases, the Python search path must allow something like import petmail.test to work. For
packages that don’t use a separate top-level lib directory, PYTHONPATH=. will work, and will use the test cases
(and the code they are testing) in-place. PYTHONPATH=build/lib or PYTHONPATH=build/lib.somearch
are also useful when you do a python setup.py build step first. The testpath attribute of this class controls
what PYTHONPATH is set to before running trial.

Trial has the ability, through the --testmodule flag, to run only the set of test cases named by special
test-case-name tags in source files. We can get the list of changed source files from our parent Build and
provide them to trial, thus running the minimal set of test cases needed to cover the Changes. This is useful for quick
builds, especially in trees with a lot of test cases. The testChanges parameter controls this feature: if set, it will
override tests.

The trial executable itself is typically just trial, and is typically found in the shell search path. It can be overridden
with the trial parameter. This is useful for Twisted’s own unittests, which want to use the copy of bin/trial that
comes with the sources.

To influence the version of Python being used for the tests, or to add flags to the command, set the python parameter.
This can be a string (like python2.2) or a list (like ['python2.3', '-Wall']).

Trial creates and switches into a directory named _trial_temp/ before running the tests, and sends the twisted log
(which includes all exceptions) to a file named test.log. This file will be pulled up to the master where it can be
seen as part of the status output.

from buildbot.plugins import steps

f.addStep(steps.Trial(tests='petmail.test'))

Trial has the ability to run tests on several workers in parallel (beginning with Twisted 12.3.0). Set jobs to the number
of workers you want to run. Note that running trial in this way will create multiple log files (named test.N.log,
err.N.log and out.N.log starting with N=0) rather than a single test.log.

This step takes the following arguments:

jobs (optional) Number of worker-resident trial workers to use when running the tests. Defaults to 1 worker. Only
works with Twisted>=12.3.0.

RemovePYCs

class buildbot.steps.python_twisted.RemovePYCs

This is a simple built-in step that will remove .pyc files from the workdir. This is useful in builds that update their
source (and thus do not automatically delete .pyc files) but where some part of the build process is dynamically
searching for Python modules. Notably, trial has a bad habit of finding old test modules.

from buildbot.plugins import steps

f.addStep(steps.RemovePYCs())

2.5. Configuration 179

Buildbot Documentation, Release 0.9.7

Transferring Files

class buildbot.steps.transfer.FileUpload

class buildbot.steps.transfer.FileDownload

Most of the work involved in a build will take place on the worker. But occasionally it is useful to do some work
on the buildmaster side. The most basic way to involve the buildmaster is simply to move a file from the worker
to the master, or vice versa. There are a pair of steps named FileUpload and FileDownload to provide this
functionality. FileUpload moves a file up to the master, while FileDownload moves a file down from the
master.

As an example, let’s assume that there is a step which produces an HTML file within the source tree that contains
some sort of generated project documentation. And let’s assume that we run nginx web server on buildmaster host for
serving static files. We want to move this file to the buildmaster, into a /usr/share/nginx/www/ directory, so
it can be visible to developers. This file will wind up in the worker-side working directory under the name docs/
reference.html. We want to put it into the master-side /usr/share/nginx/www/ref.html, and add a
link to the HTML status to the uploaded file.

from buildbot.plugins import steps

f.addStep(steps.ShellCommand(command=["make", "docs"]))
f.addStep(steps.FileUpload(workersrc="docs/reference.html",

masterdest="/usr/share/nginx/www/ref.html",
url="http://somesite/~buildbot/ref.html"))

The masterdest= argument will be passed to os.path.expanduser, so things like ~ will be expanded prop-
erly. Non-absolute paths will be interpreted relative to the buildmaster’s base directory. Likewise, the workersrc=
argument will be expanded and interpreted relative to the builder’s working directory.

Note: The copied file will have the same permissions on the master as on the worker, look at the mode= parameter
to set it differently.

To move a file from the master to the worker, use the FileDownload command. For example, let’s assume that
some step requires a configuration file that, for whatever reason, could not be recorded in the source code repository
or generated on the worker side:

from buildbot.plugins import steps

f.addStep(steps.FileDownload(mastersrc="~/todays_build_config.txt",
workerdest="build_config.txt"))

f.addStep(steps.ShellCommand(command=["make", "config"]))

Like FileUpload, the mastersrc= argument is interpreted relative to the buildmaster’s base directory, and the
workerdest= argument is relative to the builder’s working directory. If the worker is running in ~worker, and the
builder’s builddir is something like tests-i386, then the workdir is going to be ~worker/tests-i386/
build, and a workerdest= of foo/bar.html will get put in ~worker/tests-i386/build/foo/bar.
html. Both of these commands will create any missing intervening directories.

Other Parameters

The maxsize= argument lets you set a maximum size for the file to be transferred. This may help to avoid surprises:
transferring a 100MB coredump when you were expecting to move a 10kB status file might take an awfully long
time. The blocksize= argument controls how the file is sent over the network: larger blocksizes are slightly more
efficient but also consume more memory on each end, and there is a hard-coded limit of about 640kB.

180 Chapter 2. Buildbot Manual

Buildbot Documentation, Release 0.9.7

The mode= argument allows you to control the access permissions of the target file, traditionally expressed as an octal
integer. The most common value is probably 0755, which sets the x executable bit on the file (useful for shell scripts
and the like). The default value for mode= is None, which means the permission bits will default to whatever the
umask of the writing process is. The default umask tends to be fairly restrictive, but at least on the worker you can
make it less restrictive with a --umask command-line option at creation time (Worker Options).

The keepstamp= argument is a boolean that, when True, forces the modified and accessed time of the destination
file to match the times of the source file. When False (the default), the modified and accessed times of the destination
file are set to the current time on the buildmaster.

The url= argument allows you to specify an url that will be displayed in the HTML status. The title of the url will be
the name of the item transferred (directory for DirectoryUpload or file for FileUpload). This allows the user
to add a link to the uploaded item if that one is uploaded to an accessible place.

For FileUpload, the urlText= argument allows you to specify the url title that will be displayed in the web UI.

Transfering Directories

class buildbot.steps.transfer.DirectoryUpload

To transfer complete directories from the worker to the master, there is a BuildStep named DirectoryUpload.
It works like FileUpload, just for directories. However it does not support the maxsize, blocksize and mode
arguments. As an example, let’s assume an generated project documentation, which consists of many files (like the
output of doxygen or epydoc). And let’s assume that we run nginx web server on buildmaster host for serving
static files. We want to move the entire documentation to the buildmaster, into a /usr/share/nginx/www/docs
directory, and add a link to the uploaded documentation on the HTML status page. On the worker-side the directory
can be found under docs:

from buildbot.plugins import steps

f.addStep(steps.ShellCommand(command=["make", "docs"]))
f.addStep(steps.DirectoryUpload(workersrc="docs",

masterdest="/usr/share/nginx/www/docs",
url="~buildbot/docs"))

The DirectoryUpload step will create all necessary directories and transfers empty directories, too.

The maxsize and blocksize parameters are the same as for FileUpload, although note that the size of the
transferred data is implementation-dependent, and probably much larger than you expect due to the encoding used
(currently tar).

The optional compress argument can be given as 'gz' or 'bz2' to compress the datastream.

Note: The permissions on the copied files will be the same on the master as originally on the worker, see option
buildbot-worker create-worker --umask to change the default one.

Transferring Multiple Files At Once

class buildbot.steps.transfer.MultipleFileUpload

In addition to the FileUpload and DirectoryUpload steps there is the MultipleFileUpload step for up-
loading a bunch of files (and directories) in a single BuildStep. The step supports all arguments that are supported
by FileUpload and DirectoryUpload, but instead of a the single workersrc parameter it takes a (plural)

2.5. Configuration 181

Buildbot Documentation, Release 0.9.7

workersrcs parameter. This parameter should either be a list, or something that can be rendered as a list. Addi-
tionally it supports the glob parameter if this parameter is set to True all arguments in workersrcs will be parsed
through glob and the results will be uploaded to masterdest.:

from buildbot.plugins import steps

f.addStep(steps.ShellCommand(command=["make", "test"]))
f.addStep(steps.ShellCommand(command=["make", "docs"]))
f.addStep(steps.MultipleFileUpload(workersrcs=["docs", "test-results.html"],

masterdest="/usr/share/nginx/www/",
url="~buildbot"))

The url= parameter, can be used to specify a link to be displayed in the HTML status of the step.

The way URLs are added to the step can be customized by extending the MultipleFileUpload class. The
allUploadsDone method is called after all files have been uploaded and sets the URL. The uploadDone method is
called once for each uploaded file and can be used to create file-specific links.

import os

from buildbot.plugins import steps

class CustomFileUpload(steps.MultipleFileUpload):
linkTypes = ('.html', '.txt')

def linkFile(self, basename):
name, ext = os.path.splitext(basename)
return ext in self.linkTypes

def uploadDone(self, result, source, masterdest):
if self.url:

basename = os.path.basename(source)
if self.linkFile(basename):

self.addURL(self.url + '/' + basename, basename)

def allUploadsDone(self, result, sources, masterdest):
if self.url:

notLinked = [src for src in sources if not self.linkFile(src)]
numFiles = len(notLinked)
if numFiles:

self.addURL(self.url, '... %d more' % numFiles)

Transfering Strings

class buildbot.steps.transfer.StringDownload

class buildbot.steps.transfer.JSONStringDownload

class buildbot.steps.transfer.JSONPropertiesDownload

Sometimes it is useful to transfer a calculated value from the master to the worker. Instead of having to create a
temporary file and then use FileDownload, you can use one of the string download steps.

from buildbot.plugins import steps, util

f.addStep(steps.StringDownload(util.Interpolate("%(src::branch)s-%(prop:got_
→˓revision)s\n"),

workerdest="buildid.txt"))

182 Chapter 2. Buildbot Manual

Buildbot Documentation, Release 0.9.7

StringDownload works just like FileDownload except it takes a single argument, s, representing the string to
download instead of a mastersrc argument.

from buildbot.plugins import steps

buildinfo = {
'branch': Property('branch'),
'got_revision': Property('got_revision')

}
f.addStep(steps.JSONStringDownload(buildinfo, workerdest="buildinfo.json"))

JSONStringDownload is similar, except it takes an o argument, which must be JSON serializable, and transfers
that as a JSON-encoded string to the worker.

from buildbot.plugins import steps

f.addStep(steps.JSONPropertiesDownload(workerdest="build-properties.json"))

JSONPropertiesDownload transfers a json-encoded string that represents a dictionary where properties maps to
a dictionary of build property name to property value; and sourcestamp represents the build’s sourcestamp.

Running Commands on the Master

class buildbot.steps.master.MasterShellCommand

Occasionally, it is useful to execute some task on the master, for example to create a directory, deploy a build result, or
trigger some other centralized processing. This is possible, in a limited fashion, with the MasterShellCommand
step.

This step operates similarly to a regular ShellCommand, but executes on the master, instead of the worker. To be
clear, the enclosing Build object must still have a worker object, just as for any other step – only, in this step, the
worker does not do anything.

In this example, the step renames a tarball based on the day of the week.

from buildbot.plugins import steps

f.addStep(steps.FileUpload(workersrc="widgetsoft.tar.gz",
masterdest="/var/buildoutputs/widgetsoft-new.tar.gz"))

f.addStep(steps.MasterShellCommand(
command="mv widgetsoft-new.tar.gz widgetsoft-`date +%a`.tar.gz",
workdir="/var/buildoutputs"))

Note: By default, this step passes a copy of the buildmaster’s environment variables to the subprocess. To pass an
explicit environment instead, add an env={..} argument.

Environment variables constructed using the env argument support expansion so that if you just want to prepend
/home/buildbot/bin to the PATH environment variable, you can do it by putting the value ${PATH} at the end
of the value like in the example below. Variables that don’t exist on the master will be replaced by "".

from buildbot.plugins import steps

f.addStep(steps.MasterShellCommand(
command=["make", "www"],
env={'PATH': ["/home/buildbot/bin",

"${PATH}"]}))

2.5. Configuration 183

Buildbot Documentation, Release 0.9.7

Note that environment values must be strings (or lists that are turned into strings). In particular, numeric properties
such as buildnumber must be substituted using Interpolate.

workdir (optional) The directory from which the command will be ran.

interruptSignal (optional) Signal to use to end the process, if the step is interrupted.

LogRenderable

class buildbot.steps.master.LogRenderable

This build step takes content which can be renderable and logs it in a pretty-printed format. It can be useful for
debugging properties during a build.

Setting Properties

These steps set properties on the master based on information from the worker.

SetProperty

class buildbot.steps.master.SetProperty

SetProperty takes two arguments of property and valuewhere the value is to be assigned to the property
key. It is usually called with the value argument being specified as a Interpolate object which allows the value to be
built from other property values:

from buildbot.plugins import steps, util

f.addStep(
steps.SetProperty(

property="SomeProperty",
value=util.Interpolate("sch=%(prop:scheduler)s, worker=%(prop:workername)s")

)
)

SetProperties step

class buildbot.steps.master.SetProperty

SetProperties takes a dictionary to be turned into build properties.

It is similar to SetProperty , and meant to be used with a Renderer function or a dictionary of Interpolate objects
which allows the value to be built from other property values:

"""Example borrowed from Julia's master.cfg
https://github.com/staticfloat/julia-buildbot (MIT)"""

from buildbot.plugins import *

@util.renderer
def compute_artifact_filename(props):

Get the output of the `make print-BINARYDIST_FILENAME` step
reported_filename = props.getProperty('artifact_filename')

First, see if we got a BINARYDIST_FILENAME output

184 Chapter 2. Buildbot Manual

Buildbot Documentation, Release 0.9.7

if reported_filename[:26] == "BINARYDIST_FILENAME=":
local_filename = util.Interpolate(reported_filename[26:].strip()+"%(prop:os_

→˓pkg_ext)s")
else:

If not, use non-sf/consistent_distnames naming
if is_mac(props):

local_filename = util.Interpolate("contrib/mac/app/Julia-%(prop:version)s-
→˓%(prop:shortcommit)s.%(prop:os_pkg_ext)s")

elif is_winnt(props):
local_filename = util.Interpolate("julia-%(prop:version)s-%(prop:tar_

→˓arch)s.%(prop:os_pkg_ext)s")
else:

local_filename = util.Interpolate("julia-%(prop:shortcommit)s-Linux-
→˓%(prop:tar_arch)s.%(prop:os_pkg_ext)s")

upload_filename always follows sf/consistent_distname rules
upload_filename = util.Interpolate("julia-%(prop:shortcommit)s-%(prop:os_name)s

→˓%(prop:bits)s.%(prop:os_pkg_ext)s")
return {

"local_filename": local_filename
"upload_filename": upload_filename

}

f1.addStep(steps.SetProperties(properties=compute_artifact_filename))

SetPropertyFromCommand

class buildbot.steps.shell.SetPropertyFromCommand

This buildstep is similar to ShellCommand, except that it captures the output of the command into a property. It is
usually used like this:

from buildbot.plugins import steps

f.addStep(steps.SetPropertyFromCommand(command="uname -a", property="uname"))

This runs uname -a and captures its stdout, stripped of leading and trailing whitespace, in the property uname. To
avoid stripping, add strip=False.

The property argument can be specified as a Interpolate object, allowing the property name to be built from other
property values.

Passing includeStdout=False (default True) stops capture from stdout.

Passing includeStderr=True (default False) allows capture from stderr.

The more advanced usage allows you to specify a function to extract properties from the command output. Here you
can use regular expressions, string interpolation, or whatever you would like. In this form, extract_fn should
be passed, and not Property. The extract_fn function is called with three arguments: the exit status of the
command, its standard output as a string, and its standard error as a string. It should return a dictionary containing all
new properties.

Note that passing in extract_fn will set includeStderr to True.

def glob2list(rc, stdout, stderr):
jpgs = [l.strip() for l in stdout.split('\n')]
return {'jpgs': jpgs}

2.5. Configuration 185

Buildbot Documentation, Release 0.9.7

f.addStep(SetPropertyFromCommand(command="ls -1 *.jpg", extract_fn=glob2list))

Note that any ordering relationship of the contents of stdout and stderr is lost. For example, given:

f.addStep(SetPropertyFromCommand(
command="echo output1; echo error >&2; echo output2",
extract_fn=my_extract))

Then my_extract will see stdout="output1\noutput2\n" and stderr="error\n".

Avoid using the extract_fn form of this step with commands that produce a great deal of output, as the output is
buffered in memory until complete.

class buildbot.steps.worker.SetPropertiesFromEnv

SetPropertiesFromEnv

Buildbot workers (later than version 0.8.3) provide their environment variables to the master on connect. These can
be copied into Buildbot properties with the SetPropertiesFromEnv step. Pass a variable or list of variables in
the variables parameter, then simply use the values as properties in a later step.

Note that on Windows, environment variables are case-insensitive, but Buildbot property names are case sensitive. The
property will have exactly the variable name you specify, even if the underlying environment variable is capitalized
differently. If, for example, you use variables=['Tmp'], the result will be a property named Tmp, even though
the environment variable is displayed as TMP in the Windows GUI.

from buildbot.plugins import steps, util

f.addStep(steps.SetPropertiesFromEnv(variables=["SOME_JAVA_LIB_HOME", "JAVAC"]))
f.addStep(steps.Compile(commands=[util.Interpolate("%(prop:JAVAC)s"),

"-cp",
util.Interpolate("%(prop:SOME_JAVA_LIB_HOME)s")]))

Note that this step requires that the worker be at least version 0.8.3. For previous versions, no environment variables
are available (the worker environment will appear to be empty).

Triggering Schedulers

class buildbot.steps.trigger.Trigger

The counterpart to the Triggerable scheduler is the Trigger build step:

from buildbot.plugins import steps

f.addStep(steps.Trigger(schedulerNames=['build-prep'],
waitForFinish=True,
updateSourceStamp=True,
set_properties={ 'quick' : False }))

The SourceStamps to use for the triggered build are controlled by the arguments updateSourceStamp,
alwaysUseLatest, and sourceStamps.

Hyperlinks are added to the build detail web pages for each triggered build.

186 Chapter 2. Buildbot Manual

Buildbot Documentation, Release 0.9.7

schedulerNames lists the Triggerable schedulers that should be triggered when this step is executed.

Note: It is possible, but not advisable, to create a cycle where a build continually triggers itself, because the
schedulers are specified by name.

unimportantSchedulerNames When waitForFinish is True, all schedulers in this list will not cause the
trigger step to fail. unimportantSchedulerNames must be a subset of schedulerNames If waitForFinish is
False, unimportantSchedulerNames will simply be ignored.

waitForFinish If True, the step will not finish until all of the builds from the triggered schedulers have finished.

If False (the default) or not given, then the buildstep succeeds immediately after triggering the schedulers.

updateSourceStamp If True (the default), then step updates the source stamps given to the Triggerable
schedulers to include got_revision (the revision actually used in this build) as revision (the revision to
use in the triggered builds). This is useful to ensure that all of the builds use exactly the same source stamps,
even if other Changes have occurred while the build was running.

If False (and neither of the other arguments are specified), then the exact same SourceStamps are used.

alwaysUseLatest If True, then no SourceStamps are given, corresponding to using the latest revisions of the
repositories specified in the Source steps. This is useful if the triggered builds use to a different source repository.

sourceStamps Accepts a list of dictionaries containing the keys branch, revision, repository,
project, and optionally patch_level, patch_body, patch_subdir, patch_author and
patch_comment and creates the corresponding SourceStamps. If only one sourceStamp has to be speci-
fied then the argument sourceStamp can be used for a dictionary containing the keys mentioned above.
The arguments updateSourceStamp, alwaysUseLatest, and sourceStamp can be specified using
properties.

set_properties allows control of the properties that are passed to the triggered scheduler. The parameter takes
a dictionary mapping property names to values. You may use Interpolate here to dynamically construct new
property values. For the simple case of copying a property, this might look like:

set_properties={"my_prop1" : Property("my_prop1")}

Note: The copy_properties parameter, given a list of properties to copy into the new build request, has
been deprecated in favor of explicit use of set_properties.

Dynamic Trigger

Sometimes it is desirable to select which scheduler to trigger, and which properties to set dynamically, at the time
of the build. For this purpose, Trigger step supports a method that you can customize in order to override statically
defined schedulernames, set_properties and optionally unimportant.

buildbot.steps.source.getSchedulersAndProperties()

Returns list of dictionaries containing the keys ‘sched_name’, ‘props_to_set’ and ‘unimportant’
optionally via deferred

This method returns a list of dictionaries describing what scheduler to trigger, with which properties and if the
scheduler is unimportant. Old style list of tuples is still supported, in which case unimportant is considered
False. The properties should already be rendered (ie, concrete value, not objects wrapped by Interpolate
or Property). Since this function happens at build-time, the property values are available from the step and
can be used to decide what schedulers or properties to use.

2.5. Configuration 187

Buildbot Documentation, Release 0.9.7

With this method, you can also trigger the same scheduler multiple times with different set of properties. The
sourcestamp configuration is however the same for each triggered build request.

RPM-Related Steps

These steps work with RPMs and spec files.

RpmBuild

The RpmBuild step builds RPMs based on a spec file:

from buildbot.plugins import steps

f.addStep(steps.RpmBuild(specfile="proj.spec", dist='.el5'))

The step takes the following parameters

specfile The .spec file to build from

topdir Definition for _topdir, defaulting to the workdir.

builddir Definition for _builddir, defaulting to the workdir.

rpmdir Definition for _rpmdir, defaulting to the workdir.

sourcedir Definition for _sourcedir, defaulting to the workdir.

srcrpmdir Definition for _srcrpmdir, defaulting to the workdir.

dist Distribution to build, used as the definition for _dist.

autoRelease If true, use the auto-release mechanics.

vcsRevision If true, use the version-control revision mechanics. This uses the got_revision property to
determine the revision and define _revision. Note that this will not work with multi-codebase builds.

RpmLint

The RpmLint step checks for common problems in RPM packages or spec files:

from buildbot.plugins import steps

f.addStep(steps.RpmLint())

The step takes the following parameters

fileloc The file or directory to check. In case of a directory, it is recursively searched for RPMs and spec files to
check.

config Path to a rpmlint config file. This is passed as the user configuration file if present.

Mock Steps

Mock (http://fedoraproject.org/wiki/Projects/Mock) creates chroots and builds packages in them. It populates the
changeroot with a basic system and the packages listed as build requirement. The type of chroot to build is specified
with the root parameter. To use mock your Buildbot user must be added to the mock group.

188 Chapter 2. Buildbot Manual

http://fedoraproject.org/wiki/Projects/Mock

Buildbot Documentation, Release 0.9.7

MockBuildSRPM Step

The MockBuildSRPM step builds a SourceRPM based on a spec file and optionally a source directory:

from buildbot.plugins import steps

f.addStep(steps.MockBuildSRPM(root='default', spec='mypkg.spec'))

The step takes the following parameters

root Use chroot configuration defined in /etc/mock/<root>.cfg.

resultdir The directory where the logfiles and the SourceRPM are written to.

spec Build the SourceRPM from this spec file.

sources Path to the directory containing the sources, defaulting to ..

MockRebuild Step

The MockRebuild step rebuilds a SourceRPM package:

from buildbot.plugins import steps

f.addStep(steps.MockRebuild(root='default', spec='mypkg-1.0-1.src.rpm'))

The step takes the following parameters

root Uses chroot configuration defined in /etc/mock/<root>.cfg.

resultdir The directory where the logfiles and the SourceRPM are written to.

srpm The path to the SourceRPM to rebuild.

Debian Build Steps

DebPbuilder

The DebPbuilder step builds Debian packages within a chroot built by pbuilder. It populates the chroot with
a basic system and the packages listed as build requirement. The type of the chroot to build is specified with the
distribution, distribution and mirror parameter. To use pbuilder your Buildbot user must have the right
to run pbuilder as root using sudo.

from buildbot.plugins import steps

f.addStep(steps.DebPbuilder())

The step takes the following parameters

architecture Architecture to build chroot for.

distribution Name, or nickname, of the distribution. Defaults to ‘stable’.

basetgz Path of the basetgz to use for building.

mirror URL of the mirror used to download the packages from.

extrapackages List if packages to install in addition to the base system.

2.5. Configuration 189

Buildbot Documentation, Release 0.9.7

keyring Path to a gpg keyring to verify the downloaded packages. This is necessary if you build for a foreign
distribution.

components Repos to activate for chroot building.

DebCowbuilder

The DebCowbuilder step is a subclass of DebPbuilder, which use cowbuilder instead of pbuilder.

DebLintian

The DebLintian step checks a build .deb for bugs and policy violations. The packages or changes file to test is
specified in fileloc

from buildbot.plugins import steps, util

f.addStep(steps.DebLintian(fileloc=util.Interpolate("%(prop:deb-changes)s")))

Miscellaneous BuildSteps

A number of steps do not fall into any particular category.

HLint

The HLint step runs Twisted Lore, a lint-like checker over a set of .xhtml files. Any deviations from recommended
style is flagged and put in the output log.

The step looks at the list of changes in the build to determine which files to check - it does not check all files. It
specifically excludes any .xhtml files in the top-level sandbox/ directory.

The step takes a single, optional, parameter: python. This specifies the Python executable to use to run Lore.

from buildbot.plugins import steps

f.addStep(steps.HLint())

MaxQ

MaxQ (http://maxq.tigris.org/) is a web testing tool that allows you to record HTTP sessions and play them back. The
MaxQ step runs this framework.

from buildbot.plugins import steps

f.addStep(steps.MaxQ(testdir='tests/'))

The single argument, testdir, specifies where the tests should be run. This directory will be passed to the
run_maxq.py command, and the results analyzed.

190 Chapter 2. Buildbot Manual

http://maxq.tigris.org/

Buildbot Documentation, Release 0.9.7

HTTP Requests

Using the HTTPStep step, it is possible to perform HTTP requests in order to trigger another REST service about the
progress of the build.

Note: This step requires the txrequests (https://pypi.python.org/pypi/txrequests) and requests (http://python-
requests.org) Python libraries.

The parameters are the following:

url (mandatory) The URL where to send the request

method The HTTP method to use (out of POST, GET, PUT, DELETE, HEAD or OPTIONS), default to POST.

params Dictionary of URL parameters to append to the URL.

data The body to attach the request. If a dictionary is provided, form-encoding will take place.

headers Dictionary of headers to send.

other params Any other keywords supported by the requests api (http://docs.python-
requests.org/en/master/api/#main-interface) can be passed to this step.

Note: The entire Buildbot master process shares a single Requests Session object. This has the advantage
of supporting connection re-use and other HTTP/1.1 features. However, it also means that any cookies or other
state changed by one step will be visible to other steps, causing unexpected results. This behavior may change
in future versions.

When the method is known in advance, class with the name of the method can also be used. In this case, it is not
necessary to specify the method.

Example:

from buildbot.plugins import steps, util

f.addStep(steps.POST('http://myRESTService.example.com/builds',
data = {

'builder': util.Property('buildername'),
'buildnumber': util.Property('buildnumber'),
'workername': util.Property('workername'),
'revision': util.Property('got_revision')

}))

Interlocks

• Access Modes

• Count

• Scope

• Examples

2.5. Configuration 191

https://pypi.python.org/pypi/txrequests
http://python-requests.org
http://docs.python-requests.org/en/master/api/#main-interface

Buildbot Documentation, Release 0.9.7

Until now, we assumed that a master can run builds at any worker whenever needed or desired. Some times, you want
to enforce additional constraints on builds. For reasons like limited network bandwidth, old worker machines, or a
self-willed data base server, you may want to limit the number of builds (or build steps) that can access a resource.

Access Modes

The mechanism used by Buildbot is known as the read/write lock1. It allows either many readers or a single writer
but not a combination of readers and writers. The general lock has been modified and extended for use in Buildbot.
Firstly, the general lock allows an infinite number of readers. In Buildbot, we often want to put an upper limit on the
number of readers, for example allowing two out of five possible builds at the same time. To do this, the lock counts
the number of active readers. Secondly, the terms read mode and write mode are confusing in Buildbot context. They
have been replaced by counting mode (since the lock counts them) and exclusive mode. As a result of these changes,
locks in Buildbot allow a number of builds (up to some fixed number) in counting mode, or they allow one build in
exclusive mode.

Note: Access modes are specified when a lock is used. That is, it is possible to have a single lock that is used by
several workers in counting mode, and several workers in exclusive mode. In fact, this is the strength of the modes:
accessing a lock in exclusive mode will prevent all counting-mode accesses.

Count

Often, not all workers are equal. To allow for this situation, Buildbot allows to have a separate upper limit on the count
for each worker. In this way, you can have at most 3 concurrent builds at a fast worker, 2 at a slightly older worker,
and 1 at all other workers.

Scope

The final thing you can specify when you introduce a new lock is its scope. Some constraints are global – they must be
enforced over all workers. Other constraints are local to each worker. A master lock is used for the global constraints.
You can ensure for example that at most one build (of all builds running at all workers) accesses the data base server.
With a worker lock you can add a limit local to each worker. With such a lock, you can for example enforce an upper
limit to the number of active builds at a worker, like above.

Examples

Time for a few examples. Below a master lock is defined to protect a data base, and a worker lock is created to limit
the number of builds at each worker.

from buildbot.plugins import util

db_lock = util.MasterLock("database")
build_lock = util.WorkerLock("worker_builds",

maxCount=1,
maxCountForWorker={'fast': 3, 'new': 2})

db_lock is defined to be a master lock. The database string is used for uniquely identifying the lock. At the
next line, a worker lock called build_lock is created. It is identified by the worker_builds string. Since the
requirements of the lock are a bit more complicated, two optional arguments are also specified. The maxCount

1 See http://en.wikipedia.org/wiki/Read/write_lock_pattern for more information.

192 Chapter 2. Buildbot Manual

http://en.wikipedia.org/wiki/Read/write_lock_pattern

Buildbot Documentation, Release 0.9.7

parameter sets the default limit for builds in counting mode to 1. For the worker called 'fast' however, we want to
have at most three builds, and for the worker called 'new' the upper limit is two builds running at the same time.

The next step is accessing the locks in builds. Buildbot allows a lock to be used during an entire build (from beginning
to end), or only during a single build step. In the latter case, the lock is claimed for use just before the step starts, and
released again when the step ends. To prevent deadlocks,2 it is not possible to claim or release locks at other times.

To use locks, you add them with a locks argument to a build or a step. Each use of a lock is either in counting
mode (that is, possibly shared with other builds) or in exclusive mode, and this is indicated with the syntax lock.
access(mode), where mode is one of "counting" or "exclusive".

A build or build step proceeds only when it has acquired all locks. If a build or step needs a lot of locks, it may be
starved3 by other builds that need fewer locks.

To illustrate use of locks, a few examples.

from buildbot.plugins import util, steps

db_lock = util.MasterLock("database")
build_lock = util.WorkerLock("worker_builds",

maxCount=1,
maxCountForWorker={'fast': 3, 'new': 2})

f = util.BuildFactory()
f.addStep(steps.SVN(repourl="http://example.org/svn/Trunk"))
f.addStep(steps.ShellCommand(command="make all"))
f.addStep(steps.ShellCommand(command="make test",

locks=[db_lock.access('exclusive')]))

b1 = {'name': 'full1', 'workername': 'fast', 'builddir': 'f1', 'factory': f,
'locks': [build_lock.access('counting')] }

b2 = {'name': 'full2', 'workername': 'new', 'builddir': 'f2', 'factory': f,
'locks': [build_lock.access('counting')] }

b3 = {'name': 'full3', 'workername': 'old', 'builddir': 'f3', 'factory': f,
'locks': [build_lock.access('counting')] }

b4 = {'name': 'full4', 'workername': 'other', 'builddir': 'f4', 'factory': f,
'locks': [build_lock.access('counting')] }

c['builders'] = [b1, b2, b3, b4]

Here we have four workers fast, new, old, and other. Each worker performs the same checkout, make, and test
build step sequence. We want to enforce that at most one test step is executed between all workers due to restrictions
with the data base server. This is done by adding the locks= parameter with the third step. It takes a list of locks
with their access mode. Alternatively, this can take a renderable that returns an list of locks with their access mode.

In this case only the db_lock is needed. The exclusive access mode is used to ensure there is at most one worker
that executes the test step.

In addition to exclusive accessing the data base, we also want workers to stay responsive even under the load
of a large number of builds being triggered. For this purpose, the worker lock called build_lock is defined.
Since the restraint holds for entire builds, the lock is specified in the builder with 'locks': [build_lock.
access('counting')].

2 Deadlock is the situation where two or more workers each hold a lock in exclusive mode, and in addition want to claim the lock held by the
other worker exclusively as well. Since locks allow at most one exclusive user, both workers will wait forever.

3 Starving is the situation that only a few locks are available, and they are immediately grabbed by another build. As a result, it may take a long
time before all locks needed by the starved build are free at the same time.

2.5. Configuration 193

Buildbot Documentation, Release 0.9.7

Note that you will occasionally see lock.access(mode) written as LockAccess(lock, mode). The two
are equivalent, but the former is preferred.

Reporters

• MailNotifier

– MailNotifier arguments

– MessageFormatter arguments

– MessageFormatterMissingWorkers arguments

• Pushover Notifications

• IRC Bot

• GerritStatusPush

• HttpStatusPush

– Json object spec

• GitHubStatusPush

• GitHubCommentPush

• StashStatusPush

• BitbucketStatusPush

• GitLabStatusPush

• HipchatStatusPush

– Json object spec

• GerritVerifyStatusPush

The Buildmaster has a variety of ways to present build status to various users. Each such delivery method is a Reporter
Target object in the configuration’s services list. To add reporter targets, you just append more objects to this list:

c['services'] = []

m = reporters.MailNotifier(fromaddr="buildbot@localhost",
extraRecipients=["builds@lists.example.com"],
sendToInterestedUsers=False)

c['services'].append(m)

c['services'].append(reporters.IRC(host="irc.example.com", nick="bb",
channels=[{"channel": "#example1"},

{"channel": "#example2",
"password": "somesecretpassword"}]))

Most reporter objects take a tags= argument, which can contain a list of tag names: in this case, it will only show
status for Builders that contains the named tags.

Note: Implementation Note

Each of these objects should be a service.BuildbotService which will be attached to the BuildMaster object

194 Chapter 2. Buildbot Manual

Buildbot Documentation, Release 0.9.7

when the configuration is processed.

The remainder of this section describes each built-in reporters. A full list of reporters is available in the reporter.

MailNotifier

class buildbot.reporters.mail.MailNotifier

The Buildbot can send email when builds finish. The most common use of this is to tell developers when their change
has caused the build to fail. It is also quite common to send a message to a mailing list (usually named builds or
similar) about every build.

The MailNotifier reporter is used to accomplish this. You configure it by specifying who mail should be sent
to, under what circumstances mail should be sent, and how to deliver the mail. It can be configured to only send out
mail for certain builders, and only send messages when the build fails, or when the builder transitions from success to
failure. It can also be configured to include various build logs in each message.

If a proper lookup function is configured, the message will be sent to the “interested users” list (Doing Things With
Users), which includes all developers who made changes in the build. By default, however, Buildbot does not know
how to construct an email addressed based on the information from the version control system. See the lookup
argument, below, for more information.

You can add additional, statically-configured, recipients with the extraRecipients argument. You can also add
interested users by setting the owners build property to a list of users in the scheduler constructor (Configuring
Schedulers).

Each MailNotifier sends mail to a single set of recipients. To send different kinds of mail to different recipients,
use multiple MailNotifiers. TODO: or subclass MailNotifier and override getRecipients()

The following simple example will send an email upon the completion of each build, to just those developers whose
Changes were included in the build. The email contains a description of the Build, its results, and URLs where
more information can be obtained.

from buildbot.plugins import reporters
mn = reporters.MailNotifier(fromaddr="buildbot@example.org",

lookup="example.org")
c['services'].append(mn)

To get a simple one-message-per-build (say, for a mailing list), use the following form instead. This form does not
send mail to individual developers (and thus does not need the lookup= argument, explained below), instead it only
ever sends mail to the extra recipients named in the arguments:

mn = reporters.MailNotifier(fromaddr="buildbot@example.org",
sendToInterestedUsers=False,
extraRecipients=['listaddr@example.org'])

If your SMTP host requires authentication before it allows you to send emails, this can also be done by specifying
smtpUser and smtpPassword:

mn = reporters.MailNotifier(fromaddr="myuser@example.com",
sendToInterestedUsers=False,
extraRecipients=["listaddr@example.org"],
relayhost="smtp.example.com", smtpPort=587,
smtpUser="myuser@example.com",
smtpPassword="mypassword")

2.5. Configuration 195

Buildbot Documentation, Release 0.9.7

Note: If for some reasons you are not able to send a notification with TLS enabled and specified user
name and password, you might want to use master/contrib/check_smtp.py (https://github.com/buildbot/buildbot-
contrib/blob/master/master/contrib/check_smtp.py) to see if it works at all.

If you want to require Transport Layer Security (TLS), then you can also set useTls:

mn = reporters.MailNotifier(fromaddr="myuser@example.com",
sendToInterestedUsers=False,
extraRecipients=["listaddr@example.org"],
useTls=True, relayhost="smtp.example.com",
smtpPort=587, smtpUser="myuser@example.com",
smtpPassword="mypassword")

Note: If you see twisted.mail.smtp.TLSRequiredError exceptions in the log while using TLS, this can
be due either to the server not supporting TLS or to a missing PyOpenSSL (http://pyopenssl.sourceforge.net/) package
on the BuildMaster system.

In some cases it is desirable to have different information then what is provided in a standard MailNotifier message.
For this purpose MailNotifier provides the argument messageFormatter (an instance of MessageFormatter)
which allows for the creation of messages with unique content.

For example, if only short emails are desired (e.g., for delivery to phones):

from buildbot.plugins import reporters
mn = reporters.MailNotifier(fromaddr="buildbot@example.org",

sendToInterestedUsers=False,
mode=('problem',),
extraRecipients=['listaddr@example.org'],
messageFormatter=reporters.MessageFormatter(template=

→˓"STATUS: {{ summary }}"))

Another example of a function delivering a customized html email is given below:

from buildbot.plugins import reporters

template=u'''\
<h4>Build status: {{ summary }}</h4>
<p> Worker used: {{ workername }}</p>
{% for step in build['steps'] %}
<p> {{ step['name'] }}: {{ step['result'] }}</p>
{% endfor %}
<p> -- The Buildbot</p>
'''

mn = reporters.MailNotifier(fromaddr="buildbot@example.org",
sendToInterestedUsers=False,
mode=('failing',),
extraRecipients=['listaddr@example.org'],
messageFormatter=reporters.MessageFormatter(

template=template, template_type='html',
wantProperties=True, wantSteps=True))

196 Chapter 2. Buildbot Manual

https://github.com/buildbot/buildbot-contrib/blob/master/master/contrib/check_smtp.py
http://pyopenssl.sourceforge.net/

Buildbot Documentation, Release 0.9.7

MailNotifier arguments

fromaddr The email address to be used in the ‘From’ header.

sendToInterestedUsers (boolean). If True (the default), send mail to all of the Interested Users. If False,
only send mail to the extraRecipients list.

extraRecipients (list of strings). A list of email addresses to which messages should be sent (in addition to the
InterestedUsers list, which includes any developers who made Changes that went into this build). It is a good
idea to create a small mailing list and deliver to that, then let subscribers come and go as they please.

subject (string). A string to be used as the subject line of the message. %(builder)s will be replaced with the
name of the builder which provoked the message.

mode Mode is a list of strings; however there are two strings which can be used as shortcuts instead of the full lists.
The possible shortcuts are:

all Always send mail about builds. Equivalent to (change, failing, passing, problem, warnings,
exception).

warnings Equivalent to (warnings, failing).

(list of strings). A combination of:

cancelled Send mail about builds which were cancelled.

change Send mail about builds which change status.

failing Send mail about builds which fail.

passing Send mail about builds which succeed.

problem Send mail about a build which failed when the previous build has passed.

warnings Send mail about builds which generate warnings.

exception Send mail about builds which generate exceptions.

Defaults to (failing, passing, warnings).

builders (list of strings). A list of builder names for which mail should be sent. Defaults to None (send mail for
all builds). Use either builders or tags, but not both.

tags (list of strings). A list of tag names to serve status information for. Defaults to None (all tags). Use either
builders or tags, but not both.

schedulers (list of strings). A list of scheduler names to serve status information for. Defaults to None (all
schedulers).

branches (list of strings). A list of branch names to serve status information for. Defaults to None (all branches).

addLogs (boolean). If True, include all build logs as attachments to the messages. These can be quite large. This
can also be set to a list of log names, to send a subset of the logs. Defaults to False.

addPatch (boolean). If True, include the patch content if a patch was present. Patches are usually used on a Try
server. Defaults to True.

buildSetSummary (boolean). If True, send a single summary email consisting of the concatenation of all build
completion messages rather than a completion message for each build. Defaults to False.

relayhost (string). The host to which the outbound SMTP connection should be made. Defaults to ‘localhost’

smtpPort (int). The port that will be used on outbound SMTP connections. Defaults to 25.

2.5. Configuration 197

Buildbot Documentation, Release 0.9.7

useTls (boolean). When this argument is True (default is False) MailNotifier requires that STARTTLS
encryption is used for the connection with the relayhost. Authentication is required for STARTTLS so the
arguments smtpUser and smtpPassword must also be specified.

useSmtps (boolean). When this argument is True (default is False) MailNotifier connects to relayhost
over an encrypted SSL/TLS connection. This configuration is typically used over port 465.

smtpUser (string). The user name to use when authenticating with the relayhost.

smtpPassword (string). The password that will be used when authenticating with the relayhost.

lookup (implementer of IEmailLookup). Object which provides IEmailLookup, which is responsible for
mapping User names (which come from the VC system) into valid email addresses.

If the argument is not provided, the MailNotifier will attempt to build the sendToInterestedUsers
from the authors of the Changes that led to the Build via User Objects. If the author of one of the Build’s
Changes has an email address stored, it will added to the recipients list. With this method, owners are still
added to the recipients. Note that, in the current implementation of user objects, email addresses are not stored;
as a result, unless you have specifically added email addresses to the user database, this functionality is unlikely
to actually send any emails.

Most of the time you can use a simple Domain instance. As a shortcut, you can pass
as string: this will be treated as if you had provided Domain(str). For example,
lookup='example.com' will allow mail to be sent to all developers whose SVN user-
names match their example.com account names. See master/buildbot/reporters/mail.py
(https://github.com/buildbot/buildbot/blob/master/master/buildbot/reporters/mail.py) for more details.

Regardless of the setting of lookup, MailNotifier will also send mail to addresses in the
extraRecipients list.

messageFormatter This is an optional instance of the reporters.MessageFormatter class that can be
used to generate a custom mail message. This class uses the Jinja2 (http://jinja.pocoo.org/docs/dev/templates/)
templating language to generate the body and optionally the subject of the mails. Templates can either be given
inline (as string), or read from the filesystem.

extraHeaders (dictionary). A dictionary containing key/value pairs of extra headers to add to sent e-mails. Both
the keys and the values may be a Interpolate instance.

watchedWorkers This is a list of names of workers, which should be watched. In case a worker get missing, a
notification is sent. The value of watchedWorkers can also be set to all (default) or None. You also need to
specify email address to which the notification is sent in the worker configuration.

messageFormatterMissingWorker This is an optional instance of the reporters.
messageFormatterMissingWorker class that can be used to generate a custom mail message for
missing workers. This class uses the Jinja2 (http://jinja.pocoo.org/docs/dev/templates/) templating language to
generate the body and optionally the subject of the mails. Templates can either be given inline (as string), or
read from the filesystem.

MessageFormatter arguments

The easiest way to use the messageFormatter parameter is to create a new instance of the reporters.
MessageFormatter class. The constructor to that class takes the following arguments:

template_dir This is the directory that is used to look for the various templates.

template_filename This is the name of the file in the template_dir directory that will be used to generate
the body of the mail. It defaults to default_mail.txt.

template If this parameter is set, this parameter indicates the content of the template used to generate the body of
the mail as string.

198 Chapter 2. Buildbot Manual

https://github.com/buildbot/buildbot/blob/master/master/buildbot/reporters/mail.py
http://jinja.pocoo.org/docs/dev/templates/
http://jinja.pocoo.org/docs/dev/templates/

Buildbot Documentation, Release 0.9.7

template_type This indicates the type of the generated template. Use either ‘plain’ (the default) or ‘html’.

subject_filename This is the name of the file in the template_dir directory that contains the content of the
subject of the mail.

subject Alternatively, this is the content of the subject of the mail as string.

ctx This is an extension of the standard context that will be given to the templates. Use this to add content to the
templates that is otherwise not available.

Alternatively, you can subclass MessageFormatter and override the buildAdditionalContext in order to
grab more context from the data API.

buildAdditionalContext(master, ctx)

Parameters

• master – the master object

• ctx – the context dictionary to enhance

Returns optionally deferred

default implementation will add self.ctx into the current template context

wantProperties This parameter (defaults to True) will extend the content of the given build object with the
Properties from the build.

wantSteps This parameter (defaults to False) will extend the content of the given build object with information
about the steps of the build. Use it only when necessary as this increases the overhead in term of CPU and
memory on the master.

wantLogs This parameter (defaults to False) will extend the content of the steps of the given build object with the
full Logs of each steps from the build. This requires wantSteps to be True. Use it only when mandatory as
this increases the overhead in term of CPU and memory on the master greatly.

As a help to those writing Jinja2 templates the following table describes how to get some useful pieces of information
from the various data objects:

Name of the builder that generated this event {{ buildername }}

Title of the BuildMaster {{ projects }}

MailNotifier mode {{ mode }} (a combination of change, failing, passing, problem, warnings,
exception, all)

URL to build page {{ build_url }}

URL to buildbot main page {{ buildbot_url }}

Status of the build as string. This require extending the context of the Formatter via the ctx parameter with:
ctx=dict(statuses=util.Results).

{{ statuses[results] }}

Build text {{ build['state_string'] }}

Mapping of property names to (values, source) {{ build['properties'] }}

For instance the build reason (from a forced build) {{ build['properties']['reason'][0] }}

Worker name {{ workername }}

List of responsible users {{ blamelist | join(', ') }}

2.5. Configuration 199

Buildbot Documentation, Release 0.9.7

MessageFormatterMissingWorkers arguments

The easiest way to use the messageFormatterMissingWorkers parameter is to create a new instance of the
reporters.MessageFormatterMissingWorkers class.

The constructor to that class takes the same arguments as MessageFormatter, minus wantLogs, wantProperties,
wantSteps.

The default ctx for the missing worker email is made of:

buildbot_title The buildbot title as per c['title'] from the master.cfg

buildbot_url The buildbot title as per c['title'] from the master.cfg

worker The worker object as defined in the REST api plus two attributes:

notify List of emails to be notified for this worker.

last_connection String describing the approximate the time of last connection for this worker.

Pushover Notifications

class buildbot.reporters.pushover.PushoverNotifier

Apart of sending mail, Buildbot can send Pushover (https://pushover.net/) notifications. It can be used by adminis-
trators to receive an instant message to an iPhone or an Android device if a build fails. The PushoverNotifier
reporter is used to accomplish this. Its configuration is very similar to the mail notifications, however—due to the
notification size constrains—the logs and patches cannot be attached.

To use this reporter, you need to generate and application on the Pushover website https://pushover.net/apps/ and
provide your user key and API token.

The following simple example will send an email upon the completion of each build. The email contains a description
of the Build, its results, and URLs where more information can be obtained. The user_key and api_token
values should be replaces with proper ones obtained from the Pushover website for your application.

from buildbot.plugins import reporters
pn = reporters.PushoverNotifier(user_key="1234", api_token='abcd')
c['services'].append(pn)

This notifier supports parameters subject, mode, builders, tags, schedulers,
branches, buildSetSummary, messageFormatter, watchedWorkers, and
messageFormatterMissingWorker from the mail notifier. See above for their explanation. However,
watchedWorkers defaults to None.

The following additional parameters are accepted by this class:

user_key The user key from the Pushover website. It is used to identify the notification recipient.

api_token API token for a custom application from the Pushover website.

priorities Dictionary of Pushover notification priorities. The keys of the dictionary can be change, failing,
passing, warnings, exception and are equivalent to the mode strings. The values are integers between
-2...2, specifying notification priority. In case a mode is missing from this dictionary, the default value of 0 is
used.

otherParams Other parameters send to Pushover API. Check https://pushover.net/api/ for their list.

200 Chapter 2. Buildbot Manual

https://pushover.net/
https://pushover.net/apps/
https://pushover.net/api/

Buildbot Documentation, Release 0.9.7

IRC Bot

The IRC reporter creates an IRC bot which will attach to certain channels and be available for status queries. It can
also be asked to announce builds as they occur, or be told to shut up.

The IRC Bot in buildbot nine, is mostly a rewrite, and not all functionality has been ported yet. Patches are very
welcome for restoring the full functionality.

Note: Security Note

Please note that any user having access to your irc channel or can PM the bot will be able to create or stop builds bug
#3377 (http://trac.buildbot.net/ticket/3377).

from buildbot.plugins import reporters
irc = reporters.IRC("irc.example.org", "botnickname",

useColors=False,
channels=[{"channel": "#example1"},

{"channel": "#example2",
"password": "somesecretpassword"}],

password="mysecretnickservpassword",
notify_events={

'exception': 1,
'successToFailure': 1,
'failureToSuccess': 1,

})
c['services'].append(irc)

The following parameters are accepted by this class:

host (mandatory) The IRC server address to connect to.

nick (mandatory) The name this bot will use on the IRC server.

channels (mandatory) This is a list of channels to join on the IRC server. Each channel can be a string (e.g.
#buildbot), or a dictionary {'channel': '#buildbot', 'password': 'secret'} if each
channel requires a different password. A global password can be set with the password parameter.

pm_to_nicks (optional) This is a list of person to contact on the IRC server.

port (optional, default to 6667) The port to connect to on the IRC server.

allowForce (optional, disabled by default) This allow user to force builds via this bot.

tags (optional) When set, this bot will only communicate about builders containing those tags. (tags functionality is
not yet ported)

password (optional) The global password used to register the bot to the IRC server. If provided, it will be sent to
Nickserv to claim the nickname: some IRC servers will not allow clients to send private messages until they
have logged in with a password.

notify_events (optional) A dictionary of events to be notified on the IRC channels. At the moment, irc bot can
listen to build ‘start’ and ‘finish’ events. This parameter can be changed during run-time by sending the notify
command to the bot.

showBlameList (optional, disabled by default) Whether or not to display the blame list for failed builds. (blame
list functionality is not ported yet)

useRevisions (optional, disabled by default) Whether or not to display the revision leading to the build the mes-
sages are about. (useRevisions functionality is not ported yet)

2.5. Configuration 201

http://trac.buildbot.net/ticket/3377
http://trac.buildbot.net/ticket/3377

Buildbot Documentation, Release 0.9.7

useSSL (optional, disabled by default) Whether or not to use SSL when connecting to the IRC server. Note that this
option requires PyOpenSSL (http://pyopenssl.sourceforge.net/).

lostDelay (optional) Delay to wait before reconnecting to the server when the connection has been lost.

failedDelay (optional) Delay to wait before reconnecting to the IRC server when the connection failed.

useColors (optional, enabled by default) The bot can add color to some of its messages. You might turn it off by
setting this parameter to False.

allowShutdown (optional, disabled by default) This allow users to shutdown the master.

To use the service, you address messages at the Buildbot, either normally (botnickname: status) or with
private messages (/msg botnickname status). The Buildbot will respond in kind.

If you issue a command that is currently not available, the Buildbot will respond with an error message. If the
noticeOnChannel=True option was used, error messages will be sent as channel notices instead of messaging.

Some of the commands currently available:

list builders Emit a list of all configured builders

status BUILDER Announce the status of a specific Builder: what it is doing right now.

status all Announce the status of all Builders

watch BUILDER If the given Builder is currently running, wait until the Build is finished and then announce
the results.

last BUILDER Return the results of the last build to run on the given Builder.

join CHANNEL Join the given IRC channel

leave CHANNEL Leave the given IRC channel

notify on|off|list EVENT Report events relating to builds. If the command is issued as a private message,
then the report will be sent back as a private message to the user who issued the command. Otherwise, the report
will be sent to the channel. Available events to be notified are:

started A build has started

finished A build has finished

success A build finished successfully

failure A build failed

exception A build generated and exception

xToY The previous build was x, but this one is Y, where x and Y are each one of success, warnings, failure,
exception (except Y is capitalized). For example: successToFailure will notify if the previous build
was successful, but this one failed

help COMMAND Describe a command. Use help commands to get a list of known commands.

shutdown ARG Control the shutdown process of the Buildbot master. Available arguments are:

check Check if the Buildbot master is running or shutting down

start Start clean shutdown

stop Stop clean shutdown

now Shutdown immediately without waiting for the builders to finish

source Announce the URL of the Buildbot’s home page.

version Announce the version of this Buildbot.

202 Chapter 2. Buildbot Manual

http://pyopenssl.sourceforge.net/

Buildbot Documentation, Release 0.9.7

Additionally, the config file may specify default notification options as shown in the example earlier.

If the allowForce=True option was used, some additional commands will be available:

force build [--codebase=CODEBASE] [--branch=BRANCH] [--revision=REVISION] [--props=PROP1=VAL1,PROP2=VAL2...] BUILDER REASON
Tell the given Builder to start a build of the latest code. The user requesting the build and REASON
are recorded in the Build status. The Buildbot will announce the build’s status when it finishes.The
user can specify a branch and/or revision with the optional parameters --branch=BRANCH and
--revision=REVISION . The user can also give a list of properties with --props=PROP1=VAL1,
PROP2=VAL2...

stop build BUILDER REASON Terminate any running build in the given Builder. REASON will be added
to the build status to explain why it was stopped. You might use this if you committed a bug, corrected it right
away, and don’t want to wait for the first build (which is destined to fail) to complete before starting the second
(hopefully fixed) build.

If the tags is set (see the tags option in Builder Configuration) changes related to only builders belonging to those tags
of builders will be sent to the channel.

If the useRevisions option is set to True, the IRC bot will send status messages that replace the build number with a
list of revisions that are contained in that build. So instead of seeing build #253 of ..., you would see something like
build containing revisions [a87b2c4]. Revisions that are stored as hashes are shortened to 7 characters in length, as
multiple revisions can be contained in one build and may exceed the IRC message length limit.

Two additional arguments can be set to control how fast the IRC bot tries to reconnect when it encounters connection
issues. lostDelay is the number of of seconds the bot will wait to reconnect when the connection is lost, where as
failedDelay is the number of seconds until the bot tries to reconnect when the connection failed. lostDelay
defaults to a random number between 1 and 5, while failedDelay defaults to a random one between 45 and 60.
Setting random defaults like this means multiple IRC bots are less likely to deny each other by flooding the server.

GerritStatusPush

class buildbot.status.status_gerrit.GerritStatusPush

GerritStatusPush sends review of the Change back to the Gerrit server, optionally also sending a message
when a build is started. GerritStatusPush can send a separate review for each build that completes, or a single review
summarizing the results for all of the builds.

class GerritStatusPush(server, username, reviewCB, startCB, port, reviewArg, startArg, summaryCB,
summaryArg, identity_file, builders, notify...)

Parameters

• server (string) – Gerrit SSH server’s address to use for push event notifications.

• username (string) – Gerrit SSH server’s username.

• identity_file – (optional) Gerrit SSH identity file.

• port (int) – (optional) Gerrit SSH server’s port (default: 29418)

• reviewCB – (optional) Called each time a build finishes. Build properties are available.
Can be a deferred.

• reviewArg – (optional) argument passed to the review callback.

If reviewCB callback is specified, it must return a message and optionally labels. If no
message is specified, nothing will be sent to Gerrit. It should return a dictionary:

{'message': message,
'labels': {label-name: label-score,

2.5. Configuration 203

Buildbot Documentation, Release 0.9.7

...}
}

For example:

def gerritReviewCB(builderName, build, result, master, arg):
if result == util.RETRY:

return dict()

message = "Buildbot finished compiling your patchset\n"
message += "on configuration: %s\n" % builderName
message += "The result is: %s\n" % util.Results[result].upper()

if arg:
message += "\nFor more details visit:\n"
message += build['url'] + "\n"

if result == util.SUCCESS:
verified = 1

else:
verified = -1

return dict(message=message, labels={'Verified': verified})

Which require an extra import in the config:

from buildbot.plugins import util

• startCB – (optional) Called each time a build is started. Build properties are available.
Can be a deferred.

• startArg – (optional) argument passed to the start callback.

If startCB is specified, it must return a message and optionally labels. If no message is
specified, nothing will be sent to Gerrit. It should return a dictionary:

{'message': message,
'labels': {label-name: label-score,

...}
}

For example:

def gerritStartCB(builderName, build, arg):
message = "Buildbot started compiling your patchset\n"
message += "on configuration: %s\n" % builderName
message += "See your build here: %s" % build['url']

return dict(message=message)

• summaryCB – (optional) Called each time a buildset finishes. Each build in the buildset
has properties available. Can be a deferred.

• summaryArg – (optional) argument passed to the summary callback.

If summaryCB callback is specified, it must return a message and optionally labels. If no
message is specified, nothing will be sent to Gerrit. The message and labels should be a
summary of all the builds within the buildset. It should return a dictionary:

204 Chapter 2. Buildbot Manual

Buildbot Documentation, Release 0.9.7

{'message': message,
'labels': {label-name: label-score,

...}
}

For example:

def gerritSummaryCB(buildInfoList, results, status, arg):
success = False
failure = False

msgs = []

for buildInfo in buildInfoList:
msg = "Builder %(name)s %(resultText)s (%(text)s)" %

→˓buildInfo
link = buildInfo.get('url', None)
if link:

msg += " - " + link
else:

msg += "."

msgs.append(msg)

if buildInfo['result'] == util.SUCCESS:
success = True

else:
failure = True

if success and not failure:
verified = 1

else:
verified = -1

return dict(message='\n\n'.join(msgs),
labels={

'Verified': verified
})

• builders – (optional) list of builders to send results for. This method allows to filter
results for a specific set of builder. By default, or if builders is None, then no filtering is
performed.

• notify – (optional) control who gets notified by Gerrit once the status is posted. The
possible values for notify can be found in your version of the Gerrit documentation for the
gerrit review command.

Note: By default, a single summary review is sent; that is, a default summaryCB is provided, but no reviewCB or
startCB.

Note: If reviewCB or summaryCB do not return any labels, only a message will be pushed to the Gerrit server.

See also:

master/docs/examples/git_gerrit.cfg (https://github.com/buildbot/buildbot/blob/master/master/docs/examples/git_gerrit.cfg)

2.5. Configuration 205

https://github.com/buildbot/buildbot/blob/master/master/docs/examples/git_gerrit.cfg

Buildbot Documentation, Release 0.9.7

and master/docs/examples/repo_gerrit.cfg (https://github.com/buildbot/buildbot/blob/master/master/docs/examples/repo_gerrit.cfg)
in the Buildbot distribution provide a full example setup of Git+Gerrit or Repo+Gerrit of GerritStatusPush.

HttpStatusPush

from buildbot.plugins import reporters
sp = reporters.HttpStatusPush(serverUrl="http://example.com/submit")
c['services'].append(sp)

HttpStatusPush builds on StatusPush and sends HTTP requests to serverUrl, with all the items json-
encoded. It is useful to create a status front end outside of Buildbot for better scalability.

It requires either txrequests (https://pypi.python.org/pypi/txrequests) or treq (https://pypi.python.org/pypi/treq) to be
installed to allow interaction with http server.

Note: The json data object sent is completely different from the one that was generated by 0.8.x buildbot. It is indeed
generated using data api.

class HttpStatusPush(serverUrl, user=None, password=None, auth=None, format_fn=None,
builders=None, wantProperties=False, wantSteps=False, wantPrevious-
Build=False, wantLogs=False)

Parameters

• serverUrl (string) – the url where to do the http post

• user (string) – the BasicAuth user to post as

• password (string) – the BasicAuth user’s password

• auth – the authentication method to use. Refer to the documentation of the requests library
for more information.

• format_fn (function) – a function that takes the build as parameter and returns a
dictionary to be pushed to the server (as json).

• builders (list) – only send update for specified builders

• wantProperties (boolean) – include ‘properties’ in the build dictionary

• wantSteps (boolean) – include ‘steps’ in the build dictionary

• wantLogs (boolean) – include ‘logs’ in the steps dictionaries. This needs
wantSteps=True. This dumps the full content of logs and may consume lots of memory
and CPU depending on the log size.

• wantPreviousBuild (boolean) – include ‘prev_build’ in the build dictionary

Json object spec

The default json object sent is a build object augmented with some more data as follow.

{
"url": "http://yourbot/path/to/build",
"<build data api values>": "[...]",
"buildset": "<buildset data api values>",
"builder": "<builder data api values>",

206 Chapter 2. Buildbot Manual

https://github.com/buildbot/buildbot/blob/master/master/docs/examples/repo_gerrit.cfg
https://pypi.python.org/pypi/txrequests
https://pypi.python.org/pypi/treq

Buildbot Documentation, Release 0.9.7

"buildrequest": "<buildrequest data api values>"
}

If you want another format, don’t hesitate to use the format_fn parameter to customize the payload. The build
parameter given to that function is of type build, optionally enhanced with properties, steps, and logs information.

GitHubStatusPush

class buildbot.reporters.github.GitHubStatusPush

from buildbot.plugins import reporters, util

context = Interpolate("buildbot/%(prop:buildername)s")
gs = reporters.GitHubStatusPush(token='githubAPIToken',

context=context,
startDescription='Build started.',
endDescription='Build done.')

factory = util.BuildFactory()
buildbot_bbtools = util.BuilderConfig(

name='builder-name',
workernames=['worker1'],
factory=factory)

c['builders'].append(buildbot_bbtools)
c['services'].append(gs)

GitHubStatusPush publishes a build status using GitHub Status API
(http://developer.github.com/v3/repos/statuses).

It requires txrequests (https://pypi.python.org/pypi/txrequests) package to allow interaction with GitHub REST API.

It is configured with at least a GitHub API token.

You can create a token from you own GitHub - Profile - Applications - Register new application
(https://github.com/settings/applications) or use an external tool to generate one.

class GitHubStatusPush(token, startDescription=None, endDescription=None, context=None,
baseURL=None, verbose=False, builders=None)

Parameters

• token (string) – token used for authentication.

• string startDescription (rendereable) – Custom start message (default:
‘Build started.’)

• string endDescription (rendereable) – Custom end message (default: ‘Build
done.’)

• string context (rendereable) – Passed to GitHub to differentiate between sta-
tuses. A static string can be passed or Interpolate for dynamic substitution. The default
context is buildbot/%(prop:buildername)s.

• baseURL (string) – specify the github api endpoint if you work with GitHub Enterprise

• verbose (boolean) – if True, logs a message for each successful status push

• builders (list) – only send update for specified builders

2.5. Configuration 207

http://developer.github.com/v3/repos/statuses
https://pypi.python.org/pypi/txrequests
https://github.com/settings/applications

Buildbot Documentation, Release 0.9.7

GitHubCommentPush

class buildbot.reporters.github.GitHubCommentPush

from buildbot.plugins import reporters, util

gc = reporters.GitHubCommentPush(token='githubAPIToken',
startDescription='Build started.',
endDescription='Build done.')

factory = util.BuildFactory()
buildbot_bbtools = util.BuilderConfig(

name='builder-name',
workernames=['worker1'],
factory=factory)

c['builders'].append(buildbot_bbtools)
c['services'].append(gc)

GitHubCommentPush publishes a comment on a PR using GitHub Review Comments API
(https://developer.github.com/v3/pulls/comments/).

It requires txrequests (https://pypi.python.org/pypi/txrequests) package to allow interaction with GitHub REST API.

It is configured with at least a GitHub API token. By default, it will only comment at the end of a build unless a
startDescription is provided.

You can create a token from you own GitHub - Profile - Applications - Register new application
(https://github.com/settings/applications) or use an external tool to generate one.

class GitHubCommentPush(token, startDescription=None, endDescription=None, baseURL=None, ver-
bose=False, builders=None)

Parameters

• token (string) – token used for authentication.

• string startDescription (rendereable) – Custom start message (default:
None)

• string endDescription (rendereable) – Custom end message (default: ‘Build
done.’)

• baseURL (string) – specify the github api endpoint if you work with GitHub Enterprise

• verbose (boolean) – if True, logs a message for each successful status push

• builders (list) – only send update for specified builders

StashStatusPush

class buildbot.reporters.stash.StashStatusPush

from buildbot.plugins import reporters

ss = reporters.StashStatusPush('https://stash.example.com:8080/',
'stash_username',
'secret_password')

c['services'].append(ss)

StashStatusPush publishes build status using Stash Build Integration REST API
(https://developer.atlassian.com/static/rest/stash/3.6.0/stash-build-integration-rest.html). The build status is pub-
lished to a specific commit SHA in Stash. It tracks the last build for each builderName for each commit built.

208 Chapter 2. Buildbot Manual

https://developer.github.com/v3/pulls/comments/
https://pypi.python.org/pypi/txrequests
https://github.com/settings/applications
https://developer.atlassian.com/static/rest/stash/3.6.0/stash-build-integration-rest.html

Buildbot Documentation, Release 0.9.7

Specifically, it follows the Updating build status for commits (https://developer.atlassian.com/stash/docs/latest/how-
tos/updating-build-status-for-commits.html) document.

It requires txrequests (https://pypi.python.org/pypi/txrequests) package to allow interaction with Stash REST API.

It uses HTTP Basic AUTH. As a result, we recommend you use https in your base_url rather than http.

class StashStatusPush(base_url, user, password, key=None, statusName=None, startDescription=None,
endDescription=None, verbose=False, builders=None)

Parameters

• base_url (string) – The base url of the Stash host, up to and optionally including the
first / of the path.

• user (string) – The Stash user to post as.

• password (string) – The Stash user’s password.

• string key (renderable) – Passed to Stash to differentiate between statuses. A
static string can be passed or Interpolate for dynamic substitution. The default key
is %(prop:buildername)s.

• string statusName (renderable) – The name that is displayed for this status. The
default name is nothing, so Stash will use the key parameter.

• string startDescription (renderable) – Custom start message (default:
‘Build started.’)

• string endDescription (renderable) – Custom end message (default: ‘Build
done.’)

• verbose (boolean) – If True, logs a message for each successful status push.

• builders (list) – Only send update for specified builders.

BitbucketStatusPush

class buildbot.reporters.bitbucket.BitbucketStatusPush

from buildbot.plugins import reporters
bs = reporters.BitbucketStatusPush('oauth_key', 'oauth_secret')
c['services'].append(bs)

BitbucketStatusPush publishes build status using Bitbucket Build Status API
(https://confluence.atlassian.com/bitbucket/buildstatus-resource-779295267.html). The build status is published
to a specific commit SHA in Bitbucket. It tracks the last build for each builderName for each commit built.

It requires txrequests (https://pypi.python.org/pypi/txrequests) package to allow interaction with the Bitbucket REST
and OAuth APIs.

It uses OAuth 2.x to authenticate with Bitbucket. To enable this, you need to go to your Bitbucket Settings -> OAuth
page. Click “Add consumer”. Give the new consumer a name, eg ‘buildbot’, and put in any URL as the callback
(this is needed for Oauth 2.x but is not used by this reporter, eg ‘http://localhost:8010/callback‘). Give the consumer
Repositories:Write access. After creating the consumer, you will then be able to see the OAuth key and secret.

class BitbucketStatusPush(oauth_key, oauth_secret, base_url=’https://api.bitbucket.org/2.0/repositories’,
oauth_url=’https://bitbucket.org/site/oauth2/access_token’,
builders=None)

Parameters

• oauth_key (string) – The OAuth consumer key

2.5. Configuration 209

https://developer.atlassian.com/stash/docs/latest/how-tos/updating-build-status-for-commits.html
https://pypi.python.org/pypi/txrequests
https://confluence.atlassian.com/bitbucket/buildstatus-resource-779295267.html
https://pypi.python.org/pypi/txrequests
http://localhost:8010/callback

Buildbot Documentation, Release 0.9.7

• oauth_secret (string) – The OAuth consumer secret

• base_url (string) – Bitbucket’s Build Status API URL

• oauth_url (string) – Bitbucket’s OAuth API URL

• builders (list) – only send update for specified builders

GitLabStatusPush

class buildbot.reporters.gitlab.GitLabStatusPush

from buildbot.plugins import reporters

gl = reporters.GitLabStatusPush('private-token', context='continuous-integration/
→˓buildbot', baseURL='https://git.yourcompany.com')
c['services'].append(gl)

GitLabStatusPush publishes build status using GitLab Commit Status API
(http://doc.gitlab.com/ce/api/commits.html#commit-status). The build status is published to a specific commit
SHA in GitLab.

It requires txrequests (https://pypi.python.org/pypi/txrequests) package to allow interaction with GitLab Commit Sta-
tus API.

It uses private token auth, and the token owner is required to have at least developer access to each repository. As a
result, we recommend you use https in your base_url rather than http.

class GitLabStatusPush(token, startDescription=None, endDescription=None, context=None,
baseURL=None, verbose=False)

Parameters

• token (string) – Private token of user permitted to update status for commits

• startDescription (string) – Description used when build starts

• endDescription (string) – Description used when build ends

• context (string) – Name of your build system, eg. continuous-integration/buildbot

• baseURL (string) – the base url of the GitLab host, up to and optionally including the
first / of the path. Do not include /api/

• verbose (string) – Be more verbose

HipchatStatusPush

class buildbot.reporters.hipchat.HipchatStatusPush

from buildbot.plugins import reporters

hs = reporters.HipchatStatusPush('private-token', endpoint='https://chat.yourcompany.
→˓com')
c['services'].append(hs)

HipchatStatusPush publishes a custom message using Hipchat API v2 (https://www.hipchat.com/docs/apiv2).
The message is published to a user and/or room in Hipchat,

It requires txrequests (https://pypi.python.org/pypi/txrequests) package to allow interaction with Hipchat API.

It uses API token auth, and the token owner is required to have at least message/notification access to each destination.

210 Chapter 2. Buildbot Manual

http://doc.gitlab.com/ce/api/commits.html#commit-status
https://pypi.python.org/pypi/txrequests
https://www.hipchat.com/docs/apiv2
https://pypi.python.org/pypi/txrequests

Buildbot Documentation, Release 0.9.7

HipchatStatusPush(auth_token, endpoint="https://api.hipchat.com",
builder_room_map=None, builder_user_map=None,
wantProperties=False, wantSteps=False, wantPreviousBuild=False, wantLogs=False)

Parameters

• auth_token (string) – Private API token with access to the “Send Message” and
“Send Notification” scopes.

• endpoint (string) – (optional) URL of your Hipchat server. Defaults to https://api.
hipchat.com

• builder_room_map (dictionary) – (optional) If specified, will forward events about
a builder (based on name) to the corresponding room ID.

• builder_user_map (dictionary) – (optional) If specified, will forward events about
a builder (based on name) to the corresponding user ID.

• wantProperties (boolean) – (optional) include ‘properties’ in the build dictionary

• wantSteps (boolean) – (optional) include ‘steps’ in the build dictionary

• wantLogs (boolean) – (optional) include ‘logs’ in the steps dictionaries. This needs
wantSteps=True. This dumps the full content of logs.

• wantPreviousBuild (boolean) – (optional) include ‘prev_build’ in the build dictio-
nary

Note: No message will be sent if the message is empty or there is no destination found.

Note: If a builder name appears in both the room and user map, the same message will be sent to both destinations.

Json object spec

The default json object contains the minimal required parameters to send a message to Hipchat.

{
"message": "Buildbot started/finished build MyBuilderName (with result success)

→˓here: http://mybuildbot.com/#/builders/23",
"id_or_email": "12"

}

If you require different parameters, the Hipchat reporter utilizes the template design pattern and will call
getRecipientList getMessage getExtraParams before sending a message. This allows you to easily
override the default implementation for those methods. All of those methods can be deferred.

Method signatures:

getRecipientList(self, build, event_name)

Parameters

• build – A Build object

• event_name (string) – the name of the event trigger for this invocation. either ‘new’
or ‘finished’

Returns Deferred

2.5. Configuration 211

https://api.hipchat.com
https://api.hipchat.com

Buildbot Documentation, Release 0.9.7

The deferred should return a dictionary containing the key(s) ‘id_or_email’ for a private user message and/or
‘room_id_or_name’ for room notifications.

getMessage(self, build, event_name)

Parameters

• build – A Build object

• event_name (string) – the name of the event trigger for this invocation. either ‘new’
or ‘finished’

Returns Deferred

The deferred should return a string to send to Hipchat.

getExtraParams(self, build, event_name)

Parameters

• build – A Build object

• event_name (string) – the name of the event trigger for this invocation. either ‘new’
or ‘finished’

Returns Deferred

The deferred should return a dictionary containing any extra parameters you wish to include in your JSON POST
request that the Hipchat API can consume.

Here’s a complete example:

class MyHipchatStatusPush(HipChatStatusPush):
name = "MyHipchatStatusPush"

send all messages to the same room
def getRecipientList(self, build, event_name):

return {
'room_id_or_name': 'AllBuildNotifications'

}

only send notifications on finished events
def getMessage(self, build, event_name):

event_messages = {
'finished': 'Build finished.'

}
return event_messages.get(event_name, '')

color notifications based on the build result
and alert room on build failure
def getExtraParams(self, build, event_name):

result = {}
if event_name == 'finished':

result['color'] = 'green' if build['results'] == 0 else 'red'
result['notify'] = (build['results'] != 0)

return result

GerritVerifyStatusPush

class buildbot.status.status_gerrit_verify_status.GerritVerifyStatusPush

212 Chapter 2. Buildbot Manual

Buildbot Documentation, Release 0.9.7

GerritVerifyStatusPush sends a verify status to Gerrit using the verify-status
(https://gerrit.googlesource.com/plugins/verify-status) Gerrit plugin.

It is an alternate method to GerritStatusPush, which uses the SSH API to send reviews.

The verify-status (https://gerrit.googlesource.com/plugins/verify-status) plugin allows several CI statuses to be sent
for the same change, and display them separately in the Gerrit UI.

Most parameters are renderables

GerritVerifyStatusPush(
baseURL, auth,
startDescription="Build started.", endDescription="Build done.",
verification_name=Interpolate("%(prop:buildername)s"), abstain=False, category=None, reporter=None,
verbose=False, **kwargs)

Parameters

• baseURL (string) – Gerrit HTTP base URL

• auth (string) – a requests authentication configuration. if Gerrit is configured
with BasicAuth, then it shall be ('login', 'password') if Gerrit is configured
with DigestAuth, then it shall be requests.auth.HTTPDigestAuth('login',
'password') from the requests module.

• string startDescription (renderable) – the comment sent when the build is
starting.

• string endDescription (renderable) – the comment sent when the build is fin-
ishing.

• string verification_name (renderable) – the name of the job displayed in the
Gerrit UI.

• boolean abstain (renderable) – whether this results should be counted as voting.

• boolean category (renderable) – Category of the build.

• boolean reporter (renderable) – The user that verified this build

• verbose (boolean) – Whether to log every requests.

• builders (list) – only send update for specified builders

This reporter is integrated with GerritChangeSource, and will update changes detected by this change source.

This reporter can also send reports for changes triggered manually provided that there is a property in the build named
gerrit_changes, containing the list of changes that were tested. This property must be a list of dictionaries,
containing change_id and revision_id keys, as defined in the revision endpoints of the Gerrit documentation
(https://gerrit-review.googlesource.com/Documentation/rest-api-changes.html#revision-endpoints)

Web Server

Note: As of Buildbot 0.9.0, the built-in web server replaces the old WebStatus plugin.

Buildbot contains a built-in web server. This server is configured with the www configuration key, which specifies a
dictionary with the following keys:

port The TCP port on which to serve requests. Note that SSL is not supported. To host Buildbot with SSL, use an
HTTP proxy such as lighttpd, nginx, or Apache. If this is None, the default, then the master will not implement
a web server.

2.5. Configuration 213

https://gerrit.googlesource.com/plugins/verify-status
https://gerrit.googlesource.com/plugins/verify-status
https://gerrit-review.googlesource.com/Documentation/rest-api-changes.html#revision-endpoints

Buildbot Documentation, Release 0.9.7

json_cache_seconds The number of seconds into the future at which an HTTP API response should expire.

rest_minimum_version The minimum supported REST API version. Any versions less than this value will not
be available. This can be used to ensure that no clients are depending on API versions that will soon be removed
from Buildbot.

plugins This key gives a dictionary of additional UI plugins to load, along with configuration for those
plugins. These plugins must be separately installed in the Python environment, e.g., pip install
buildbot-waterfall-view. See UI plugins For example:

c['www'] = {
'plugins': {'waterfall_view': True}

}

debug If true, then debugging information will be output to the browser. This is best set to false (the default) on
production systems, to avoid the possibility of information leakage.

allowed_origins This gives a list of origins which are allowed to access the Buildbot API (including control
via JSONRPC 2.0). It implements cross-origin request sharing (CORS), allowing pages at origins other than
the Buildbot UI to use the API. Each origin is interpreted as filename match expression, with ? matching one
character and * matching anything. Thus ['*'] will match all origins, and ['https://*.buildbot.
net'] will match secure sites under buildbot.net. The Buildbot UI will operate correctly without this
parameter; it is only useful for allowing access from other web applications.

auth Authentication module to use for the web server. See Authentication plugins.

avatar_methods List of methods that can be used to get avatar pictures to use for the web server. By default,
buildbot uses Gravatar to get images associated with each users, if you want to disable this you can just specify
empty list:

c['www'] = {
'avatar_methods': []

}

For use of corporate pictures, you can use LdapUserInfo, which can also acts as an avatar provider. See Authen-
tication plugins.

logfileName Filename used for http access logs, relative to the master directory. If set to None or the empty
string, the content of the logs will land in the main twisted.log log file. (Default to http.log)

logRotateLength The amount of bytes after which the http.log file will be rotated. (Default to the same
value as for the twisted.log file, set in buildbot.tac)

maxRotatedFiles The amount of log files that will be kept when rotating (Default to the same value as for the
twisted.log file, set in buildbot.tac)

versions Custom component versions that you’d like to display on the About page. Buildbot will automatically
prepend the versions of Python, twisted and buildbot itself to the list.

versions should be a list of tuples. for example:

c['www'] = {
...
'versions': [

('master.cfg', '0.1'),
('OS', 'Ubuntu 14.04'),

]
}

The first element of a tuple stands for the name of the component, the second stands for the corresponding
version.

214 Chapter 2. Buildbot Manual

Buildbot Documentation, Release 0.9.7

custom_templates_dir This directory will be parsed for custom angularJS templates to replace the one of the
original website templates. if the directory string is relative, it will be joined to the master’s basedir. Either *.
jade files or *.html files can be used, and will be used to override views/<filename>.html templates
in the angularjs templateCache. Unlike with the regular nodejs based angularjs build system, Python only jade
interpreter is used to parse the jade templates. pip install pyjade is be required to use jade templates.
You can also override plugin’s directives, but they have to be in another directory.

replace the template whose source is in:
www/base/src/app/builders/build/build.tpl.jade
build.jade

replace the template whose source is in
www/console_view/src/module/view/builders-header/buildersheader.tpl.jade
console_view/buildersheader.html

Known differences between nodejs jade and pyjade:

• quotes in attributes are not quoted. https://github.com/syrusakbary/pyjade/issues/132 This means
you should use double quotes for attributes e.g: tr(ng-repeat="br in buildrequests |
orderBy:'-submitted_at'")

change_hook_dialects See Change Hooks.

cookie_expiration_time

This allows to define the timeout of the session cookie. Should be a datetime.timedelta
(https://docs.python.org/2/library/datetime.html#timedelta-objects). Default is one week.

import datetime
c['www'] = {

...
'cookie_expiration_time': datetime.timedelta(weeks=2)

}

Note: The buildbotURL configuration value gives the base URL that all masters will use to generate links. The
www configuration gives the settings for the webserver. In simple cases, the buildbotURL contains the hostname
and port of the master, e.g., http://master.example.com:8010/. In more complex cases, with multiple
masters, web proxies, or load balancers, the correspondence may be less obvious.

UI plugins

Waterfall View

Waterfall shows the whole buildbot activity in vertical time line. Builds are represented with boxes whose height vary
according to their duration. Builds are sorted by builders in the horizontal axes, which allows you to see how builders
are scheduled together.

pip install buildbot-waterfall-view

c['www'] = {
'plugins': {'waterfall_view': True}

}

2.5. Configuration 215

https://github.com/syrusakbary/pyjade/issues/132
https://docs.python.org/2/library/datetime.html#timedelta-objects

Buildbot Documentation, Release 0.9.7

Note: Waterfall is the emblematic view of Buildbot Eight. It allowed to see the whole Buildbot activity very quickly.
Waterfall however had big scalability issues, and larger installs had to disable the page in order to avoid tens of seconds
master hang because of a big waterfall page rendering. The whole Buildbot Eight internal status API has been tailored
in order to make Waterfall possible. This is not the case anymore with Buildbot Nine, which has a more generic
and scalable Data API and REST API. This is the reason why Waterfall does not display the steps details anymore.
However nothing is impossible. We could make a specific REST api available to generate all the data needed for
waterfall on the server. Please step-in if you want to help improve Waterfall view.

Console View

Console view shows the whole buildbot activity arranged by changes as discovered by Change Sources vertically and
builders horizontally. If a builder has no build in the current time range, it will not be displayed. If no change is
available for a build, then it will generate a fake change according to the got_revision property.

Console view will also group the builders by tags. When there are several tags defined per builders, it will first group
the builders by the tag that is defined for most builders. Then given those builders, it will group them again in another
tag cluster. In order to keep the UI usable, you have to keep your tags short!

pip install buildbot-console-view

c['www'] = {
'plugins': {'console_view': True}

}

Note: Nine’s Console View is the equivalent of Buildbot Eight’s Console and tgrid views. Unlike Waterfall, we think
it is now feature equivalent and even better, with its live update capabilities. Please submit an issue if you think there
is an issue displaying your data, with screen shots of what happen and suggestion on what to improve.

Authentication plugins

By default, Buildbot does not require people to authenticate in order to see the readonly data. In order to access control
features in the web UI, you will need to configure an authentication plugin.

Note: As of Buildbot 0.9.4, user session is managed via a JWT (https://en.wikipedia.org/wiki/JSON_Web_Token)
token, using HS256 (https://pyjwt.readthedocs.io/en/latest/algorithms.html) algorithm. The session secret is stored
in the database in the object_state table with name column being session_secret. Please make sure
appropriate access restriction is made to this database table.

Authentication plugins are implemented as classes, and passed as the auth parameter to www .

The available classes are described here:

class buildbot.www.auth.NoAuth
This class is the default authentication plugin, which disables authentication

class buildbot.www.auth.UserPasswordAuth(users)

Parameters users – list of ("user","password") tuples, or a dictionary of {"user":
"password", ..}

216 Chapter 2. Buildbot Manual

https://en.wikipedia.org/wiki/JSON_Web_Token
https://pyjwt.readthedocs.io/en/latest/algorithms.html

Buildbot Documentation, Release 0.9.7

Simple username/password authentication using a list of user/password tuples provided in the configuration file.

from buildbot.plugins import util
c['www'] = {

...
'auth': util.UserPasswordAuth({"homer": "doh!"}),

}

class buildbot.www.auth.HTPasswdAuth(passwdFile)

Parameters passwdFile – An .htpasswd file to read

This class implements simple username/password authentication against a standard .htpasswd file.

from buildbot.plugins import util
c['www'] = {

...
'auth': util.HTPasswdAuth("my_htpasswd"),

}

class buildbot.www.oauth2.GoogleAuth(clientId, clientSecret)

Parameters

• clientId – The client ID of your buildbot application

• clientSecret – The client secret of your buildbot application

This class implements an authentication with Google (https://developers.google.com/accounts/docs/OAuth2)
single sign-on. You can look at the Google (https://developers.google.com/accounts/docs/OAuth2) oauth2 doc-
umentation on how to register your Buildbot instance to the Google systems. The developer console will give
you the two parameters you have to give to GoogleAuth

Register your Buildbot instance with the BUILDBOT_URL/auth/login url as the allowed redirect URI.

Example:

from buildbot.plugins import util
c['www'] = {

...
'auth': util.GoogleAuth("clientid", "clientsecret"),

}

in order to use this module, you need to install the Python requests module

pip install requests

class buildbot.www.oauth2.GitHubAuth(clientId, clientSecret)

Parameters

• clientId – The client ID of your buildbot application

• clientSecret – The client secret of your buildbot application

• serverURL – The server URL if this is a GitHub Enterprise server.

This class implements an authentication with GitHub (http://developer.github.com/v3/oauth_authorizations/)
single sign-on. It functions almost identically to the GoogleAuth class.

Register your Buildbot instance with the BUILDBOT_URL/auth/login url as the allowed redirect URI.

2.5. Configuration 217

https://developers.google.com/accounts/docs/OAuth2
https://developers.google.com/accounts/docs/OAuth2
http://developer.github.com/v3/oauth_authorizations/

Buildbot Documentation, Release 0.9.7

The user’s email-address (for e.g. authorization) is set to the “primary” address set by the user in GitHub. When
using group-based authorization, the user’s groups are equal to the names of the GitHub organizations the user
is a member of.

Example:

from buildbot.plugins import util
c['www'] = {

...
'auth': util.GitHubAuth("clientid", "clientsecret"),

}

Example for Enterprise GitHub:

from buildbot.plugins import util
c['www'] = {

...
'auth': util.GitHubAuth("clientid", "clientsecret", "https://git.corp.

→˓mycompany.com"),
}

class buildbot.www.oauth2.GitLabAuth(instanceUri, clientId, clientSecret)

Parameters

• instanceUri – The URI of your GitLab instance

• clientId – The client ID of your buildbot application

• clientSecret – The client secret of your buildbot application

This class implements an authentication with GitLab (http://doc.gitlab.com/ce/integration/oauth_provider.html)
single sign-on. It functions almost identically to the GoogleAuth class.

Register your Buildbot instance with the BUILDBOT_URL/auth/login url as the allowed redirect URI.

Example:

from buildbot.plugins import util
c['www'] = {

...
'auth': util.GitLabAuth("https://gitlab.com", "clientid", "clientsecret"),

}

class buildbot.www.oauth2.BitbucketAuth(clientId, clientSecret)

Parameters

• clientId – The client ID of your buildbot application

• clientSecret – The client secret of your buildbot application

This class implements an authentication with Bitbucket (https://confluence.atlassian.com/bitbucket/oauth-on-
bitbucket-cloud-238027431.html) single sign-on. It functions almost identically to the GoogleAuth class.

Register your Buildbot instance with the BUILDBOT_URL/auth/login url as the allowed redirect URI.

Example:

from buildbot.plugins import util
c['www'] = {

...

218 Chapter 2. Buildbot Manual

http://doc.gitlab.com/ce/integration/oauth_provider.html
https://confluence.atlassian.com/bitbucket/oauth-on-bitbucket-cloud-238027431.html

Buildbot Documentation, Release 0.9.7

'auth': util.BitbucketAuth("clientid", "clientsecret"),
}

class buildbot.www.auth.RemoteUserAuth

Parameters

• header – header to use to get the username (defaults to REMOTE_USER)

• headerRegex – regular expression to get the username from header value (defaults to
"(?P<username>[^ @]+)@(?P<realm>[^ @]+)"). Note that your at least need
to specify a ?P<username> regular expression named group.

• userInfoProvider – user info provider; see User Information

If the Buildbot UI is served through a reverse proxy that supports HTTP-based authentication (like apache or
lighttpd), it’s possible to to tell Buildbot to trust the web server and get the username from th request headers.

Administrator must make sure that it’s impossible to get access to Buildbot using other way than through fron-
tend. Usually this means that Buildbot should listen for incoming connections only on localhost (or on some
firewall-protected port). The reverse proxy must require HTTP authentication to access Buildbot pages (using
any source for credentials, such as htpasswd, PAM, LDAP, Kerberos).

Example:

from buildbot.plugins import util
c['www'] = {

...
'auth': util.RemoteUserAuth(),

}

A corresponding Apache configuration example

<Location "/">
AuthType Kerberos
AuthName "Buildbot login via Kerberos"
KrbMethodNegotiate On
KrbMethodK5Passwd On
KrbAuthRealms <<YOUR CORP REALMS>>
KrbVerifyKDC off
KrbServiceName Any
Krb5KeyTab /etc/krb5/krb5.keytab
KrbSaveCredentials Off
require valid-user
Order allow,deny

Satisfy Any

#] SSO
RewriteEngine On
RewriteCond %{LA-U:REMOTE_USER} (.+)$
RewriteRule . - [E=RU:%1,NS]
RequestHeader set REMOTE_USER %{RU}e

</Location>

The advantage of this sort of authentication is that it is uses a proven and fast implementation for authentication.
The problem is that the only information that is passed to Buildbot is the username, and there is no way to pass
any other information like user email, user groups, etc. That information can be very useful to the mailstatus
plugin, or for authorization processes. See User Information for a mechanism to supply that information.

2.5. Configuration 219

Buildbot Documentation, Release 0.9.7

User Information

For authentication mechanisms which cannot provide complete information about a user, Buildbot needs another way
to get user data. This is useful both for authentication (to fetch more data about the logged-in user) and for avatars (to
fetch data about other users).

This extra information is provided by, appropriately enough, user info providers. These can be passed to
RemoteUserAuth and as an element of avatar_methods.

This can also be passed to oauth2 authentication plugins. In this case the username provided by oauth2 will be used,
and all other informations will be taken from ldap (Full Name, email, and groups):

Currently only one provider is available:

class buildbot.ldapuserinfo.LdapUserInfo(uri, bindUser, bindPw, accountBase, accountPattern,
groupBase=None, groupMemberPattern=None,
groupName=None, accountFullName, accoun-
tEmail, avatarPattern=None, avatarData=None,
accountExtraFields=None)

Parameters

• uri – uri of the ldap server

• bindUser – username of the ldap account that is used to get the infos for other users
(usually a “faceless” account)

• bindPw – password of the bindUser

• accountBase – the base dn (distinguished name)of the user database

• accountPattern – the pattern for searching in the account database. This must contain
the %(username)s string, which is replaced by the searched username

• accountFullName – the name of the field in account ldap database where the full user
name is to be found.

• accountEmail – the name of the field in account ldap database where the user email is
to be found.

• groupBase – the base dn of the groups database.

• groupMemberPattern – the pattern for searching in the group database. This must
contain the %(dn)s string, which is replaced by the searched username’s dn

• groupName – the name of the field in groups ldap database where the group name is to be
found.

• avatarPattern – the pattern for searching avatars from emails in the account database.
This must contain the %(email)s string, which is replaced by the searched email

• avatarData – the name of the field in groups ldap database where the avatar picture is to
be found. This field is supposed to contain the raw picture, format is automatically detected
from jpeg, png or git.

• accountExtraFields – extra fields to extracts for use with the authorization policies.

If one of the three optional groups parameters is supplied, then all of them become mandatory. If none is
supplied, the retrieved user info has an empty list of groups.

Example:

220 Chapter 2. Buildbot Manual

Buildbot Documentation, Release 0.9.7

from buildbot.plugins import util

this configuration works for MS Active Directory ldap implementation
we use it for user info, and avatars
userInfoProvider = util.LdapUserInfo(

uri='ldap://ldap.mycompany.com:3268',
bindUser='ldap_user',
bindPw='p4$$wd',
accountBase='dc=corp,dc=mycompany,dc=com',
groupBase='dc=corp,dc=mycompany,dc=com',
accountPattern='(&(objectClass=person)(sAMAccountName=%(username)s))',
accountFullName='displayName',
accountEmail='mail',
groupMemberPattern='(&(objectClass=group)(member=%(dn)s))',
groupName='cn',
avatarPattern='(&(objectClass=person)(mail=%(email)s))',
avatarData='thumbnailPhoto',

)
c['www'] = dict(port=PORT, allowed_origins=["*"],

url=c['buildbotURL'],
auth=util.RemoteUserAuth(userInfoProvider=userInfoProvider),
avatar_methods=[userInfoProvider,

util.AvatarGravatar()])

Note: In order to use this module, you need to install the python3-ldap module:

pip install python3-ldap

In the case of oauth2 authentications, you have to pass the userInfoProvider as keyword argument:

from buildbot.plugins import util
userInfoProvider = util.LdapUserInfo(...)
c['www'] = {

...
'auth': util.GoogleAuth("clientid", "clientsecret",

→˓userInfoProvider=userInfoProvider),
}

Reverse Proxy Configuration

It is usually better to put buildbot behind a reverse proxy in production.

• Provides automatic gzip compression

• Provides SSL support with a widely used implementation

• Provides support for http/2 or spdy for fast parallel REST api access from the browser

Reverse proxy however might be problematic for websocket, you have to configure it specifically to pass web socket
requests. Here is an nginx configuration that is known to work (nginx 1.6.2):

server {
Enable SSL and http2
listen 443 ssl http2 default_server;

server_name yourdomain.com;

2.5. Configuration 221

Buildbot Documentation, Release 0.9.7

root html;
index index.html index.htm;

ssl on;
ssl_certificate /etc/nginx/ssl/server.cer;
ssl_certificate_key /etc/nginx/ssl/server.key;

put a one day session timeout for websockets to stay longer
ssl_session_cache shared:SSL:1440m;
ssl_session_timeout 1440m;

please consult latest nginx documentation for current secure encryption
→˓settings

ssl_protocols ..
ssl_ciphers ..
ssl_prefer_server_ciphers on;
#

force https
add_header Strict-Transport-Security "max-age=31536000; includeSubdomains;";
spdy_headers_comp 5;

you could use / if you use domain based proxy instead of path based proxy
location /buildbot/ {

proxy_pass http://127.0.0.1:5000/;
}
location /buildbot/sse/ {

proxy buffering will prevent sse to work
proxy_buffering off;
proxy_pass http://127.0.0.1:5000/sse/;

}
required for websocket
location /buildbot/ws {

proxy_http_version 1.1;
proxy_set_header Upgrade $http_upgrade;
proxy_set_header Connection "upgrade";
proxy_pass http://127.0.0.1:5000/ws;
raise the proxy timeout for the websocket
proxy_read_timeout 6000s;

}
}

To run with Apache2, you’ll need mod_proxy_wstunnel (https://httpd.apache.org/docs/2.4/mod/mod_proxy_wstunnel.html)
in addition to mod_proxy_http (https://httpd.apache.org/docs/2.4/mod/mod_proxy_http.html). Serving HTTPS
(mod_ssl (https://httpd.apache.org/docs/2.4/mod/mod_ssl.html)) is advised to prevent issues with enterprise proxies
(see Server Sent Events), even if you don’t need the encryption itself.

Here is a configuration that is known to work (Apache 2.4.10 / Debian 8), directly at the top of the domain.

<VirtualHost *:443>
ServerName buildbot.example
ServerAdmin webmaster@buildbot.example

<Location /ws>
ProxyPass ws://127.0.0.1:8020/ws
ProxyPassReverse ws://127.0.0.1:8020/ws

</Location>

222 Chapter 2. Buildbot Manual

https://httpd.apache.org/docs/2.4/mod/mod_proxy_wstunnel.html
https://httpd.apache.org/docs/2.4/mod/mod_proxy_http.html
https://httpd.apache.org/docs/2.4/mod/mod_ssl.html

Buildbot Documentation, Release 0.9.7

ProxyPass /ws !
ProxyPass / http://127.0.0.1:8020/
ProxyPassReverse / http://127.0.0.1:8020/

SetEnvIf X-Url-Scheme https HTTPS=1
ProxyPreserveHost On

SSLEngine on
SSLCertificateFile /path/to/cert.pem
SSLCertificateKeyFile /path/to/cert.key

check Apache2 documentation for current safe SSL settings
This is actually the Debian 8 default at the time of this writing:
SSLProtocol all -SSLv3

</VirtualHost>

Authorization rules

The authorization framework in Buildbot is very generic and flexible. Drawback is that it is not very obvious for
newcomers. The ‘simple’ example will however allow you to easily start by implementing an admins-have-all-rights
setup.

Please carefully read the following documentation to understand how to setup authorization in Buildbot.

Authorization framework is tightly coupled to the REST API. Authorization framework only works for HTTP, not for
other means of interaction like IRC or try scheduler. It allows or denies access to the REST APIs according to rules.

• Roles is a label that you give to a user.

It is similar but different to the usual notion of group:

– A user can have several roles, and a role can be given to several users.

– Role is an application specific notion, while group is more organization specific notion.

– Groups are given by the auth plugin, e.g ldap, github, and are not always in the precise control of the
buildbot admins.

– Roles can be dynamically assigned, according to the context. For example, there is the owner role, which
can be given to a user for a build that he is at the origin, so that he can stop or rebuild only builds of his
own.

• Endpoint matchers associate role requirements to REST API endpoints. The default policy is allow in case no
matcher matches (see below why)

• Role matchers associate authenticated users to roles.

Authz Configuration

class buildbot.www.authz.Authz(allowRules=[], roleMatcher=[], strings-
Matcher=util.fnmatchStrMatcher)

2.5. Configuration 223

Buildbot Documentation, Release 0.9.7

Parameters

• allowRules – List of EndpointMatcherBase processed in order for each endpoint
grant request.

• roleMatcher – List of RoleMatchers

• stringsMatcher – Selects algorithm used to make strings comparison (used to
compare roles and builder names). can be util.fnmatchStrMatcher or util.
reStrMatcher from from buildbot.plugins import util

Authz needs to be configured in c['www']['authz']

Endpoint matchers

Endpoint matchers are responsible for creating rules to match REST endpoints, and requiring roles for them. Endpoint
matchers are processed in the order they are configured. The first rule matching an endpoint will prevent further rules
from being checked. To continue checking other rules when the result is deny, set defaultDeny=False. If no endpoint
matcher matches, then the access is granted.

One can implement the default deny policy by putting an AnyEndpointMatcher with nonexistent role in the end
of the list. Please note that this will deny all REST apis, and most of the UI do not implement proper access denied
message in case of such error.

The following sequence is implemented by each EndpointMatcher class.

• Check whether the requested endpoint is supported by this matcher

• Get necessary info from data api, and decides whether it matches.

• Look if the users has the required role.

Several endpoints matchers are currently implemented. If you need a very complex setup, you may need to implement
your own endpoint matchers. In this case, you can look at the source code for detailed examples on how to write
endpoint matchers.

class buildbot.www.authz.endpointmatchers.EndpointMatcherBase(role, default-
Deny=True)

Parameters

• role – The role which grants access to this endpoint. List of roles is not supported, but a
fnmatch expression can be provided to match several roles.

• defaultDeny – The role matcher algorithm will stop if this value is true, and if the
endpoint matched.

This is the base endpoint matcher. Its arguments are inherited by all the other endpoint matchers.

class buildbot.www.authz.endpointmatchers.AnyEndpointMatcher(role)

Parameters role – The role which grants access to any endpoint.

AnyEndpointMatcher grants all rights to people with given role (usually “admins”)

class buildbot.www.authz.endpointmatchers.AnyControlEndpointMatcher(role)

Parameters role – The role which grants access to any control endpoint.

AnyControlEndpointMatcher grants control rights to people with given role (usually “admins”) This endpoint
matcher is matches current and future control endpoints. You need to add this in the end of your configuration
to make sure it is future proof.

224 Chapter 2. Buildbot Manual

Buildbot Documentation, Release 0.9.7

class buildbot.www.authz.endpointmatchers.ForceBuildEndpointMatcher(builder,
role)

Parameters

• builder – name of the builder.

• role – The role needed to get access to such endpoints.

ForceBuildEndpointMatcher grants right to force builds.

class buildbot.www.authz.endpointmatchers.StopBuildEndpointMatcher(builder, role)

Parameters

• builder – name of the builder.

• role – The role needed to get access to such endpoints.

StopBuildEndpointMatcher grants rights to stop builds.

class buildbot.www.authz.endpointmatchers.RebuildBuildEndpointMatcher(builder,
role)

Parameters

• builder – name of the builder.

• role – The role needed to get access to such endpoints.

RebuildBuildEndpointMatcher grants rights to rebuild builds.

class buildbot.www.authz.endpointmatchers.EnableSchedulerEndpointMatcher(builder,
role)

Parameters

• builder – name of the builder.

• role – The role needed to get access to such endpoints.

EnableSchedulerEndpointMatcher grants rights to enable and disable schedulers via the UI.

Role matchers

Endpoint matchers are responsible for creating rules to match people and grant them roles. You can grant roles from
groups information provided by the Auth plugins, or if you prefer directly to people’s email.

class buildbot.www.authz.roles.RolesFromGroups(groupPrefix)

Parameters groupPrefix – prefix to remove from each group

RolesFromGroups grants roles from the groups of the user. If a user has group buildbot-admin, and
groupPrefix is buildbot-, then user will be granted the role ‘admin’

ex:

roleMatchers=[
util.RolesFromGroups(groupPrefix="buildbot-")

]

class buildbot.www.authz.roles.RolesFromEmails(roledict)

Parameters roledict – dictionary with key=role, and value=list of email strings

2.5. Configuration 225

Buildbot Documentation, Release 0.9.7

RolesFromEmails grants roles to users according to the hardcoded emails.

ex:

roleMatchers=[
util.RolesFromEmails(admins=["my@email.com"])

]

class buildbot.www.authz.roles.RolesFromOwner(roledict)

Parameters roledict – dictionary with key=role, and value=list of email strings

RolesFromOwner grants a given role when property owner matches the email of the user

ex:

roleMatchers=[
RolesFromOwner(role="owner")

]

class buildbot.www.authz.roles.RolesFromUsername(roles, usernames)

Parameters

• roles – roles to assign when the username matches.

• usernames – list of usernames that have the roles.

RolesFromUsername grants the given roles when the username property is within the list of usernames.

ex:

roleMatchers=[
RolesFromUsername(roles=["admins"], usernames=["root"]),
RolesFromUsername(roles=["developers", "integrators"], usernames=["Alice",

→˓"Bob"])
]

Example Configs

Simple config which allows admin people to control everything, but allow anonymous to look at build results:

from buildbot.plugins import *
authz = util.Authz(

allowRules=[
util.AnyControlEndpointMatcher(role="admins"),

],
roleMatchers=[
util.RolesFromEmails(admins=["my@email.com"])

]
)
auth=util.UserPasswordAuth({'my@email.com': 'mypass'})
c['www']['auth'] = auth
c['www']['authz'] = authz

More complex config with separation per branch:

from buildbot.plugins import *

authz = util.Authz(

226 Chapter 2. Buildbot Manual

Buildbot Documentation, Release 0.9.7

stringsMatcher=util.fnmatchStrMatcher, # simple matcher with '*' glob character
stringsMatcher = util.reStrMatcher, # if you prefer regular expressions
allowRules=[

admins can do anything,
defaultDeny=False: if user does not have the admin role, we continue

→˓parsing rules
util.AnyEndpointMatcher(role="admins", defaultDeny=False),

util.StopBuildEndpointMatcher(role="owner"),

*-try groups can start "try" builds
util.ForceBuildEndpointMatcher(builder="try", role="*-try"),
*-mergers groups can start "merge" builds
util.ForceBuildEndpointMatcher(builder="merge", role="*-mergers"),
*-releasers groups can start "release" builds
util.ForceBuildEndpointMatcher(builder="release", role="*-releasers"),
if future Buildbot implement new control, we are safe with this last rule
util.AnyControlEndpointMatcher(role="admins")

],
roleMatchers=[

RolesFromGroups(groupPrefix="buildbot-"),
RolesFromEmails(admins=["homer@springfieldplant.com"],

reaper-try=["007@mi6.uk"]),
role owner is granted when property owner matches the email of the user
RolesFromOwner(role="owner")

]
)
c['www']['authz'] = authz

Using GitHub authentication and allowing access to control endpoints for users in the “BuildBot” organization:

from buildbot.plugins import *
authz = util.Authz(

allowRules=[
util.AnyControlEndpointMatcher(role="BuildBot")

],
roleMatchers=[
util.RolesFromGroups()

]
)
auth=util.GitHubAuth('CLIENT_ID', 'CLIENT_SECRET')
c['www']['auth'] = auth
c['www']['authz'] = authz

Change Hooks

The /change_hook url is a magic URL which will accept HTTP requests and translate them into changes for
buildbot. Implementations (such as a trivial json-based endpoint and a GitHub implementation) can be found in mas-
ter/buildbot/www/hooks (https://github.com/buildbot/buildbot/blob/master/master/buildbot/www/hooks). The format
of the url is /change_hook/DIALECT where DIALECT is a package within the hooks directory. Change_hook is
disabled by default and each DIALECT has to be enabled separately, for security reasons

An example www configuration line which enables change_hook and two DIALECTS:

c['www'] = dict(
change_hook_dialects={

2.5. Configuration 227

https://github.com/buildbot/buildbot/blob/master/master/buildbot/www/hooks
https://github.com/buildbot/buildbot/blob/master/master/buildbot/www/hooks

Buildbot Documentation, Release 0.9.7

'base': True,
'somehook': {'option1':True,

'option2':False}}))

Within the www config dictionary arguments, the change_hook key enables/disables the module and
change_hook_dialects whitelists DIALECTs where the keys are the module names and the values are optional
arguments which will be passed to the hooks.

The master/contrib/post_build_request.py (https://github.com/buildbot/buildbot-contrib/blob/master/master/contrib/post_build_request.py)
script allows for the submission of an arbitrary change request. Run post_build_request.py --help for
more information. The base dialect must be enabled for this to work.

Change Hooks Auth

By default change hook URL is not protected. Some hooks implement their own authentication method. Other requires
the generic method to be secured.

To protect URL against unauthorized access you you may use change_hook_auth option.

Note: This method uses HTTP BasicAuth, it implies the use of SSL via Reverse Proxy Configuration in order to
be fully secured.

from twisted.cred import strcred
c['www'] = dict(...,

change_hook_auth=[strcred.makeChecker("file:changehook.passwd")]))

create a file changehook.passwd:

user:password

• change_hook_auth should be a list of ICredentialsChecker

See the details of available options in Twisted documentation (https://twistedmatrix.com/documents/current/core/howto/cred.html)

Mercurial hook

The Mercurial hook uses the base dialect:

c['www'] = dict(
...,
change_hook_dialects={'base': True},

)

Once this is configured on your buildmaster add the following hook on your server-side Mercurial repository’s hgrc:

[hooks]
changegroup.buildbot = python:/path/to/hgbuildbot.py:hook

You’ll find hgbuildbot.py, and its inline documentation, in the contrib directory of Buildbot’s repository.

228 Chapter 2. Buildbot Manual

https://github.com/buildbot/buildbot-contrib/blob/master/master/contrib/post_build_request.py
https://twistedmatrix.com/documents/current/core/howto/cred.html

Buildbot Documentation, Release 0.9.7

GitHub hook

Note: There is a standalone HTTP server available for receiving GitHub noti-
fications as well: master/contrib/github_buildbot.py (https://github.com/buildbot/buildbot-
contrib/blob/master/master/contrib/github_buildbot.py). This script may be useful in cases where you cannot
expose the WebStatus for public consumption.

The GitHub hook has the following parameters:

secret (default None) Secret token to use to validate payloads.

strict (default False) If the hook must be strict regarding valid payloads. If the value is False (default), the signa-
ture will only be checked if a secret is specified and a signature was supplied with the payload. If the value is
True, a secret must be provided, and payloads without signature will be ignored.

codebase (default None) The codebase value to include with created changes. If the value is a function (or any
other callable), it will be called with the GitHub event payload as argument and the function must return the
codebase value to use for the event.

class (default None) A class to be used for processing incoming payloads. If the value is None (default), the default
class – buildbot.status.web.hooks.github.GitHubEventHandler – will be used. The default
class handles ping, push and pull_request events only. If you’d like to handle other events (see Event Types &
Payloads (https://developer.github.com/v3/activity/events/types/) for more information), you’d need to subclass
GitHubEventHandler and add handler methods for the corresponding events. For example, if you’d like to
handle blah events, your code should look something like this:

from buildbot.status.web.hooks.github import GitHubEventHandler

class MyBlahHandler(GitHubEventHandler):

def handle_blah(self, payload):
Do some magic here
return [], 'git'

The simplest way to use GitHub hook is as follows:

c['www'] = dict(...,
change_hook_dialects={'github': { }})

Having added this line, you should add a webhook for your GitHub project (see Creating Webhooks page at GitHub
(https://developer.github.com/webhooks/creating/)). The parameters are:

Payload URL This URL should point to /change_hook/github relative to the root of the web status. For ex-
ample, if the base URL is http://builds.example.com/buildbot, then point GitHub to http:/
/builds.example.com/buildbot/change_hook/github. To specify a project associated to the
repository, append ?project=name to the URL.

Content Type Specify application/x-www-form-urlencoded or application/json.

Secret Any value. If you provide a non-empty value (recommended), make sure that your hook is configured to use
it:

c['www'] = dict(
...,
change_hook_dialects={

'github': {
'secret': 'MY-SECRET',

2.5. Configuration 229

https://github.com/buildbot/buildbot-contrib/blob/master/master/contrib/github_buildbot.py
https://developer.github.com/v3/activity/events/types/
https://developer.github.com/v3/activity/events/types/
https://developer.github.com/webhooks/creating/

Buildbot Documentation, Release 0.9.7

'strict': True
}

},
...))

Which events would you like to trigger this webhook? Leave the default – Just the push [tag] events –
other kind of events are not currently supported.

And then press the Add Webhook button.

Warning: The incoming HTTP requests for this hook are not authenticated by default. Anyone who can access
the web server can “fake” a request from GitHub, potentially causing the buildmaster to run arbitrary code.

To protect URL against unauthorized access you should use Change Hooks Auth option. Then change the the
Payload URL of your GitHub webhook to https://user:password@builds.example.com/bbot/
change_hook/github.

Patches are welcome to implement: https://developer.github.com/webhooks/securing/

Note: When using a ChangeFilter with a GitHub webhook ensure that your filter matches all desired requests as
fields such as repository and project may differ in different events.

BitBucket hook

The BitBucket hook is as simple as GitHub one and it takes no options.

c['www'] = dict(...,
change_hook_dialects={ 'bitbucket' : True }))

When this is setup you should add a POST service pointing to /change_hook/bitbucket relative to the root
of the web status. For example, it the grid URL is http://builds.example.com/bbot/grid, then point
BitBucket to http://builds.example.com/change_hook/bitbucket. To specify a project associated
to the repository, append ?project=name to the URL.

Note that there is a standalone HTTP server available for receiving BitBucket notifi-
cations, as well: master/contrib/bitbucket_buildbot.py (https://github.com/buildbot/buildbot-
contrib/blob/master/master/contrib/bitbucket_buildbot.py). This script may be useful in cases where you cannot
expose the WebStatus for public consumption.

Warning: As in the previous case, the incoming HTTP requests for this hook are not authenticated by default.
Anyone who can access the web status can “fake” a request from BitBucket, potentially causing the buildmaster to
run arbitrary code.

To protect URL against unauthorized access you should use Change Hooks Auth option. Then, create a BitBucket ser-
vice hook (see https://confluence.atlassian.com/display/BITBUCKET/POST+Service+Management) with a WebHook
URL like https://user:password@builds.example.com/bbot/change_hook/bitbucket.

Note that as before, not using change_hook_auth can expose you to security risks.

230 Chapter 2. Buildbot Manual

https://developer.github.com/webhooks/securing/
https://github.com/buildbot/buildbot-contrib/blob/master/master/contrib/bitbucket_buildbot.py
https://confluence.atlassian.com/display/BITBUCKET/POST+Service+Management

Buildbot Documentation, Release 0.9.7

Poller hook

The poller hook allows you to use GET or POST requests to trigger polling. One advantage of this is your buildbot
instance can poll at launch (using the pollAtLaunch flag) to get changes that happened while it was down, but then
you can still use a commit hook to get fast notification of new changes.

Suppose you have a poller configured like this:

c['change_source'] = SVNPoller(
repourl="https://amanda.svn.sourceforge.net/svnroot/amanda/amanda",
split_file=split_file_branches,
pollInterval=24*60*60,
pollAtLaunch=True)

And you configure your WebStatus to enable this hook:

c['www'] = dict(...,
change_hook_dialects={'poller': True}

)

Then you will be able to trigger a poll of the SVN repository by poking the /change_hook/poller URL from a
commit hook like this:

curl -s -F poller=https://amanda.svn.sourceforge.net/svnroot/amanda/amanda \
http://yourbuildbot/change_hook/poller

If no poller argument is provided then the hook will trigger polling of all polling change sources.

You can restrict which pollers the webhook has access to using the allowed option:

c['www'] = dict(...,
change_hook_dialects={'poller': {'allowed': ['https://amanda.svn.sourceforge.net/

→˓svnroot/amanda/amanda']}}
)

GitLab hook

c['www'] = dict(...,
change_hook_dialects={

'gitlab' : {
'secret': '...',

},
},

)

The GitLab hook has the following parameters:

secret (default None) Secret token to use to validate payloads.

When this is setup you should add a POST service pointing to /change_hook/gitlab relative to the root of the
web status. For example, it the grid URL is http://builds.example.com/bbot/grid, then point GitLab to
http://builds.example.com/change_hook/gitlab. The project and/or codebase can also be passed in
the URL by appending ?project=name or ?codebase=foo to the URL. These parameters will be passed along
to the scheduler.

2.5. Configuration 231

Buildbot Documentation, Release 0.9.7

Note: Your Git step must be configured with a git@ repourl, not a https: one, else the change from the webhook will
not trigger a build.

Warning: As in the previous case, the incoming HTTP requests for this hook are not authenticated by default.
Anyone who can access the web status can “fake” a request from your GitLab server, potentially causing the
buildmaster to run arbitrary code.

To protect URL against unauthorized access you should either

• set secret token in the configuration above, then set it in the GitLab service hook declaration, or

• use the Change Hooks Auth option. Then, create a GitLab service hook (see https://your.gitlab.
server/help/web_hooks) with a WebHook URL like https://user:password@builds.
example.com/bbot/change_hook/gitlab.

Note that as before, not using change_hook_auth can expose you to security risks.

Gitorious Hook

The Gitorious hook is as simple as GitHub one and it also takes no options.

c['www'] = dict(...,
change_hook_dialects={'gitorious': True}

)

When this is setup you should add a POST service pointing to /change_hook/gitorious relative to the root
of the web status. For example, it the grid URL is http://builds.example.com/bbot/grid, then point
Gitorious to http://builds.example.com/change_hook/gitorious.

Warning: As in the previous case, the incoming HTTP requests for this hook are not authenticated by default.
Anyone who can access the web status can “fake” a request from your Gitorious server, potentially causing the
buildmaster to run arbitrary code.

To protect URL against unauthorized access you should use Change Hooks Auth option. Then, create a Gi-
torious web hook with a WebHook URL like https://user:password@builds.example.com/bbot/
change_hook/gitorious.

Note that as before, not using change_hook_auth can expose you to security risks.

Note: Web hooks are only available for local Gitorious installations, since this feature is not offered as part of
Gitorious.org yet.

Custom Services

For advanced users or plugins writers, the ‘services’ key is available, and holds a list of buildbot.util.
service.BuildbotService. As this feature for advanced users, it is described in the developer section of
the manual.

This section will grow as soon as ready-to-use services are created.

232 Chapter 2. Buildbot Manual

Buildbot Documentation, Release 0.9.7

DbConfig

DbConfig is an utility for master.cfg to get easy to use key/value storage in the buildbot database

DbConfig can get and store any jsonable object to the db for use by other masters or separate ui plugins to edit them.

The design is voluntary simplistic, the focus is on the easy use rather than efficiency. A separate db connection is
created each time get() or set() is called.

Example:

from buildbot.plugins import util, worker
c = BuildmasterConfig = {}
c['db_url'] = 'mysql://user@pass:mysqlserver/buildbot'
dbConfig = util.DbConfig(BuildmasterConfig, basedir)
workers = dbConfig.get("workers")
c['workers'] = [

worker.Worker(worker['name'], worker['passwd'],
properties=worker.get('properties')),

for worker in workers
]

class DbConfig

__init__(BuildmasterConfig, basedir)

Parameters

• BuildmasterConfig – the BuildmasterConfig, where db_url is already configured

• basedir – basedir global variable of the master.cfg run environment. Sqlite urls are
relative to this dir.

get(name, default=MarkerClass)

Parameters

• name – the name of the config variable to retrieve

• default – In case the config variable has not been set yet, default is returned if defined,
else KeyError is raised.

set(name, value)

Parameters

• name – the name of the config variable to be set

• value – the value of the config variable to be set

Configurators

For advanced users or plugins writers, the ‘configurators’ key is available, and holds a list of buildbot.
interfaces.IConfigurator. Configurators will run after the master.cfg has been processed, and will modify
the config dictionary. Configurator implementers should make sure that they are interoperable with each other, which
means carefully modifying the config to avoid overriding a setting already made by the user or by another configurator.
Configurators are run (thus prioritized) in the order of the ‘configurators’ list.

2.5. Configuration 233

Buildbot Documentation, Release 0.9.7

JanitorConfigurator

Buildbot stores historical information in its database. In a large installation, these can quickly consume disk space, yet
in many cases developers never consult this historical information.

:bb:configurator::JanitorConfigurator creates a builder and Nightly scheduler which will regularly remove old in-
formation. At the moment it only supports cleaning of logs, but it will contain more features as we implement them.

from buildbot.plugins import util
from datetime import timedelta

configure a janitor which will delete all logs older than one month, and will run
→˓on sundays at noon
c['configurators'] = [util.JanitorConfigurator(

logHorizon=timedelta(weeks=4),
hour=12,
dayOfWeek=6)]

Parameters for JanitorConfigurator are:

logHorizon a timedelta object describing the minimum time for which the log data should be maintained

hour, dayOfWeek, ... Arguments given to the :bb:sched::Nightly scheduler which is backing the JanitorConfigura-
tor. Determines when the cleanup will be done. With this, you can configure it daily, weekly or even hourly if
you wish. You probably want to schedule it when Buildbot is less loaded.

Transition to “worker” terminology

Since version 0.9.0 of Buildbot “slave”-based terminology is deprecated in favor of “worker”-based terminology.

API change is done in backward compatible way, so old “slave”-containing classes, functions and attributes are still
available and can be used. Old API support will be removed in the future versions of Buildbot.

Rename of API introduced in beta versions of Buildbot 0.9.0 done without providing fallback. See release notes for
the list of breaking changes of private interfaces.

Old names fallback settings

Use of obsolete names will raise Python warnings with category buildbot.worker_transition.
DeprecatedWorkerAPIWarning. By default these warnings are printed in the application log. This behaviour
can be changed by setting appropriate Python warnings settings via Python’s warnings module:

import warnings
from buildbot.worker_transition import DeprecatedWorkerAPIWarning
Treat old-name usage as errors:
warnings.simplefilter("error", DeprecatedWorkerAPIWarning)

See Python’s warnings module documentation for complete list of available actions, in particular warnings can be
disabled using "ignore" action.

It’s recommended to configure warnings inside buildbot.tac, before using any other Buildbot classes.

234 Chapter 2. Buildbot Manual

Buildbot Documentation, Release 0.9.7

Changed API

In general “Slave” and “Buildslave” parts in identifiers and messages were replaced with “Worker”; “SlaveBuilder”
with “WorkerForBuilder”.

Below is the list of changed API (use of old names from this list will work). Note that some of these symbols are
not included in Buildbot’s public API. Compatibility is provided as a convenience to those using the private symbols
anyway.

Old name New name
buildbot.interfaces.IBuildSlave IWorker
buildbot.interfaces.NoSlaveError (private) left as is, but deprecated (it shouldn’t be used at all)
buildbot.interfaces.BuildSlaveTooOldError WorkerTooOldError
buildbot.interfaces.LatentBuildSlaveFailedToSubstantiate (private) LatentWorkerFailedToSubstantiate
buildbot.interfaces.ILatentBuildSlave ILatentWorker
buildbot.interfaces.ISlaveStatus (will be removed in 0.9.x) IWorkerStatus
buildbot.buildslave module with all contents buildbot.worker
buildbot.buildslave.AbstractBuildSlave buildbot.worker.AbstractWorker
buildbot.buildslave.AbstractBuildSlave.slavename (private) buildbot.worker.AbstractWorker.workername
buildbot.buildslave.AbstractLatentBuildSlave buildbot.worker.AbstractLatentWorker
buildbot.buildslave.BuildSlave buildbot.worker.Worker
buildbot.buildslave.ec2 buildbot.worker.ec2
buildbot.buildslave.ec2.EC2LatentBuildSlave buildbot.worker.ec2.EC2LatentWorker
buildbot.buildslave.libvirt buildbot.worker.libvirt
buildbot.buildslave.libvirt.LibVirtSlave buildbot.worker.libvirt.LibVirtWorker
buildbot.buildslave.openstack buildbot.worker.openstack
buildbot.buildslave.openstack.OpenStackLatentBuildSlave buildbot.worker.openstack.OpenStackLatentWorker
buildbot.config.MasterConfig.slaves workers
buildbot.config.BuilderConfig constructor keyword argument slavename was renamed to workername
buildbot.config.BuilderConfig constructor keyword argument slavenames was renamed to workernames
buildbot.config.BuilderConfig constructor keyword argument slavebuilddir was renamed to workerbuilddir
buildbot.config.BuilderConfig constructor keyword argument nextSlave was renamed to nextWorker
buildbot.config.BuilderConfig.slavenames workernames
buildbot.config.BuilderConfig.slavebuilddir workerbuilddir
buildbot.config.BuilderConfig.nextSlave nextWorker
buildbot.process.slavebuilder buildbot.process.workerforbuilder
buildbot.process.slavebuilder.AbstractSlaveBuilder buildbot.process.workerforbuilder.AbstractWorkerForBuilder
buildbot.process.slavebuilder.AbstractSlaveBuilder.slave buildbot.process.workerforbuilder.AbstractWorkerForBuilder.worker
buildbot.process.slavebuilder.SlaveBuilder buildbot.process.workerforbuilder.WorkerForBuilder
buildbot.process.slavebuilder.LatentSlaveBuilder buildbot.process.workerforbuilder.LatentWorkerForBuilder
buildbot.process.build.Build.getSlaveName getWorkerName
buildbot.process.build.Build.slavename workername
buildbot.process.builder.enforceChosenSlave enforceChosenWorker
buildbot.process.builder.Builder.canStartWithSlavebuilder canStartWithWorkerForBuilder
buildbot.process.builder.Builder.attaching_slaves attaching_workers
buildbot.process.builder.Builder.slaves workers
buildbot.process.builder.Builder.addLatentSlave addLatentWorker
buildbot.process.builder.Builder.getAvailableSlaves getAvailableWorkers
buildbot.schedulers.forcesched.BuildslaveChoiceParameter WorkerChoiceParameter
buildbot.process.buildstep.BuildStep.buildslave buildbot.process.buildstep.BuildStep.worker (also it was moved from class static attribute to instance attribute)
buildbot.process.buildstep.BuildStep.setBuildSlave buildbot.process.buildstep.BuildStep.setWorker
buildbot.process.buildstep.BuildStep.slaveVersion buildbot.process.buildstep.BuildStep.workerVersion

Continued on next page

2.6. Transition to “worker” terminology 235

Buildbot Documentation, Release 0.9.7

Table 2.2 – continued from previous page
Old name New name
buildbot.process.buildstep.BuildStep.slaveVersionIsOlderThan buildbot.process.buildstep.BuildStep.workerVersionIsOlderThan
buildbot.process.buildstep.BuildStep.checkSlaveHasCommand buildbot.process.buildstep.BuildStep.checkWorkerHasCommand
buildbot.process.buildstep.BuildStep.getSlaveName buildbot.process.buildstep.BuildStep.getWorkerName
buildbot.locks.SlaveLock buildbot.locks.WorkerLock
buildbot.locks.SlaveLock.maxCountForSlave buildbot.locks.WorkerLock.maxCountForWorker
buildbot.locks.SlaveLock constructor argument maxCountForSlave was renamed maxCountForWorker
buildbot.steps.slave buildbot.steps.worker
buildbot.steps.slave.SlaveBuildStep buildbot.steps.worker.WorkerBuildStep
buildbot.steps.slave.CompositeStepMixin.getFileContentFromSlave buildbot.steps.worker.CompositeStepMixin.getFileContentFromWorker
buildbot.steps.transfer.FileUpload.slavesrc workersrc
buildbot.steps.transfer.FileUpload constructor argument slavesrc was renamed to workersrc
buildbot.steps.transfer.DirectoryUpload.slavesrc workersrc
buildbot.steps.transfer.DirectoryUpload constructor argument slavesrc was renamed to workersrc
buildbot.steps.transfer.MultipleFileUpload.slavesrcs workersrcs
buildbot.steps.transfer.MultipleFileUpload constructor argument slavesrcs was renamed to workersrcs
buildbot.steps.transfer.FileDownload.slavedest workerdest
buildbot.steps.transfer.FileDownload constructor argument slavedest was renamed to workerdest
buildbot.steps.transfer.StringDownload.slavedest workerdest
buildbot.steps.transfer.StringDownload constructor argument slavedest was renamed to workerdest
buildbot.steps.transfer.JSONStringDownload.slavedest workerdest
buildbot.steps.transfer.JSONStringDownload constructor argument slavedest was renamed to workerdest
buildbot.steps.transfer.JSONPropertiesDownload.slavedest workerdest
buildbot.steps.transfer.JSONPropertiesDownload constructor argument slavedest was renamed to workerdest
buildbot.process.remotecommand.RemoteCommand.buildslave worker

Plugins

buildbot.buildslave entry point was renamed to buildbot.worker, new plugins should be updated ac-
cordingly.

Plugins that use old buildbot.buildslave entry point are still available in the configuration file in the same
way, as they were in versions prior 0.9.0:

from buildbot.plugins import buildslave # deprecated, use "worker" instead
w = buildslave.ThirdPartyWorker()

But also they available using new namespace inside configuration file, so its recommended to use buildbot.
plugins.worker name even if plugin uses old entry points:

from buildbot.plugins import worker
ThirdPartyWorker can be defined in using `buildbot.buildslave` entry
point, this still will work.
w = worker.ThirdPartyWorker()

Other changes:

• buildbot.plugins.util.BuildslaveChoiceParameter is deprecated in favor of
WorkerChoiceParameter.

• buildbot.plugins.util.enforceChosenSlave is deprecated in favor of
enforceChosenWorker.

• buildbot.plugins.util.SlaveLock is deprecated in favor of WorkerLock.

236 Chapter 2. Buildbot Manual

Buildbot Documentation, Release 0.9.7

BuildmasterConfig changes

• c['slaves'] was replaced with c['workers']. Use of c['slaves'] will work, but is considered
deprecated, and will be removed in the future versions of Buildbot.

• Configuration key c['slavePortnum'] is deprecated in favor of c['protocols']['pb']['port'].

Docker latent worker changes

In addition to class being renamed, environment variables that are set inside container SLAVENAME and SLAVEPASS
were renamed to WORKERNAME and WORKERPASS accordingly. Old environment variable are still available, but are
deprecated and will be removed in the future.

EC2 latent worker changes

Use of default values of keypair_name and security_name constructor arguments of buildbot.worker.
ec2.EC2LatentWorker is deprecated. Please specify them explicitly.

steps.slave.SetPropertiesFromEnv changes

In addition to buildbot.steps.slave module being renamed to buildbot.steps.worker, de-
fault source value for SetPropertiesFromEnv was changed from "SlaveEnvironment" to
"WorkerEnvironment".

Local worker changes

Working directory for local workers were changed from master-basedir/slaves/name to
master-basedir/workers/name.

Worker Manager changes

slave_config function argument was renamed to worker_config.

Properties

• slavename property is deprecated in favor of workername property. Render of deprecated property will
produce warning.

buildbot.worker.AbstractWorker (previously buildbot.buildslave.
AbstractBuildSlave) slavename property source were changed from BuildSlave to Worker
(deprecated)

AbstractWorker now sets workername property with source Worker which should be used.

Metrics

• buildbot.process.metrics.AttachedSlavesWatcher was renamed to buildbot.process.
metrics.AttachedWorkersWatcher.

2.6. Transition to “worker” terminology 237

Buildbot Documentation, Release 0.9.7

• buildbot.worker.manager.WorkerManager.name (previously buildbot.buildslave.
manager.BuildslaveManager.name) metric measurement class name changed from
BuildslaveManager to WorkerManager

• buildbot.worker.manager.WorkerManager.managed_services_name (previously
buildbot.buildslave.manager.BuildslaveManager.managed_services_name`)
metric measurement managed service name changed from ``buildslaves to
workers

Renamed events:

Old name New name
AbstractBuildSlave.attached_slaves AbstractWorker.attached_workers
BotMaster.attached_slaves BotMaster.attached_workers
BotMaster.slaveLost() BotMaster.workerLost()
BotMaster.getBuildersForSlave() BotMaster.getBuildersForWorker()
AttachedSlavesWatcher AttachedWorkersWatcher
attached_slaves attached_workers

Database

Schema changes:

Old name New name
buildslaves table workers
builds.buildslaveid (not ForeignKey) column workerid (now ForeignKey)
configured_buildslaves table configured_workers
configured_buildslaves.buildslaveid (ForeignKey)
column

workerid

connected_buildslaves table connected_workers
connected_buildslaves.buildslaveid (ForeignKey)
column

workerid

buildslaves_name index workers_name
configured_slaves_buildmasterid index configured_workers_buildmasterid
configured_slaves_slaves index configured_workers_workers
configured_slaves_identity index configured_workers_identity
connected_slaves_masterid index connected_workers_masterid
connected_slaves_slaves index connected_workers_workers
connected_slaves_identity index connected_workers_identity
builds_buildslaveid index builds_workerid

List of database-related changes in API (fallback for old API is provided):

Old name New name
buildbot.db.buildslaves workers
buildbot.db.buildslaves.
BuildslavesConnectorComponent

buildbot.db.workers.
WorkersConnectorComponent

buildbot.db.buildslaves.
BuildslavesConnectorComponent.
getBuildslaves (rewritten in
nine)

buildbot.db.workers.
WorkersConnectorComponent.
getWorkers

buildbot.db.connector.DBConnector.
buildslaves

buildbot.db.connector.
DBConnector.workers

238 Chapter 2. Buildbot Manual

Buildbot Documentation, Release 0.9.7

usePTY changes

usePTY default value has been changed from slave-config to None (use of slave-config will still work,
but discouraged).

buildbot-worker

buildbot-slave package has been renamed to buildbot-worker.

buildbot-worker has backward incompatible changes and requires buildmaster >= 0.9.0b8. buildbot-slave
from 0.8.x will work with both 0.8.x and 0.9.x versions of buildmaster, so there is no need to upgrade currently
deployed buildbot-slaves during switch from 0.8.x to 0.9.x.

Table 2.3: Master/worker compatibility table

master 0.8.x master 0.9.x
buildbot-slave yes yes
buildbot-worker no yes

buildbot-worker doesn’t support worker-side specification of usePTY (with --usepty command line switch
of buildbot-worker create-worker), you need to specify this option on master side.

getSlaveInfo remote command was renamed to getWorkerInfo in buildbot-worker.

Customization

For advanced users, Buildbot acts as a framework supporting a customized build application. For the most part, such
configurations consist of subclasses set up for use in a regular Buildbot configuration file.

This chapter describes some of the more common idioms in advanced Buildbot configurations.

At the moment, this chapter is an unordered set of suggestions:

• Programmatic Configuration Generation

• Collapse Request Functions

• Builder Priority Functions

• Build Priority Functions

• canStartBuild Functions

• Customizing SVNPoller

– PROJECT/BRANCHNAME/FILEPATH repositories

– BRANCHNAME/PROJECT/FILEPATH repositories

• Writing Change Sources

– Writing a Notification-based Change Source

– Writing a Change Poller

• Writing a New Latent Worker Implementation

• Custom Build Classes

2.7. Customization 239

Buildbot Documentation, Release 0.9.7

• Factory Workdir Functions

• Writing New BuildSteps

– Writing BuildStep Constructors

– Step Execution Process

– Running Commands

– Updating Status Strings

– About Logfiles

– Writing Log Files

– Reading Logfiles

– Adding LogObservers

– Using Properties

– Using Statistics

– BuildStep URLs

– Discovering files

• Writing Dashboards with Flask or Bottle

• A Somewhat Whimsical Example (or “It’s now customized, how do I deploy it?”)

– Inclusion in the master.cfg file

– Python file somewhere on the system

– Install this code into a standard Python library directory

– Distribute a Buildbot Plug-In

– Submit the code for inclusion in the Buildbot distribution

– Summary

If you’d like to clean it up, fork the project on GitHub and get started!

Programmatic Configuration Generation

Bearing in mind that master.cfg is a Python file, large configurations can be shortened considerably by judicious
use of Python loops. For example, the following will generate a builder for each of a range of supported versions of
Python:

pythons = ['python2.4', 'python2.5', 'python2.6', 'python2.7',
'python3.2', 'python3.3']

pytest_workers = ["worker%s" % n for n in range(10)]
for python in pythons:

f = util.BuildFactory()
f.addStep(steps.SVN(...))
f.addStep(steps.ShellCommand(command=[python, 'test.py']))
c['builders'].append(util.BuilderConfig(

name="test-%s" % python,
factory=f,
workernames=pytest_workers))

240 Chapter 2. Buildbot Manual

Buildbot Documentation, Release 0.9.7

Next step would be the loading of pythons list from a .yaml/.ini file.

Collapse Request Functions

The logic Buildbot uses to decide which build request can be merged can be customized by providing a Python function
(a callable) instead of True or False described in Collapsing Build Requests.

Arguments for the callable are:

master pointer to the master object, which can be used to make additional data api calls via mas-
ter.data.get

builder dictionary of type builder

req1 dictionary of type buildrequest

req2 dictionary of type buildrequest

Warning: The number of invocations of the callable is proportional to the square of the request queue length, so
a long-running callable may cause undesirable delays when the queue length grows.

It should return true if the requests can be merged, and False otherwise. For example:

@defer.inlineCallbacks
def collapseRequests(master, builder, req1, req2):

"any requests with the same branch can be merged"

get the buildsets for each buildrequest
selfBuildset , otherBuildset = yield defer.gatherResults([

master.data.get(('buildsets', req1['buildsetid'])),
master.data.get(('buildsets', req2['buildsetid']))
])

selfSourcestamps = selfBuildset['sourcestamps']
otherSourcestamps = otherBuildset['sourcestamps']

if len(selfSourcestamps) != len(otherSourcestamps):
defer.returnValue(False)

for selfSourcestamp, otherSourcestamp in zip(selfSourcestamps, otherSourcestamps):
if selfSourcestamp['branch'] != otherSourcestamp['branch']:

defer.returnValue(False)

defer.returnValue(True)

c['collapseRequests'] = collapseRequests

In many cases, the details of the sourcestamp and buildrequest are important.

In the following example, only buildrequest with the same “reason” are merged; thus developers forcing builds
for different reasons will see distinct builds.

Note the use of the buildrequest.BuildRequest.canBeCollapsed method to access the source stamp
compatibility algorithm.

@defer.inlineCallbacks
def collapseRequests(master, builder, req1, req2):

canBeCollapsed = yield buildrequest.BuildRequest.canBeCollapsed(master, req1,
→˓req2)

2.7. Customization 241

Buildbot Documentation, Release 0.9.7

if canBeCollapsed and req1.reason == req2.reason:
defer.returnValue(True)

else:
defer.returnValue(False)

c['collapseRequests'] = collapseRequests

Another common example is to prevent collapsing of requests coming from a Trigger step. Trigger step can
indeed be used in order to implement parallel testing of the same source.

Buildrequests will all have the same sourcestamp, but probably different properties, and shall not be collapsed.

Note: In most of the cases, just setting collapseRequests=False for triggered builders will do the trick.

In other cases, parent_buildid from buildset can be used:

@defer.inlineCallbacks
def collapseRequests(master, builder, req1, req2):

canBeCollapsed = yield buildrequest.BuildRequest.canBeCollapsed(master, req1,
→˓req2)

selfBuildset , otherBuildset = yield defer.gatherResults([
master.data.get(('buildsets', req1['buildsetid'])),
master.data.get(('buildsets', req2['buildsetid']))

])
if canBeCollapsed and selfBuildset['parent_buildid'] != None and otherBuildset[

→˓'parent_buildid'] != None:
defer.returnValue(True)

else:
defer.returnValue(False)

c['collapseRequests'] = collapseRequests

If it’s necessary to perform some extended operation to determine whether two requests can be merged, then the
collapseRequests callable may return its result via Deferred.

Warning: Again, the number of invocations of the callable is proportional to the square of the request queue
length, so a long-running callable may cause undesirable delays when the queue length grows.

For example:

@defer.inlineCallbacks
def collapseRequests(master, builder, req1, req2):

info1, info2 = yield defer.gatherResults([
getMergeInfo(req1),
getMergeInfo(req2),

])
defer.returnValue(info1 == info2)

c['collapseRequests'] = collapseRequests

Builder Priority Functions

The prioritizeBuilders configuration key specifies a function which is called with two arguments: a
BuildMaster and a list of Builder objects. It should return a list of the same Builder objects, in the de-

242 Chapter 2. Buildbot Manual

Buildbot Documentation, Release 0.9.7

sired order. It may also remove items from the list if builds should not be started on those builders. If necessary, this
function can return its results via a Deferred (it is called with maybeDeferred).

A simple prioritizeBuilders implementation might look like this:

def prioritizeBuilders(buildmaster, builders):
"""Prioritize builders. 'finalRelease' builds have the highest
priority, so they should be built before running tests, or
creating builds."""
builderPriorities = {

"finalRelease": 0,
"test": 1,
"build": 2,

}
builders.sort(key=lambda b: builderPriorities.get(b.name, 0))
return builders

c['prioritizeBuilders'] = prioritizeBuilders

Build Priority Functions

When a builder has multiple pending build requests, it uses a nextBuild function to decide which build it should
start first. This function is given two parameters: the Builder, and a list of BuildRequest objects representing
pending build requests.

A simple function to prioritize release builds over other builds might look like this:

def nextBuild(bldr, requests):
for r in requests:

if r.source.branch == 'release':
return r

return requests[0]

If some non-immediate result must be calculated, the nextBuild function can also return a Deferred:

def nextBuild(bldr, requests):
d = get_request_priorities(requests)
def pick(priorities):

if requests:
return sorted(zip(priorities, requests))[0][1]

d.addCallback(pick)
return d

The nextBuild function is passed as parameter to BuilderConfig:

... BuilderConfig(..., nextBuild=nextBuild, ...) ...

canStartBuild Functions

Sometimes, you cannot know in advance what workers to assign to a BuilderConfig. For example, you might
need to check for the existence of a file on a worker before running a build on it. It is possible to do that by setting the
canStartBuild callback.

Here is an example that checks if there is a vm property set for the build request. If it is set, it checks if a file named
after it exists in the /opt/vm folder. If the file does not exist on the given worker, refuse to run the build to force the
master to select another worker.

2.7. Customization 243

Buildbot Documentation, Release 0.9.7

@defer.inlineCallbacks
def canStartBuild(builder, wfb, request):

vm = request.properties.get('vm', builder.config.properties.get('vm'))
if vm:

args = {'file': os.path.join('/opt/vm', vm)}
cmd = RemoteCommand('stat', args, stdioLogName=None)
cmd.worker = wfb.worker
res = yield cmd.run(None, wfb.worker.conn, builder.name)
if res.rc != 0:

defer.returnValue(False)

defer.returnValue(True)

You can extend this example using any remote command described in the Master-Worker API.

Customizing SVNPoller

Each source file that is tracked by a Subversion repository has a fully-qualified SVN URL in the following
form: (REPOURL)(PROJECT-plus-BRANCH)(FILEPATH). When you create the SVNPoller, you give it
a repourl value that includes all of the REPOURL and possibly some portion of the PROJECT-plus-BRANCH
string. The SVNPoller is responsible for producing Changes that contain a branch name and a FILEPATH (which is
relative to the top of a checked-out tree). The details of how these strings are split up depend upon how your repository
names its branches.

PROJECT/BRANCHNAME/FILEPATH repositories

One common layout is to have all the various projects that share a repository get a single top-level directory each, with
branches, tags, and trunk subdirectories:

amanda/trunk
/branches/3_2

/3_3
/tags/3_2_1

/3_2_2
/3_3_0

To set up a SVNPoller that watches the Amanda trunk (and nothing else), we would use the following, using the
default split_file:

from buildbot.plugins import changes
c['change_source'] = changes.SVNPoller(

repourl="https://svn.amanda.sourceforge.net/svnroot/amanda/amanda/trunk")

In this case, every Change that our SVNPoller produces will have its branch attribute set to None, to indicate that
the Change is on the trunk. No other sub-projects or branches will be tracked.

If we want our ChangeSource to follow multiple branches, we have to do two things. First we have to
change our repourl= argument to watch more than just amanda/trunk. We will set it to amanda
so that we’ll see both the trunk and all the branches. Second, we have to tell SVNPoller how to split
the (PROJECT-plus-BRANCH)(FILEPATH) strings it gets from the repository out into (BRANCH) and
(FILEPATH).

We do the latter by providing a split_file function. This function is responsible for split-
ting something like branches/3_3/common-src/amanda.h into branch='branches/3_3' and

244 Chapter 2. Buildbot Manual

Buildbot Documentation, Release 0.9.7

filepath='common-src/amanda.h'. The function is always given a string that names a file relative to the
subdirectory pointed to by the SVNPoller‘s repourl= argument. It is expected to return a dictionary with at least
the path key. The splitter may optionally set branch, project and repository. For backwards compatibility
it may return a tuple of (branchname, path). It may also return None to indicate that the file is of no interest.

Note: The function should return branches/3_3 rather than just 3_3 because the SVN checkout step, will append
the branch name to the baseURL, which requires that we keep the branches component in there. Other VC schemes
use a different approach towards branches and may not require this artifact.

If your repository uses this same {PROJECT}/{BRANCH}/{FILEPATH} naming scheme, the following function
will work:

def split_file_branches(path):
pieces = path.split('/')
if len(pieces) > 1 and pieces[0] == 'trunk':

return (None, '/'.join(pieces[1:]))
elif len(pieces) > 2 and pieces[0] == 'branches':

return ('/'.join(pieces[0:2]),
'/'.join(pieces[2:]))

else:
return None

In fact, this is the definition of the provided split_file_branches function. So to have our Twisted-watching
SVNPoller follow multiple branches, we would use this:

from buildbot.plugins import changes, util
c['change_source'] = changes.SVNPoller("svn://svn.twistedmatrix.com/svn/Twisted",

split_file=util.svn.split_file_branches)

Changes for all sorts of branches (with names like "branches/1.5.x", and None to indicate the trunk) will be
delivered to the Schedulers. Each Scheduler is then free to use or ignore each branch as it sees fit.

If you have multiple projects in the same repository your split function can attach a project name to the Change to help
the Scheduler filter out unwanted changes:

from buildbot.plugins import util
def split_file_projects_branches(path):

if not "/" in path:
return None

project, path = path.split("/", 1)
f = util.svn.split_file_branches(path)
if f:

info = dict(project=project, path=f[1])
if f[0]:

info['branch'] = f[0]
return info

return f

Again, this is provided by default. To use it you would do this:

from buildbot.plugins import changes, util
c['change_source'] = changes.SVNPoller(

repourl="https://svn.amanda.sourceforge.net/svnroot/amanda/",
split_file=util.svn.split_file_projects_branches)

Note here that we are monitoring at the root of the repository, and that within that repository is a amanda subdirectory
which in turn has trunk and branches. It is that amanda subdirectory whose name becomes the project field

2.7. Customization 245

Buildbot Documentation, Release 0.9.7

of the Change.

BRANCHNAME/PROJECT/FILEPATH repositories

Another common way to organize a Subversion repository is to put the branch name at the top, and the projects
underneath. This is especially frequent when there are a number of related sub-projects that all get released in a group.

For example, Divmod.org hosts a project named Nevow as well as one named Quotient. In a checked-out Nevow
tree there is a directory named formless that contains a Python source file named webform.py. This repository is
accessible via webdav (and thus uses an http: scheme) through the divmod.org hostname. There are many branches in
this repository, and they use a ({BRANCHNAME})/({PROJECT}) naming policy.

The fully-qualified SVN URL for the trunk version of webform.py is http://divmod.org/svn/Divmod/
trunk/Nevow/formless/webform.py. The 1.5.x branch version of this file would have a URL of http:/
/divmod.org/svn/Divmod/branches/1.5.x/Nevow/formless/webform.py. The whole Nevow
trunk would be checked out with http://divmod.org/svn/Divmod/trunk/Nevow, while the Quotient
trunk would be checked out using http://divmod.org/svn/Divmod/trunk/Quotient.

Now suppose we want to have an SVNPoller that only cares about the Nevow trunk. This case looks just like the
PROJECT/BRANCH layout described earlier:

from buildbot.plugins import changes
c['change_source'] = changes.SVNPoller("http://divmod.org/svn/Divmod/trunk/Nevow")

But what happens when we want to track multiple Nevow branches? We have to point our repourl= high enough
to see all those branches, but we also don’t want to include Quotient changes (since we’re only building Nevow). To
accomplish this, we must rely upon the split_file function to help us tell the difference between files that belong
to Nevow and those that belong to Quotient, as well as figuring out which branch each one is on.

from buildbot.plugins import changes
c['change_source'] = changes.SVNPoller("http://divmod.org/svn/Divmod",

split_file=my_file_splitter)

The my_file_splitter function will be called with repository-relative pathnames like:

trunk/Nevow/formless/webform.py This is a Nevow file, on the trunk. We want the Change that includes
this to see a filename of formless/webform.py, and a branch of None

branches/1.5.x/Nevow/formless/webform.py This is a Nevow file, on a branch. We want to get
branch='branches/1.5.x' and filename='formless/webform.py'.

trunk/Quotient/setup.py This is a Quotient file, so we want to ignore it by having my_file_splitter
return None.

branches/1.5.x/Quotient/setup.py This is also a Quotient file, which should be ignored.

The following definition for my_file_splitter will do the job:

def my_file_splitter(path):
pieces = path.split('/')
if pieces[0] == 'trunk':

branch = None
pieces.pop(0) # remove 'trunk'

elif pieces[0] == 'branches':
pieces.pop(0) # remove 'branches'
grab branch name
branch = 'branches/' + pieces.pop(0)

else:
return None # something weird

246 Chapter 2. Buildbot Manual

Buildbot Documentation, Release 0.9.7

projectname = pieces.pop(0)
if projectname != 'Nevow':

return None # wrong project
return dict(branch=branch, path='/'.join(pieces))

If you later decide you want to get changes for Quotient as well you could replace the last 3 lines with simply:

return dict(project=projectname, branch=branch, path='/'.join(pieces))

Writing Change Sources

For some version-control systems, making Buildbot aware of new changes can be a challenge. If the pre-supplied
classes in Change Sources are not sufficient, then you will need to write your own.

There are three approaches, one of which is not even a change source. The first option is to write a change source that
exposes some service to which the version control system can “push” changes. This can be more complicated, since it
requires implementing a new service, but delivers changes to Buildbot immediately on commit.

The second option is often preferable to the first: implement a notification service in an external process (perhaps
one that is started directly by the version control system, or by an email server) and delivers changes to Buildbot via
PBChangeSource. This section does not describe this particular approach, since it requires no customization within
the buildmaster process.

The third option is to write a change source which polls for changes - repeatedly connecting to an external service to
check for new changes. This works well in many cases, but can produce a high load on the version control system if
polling is too frequent, and can take too long to notice changes if the polling is not frequent enough.

Writing a Notification-based Change Source

A custom change source must implement buildbot.interfaces.IChangeSource.

The easiest way to do this is to subclass buildbot.changes.base.ChangeSource, implementing the
describe method to describe the instance. ChangeSource is a Twisted service, so you will need to imple-
ment the startService and stopService methods to control the means by which your change source receives
notifications.

When the class does receive a change, it should call self.master.addChange(..) to submit it to the build-
master. This method shares the same parameters as master.db.changes.addChange, so consult the API doc-
umentation for that function for details on the available arguments.

You will probably also want to set compare_attrs to the list of object attributes which Buildbot will use to compare
one change source to another when reconfiguring. During reconfiguration, if the new change source is different from
the old, then the old will be stopped and the new started.

Writing a Change Poller

Polling is a very common means of seeking changes, so Buildbot supplies a utility parent class to make it eas-
ier. A poller should subclass buildbot.changes.base.PollingChangeSource, which is a subclass of
ChangeSource. This subclass implements the Service methods, and calls the poll method according to the
pollInterval and pollAtLaunch options. The poll method should return a Deferred to signal its comple-
tion.

Aside from the service methods, the other concerns in the previous section apply here, too.

2.7. Customization 247

Buildbot Documentation, Release 0.9.7

Writing a New Latent Worker Implementation

Writing a new latent worker should only require subclassing buildbot.worker.AbstractLatentWorker
and implementing start_instance and stop_instance.

def start_instance(self):
responsible for starting instance that will try to connect with this
master. Should return deferred. Problems should use an errback. The
callback value can be None, or can be an iterable of short strings to
include in the "substantiate success" status message, such as
identifying the instance that started.
raise NotImplementedError

def stop_instance(self, fast=False):
responsible for shutting down instance. Return a deferred. If `fast`,
we're trying to shut the master down, so callback as soon as is safe.
Callback value is ignored.
raise NotImplementedError

See buildbot.worker.ec2.EC2LatentWorker for an example.

Custom Build Classes

The standard BuildFactory object creates Build objects by default. These Builds will each execute a collection
of BuildSteps in a fixed sequence. Each step can affect the results of the build, but in general there is little
intelligence to tie the different steps together.

By setting the factory’s buildClass attribute to a different class, you can instantiate a different build class. This
might be useful, for example, to create a build class that dynamically determines which steps to run. The skeleton of
such a project would look like:

class DynamicBuild(Build):
override some methods
...

f = factory.BuildFactory()
f.buildClass = DynamicBuild
f.addStep(...)

Factory Workdir Functions

Note: While factory workdir function is still supported, it is better to just use the fact that workdir is a renderables
attribute of every steps. A Renderable has access to much more contextual information, and also can return a de-
ferred. So you could say build_factory.workdir = util.Interpolate("%(src:repository)s to
achieve similar goal.

It is sometimes helpful to have a build’s workdir determined at runtime based on the parameters of the build. To
accomplish this, set the workdir attribute of the build factory to a callable. That callable will be invoked with the
list of SourceStamp for the build, and should return the appropriate workdir. Note that the value must be returned
immediately - Deferreds are not supported.

This can be useful, for example, in scenarios with multiple repositories submitting changes to Buildbot. In this case
you likely will want to have a dedicated workdir per repository, since otherwise a sourcing step with mode = “update”

248 Chapter 2. Buildbot Manual

Buildbot Documentation, Release 0.9.7

will fail as a workdir with a working copy of repository A can’t be “updated” for changes from a repository B. Here is
an example how you can achieve workdir-per-repo:

def workdir(source_stamps):
return hashlib.md5(source_stamps[0].repository).hexdigest()[:8]

build_factory = factory.BuildFactory()
build_factory.workdir = workdir

build_factory.addStep(Git(mode="update"))
...
builders.append ({'name': 'mybuilder',

'workername': 'myworker',
'builddir': 'mybuilder',
'factory': build_factory})

The end result is a set of workdirs like

Repo1 => <worker-base>/mybuilder/a78890ba
Repo2 => <worker-base>/mybuilder/0823ba88

You could make the workdir function compute other paths, based on parts of the repo URL in the sourcestamp, or
lookup in a lookup table based on repo URL. As long as there is a permanent 1:1 mapping between repos and workdir,
this will work.

Writing New BuildSteps

Warning: Buildbot has transitioned to a new, simpler style for writing custom steps. See New-Style Build Steps
for details. This section documents new-style steps. Old-style steps are supported in Buildbot-0.9.0, but not in
later releases.

While it is a good idea to keep your build process self-contained in the source code tree, sometimes it is convenient to
put more intelligence into your Buildbot configuration. One way to do this is to write a custom BuildStep. Once
written, this Step can be used in the master.cfg file.

The best reason for writing a custom BuildStep is to better parse the results of the command being run. For
example, a BuildStep that knows about JUnit could look at the logfiles to determine which tests had been run, how
many passed and how many failed, and then report more detailed information than a simple rc==0 -based good/bad
decision.

Buildbot has acquired a large fleet of build steps, and sports a number of knobs and hooks to make steps easier to
write. This section may seem a bit overwhelming, but most custom steps will only need to apply one or two of the
techniques outlined here.

For complete documentation of the build step interfaces, see BuildSteps.

Writing BuildStep Constructors

Build steps act as their own factories, so their constructors are a bit more complex than necessary. The configuration
file instantiates a BuildStep object, but the step configuration must be re-used for multiple builds, so Buildbot needs
some way to create more steps.

Consider the use of a BuildStep in master.cfg:

2.7. Customization 249

Buildbot Documentation, Release 0.9.7

f.addStep(MyStep(someopt="stuff", anotheropt=1))

This creates a single instance of class MyStep. However, Buildbot needs a new object each time the step is executed.
An instance of BuildStep remembers how it was constructed, and can create copies of itself. When writing a
new step class, then, keep in mind are that you cannot do anything “interesting” in the constructor – limit yourself to
checking and storing arguments.

It is customary to call the parent class’s constructor with all otherwise-unspecified keyword arguments. Keep a
**kwargs argument on the end of your options, and pass that up to the parent class’s constructor.

The whole thing looks like this:

class Frobnify(LoggingBuildStep):
def __init__(self,

frob_what="frobee",
frob_how_many=None,
frob_how=None,
**kwargs):

check
if frob_how_many is None:

raise TypeError("Frobnify argument how_many is required")

override a parent option
kwargs['parentOpt'] = 'xyz'

call parent
LoggingBuildStep.__init__(self, **kwargs)

set Frobnify attributes
self.frob_what = frob_what
self.frob_how_many = how_many
self.frob_how = frob_how

class FastFrobnify(Frobnify):
def __init__(self,

speed=5,
**kwargs):

Frobnify.__init__(self, **kwargs)
self.speed = speed

Step Execution Process

A step’s execution occurs in its run method. When this method returns (more accurately, when the Deferred it returns
fires), the step is complete. The method’s result must be an integer, giving the result of the step. Any other output from
the step (logfiles, status strings, URLs, etc.) is the responsibility of the run method.

The ShellCommand class implements this run method, and in most cases steps subclassing ShellCommand
simply implement some of the subsidiary methods that its run method calls.

Running Commands

To spawn a command in the worker, create a RemoteCommand instance in your step’s run method and run it with
runCommand:

250 Chapter 2. Buildbot Manual

Buildbot Documentation, Release 0.9.7

cmd = RemoteCommand(args)
d = self.runCommand(cmd)

The CommandMixin class offers a simple interface to several common worker-side commands.

For the much more common task of running a shell command on the worker, use ShellMixin. This class provides
a method to handle the myriad constructor arguments related to shell commands, as well as a method to create new
RemoteCommand instances. This mixin is the recommended method of implementing custom shell-based steps. The
older pattern of subclassing ShellCommand is no longer recommended.

A simple example of a step using the shell mixin is:

class RunCleanup(buildstep.ShellMixin, buildstep.BuildStep):
def __init__(self, cleanupScript='./cleanup.sh', **kwargs):

self.cleanupScript = cleanupScript
kwargs = self.setupShellMixin(kwargs, prohibitArgs=['command'])
buildstep.BuildStep.__init__(self, **kwargs)

@defer.inlineCallbacks
def run(self):

cmd = yield self.makeRemoteShellCommand(
command=[self.cleanupScript])

yield self.runCommand(cmd)
if cmd.didFail():

cmd = yield self.makeRemoteShellCommand(
command=[self.cleanupScript, '--force'],
logEnviron=False)

yield self.runCommand(cmd)
defer.returnValue(cmd.results())

@defer.inlineCallbacks
def run(self):

cmd = RemoteCommand(args)
log = yield self.addLog('output')
cmd.useLog(log, closeWhenFinished=True)
yield self.runCommand(cmd)

Updating Status Strings

Each step can summarize its current status in a very short string. For example, a compile step might display the file
being compiled. This information can be helpful users eager to see their build finish.

Similarly, a build has a set of short strings collected from its steps summarizing the overall state of the build. Useful
information here might include the number of tests run, but probably not the results of a make clean step.

As a step runs, Buildbot calls its getCurrentSummary method as necessary to get the step’s current status. “As
necessary” is determined by calls to buildbot.process.buildstep.BuildStep.updateSummary . Your
step should call this method every time the status summary may have changed. Buildbot will take care of rate-limiting
summary updates.

When the step is complete, Buildbot calls its getResultSummary method to get a final summary of the step along
with a summary for the build.

2.7. Customization 251

Buildbot Documentation, Release 0.9.7

About Logfiles

Each BuildStep has a collection of log files. Each one has a short name, like stdio or warnings. Each log file contains
an arbitrary amount of text, usually the contents of some output file generated during a build or test step, or a record
of everything that was printed to stdout/stderr during the execution of some command.

Each can contain multiple channels, generally limited to three basic ones: stdout, stderr, and headers. For example,
when a shell command runs, it writes a few lines to the headers channel to indicate the exact argv strings being run,
which directory the command is being executed in, and the contents of the current environment variables. Then, as the
command runs, it adds a lot of stdout and stderr messages. When the command finishes, a final header line is
added with the exit code of the process.

Status display plugins can format these different channels in different ways. For example, the web page shows log
files as text/html, with header lines in blue text, stdout in black, and stderr in red. A different URL is available which
provides a text/plain format, in which stdout and stderr are collapsed together, and header lines are stripped completely.
This latter option makes it easy to save the results to a file and run grep or whatever against the output.

Writing Log Files

Most commonly, logfiles come from commands run on the worker. Internally, these are configured by supplying the
RemoteCommand instance with log files via the useLog method:

@defer.inlineCallbacks
def run(self):

...
log = yield self.addLog('stdio')
cmd.useLog(log, closeWhenFinished=True, 'stdio')
yield self.runCommand(cmd)

The name passed to useLog must match that configured in the command. In this case, stdio is the default.

If the log file was already added by another part of the step, it can be retrieved with getLog:

stdioLog = self.getLog('stdio')

Less frequently, some master-side processing produces a log file. If this log file is short and easily stored in memory,
this is as simple as a call to addCompleteLog:

@defer.inlineCallbacks
def run(self):

...
summary = u'\n'.join('%s: %s' % (k, count)

for (k, count) in self.lint_results.iteritems())
yield self.addCompleteLog('summary', summary)

Note that the log contents must be a unicode string.

Longer logfiles can be constructed line-by-line using the add methods of the log file:

@defer.inlineCallbacks
def run(self):

...
updates = yield self.addLog('updates')
while True:

...
yield updates.addStdout(some_update)

252 Chapter 2. Buildbot Manual

Buildbot Documentation, Release 0.9.7

Again, note that the log input must be a unicode string.

Finally, addHTMLLog is similar to addCompleteLog, but the resulting log will be tagged as containing HTML.
The web UI will display the contents of the log using the browser.

The logfiles= argument to ShellCommand and its subclasses creates new log files and fills them in realtime by
asking the worker to watch a actual file on disk. The worker will look for additions in the target file and report them
back to the BuildStep. These additions will be added to the log file by calling addStdout.

All log files can be used as the source of a LogObserver just like the normal stdio LogFile. In fact, it’s possible
for one LogObserver to observe a logfile created by another.

Reading Logfiles

For the most part, Buildbot tries to avoid loading the contents of a log file into memory as a single string. For large
log files on a busy master, this behavior can quickly consume a great deal of memory.

Instead, steps should implement a LogObserver to examine log files one chunk or line at a time.

For commands which only produce a small quantity of output, RemoteCommand will collect the command’s stdout
into its stdout attribute if given the collectStdout=True constructor argument.

Adding LogObservers

Most shell commands emit messages to stdout or stderr as they operate, especially if you ask them nicely with a option
–verbose flag of some sort. They may also write text to a log file while they run. Your BuildStep can watch this
output as it arrives, to keep track of how much progress the command has made or to process log output for later
summarization.

To accomplish this, you will need to attach a LogObserver to the log. This observer is given all text as it is emitted
from the command, and has the opportunity to parse that output incrementally.

There are a number of pre-built LogObserver classes that you can choose from (defined in buildbot.process.
buildstep, and of course you can subclass them to add further customization. The LogLineObserver class han-
dles the grunt work of buffering and scanning for end-of-line delimiters, allowing your parser to operate on complete
stdout/stderr lines.

For example, let’s take a look at the TrialTestCaseCounter, which is used by the Trial step to count test
cases as they are run. As Trial executes, it emits lines like the following:

buildbot.test.test_config.ConfigTest.testDebugPassword ... [OK]
buildbot.test.test_config.ConfigTest.testEmpty ... [OK]
buildbot.test.test_config.ConfigTest.testIRC ... [FAIL]
buildbot.test.test_config.ConfigTest.testLocks ... [OK]

When the tests are finished, trial emits a long line of ====== and then some lines which summarize the tests that
failed. We want to avoid parsing these trailing lines, because their format is less well-defined than the [OK] lines.

A simple version of the parser for this output looks like this. The full version is in mas-
ter/buildbot/steps/python_twisted.py (https://github.com/buildbot/buildbot/blob/master/master/buildbot/steps/python_twisted.py).

from buildbot.plugins import util

class TrialTestCaseCounter(util.LogLineObserver):
_line_re = re.compile(r'^([\w\.]+) \.\.\. \[([^\]]+)\]$')
numTests = 0
finished = False

2.7. Customization 253

https://github.com/buildbot/buildbot/blob/master/master/buildbot/steps/python_twisted.py
https://github.com/buildbot/buildbot/blob/master/master/buildbot/steps/python_twisted.py

Buildbot Documentation, Release 0.9.7

def outLineReceived(self, line):
if self.finished:

return
if line.startswith("=" * 40):

self.finished = True
return

m = self._line_re.search(line.strip())
if m:

testname, result = m.groups()
self.numTests += 1
self.step.setProgress('tests', self.numTests)

This parser only pays attention to stdout, since that’s where trial writes the progress lines. It has a mode flag named
finished to ignore everything after the ==== marker, and a scary-looking regular expression to match each line
while hopefully ignoring other messages that might get displayed as the test runs.

Each time it identifies a test has been completed, it increments its counter and delivers the new progress value to the
step with self.step.setProgress. This helps Buildbot to determine the ETA for the step.

To connect this parser into the Trial build step, Trial.__init__ ends with the following clause:

this counter will feed Progress along the 'test cases' metric
counter = TrialTestCaseCounter()
self.addLogObserver('stdio', counter)
self.progressMetrics += ('tests',)

This creates a TrialTestCaseCounter and tells the step that the counter wants to watch the stdio log. The
observer is automatically given a reference to the step in its step attribute.

Using Properties

In custom BuildSteps, you can get and set the build properties with the getProperty and setProperty
methods. Each takes a string for the name of the property, and returns or accepts an arbitrary JSON-able (lists, dicts,
strings, and numbers) object. For example:

class MakeTarball(ShellCommand):
def start(self):

if self.getProperty("os") == "win":
self.setCommand([...]) # windows-only command

else:
self.setCommand([...]) # equivalent for other systems

ShellCommand.start(self)

Remember that properties set in a step may not be available until the next step begins. In particular, any Property
or Interpolate instances for the current step are interpolated before the step starts, so they cannot use the value of
any properties determined in that step.

Using Statistics

Statistics can be generated for each step, and then summarized across all steps in a build. For example, a test step
might set its warnings statistic to the number of warnings observed. The build could then sum the warnings on
all steps to get a total number of warnings.

Statistics are set and retrieved with the setStatistic and getStatistic methods. The hasStatistic
method determines whether a statistic exists.

254 Chapter 2. Buildbot Manual

Buildbot Documentation, Release 0.9.7

The Build method getSummaryStatistic can be used to aggregate over all steps in a Build.

BuildStep URLs

Each BuildStep has a collection of links. Each has a name and a target URL. The web display displays clickable links
for each link, making them a useful way to point to extra information about a step. For example, a step that uploads a
build result to an external service might include a link to the uploaded file.

To set one of these links, the BuildStep should call the addURL method with the name of the link and the target
URL. Multiple URLs can be set. For example:

@defer.inlineCallbacks
def run(self):

... # create and upload report to coverage server
url = 'http://coverage.example.com/reports/%s' % reportname
yield self.addURL('coverage', url)

Discovering files

When implementing a BuildStep it may be necessary to know about files that are created during the build. There
are a few worker commands that can be used to find files on the worker and test for the existence (and type) of files
and directories.

The worker provides the following file-discovery related commands:

• stat calls os.stat for a file in the worker’s build directory. This can be used to check if a known file exists
and whether it is a regular file, directory or symbolic link.

• listdir calls os.listdir for a directory on the worker. It can be used to obtain a list of files that are present
in a directory on the worker.

• glob calls glob.glob on the worker, with a given shell-style pattern containing wildcards.

For example, we could use stat to check if a given path exists and contains *.pyc files. If the path does not exist
(or anything fails) we mark the step as failed; if the path exists but is not a directory, we mark the step as having
“warnings”.

from buildbot.plugins import steps, util
from buildbot.interfaces import WorkerTooOldError
import stat

class MyBuildStep(steps.BuildStep):

def __init__(self, dirname, **kwargs):
buildstep.BuildStep.__init__(self, **kwargs)
self.dirname = dirname

def start(self):
make sure the worker knows about stat
workerver = (self.workerVersion('stat'),

self.workerVersion('glob'))
if not all(workerver):

raise WorkerTooOldError('need stat and glob')

cmd = buildstep.RemoteCommand('stat', {'file': self.dirname})

d = self.runCommand(cmd)

2.7. Customization 255

Buildbot Documentation, Release 0.9.7

d.addCallback(lambda res: self.evaluateStat(cmd))
d.addErrback(self.failed)
return d

def evaluateStat(self, cmd):
if cmd.didFail():

self.step_status.setText(["File not found."])
self.finished(util.FAILURE)
return

s = cmd.updates["stat"][-1]
if not stat.S_ISDIR(s[stat.ST_MODE]):

self.step_status.setText(["'tis not a directory"])
self.finished(util.WARNINGS)
return

cmd = buildstep.RemoteCommand('glob', {'path': self.dirname + '/*.pyc'})

d = self.runCommand(cmd)
d.addCallback(lambda res: self.evaluateGlob(cmd))
d.addErrback(self.failed)
return d

def evaluateGlob(self, cmd):
if cmd.didFail():

self.step_status.setText(["Glob failed."])
self.finished(util.FAILURE)
return

files = cmd.updates["files"][-1]
if len(files):

self.step_status.setText(["Found pycs"]+files)
else:

self.step_status.setText(["No pycs found"])
self.finished(util.SUCCESS)

For more information on the available commands, see Master-Worker API.

Todo

Step Progress BuildStepFailed

Writing Dashboards with Flask (http://flask.pocoo.org/) or Bottle
(https://bottlepy.org/docs/dev/)

Buildbot Nine UI is written in Javascript. This allows it to be reactive and real time, but comes at a price of a
fair complexity. Sometimes, you need a dashboard displaying your build results in your own manner but learning
AngularJS for that is just too much.

There is a Buildbot plugin which allows to write a server side generated dashboard, and integrate it in the UI.

This needs buildbot and buildbot_www >= 0.9.5
pip install buildbot_wsgi_dashboards flask

• This plugin can use any WSGI compatible web framework, Flask (http://flask.pocoo.org/) is a very common
one, Bottle (https://bottlepy.org/docs/dev/) is another popular option.

256 Chapter 2. Buildbot Manual

http://flask.pocoo.org/
https://bottlepy.org/docs/dev/

Buildbot Documentation, Release 0.9.7

• The application needs to implement a /index.html route, which will render the html code representing the
dashboard.

• The application framework runs in a thread outside of Twisted. No need to worry about Twisted and asyn-
chronous code. You can use python-requests (http://docs.python-requests.org/en/master/) or any library from
the python ecosystem to access other servers.

• You could use HTTP in order to access Buildbot REST API, but you can also use the Data API, via the provided
synchronous wrapper.

buildbot_api.dataGet(path, filters=None, fields=None, order=None, limit=None, offset=None):
Parameters

– path (tuple) – A tuple of path elements representing the API path to fetch.
Numbers can be passed as strings or integers.

– filters – result spec filters
– fields – result spec fields
– order – result spec order
– limit – result spec limit
– offset – result spec offset

Raises InvalidPathError
Returns a resource or list, or None

This is a blocking wrapper to master.data.get as described in Data API. The available paths are
described in the REST API, as well as the nature of return values depending on the kind of data
that is fetched. Path can be either the REST path e.g. "builders/2/builds/4" or tuple
e.g. ("builders", 2, "builds", 4). The latter form being more convenient if some
path parts are coming from variables. The Data API and REST API are functionally equivalent
except:

–Data API does not have HTTP connection overhead.
–Data API does not enforce authorization rules.

buildbot_api.dataGet is accessible via the WSGI application object passed to
wsgi_dashboards plugin (as per the example).

• That html code output of the server runs inside AngularJS application.

– It will use the CSS of the AngularJS application (including the Bootstrap (http://getbootstrap.com/css/)
CSS base). You can use custom style-sheet with a standard style tag within your html. Custom CSS will
be shared with the whole Buildbot application once your dashboard is loaded. So you should make sure
your custom CSS rules only apply to your dashboard (e.g. by having a specific class for your dashboard’s
main div)

– It can use some of the AngularJS directives defined by Buildbot UI (currently only buildsummary is us-
able).

– It has full access to the application JS context.

Here is an example of code that you can use in your master.cfg to create a simple dashboard:

from __future__ import absolute_import
from __future__ import print_function

import os
import time

import requests
from flask import Flask
from flask import render_template

from buildbot.process.results import statusToString

2.7. Customization 257

http://docs.python-requests.org/en/master/
http://getbootstrap.com/css/

Buildbot Documentation, Release 0.9.7

mydashboardapp = Flask('test', root_path=os.path.dirname(__file__))
this allows to work on the template without having to restart Buildbot
mydashboardapp.config['TEMPLATES_AUTO_RELOAD'] = True

@mydashboardapp.route("/index.html")
def main():

This code fetches build data from the data api, and give it to the
template
builders = mydashboardapp.buildbot_api.dataGet("/builders")

builds = mydashboardapp.buildbot_api.dataGet("/builds", limit=20)

properties are actually not used in the template example, but this is
how you get more properties
for build in builds:

build['properties'] = mydashboardapp.buildbot_api.dataGet(
("builds", build['buildid'], "properties"))

build['results_text'] = statusToString(build['results'])

Example on how to use requests to get some info from other web servers
code_frequency_url = "https://api.github.com/repos/buildbot/buildbot/stats/code_

→˓frequency"
results = requests.get(code_frequency_url)
while results.status_code == 202:

while github calculates statistics, it returns code 202.
this is no problem, we just sleep in our thread..
time.sleep(500)
results = requests.get(code_frequency_url)

some post processing of the data from github
graph_data = []
for i, data in enumerate(results.json()):

graph_data.append(
dict(x=data[0], y=data[1])

)

mydashboard.html is a template inside the template directory
return render_template('mydashboard.html', builders=builders, builds=builds,

graph_data=graph_data)

Here we assume c['www']['plugins'] has already be created earlier.
Please see the web server documentation to understand how to configure
the other parts.
c['www']['plugins']['wsgi_dashboards'] = [# This is a list of dashboards, you can
→˓create several

{
'name': 'mydashboard', # as used in URLs
'caption': 'My Dashboard', # Title displayed in the UI'
'app': mydashboardapp,
priority of the dashboard in the left menu (lower is higher in the
menu)
'order': 5,
available icon list can be found at http://fontawesome.io/icons/
'icon': 'area-chart'

}

258 Chapter 2. Buildbot Manual

Buildbot Documentation, Release 0.9.7

]

Then you need a templates/mydashboard.html file near your master.cfg.

This template is a standard Jinja (http://jinja.pocoo.org/) template which is the default templating engine of Flask
(http://flask.pocoo.org/).

<div class="container mydashboard">
<style>
/* only modify th from this dashboard! */
.mydashboard table th {

font-size 24pt;
}
</style>
<!-- Create a table of builds organised by builders in columns -->
<table class="table">

<tr>
<!-- Generate the table header with name of builders -->
{% for builder in builders %}
<th>

{{builder.name}}
</th>
{% endfor %}

</tr>
{% for build in builds %}
<tr>

{% for builder in builders %}
<th>

<!-- If this build is from this builderid, then we render it in this
→˓cell -->

{% if build.builderid == builder.builderid %}
<!-- for representing a build, you can choose one of those three

→˓forms -->
<!-- 1) We use buildbot internal CSS styles display our builds,

→˓with links to the standard UI -->
<a class="badge-status badge results_{{build.results_text |

→˓upper}}" href="#/builders/{{build.builderid}}/builds/{{build.number}}">
{{build.number}}

<!-- 2) The buildsummary directive is very powerful and will

→˓display steps, sub-builds, logs, urls. -->
<buildsummary buildid="{{build.buildid}}" condensed="1"/>

<!-- 3) If you need something lighter, there is the build sticker
→˓directive -->

<buildsticker buildid="{{build.buildid}}"/>
<!-- Note that those two directives will make additional HTTP

→˓requests from the browser in order to fetch the necessary data they need to be
→˓rendered. -->

{% endif %}
</th>
{% endfor %}

</tr>
{% endfor %}

</table>
<!-- Example of line chart using Chart.js -->
<canvas id="myChart" width="400" height="400"></canvas>

<script>

2.7. Customization 259

http://jinja.pocoo.org/
http://flask.pocoo.org/

Buildbot Documentation, Release 0.9.7

// We use Chart.js for rendering a chart, we first have to download it from
→˓internet

// (will be cached by the browser)
$.getScript("https://cdnjs.cloudflare.com/ajax/libs/Chart.js/2.5.0/Chart.

→˓bundle.min.js",
// See http://www.chartjs.org/docs/ for more details
function createChart() {

var scatterChart = new Chart("myChart", {
type: 'line',
data: {

datasets: [{
label: 'Github statistics',
// Here the data from the python is passed to the javascript via

→˓tojson and safe jinja filters
// http://flask.pocoo.org/docs/0.12/templating/#standard-filters
data: {{graph_data | tojson |safe }}

}]
},
options: {

scales: {
xAxes: [{

type: 'linear',
position: 'bottom'

}]
}

}
});

});
</script>

</div>

A Somewhat Whimsical Example (or “It’s now customized, how do I deploy it?”)

Let’s say that we’ve got some snazzy new unit-test framework called Framboozle. It’s the hottest thing since sliced
bread. It slices, it dices, it runs unit tests like there’s no tomorrow. Plus if your unit tests fail, you can use its name for
a Web 2.1 startup company, make millions of dollars, and hire engineers to fix the bugs for you, while you spend your
afternoons lazily hang-gliding along a scenic pacific beach, blissfully unconcerned about the state of your tests.1

To run a Framboozle-enabled test suite, you just run the ‘framboozler’ command from the top of your source code
tree. The ‘framboozler’ command emits a bunch of stuff to stdout, but the most interesting bit is that it emits the
line “FNURRRGH!” every time it finishes running a test case You’d like to have a test-case counting LogObserver
that watches for these lines and counts them, because counting them will help the buildbot more accurately calculate
how long the build will take, and this will let you know exactly how long you can sneak out of the office for your
hang-gliding lessons without anyone noticing that you’re gone.

This will involve writing a new BuildStep (probably named “Framboozle”) which inherits from ShellCommand.
The BuildStep class definition itself will look something like this:

from buildbot.plugins import steps, util

class FNURRRGHCounter(util.LogLineObserver):
numTests = 0
def outLineReceived(self, line):

if "FNURRRGH!" in line:

1 framboozle.com is still available. Remember, I get 10% :).

260 Chapter 2. Buildbot Manual

Buildbot Documentation, Release 0.9.7

self.numTests += 1
self.step.setProgress('tests', self.numTests)

class Framboozle(steps.ShellCommand):
command = ["framboozler"]

def __init__(self, **kwargs):
steps.ShellCommand.__init__(self, **kwargs) # always upcall!
counter = FNURRRGHCounter()
self.addLogObserver('stdio', counter)
self.progressMetrics += ('tests',)

So that’s the code that we want to wind up using. How do we actually deploy it?

You have a number of different options:

• Inclusion in the master.cfg file

• Python file somewhere on the system

• Install this code into a standard Python library directory

• Distribute a Buildbot Plug-In

• Submit the code for inclusion in the Buildbot distribution

• Summary

Inclusion in the master.cfg file

The simplest technique is to simply put the step class definitions in your master.cfg file, somewhere before the
BuildFactory definition where you actually use it in a clause like:

f = BuildFactory()
f.addStep(SVN(repourl="stuff"))
f.addStep(Framboozle())

Remember that master.cfg is secretly just a Python program with one job: populating the
BuildmasterConfig dictionary. And Python programs are allowed to define as many classes as they like.
So you can define classes and use them in the same file, just as long as the class is defined before some other code
tries to use it.

This is easy, and it keeps the point of definition very close to the point of use, and whoever replaces you after that
unfortunate hang-gliding accident will appreciate being able to easily figure out what the heck this stupid “Framboo-
zle” step is doing anyways. The downside is that every time you reload the config file, the Framboozle class will get
redefined, which means that the buildmaster will think that you’ve reconfigured all the Builders that use it, even though
nothing changed. Bleh.

Python file somewhere on the system

Instead, we can put this code in a separate file, and import it into the master.cfg file just like we would the normal
buildsteps like ShellCommand and SVN .

Create a directory named ~/lib/python, put the step class definitions in ~/lib/python/framboozle.py,
and run your buildmaster using:

2.7. Customization 261

Buildbot Documentation, Release 0.9.7

PYTHONPATH=~/lib/python buildbot start MASTERDIR

or use the Makefile.buildbot to control the way buildbot start works. Or add something like this to
something like your ~/.bashrc or ~/.bash_profile or ~/.cshrc:

export PYTHONPATH=~/lib/python

Once we’ve done this, our master.cfg can look like:

from framboozle import Framboozle
f = BuildFactory()
f.addStep(SVN(repourl="stuff"))
f.addStep(Framboozle())

or:

import framboozle
f = BuildFactory()
f.addStep(SVN(repourl="stuff"))
f.addStep(framboozle.Framboozle())

(check out the Python docs for details about how import and from A import B work).

What we’ve done here is to tell Python that every time it handles an “import” statement for some named module, it
should look in our ~/lib/python/ for that module before it looks anywhere else. After our directories, it will try
in a bunch of standard directories too (including the one where buildbot is installed). By setting the PYTHONPATH
environment variable, you can add directories to the front of this search list.

Python knows that once it “import”s a file, it doesn’t need to re-import it again. This means that reconfiguring the
buildmaster (with buildbot reconfig, for example) won’t make it think the Framboozle class has changed
every time, so the Builders that use it will not be spuriously restarted. On the other hand, you either have to start your
buildmaster in a slightly weird way, or you have to modify your environment to set the PYTHONPATH variable.

Install this code into a standard Python library directory

Find out what your Python’s standard include path is by asking it:

80:warner@luther% python
Python 2.4.4c0 (#2, Oct 2 2006, 00:57:46)
[GCC 4.1.2 20060928 (prerelease) (Debian 4.1.1-15)] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> import sys
>>> import pprint
>>> pprint.pprint(sys.path)
['',
'/usr/lib/python24.zip',
'/usr/lib/python2.4',
'/usr/lib/python2.4/plat-linux2',
'/usr/lib/python2.4/lib-tk',
'/usr/lib/python2.4/lib-dynload',
'/usr/local/lib/python2.4/site-packages',
'/usr/lib/python2.4/site-packages',
'/usr/lib/python2.4/site-packages/Numeric',
'/var/lib/python-support/python2.4',
'/usr/lib/site-python']

262 Chapter 2. Buildbot Manual

Buildbot Documentation, Release 0.9.7

In this case, putting the code into /usr/local/lib/python2.4/site-packages/framboozle.pywould
work just fine. We can use the same master.cfg import framboozle statement as in Option 2. By putting it
in a standard include directory (instead of the decidedly non-standard ~/lib/python), we don’t even have to set
PYTHONPATH to anything special. The downside is that you probably have to be root to write to one of those standard
include directories.

Distribute a Buildbot Plug-In

First of all, you must prepare a Python package (if you do not know what that is, please check How to package Buildbot
plugins, where you can find a couple of pointers to tutorials).

When you have a package, you will have a special file called setup.py. This file needs to be updated to include a
pointer to your new step:

setup(
...
entry_points = {

...,
'buildbot.steps': [

'Framboozle = framboozle:Framboozle'
]

},
...

)

Where:

• buildbot.steps is the kind of plugin you offer (more information about possible kinds you can find in How
to package Buildbot plugins)

• framboozle:Framboozle consists of two parts: framboozle is the name of the Python module where
to look for Framboozle class, which implements the plugin

• Framboozle is the name of the plugin.

This will allow users of your plugin to use it just like any other Buildbot plugins:

from buildbot.plugins import steps

... steps.Framboozle ...

Now you can upload it to PyPI (http://pypi.python.org/) where other people can download it from and use in their build
systems. Once again, the information about how to prepare and upload a package to PyPI (http://pypi.python.org/) can
be found in tutorials listed in How to package Buildbot plugins.

Submit the code for inclusion in the Buildbot distribution

Make a fork of buildbot on http://github.com/buildbot/buildbot or post a patch in a bug at http://trac.buildbot.net/. In
either case, post a note about your patch to the mailing list, so others can provide feedback and, eventually, commit it.

When it’s committed to the master, the usage is the same as in the previous approach:

from buildbot.plugins import steps, util

...
f = util.BuildFactory()
f.addStep(steps.SVN(repourl="stuff"))

2.7. Customization 263

http://pypi.python.org/
http://pypi.python.org/
http://github.com/buildbot/buildbot
http://trac.buildbot.net/

Buildbot Documentation, Release 0.9.7

f.addStep(steps.Framboozle())
...

And then you don’t even have to install framboozle.py anywhere on your system, since it will ship with Buildbot.
You don’t have to be root, you don’t have to set PYTHONPATH. But you do have to make a good case for Framboozle
being worth going into the main distribution, you’ll probably have to provide docs and some unit test cases, you’ll
need to figure out what kind of beer the author likes (IPA’s and Stouts for Dustin), and then you’ll have to wait until
the next release. But in some environments, all this is easier than getting root on your buildmaster box, so the tradeoffs
may actually be worth it.

Summary

Putting the code in master.cfg (1) makes it available to that buildmaster instance. Putting it in a file in a personal library
directory (2) makes it available for any buildmasters you might be running. Putting it in a file in a system-wide shared
library directory (3) makes it available for any buildmasters that anyone on that system might be running. Getting it
into the buildbot’s upstream repository (4) makes it available for any buildmasters that anyone in the world might be
running. It’s all a matter of how widely you want to deploy that new class.

New-Style Build Steps

In Buildbot-0.9.0, many operations performed by BuildStep subclasses return a Deferred. As a result, custom build
steps which call these methods will need to be rewritten.

Buildbot-0.8.9 supports old-style steps natively, while new-style steps are emulated. Buildbot-0.9.0 supports new-style
steps natively, while old-style steps are emulated. Later versions of Buildbot will not support old-style steps at all. All
custom steps should be rewritten in the new style as soon as possible.

Buildbot distinguishes new-style from old-style steps by the presence of a run method. If this method is present, then
the step is a new-style step.

Summary of Changes

• New-style steps have a run method that is simpler to implement than the old start method.

• Many methods are now asynchronous (return Deferreds), as they perform operations on the database.

• Logs are now implemented by a completely different class. This class supports the same log-writing methods
(addStderr and so on), although they are now asynchronous. However, it does not support log-reading
methods such as getText. It was never advisable to handle logs as enormous strings. New-style steps should,
instead, use a LogObserver or (in Buildbot-0.9.0) fetch log lines bit by bit using the data API.

• buildbot.process.buildstep.LoggingBuildStep is deprecated and cannot be used in new-style
steps. Mix in buildbot.process.buildstep.ShellMixin instead.

• Step strings, derived by parameters like description, descriptionDone, and descriptionSuffix,
are no longer treated as lists. For backward compatibility, the parameters may still be given as lists, but will be
joined with spaces during execution (using join_list).

Backward Compatibility

Some hacks are in place to support old-style steps. These hacks are only activated when an old-style step is detected.
Support for old-style steps will be dropped soon after Buildbot-0.9.0 is released.

264 Chapter 2. Buildbot Manual

Buildbot Documentation, Release 0.9.7

• The Deferreds from all asynchronous methods invoked during step execution are gathered internally. The step is
not considered finished until all such Deferreds have fired, and is marked EXCEPTION if any fail. For logfiles,
this is accomplished by means of a synchronous wrapper class.

• Logfile data is available while the step is still in memory. This means that logs returned from step.getLog
have the expected methods getText, readlines and so on.

• ShellCommand subclasses implicitly gather all stdio output in memory and provide it to the
createSummary method.

Rewriting start

If your custom buildstep implements the start method, then rename that method to run and set it up to return
a Deferred, either explicitly or via inlineCallbacks. The value of the Deferred should be the result of the
step (one of the codes in buildbot.process.results), or a Twisted failure instance to complete the step as
EXCEPTION. The new run method should not call self.finished or self.failed, instead signalling the
same via Deferred.

For example, the following old-style start method

def start(self): ## old style
cmd = remotecommand.RemoteCommand('stat', {'file': self.file })
d = self.runCommand(cmd)
d.addCallback(lambda res: self.convertResult(cmd))
d.addErrback(self.failed)

Becomes

@defer.inlineCallbacks
def run(self): ## new style

cmd = remotecommand.RemoteCommand('stat', {'file': self.file })
yield self.runCommand(cmd)
defer.returnValue(self.convertResult(cmd))

Newly Asynchronous Methods

The following methods now return a Deferred:

• buildbot.process.buildstep.BuildStep.addLog

• log.addStdout

• log.addStderr

• log.addHeader

• log.finish (see “Log Objects”, below)

• buildbot.process.remotecommand.RemoteCommand.addStdout

• buildbot.process.remotecommand.RemoteCommand.addStderr

• buildbot.process.remotecommand.RemoteCommand.addHeader

• buildbot.process.remotecommand.RemoteCommand.addToLog

• buildbot.process.buildstep.BuildStep.addCompleteLog

• buildbot.process.buildstep.BuildStep.addHTMLLog

2.8. New-Style Build Steps 265

Buildbot Documentation, Release 0.9.7

• buildbot.process.buildstep.BuildStep.addURL

Any custom code in a new-style step that calls these methods must handle the resulting Deferred. In some cases, that
means that the calling method’s signature will change. For example

def summarize(self): ## old-style
for m in self.MESSAGES:

if counts[m]:
self.addCompleteLog(m, "".join(summaries[m]))

self.setProperty("count-%s" % m, counts[m], "counter")

Is a synchronous function, not returning a Deferred. However, when converted to a new-style test, it must handle
Deferreds from the methods it calls, so it must be asynchronous. Syntactically, inlineCallbacks makes the
change fairly simple:

@defer.inlineCallbacks
def summarize(self): ## new-style

for m in self.MESSAGES:
if counts[m]:

yield self.addCompleteLog(m, "".join(summaries[m]))
self.setProperty("count-%s" % m, counts[m], "counter")

However, this method’s callers must now handle the Deferred that it returns. All methods that can be overridden in
custom steps can return a Deferred.

Properties

Good news! The API for properties is the same synchronous API as was available in old-style steps. Properties are
handled synchronously during the build, and persisted to the database at completion of each step.

Log Objects

Old steps had two ways of interacting with logfiles, both of which have changed.

The first is writing to logs while a step is executing. When using addCompleteLog or addHTMLLog, this is
straightforward, except that in new-style steps these methods return a Deferred.

The second method is via buildbot.process.buildstep.BuildStep.addLog. In new-style steps, the
returned object (via Deferred) has the following methods to add log content:

• addStdout

• addStderr

• addHeader

• finish

All of these methods now return Deferreds. None of the old log-reading methods are available on this object:

• hasContents

• getText

• readLines

• getTextWithHeaders

• getChunks

266 Chapter 2. Buildbot Manual

Buildbot Documentation, Release 0.9.7

If your step uses such methods, consider using a LogObserver instead, or using the Data API to get the required
data.

The undocumented and unused subscribeConsumer method of logfiles has also been removed.

The subscribe method now takes a callable, rather than an instance, and does not support catchup. This method
was primarily used by LogObserver, the implementation of which has been modified accordingly. Any other uses
of the subscribe method should be refactored to use a LogObserver.

Status Strings

The self.step_status.setText and setText2 methods have been removed. Similarly, the _describe
and describe methods are not used in new-style steps. In fact, steps no longer set their status directly.

Instead, steps call buildbot.process.buildstep.BuildStep.updateSummary whenever the status
may have changed. This method calls getCurrentSummary or getResultSummary as appropriate and up-
date displays of the step’s status. Steps override the latter two methods to provide appropriate summaries.

Statistics

Support for statistics has been moved to the BuildStep and Build objects. Calls to self.step_status.
setStatistic should be rewritten as self.setStatistic.

Command-line Tool

This section describes command-line tools available after buildbot installation. Since version 0.8 the one-for-all
buildbot command-line tool was divided into two parts namely buildbot and buildslave, starting from
version 0.9 buildslave command was replaced with buildbot-worker command. The last one was sepa-
rated from main command-line tool to minimize dependencies required for running a worker while leaving all other
functions to buildbot tool.

Every command-line tool has a list of global options and a set of commands which have their own options. One can
run these tools in the following way:

buildbot [global options] command [command options]
buildbot-worker [global options] command [command options]

The buildbot command is used on the master, while buildbot-worker is used on the worker. Global options
are the same for both tools which perform the following actions:

--help Print general help about available commands and global options and exit. All
subsequent arguments are ignored.

--verbose Set verbose output.

--version Print current buildbot version and exit. All subsequent arguments are ignored.

You can get help on any command by specifying --help as a command option:

buildbot command --help

You can also use manual pages for buildbot and buildbot-worker for quick reference on command-line
options.

The remainder of this section describes each buildbot command. See cmdline for a full list.

2.9. Command-line Tool 267

Buildbot Documentation, Release 0.9.7

buildbot

The buildbot command-line tool can be used to start or stop a buildmaster or buildbot, and to interact with a running
buildmaster. Some of its subcommands are intended for buildmaster admins, while some are for developers who are
editing the code that the buildbot is monitoring.

Administrator Tools

The following buildbot sub-commands are intended for buildmaster administrators:

create-master

buildbot create-master -r {BASEDIR}

This creates a new directory and populates it with files that allow it to be used as a buildmaster’s base directory.

You will usually want to use the option -r option to create a relocatable buildbot.tac. This allows you to move
the master directory without editing this file.

upgrade-master

buildbot upgrade-master {BASEDIR}

This upgrades a previously created buildmaster’s base directory for a new version of buildbot master source code. This
will copy the web server static files, and potencially upgrade the db.

start

buildbot start [--nodaemon] {BASEDIR}

This starts a buildmaster which was already created in the given base directory. The daemon is launched in the
background, with events logged to a file named twistd.log.

The option –nodaemon option instructs Buildbot to skip daemonizing. The process will start in the foreground. It will
only return to the command-line when it is stopped.

restart

buildbot restart [--nodaemon] {BASEDIR}

Restart the buildmaster. This is equivalent to stop followed by start The option –nodaemon option has the same
meaning as for start.

stop

buildbot stop {BASEDIR}

268 Chapter 2. Buildbot Manual

Buildbot Documentation, Release 0.9.7

This terminates the daemon (either buildmaster or worker) running in the given directory. The --clean option
shuts down the buildmaster cleanly. With --no-wait option buildbot stop command will send buildmaster
shutdown signal and will immediately exit, not waiting for complete buildmaster shutdown.

sighup

buildbot sighup {BASEDIR}

This sends a SIGHUP to the buildmaster running in the given directory, which causes it to re-read its master.cfg
file.

checkconfig

buildbot checkconfig {BASEDIR|CONFIG_FILE}

This checks if the buildmaster configuration is well-formed and contains no deprecated or invalid elements. If no
arguments are used or the base directory is passed as the argument the config file specified in buildbot.tac is
checked. If the argument is the path to a config file then it will be checked without using the buildbot.tac file.

cleanupdb

buildbot cleanupdb {BASEDIR|CONFIG_FILE} [-q]

This command is frontend for various database maintainance jobs:

• optimiselogs: This optimization groups logs into bigger chunks to apply higher level of compression.

Developer Tools

These tools are provided for use by the developers who are working on the code that the buildbot is monitoring.

try

This lets a developer to ask the question What would happen if I committed this patch right
now?. It runs the unit test suite (across multiple build platforms) on the developer’s current code, allowing them
to make sure they will not break the tree when they finally commit their changes.

The buildbot try command is meant to be run from within a developer’s local tree, and starts by figuring out the
base revision of that tree (what revision was current the last time the tree was updated), and a patch that can be applied
to that revision of the tree to make it match the developer’s copy. This (revision, patch) pair is then sent to
the buildmaster, which runs a build with that SourceStamp. If you want, the tool will emit status messages as the
builds run, and will not terminate until the first failure has been detected (or the last success).

There is an alternate form which accepts a pre-made patch file (typically the output of a command like svn diff).
This --diff form does not require a local tree to run from. See try –diff concerning the --diff command option.

For this command to work, several pieces must be in place: the Try_Jobdir or :Try_Userpass, as well as some
client-side configuration.

2.9. Command-line Tool 269

Buildbot Documentation, Release 0.9.7

Locating the master

The try command needs to be told how to connect to the try scheduler, and must know which of the authentication
approaches described above is in use by the buildmaster. You specify the approach by using --connect=ssh or
--connect=pb (or try_connect = 'ssh' or try_connect = 'pb' in .buildbot/options).

For the PB approach, the command must be given a option –master argument (in the form HOST:PORT) that points
to TCP port that you picked in the Try_Userpass scheduler. It also takes a option –username and option –passwd
pair of arguments that match one of the entries in the buildmaster’s userpass list. These arguments can also be
provided as try_master, try_username, and try_password entries in the .buildbot/options file.

For the SSH approach, the command must be given option –host and option –username, to get to the buildmaster host.
It must also be given option –jobdir, which points to the inlet directory configured above. The jobdir can be relative to
the user’s home directory, but most of the time you will use an explicit path like ~buildbot/project/trydir.
These arguments can be provided in .buildbot/options as try_host, try_username, try_password,
and try_jobdir.

If you need to use something different from the default ssh command for connecting to the remote system, you can
use –ssh command line option or try_ssh in the configuration file.

The SSH approach also provides a option –buildbotbin argument to allow specification of the buildbot binary to run
on the buildmaster. This is useful in the case where buildbot is installed in a virtualenv on the buildmaster host, or
in other circumstances where the buildbot command is not on the path of the user given by option –username. The
option –buildbotbin argument can be provided in .buildbot/options as try_buildbotbin

The following command line arguments are deprecated, but retained for backward compatibility:

--tryhost is replaced by option –host

--trydir is replaced by option –jobdir

--master is replaced by option –masterstatus

Likewise, the following .buildbot/options file entries are deprecated, but retained for backward compatibility:

• try_dir is replaced by try_jobdir

• masterstatus is replaced by try_masterstatus

Waiting for results

If you provide the option –wait option (or try_wait = True in .buildbot/options), the buildbot try
command will wait until your changes have either been proven good or bad before exiting. Unless you use the
option –quiet option (or try_quiet=True), it will emit a progress message every 60 seconds until the builds have
completed.

The SSH connection method does not support waiting for results.

Choosing the Builders

A trial build is performed on multiple Builders at the same time, and the developer gets to choose which Builders are
used (limited to a set selected by the buildmaster admin with the TryScheduler‘s builderNames= argument).
The set you choose will depend upon what your goals are: if you are concerned about cross-platform compatibility,
you should use multiple Builders, one from each platform of interest. You might use just one builder if that platform
has libraries or other facilities that allow better test coverage than what you can accomplish on your own machine, or
faster test runs.

270 Chapter 2. Buildbot Manual

Buildbot Documentation, Release 0.9.7

The set of Builders to use can be specified with multiple option –builder arguments on the command line. It can also
be specified with a single try_builders option in .buildbot/options that uses a list of strings to specify all
the Builder names:

try_builders = ["full-OSX", "full-win32", "full-linux"]

If you are using the PB approach, you can get the names of the builders that are configured for the try scheduler using
the get-builder-names argument:

buildbot try --get-builder-names --connect=pb --master=... --username=... --passwd=...

Specifying the VC system

The try command also needs to know how to take the developer’s current tree and extract the (revision, patch)
source-stamp pair. Each VC system uses a different process, so you start by telling the try command which VC
system you are using, with an argument like option –vc=cvs or option –vc=git. This can also be provided as try_vc
in .buildbot/options.

The following names are recognized: bzr cvs darcs hg git mtn p4 svn

Finding the top of the tree

Some VC systems (notably CVS and SVN) track each directory more-or-less independently, which means the try
command needs to move up to the top of the project tree before it will be able to construct a proper full-tree patch.
To accomplish this, the try command will crawl up through the parent directories until it finds a marker file. The
default name for this marker file is .buildbot-top, so when you are using CVS or SVN you should touch .
buildbot-top from the top of your tree before running buildbot try. Alternatively, you can use a filename
like ChangeLog or README, since many projects put one of these files in their top-most directory (and nowhere
else). To set this filename, use --topfile=ChangeLog, or set it in the options file with try_topfile =
'ChangeLog'.

You can also manually set the top of the tree with --topdir=~/trees/mytree, or try_topdir = '~/
trees/mytree'. If you use try_topdir, in a .buildbot/options file, you will need a separate options
file for each tree you use, so it may be more convenient to use the try_topfile approach instead.

Other VC systems which work on full projects instead of individual directories (Darcs, Mercurial, Git, Monotone) do
not require try to know the top directory, so the option –try-topfile and option –try-topdir arguments will be ignored.

If the try command cannot find the top directory, it will abort with an error message.

The following command line arguments are deprecated, but retained for backward compatibility:

• --try-topdir is replaced by option –topdir

• --try-topfile is replaced by option –topfile

Determining the branch name

Some VC systems record the branch information in a way that try can locate it. For the others, if you are using
something other than the default branch, you will have to tell the buildbot which branch your tree is using. You can do
this with either the option –branch argument, or a try_branch entry in the .buildbot/options file.

2.9. Command-line Tool 271

Buildbot Documentation, Release 0.9.7

Determining the revision and patch

Each VC system has a separate approach for determining the tree’s base revision and computing a patch.

CVS try pretends that the tree is up to date. It converts the current time into a option -D time specification, uses
it as the base revision, and computes the diff between the upstream tree as of that point in time versus the
current contents. This works, more or less, but requires that the local clock be in reasonably good sync with the
repository.

SVN try does a svn status -u to find the latest repository revision number (emitted on the last line in the
Status against revision: NN message). It then performs an svn diff -rNN to find out how
your tree differs from the repository version, and sends the resulting patch to the buildmaster. If your tree is not
up to date, this will result in the try tree being created with the latest revision, then backwards patches applied
to bring it back to the version you actually checked out (plus your actual code changes), but this will still result
in the correct tree being used for the build.

bzr try does a bzr revision-info to find the base revision, then a bzr diff -r$base.. to obtain the
patch.

Mercurial hg parents --template '{node}\n' emits the full revision id (as opposed to the common 12-
char truncated) which is a SHA1 hash of the current revision’s contents. This is used as the base revision. hg
diff then provides the patch relative to that revision. For try to work, your working directory must only
have patches that are available from the same remotely-available repository that the build process’ source.
Mercurial will use.

Perforce try does a p4 changes -m1 ... to determine the latest changelist and implicitly assumes that the
local tree is synced to this revision. This is followed by a p4 diff -du to obtain the patch. A p4 patch
differs slightly from a normal diff. It contains full depot paths and must be converted to paths relative to the
branch top. To convert the following restriction is imposed. The p4base (see P4Source) is assumed to be
//depot

Darcs try does a darcs changes --context to find the list of all patches back to and including the last tag
that was made. This text file (plus the location of a repository that contains all these patches) is sufficient to
re-create the tree. Therefore the contents of this context file are the revision stamp for a Darcs-controlled
source tree. It then does a darcs diff -u to compute the patch relative to that revision.

Git git branch -v lists all the branches available in the local repository along with the revision ID it points to
and a short summary of the last commit. The line containing the currently checked out branch begins with
* (star and space) while all the others start with (two spaces). try scans for this line and extracts the
branch name and revision from it. Then it generates a diff against the base revision.

Todo

I’m not sure if this actually works the way it’s intended since the extracted base revision might not actually exist in the
upstream repository. Perhaps we need to add a –remote option to specify the remote tracking branch to generate a diff
against.

Monotone mtn automate get_base_revision_id emits the full revision id which is a SHA1 hash of the
current revision’s contents. This is used as the base revision. mtn diff then provides the patch relative to
that revision. For try to work, your working directory must only have patches that are available from the same
remotely-available repository that the build process’ source.Monotone will use.

patch information

You can provide the option –who=dev to designate who is running the try build. This will add the dev to the Reason
field on the try build’s status web page. You can also set try_who = dev in the .buildbot/options file. Note

272 Chapter 2. Buildbot Manual

Buildbot Documentation, Release 0.9.7

that option –who=dev will not work on version 0.8.3 or earlier masters.

Similarly, option –comment=COMMENT will specify the comment for the patch, which is also displayed in the patch
information. The corresponding config-file option is try_comment.

Sending properties

You can set properties to send with your change using either the option –property=key=value option, which sets a
single property, or the option –properties=key1=value1,key2=value2... option, which sets multiple comma-separated
properties. Either of these can be sepcified multiple times. Note that the option –properties option uses commas to
split on properties, so if your property value itself contains a comma, you’ll need to use the option –property option to
set it.

try –diff

Sometimes you might have a patch from someone else that you want to submit to the buildbot. For example, a user
may have created a patch to fix some specific bug and sent it to you by email. You’ve inspected the patch and suspect
that it might do the job (and have at least confirmed that it doesn’t do anything evil). Now you want to test it out.

One approach would be to check out a new local tree, apply the patch, run your local tests, then use buildbot try
to run the tests on other platforms. An alternate approach is to use the buildbot try --diff form to have the
buildbot test the patch without using a local tree.

This form takes a option –diff argument which points to a file that contains the patch you want to apply. By default
this patch will be applied to the TRUNK revision, but if you give the optional option –baserev argument, a tree of the
given revision will be used as a starting point instead of TRUNK.

You can also use buildbot try --diff=- to read the patch from stdin.

Each patch has a patchlevel associated with it. This indicates the number of slashes (and preceding pathnames)
that should be stripped before applying the diff. This exactly corresponds to the option -p or option –strip argument to
the patch utility. By default buildbot try --diff uses a patchlevel of 0, but you can override this with the
option -p argument.

When you use option –diff, you do not need to use any of the other options that relate to a local tree, specifically option
–vc, option –try-topfile, or option –try-topdir. These options will be ignored. Of course you must still specify how to
get to the buildmaster (with option –connect, option –tryhost, etc).

Other Tools

These tools are generally used by buildmaster administrators.

sendchange

This command is used to tell the buildmaster about source changes. It is intended to be used from within a commit
script, installed on the VC server. It requires that you have a PBChangeSource (PBChangeSource) running in
the buildmaster (by being set in c['change_source']).

buildbot sendchange --master {MASTERHOST}:{PORT} --auth {USER}:{PASS}
--who {USER} {FILENAMES..}

The option –auth option specifies the credentials to use to connect to the master, in the form user:pass. If the
password is omitted, then sendchange will prompt for it. If both are omitted, the old default (username “change” and

2.9. Command-line Tool 273

Buildbot Documentation, Release 0.9.7

password “changepw”) will be used. Note that this password is well-known, and should not be used on an internet-
accessible port.

The option –master and option –username arguments can also be given in the options file (see .buildbot config direc-
tory). There are other (optional) arguments which can influence the Change that gets submitted:

--branch (or option branch) This provides the (string) branch specifier. If omitted, it
defaults to None, indicating the default branch. All files included in this
Change must be on the same branch.

--category (or option category) This provides the (string) category specifier. If omitted,
it defaults to None, indicating no category. The category property can be
used by schedulers to filter what changes they listen to.

--project (or option project) This provides the (string) project to which this change
applies, and defaults to ‘’. The project can be used by schedulers to decide which
builders should respond to a particular change.

--repository (or option repository) This provides the repository from which this change
came, and defaults to ''.

--revision This provides a revision specifier, appropriate to the VC system in use.

--revision_file This provides a filename which will be opened and the contents used as the re-
vision specifier. This is specifically for Darcs, which uses the output of darcs
changes --context as a revision specifier. This context file can be a couple
of kilobytes long, spanning a couple lines per patch, and would be a hassle to
pass as a command-line argument.

--property This parameter is used to set a property on the Change generated by
sendchange. Properties are specified as a name:value pair, separated by
a colon. You may specify many properties by passing this parameter multiple
times.

--comments This provides the change comments as a single argument. You may want to use
option –logfile instead.

--logfile This instructs the tool to read the change comments from the given file. If you
use - as the filename, the tool will read the change comments from stdin.

--encoding Specifies the character encoding for all other parameters, defaulting to 'utf8'.

--vc Specifies which VC system the Change is coming from, one of: cvs, svn,
darcs, hg, bzr, git, mtn, or p4. Defaults to None.

user

Note that in order to use this command, you need to configure a CommandlineUserManager instance in your master.cfg
file, which is explained in Users Options.

This command allows you to manage users in buildbot’s database. No extra requirements are needed to use this
command, aside from the Buildmaster running. For details on how Buildbot manages users, see Users.

--master The user command can be run virtually anywhere provided a location
of the running buildmaster. The option –master argument is of the form
MASTERHOST:PORT.

--username PB connection authentication that should match the arguments to Command-
lineUserManager.

274 Chapter 2. Buildbot Manual

Buildbot Documentation, Release 0.9.7

--passwd PB connection authentication that should match the arguments to Command-
lineUserManager.

--op There are four supported values for the option –op argument: add, update,
remove, and get. Each are described in full in the following sections.

--bb_username Used with the option –op=update option, this sets the user’s username for web
authentication in the database. It requires option –bb_password to be set along
with it.

--bb_password Also used with the option –op=update option, this sets the password portion of
a user’s web authentication credentials into the database. The password is first
encrypted prior to storage for security reasons.

--ids When working with users, you need to be able to refer to them by unique iden-
tifiers to find particular users in the database. The option –ids option lets you
specify a comma separated list of these identifiers for use with the user com-
mand.

The option –ids option is used only when using option –op=remove or option
–op=get.

--info Users are known in buildbot as a collection of attributes tied together
by some unique identifier (see Users). These attributes are specified in
the form {TYPE}={VALUE} when using the option –info option. These
{TYPE}={VALUE} pairs are specified in a comma separated list, so for exam-
ple:

--info=svn=jdoe,git='John Doe <joe@example.com>'

The option –info option can be specified multiple times in the user command,
as each specified option will be interpreted as a new user. Note that option –info
is only used with option –op=add or with option –op=update, and whenever you
use option –op=update you need to specify the identifier of the user you want
to update. This is done by prepending the option –info arguments with {ID:}.
If we were to update 'jschmo' from the previous example, it would look like
this:

--info=jdoe:git='Joe Doe <joe@example.com>'

Note that option –master, option –username, option –passwd, and option –op are always required to issue the user
command.

The option –master, option –username, and option –passwd options can be specified in the option file with keywords
user_master, user_username, and user_passwd, respectively. If user_master is not specified, then
option –master from the options file will be used instead.

Below are examples of how each command should look. Whenever a user command is successful, results will be
shown to whoever issued the command.

For option –op=add:

buildbot user --master={MASTERHOST} --op=add \
--username={USER} --passwd={USERPW} \
--info={TYPE}={VALUE},...

For option –op=update:

2.9. Command-line Tool 275

Buildbot Documentation, Release 0.9.7

buildbot user --master={MASTERHOST} --op=update \
--username={USER} --passwd={USERPW} \
--info={ID}:{TYPE}={VALUE},...

For option –op=remove:

buildbot user --master={MASTERHOST} --op=remove \
--username={USER} --passwd={USERPW} \
--ids={ID1},{ID2},...

For option –op=get:

buildbot user --master={MASTERHOST} --op=get \
--username={USER} --passwd={USERPW} \
--ids={ID1},{ID2},...

A note on option –op=update: when updating the option –bb_username and option –bb_password, the option –info
doesn’t need to have additional {TYPE}={VALUE} pairs to update and can just take the {ID} portion.

.buildbot config directory

Many of the buildbot tools must be told how to contact the buildmaster that they interact with. This specification
can be provided as a command-line argument, but most of the time it will be easier to set them in an options file.
The buildbot command will look for a special directory named .buildbot, starting from the current directory
(where the command was run) and crawling upwards, eventually looking in the user’s home directory. It will look for
a file named options in this directory, and will evaluate it as a Python script, looking for certain names to be set.
You can just put simple name = 'value' pairs in this file to set the options.

For a description of the names used in this file, please see the documentation for the individual buildbot sub-
commands. The following is a brief sample of what this file’s contents could be.

for status-reading tools
masterstatus = 'buildbot.example.org:12345'
for 'sendchange' or the debug port
master = 'buildbot.example.org:18990'

Note carefully that the names in the options file usually do not match the command-line option name.

master Equivalent to option –master for sendchange. It is the location of the pb.PBChangeSource for
`sendchange.

username Equivalent to option –username for the sendchange command.

branch Equivalent to option –branch for the sendchange command.

category Equivalent to option –category for the sendchange command.

try_connect Equivalent to option –connect, this specifies how the try command should deliver its request to the
buildmaster. The currently accepted values are ssh and pb.

try_builders Equivalent to option –builders, specifies which builders should be used for the try build.

try_vc Equivalent to option –vc for try , this specifies the version control system being used.

try_branch Equivalent to option –branch, this indicates that the current tree is on a non-trunk branch.

try_topdir

276 Chapter 2. Buildbot Manual

Buildbot Documentation, Release 0.9.7

try_topfile Use try_topdir, equivalent to option –try-topdir, to explicitly indicate the top of your working
tree, or try_topfile, equivalent to option –try-topfile to name a file that will only be found in that top-most
directory.

try_host

try_username

try_dir When try_connect is ssh, the command will use try_host for option –tryhost, try_username
for option –username, and try_dir for option –trydir. Apologies for the confusing presence and absence of
‘try’.

try_username

try_password

try_master Similarly, when try_connect is pb, the command will pay attention to try_username for
option –username, try_password for option –passwd, and try_master for option –master.

try_wait

masterstatus try_wait and masterstatus (equivalent to option –wait and master, respectively) are used
to ask the try command to wait for the requested build to complete.

worker

buildbot-worker command-line tool is used for worker management only and does not provide any additional
functionality. One can create, start, stop and restart the worker.

create-worker

This creates a new directory and populates it with files that let it be used as a worker’s base directory. You must provide
several arguments, which are used to create the initial buildbot.tac file.

The option -r option is advisable here, just like for create-master.

buildbot-worker create-worker -r {BASEDIR} {MASTERHOST}:{PORT} {WORKERNAME} {PASSWORD}

The create-worker options are described in Worker Options.

start

This starts a worker which was already created in the given base directory. The daemon is launched in the background,
with events logged to a file named twistd.log.

buildbot-worker start [--nodaemon] BASEDIR

The option –nodaemon option instructs Buildbot to skip daemonizing. The process will start in the foreground. It will
only return to the command-line when it is stopped.

restart

buildbot-worker restart [--nodaemon] BASEDIR

This restarts a worker which is already running. It is equivalent to a stop followed by a start.

The option –nodaemon option has the same meaning as for start.

2.9. Command-line Tool 277

Buildbot Documentation, Release 0.9.7

stop

This terminates the daemon worker running in the given directory.

buildbot stop BASEDIR

Resources

The Buildbot home page is http://buildbot.net/.

For configuration questions and general discussion, please use the buildbot-devel mailing list. The subscription
instructions and archives are available at http://lists.sourceforge.net/lists/listinfo/buildbot-devel

The #buildbot channel on Freenode’s IRC servers hosts development discussion, and often folks are available to
answer questions there, as well.

Optimization

If you’re feeling your Buildbot is running a bit slow, here are some tricks that may help you, but use them at your own
risk.

Properties load speedup

For example, if most of your build properties are strings, you can gain an approx. 30% speedup if you put this snippet
of code inside your master.cfg file:

def speedup_json_loads():
import json, re

original_decode = json._default_decoder.decode
my_regexp = re.compile(r'^\[\"([^"]*)\",\s+\"([^"]*)\"\]$')
def decode_with_re(str, *args, **kw):

m = my_regexp.match(str)
try:

return list(m.groups())
except Exception:

return original_decode(str, *args, **kw)
json._default_decoder.decode = decode_with_re

speedup_json_loads()

It patches json decoder so that it would first try to extract a value from JSON that is a list of two strings (which is the
case for a property being a string), and would fallback to general JSON decoder on any error.

Plugin Infrastructure in Buildbot

New in version 0.8.11.

Plugin infrastructure in Buildbot allows easy use of components that are not part of the core. It also allows unified
access to components that are included in the core.

278 Chapter 2. Buildbot Manual

http://buildbot.net/
http://lists.sourceforge.net/lists/listinfo/buildbot-devel

Buildbot Documentation, Release 0.9.7

The following snippet

from buildbot.plugins import kind

... kind.ComponentClass ...

allows to use a component of kind kind. Available kinds are:

worker workers, described in Workers

changes change source, described in Change Sources

schedulers schedulers, described in Schedulers

steps build steps, described in Build Steps

reporters reporters (or reporter targets), described in Reporters

util utility classes. For example, BuilderConfig, Build Factories, ChangeFilter and Locks are accessible through
util.

Web interface plugins are not used directly: as described in web server configuration section, they are listed in the
corresponding section of the web server configuration dictionary.

Note: If you are not very familiar with Python and you need to use different kinds of components, start your
master.cfg file with:

from buildbot.plugins import *

As a result, all listed above components will be available for use. This is what sample master.cfg file uses.

Finding Plugins

Buildbot maintains a list of plugins at http://trac.buildbot.net/wiki/Plugins.

Developing Plugins

Distribute a Buildbot Plug-In contains all necesary information for you to develop new plugins. Please edit http:
//trac.buildbot.net/wiki/Plugins to add a link to your plugin!

Plugins of note

Plugins were introduced in Buildbot-0.8.11, so as of this writing, only components that are bundled with Buildbot are
available as plugins.

If you have an idea/need about extending Buildbot, head to How to package Buildbot plugins, create your own plugins
and let the world now how Buildbot can be made even more useful.

Deployment

This page aims at describing the common pitfalls and best practices when deploying buildbot.

2.13. Deployment 279

http://trac.buildbot.net/wiki/Plugins
http://trac.buildbot.net/wiki/Plugins
http://trac.buildbot.net/wiki/Plugins

Buildbot Documentation, Release 0.9.7

• Using A Database Server

• Maintenance

• Troubleshooting

Using A Database Server

Buildbot uses the sqlite3 database backend by default. If you plan to host a lot of data, you may consider using a more
suitable database server.

If you want to use a database server (e.g., MySQL or Postgres) as the database backend for your Buildbot, use option
buildbot create-master –db to specify the connection string for the database, and make sure that the same URL appears
in the db_url of the db parameter in your configuration file.

Additional Requirements

Depending on the selected database, further Python packages will be required. Consult the SQLAlchemy
(http://www.sqlalchemy.org/) dialect list for a full description. The most common choice for MySQL is mysqlclient
(https://github.com/PyMySQL/mysqlclient-python). Any reasonably recent version should suffice.

The most common choice for Postgres is Psycopg (http://initd.org/psycopg/) Any reasonably recent version should
suffice.

Maintenance

The buildmaster can be configured to send out email notifications when a worker has been offline for a while. Be sure
to configure the buildmaster with a contact email address for each worker so these notifications are sent to someone
who can bring it back online.

If you find you can no longer provide a worker to the project, please let the project admins know, so they can put out
a call for a replacement.

The Buildbot records status and logs output continually, each time a build is performed. The status tends to be small,
but the build logs can become quite large. Each build and log are recorded in a separate file, arranged hierarchically
under the buildmaster’s base directory. To prevent these files from growing without bound, you should periodically
delete old build logs. A simple cron job to delete anything older than, say, two weeks should do the job. The only trick
is to leave the buildbot.tac and other support files alone, for which find‘s -mindepth argument helps skip
everything in the top directory. You can use something like the following (assuming builds are stored in ./builds/
directory):

@weekly cd BASEDIR && find . -mindepth 2 i-path './builds/*' \
-prune -o -type f -mtime +14 -exec rm {} \;

@weekly cd BASEDIR && find twistd.log* -mtime +14 -exec rm {} \;

Alternatively, you can configure a maximum number of old logs to be kept using the --log-count command line
option when running buildbot-worker create-worker or buildbot create-master.

Troubleshooting

Here are a few hints on diagnosing common problems.

280 Chapter 2. Buildbot Manual

http://www.sqlalchemy.org/
https://github.com/PyMySQL/mysqlclient-python
http://initd.org/psycopg/

Buildbot Documentation, Release 0.9.7

Starting the worker

Cron jobs are typically run with a minimal shell (/bin/sh, not /bin/bash), and tilde expansion is not always
performed in such commands. You may want to use explicit paths, because the PATH is usually quite short and
doesn’t include anything set by your shell’s startup scripts (.profile, .bashrc, etc). If you’ve installed buildbot
(or other Python libraries) to an unusual location, you may need to add a PYTHONPATH specification (note that Python
will do tilde-expansion on PYTHONPATH elements by itself). Sometimes it is safer to fully-specify everything:

@reboot PYTHONPATH=~/lib/python /usr/local/bin/buildbot \
start /usr/home/buildbot/basedir

Take the time to get the @reboot job set up. Otherwise, things will work fine for a while, but the first power outage
or system reboot you have will stop the worker with nothing but the cries of sorrowful developers to remind you that
it has gone away.

Connecting to the buildmaster

If the worker cannot connect to the buildmaster, the reason should be described in the twistd.log logfile. Some
common problems are an incorrect master hostname or port number, or a mistyped bot name or password. If the
worker loses the connection to the master, it is supposed to attempt to reconnect with an exponentially-increasing
backoff. Each attempt (and the time of the next attempt) will be logged. If you get impatient, just manually stop and
re-start the worker.

When the buildmaster is restarted, all workers will be disconnected, and will attempt to reconnect as usual. The
reconnect time will depend upon how long the buildmaster is offline (i.e. how far up the exponential backoff curve the
workers have travelled). Again, buildbot-worker restart BASEDIR will speed up the process.

Contrib Scripts

While some features of Buildbot are included in the distribution, others are only available in master/contrib/
(https://github.com/buildbot/buildbot-contrib/blob/master/master/contrib/) in the buildbot-contrib source di-
rectory. The latest versions of such scripts are available at master/contrib (https://github.com/buildbot/buildbot-
contrib/blob/master/master/contrib).

2.13. Deployment 281

https://github.com/buildbot/buildbot-contrib/blob/master/master/contrib/
https://github.com/buildbot/buildbot-contrib/blob/master/master/contrib

Buildbot Documentation, Release 0.9.7

282 Chapter 2. Buildbot Manual

CHAPTER 3

Buildbot Development

This chapter is the official repository for the collected wisdom of the Buildbot hackers. It is intended both for devel-
opers writing patches that will be included in Buildbot itself, and for advanced users who wish to customize Buildbot.

General Documents

This section gives some general information about Buildbot development.

Master Organization

Buildbot makes heavy use of Twisted Python’s support for services - software modules that can be started and stopped
dynamically. Buildbot adds the ability to reconfigure such services, too - see Reconfiguration. Twisted arranges
services into trees; the following section describes the service tree on a running master.

BuildMaster Object

The hierarchy begins with the master, a buildbot.master.BuildMaster instance. Most other services contain
a reference to this object in their master attribute, and in general the appropriate way to access other objects or
services is to begin with self.master and navigate from there.

The master has a number of useful attributes:

master.metrics A buildbot.process.metrics.MetricLogObserver instance that handles tracking
and reporting on master metrics.

master.caches A buildbot.process.caches.CacheManager instance that provides access to object
caches.

master.pbmanager A buildbot.pbmanager.PBManager instance that handles incoming PB connections,
potentially on multiple ports, and dispatching those connections to appropriate components based on the sup-
plied username.

283

Buildbot Documentation, Release 0.9.7

master.workers A buildbot.worker.manager.WorkerManager instance that provides wrapper
around multiple master-worker protocols(e.g. PB) to unify calls for them from higher level code

master.change_svc A buildbot.changes.manager.ChangeManager instance that manages the ac-
tive change sources, as well as the stream of changes received from those sources. All active change sources are
child services of this instance.

master.botmaster A buildbot.process.botmaster.BotMaster instance that manages all of the
workers and builders as child services.

The botmaster acts as the parent service for a buildbot.process.botmaster.
BuildRequestDistributor instance (at master.botmaster.brd) as well as all active workers
(buildbot.worker.AbstractWorker instances) and builders (buildbot.process.builder.
Builder instances).

master.scheduler_manager A buildbot.schedulers.manager.SchedulerManager instance
that manages the active schedulers. All active schedulers are child services of this instance.

master.user_manager A buildbot.process.users.manager.UserManagerManager instance
that manages access to users. All active user managers are child services of this instance.

master.db A buildbot.db.connector.DBConnector instance that manages access to the buildbot
database. See Database for more information.

master.debug A buildbot.process.debug.DebugServices instance that manages debugging-related
access – the manhole, in particular.

master.status A buildbot.status.master.Status instance that provides access to all status data. This
instance is also the service parent for all status listeners.

master.masterid This is the ID for this master, from the masters table. It is used in the database and messages
to uniquely identify this master.

Definitions

Buildbot uses some terms and concepts that have specific meanings.

Repository

See Repository.

Project

See Project.

Version Control Comparison

Buildbot supports a number of version control systems, and they don’t all agree on their terms. This table should help
to disambiguate them.

284 Chapter 3. Buildbot Development

Buildbot Documentation, Release 0.9.7

Name Change Revision Branches
CVS patch [1] timestamp unnamed
Subversion revision integer directories
Git commit sha1 hash named refs
Mercurial changeset sha1 hash different repos or (permanently) named commits
Darcs ? none [2] different repos
Bazaar ? ? ?
Perforce ? ? ?
BitKeeper changeset ? different repos

• [1] note that CVS only tracks patches to individual files. Buildbot tries to recognize coordinated changes to
multiple files by correlating change times.

• [2] Darcs does not have a concise way of representing a particular revision of the source.

Buildbot Coding Style

Documentation

Buildbot strongly encourages developers to document the methods, behavior, and usage of classes that users might
interact with. However, this documentation should be in .rst files under master/docs/developer, rather
than in docstrings within the code. For private methods or where code deserves some kind of explanatory preface,
use comments instead of a docstring. While some docstrings remain within the code, these should be migrated to
documentation files and removed as the code is modified.

Within the reStructuredText files, write with each English sentence on its own line. While this does not affect the
generated output, it makes git diffs between versions of the documentation easier to read, as they are not obscured by
changes due to re-wrapping. This convention is not followed everywhere, but we are slowly migrating documentation
from the old (wrapped) style as we update it.

Symbol Names

Buildbot follows PEP8 (https://www.python.org/dev/peps/pep-0008/) regarding the formatting of symbol names. Be-
cause Buildbot uses Twisted so heavily, and Twisted uses interCaps, this is not very consistently applied throughout
the codebase.

The single exception to PEP8 is in naming of functions and methods. That is, you should spell methods and functions
with the first character in lower-case, and the first letter of subsequent words capitalized, e.g., compareToOther or
getChangesGreaterThan.

Symbols used as parameters to functions used in configuration files should use underscores.

In summary, then:

Symbol Type Format
Methods interCaps
Functions interCaps
Function Arguments under_scores
API method Arguments interCaps
Classes InitialCaps
Variables under_scores
Constants ALL_CAPS

3.1. General Documents 285

https://www.python.org/dev/peps/pep-0008/

Buildbot Documentation, Release 0.9.7

Twisted Idioms

Programming with Twisted Python can be daunting. But sticking to a few well-defined patterns can help avoid sur-
prises.

Prefer to Return Deferreds

If you’re writing a method that doesn’t currently block, but could conceivably block sometime in the future, return a
Deferred and document that it does so. Just about anything might block - even getters and setters!

Helpful Twisted Classes

Twisted has some useful, but little-known classes. Brief descriptions follow, but you should consult the API documen-
tation or source code for the full details.

twisted.internet.task.LoopingCall Calls an asynchronous function repeatedly at set intervals. Note
that this will stop looping if the function fails. In general, you will want to wrap the function to capture and log
errors.

twisted.application.internet.TimerService Similar to t.i.t.LoopingCall, but implemented
as a service that will automatically start and stop the function calls when the service starts and stops. See the
warning about failing functions for t.i.t.LoopingCall.

Sequences of Operations

Especially in Buildbot, we’re often faced with executing a sequence of operations, many of which may block.

In all cases where this occurs, there is a danger of pre-emption, so exercise the same caution you would if writing a
threaded application.

For simple cases, you can use nested callback functions. For more complex cases, inlineCallbacks is appropriate. In
all cases, please prefer maintainability and readability over performance.

Nested Callbacks

First, an admonition: do not create extra class methods that represent the continuations of the first:

def myMethod(self):
d = ...
d.addCallback(self._myMethod_2) # BAD!

def _myMethod_2(self, res): # BAD!
...

Invariably, this extra method gets separated from its parent as the code evolves, and the result is completely unreadable.
Instead, include all of the code for a particular function or method within the same indented block, using nested
functions:

def getRevInfo(revname):
for example only! See above a better implementation with inlineCallbacks
results = {}
d = defer.succeed(None)
def rev_parse(_): # note use of '_' to quietly indicate an ignored parameter

return utils.getProcessOutput(git, ['rev-parse', revname])

286 Chapter 3. Buildbot Development

Buildbot Documentation, Release 0.9.7

d.addCallback(rev_parse)
def parse_rev_parse(res):

results['rev'] = res.strip()
return utils.getProcessOutput(git, ['log', '-1', '--format=%s%n%b', results[

→˓'rev']])
d.addCallback(parse_rev_parse)
def parse_log(res):

results['comments'] = res.strip()
d.addCallback(parse_log)
def set_results(_):

return results
d.addCallback(set_results)
return d

it is usually best to make the first operation occur within a callback, as the deferred machinery will then handle any
exceptions as a failure in the outer Deferred. As a shortcut, d.addCallback works as a decorator:

d = defer.succeed(None)
@d.addCallback
def rev_parse(_): # note use of '_' to quietly indicate an ignored parameter

return utils.getProcessOutput(git, ['rev-parse', revname])

Note: d.addCallback is not really a decorator as it does not return a modified function. As a result in previous
code, rev_parse value is actually the Deferred. In general the inlineCallbacks method is preferred inside
new code as it keeps the code easier to read. As a general rule of thumb, when you need more than 2 callbacks in
the same method, it’s time to switch it to inlineCallbacks. This would be for example the case for previous
getRevInfo. See this discussion (https://github.com/buildbot/buildbot/pull/2523) with Twisted experts for more
information.

Be careful with local variables. For example, if parse_rev_parse, above, merely assigned rev = res.
strip(), then that variable would be local to parse_rev_parse and not available in set_results. Mutable
variables (dicts and lists) at the outer function level are appropriate for this purpose.

Note: do not try to build a loop in this style by chaining multiple Deferreds! Unbounded chaining can result in stack
overflows, at least on older versions of Twisted. Use inlineCallbacks instead.

In most of the cases if you need more than two callbacks in a method, it is more readable and maintainable to use
inlineCallbacks.

inlineCallbacks

twisted.internet.defer.inlineCallbacks is a great help to writing code that makes a lot of asyn-
chronous calls, particularly if those calls are made in loop or conditionals. Refer to the Twisted documentation for the
details, but the style within Buildbot is as follows:

from twisted.internet import defer

@defer.inlineCallbacks
def mymethod(self, x, y):

xval = yield getSomething(x)

for z in (yield getZValues()):

3.1. General Documents 287

https://github.com/buildbot/buildbot/pull/2523

Buildbot Documentation, Release 0.9.7

y += z

if xval > 10:
defer.returnValue(xval + y)
return

self.someOtherMethod()

The key points to notice here:

• Always import defer as a module, not the names within it.

• Use the decorator form of inlineCallbacks.

• In most cases, the result of a yield expression should be assigned to a variable. It can be used in a larger
expression, but remember that Python requires that you enclose the expression in its own set of parentheses.

• Python does not permit returning a value from a generator, so statements like return xval + y are invalid.
Instead, yield the result of defer.returnValue. Although this function does cause an immediate function
exit, for clarity follow it with a bare return, as in the example, unless it is the last statement in a function.

The great advantage of inlineCallbacks is that it allows you to use all of the usual Pythonic control structures
in their natural form. In particular, it is easy to represent a loop, or even nested loops, in this style without losing any
readability.

Note that code using deferredGenerator is no longer acceptable in Buildbot.

The previous getRevInfo example implementation should rather be written as:

@defer.inlineCallbacks
def getRevInfo(revname):

results = {}
res = yield utils.getProcessOutput(git, ['rev-parse', revname])
results['rev'] = res.strip()
res = yield utils.getProcessOutput(git, ['log', '-1', '--format=%s%n%b', results[

→˓'rev']])
results['comments'] = res.strip()
defer.returnValue(results)

Locking

Remember that asynchronous programming does not free you from the need to worry about concurrency issues.
Particularly if you are executing a sequence of operations, each time you wait for a Deferred, arbitrary other actions
can take place.

In general, you should try to perform actions atomically, but for the rare situations that require synchronization, the
following might be useful:

• twisted.internet.defer.DeferredLock

• buildbot.util.misc.deferredLocked

Joining Sequences

It’s often the case that you’ll want to perform multiple operations in parallel, and re-
join the results at the end. For this purpose, you’ll want to use a DeferredList
(http://twistedmatrix.com/documents/current/api/twisted.internet.defer.DeferredList.html) :

288 Chapter 3. Buildbot Development

http://twistedmatrix.com/documents/current/api/twisted.internet.defer.DeferredList.html

Buildbot Documentation, Release 0.9.7

def getRevInfo(revname):
results = {}
finished = dict(rev_parse=False, log=False)

rev_parse_d = utils.getProcessOutput(git, ['rev-parse', revname])
def parse_rev_parse(res):

return res.strip()
rev_parse_d.addCallback(parse_rev_parse)

log_d = utils.getProcessOutput(git, ['log', '-1', '--format=%s%n%b', results['rev
→˓']])

def parse_log(res):
return res.strip()

log_d.addCallback(parse_log)

d = defer.DeferredList([rev_parse_d, log_d], consumeErrors=1,
→˓fireOnFirstErrback=1)

def handle_results(results):
return dict(rev=results[0][1], log=results[1][1])

d.addCallback(handle_results)
return d

Here the deferred list will wait for both rev_parse_d and log_d to fire, or for one of them to fail. You may attach
callbacks and errbacks to a DeferredList just as for a deferred.

Functions running outside of the main thread

It is very important in Twisted to be able to distinguish functions that runs in the main thread and functions that don’t,
as reactors and deferreds can only be used in the main thread. To make this distinction clearer, every functions meant
to be started in a secondary thread must be prefixed with thd_.

CoffeeScript Coding Style

The Buildbot development team is primarily Python experts and not front-end experts. Whlie we did spend lot of time
looking for front end best practices, we are happy to accept suggestions to this coding-style and best-practices guide.

Here is a summary of what is the expected coding style for buildbot contributions, as well as some common gotcha’s
for developers with a Python background.

CoffeeScript looks like Python

Buildbot follows Python pep8 coding style as much as possible, except for naming convention (where twisted’s inter-
Caps are preferred). The same rules apply for CoffeeScript, whenever they makes sense:

Symbol Type Format
Methods interCaps
Functions interCaps
Function Arguments interCaps
Classes InitialCaps
Controllers interCaps
Services interCaps
Filters interCaps
Constants ALL_CAPS

3.1. General Documents 289

Buildbot Documentation, Release 0.9.7

Coffeelint should be happy

Buildbot ships with a Gruntfile containing a coffeelint configuration which is expected to pass for buildbot CoffeeScript
code.

CoffeeScript syntax sugar

CoffeeScript does not have inlineCallbacks, but have some syntax sugar for helping readability of nested callbacks.
However, those syntax sugars sometimes leads to surprises. Make sure you check the generated javascript in case of
weird behavior.

Follow the following suggestions:

• Use implicit parentheses for multi line function calls or object construction:

GOOD
d.then (res) ->

$scope.val = res

BAD
d.then((res) ->

$scope.val = res
)

push a dictionary into a list
GOOD
l.push

k1: v1
k2: v2

BAD
l.push(

k1: v1
k2: v2

)

BAD
l.push({

k1: v1
k2: v2

})

• Use explicit parentheses for single line function calls

GOOD
myFunc(service.getA(b))

BAD
myFunc service.getA b
(not enough visually-distinct from:)
myFunc service.getA, b
which means
myFunc(service.getA, b)

• always use return for multiline functions

In CoffeeScript, “everything is an expression”, and the default return value is the result of the last expression.
This is considered too error prone for Python and JS developers who are used to “return None” by default. In

290 Chapter 3. Buildbot Development

Buildbot Documentation, Release 0.9.7

buildbot code, every multiline function must end with an explicit return statement.

BAD: implicitly returns the return value of b()
myFunc = ->

if (a)
b()

GOOD
myFunc = ->

if (a)
b()

return null

GOOD
myFunc = ->

if (a)
return b()

return null

• never use return for single line functions

Single line functions is equivalent to Python lambda functions and thus must not use return.

GOOD
if p resolves with a non-null list, will return the list with all element
→˓incremented
p = p.then((res) -> _.each(res, (a) -> a + 1))

CoffeeScript does not include batteries

There is a very limited standard library in JS, and none in CoffeeScript. However, de-facto general purpose libraries
have emerged.

• JQuery considered harmful to access the DOM directly.

Buildbot ships with JQuery, because it is supposed to be more optimized than AngularJS’s own jqlite,
and because some 3rd party directives are requiring it. However, it must not be used in Buildbot
services or controllers, and should be avoided in directives. The Buildbot UI should follow AngularJS
best practices and only modify DOM via templates.

• Lodash is a clone of Underscore.js, and provides good utilities for standard types manipulation (array and
objects). Underscore-string is also available for string manipulation function (e.g. startsWith, endsWith)

Avoid using lodash decoration form. Those are considered tricky to use.

GOOD
_.each(res, (a) -> a + 1))

BAD
_(res).each((a) -> a + 1))

• Require.js is used as technical solution for plugin loading. It should not be used appart from this.

• Moment.js is used for manipulating dates and displaying them to the user in a human readable form (e.g “one
month ago”). It can be used anywhere it is useful.

3.1. General Documents 291

Buildbot Documentation, Release 0.9.7

$q “A+ promises” VS twisted’s deferred

The AngularJS $q module implements A+ promises. At first sight, this looks like Twisted Deferreds.

Warning: d.addCallbacks(successCb, errorCb) is not equivalent to p.then(successCb, errorCb)!

• Once a Twisted deferred has been “called”, its result is changed with the return value of each callback in the
callback queue.

• Once a $q promise has been “resolved”, its result is immutable. p.then() itself returns another promise which
can be used to alter result of another promise.

d = someFunction()
@d.addCallback
def addOneToResult(res):

return res + 1
return d # we return the same deferred as the one returned by someFunction()

Translate in coffeeScript to:

p = someFunction()
p = p.then (res) -> ## note assignment

return res + 1
return p # we return the another promise as the one returned by someFunction()

• With $q, only the promise creator can resolve it.

someFunction = ->
d = $q.defer()
$timeout ->

d.resolve("foo")
, 100

return d.promise
p = someFunction()
p.resolve() # cannot work, we can only call the "then" method of a promise

Buildbot’s Test Suite

Buildbot’s master tests are under buildbot.test, buildbot-worker package tests are under
buildbot_worker.test. Tests for the workers are similar to the master, although in some cases helpful
functionality on the master is not re-implemented on the worker.

Quick-Start

Buildbot uses Twisted trial (http://twistedmatrix.com/trac/wiki/TwistedTrial) to run its test suite. Following is a quick
shell session to put you on the right track.

the usual buildbot development bootstrap with git and virtualenv
git clone https://github.com/buildbot/buildbot
cd buildbot

helper script which creates the virtualenv for development
make virtualenv
. .venv/bin/activate

292 Chapter 3. Buildbot Development

http://twistedmatrix.com/trac/wiki/TwistedTrial

Buildbot Documentation, Release 0.9.7

now we run the test suite
trial buildbot

find all tests that talk about mail
trial -n --reporter=bwverbose buildbot | grep mail

run only one test module
trial buildbot.test.unit.test_reporters_mail

Suites

Tests are divided into a few suites:

• Unit tests (buildbot.test.unit) - these follow unit-testing practices and attempt to maximally isolate the
system under test. Unit tests are the main mechanism of achieving test coverage, and all new code should be
well-covered by corresponding unit tests.

– Interface tests are a special type of unit tests, and are found in the same directory and often the same file. In
many cases, Buildbot has multiple implementations of the same interface – at least one “real” implementa-
tion and a fake implementation used in unit testing. The interface tests ensure that these implementations
all meet the same standards. This ensures consistency between implementations, and also ensures that the
unit tests are testing against realistic fakes.

• Integration tests (buildbot.test.integration) - these test combinations of multiple units. Of necessity,
integration tests are incomplete - they cannot test every condition; difficult to maintain - they tend to be complex
and touch a lot of code; and slow - they usually require considerable setup and execute a lot of code. As such,
use of integration tests is limited to a few, broad tests to act as a failsafe for the unit and interface tests.

• Regression tests (buildbot.test.regressions) - these test to prevent re-occurrence of historical bugs.
In most cases, a regression is better tested by a test in the other suites, or unlike to recur, so this suite tends to be
small.

• Fuzz tests (buildbot.test.fuzz) - these tests run for a long time and apply randomization to try to re-
produce rare or unusual failures. The Buildbot project does not currently have a framework to run fuzz tests
regularly.

Unit Tests

Every code module should have corresponding unit tests. This is not currently true of Buildbot, due to a large body of
legacy code, but is a goal of the project. All new code must meet this requirement.

Unit test modules are be named after the package or class they test, replacing .
with _ and omitting the buildbot_. For example, test_schedulers_timed_Periodic.py
(https://github.com/buildbot/buildbot/blob/master/master/buildbot/test/unit/test_schedulers_timed_Periodic.py) tests
the Periodic class in master/buildbot/schedulers/timed.py (https://github.com/buildbot/buildbot/blob/master/master/buildbot/schedulers/timed.py).
Modules with only one class, or a few trivial classes, can be tested in a single test module. For more complex situations,
prefer to use multiple test modules.

Unit tests using renderables require special handling. The following example shows how the same test would be
written with the ‘param’ parameter and with the same parameter as a renderable.:

def test_param(self):
f = self.ConcreteClass(param='val')
self.assertEqual(f.param, 'val')

3.1. General Documents 293

https://github.com/buildbot/buildbot/blob/master/master/buildbot/test/unit/test_schedulers_timed_Periodic.py
https://github.com/buildbot/buildbot/blob/master/master/buildbot/schedulers/timed.py

Buildbot Documentation, Release 0.9.7

When the parameter is renderable, you need to instantiate the Class before you can you renderables:

def setUp(self):
self.build = Properties(paramVal='val')

@defer.inlineCallbacks
def test_param_renderable(self):

f = self.ConcreteClass(param=Interpolate('%(kw:rendered_val)s',
rendered_val=Property('paramVal'))

yield f.start_instance(self.build)
self.assertEqual(f.param, 'val')

Interface Tests

Interface tests exist to verify that multiple implementations of an interface meet the same requirements. Note that the
name ‘interface’ should not be confused with the sparse use of Zope Interfaces in the Buildbot code – in this context,
an interface is any boundary between testable units.

Ideally, all interfaces, both public and private, should be tested. Certainly, any public interfaces need interface tests.

Interface tests are most often found in files named for the “real” implementation, e.g., test_db_changes.py
(https://github.com/buildbot/buildbot/blob/master/master/buildbot/test/unit/test_db_changes.py). When there is am-
biguity, test modules should be named after the interface they are testing. Interface tests have the following form:

from buildbot.test.util import interfaces
from twistd.trial import unittest

class Tests(interfaces.InterfaceTests):

define methods that must be overridden per implementation
def someSetupMethod(self):

raise NotImplementedError

method signature tests
def test_signature_someMethod(self):

@self.assertArgSpecMatches(self.systemUnderTest.someMethod)
def someMethod(self, arg1, arg2):

pass

tests that all implementations must pass
def test_something(self):

pass # ...

class RealTests(Tests):

tests that only *real* implementations must pass
def test_something_else(self):

pass # ...

All of the test methods are defined here, segregated into tests that all implementations must pass, and tests that
the fake implementation is not expected to pass. The test_signature_someMethod test above illustrates the
buildbot.test.util.interfaces.assertArgSpecMatches decorator, which can be used to compare
the argument specification of a callable with a reference signature conveniently written as a nested function. Wherever
possible, prefer to add tests to the Tests class, even if this means testing one method (e.g,. setFoo) in terms of
another (e.g., getFoo).

The assertArgSpecMatches method can take multiple methods to test; it will check each one in turn.

294 Chapter 3. Buildbot Development

https://github.com/buildbot/buildbot/blob/master/master/buildbot/test/unit/test_db_changes.py

Buildbot Documentation, Release 0.9.7

At the bottom of the test module, a subclass is created for each implementation, implementing the setup methods that
were stubbed out in the parent classes:

class TestFakeThing(unittest.TestCase, Tests):

def someSetupMethod(self):
pass # ...

class TestRealThing(unittest.TestCase, RealTests):

def someSetupMethod(self):
pass # ...

For implementations which require optional software, such as an AMQP server, this is the appropriate place to signal
that tests should be skipped when their prerequisites are not available.

Integration Tests

Integration test modules test several units at once, including their interactions. In general, they serve as a catch-all for
failures and bugs that were not detected by the unit and interface tests. As such, they should not aim to be exhaustive,
but merely representative.

Integration tests are very difficult to maintain if they reach into the internals of any part of Buildbot. Where possible,
try to use the same means as a user would to set up, run, and check the results of an integration test. That may mean
writing a master.cfg to be parsed, and checking the results by examining the database (or fake DB API) afterward.

Regression Tests

Regression tests are even more rare in Buildbot than integration tests. In many cases, a regression test is not necessary
– either the test is better-suited as a unit or interface test, or the failure is so specific that a test will never fail again.

Regression tests tend to be closely tied to the code in which the error occurred. When that code is refactored, the
regression test generally becomes obsolete, and is deleted.

Fuzz Tests

Fuzz tests generally run for a fixed amount of time, running randomized tests against a system. They do not run at all
during normal runs of the Buildbot tests, unless BUILDBOT_FUZZ is defined. This is accomplished with something
like the following at the end of each test module:

if 'BUILDBOT_FUZZ' not in os.environ:
del LRUCacheFuzzer

Mixins

Buildbot provides a number of purpose-specific mixin classes in master/buildbot/util
(https://github.com/buildbot/buildbot/blob/master/master/buildbot/util). These generally define a set of utility
functions as well as setUpXxx and tearDownXxx methods. These methods should be called explicitly from your
subclass’s setUp and tearDown methods. Note that some of these methods return Deferreds, which should be
handled properly by the caller.

3.1. General Documents 295

https://github.com/buildbot/buildbot/blob/master/master/buildbot/util

Buildbot Documentation, Release 0.9.7

Fakes

Buildbot provides a number of pre-defined fake implementations of internal interfaces, in master/buildbot/test/fake
(https://github.com/buildbot/buildbot/blob/master/master/buildbot/test/fake). These are designed to be used in unit
tests to limit the scope of the test. For example, the fake DB API eliminates the need to create a real database when
testing code that uses the DB API, and isolates bugs in the system under test from bugs in the real DB implementation.

The danger of using fakes is that the fake interface and the real interface can differ. The interface tests exist to solve
this problem. All fakes should be fully tested in an integration test, so that the fakes pass the same tests as the “real”
thing. It is particularly important that the method signatures be compared.

Type Validation

The master/buildbot/test/util/validation.py (https://github.com/buildbot/buildbot/blob/master/master/buildbot/test/util/validation.py)
provides a set of classes and definitions for validating Buildbot data types. It supports four types of data:

• DB API dictionaries, as returned from the getXxx methods,

• Data API dictionaries, as returned from get,

• Data API messages, and

• Simple data types.

These are validated from elsewhere in the codebase with calls to

• verifyDbDict(testcase, type, value),

• verifyData(testcase, type, options, value),

• verifyMessage(testcase, routingKey, message), and

• verifyType(testcase, name, value, validator).

respectively. The testcase argument is used to fail the test case if the validation does not succeed. For DB
dictionaries and data dictionaries, the type identifies the expected data type. For messages, the type is determined
from the first element of the routing key.

All messages sent with the fake MQ implementation are automatically validated using verifyMessage. The
verifyType method is used to validate simple types, e.g.,

validation.verifyType(self, 'param1', param1, validation.StringValidator())

In any case, if testcase is None, then the functions will raise an AssertionError on failure.

Validator Classes

A validator is an instance of the Validator class. Its validate method is a generator function that takes a name
and an object to validate. It yields error messages describing any deviations of object from the designated data type.
The name argument is used to make such messages more helpful.

A number of validators are supplied for basic types. A few classes deserve special mention:

• NoneOk wraps another validator, allowing the object to be None.

• Any will match any object without error.

• IdentifierValidator will match identifiers; see identifier.

• DictValidator takes key names as keyword arguments, with the values giving validators for each key. The
optionalNames argument is a list of keys which may be omitted without error.

296 Chapter 3. Buildbot Development

https://github.com/buildbot/buildbot/blob/master/master/buildbot/test/fake
https://github.com/buildbot/buildbot/blob/master/master/buildbot/test/util/validation.py

Buildbot Documentation, Release 0.9.7

• SourcedPropertiesValidator matches dictionaries with (value, source) keys, the representation used
for properties in the data API.

• MessageValidator validates messages. It checks that the routing key is a tuple of strings. The first tuple
element gives the message type. The last tuple element is the event, and must be a member of the events
set. The remaining “middle” tuple elements must match the message values identified by keyFields. The
messageValidator should be a DictValidator configured to check the message body. This validator’s
validate method is called with a tuple (routingKey, message).

• Selector allows different validators to be selected based on matching functions. Its add method takes a
matching function, which should return a boolean, and a validator to use if the matching function returns true.
If the matching function is None, it is used as a default. This class is used for message and data validation.

Defining Validators

DB validators are defined in the dbdict dictionary, e.g.,

dbdict['foodict'] = DictValidator(
id=IntValidator(),
name=StringValidator(),
...

)

Data validators are Selector validators, where the selector is the options passed to verifyData.

data['foo'] = Selector()
data['foo'].add(lambda opts : opt.get('fanciness') > 10,

DictValidator(
fooid=IntValidator(),
name=StringValidator(),
...

))

Similarly, message validators are Selector validators, where the selector is the routing key. The underlying validator
should be a MessageValidator.

message['foo'] = Selector()
message['foo'].add(lambda rk : rk[-1] == 'new',

MessageValidator(
keyFields=['fooid'],
events=['new', 'complete'],
messageValidator=DictValidator(

fooid=IntValidator(),
name=StringValidator(),
...

)))

Good Tests

Bad tests are worse than no tests at all, since they waste developers’ time wondering “was that a spurious failure?” or
“what the heck is this test trying to do?” Buildbot needs good tests. So what makes a good test?

3.1. General Documents 297

Buildbot Documentation, Release 0.9.7

Independent of Time

Tests that depend on wall time will fail. As a bonus, they run very slowly. Do not use reactor.callLater to
wait “long enough” for something to happen.

For testing things that themselves depend on time, consider using twisted.internet.tasks.Clock. This
may mean passing a clock instance to the code under test, and propagating that instance as necessary to ensure that all
of the code using callLater uses it. Refactoring code for testability is difficult, but worthwhile.

For testing things that do not depend on time, but for which you cannot detect the “end” of an operation: add a way to
detect the end of the operation!

Clean Code

Make your tests readable. This is no place to skimp on comments! Others will attempt to learn about the expected
behavior of your class by reading the tests. As a side note, if you use a Deferred chain in your test, write the
callbacks as nested functions, rather than using methods with funny names:

def testSomething(self):
d = doThisFirst()
def andThisNext(res):

pass # ...
d.addCallback(andThisNext)
return d

This isolates the entire test into one indented block. It is OK to add methods for common functionality, but give them
real names and explain in detail what they do.

Good Name

Test method names should follow the pattern test_METHOD_CONDITION where METHOD is the method being
tested, and CONDITION is the condition under which it’s tested. Since we can’t always test a single method, this is
not a hard-and-fast rule.

Assert Only One Thing

Where practical, each test should have a single assertion. This may require a little bit of work to get several related
pieces of information into a single Python object for comparison. The problem with multiple assertions is that, if the
first assertion fails, the remainder are not tested. The test results then do not tell the entire story.

Prefer Fakes to Mocks

Mock objects are too “compliant”, and this often masks errors in the system under test. For example, a mis-spelled
method name on a mock object will not raise an exception.

Where possible, use one of the pre-written fake objects (see Fakes) instead of a mock object. Fakes themselves should
be well-tested using interface tests.

Where they are appropriate, Mock objects can be constructed easily using the aptly-named mock
(http://www.voidspace.org.uk/python/mock/) module, which is a requirement for Buildbot’s tests.

298 Chapter 3. Buildbot Development

http://www.voidspace.org.uk/python/mock/

Buildbot Documentation, Release 0.9.7

Small Tests

The shorter each test is, the better. Test as little code as possible in each test.

It is fine, and in fact encouraged, to write the code under test in such a way as to facilitate this. As an illustrative
example, if you are testing a new Step subclass, but your tests require instantiating a BuildMaster, you’re probably
doing something wrong!

This also applies to test modules. Several short, easily-digested test modules are preferred over a 1000-line monster.

Isolation

Each test should be maximally independent of other tests. Do not leave files laying around after your test has finished,
and do not assume that some other test has run beforehand. It’s fine to use caching techniques to avoid repeated,
lengthy setup times.

Be Correct

Tests should be as robust as possible, which at a basic level means using the available frameworks correctly. All De-
ferreds should have callbacks and be chained properly. Error conditions should be checked properly. Race conditions
should not exist (see Independent of Time, above).

Be Helpful

Note that tests will pass most of the time, but the moment when they are most useful is when they fail.

When the test fails, it should produce output that is helpful to the person chasing it down. This is particularly important
when the tests are run remotely, in which case the person chasing down the bug does not have access to the system
on which the test fails. A test which fails sporadically with no more information than “AssertionFailed” is a prime
candidate for deletion if the error isn’t obvious. Making the error obvious also includes adding comments describing
the ways a test might fail.

Keeping State

Python does not allow assignment to anything but the innermost local scope or the global scope with the global
keyword. This presents a problem when creating nested functions:

def test_localVariable(self):
cb_called = False
def cb():

cb_called = True
cb()
self.assertTrue(cb_called) # will fail!

The cb_called = True assigns to a different variable than cb_called = False. In production code, it’s
usually best to work around such problems, but in tests this is often the clearest way to express the behavior under test.

The solution is to change something in a common mutable object. While a simple list can serve as such a mutable
object, this leads to code that is hard to read. Instead, use State:

3.1. General Documents 299

Buildbot Documentation, Release 0.9.7

from buildbot.test.state import State

def test_localVariable(self):
state = State(cb_called=False)
def cb():

state.cb_called = True
cb()
self.assertTrue(state.cb_called) # passes

This is almost as readable as the first example, but it actually works.

Configuration

Wherever possible, Buildbot components should access configuration information as needed from the canonical
source, master.config, which is an instance of MasterConfig. For example, components should not keep
a copy of the buildbotURL locally, as this value may change throughout the lifetime of the master.

Components which need to be notified of changes in the configuration should be implemented as services, subclassing
ReconfigurableServiceMixin, as described in Reconfiguration.

class buildbot.config.MasterConfig
The master object makes much of the configuration available from an object named master.config. Con-
figuration is stored as attributes of this object. Where possible, other Buildbot components should access this
configuration directly and not cache the configuration values anywhere else. This avoids the need to ensure that
update-from-configuration methods are called on a reconfig.

Aside from validating the configuration, this class handles any backward-compatibility issues - renamed param-
eters, type changes, and so on - removing those concerns from other parts of Buildbot.

This class may be instantiated directly, creating an entirely default configuration, or via FileLoader.
loadConfig, which will load the configuration from a config file.

The following attributes are available from this class, representing the current configuration. This includes a
number of global parameters:

title
The title of this buildmaster, from title.

titleURL
The URL corresponding to the title, from titleURL.

buildbotURL
The URL of this buildmaster, for use in constructing WebStatus URLs; from buildbotURL.

logCompressionLimit
The current log compression limit, from logCompressionLimit.

logCompressionMethod
The current log compression method, from logCompressionMethod.

logMaxSize
The current log maximum size, from logMaxSize.

logMaxTailSize
The current log maximum size, from logMaxTailSize.

logEncoding
The encoding to expect when logs are provided as bytestrings, from logEncoding.

300 Chapter 3. Buildbot Development

Buildbot Documentation, Release 0.9.7

properties
A Properties instance containing global properties, from properties.

collapseRequests
A callable, or True or False, describing how to collapse requests; from collapseRequests.

prioritizeBuilders
A callable, or None, used to prioritize builders; from prioritizeBuilders.

codebaseGenerator
A callable, or None, used to determine the codebase from an incoming Change, from
codebaseGenerator

protocols
The per-protocol port specification for worker connections. Based on protocols.

multiMaster
If true, then this master is part of a cluster; based on multiMaster.

manhole
The manhole instance to use, or None; from manhole.

The remaining attributes contain compound configuration structures, usually dictionaries:

validation
Validation regular expressions, a dictionary from validation. It is safe to assume that all expected keys
are present.

db
Database specification, a dictionary with key db_url. It is safe to assume that this key is present.

metrics
The metrics configuration from metrics, or an empty dictionary by default.

caches
The cache configuration, from caches as well as the deprecated buildCacheSize and
changeCacheSize parameters.

The keys Builds and Caches are always available; other keys should use config.caches.
get(cachename, 1).

schedulers
The dictionary of scheduler instances, by name, from schedulers.

builders
The list of BuilderConfig instances from builders. Builders specified as dictionaries in the con-
figuration file are converted to instances.

workers
The list of Worker instances from workers.

change_sources
The list of IChangeSource providers from change_source.

user_managers
The list of user managers providers from user_managers.

www
The web server configuration from www . The keys port and url are always available.

services
The list of additional plugin services

classmethod loadFromDict(config_dict, filename)

3.1. General Documents 301

Buildbot Documentation, Release 0.9.7

Parameters

• config_dict (dict) – The dictionary containing the configuration to load.

• filename (string) – The filename to use when reporting errors.

Returns new MasterConfig instance

Load the configuration from the given dictionary.

Loading of the configuration file is generally triggered by the master, using the following class:

class buildbot.config.FileLoader

__init__(basedir, filename)

Parameters

• basedir (string) – directory to which config is relative

• filename (string) – the configuration file to load

The filename is treated as relative to the basedir, if it is not absolute.

loadConfig(basedir, filename)

Returns new MasterConfig instance

Load the configuration in the given file. Aside from syntax errors, this will also detect a number of semantic
errors such as multiple schedulers with the same name.

buildbot.config.loadConfigDict(basedir, filename)

Parameters

• basedir (string) – directory to which config is relative

• filename (string) – the configuration file to load

Raises ConfigErrors if any errors occur

Returns dict The BuildmasterConfig dictionary.

Load the configuration dictionary in the given file.

The filename is treated as relative to the basedir, if it is not absolute.

Builder Configuration

class buildbot.config.BuilderConfig([keyword args])
This class parameterizes configuration of builders; see Builder Configuration for its arguments. The constructor
checks for errors and applies defaults, and sets the properties described here. Most are simply copied from the
constructor argument of the same name.

Users may subclass this class to add defaults, for example.

name
The builder’s name.

factory
The builder’s factory.

workernames
The builder’s worker names (a list, regardless of whether the names were specified with workername or
workernames).

302 Chapter 3. Buildbot Development

Buildbot Documentation, Release 0.9.7

builddir
The builder’s builddir.

workerbuilddir
The builder’s worker-side builddir.

category
The builder’s category.

nextWorker
The builder’s nextWorker callable.

nextBuild
The builder’s nextBuild callable.

canStartBuild
The builder’s canStartBuild callable.

locks
The builder’s locks.

env
The builder’s environment variables.

properties
The builder’s properties, as a dictionary.

collapseRequests
The builder’s collapseRequests callable.

description
The builder’s description, displayed in the web status.

Error Handling

If any errors are encountered while loading the configuration buildbot.config.error should be called. This
can occur both in the configuration-loading code, and in the constructors of any objects that are instantiated in the
configuration - change sources, workers, schedulers, build steps, and so on.

buildbot.config.error(error)

Parameters error – error to report

Raises ConfigErrors if called at build-time

This function reports a configuration error. If a config file is being loaded, then the function merely records the
error, and allows the rest of the configuration to be loaded. At any other time, it raises ConfigErrors. This
is done so all config errors can be reported, rather than just the first.

exception buildbot.config.ConfigErrors([errors])
Parameters errors (list) – errors to report

This exception represents errors in the configuration. It supports reporting multiple errors to the user simultane-
ously, e.g., when several consistency checks fail.

errors
A list of detected errors, each given as a string.

addError(msg)

Parameters msg (string) – the message to add

Add another error message to the (presumably not-yet-raised) exception.

3.1. General Documents 303

Buildbot Documentation, Release 0.9.7

Configuration in AngularJS

The AngularJS frontend often needs access to the local master configuration. This is accomplished automatically by
converting various pieces of the master configuration to a dictionary.

The IConfigured interface represents a way to convert any object into a JSON-able dictionary.

class buildbot.interfaces.IConfigured

Providers of this interface provide a method to get their configuration as a dictionary:

getConfigDict()

returns object

Return the configuration of this object. Note that despite the name, the return value may not be a
dictionary.

Any object can be “cast” to an IConfigured provider. The getConfigDictmethod for basic Python
objects simply returns the value.

IConfigured(someObject).getConfigDict()

class buildbot.util.ConfiguredMixin
This class is a basic implementation of IConfigured. Its getConfigDict method simply returns the
instance’s name attribute.

name
Each object configured must have a name attribute.

getConfigDict(self)

Returns object

Return a config dictionary representing this object.

All of this is used by to serve /config.js to the JavaScript frontend.

Reconfiguration

When the buildmaster receives a signal to begin a reconfig, it re-reads the configuration file, generating a new
MasterConfig instance, and then notifies all of its child services via the reconfig mechanism described below.
The master ensures that at most one reconfiguration is taking place at any time.

See Master Organization for the structure of the Buildbot service tree.

To simplify initialization, a reconfiguration is performed immediately on master startup. As a result, services only
need to implement their configuration handling once, and can use startService for initialization.

See below for instructions on implementing configuration of common types of components in Buildbot.

Note: Because Buildbot uses a pure-Python configuration file, it is not possible to support all forms of reconfig-
uration. In particular, when the configuration includes custom subclasses or modules, reconfiguration can turn up
some surprising behaviors due to the dynamic nature of Python. The reconfig support in Buildbot is intended for
“intermediate” uses of the software, where there are fewer surprises.

304 Chapter 3. Buildbot Development

Buildbot Documentation, Release 0.9.7

Reconfigurable Services

Instances which need to be notified of a change in configuration should be implemented as Twisted services, and mix
in the ReconfigurableServiceMixin class, overriding the reconfigServiceWithBuildbotConfig
method.

class buildbot.config.ReconfigurableServiceMixin

reconfigServiceWithBuildbotConfig(new_config)

Parameters new_config (MasterConfig) – new master configuration

Returns Deferred

This method notifies the service that it should make any changes necessary to adapt to the new configura-
tion values given.

This method will be called automatically after a service is started.

It is generally too late at this point to roll back the reconfiguration, so if possible any errors should be
detected in the MasterConfig implementation. Errors are handled as best as possible and commu-
nicated back to the top level invocation, but such errors may leave the master in an inconsistent state.
ConfigErrors exceptions will be displayed appropriately to the user on startup.

Subclasses should always call the parent class’s implementation. For MultiService instances, this will
call any child services’ reconfigService methods, as appropriate. This will be done sequentially,
such that the Deferred from one service must fire before the next service is reconfigured.

priority
Child services are reconfigured in order of decreasing priority. The default priority is 128, so a service that
must be reconfigured before others should be given a higher priority.

Change Sources

When reconfiguring, there is no method by which Buildbot can determine that a new ChangeSource represents
the same source as an existing ChangeSource, but with different configuration parameters. As a result, the change
source manager compares the lists of existing and new change sources using equality, stops any existing sources that
are not in the new list, and starts any new change sources that do not already exist.

ChangeSource inherits ComparableMixin, so change sources are compared based on the attributes described
in their compare_attrs.

If a change source does not make reference to any global configuration parameters, then there is no need to inherit
ReconfigurableServiceMixin, as a simple comparison and startService and stopService will be
sufficient.

If the change source does make reference to global values, e.g., as default values for its parameters, then it must inherit
ReconfigurableServiceMixin to support the case where the global values change.

Schedulers

Schedulers have names, so Buildbot can determine whether a scheduler has been added, removed, or changed during a
reconfig. Old schedulers will be stopped, new schedulers will be started, and both new and existing schedulers will see
a call to reconfigService, if such a method exists. For backward compatibility, schedulers which do not support
reconfiguration will be stopped, and the new scheduler started, when their configuration changes.

3.1. General Documents 305

Buildbot Documentation, Release 0.9.7

If, during a reconfiguration, a new and old scheduler’s fully qualified class names differ, then the old class will be
stopped and the new class started. This supports the case when a user changes, for example, a Nightly scheduler to
a Periodic scheduler without changing the name.

Because Buildbot uses BaseScheduler instances directly in the configuration file, a reconfigured scheduler must
extract its new configuration information from another instance of itself.

Custom Subclasses

Custom subclasses are most often defined directly in the configuration file, or in a Python module that is reloaded with
reload every time the configuration is loaded. Because of the dynamic nature of Python, this creates a new object
representing the subclass every time the configuration is loaded – even if the class definition has not changed.

Note that if a scheduler’s class changes in a reconfig, but the scheduler’s name does not, it will still be treated as a
reconfiguration of the existing scheduler. This means that implementation changes in custom scheduler subclasses will
not be activated with a reconfig. This behavior avoids stopping and starting such schedulers on every reconfig, but can
make development difficult.

One workaround for this is to change the name of the scheduler before each reconfig - this will cause the old scheduler
to be stopped, and the new scheduler (with the new name and class) to be started.

Workers

Similar to schedulers, workers are specified by name, so new and old configurations are first compared by name, and
any workers to be added or removed are noted. Workers for which the fully-qualified class name has changed are also
added and removed. All workers have their reconfigService method called.

This method takes care of the basic worker attributes, including changing the PB registration if necessary. Any
subclasses that add configuration parameters should override reconfigService and update those parameters. As
with Schedulers, because the AbstractWorker instance is given directly in the configuration, on reconfig instances
must extract the configuration from a new instance.

User Managers

Since user managers are rarely used, and their purpose is unclear, they are always stopped and re-started on every
reconfig. This may change in figure versions.

Status Receivers

At every reconfig, all status listeners are stopped and new versions started.

Writing Schedulers

Buildbot schedulers are the process objects responsible for requesting builds.

Schedulers are free to decide when to request builds, and to define the parameters of the builds. Many schedulers
(e.g., SingleBranchScheduler) request builds in response to changes from change sources. Others, such as
Nightly , request builds at specific times. Still others, like ForceScheduler, Try_Jobdir, or Triggerable,
respond to external inputs.

Each scheduler has a unique name, and within a Buildbot cluster, can be active on at most one master. If a scheduler
is configured on multiple masters, it will be inactive on all but one master. This provides a form of non-revertive

306 Chapter 3. Buildbot Development

Buildbot Documentation, Release 0.9.7

failover for schedulers: if an active scheduler’s master fails, an inactive instance of that scheduler on another master
will become active.

API Stability

Until Buildbot reaches version 1.0.0, API stability is not guaranteed. The instructions in this document may change
incompatibly until that time.

Implementing A Scheduler

A scheduler is a subclass of BaseScheduler.

The constructor’s arguments form the scheduler’s configuration. The first two arguments are name and
builderNames, and are positional. The remaining arguments are keyword arguments, and the subclass’s con-
structor should accept **kwargs to pass on to the parent class along with the positional arguments.

class MyScheduler(base.BaseScheduler):
def __init__(self, name, builderNames, arg1=None, arg2=None, **kwargs):

base.BaseScheduler.__init__(self, name, builderNames, **kwargs)
self.arg1 = arg1
self.arg2 = arg2

Schedulers are Twisted services, so they can implement startService and stopService. However, it is more
common for scheduler subclasses to override startActivity and stopActivity instead. See below.

Consuming Changes

A scheduler that needs to be notified of new changes should call startConsumingChanges when it becomes
active. Change consumption will automatically stop when the scheduler becomes inactive.

Once consumption has started, the gotChange method is invoked for each new change. The scheduler is free to do
whatever it likes in this method.

Adding Buildsets

To add a new buildset, subclasses should call one of the parent-class methods with the prefix addBuildsetFor.
These methods call addBuildset after applying behaviors common to all schedulers

Any of these methods can be called at any time.

Handling Reconfiguration

When the configuration for a scheduler changes, Buildbot deactivates, stops and removes the old scheduler, then adds,
starts, and maybe activates the new scheduler. Buildbot determines whether a scheduler has changed by subclassing
ComparableMixin. See the documentation for class for an explanation of the compare_attrs attribute.

Note: In a future version, schedulers will be converted to handle reconfiguration as reconfigurable services, and will
no longer require compare_attrs to be set.

3.1. General Documents 307

Buildbot Documentation, Release 0.9.7

Becoming Active and Inactive

An inactive scheduler should not do anything that might interfere with an active scheduler of the same name.

Simple schedulers can consult the active attribute to determine whether the scheduler is active.

Most schedulers, however, will implement the activate method to begin any processing expected of an active
scheduler. That may involve calling startConsumingChanges, beginning a LoopingCall, or subscribing to
messages.

Any processing begun by the activate method, or by an active scheduler, should be stopped by the deactivate
method. The deactivate method’s Deferred should not fire until such processing has completely stopped. Sched-
ulers must up-call the parent class’s activate and deactivate methods!

Keeping State

The BaseScheduler class provides getState and setState methods to get and set state values for the sched-
uler. Active scheduler instances should use these functions to store persistent scheduler state, such that if they fail or
become inactive, other instances can pick up where they leave off. A scheduler can cache its state locally, only calling
getState when it first becomes active. However, it is best to keep the state as up-to-date as possible, by calling
setState any time the state changes. This prevents loss of state from an unexpected master failure.

Note that the state-related methods do not use locks of any sort. It is up to the caller to ensure that no race conditions
exist between getting and setting state. Generally, it is sufficient to rely on there being only one running instance of a
scheduler, and cache state in memory.

Utilities

Several small utilities are available at the top-level buildbot.util package.

buildbot.util.naturalSort(list)

Parameters list – list of strings

Returns sorted strings

This function sorts strings “naturally”, with embedded numbers sorted numerically. This ordering is good for
objects which might have a numeric suffix, e.g., winworker1, winworker2

buildbot.util.formatInterval(interval)

Parameters interval – duration in seconds

Returns human-readable (English) equivalent

This function will return a human-readable string describing a length of time, given a number of seconds.

class buildbot.util.ComparableMixin
This mixin class adds comparability to a subclass. Use it like this:

class Widget(FactoryProduct, ComparableMixin):
compare_attrs = ('radius', 'thickness')
...

Any attributes not in compare_attrs will not be considered when comparing objects. This is used to imple-
ment Buildbot’s reconfig logic, where a comparison between the new and existing objects is used to determine
whether the new object should replace the existing object. If the comparison shows the objects to be equivalent,
then the old object is left in place. If they differ, the old object is removed from the buildmaster and the new
object added.

308 Chapter 3. Buildbot Development

Buildbot Documentation, Release 0.9.7

For use in configuration objects (schedulers, changesources, etc.), include any attributes which are set in the
constructor based on the user’s configuration. Be sure to also include the superclass’s list, e.g.:

class MyScheduler(base.BaseScheduler):
compare_attrs = base.BaseScheduler.compare_attrs + ('arg1', 'arg2')

A point to note is that the compare_attrs list is cumulative; that is, when a subclass also has a compare_attrs and
the parent class has a compare_attrs, the subclass’ compare_attrs also includes the parent class’ compare_attrs.

This class also implements the buildbot.interfaces.IConfigured interface. The configuration is
automatically generated, being the dict of all compare_attrs.

buildbot.util.safeTranslate(str)

Parameters str – input string

Returns safe version of the input

This function will filter out some inappropriate characters for filenames; it is suitable for adapting strings from
the configuration for use as filenames. It is not suitable for use with strings from untrusted sources.

buildbot.util.epoch2datetime(epoch)

Parameters epoch – an epoch time (integer)

Returns equivalent datetime object

Convert a UNIX epoch timestamp to a Python datetime object, in the UTC timezone. Note that timestamps
specify UTC time (modulo leap seconds and a few other minor details).

buildbot.util.datetime2epoch(datetime)

Parameters datetime – a datetime object

Returns equivalent epoch time (integer)

Convert an arbitrary Python datetime object into a UNIX epoch timestamp.

buildbot.util.UTC
A datetime.tzinfo subclass representing UTC time. A similar class has finally been added to Python in
version 3.2, but the implementation is simple enough to include here. This is mostly used in tests to create
timezone-aware datetime objects in UTC:

dt = datetime.datetime(1978, 6, 15, 12, 31, 15, tzinfo=UTC)

buildbot.util.diffSets(old, new)

Parameters

• old (set or iterable) – old set

• new (set or iterable) – new set

Returns a tuple, (removed, added)

This function compares two sets of objects, returning elements that were added and elements that were removed.
This is largely a convenience function for reconfiguring services.

buildbot.util.makeList(input)

Parameters input – a thing

Returns a list of zero or more things

3.1. General Documents 309

Buildbot Documentation, Release 0.9.7

This function is intended to support the many places in Buildbot where the user can specify either a string or a
list of strings, but the implementation wishes to always consider lists. It converts any string to a single-element
list, None to an empty list, and any iterable to a list. Input lists are copied, avoiding aliasing issues.

buildbot.util.now()

Returns epoch time (integer)

Return the current time, using either reactor.seconds or time.time().

buildbot.util.flatten(list[, types])
Parameters

• list – potentially nested list

• types – An optional iterable of the types to flatten. By default, if unspecified, this flattens
both lists and tuples

Returns flat list

Flatten nested lists into a list containing no other lists. For example:

>>> flatten([[1, 2], 3, [[4], 5]])
[1, 2, 3, 4, 5]

Both lists and tuples are looked at by default.

buildbot.util.flattened_iterator(list[, types])
Parameters

• list – potentially nested list

• types – An optional iterable of the types to flatten. By default, if unspecified, this flattens
both lists and tuples.

Returns iterator over every element that isn’t in types

Returns a generator that doesn’t yield any lists/tuples. For example:

>>> for x in flattened_iterator([[1, 2], 3, [[4]]]):
>>> print x
1
2
3
4

Use this for extremely large lists to keep memory-usage down and improve
→˓performance when you only need to iterate once.

buildbot.util.none_or_str(obj)

Parameters obj – input value

Returns string or None

If obj is not None, return its string representation.

ascii2unicode(str):

Parameters str – string

Returns string as unicode, assuming ascii

310 Chapter 3. Buildbot Development

Buildbot Documentation, Release 0.9.7

This function is intended to implement automatic conversions for user convenience. If given a bytestring, it
returns the string decoded as ASCII (and will thus fail for any bytes 0x80 or higher). If given a unicode string,
it returns it directly.

string2boolean(str):

Parameters str – string

Raises KeyError –

Returns boolean

This function converts a string to a boolean. It is intended to be liberal in what it accepts: case-insensitive,
“true”, “on”, “yes”, “1”, etc. It raises KeyError if the value is not recognized.

toJson(obj):

Parameters obj – object

Returns UNIX epoch timestamp

This function is a helper for json.dump, that allows to convert non-json able objects to json. For now it supports
converting datetime.datetime objects to unix timestamp.

buildbot.util.NotABranch
This is a sentinel value used to indicate that no branch is specified. It is necessary since schedulers and change
sources consider None a valid name for a branch. This is generally used as a default value in a method signature,
and then tested against with is:

if branch is NotABranch:
pass # ...

buildbot.util.in_reactor(fn)
This decorator will cause the wrapped function to be run in the Twisted reactor, with the reactor stopped when
the function completes. It returns the result of the wrapped function. If the wrapped function fails, its traceback
will be printed, the reactor halted, and None returned.

buildbot.util.asyncSleep(secs)
Yield a deferred that will fire with no result after secs seconds. This is the asynchronous equivalent to time.
sleep, and can be useful in tests.

buildbot.util.stripUrlPassword(url)

Parameters url – a URL

Returns URL with any password component replaced with xxxx

Sanitize a URL; use this before logging or displaying a DB URL.

buildbot.util.join_list(maybe_list)

Parameters maybe_list – list, tuple, byte string, or unicode

Returns unicode

If maybe_list is a list or tuple, join it with spaces, casting any strings into unicode using ascii2unicode.
This is useful for configuration parameters that may be strings or lists of strings.

Notifier():
This is a helper for firing mulitple deferreds with the same result.

buildbot.util.wait()
Return a deferred that will fire when when the notifier is notified.

3.1. General Documents 311

Buildbot Documentation, Release 0.9.7

buildbot.util.notify(value)
Fire all the outstanding deferreds with the given value.

buildbot.util.lru

LRUCache(miss_fn, max_size=50):

Parameters

• miss_fn – function to call, with key as parameter, for cache misses. The function should
return the value associated with the key argument, or None if there is no value associated
with the key.

• max_size – maximum number of objects in the cache.

This is a simple least-recently-used cache. When the cache grows beyond the maximum size, the least-recently
used items will be automatically removed from the cache.

This cache is designed to control memory usage by minimizing duplication of objects, while avoiding unneces-
sary re-fetching of the same rows from the database.

All values are also stored in a weak valued dictionary, even after they have expired from the cache. This allows
values that are used elsewhere in Buildbot to “stick” in the cache in case they are needed by another component.
Weak references cannot be used for some types, so these types are not compatible with this class. Note that
dictionaries can be weakly referenced if they are an instance of a subclass of dict.

If the result of the miss_fn is None, then the value is not cached; this is intended to avoid caching negative
results.

This is based on Raymond Hettinger’s implementation (http://code.activestate.com/recipes/498245-lru-and-lfu-
cache-decorators/), licensed under the PSF license, which is GPL-compatible.

buildbot.util.lru.hits
cache hits so far

buildbot.util.lru.refhits
cache misses found in the weak ref dictionary, so far

buildbot.util.lru.misses
cache misses leading to re-fetches, so far

buildbot.util.lru.max_size
maximum allowed size of the cache

buildbot.util.lru.get(key, **miss_fn_kwargs)

Parameters

• key – cache key

• miss_fn_kwargs – keyword arguments to the miss_fn

Returns value via Deferred

Fetch a value from the cache by key, invoking miss_fn(key, **miss_fn_kwargs) if the key is
not in the cache.

Any additional keyword arguments are passed to the miss_fn as keyword arguments; these can supply
additional information relating to the key. It is up to the caller to ensure that this information is functionally
identical for each key value: if the key is already in the cache, the miss_fn will not be invoked, even if
the keyword arguments differ.

buildbot.util.lru.put(key, value)

312 Chapter 3. Buildbot Development

http://code.activestate.com/recipes/498245-lru-and-lfu-cache-decorators/

Buildbot Documentation, Release 0.9.7

Parameters

• key – key at which to place the value

• value – value to place there

Add the given key and value into the cache. The purpose of this method is to insert a new value into the
cache without invoking the miss_fn (e.g., to avoid unnecessary overhead).

buildbot.util.lru.inv()
Check invariants on the cache. This is intended for debugging purposes.

AsyncLRUCache(miss_fn, max_size=50):

Parameters

• miss_fn – This is the same as the miss_fn for class LRUCache, with the difference that
this function must return a Deferred.

• max_size – maximum number of objects in the cache.

This class has the same functional interface as LRUCache, but asynchronous locking is used to ensure that in
the common case of multiple concurrent requests for the same key, only one fetch is performed.

buildbot.util.bbcollections

This package provides a few useful collection objects.

Note: This module used to be named collections, but without absolute imports (PEP 328
(https://www.python.org/dev/peps/pep-0328)), this precluded using the standard library’s collections module.

class buildbot.util.bbcollections.defaultdict
This is a clone of the Python collections.defaultdict for use in Python-2.4. In later versions, this
is simply a reference to the built-in defaultdict, so Buildbot code can simply use buildbot.util.
collections.defaultdict everywhere.

class buildbot.util.bbcollections.KeyedSets
This is a collection of named sets. In principal, it contains an empty set for every name, and you can add things
to sets, discard things from sets, and so on.

>>> ks = KeyedSets()
>>> ks['tim'] # get a named set
set([])
>>> ks.add('tim', 'friendly') # add an element to a set
>>> ks.add('tim', 'dexterous')
>>> ks['tim']
set(['friendly', 'dexterous'])
>>> 'tim' in ks # membership testing
True
>>> 'ron' in ks
False
>>> ks.discard('tim', 'friendly')# discard set element
>>> ks.pop('tim') # return set and reset to empty
set(['dexterous'])
>>> ks['tim']
set([])

This class is careful to conserve memory space - empty sets do not occupy any space.

3.1. General Documents 313

https://www.python.org/dev/peps/pep-0328

Buildbot Documentation, Release 0.9.7

buildbot.util.eventual

This function provides a simple way to say “please do this later”. For example

from buildbot.util.eventual import eventually
def do_what_I_say(what, where):

...
return d

eventually(do_what_I_say, "clean up", "your bedroom")

The package defines “later” as “next time the reactor has control”, so this is a good way to avoid long loops that block
other activity in the reactor.

buildbot.util.eventual.eventually(cb, *args, **kwargs)

Parameters

• cb – callable to invoke later

• args – args to pass to cb

• kwargs – kwargs to pass to cb

Invoke the callable cb in a later reactor turn.

Callables given to eventually are guaranteed to be called in the same order as the calls to eventually –
writing eventually(a); eventually(b) guarantees that a will be called before b.

Any exceptions that occur in the callable will be logged with log.err(). If you really want to ignore them,
provide a callable that catches those exceptions.

This function returns None. If you care to know when the callable was run, be sure to provide a callable that
notifies somebody.

buildbot.util.eventual.fireEventually(value=None)

Parameters value – value with which the Deferred should fire

Returns Deferred

This function returns a Deferred which will fire in a later reactor turn, after the current call stack has been
completed, and after all other Deferreds previously scheduled with eventually . The returned Deferred will
never fail.

buildbot.util.eventual.flushEventualQueue()

Returns Deferred

This returns a Deferred which fires when the eventual-send queue is finally empty. This is useful for tests and
other circumstances where it is useful to know that “later” has arrived.

buildbot.util.debounce

It’s often necessary to perform some action in response to a particular type of event. For example, steps need to update
their status after updates arrive from the worker. However, when many events arrive in quick succession, it’s more
efficient to only perform the action once, after the last event has occurred.

The debounce.method(wait) decorator is the tool for the job.

buildbot.util.debounce.method(wait)

Parameters

• wait – time to wait before invoking, in seconds

314 Chapter 3. Buildbot Development

Buildbot Documentation, Release 0.9.7

• get_reactor – A callable that takes the underlying instance and returns the reactor to
use. Defaults to instance.master.reactor.

Returns a decorator that debounces the underlying method. The underlying method must take no arguments
(except self).

For each call to the decorated method, the underlying method will be invoked at least once within wait seconds
(plus the time the method takes to execute). Calls are “debounced” during that time, meaning that multiple calls
to the decorated method will result in a single invocation.

Note: This functionality is similar to Underscore’s debounce, except that the Underscore method resets its
timer on every call.

The decorated method is an instance of Debouncer, allowing it to be started and stopped. This is useful when
the method is a part of a Buildbot service: call method.start() from startService and method.
stop() from stopService, handling its Deferred appropriately.

class buildbot.util.debounce.Debouncer

stop()

Returns Deferred

Stop the debouncer. While the debouncer is stopped, calls to the decorated method will be ignored. If
a call is pending when stop is called, that call will occur immediately. When the Deferred that stop
returns fires, the underlying method is not executing.

start()
Start the debouncer. This reverses the effects of stop. This method can be called on a started debouncer
without issues.

buildbot.util.poll

Many Buildbot services perform some periodic, asynchronous operation. Change sources, for example, contact the
repositories they monitor on a regular basis. The tricky bit is, the periodic operation must complete before the service
stops.

The @poll.method decorator makes this behavior easy and reliable.

buildbot.util.poll.method()
This decorator replaces the decorated method with a Poller instance configured to call the decorated method
periodically. The poller is initially stopped, so peroidic calls will not begin until its start method is called.
The start polling interval is specified when the poller is started.

If the decorated method fails or raises an exception, the Poller logs the error and re-schedules the call for the
next interval.

If a previous invocation of the method has not completed when the interval expires, then the next invocation is
skipped and the interval timer starts again.

A common idiom is to call start and stop from startService and stopService:

class WatchThings(object):

@poll.method
def watch(self):

d = self.beginCheckingSomething()
return d

3.1. General Documents 315

Buildbot Documentation, Release 0.9.7

def startService(self):
self.watch.start(interval=self.pollingInterval, now=False)

def stopService(self):
return self.watch.stop()

class buildbot.util.poll.Poller

start(interval=N, now=False)

Parameters

• interval – time, in seconds, between invocations

• now – if true, call the decorated method immediately on startup.

Start the poller.

stop()

Returns Deferred

Stop the poller. The returned Deferred fires when the decorated method is complete.

__call__()
Force a call to the decorated method now. If the decorated method is currently running, another call will
begin as soon as it completes.

buildbot.util.maildir

Several Buildbot components make use of maildirs (http://www.courier-mta.org/maildir.html) to hand off messages
between components. On the receiving end, there’s a need to watch a maildir for incoming messages and trigger some
action when one arrives.

class buildbot.util.maildir.MaildirService(basedir)

param basedir (optional) base directory of the maildir

A MaildirService instance watches a maildir for new messages. It should be a child service of some
MultiService instance. When running, this class uses the linux dirwatcher API (if available) or polls for new
files in the ‘new’ maildir subdirectory. When it discovers a new message, it invokes its messageReceived
method.

To use this class, subclass it and implement a more interesting messageReceived function.

setBasedir(basedir)

Parameters basedir – base directory of the maildir

If no basedir is provided to the constructor, this method must be used to set the basedir before the
service starts.

messageReceived(filename)

Parameters filename – unqualified filename of the new message

This method is called with the short filename of the new message. The full name of the new file can be
obtained with os.path.join(maildir, 'new', filename). The method is un-implemented
in the MaildirService class, and must be implemented in subclasses.

moveToCurDir(filename)

316 Chapter 3. Buildbot Development

http://www.courier-mta.org/maildir.html

Buildbot Documentation, Release 0.9.7

Parameters filename – unqualified filename of the new message

Returns open file object

Call this from messageReceived to start processing the message; this moves the message file to the
‘cur’ directory and returns an open file handle for it.

buildbot.util.misc

buildbot.util.misc.deferredLocked(lock)

Parameters lock – a twisted.internet.defer.DeferredLock instance or a string
naming an instance attribute containing one

This is a decorator to wrap an event-driven method (one returning a Deferred) in an acquire/release pair of a
designated DeferredLock. For simple functions with a static lock, this is as easy as:

someLock = defer.DeferredLock()

@util.deferredLocked(someLock)
def someLockedFunction():

..
return d

For class methods which must access a lock that is an instance attribute, the lock can be specified by a string,
which will be dynamically resolved to the specific instance at runtime:

def __init__(self):
self.someLock = defer.DeferredLock()

@util.deferredLocked('someLock')
def someLockedFunction():

..
return d

buildbot.util.misc.cancelAfter(seconds, deferred)

Parameters

• seconds – timeout in seconds

• deferred – deferred to cancel after timeout expires

Returns the deferred passed to the function

Cancel the given deferred after the given time has elapsed, if it has not already been fired. Whent his occurs, the
deferred’s errback will be fired with a twisted.internet.defer.CancelledError failure.

buildbot.util.netstrings

Similar to maildirs, netstrings (http://cr.yp.to/proto/netstrings.txt) are used occasionally in Buildbot to encode data for
interchange. While Twisted supports a basic netstring receiver protocol, it does not have a simple way to apply that to
a non-network situation.

class buildbot.util.netstrings.NetstringParser
This class parses strings piece by piece, either collecting the accumulated strings or invoking a callback for each
one.

feed(data)

3.1. General Documents 317

http://cr.yp.to/proto/netstrings.txt

Buildbot Documentation, Release 0.9.7

Parameters data – a portion of netstring-formatted data

Raises twisted.protocols.basic.NetstringParseError

Add arbitrarily-sized data to the incoming-data buffer. Any complete netstrings will trigger a call to the
stringReceived method.

Note that this method (like the Twisted class it is based on) cannot detect a trailing partial netstring at EOF
- the data will be silently ignored.

stringReceived(string):

Parameters string – the decoded string

This method is called for each decoded string as soon as it is read completely. The default implementation
appends the string to the strings attribute, but subclasses can do anything.

strings
The strings decoded so far, if stringReceived is not overridden.

buildbot.util.sautils

This module contains a few utilities that are not included with SQLAlchemy.

class buildbot.util.sautils.InsertFromSelect(table, select)

Parameters

• table – table into which insert should be performed

• select – select query from which data should be drawn

This class is taken directly from SQLAlchemy’s compiler.html (http://www.sqlalchemy.org/docs/core/compiler.html#compiling-
sub-elements-of-a-custom-expression-construct), and allows a Pythonic representation of INSERT INTO ..
SELECT .. queries.

buildbot.util.sautils.sa_version()
Return a 3-tuple representing the SQLAlchemy version. Note that older versions that did not have a
__version__ attribute are represented by (0,0,0).

buildbot.util.pathmatch

class buildbot.util.pathmatch.Matcher
This class implements the path-matching algorithm used by the data API.

Patterns are tuples of strings, with strings beginning with a colon (:) denoting variables. A character can precede
the colon to indicate the variable type:

•i specifies an identifier (identifier).

•n specifies a number (parseable by int).

A tuple of strings matches a pattern if the lengths are identical, every variable matches and has the correct type,
and every non-variable pattern element matches exactly.

A matcher object takes patterns using dictionary-assignment syntax:

ep = ChangeEndpoint()
matcher[('change', 'n:changeid')] = ep

and performs matching using the dictionary-lookup syntax:

318 Chapter 3. Buildbot Development

http://www.sqlalchemy.org/docs/core/compiler.html#compiling-sub-elements-of-a-custom-expression-construct

Buildbot Documentation, Release 0.9.7

changeEndpoint, kwargs = matcher[('change', '13')]
-> (ep, {'changeid': 13})

where the result is a tuple of the original assigned object (the Change instance in this case) and the values of
any variables in the path.

iterPatterns()
Returns an iterator which yields all patterns in the matcher as tuples of (pattern, endpoint).

buildbot.util.topicmatch

class buildbot.util.topicmatch.TopicMatcher(topics)

Parameters topics (list) – topics to match

This class implements the AMQP-defined syntax: routing keys are treated as dot-separated sequences of words
and matched against topics. A star (*) in the topic will match any single word, while an octothorpe (#) will
match zero or more words.

matches(routingKey)

Parameters routingKey (string) – routing key to examine

Returns True if the routing key matches a topic

buildbot.util.subscription

The classes in the buildbot.util.subscription module are used for master-local subscriptions. In the near
future, all uses of this module will be replaced with message-queueing implementations that allow subscriptions and
subscribers to span multiple masters.

buildbot.util.croniter

This module is a copy of https://github.com/taichino/croniter, and provides support for converting cron-like time spec-
ifications into actual times.

buildbot.util.state

The classes in the buildbot.util.subscription module are used for dealing with object state stored in the
database.

class buildbot.util.state.StateMixin
This class provides helper methods for accessing the object state stored in the database.

name
This must be set to the name to be used to identify this object in the database.

master
This must point to the BuildMaster object.

getState(name, default)

Parameters

• name – name of the value to retrieve

• default – (optional) value to return if name is not present

3.1. General Documents 319

https://github.com/taichino/croniter

Buildbot Documentation, Release 0.9.7

Returns state value via a Deferred

Raises

• KeyError – if name is not present and no default is given

• TypeError – if JSON parsing fails

Get a named state value from the object’s state.

getState(name, value)

Parameters

• name – the name of the value to change

• value – the value to set - must be a JSONable object

• returns – Deferred

Raises TypeError – if JSONification fails

Set a named state value in the object’s persistent state. Note that value must be json-able.

buildbot.util.identifiers

This module makes it easy to manipulate identifiers.

buildbot.util.identifiers.isIdentifier(maxLength, object)

Parameters

• maxLength – maximum length of the identifier

• object – object to test for identifier-ness

Returns boolean

Is object a identifier?

buildbot.util.identifiers.forceIdentifier(maxLength, str)

Parameters

• maxLength – maximum length of the identifier

• str – string to coerce to an identifier

Returns identifer of maximum length maxLength

Coerce a string (assuming ASCII for bytestrings) into an identifier. This method will replace any invalid char-
acters with _ and truncate to the given length.

buildbot.util.identifiers.incrementIdentifier(maxLength, str)

Parameters

• maxLength – maximum length of the identifier

• str – identifier to increment

Returns identifer of maximum length maxLength

Raises ValueError if no suitable identifier can be constructed

“Increment” an identifier by adding a numeric suffix, while keeping the total length limited. This is useful when
selecting a unique identifier for an object. Maximum-length identifiers like _999999 cannot be incremented
and will raise ValueError.

320 Chapter 3. Buildbot Development

Buildbot Documentation, Release 0.9.7

buildbot.util.lineboundaries

class buildbot.util.lineboundaries.LineBoundaryFinder
This class accepts a sequence of arbitrary strings and invokes a callback only with complete (newline-terminated)
substrings. It buffers any partial lines until a subsequent newline is seen. It considers any of \r, \n, and \r\n
to be newlines. Because of the ambiguity of an append operation ending in the character \r (it may be a bare
\r or half of \r\n), the last line of such an append operation will be buffered until the next append or flush.

Parameters callback – asynchronous function to call with newline-terminated strings

append(text)

Parameters text – text to append to the boundary finder

Returns Deferred

Add additional text to the boundary finder. If the addition of this text completes at least one line, the
callback will be invoked with as many complete lines as possible.

flush()

Returns Deferred

Flush any remaining partial line by adding a newline and invoking the callback.

buildbot.util.service

This module implements some useful subclasses of Twisted services.

The first two classes are more robust implementations of two Twisted classes, and should be used universally in
Buildbot code.

class buildbot.util.service.AsyncMultiService
This class is similar to twisted.application.service.MultiService, except that it handles De-
ferreds returned from child services startService and stopService methods.

Twisted’s service implementation does not support asynchronous startService methods. The reasoning is
that all services should start at process startup, with no need to coordinate between them. For Buildbot, this is
not sufficient. The framework needs to know when startup has completed, so it can begin scheduling builds.
This class implements the desired functionality, with a parent service’s startService returning a Deferred
which will only fire when all child services startService methods have completed.

This class also fixes a bug with Twisted’s implementation of stopService which ignores failures in the
stopService process. With AsyncMultiService, any errors in a child’s stopService will be prop-
agated to the parent’s stopService method.

class buildbot.util.service.AsyncService
This class is similar to twisted.application.service.Service, except that its
setServiceParent method will return a Deferred. That Deferred will fire after the startService
method has completed, if the service was started because the new parent was already running.

Some services in buildbot must have only one “active” instance at any given time. In a single-master configuration,
this requirement is trivial to maintain. In a multiple-master configuration, some arbitration is required to ensure that
the service is always active on exactly one master in the cluster.

For example, a particular daily scheduler could be configured on multiple masters, but only one of them should actually
trigger the required builds.

class buildbot.util.service.ClusteredService
A base class for a service that must have only one “active” instance in a buildbot configuration.

3.1. General Documents 321

Buildbot Documentation, Release 0.9.7

Each instance of the service is started and stopped via the usual twisted startService and stopService
methods. This utility class hooks into those methods in order to run an arbitration strategy to pick the one
instance that should actually be “active”.

The arbitration strategy is implemented via a polling loop. When each service instance starts, it immediately
offers to take over as the active instance (via _claimService).

If successful, the activate method is called. Once active, the instance remains active until it is explicitly
stopped (eg, via stopService) or otherwise fails. When this happens, the deactivate method is invoked
and the “active” status is given back to the cluster (via _unclaimService).

If another instance is already active, this offer fails, and the instance will poll periodically to try again. The
polling strategy helps guard against active instances that might silently disappear and leave the service without
any active instance running.

Subclasses should use these methods to hook into this activation scheme:

activate()
When a particular instance of the service is chosen to be the one “active” instance, this method is invoked.
It is the corollary to twisted’s startService.

deactivate()
When the one “active” instance must be deactivated, this method is invoked. It is the corollary to twisted’s
stopService.

isActive()
Returns whether this particular instance is the active one.

The arbitration strategy is implemented via the following required methods:

_getServiceId()
The “service id” uniquely represents this service in the cluster. Each instance of this service must have this
same id, which will be used in the arbitration to identify candidates for activation. This method may return
a Deferred.

_claimService()
An instance is attempting to become the one active instance in the cluster. This method must return True
or False (optionally via a Deferred) to represent whether this instance’s offer to be the active one was
accepted. If this returns True, the activate method will be called for this instance.

_unclaimService()
Surrender the “active” status back to the cluster and make it available for another instance. This will
only be called on an instance that successfully claimed the service and has been activated and after its
deactivate has been called. Therefore, in this method it is safe to reassign the “active” status to
another instance. This method may return a Deferred.

class buildbot.util.service.SharedService
This class implements a generic Service that needs to be instantiated only once according to its parameters.
It is a common use case to need this for accessing remote services. Having a shared service allows to limit
the number of simultaneous access to the same remote service. Thus, several completely independent Buildbot
services can use that SharedService to access the remote service, and automatically synchronize themselves
to not overwhelm it.

__init__(self, *args, **kwargs)
Constructor of the service.

Note that unlike BuildbotService, SharedService is not reconfigurable and uses the classical
constructor method.

Reconfigurability would mean to add some kind of reference counting of the users, which will make the de-
sign much more complicated to use. This means that the SharedService will not be destroyed when there is

322 Chapter 3. Buildbot Development

Buildbot Documentation, Release 0.9.7

no more users, it will be destroyed at the master’s stopService It is important that those SharedService
life cycles are properly handled. Twisted will indeed wait for any thread pool to finish at master stop, which
will not happen if the thread pools are not properly closed.

The lifecycle of the SharedService is the same as a service, it must implement startService and stopService
in order to allocate and free its resources.

getName(cls, *args, **kwargs)
Class method. Takes same arguments as the constructor of the service. Get a unique name for that instance
of a service. This returned name is the key inside the parent’s service dictionary that is used to decide if the
instance has already been created before or if there is a need to create a new object. Default implementation
will hash args and kwargs and use <classname>_<hash> as the name.

getService(cls, parentService, *args, **kwargs)

Parameters parentService – an AsyncMultiService where to lookup and register the
SharedService (usually the root service, the master)

Returns instance of the service via Deferred

Class method. Takes same arguments as the constructor of the service (plus the parentService at the
beginning of the list). Construct an instance of the service if needed, and place it at the beginning of the
parentService service list. Placing it at the beginning will guarantee that the SharedService will be
stopped after the other services.

class buildbot.util.service.BuildbotService
This class is the combinations of all Service classes implemented in buildbot. It is Async, MultiService, and
Reconfigurable, and designed to be eventually the base class for all buildbot services. This class makes it easy
to manage (re)configured services.

The design separate the check of the config and the actual configuration/start. A service sibling is a configured
object that has the same name of a previously started service. The sibling configuration will be used to configure
the running service.

Service lifecycle is as follow:

•Buildbot master start

•Buildbot is evaluating the configuration file. BuildbotServices are created, and checkConfig() are called
by the generic constructor.

•If everything is fine, all services are started. BuildbotServices startService() is called, and call reconfigSer-
vice() for the first time.

•User reconfigures buildbot.

•Buildbot is evaluating the configuration file. BuildbotServices siblings are created, and checkConfig() are
called by the generic constructor.

•BuildbotServiceManager is figuring out added services, removed services, unchanged services

•BuildbotServiceManager calls stopService() for services that disappeared from the configuration.

•BuildbotServiceManager calls startService() like in buildbot start phase for services that appeared from
the configuration.

•BuildbotServiceManager calls reconfigService() for the second time for services that have their configura-
tion changed.

__init__(self, *args, **kwargs)
Constructor of the service. The constructor initialize the service, and store the config arguments in private
attributes.

This should not be overridden by subclasses, as they should rather override checkConfig.

3.1. General Documents 323

Buildbot Documentation, Release 0.9.7

checkConfig(self, *args, **kwargs)
Please override this method to check the parameters of your config. Please use buildbot.config.
error for error reporting. You can replace them *args, **kwargs by actual constructor like ar-
guments with default args, and it have to match self.reconfigService This method is synchronous, and
executed in the context of the master.cfg. Please don’t block, or use deferreds in this method. Remem-
ber that the object that runs checkConfig is not always the object that is actually started. The checked
configuration can be passed to another sibling service. Any actual resource creation shall be handled in
reconfigService() or startService()

reconfigService(self, *args, **kwargs)
This method is called at buildbot startup, and buildbot reconfig. *args and **kwargs are the configuration
arguments passed to the constructor in master.cfg. You can replace them *args, **kwargs by actual
constructor like arguments with default args, and it have to match self.checkConfig

Returns a deferred that should fire when the service is ready. Builds are not started until all services are
configured.

BuildbotServices must be aware that during reconfiguration, their methods can still be called by running
builds. So they should atomically switch old configuration and new configuration, so that the service is
always available.

If this method raises NotImplementedError, it means the service is legacy, and do not support recon-
figuration. The BuildbotServiceManager parent, will detect this, and swap old service with new
service. This behaviour allow smooth transition of old code to new reconfigurable service lifecycle but
shall not be used for new code.

reconfigServiceWithSibling(self, sibling)
Internal method that finds the configuration bits in a sibling, an object with same class that is supposed
to replace it from a new configuration. We want to reuse the service started at master startup and just
reconfigure it. This method handles necessary steps to detect if the config has changed, and eventually call
self.reconfigService()

Advanced users can derive this class to make their own services that run inside buildbot, and follow the appli-
cation lifecycle of buildbot master.

Such services are singletons accessible in nearly every objects of buildbot (buildsteps, status, changesources,
etc) using self.master.namedServices[’<nameOfYourService’].

As such, they can be used to factorize access to external services, available e.g using a REST api. Having a
single service will help with caching, and rate-limiting access of those APIs.

Here is an example on how you would integrate and configure a simple service in your master.cfg:

class MyShellCommand(ShellCommand):

def getResultSummary(self):
access the service attribute
service = self.master.namedServices['myService']
return dict(step=u"arg value: %d" % (service.arg1,))

class MyService(BuildbotService):
name = "myService"

def checkConfig(self, arg1):
if not isinstance(arg1, int):

config.error("arg1 must be an integer while it is %r" % (arg1,))
return

if arg1 < 0:
config.error("arg1 must be positive while it is %d" % (arg1,))

324 Chapter 3. Buildbot Development

Buildbot Documentation, Release 0.9.7

def reconfigService(self, arg1):
self.arg1 = arg1
return defer.succeed(None)

c['schedulers'] = [
ForceScheduler(

name="force",
builderNames=["testy"])]

f = BuildFactory()
f.addStep(MyShellCommand(command='echo hei'))
c['builders'] = [

BuilderConfig(name="testy",
workernames=["local1"],
factory=f)]

c['services'] = [
MyService(arg1=1)

]

buildbot.util.httpclientservice

class buildbot.util.service.HTTPClientService
This class implements a SharedService for doing http client access. The module automatically
chooses from txrequests (https://pypi.python.org/pypi/txrequests) and treq (https://pypi.python.org/pypi/treq)
and uses whichever is installed. It provides minimalistic API similar to the one from txrequests
(https://pypi.python.org/pypi/txrequests) and treq (https://pypi.python.org/pypi/treq). Having a SharedService
for this allows to limits the number of simultaneous connection for the same host. While twisted application
can managed thousands of connections at the same time, this is often not the case for the services buildbot con-
trols. Both txrequests (https://pypi.python.org/pypi/txrequests) and treq (https://pypi.python.org/pypi/treq) use
keep-alive connection polling. Lots of HTTP REST API will however force a connection close in the end of a
transaction.

Note: The API described here is voluntary minimalistic, and reflects what is tested. As most of this module is
implemented as a pass-through to the underlying libraries, other options can work but have not been tested to
work in both backends. If there is a need for more functionality, please add new tests before using them.

static getService(master, base_url, auth=None)

Parameters

• master – the instance of the master service (available in self.master for all the
BuildbotService instances)

• base_url – The base http url of the service to access. e.g. http://github.com/

• auth – Authentication information. If auth is a tuple then BasicAuth will be used.
e.g ('user', 'passwd') It can also be a requests.auth authentication plugin.
In this case txrequests (https://pypi.python.org/pypi/txrequests) will be forced, and treq
(https://pypi.python.org/pypi/treq) cannot be used.

Returns instance of :HTTPClientService

Get an instance of the SharedService. There is one instance per base_url and auth.

The constructor initialize the service, and store the config arguments in private attributes.

3.1. General Documents 325

https://pypi.python.org/pypi/txrequests
https://pypi.python.org/pypi/treq
https://pypi.python.org/pypi/txrequests
https://pypi.python.org/pypi/treq
https://pypi.python.org/pypi/txrequests
https://pypi.python.org/pypi/treq
https://pypi.python.org/pypi/txrequests
https://pypi.python.org/pypi/treq

Buildbot Documentation, Release 0.9.7

This should not be overridden by subclasses, as they should rather override checkConfig.

get(endpoint, params=None)

Parameters

• endpoint – endpoint relative to the base_url (starts with /)

• params – optional dictionary that will be encoded in the query part of the url (e.g. ?
param1=foo)

Returns implementation of :IHTTPResponse via deferred

Performs a HTTP GET

delete(endpoint, params=None)

Parameters

• endpoint – endpoint relative to the base_url (starts with /)

• params – optional dictionary that will be encoded in the query part of the url (e.g. ?
param1=foo)

Returns implementation of :IHTTPResponse via deferred

Performs a HTTP DELETE

post(endpoint, data=None, json=None, params=None)

Parameters

• endpoint – endpoint relative to the base_url (starts with /)

• data – optional dictionary that will be encoded in the body of the http requests as
application/x-www-form-urlencoded

• json – optional dictionary that will be encoded in the body of the http requests as
application/json

• params – optional dictionary that will be encoded in the query part of the url (e.g. ?
param1=foo)

Returns implementation of :IHTTPResponse via deferred

Performs a HTTP POST

Note: json and data cannot be used at the same time.

put(endpoint, data=None, json=None, params=None)

Parameters

• endpoint – endpoint relative to the base_url (starts with /)

• data – optional dictionary that will be encoded in the body of the http requests as
application/x-www-form-urlencoded

• json – optional dictionary that will be encoded in the body of the http requests as
application/json

• params – optional dictionary that will be encoded in the query part of the url (e.g. ?
param1=foo)

Returns implementation of :IHTTPResponse via deferred

326 Chapter 3. Buildbot Development

Buildbot Documentation, Release 0.9.7

Performs a HTTP PUT

Note: json and data cannot be used at the same time.

class buildbot.util.service.IHTTPResponse

Note: IHTTPResponse is a subset of treq (https://pypi.python.org/pypi/treq) Response API de-
scribed here (https://treq.readthedocs.io/en/latest/api.html#module-treq.response) The API it is voluntarily
minimalistic and reflects what is tested and reliable to use with the three backends (including fake).
The api is a subset of the treq (https://pypi.python.org/pypi/treq) API, which is itself a superset of
twisted IResponse API (https://twistedmatrix.com/documents/current/api/twisted.web.iweb.IResponse.html).
treq (https://pypi.python.org/pypi/treq) is thus implemented as passthrough.

Notably:

•There is no api to automatically decode content, as this is not implemented the same in both backends.

•There is no api to stream content as the two libraries have very different way for doing it, and we do not
see use-case where buildbot would need to transfer large content to the master.

content()

Returns raw (bytes) content of the response via deferred

json()

Returns json decoded content of the response via deferred

code

Returns http status code of the request’s response (e.g 200)

buildbot.test.fake.httpclientservice

class buildbot.util.service.HTTPClientService
This class implements a fake version of the buildbot.util.httpclientservice.
HTTPClientService that needs to be used for testing services which needs http client access. It
implements the same APIs as buildbot.util.httpclientservice.HTTPClientService, plus
one that should be used to register the expectations. It should be registered by the test case before the tested
service actually requests an HTTPClientService instance, with the same parameters. It will then replace the
original implementation automatically (no need to patch anything). The testing methodology is based on
AngularJS ngMock (https://docs.angularjs.org/api/ngMock/service/$httpBackend).

getFakeService(cls, master, case, *args, **kwargs):

Parameters

• master – the instance of a fake master service

• case – a twisted.python.unittest.TestCase instance

getFakeService returns a fake HTTPClientService, and should be used in place of
getService.

on top of getService it will make sure the original HTTPClientService is not called, and assert
that all expected http requests have been described in the test case.

expect(self, method, ep, params=None, data=None, json=None, code=200,

3.1. General Documents 327

https://pypi.python.org/pypi/treq
https://treq.readthedocs.io/en/latest/api.html#module-treq.response
https://pypi.python.org/pypi/treq
https://twistedmatrix.com/documents/current/api/twisted.web.iweb.IResponse.html
https://pypi.python.org/pypi/treq
https://docs.angularjs.org/api/ngMock/service/\protect \T1\textdollar httpBackend

Buildbot Documentation, Release 0.9.7

content=None, content_json=None):

Parameters

• method – expected HTTP method

• ep – expected endpoint

• params – optional expected query parameters

• data – optional expected non-json data (bytes)

• json – optional expected json data (dictionary or list or string)

• code – optional http code that will be received

• content – optional content that will be received

• content_json – optional content encoded in json that will be received

Records an expectation of HTTP requests that will happen during the test. The order of the requests is
important. All the request expectation must be defined in the test.

example:

from twisted.internet import defer
from twisted.trial import unittest

from buildbot.test.fake import httpclientservice as fakehttpclientservice
from buildbot.util import httpclientservice
from buildbot.util import service

class myTestedService(service.BuildbotService):
name = 'myTestedService'

@defer.inlineCallbacks
def reconfigService(self, baseurl):

self._http = yield httpclientservice.HTTPClientService.
→˓getService(self.master, baseurl)

@defer.inlineCallbacks
def doGetRoot(self):

res = yield self._http.get("/")
note that at this point, only the http response headers are received
if res.code != 200:

raise Exception("%d: server did not succeed" % (res.code))
res_json = yield res.json()
res.json() returns a deferred to account for the time needed to

→˓fetch the entire body
defer.returnValue(res_json)

class Test(unittest.SynchronousTestCase):

def setUp(self):
baseurl = 'http://127.0.0.1:8080'
self.parent = service.MasterService()
self._http = self.successResultOf(fakehttpclientservice.

→˓HTTPClientService.getFakeService(
self.parent, self, baseurl))

self.tested = myTestedService(baseurl)

328 Chapter 3. Buildbot Development

Buildbot Documentation, Release 0.9.7

self.successResultOf(self.tested.setServiceParent(self.parent))
self.successResultOf(self.parent.startService())

def test_root(self):
self._http.expect("get", "/", content_json={'foo': 'bar'})

response = self.successResultOf(self.tested.doGetRoot())
self.assertEqual(response, {'foo': 'bar'})

def test_root_error(self):
self._http.expect("get", "/", content_json={'foo': 'bar'}, code=404)

response = self.failureResultOf(self.tested.doGetRoot())
self.assertEqual(response.getErrorMessage(), '404: server did not

→˓succeed')

buildbot.util.ssl

This module is a copy of twisted.internet.ssl except it won’t crash with ImportError if pyopenssl is
not installed. If you need to use twisted.internet.ssl, please instead use buildbot.util.ssl, and call
ssl.ensureHasSSL in checkConfig to provide helpful message to the user, only if he enabled SSL for your
plugin.

buildbot.util.service.ensureHasSSL(plugin_name)

Parameters plugin_name – name of the plugin. Usually self.__class__.__name__

Call this function to provide helpful config error to the user in case of OpenSSL not installed.

buildbot.util.service.skipUnless(f)

Parameters f – decorated test

Test decorator which will skip the test if OpenSSL is not installed.

Build Result Codes

Buildbot represents the status of a step, build, or buildset using a set of numeric constants. From Python, these
constants are available in the module buildbot.process.results, but the values also appear in the database
and in external tools, so the values are fixed.

buildbot.process.results.SUCCESS
Value: 0; color: green; a successful run.

buildbot.process.results.WARNINGS
Value: 1; color: orange; a successful run, with some warnings.

buildbot.process.results.FAILURE
Value: 2; color: red; a failed run, due to problems in the build itself, as opposed to a Buildbot misconfiguration
or bug.

buildbot.process.results.SKIPPED
Value: 3; color: white; a run that was skipped – usually a step skipped by doStepIf (see Common Parameters)

buildbot.process.results.EXCEPTION
Value: 4; color: purple; a run that failed due to a problem in Buildbot itself.

buildbot.process.results.RETRY
Value: 5; color: purple; a run that should be retried, usually due to a worker disconnection.

3.1. General Documents 329

Buildbot Documentation, Release 0.9.7

buildbot.process.results.CANCELLED
Value: 6; color: pink; a run that was cancelled by the user.

buildbot.process.results.Results
A dictionary mapping result codes to their lowercase names.

buildbot.process.results.worst_status(a, b)
This function takes two status values, and returns the “worst” status of the two. This is used to aggregate step
statuses into build statuses, and build statuses into buildset statuses.

computeResultAndTermination(obj, result, previousResult):

Parameters

• obj – an object with the attributes of ResultComputingConfigMixin

• result – the new result

• previousResult – the previous aggregated result

Building on worst_status, this function determines what the aggregated overall status is, as well as whether
the attempt should be terminated, based on the configuration in obj.

class buildbot.process.results.ResultComputingConfigMixin
This simple mixin is intended to help implement classes that will use computeResultAndTermination.
The class has, as class attributes, the result computing configuration parameters with default values:

haltOnFailure

flunkOnWarnings

flunkOnFailure

warnOnWarnings

warnOnFailure

The names of these attributes are available in the following attribute:

resultConfig

WWW Server

History and Motivation

One of the goals of the ‘nine’ project is to rework Buildbot’s web services to use a more modern, consistent design
and implement UI features in client-side JavaScript instead of server-side Python.

The rationale behind this is that a client side UI relieves pressure on the server while being more responsive for the
user. The web server only concentrates on serving data via a REST interface wrapping the Data API. This removes
a lot of sources of latency where, in previous versions, long synchronous calculations were made on the server to
generate complex pages.

Another big advantage is live updates of status pages, without having to poll or reload. The new system uses Comet
techniques in order to relay Data API events to connected clients.

Finally, making web services an integral part of Buildbot, rather than a status plugin, allows tighter integration with
the rest of the application.

330 Chapter 3. Buildbot Development

Buildbot Documentation, Release 0.9.7

Design Overview

The www service exposes three pieces via HTTP:

• A REST interface wrapping Data API;

• HTTP-based messaging protocols wrapping the Messaging and Queues interface; and

• Static resources implementing the client-side UI.

The REST interface is a very thin wrapper: URLs are translated directly into Data API paths, and results are returned
directly, in JSON format. It is based on JSON API (http://jsonapi.org/). Control calls are handled with a simplified
form of JSONRPC 2.0 (http://www.jsonrpc.org/specification).

The message interface is also a thin wrapper around Buildbot’s MQ mechanism. Clients can subscribe to messages,
and receive copies of the messages, in JSON, as they are received by the buildmaster.

The client-side UI is an AngularJS application. Buildbot uses the Python setuptools entry-point mechanism to allow
multiple packages to be combined into a single client-side experience. This allows frontend developers and users to
build custom components for the web UI without hacking Buildbot itself.

Python development and AngularJS development are very different processes, requiring different environment require-
ments and skillsets. To maximize hackability, Buildbot separates the two cleanly. An experienced AngularJS hacker
should be quite comfortable in the www/ (https://github.com/buildbot/buildbot/blob/master/www/) directory, with a
few exceptions described below. Similarly, an experienced Python hacker can simply download the pre-built web UI
(from pypi!) and never venture near the www/ (https://github.com/buildbot/buildbot/blob/master/www/) directory.

URLs

The Buildbot web interface is rooted at its base URL, as configured by the user. It is entirely possible for this base
URL to contain path components, e.g., http://build.example.org/buildbot/, if hosted behind an HTTP
proxy. To accomplish this, all URLs are generated relative to the base URL.

Overall, the space under the base URL looks like this:

• / – The HTML document that loads the UI

• /api/v{version} – The root of the REST APIs, each versioned numerically. Users should, in general, use
the latest version.

• /ws – The WebSocket endpoint to subscribe to messages from the mq system.

• /sse – The server sent event (http://en.wikipedia.org/wiki/Server-sent_events) endpoint where clients can sub-
scribe to messages from the mq system.

REST API

Rest API is described in its own section.

Server-Side Session

The web server keeps a session state for each user, keyed on a session cookie. This session is available from
request.getSession(), and data is stored as attributes. The following attributes may be available:

user_info A dictionary maintained by the authentication subsystem. It may have the following information about
the logged-in user:

• username

3.1. General Documents 331

http://jsonapi.org/
http://www.jsonrpc.org/specification
https://github.com/buildbot/buildbot/blob/master/www/
https://github.com/buildbot/buildbot/blob/master/www/
http://en.wikipedia.org/wiki/Server-sent_events

Buildbot Documentation, Release 0.9.7

• email

• full_name

• groups (a list of group names)

As well as additional fields specific to the user info implementation.

The contents of the user_info dictionary are made available to the UI as config.user.

Message API

Currently messages are implemented with two protocols: WebSockets and server sent event
(http://en.wikipedia.org/wiki/Server-sent_events). This may be supplemented with other mechanisms before
release.

WebSocket

WebSocket is a protocol for arbitrary messaging to and from browser. As an HTTP extension, the protocol is not yet
well supported by all HTTP proxy technologies. Although, it has been reported to work well used behind the https
protocol. Only one WebSocket connection is needed per browser.

Client can connect using url ws[s]://<BB_BASE_URL>/ws

The protocol used is a simple in-house protocol based on json. Structure of a command from client is as following:

{ "cmd": "<command name>", '_id': <id of the command>, "arg1": arg1, "arg2": arg2 }

• cmd is use to reference a command name

• _id is used to track the response, can be any unique number or string. Generated by the client. Needs to be
unique per websocket session.

Response is sent asynchronously, reusing _id to track which command is responded.

Success answer example would be:

{ "msg": "OK", '_id': 1, code=200 }

Error answer example would be:

{"_id":1,"code":404,"error":"no such command \'poing\'"}

Client can send several command without waiting response.

Responses are not guaranteed to be sent in order.

Several command are implemented:

ping

{"_id":1,"cmd":"ping"}

server will respond with a “pong” message:

{"_id":1,"msg":"pong","code":200}

startConsuming start consuming events that match path. path are described in the Messaging and Queues
section. For size optimization reasons, path are encoded joined with “/”, and with None wildcard replaced by
‘*’.

332 Chapter 3. Buildbot Development

http://en.wikipedia.org/wiki/Server-sent_events

Buildbot Documentation, Release 0.9.7

{"_id":1,"cmd":"startConsuming", "path": "change/*/*"}

Success answer example will be:

{ "msg": "OK", '_id': 1, code=200 }

stopConsuming stop consuming events that was previously registered with path.

{"_id":1,"cmd":"stopConsuming", "path": "change/*/*"}

Success answer example will be:

{ "msg": "OK", '_id': 1, code=200 }

Client will receive events as websocket frames encoded in json with following format:

{"k":key,"m":message}

Server Sent Events

SSE is a simpler protocol than WebSockets and is more REST compliant. It uses the chunk-encoding HTTP feature to
stream the events. SSE also does not works well behind enterprise proxy, unless you use the https protocol

Client can connect using following endpoints

• http[s]://<BB_BASE_URL>/sse/listen/<path>: Start listening to events on the http connection.
Optionally setup a first event filter on <path>. The first message send is a handshake, giving a uuid that can be
used to add or remove event filters.

• http[s]://<BB_BASE_URL>/sse/add/<uuid>/<path>: Configure a sse session to add an event
filter

• http[s]://<BB_BASE_URL>/sse/remove/<uuid>/<path>: Configure a sse session to remove an
event filter

Note that if a load balancer is setup as a front end to buildbot web masters, the load balancer must be configured to
always use the same master given a client ip address for /sse endpoint.

Client will receive events as sse events, encoded with following format:

event: event
data: {'key': <key>, 'message': <message>}

The first event received is a handshake, and is used to inform the client about uuid to use for configuring additional
event filters

event: handshake
data: <uuid>

Javascript Data Module

Data_module is a reusable angularJS module used to access buildbot’s data api from the browser. Its main purpose is
to handle the 3 way binding.

2 way binding is the angular MVVM concept, which seemlessly synchronise the view and the model. Here we
introduce an additional way of synchronisation, which is from the server to the model.

3.1. General Documents 333

Buildbot Documentation, Release 0.9.7

We use the message queue and the websocket interfaces to maintain synchronisation between the server and the client.

The client application just needs to query needed data using a highlevel API, and the data module is using the best
approach to make the data always up to date.

Once the binding is setup by the controller, everything is automatically up-to-date.

Base Concepts

Collections

All the data you can get are Collections. Even a query to a single resource returns a collection. A collection is an
Array subclass which has extra capabilities:

• It listen to the event stream and is able to maintain itself up-to-date

• It implements client side query in order to garantee up-to-date filtering, ordering and limiting queries.

• It has a fast access to each item it contains via its id.

• It has its own event handlers so that client code can react when the Collection is changing

Wrappers

Each data type contain in a collection is wrapped in a javascript object. This allows to create some custom enhance-
ments to the data model. For example the Change wrapper decodes the author name and email from the “author”
field.

Each wrapper class also has specific access method, which allow to access more data from the REST hierachy.

Installation

The Data module is available as a standalone AngularJS module. Installation via bower:

bower install buildbot-data --save

334 Chapter 3. Buildbot Development

Buildbot Documentation, Release 0.9.7

It is recommended however for coherency to use the installation method via guanlecoja, in the bower section of
guanlecoja/config.coffee:

'bower':
'deps':

'buildbot-data':
version: '~1.0.14'
files: 'dist/buildbot-data.js'

Inject the bbData module to your application:

angular.module('myApp', ['bbData'])

Service API

DataService

DataService is the service used for accessing the Buildbot data API. It has a modern interface for accessing data in
such a way that the updating of the data via web socket is transparent.

Methods:

.open(): returns a DataAccessor, which handles 3 way data binding

• open a new accessor every time you need updating data in a controller

• it registers on $destroy event on the scope, and thus automatically unsubscribes from updates when
the data is not used anymore.

open a new accessor every time you need updating data in a controller
class DemoController extends Controller

constructor: ($scope, dataService) ->
automatically closes all the bindings when the $scope is destroyed
data = dataService.open().closeOnDestroy($scope)

request new data, it updates automatically
@builders = data.getBuilders(limit: 10, order: '-started_at')

.getXs([id], [query]): returns Collection which will eventually contain all the requested data

• it’s highly advised to use these instead of the lower level .get('string') function

• Xs can be the following: Builds, Builders, Buildrequests, Buildsets,
Workers, Changes, Changesources, Forceschedulers, Masters, Schedulers,
Sourcestamps

• The collections returns without using an accessor are not automatically updated. So use those meth-
ods only when you know the data are not changing

assign builds to $scope.builds and then load the steps when the builds are
→˓discovered
onNew is called at initial load
$scope.builds = dataService.getBuilds(builderid: 1)
$scope.builds.onNew = (build) ->

build.loadSteps()

.get(endpoint, [id], [query]): returns a <Collection>, when the promise is resolved, the Collection
contains all the requested data

3.1. General Documents 335

Buildbot Documentation, Release 0.9.7

assign builds to $scope.builds once the Collection is filled
builderid = 1
$scope.builds = dataService.get("builders/#{builderid}/builds", limit: 1)
$scope.builds.onNew = (build) ->

build.loadSteps()

assign builds to $scope.builds before the Collection is filled using the .
→˓getArray() function
$scope.builds = dataService.get('builds', builderid: 1)

.control(url, method, [params]): returns a promise, sends a JSON RPC2 POST request to the server

open a new accessor every time you need updating data in a controller
dataService.control('forceschedulers/force', 'force').then (response) ->

$log.debug(response)
, (reason) ->

$log.error(reason)

DataAccessor

DataAccessor object is returned by the dataService.open() method.

Methods:

.closeOnDestroy($scope): registers scope destruction as waterfall destruction for all collection accessed via
this accessor.

.close(): Destruct all collections previously accessed via this accessor. Destroying a collection means it will
unsubscribe to any events necessary to maintain it up-to-date.

.getXs([id], [query]): returns Collection which will eventually contain all the requested data Same
methods as in the dataService, except here the data will be maintained up-to-date.

Collections

.get(id): returns one element of the collection by id, or undefined, if this id is unknown to the collection.
This method does not do any network access, and thus only know about data already fetched.

.hasOwnProperty(id): returns true if this id is known by this collection.

.close(): forcefully unsubscribe this connection from auto-update. Normally, this is done automatically on
scope destruction, but sometimes, when you got enough data, you want to save bandwidth and disconnect
the collection.

.put(object): insert one plain object to the collection. As an external API, this method is only useful for the
unit tests to simulate new data coming asynchronously.

.from(object_list): insert several plain objects to the collection. This method is only useful for the unit
tests to simulate new data coming asynchronously.

.onNew = (object) ->: Callback method which is called when a new object arrives in the collection.
This can be called either when initial data is coming via REST api, or when data is coming via the event stream.
The affected object is given in parameter. this context is the collection.

.onUpdate = (object) ->: Callback method which is called when an object is modified. This is called
when data is coming via the event stream. The affected object is given in parameter. this context is the col-
lection.

336 Chapter 3. Buildbot Development

Buildbot Documentation, Release 0.9.7

.onChange = (collection) ->: Callback method which is called when an object is modified. This is
called when data is coming via the event stream. this context is the collection. The full collection is given in
parameter (in case you override this via fat arrow).

.$ready: attribute similar to what ngResource provides. True after first server interaction is completed, false
before that. Knowing if the Collection has been resolved is useful in data-binding (for example to display a
loading graphic).

Wrapper

Wrapper objects are objects stored in the collection. Those objects have specific methods, depending on their types.
methods:

.getXs([id], [query]): returns a Collection, when the promise is resolved, the Collection contains all the
requested data

• same as dataService.getXs, but with relative endpoint

assign builds to $scope.builds once the Collection is filled
$scope.builds = dataService.getBuilds(builderid: 1)
$scope.builds.onNew = (b) ->

b.complete_steps = b.getSteps(complete:true)
b.running_steps = b.getSteps(complete:false)

.loadXs([id], [query]): returns a Collection, the Collection contains all the requested data, which is also
assigned to o.Xs

• o.loadXs() is equivalent to o.xs = o.getXs()

get builder with id = 1
dataService.getBuilders(1).onNew = (builder) ->

load all builds in builder.builds
builder.loadBuilds().onNew (build) ->

load all buildsteps in build.steps
build.loadSteps()

.control(method, params): returns a promise, sends a JSON RPC2 POST request to the server

Base web application

JavaScript Application

The client side of the web UI is written in JavaScript and based on the AngularJS framework and concepts.

This is a Single Page Application” (http://en.wikipedia.org/wiki/Single-page_application) All Buildbot pages are
loaded from the same path, at the master’s base URL. The actual content of the page is dictated by the fragment
in the URL (the portion following the # character). Using the fragment is a common JS techique to avoid reloading
the whole page over HTTP when the user changes the URI or clicks a link.

AngularJS

The best place to learn about AngularJS is its own documentation (http://docs.angularjs.org/guide/),

AngularJS strong points are:

3.1. General Documents 337

http://en.wikipedia.org/wiki/Single-page_application
http://docs.angularjs.org/guide/

Buildbot Documentation, Release 0.9.7

• A very powerful MVC system (http://docs.angularjs.org/guide/concepts) allowing automatic update of the UI,
when data changes

• A Testing Framework and philosophy (http://docs.angularjs.org/guide/dev_guide.e2e-testing)

• A deferred system (http://docs.angularjs.org/api/ng.$q) similar to the one from Twisted.

• A fast growing community and ecosystem (http://builtwith.angularjs.org/)

On top of Angular we use nodeJS tools to ease development

• gulp buildsystem, seemlessly build the app, can watch files for modification, rebuild and reload browser in dev
mode. In production mode, the buildsystem minifies html, css and js, so that the final app is only 3 files to
download (+img).

• coffeescript (http://coffeescript.org/), a very expressive langage, preventing some of the major traps of JS.

• pug template langage (aka jade) (https://pugjs.org/), adds syntax sugar and readbility to angular html templates.

• Bootstrap (http://getbootstrap.com/) is a css library providing know good basis for our styles.

• Font Awesome (http://fortawesome.github.com/Font-Awesome/) is a coherent and large icon library

modules we may or may not want to include:

• momentjs (http://momentjs.com/) is a library implementing human readable relative timings (e.g. “one hour
ago”)

• ngGrid (https://angular-ui.github.io/ui-grid/) is a grid system for full featured searcheable/sortable/csv ex-
portable grids

• angular-UI (http://angular-ui.github.com/) is a collection of jquery based directives and filters. Probably not
very useful for us

• JQuery (http://jquery.com/) the well known JS framework, allows all sort of dom manipulation. Having it inside
allows for all kind of hacks we may want to avoid.

Extensibility

Buildbot UI is designed for extensibility. The base application should be pretty minimal, and only include very basic
status pages. Base application cannot be disabled so any page not absolutely necessary should be put in plugins. You
can also completely replace the default application by another application more suitable to your needs. The md_base
application is an example rewrite of the app using material design libraries.

Some Web plugins are maintained inside buildbot’s git repository, but this is absolutely not necessary. Unofficial
plugins are encouraged, please be creative!

Please look at official plugins for working samples.

Typical plugin source code layout is:

setup.py # standard setup script. Most plugins should use the
→˓same boilerplate, which helps building guanlecoja app as part of the setup. Minimal
→˓adaptation is needed
<pluginname>/__init__.py # python entrypoint. Must contain an "ep" variable of
→˓type buildbot.www.plugin.Application. Minimal adaptation is needed
guanlecoja/config.coffee # Configuration for guanlecoja. Few changes are needed
→˓here. Please see guanlecoja docs for details.
src/.. # source code for the angularjs application. See
→˓guanlecoja doc for more info of how it is working.
package.json # declares npm dependency. normallly, only guanlecoja is
→˓needed. Typically, no change needed

338 Chapter 3. Buildbot Development

http://docs.angularjs.org/guide/concepts
http://docs.angularjs.org/guide/dev_guide.e2e-testing
http://docs.angularjs.org/api/ng.\protect \T1\textdollar q
http://builtwith.angularjs.org/
http://coffeescript.org/
https://pugjs.org/
http://getbootstrap.com/
http://fortawesome.github.com/Font-Awesome/
http://momentjs.com/
https://angular-ui.github.io/ui-grid/
http://angular-ui.github.com/
http://jquery.com/

Buildbot Documentation, Release 0.9.7

gulpfile.js # entrypoint for gulp, should be a one line call to
→˓guanlecoja. Typically, no change needed
MANIFEST.in # needed by setup.py for sdist generation. You need to
→˓adapt this file to match the name of your plugin

Plugins are packaged as python entry-points for the buildbot.www namespace. The python part is defined in the
buildbot.www.plugin module. The entrypoint must contain a twisted.web Resource, that is populated in the web server
in /<pluginname>/.

The front-end part of the plugin system automatically loads /<pluginname>/scripts.js and /<pluginname>/styles.css
into the angular.js application. The scripts.js files can register itself as a dependency to the main “app” module, register
some new states to $stateProvider, or new menu items via glMenuProvider.

The entrypoint containing a Resource, nothing forbids plugin writers to add more REST apis in /<plugin-
name>/api. For that, a reference to the master singleton is provided in master attribute of the Application en-
trypoint. You are even not restricted to twisted, and could even load a wsgi application using flask, django, etc
(http://twistedmatrix.com/documents/13.1.0/web/howto/web-in-60/wsgi.html).

Routing

AngularJS uses router to match URL and choose which page to display. The router we use is ui.router. Menu is
managed by guanlecoja-ui’s glMenuProvider. Please look at ui.router, and guanlecoja-ui documentation for details.

Typically, a route regitration will look like following example.

ng-classify declaration. Declares a config class
class State extends Config

Dependancy injection: we inject $stateProvider and glMenuServiceProvider
constructor: ($stateProvider, glMenuServiceProvider) ->

Name of the state
name = 'console'

Menu configuration.
glMenuServiceProvider.addGroup

name: name
caption: 'Console View' # text of the menu
icon: 'exclamation-circle' # icon, from Font-Awesome
order: 5 # order in the menu, as menu are declared in

→˓several places, we need this to control menu order

Configuration for the menu-item, here we only have one menu item per menu,
→˓glMenuProvider won't create submenus

cfg =
group: name
caption: 'Console View'

Register new state
state =

controller: "#{name}Controller"
controllerAs: "c"
templateUrl: "console_view/views/#{name}.html"
name: name
url: "/#{name}"
data: cfg

$stateProvider.state(state)

3.1. General Documents 339

http://twistedmatrix.com/documents/13.1.0/web/howto/web-in-60/wsgi.html

Buildbot Documentation, Release 0.9.7

Directives

We use angular directives as much as possible to implement reusable UI components.

Linking with Buildbot

A running buildmaster needs to be able to find the JavaScript source code it needs to serve the UI. This needs to work
in a variety of contexts - Python development, JavaScript development, and end-user installations. To accomplish this,
the gulp build process finishes by bundling all of the static data into a Python distribution tarball, along with a little bit
of Python glue. The Python glue implements the interface described below, with some care taken to handle multiple
contexts.

Hacking Quick-Start

This section describes how to get set up quickly to hack on the JavaScript UI. It does not assume familiarity with
Python, although a Python installation is required, as well as virtualenv. You will also need NodeJS, and npm
installed.

Prerequisites

Note: Buildbot UI is only tested to build on node 4.x.x.

• Install LTS release of node.js.

http://nodejs.org/ is a good start for windows and osx

For Linux, as node.js is evolving very fast, distros versions are often too old, and sometimes distro maintainers
make incompatible changes (i.e naming node binary nodejs instead of node) For Ubuntu and other Debian based
distros, you want to use following method:

curl -sL https://deb.nodesource.com/setup_4.x | sudo bash -

Please feel free to update this documentation for other distros. Know good source for Linux binary distribution
is: https://github.com/nodesource/distributions

• Install gulp globally. Gulp is the build system used for coffeescript development.

sudo npm install -g gulp

Hacking the Buildbot JavaScript

To effectively hack on the Buildbot JavaScript, you’ll need a running Buildmaster, configured to operate out of the
source directory (unless you like editing minified JS). Start by cloning the project and its git submodules:

git clone git://github.com/buildbot/buildbot.git

In the root of the source tree, create and activate a virtualenv to install everything in:

virtualenv sandbox
source sandbox/bin/activate

340 Chapter 3. Buildbot Development

http://nodejs.org/
https://github.com/nodesource/distributions

Buildbot Documentation, Release 0.9.7

This creates an isolated Python environment in which you can install packages without affecting other parts of the
system. You should see (sandbox) in your shell prompt, indicating the sandbox is activated.

Next, install the Buildbot-WWW and Buildbot packages using --editable, which means that they should execute
from the source directory.

pip install --editable pkg
pip install --editable master/
make frontend

This will fetch a number of dependencies from pypi, the Python package repository. This will also fetch a bunch a
bunch of node.js dependencies used for building the web application, and a bunch of client side js dependencies, with
bower

Now you’ll need to create a master instance. For a bit more detail, see the Buildbot tutorial (First Run).

buildbot create-master sandbox/testmaster
mv sandbox/testmaster/master.cfg.sample sandbox/testmaster/master.cfg
buildbot start sandbox/testmaster

If all goes well, the master will start up and begin running in the background. As you just installed www in editable
mode (aka ‘develop’ mode), setup.py did build the web site in prod mode, so the everything is minified, making it hard
to debug.

When doing web development, you usually run:

cd www/base
gulp dev

This will compile the base webapp in development mode, and automatically rebuild when files change.

Testing with real data

Front-end only hackers might want to just skip the master and worker setup, and just focus on the UI. It can also be
very useful to just try the UI with real data from your production. For those use-cases, gulp dev proxy can be
used.

This tool is a small nodejs app integrated in the gulp build that can proxy the data and websocket api from a production
server to your development environment. Having a proxy is slightly slower, but this can be very useful for testing with
real complex data.

You still need to have python virtualenv configured with master package installed, like we described in previous
paragraph.

Provided you run it in a buildbot master virtualenv, the following command will start the UI and redirect the api calls
to the nine demo server:

gulp dev proxy --host nine.buildbot.net

You can then just point your browser to localhost:8010, and you will access http://nine.buildbot.net, with your own
version of the UI.

Guanlecoja

Buildbot’s build environment has been factorized for reuse in other projects and plugins, and is callsed Guanlecoja.

The documentation and meaning of this name is maintained in Guanlecoja’s own site. https://github.com/buildbot/
guanlecoja/

3.1. General Documents 341

http://nine.buildbot.net
https://github.com/buildbot/guanlecoja/
https://github.com/buildbot/guanlecoja/

Buildbot Documentation, Release 0.9.7

Testing Setup

buildbot_www uses Karma (http://karma-runner.github.io) to run the coffeescript test suite. This is the official test
framework made for angular.js. We don’t run the front-end testsuite inside the python ‘trial’ test suite, because testing
python and JS is technically very different.

Karma needs a browser to run the unit test in. It supports all the major browsers. Given our current experience, we
did not see any bugs yet that would only happen on a particular browser this is the reason that at the moment, only
headless browser “PhantomJS” is used for testing.

We enforce that the tests are run all the time after build. This does not impact the build time by a great factor, and
simplify the workflow.

In some case, this might not be desirable, for example if you run the build on headless system, without X. PhantomJS,
even if it is headless needs a X server like xvfb. In the case where you are having difficulties to run Phantomjs, you
can build without the tests using the command:

gulp prod --notests

Debug with karma

console.log is available via karma. In order to debug the unit tests, you can also use the global variable dump,
which dumps any object for inspection in the console. This can be handy to be sure that you don’t let debug logs in
your code to always use dump

Material design Base application

md_base is a complete replacement for the bootstrap based base application. It’s UI is based on google’s Material
Design libraries.

Status

md-base is currently not really usable as the default UI, see the list of issues bug #3397
(http://trac.buildbot.net/ticket/3397).

Authentication

Buildbot’s HTTP authentication subsystem supports a rich set of information about users:

• User credentials: Username and proof of ownership of that username.

• User information: Additional information about the user, including

– email address

– full name

– group membership

• Avatar information: a small image to represent the user.

Buildbot’s authentication subsystem is designed to support several authentication modes:

• Simple username/password authentication. The Buildbot UI prompts for a username and password and the
backend verifies them.

342 Chapter 3. Buildbot Development

http://karma-runner.github.io
http://trac.buildbot.net/ticket/3397

Buildbot Documentation, Release 0.9.7

• External authentication by an HTTP Proxy. An HTTP proxy in front of Buildbot performs the authentica-
tion and passes the verified username to Buildbot in an HTTP Header.

• Authentication by a third-party website. Buildbot sends the user to another site such as GitHub to authenti-
cate and receives a trustworty assertion of the user’s identity from that site.

Implementation

Authentication is implemented by an instance of AuthBase. This instance is supplied directly by the user in the
configuration file. A reference to the instance is available at self.master.www.auth.

Username / Password Authentication

In this mode, the Buildbot UI displays a form allowing the user to specify a username and password. When this form is
submitted, the UI makes an AJAX call to /auth/login including HTTP Basic Authentication headers. The master
verifies the contents of the header and updates the server-side session to indicate a successful login or to contain a
failure message. Once the AJAX call is complete, the UI reloads the page, re-fetching /config.js, which will
include the username or failure message from the session.

Subsequent access is authorized based on the information in the session; the authentication credentials are not sent
again.

External Authentication

Buildbot’s web service can be run behind an HTTP proxy. Many such proxies can be configured to perform authenti-
cation on HTTP connections before forwarding the request to Buildbot. In these cases, the results of the authentication
are passed to Buildbot in an HTTP header.

In this mode, authentication proceeds as follows:

• The web browser connects to the proxy, requesting the Buildbot home page

• The proxy negotiates authentication with the browser, as configured

• Once the user is authenticated, the proxy forwards the request goes to the Buildbot web service. The request
includes a header, typically Remote-User, containing the authenticated username.

• Buildbot reads the header and optionally connects to another service to fetch additional user information about
the user.

• Buildbot stores all of the collected information in the server-side session.

• The UI fetches /config.js, which includes the user information from the server-side session.

Note that in this mode, the HTTP proxy will send the header with every request, although it is only interpreted during
the fetch of /config.js.

Kerberos Example

Kerberos is an authentication system which allows passwordless authentication on corporate networks. Users authenti-
cate once on their desktop environment, and the OS, browser, webserver, and corporate directory cooperate in a secure
manner to share the authentication to a webserver. This mechanism only takes care about the authentication problem,
and no user information is shared other than the username. The kerberos authentication is supported by a Apache
front-end in mod_kerberos.

3.1. General Documents 343

Buildbot Documentation, Release 0.9.7

Third-Party Authentication

Third-party authentication involves Buildbot redirecting a user’s browser to another site to establish the user’s identity.
Once that is complete, that site redirects the user back to Buildbot, including a cryptographically signed assertion
about the user’s identity.

The most common implementation of this sort of authentication is oAuth2. Many big internet service companies are
providing oAuth2 services to identify their users. Most oAuth2 services provide authentication and user information
in the same api.

The following process is used for third-party authentication:

• The web browser connects to buildbot ui

• A session cookie is created, but user is not yet authenticated. The UI adds a widget entitled Login via
GitHub (or whatever third party is configured)

• When the user clicks on the widget, the UI fetches /auth/login, which returns a bare URL on github.
com. The UI loads that URL in the browser, with an effect similar to a redirect.

• GitHub authenticates the user, if necessary, and requests permission for Buildbot to access the user’s informa-
tion.

• On success, the GitHub web page redirects back to Buildbot’s /auth/login?code=.., with an authentica-
tion code.

• Buildbot uses this code to request more information from GitHub, and stores the results in the server-side
session. Finally, Buildbot returns a redirect response, sending the user’s browser to the root of the Buildbot UI.
The UI code will fetch /config.js, which contains the login data from the session.

Logout

A “logout” button is available in the simple and third-party modes. Such a button doesn’t make sense for external
authentication, since the proxy will immediately re-authenticate the user.

This button fetches /auth/logout, which destroys the server-side session. After this point, any stored authentica-
tion information is gone and the user is logged out.

Future Additions

• Browserid/Persona: This method is very similar to oauth2, and should be implemented in a similar way (i.e. two
stage redirect + token-verify)

• Use the User table in db: This is a very similar to the UserPasswordAuth use cases (form + local db verification).
Eventually, this method will require some work on the UI in order to populate the db, add a “register” button,
verification email, etc. This has to be done in a ui plugin.

Authorization

Buildbot authorization is designed to address the following requirements

• Most of the configuration is only data: We avoid to require user to write callbacks for most of the use cases.
This to allow to load the config from yaml or json and eventually do a UI for authorization config.

• Separation of concerns:

– Mapping users to roles

– Mapping roles to REST endpoints.

344 Chapter 3. Buildbot Development

Buildbot Documentation, Release 0.9.7

• Configuration should not need hardcoding endpoint paths.

• Easy to extend

Use cases

• Members of admin group should have access to all resources and actions

• developers can run the “try” builders

• Integrators can run the “merge” builders

• Release team can run the “release” builders

• There are separate teams for different branches or projects, but the roles are identic

• Owners of builds can stop builds or buildrequests

• Secret branch’s builds are hidden from people except explicitly authorized

Master-Worker API

This section describes the master-worker interface. It covers communication protocol of “classic” remote Worker,
notice that there is other types of workers which behave a bit different, such as Local Worker and Latent Workers.

Connection

The interface is based on Twisted’s Perspective Broker, which operates over TCP connections.

The worker connects to the master, using the parameters supplied to buildbot-worker create-worker. It
uses a reconnecting process with an exponential backoff, and will automatically reconnect on disconnection.

Once connected, the worker authenticates with the Twisted Cred (newcred) mechanism, using the username and
password supplied to buildbot-worker create-worker. The mind is the worker bot instance (class
buildbot_worker.pb.BotPb).

On the master side, the realm is implemented by buildbot.pbmanager.Dispatcher, which examines the
username of incoming avatar requests. There are special cases for change, debug, and statusClient, which are
not discussed here. For all other usernames, the botmaster is consulted, and if a worker with that name is configured,
its buildbot.worker.Worker instance is returned as the perspective.

Workers

At this point, the master-side Worker object has a pointer to the remote, worker-side Bot object in its self.worker,
and the worker-side Bot object has a reference to the master-side Worker object in its self.perspective.

Bot methods

The worker-side Bot object has the following remote methods:

remote_getCommands Returns a dictionary for all commands the worker recognizes: the key of the dictionary is
command name and command version is the value.

3.1. General Documents 345

Buildbot Documentation, Release 0.9.7

remote_setBuilderList Given a list of builders and their build directories, ensures that those builders, and
only those builders, are running. This can be called after the initial connection is established, with a new list, to
add or remove builders.

This method returns a dictionary of WorkerForBuilder objects - see below.

remote_print Adds a message to the worker logfile.

remote_getWorkerInfo Returns dictionary with the contents of the worker’s info/ directory (i.e. file name is
used as key and file contents as the value). This dictionary also contains the keys

environ copy of the workers environment

system OS the worker is running (extracted from Python’s os.name)

basedir base directory where worker is running

numcpus number of CPUs on the worker, either as configured or as detected (since buildbot-worker
version 0.9.0)

version worker’s version (same as the result of remote_getVersion call)

worker_commands worker supported commands (same as the result of remote_getCommands call)

remote_getVersion Returns the worker’s version.

remote_shutdown Shuts down the worker cleanly.

Worker methods

The master-side object has the following method:

perspective_keepalive Does nothing - used to keep traffic flowing over the TCP connection

Setup

After the initial connection and trading of a mind (buildbot_worker.pb.BotPb) for an avatar (Worker), the
master calls the Bot’s setBuilderList method to set up the proper builders on the worker side. This method
returns a reference to each of the new worker-side WorkerForBuilderPb objects, described below. Each of these
is handed to the corresponding master-side WorkerForBuilder object.

This immediately calls the remote setMaster method, then the print method.

Pinging

To ping a remote Worker, the master calls its print method.

Building

When a build starts, the master calls the worker’s startBuild method. Each BuildStep instance will subsequently
call the startCommand method, passing a reference to itself as the stepRef parameter. The startCommand
method returns immediately, and the end of the command is signalled with a call to a method on the master-side
BuildStep object.

346 Chapter 3. Buildbot Development

Buildbot Documentation, Release 0.9.7

Worker For Builders

Each worker has a set of builders which can run on it. These are represented by distinct classes on the master and
worker, just like the Worker and Bot objects described above.

On the worker side, builders are represented as instances of the buildbot_worker.pb.
WorkerForBuilderPb class. On the master side, they are represented by the buildbot.process.
workerforbuilder.WorkerForBuilder class. The identical names are a source of confusion. The following
will refer to these as the worker-side and master-side Worker For Builder classes. Each object keeps a reference to its
opposite in self.remote.

Worker-Side WorkerForBuilderPb Methods

remote_setMaster Provides a reference to the master-side Worker For Builder

remote_print Adds a message to the worker logfile; used to check round-trip connectivity

remote_startBuild Indicates that a build is about to start, and that any subsequent commands are part of that
build

remote_startCommand Invokes a command on the worker side

remote_interruptCommand Interrupts the currently-running command

Master-side WorkerForBuilder Methods

The master side does not have any remotely-callable methods.

Commands

Actual work done by the worker is represented on the master side by a buildbot.process.remotecommand.
RemoteCommand instance.

The command instance keeps a reference to the worker-side buildbot_worker.pb.WorkerForBuilderPb,
and calls methods like remote_startCommand to start new commands. Once that method is called, the
WorkerForBuilderPb instance keeps a reference to the command, and calls the following methods on it:

Master-Side RemoteCommand Methods

remote_update Update information about the running command. See below for the format.

remote_complete Signal that the command is complete, either successfully or with a Twisted failure.

Updates

Updates from the worker, sent via remote_update, are a list of individual update elements. Each update element
is, in turn, a list of the form [data, 0] where the 0 is present for historical reasons. The data is a dictionary, with
keys describing the contents. The updates are handled by remote_update.

Updates with different keys can be combined into a single dictionary or delivered sequentially as list elements, at the
worker’s option.

To summarize, an updates parameter to remote_update might look like this:

3.1. General Documents 347

Buildbot Documentation, Release 0.9.7

[
[{ 'header' : 'running command..' }, 0],
[{ 'stdout' : 'abcd', 'stderr' : 'local modifications' }, 0],
[{ 'log' : ('cmd.log', 'cmd invoked at 12:33 pm\n') }, 0],
[{ 'rc' : 0 }, 0],

]

Defined Commands

The following commands are defined on the workers.

shell

Runs a shell command on the worker. This command takes the following arguments:

command

The command to run. If this is a string, will be passed to the system shell as a string. Otherwise, it must
be a list, which will be executed directly.

workdir

Directory in which to run the command, relative to the builder dir.

env

A dictionary of environment variables to augment or replace the existing environment on the worker. In
this dictionary, PYTHONPATH is treated specially: it should be a list of path components, rather than a
string, and will be prepended to the existing Python path.

initial_stdin

A string which will be written to the command’s standard input before it is closed.

want_stdout

If false, then no updates will be sent for stdout.

want_stderr

If false, then no updates will be sent for stderr.

usePTY

If true, the command should be run with a PTY (POSIX only). This defaults to False.

not_really

If true, skip execution and return an update with rc=0.

timeout

Maximum time without output before the command is killed.

maxTime

Maximum overall time from the start before the command is killed.

logfiles

348 Chapter 3. Buildbot Development

Buildbot Documentation, Release 0.9.7

A dictionary specifying logfiles other than stdio. Keys are the logfile names, and values give the workdir-
relative filename of the logfile. Alternately, a value can be a dictionary; in this case, the dictionary must
have a filename key specifying the filename, and can also have the following keys:

follow

Only follow the file from its current end-of-file, rather that starting from the beginning.

logEnviron

If false, the command’s environment will not be logged.

The shell command sends the following updates:

stdout The data is a bytestring which represents a continuation of the stdout stream. Note that the bytestring
boundaries are not necessarily aligned with newlines.

stderr Similar to stdout, but for the error stream.

header Similar to stdout, but containing data for a stream of Buildbot-specific metadata.

rc The exit status of the command, where – in keeping with UNIX tradition – 0 indicates success and any nonzero
value is considered a failure. No further updates should be sent after an rc.

log This update contains data for a logfile other than stdio. The data associated with the update is a tuple of the log
name and the data for that log. Note that non-stdio logs do not distinguish output, error, and header streams.

uploadFile

Upload a file from the worker to the master. The arguments are

workdir

The base directory for the filename, relative to the builder’s basedir.

workersrc

Name of the filename to read from., relative to the workdir.

writer

A remote reference to a writer object, described below.

maxsize

Maximum size, in bytes, of the file to write. The operation will fail if the file exceeds this size.

blocksize

The block size with which to transfer the file.

keepstamp

If true, preserve the file modified and accessed times.

The worker calls a few remote methods on the writer object. First, the write method is called with a bytestring
containing data, until all of the data has been transmitted. Then, the worker calls the writer’s close, followed (if
keepstamp is true) by a call to upload(atime, mtime).

This command sends rc and stderr updates, as defined for the shell command.

3.1. General Documents 349

Buildbot Documentation, Release 0.9.7

uploadDirectory

Similar to uploadFile, this command will upload an entire directory to the master, in the form of a tarball. It takes
the following arguments:

workdir workersrc writer maxsize blocksize

See uploadFile

compress

Compression algorithm to use – one of None, 'bz2', or 'gz'.

The writer object is treated similarly to the uploadFile command, but after the file is closed, the worker calls the
master’s unpack method with no arguments to extract the tarball.

This command sends rc and stderr updates, as defined for the shell command.

downloadFile

This command will download a file from the master to the worker. It takes the following arguments:

workdir

Base directory for the destination filename, relative to the builder basedir.

workerdest

Filename to write to, relative to the workdir.

reader

A remote reference to a reader object, described below.

maxsize

Maximum size of the file.

blocksize

The block size with which to transfer the file.

mode

Access mode for the new file.

The reader object’s read(maxsize) method will be called with a maximum size, which will return no more than
that number of bytes as a bytestring. At EOF, it will return an empty string. Once EOF is received, the worker will
call the remote close method.

This command sends rc and stderr updates, as defined for the shell command.

mkdir

This command will create a directory on the worker. It will also create any intervening directories required. It takes
the following argument:

dir

Directory to create.

The mkdir command produces the same updates as shell.

350 Chapter 3. Buildbot Development

Buildbot Documentation, Release 0.9.7

rmdir

This command will remove a directory or file on the worker. It takes the following arguments:

dir

Directory to remove.

timeout maxTime

See shell, above.

The rmdir command produces the same updates as shell.

cpdir

This command will copy a directory from place to place on the worker. It takes the following arguments:

fromdir

Source directory for the copy operation, relative to the builder’s basedir.

todir

Destination directory for the copy operation, relative to the builder’s basedir.

timeout maxTime

See shell, above.

The cpdir command produces the same updates as shell.

stat

This command returns status information about a file or directory. It takes a single parameter, file, specifying the
filename relative to the builder’s basedir.

It produces two status updates:

stat

The return value from Python’s os.stat.

rc

0 if the file is found, otherwise 1.

glob

This command finds all pathnames matching a specified pattern that uses shell-style wildcards. It takes a single
parameter, path, specifying the pattern to pass to Python’s glob.glob function.

It produces two status updates:

files

The list of matching files returned from glob.glob

rc

0 if the glob.glob does not raise exception, otherwise 1.

3.1. General Documents 351

Buildbot Documentation, Release 0.9.7

listdir

This command reads the directory and returns the list with directory contents. It takes a single parameter, dir,
specifying the directory relative to builder’s basedir.

It produces two status updates:

files

The list of files in the directory returned from os.listdir

rc

0 if the os.listdir does not raise exception, otherwise 1.

Claiming Build Requests

At Buildbot’s core, it is a distributed job (build) scheduling engine. Future builds are represented by build requests,
which are created by schedulers.

When a new build request is created, it is added to the buildrequests table and an appropriate message is sent.

Distributing

Each master distributes build requests among its builders by examining the list of available build requests, available
workers, and accounting for user configuration for build request priority, worker priority, and so on. This distribution
process is re-run whenever an event occurs that may allow a new build to start.

Such events can be signalled to master with

• maybeStartBuildsForBuilder when a single builder is affected;

• maybeStartBuildsForWorker when a single worker is affected; or

• maybeStartBuildsForAllBuilders when all builders may be affected.

In particular, when a master receives a new-build-request message, it performs the equivalent of
maybeStartBuildsForBuilder for the affected builder.

Claiming

If circumstances are right for a master to begin a build, then it attempts to “claim” the build request. In fact, if
several build requests were merged, it attempts to claim them as a group, using the claimBuildRequests DB
method. This method uses transactions and an insert into the buildrequest_claims table to ensure that exactly
one master succeeds in claiming any particular build request.

If the claim fails, then another master has claimed the affected build requests, and the attempt is abandoned.

If the claim succeeds, then the master sends a message indicating that it has claimed the request. This message can be
used by other masters to abandon their attempts to claim this request, although this is not yet implemented.

If the build request is later abandoned (as can happen if, for example, the worker has disappeared), then master will
send a message indicating that the request is again unclaimed; like a new-buildrequest message, this message indicates
that other masters should try to distribute it once again.

352 Chapter 3. Buildbot Development

Buildbot Documentation, Release 0.9.7

The One That Got Away

The claiming process is complex, and things can go wrong at just about any point. Through master failures or mes-
sage/database race conditions, it’s quite possible for a build request to be “missed”, even when resources are available
to process it.

To account for this possibility, masters periodically poll the buildrequests table for unclaimed requests and try
to distribute them. This resiliency avoids “lost” build requests, at the small cost of a polling delay before the requests
are scheduled.

String Encodings

Buildbot expects all strings used internally to be valid Unicode strings - not bytestrings.

Note that Buildbot rarely feeds strings back into external tools in such a way that those strings must match. For
example, Buildbot does not attempt to access the filenames specified in a Change. So it is more important to store
strings in a manner that will be most useful to a human reader (e.g., in logfiles, web status, etc.) than to store them in
a lossless format.

Inputs

On input, strings should be decoded, if their encoding is known. Where necessary, the assumed input encoding should
be configurable. In some cases, such as filenames, this encoding is not known or not well-defined (e.g., a utf-8 encoded
filename in a latin-1 directory). In these cases, the input mechanisms should make a best effort at decoding, and use
e.g., the errors='replace' option to fail gracefully on un-decodable characters.

Outputs

At most points where Buildbot outputs a string, the target encoding is known. For example, the web status can
encode to utf-8. In cases where it is not known, it should be configurable, with a safe fallback (e.g., ascii with
errors='replace'. For HTML/XML outputs, consider using errors='xmlcharrefreplace' instead.

Metrics

New in buildbot 0.8.4 is support for tracking various performance metrics inside the buildbot master process. Currently
these are logged periodically according to the log_interval configuration setting of the metrics configuration.

The metrics subsystem is implemented in buildbot.process.metrics. It makes use of twisted’s logging
system to pass metrics data from all over buildbot’s code to a central MetricsLogObserver object, which is
available at BuildMaster.metrics or via Status.getMetrics().

Metric Events

MetricEvent objects represent individual items to monitor. There are three sub-classes implemented:

MetricCountEvent Records incremental increase or decrease of some value, or an absolute measure of some
value.

from buildbot.process.metrics import MetricCountEvent

We got a new widget!
MetricCountEvent.log('num_widgets', 1)

3.1. General Documents 353

Buildbot Documentation, Release 0.9.7

We have exactly 10 widgets
MetricCountEvent.log('num_widgets', 10, absolute=True)

MetricTimeEvent Measures how long things take. By default the average of the last 10 times will be reported.

from buildbot.process.metrics import MetricTimeEvent

function took 0.001s
MetricTimeEvent.log('time_function', 0.001)

MetricAlarmEvent Indicates the health of various metrics.

from buildbot.process.metrics import MetricAlarmEvent, ALARM_OK

num_workers looks ok
MetricAlarmEvent.log('num_workers', level=ALARM_OK)

Metric Handlers

MetricsHandler objects are responsible for collecting MetricEvents of a specific type and keeping track of
their values for future reporting. There are MetricsHandler classes corresponding to each of the MetricEvent
types.

Metric Watchers

Watcher objects can be added to MetricsHandlers to be called when metric events of a certain type are received.
Watchers are generally used to record alarm events in response to count or time events.

Metric Helpers

countMethod(name) A function decorator that counts how many times the function is called.

from buildbot.process.metrics import countMethod

@countMethod('foo_called')
def foo():

return "foo!"

Timer(name) Timer objects can be used to make timing events easier. When Timer.stop() is called, a
MetricTimeEvent is logged with the elapsed time since timer.start() was called.

from buildbot.process.metrics import Timer

def foo():
t = Timer('time_foo')
t.start()
try:

for i in range(1000):
calc(i)

return "foo!"
finally:

t.stop()

354 Chapter 3. Buildbot Development

Buildbot Documentation, Release 0.9.7

Timer objects also provide a pair of decorators, startTimer/stopTimer to decorate other functions.

from buildbot.process.metrics import Timer

t = Timer('time_thing')

@t.startTimer
def foo():

return "foo!"

@t.stopTimer
def bar():

return "bar!"

foo()
bar()

timeMethod(name) A function decorator that measures how long a function takes to execute. Note that many
functions in buildbot return deferreds, so may return before all the work they set up has completed. Using an
explicit Timer is better in this case.

from buildbot.process.metrics import timeMethod

@timeMethod('time_foo')
def foo():

for i in range(1000):
calc(i)

return "foo!"

Secrets

class SecretDetails(object):
"""
...
"""

def __init__(self, source, key, value):

A secretDetails is a python object initialized with a provider name, a key and a value. Each parameter is an
object property.

secretdetail = SecretDetails("SourceProvider", "myKey", "myValue")
print(secretdetail.source)
"SourceProvider"
print(secretdetail.key)
"myKey"
print(secretdetail.value)
"myValue"

A Secret is defined by a key associated to a value, returned from a provider. Secrets returned by providers are stored
in a secretDetails object.

Secrets manager

The manager is a Buildbot service manager.

3.1. General Documents 355

Buildbot Documentation, Release 0.9.7

secretsService = self.master.namedServices['secrets']
secretDetailsList = secretsService.get(self.secrets)

The service executes a get method. Depending on the kind of storage chosen and declared in the configuration, the
manager gets the selected provider and returns a list of secretDetails.

Secrets providers

The secrets providers are implementing the specific getters, related to the storage chosen.

File provider

c['secretsProviders'] = [util.SecretInFile(directory="/path/toSecretsFiles"]

In the master configuration the provider is instantiated through a Buildbot service secret manager with the file directory
path. File secrets provider reads the file named by the key wanted by Buildbot and returns the contained text value.
SecretInFile provider allows Buildbot to read secrets in the secret directory.

Vault provider

c['secretsProviders'] = [util.SecretInVault(vaultToken=open('VAULT_TOKEN').read(),
vaultServer="http://localhost:8200"
)]

In the master configuration, the provider is instantiated through a Buildbot service secret manager with the Vault token
and the Vault server address. Vault secrets provider accesses the Vault backend asking the key wanted by Buildbot and
returns the contained text value. SecretInVAult provider allows Buildbot to read secrets in the Vault.

Secret Obfuscation

Secrets are never visible to the normal user via logs and thus are transmitted directly to the workers, using
Obfuscated. The class Obfuscated replaces secret string value by #### characters when the secret value is logged.

Statistics Service

The statistic service (or stats service) is implemented in buildbot.statistics.stats_service. Please see
stats-service for more information.

Here is a diagram demonstrating the working of the stats service:

356 Chapter 3. Buildbot Development

Buildbot Documentation, Release 0.9.7

Stats Service

class buildbot.statistics.stats_service.StatsService
An instance of this class functions as a BuildbotService. The instance of the running service is ini-
tialized in the master configuration file (see stats-service for more information). The running service
is accessible everywhere in Buildbot via the BuildMaster. The service is available at self.master.
namedServices['<service-name>']. It takes the following intialization arguments:

storage_backends A list of storage backends. These are instance of subclasses of
StatsStorageBase.

name (str) The name of this service. This name can be used to access the running instance of this service using
self.master.namedServices[name].

Please see stats-service for examples.

checkConfig(self, storage_backends)

storage_backends A list of storage backends.

This method is called automatically to verify that the list of storage backends contains instances of sub-
classes of StatsStorageBase.

reconfigService(self, storage_backends)

storage_backends A list of storage backends.

This mehtod is called automatically to reconfigure the running service.

registerConsumers(self)
Internal method for this class called to register all consumers (methods from Capture classes) to the MQ
layer.

stopService(self)
Internal method for this class to stop the stats service and clean up.

3.1. General Documents 357

Buildbot Documentation, Release 0.9.7

removeConsumers(self)
Internal method for this class to stop and remove consumers from the MQ layer.

yieldMetricsValue(self, data_name, post_data, buildid)

data_name (str) The name of the data being sent or storage.

post_data A dictionary of key value pair that is sent for storage.

buildid The integer build id of the current build. Obtainable in all BuildSteps.

This method should be called to post data that is not generated and stored as build-data in the database.
This method generates the stats-yield-data event to the mq layer which is then consumed in
postData.

Storage backends

Storage backends are responsible for storing any statistics/data sent to them. A storage backend will generally be
some sort of a database-server running on a machine. .. note:: This machine may be different from the one running
BuildMaster

Data is captured according to the master config file and then, is sent to each of the storage backends provided by the
master configuration (see stats-service).

Each storage backend has a Python client defined as part of buildbot.statistics.storage_backends to
aid in posting data by StatsService.

Currently, only InfluxDB (https://influxdata.com/time-series-platform/influxdb/) is supported as a storage backend.

class buildbot.statistis.storage_backends.base.StatsStorageBase
A abstract class for all storage services. It cannot be directly initialized - it would raise a TypeError otherwise.

thd_postStatsValue(self, post_data, series_name, context)

post_data A dict of key-value pairs that is sent for storage. The keys of this dict can be thought of as
columns in a database and the value is the data stored for that column.

series_name (str) The name of the time-series for this statistic.

context (Optional) Any other contextual information about the data. It is a dict of key-value pairs.

An abstract method that needs to be implemented by every child class of this class. Not doing so will result
result in a TypeError when starting Buildbot.

class buildbot.statistics.storage_backends.influxdb_client.InfluxStorageService
InfluxDB (https://influxdata.com/time-series-platform/influxdb/) is a distributed, time series database that em-
ploys a key-value pair storage system.

This class is a Buildbot client to the InfluxDB storage backend. It is available in the configuration as
statistics.InfluxStorageService. It takes the following initialization arguments:

url (str) The URL where the service is running.

port (int) The port on which the service is listening.

user (str) Username of a InfluxDB user.

password (str) Password for user.

db (str) The name of database to be used.

captures A list of instances of subclasses of Capture. This tells which stats are to be stored in this storage
backend.

358 Chapter 3. Buildbot Development

https://influxdata.com/time-series-platform/influxdb/
https://influxdata.com/time-series-platform/influxdb/

Buildbot Documentation, Release 0.9.7

name=None (Optional) (str) The name of this storage backend.

thd_postStatsValue(self, post_data, series_name, context={})

post_data A dict of key-value pairs that is sent for storage. The keys of this dict can be thought of as
columns in a database and the value is the data stored for that column.

series_name (str) The name of the time-series for this statistic.

context (Optional) Any other contextual information about the data. It is a dict of key-value pairs.

This method constructs a dictionary of data to be sent to InfluxDB in the proper format and sends the data
to the influxDB instance.

Capture Classes

Capture classes are used for declaring which data needs to captured and sent to storage backends for storage.

class buildbot.statistics.capture.Capture
This is the abstract base class for all capture classes. Not to be used directly. Initlized with the following
parameters:

routingKey (tuple) The routing key to be used by StatsService to register consumers to the MQ layer
for the subclass of this class.

callback The callback registered with the MQ layer for the consumer of a subclass of this class. Each
subclass must provide a default callback for this purpose.

_defaultContext(self, msg):
A method for providing default context to the storage backends.

consume(self, routingKey, msg):
This is an abstract method - each subclass of this class should implement its own consume method. If not,
then the subclass can’t be instantiated. The consume method, when called (from the mq layer), receives
the following arguments:

routingKey The routing key which was registered to the MQ layer. Same as the routingKey pro-
vided to instantiate this class.

msg The message that was sent by the producer.

_store(self, post_data, series_name, context):
This is an abstract method of this class. It must be implemented by all subclasses of this class. It takes the
following arguments:

post_data (dict) The key-value pair being sent to the storage backend.

series_name (str) The name of the series to which this data is stored.

context (dict) Any additional information pertaining to data being sent.

class buildbot.statistics.capture.CapturePropertyBase
This is a base class for both CaptureProperty and CapturePropertyAllBuilders and abstracts
away much of the common functionaltiy between the two classes. Cannot be initialzed directly as it contains an
abstract method and raises TypeError if tried. It is initialized with the following arguments:

property_name (str) The name of property needed to be recorded as a statistic. This can be a regular
expression if regex=True (see below).

callback=None The callback function that is used by CaptureProperty.consumer to post-process
data before formatting it and sending it to the appropriate storage backends. A default callback needs to
be prois provided for this.

3.1. General Documents 359

Buildbot Documentation, Release 0.9.7

The default callback:

default_callback(props, property_name)

It returns property value for property_name. It receives the following arguments:

props A dictionary of all build properties.

property_name (str) Name of the build property to return.

regex=False If this is set to True, then the property name can be a regular expression. All properties
matching this regular expression will be sent for storage.

consume(self, routingKey, msg)
The consumer for all CaptureProperty classes described below. This method filters out the correct proper-
ties as per the configuration file and sends those properties for storage. The subclasses of this method do
not need to implement this method as it takes care of all the functionaltiy itself. See Capture for more
information.

_builder_name_matches(self, builder_info):
This is an abstract method and needs to be implemented by all subclasses of this class. This is a helper
method to the consume method metioned above. It checks whether a builder is allowed to send properties
to the storage backend according to the configuration file. It takes one argument:

builder_info (dict) The dictionary returned by the data API containing the builder information.

class buildbot.statistics.capture.CaptureProperty
The capture class for capturing build properties. It is available in the configuration as statistics.
CaptureProperty

It takes the following arguments:

builder_name (str) The name of builder in which the property is recorded.

property_name (str) The name of property needed to be recorded as a statistic.

callback=None The callback function that is used by CaptureProperty.consumer to post-process
data before formatting it and sending it to the appropriate storage backends. A default callback is provided
for this (see CapturePropertyBase for more information).

regex=False If this is set to True, then the property name can be a regular expression. All properties
matching this regular expression will be sent for storage.

_builder_name_matches(self, builder_info)
See CapturePropertyBase for more information on this method.

class buildbot.statistics.capture.CapturePropertyAllBuilders
The capture class to use for capturing build properties on all builders. It is available in the configuration as
statistics.CaptureProperty

It takes the following arguments:

property_name (str) The name of property needed to be recorded as a statistic.

callback=None The callback function that is used by CaptureProperty.consumer to post-process
data before formatting it and sending it to the appropriate storage backends. A default callback is provided
for this (see CapturePropertyBase for more information).

regex=False If this is set to True, then the property name can be a regular expression. All properties
matching this regular expression will be sent for storage.

_builder_name_matches(self, builder_info)
See CapturePropertyBase for more information on this method.

360 Chapter 3. Buildbot Development

Buildbot Documentation, Release 0.9.7

class buildbot.statistics.capture.CaptureBuildTimes
A base class for all Capture classes that deal with build times (start/end/duration). Not to be used directly.
Initialized with:

builder_name (str) The name of builder whose times are to be recorded.

callback The callback function that is used by subclass of this class to post-process data before formatting it
and sending it to the appropriate storage backends. A default callback is provided for this. Each subclass
must provide a deafault callback that is used in initialization of this class should the user not provide a
callback.

consume(self, routingKey, msg)
The consumer for all subclasses of this class. See Capture for more information. .. note:: This consumer
requires all subclasses to implement:

self._time_type (property) A string used as a key in post_data sent to sotrage services.

self._retValParams(msg) (method) A method that takes in the msg this consumer gets and re-
turns a list of arguments for the capture callback.

_retValParams(self, msg)
This is an abstract method which needs to be implemented by subclassses. This method needs to return a
list of parameters that will be passed to the callback function. See individual build CaptureBuild*
classes for more information.

_err_msg(self, build_data, builder_name)
A helper method that returns an error message for the consume method.

_builder_name_matches(self, builder_info)
This is an abstract method and needs to be implemented by all subclasses of this class. This is a helper
method to the consume method metioned above. It checks whether a builder is allowed to send build
times to the storage backend according to the configuration file. It takes one argument:

builder_info (dict) The dictionary returned by the data API containing the builder information.

class buildbot.statistics.capture.CaptureBuildStartTime
A capture class for capturing build start times. It takes the following arguments:

builder_name (str) The name of builder whose times are to be recorded.

callback=None The callback function for this class. See CaptureBuildTimes for more information.

The default callback:

default_callback(start_time)

It returns the start time in ISO format. It takes one argument:

start_time A python datetime object that denotes the build start time.

_retValParams(self, msg)
Returns a list containing one Python datetime object (start time) from msg dictionary.

_builder_name_matches(self, builder_info)
See CaptureBuildTimes for more information on this method.

class buildbot.statistics.capture.CaptureBuildStartTimeAllBuilders
A capture class for capturing build start times from all builders. It is a subclass of
CaptureBuildStartTime. It takes the following arguments:

callback=None The callback function for this class. See CaptureBuildTimes for more information.

The default callback:

See CaptureBuildStartTime.__init__ for the definition.

3.1. General Documents 361

Buildbot Documentation, Release 0.9.7

_builder_name_matches(self, builder_info)
See CaptureBuildTimes for more information on this method.

class buildbot.statistics.capture.CaptureBuildEndTime
A capture class for capturing build end times. Takes the following arguments:

builder_name (str) The name of builder whose times are to be recorded.

callback=None The callback function for this class. See CaptureBuildTimes for more information.

The default callback:

default_callback(end_time)

It returns the end time in ISO format. It takes one argument:

end_time A python datetime object that denotes the build end time.

_retValParams(self, msg)

Returns a list containing two Python datetime object (start time and end time) from msg dictionary.

_builder_name_matches(self, builder_info)
See CaptureBuildTimes for more information on this method.

class buildbot.statistics.capture.CaptureBuildEndTimeAllBuilders
A capture class for capturing build end times from all builders. It is a subclass of CaptureBuildEndTime.
It takes the following arguments:

callback=None The callback function for this class. See CaptureBuildTimes for more information.

The default callback:

See CaptureBuildEndTime.__init__ for the definition.

_builder_name_matches(self, builder_info)
See CaptureBuildTimes for more information on this method.

class buildbot.statistics.capture.CaptureBuildDuration
A capture class for capturing build duration. Takes the following arguments:

builder_name (str) The name of builder whose times are to be recorded.

report_in='seconds' Can be one of three: 'seconds', 'minutes', or 'hours'. This is the units
in which the build time will be reported.

callback=None The callback function for this class. See CaptureBuildTimes for more information.

The default callback:

default_callback(start_time, end_time)

It returns the duration of the build as per the report_in argument. It receives the following
arguments:

start_time A python datetime object that denotes the build start time.

end_time A python datetime object that denotes the build end time.

_retValParams(self, msg)

Returns a list containing one Python datetime object (end time) from msg dictionary.

_builder_name_matches(self, builder_info)
See CaptureBuildTimes for more information on this method.

362 Chapter 3. Buildbot Development

Buildbot Documentation, Release 0.9.7

class buildbot.statistics.capture.CaptureBuildDurationAllBuilders
A capture class for capturing build durations from all builders. It is a subclass of CaptureBuildDuration.
It takes the following arguments:

callback=None The callback function for this class. See CaptureBuildTimes for more.

The default callback:

See CaptureBuildDuration.__init__ for the definition.

_builder_name_matches(self, builder_info)
See CaptureBuildTimes for more information on this method.

class buildbot.statistics.capture.CaptureDataBase
This is a base class for both CaptureData and CaptureDataAllBuilders and abstracts away much
of the common functionaltiy between the two classes. Cannot be initialzed directly as it contains an abstract
method and raises TypeError if tried. It is initialized with the following arguments:

data_name (str) The name of data to be captured. Same as in yieldMetricsValue.

callback=None The callback function for this class.

The default callback:

The default callback takes a value x and return it without changing. As such, x itself acts as the
post_data sent to the storage backends.

consume(self, routingKey, msg)
The consumer for this class. See Capture for more.

_builder_name_matches(self, builder_info)
This is an abstract method and needs to be implemented by all subclasses of this class. This is a helper
method to the consume method metioned above. It checks whether a builder is allowed to send properties
to the storage backend according to the configuration file. It takes one argument:

builder_info (dict) The dictionary returned by the data API containing the builder information.

class buildbot.statistics.capture.CaptureData
A capture class for capturing arbitrary data that is not stored as build-data. See yieldMetricsValue for
more. Takes the following arguments for initliazation:

data_name (str) The name of data to be captured. Same as in yieldMetricsValue.

builder_name (str) The name of the builder on which the data is captured.

callback=None The callback function for this class.

The default callback:

See CaptureDataBase of definition.

_builder_name_matches(self, builder_info)
See CaptureDataBase for more information on this method.

class buildbot.statistics.capture.CaptureDataAllBuilders
A capture class to capture arbitrary data on all builders. See yieldMetricsValue for more. It takes the
following arguments:

data_name (str) The name of data to be captured. Same as in yieldMetricsValue.

callback=None The callback function for this class.

_builder_name_matches(self, builder_info)
See CaptureDataBase for more information on this method.

3.1. General Documents 363

Buildbot Documentation, Release 0.9.7

How to package Buildbot plugins

If you customized an existing component (see Customization) or created a new component that you believe might be
useful for others, you have two options:

• submit the change to the Buildbot main tree, however you need to adhere to certain requirements (see Buildbot
Coding Style)

• prepare a Python package that contains the functionality you created

Here we cover the second option.

Package the source

To begin with, you must package your changes. If you do not know what a Python package is, these two tutorials will
get you going:

• Python Packaging User Guide (https://packaging.python.org/en/latest/)

• The Hitchhiker’s Guide to Packaging (https://the-hitchhikers-guide-to-packaging.readthedocs.org/en/latest/)

The former is more recent and, while it addresses everything that you need to know about Python packages, is still
work in progress. The latter is a bit dated, though it was the most complete guide for quite some time available for
Python developers looking to package their software.

You may also want to check the sample project (https://github.com/pypa/sampleproject), which exemplifies the best
Python packaging practices.

Making the plugin package

Buildbot supports several kinds of pluggable components:

• worker

• changes

• schedulers

• steps

• status

• util

(these are described in Plugin Infrastructure in Buildbot), and

• www

which is described in web server configuration.

Once you have your component packaged, it’s quite straightforward: you just need to add a few lines to the
entry_points parameter of your call of setup function in setup.py file:

setup(
...
entry_points = {

...,
'buildbot.kind': [

'PluginName = PluginModule:PluginClass'
]

},

364 Chapter 3. Buildbot Development

https://packaging.python.org/en/latest/
https://the-hitchhikers-guide-to-packaging.readthedocs.org/en/latest/
https://github.com/pypa/sampleproject

Buildbot Documentation, Release 0.9.7

...
)

(You might have seen different ways to specify the value for entry_points, however they all
do the same thing. Full description of possible ways is available in setuptools documentation
(https://setuptools.readthedocs.io/en/latest/setuptools.html#dynamic-discovery-of-services-and-plugins).)

After the setup.py (https://github.com/buildbot/buildbot/blob/master/master/setup.py) file is updated, you can build
and install it:

$ python setup.py build
$ sudo python setup.py install

(depending on your particular setup, you might not need to use sudo).

After that the plugin should be available for Buildbot and you can use it in your master.cfg as:

from buildbot.kind import PluginName

... PluginName ...

Publish the package

This is the last step before the plugin is available to others.

Once again, there is a number of options available for you:

• just put a link to your version control system

• prepare a source tarball with the plugin (python setup.py sdist)

• or publish it on PyPI (https://pypi.python.org)

The last option is probably the best one since it will make your plugin available pretty much to all Python developers.

Once you have published the package, please send a link to buildbot-devel (buildbot-devel@lists.sourceforge.net)
mailing list, so we can include a link to your plugin to Plugin Infrastructure in Buildbot.

APIs

This section documents Buildbot’s APIs. These are the interfaces against which externally-maintained code should be
written.

REST API

The REST API is a thin wrapper around the data API’s “Getter” and “Control” sections. It is also designed, in keeping
with REST principles, to be discoverable. As such, the details of the paths and resources are not documented here.
Begin at the root URL, and see the Data API documentation for more information.

• Versions

• Getting

• Collections

3.2. APIs 365

https://setuptools.readthedocs.io/en/latest/setuptools.html#dynamic-discovery-of-services-and-plugins
https://github.com/buildbot/buildbot/blob/master/master/setup.py
https://pypi.python.org
mailto:buildbot-devel@lists.sourceforge.net

Buildbot Documentation, Release 0.9.7

– Field Selection

– Filtering

– Sorting

– Pagination

• Controlling

• Authentication

• Raml Specs

– Build

* Update Methods

* Endpoints

– builder

* Update Methods

* Endpoints

– buildrequest

* Update Methods

* Endpoints

– buildset

* Update Methods

* Endpoints

– change

* Update Methods

* Endpoints

– changesource

* Update Methods

* Endpoints

– forcescheduler

* Endpoints

– identifier

– Logs

* Update Methods

* Endpoints

– logchunk

* Update Methods

* Endpoints

– master

366 Chapter 3. Buildbot Development

Buildbot Documentation, Release 0.9.7

* Update Methods

* Endpoints

– patch

* Update Methods

– rootlink

* Endpoints

– scheduler

* Update Methods

* Endpoints

– sourcedproperties

* Update Methods

* Endpoints

– sourcestamp

* Endpoints

– spec

* Endpoints

– step

* Update Methods

* Endpoints

– worker

* Endpoints

– Raw endpoints

– Raml spec verbatim

Versions

The API described here is version 2. The ad-hoc API from Buildbot-0.8.x, version 1, is no longer supported.

The policy for incrementing the version is when there is incompatible change added. Removing a field or endpoint
is considered incompatible change. Adding a field or endpoint is not considered incompatible, and thus will only be
described as a change in release note. The policy is that we will avoid as much as possible incrementing version.

Getting

To get data, issue a GET request to the appropriate path. For example, with a base URL of http://build.
example.org/buildbot, the list of masters for builder 9 is available at http://build.example.org/
buildbot/api/v2/builder/9/master.

resource type: collection

3.2. APIs 367

Buildbot Documentation, Release 0.9.7

Collections

Results are formatted in keeping with the JSON API (http://jsonapi.org/) specification. The top level of every response
is an object. Its keys are the plural names of the resource types, and the values are lists of objects, even for a single-
resource request. For example:

{
"meta": {
"total": 2

},
"schedulers": [
{

"master": null,
"name": "smoketest",
"schedulerid": 1

},
{

"master": {
"active": true,
"last_active": 1369604067,
"link": "http://build.example.org/api/v2/master/1",
"masterid": 1,
"name": "master3:/BB/master"

},
"name": "goaheadtryme",
"schedulerid": 2

}
]

}

A response may optionally contain extra, related resources beyond those requested. The meta key contains metadata
about the response, including the total count of resources in a collection.

Several query parameters may be used to affect the results of a request. These parameters are applied in the order
described (so, it is not possible to sort on a field that is not selected, for example).

Field Selection

If only certain fields of each resource are required, the field query parameter can be used to select them. For
example, the following will select just the names and id’s of all schedulers:

• http://build.example.org/api/v2/scheduler?field=name&field=schedulerid

Field selection can be used for either detail (single-entity) or collection (multi-entity) requests. The remaining options
only apply to collection requests.

Filtering

Collection responses may be filtered on any simple top-level field.

To select records with a specific value use the query parameter {field}={value}. For example, http://
build.example.org/api/v2/scheduler?name=smoketest selects the scheduler named “smoketest”.

Filters can use any of the operators listed below, with query parameters of the form
{field}__{operator}={value}.

368 Chapter 3. Buildbot Development

http://jsonapi.org/

Buildbot Documentation, Release 0.9.7

eq equality, or with the same parameter appearing multiple times, equality with one of the given values (so
foo__eq=x&foo__eq=y would match resources where foo is x or y)

ne inequality, or set exclusion

lt select resources where the field’s value is less than {value}

le select resources where the field’s value is less than or equal to {value}

gt select resources where the field’s value is greater than {value}

ge select resources where the field’s value is greater than or equal to {value}

contains select resources where the field’s value contains {value}

For example:

• http://build.example.org/api/v2/builder?name__lt=cccc

• http://build.example.org/api/v2/buildsets?complete__eq=false

Boolean values can be given as on/off, true/false, yes/no, or 1/0.

Sorting

Collection responses may be ordered with the order query parameter. This parameter takes a field name to sort on,
optionally prefixed with - to reverse the sort. The parameter can appear multiple times, and will be sorted lexically
with the fields arranged in the given order. For example:

• http://build.example.org/api/v2/buildrequest?order=builderid&order=buildrequestid

Pagination

Collection responses may be paginated with the offset and limit query parameters. The offset is the 0-based
index of the first result to included, after filtering and sorting. The limit is the maximum number of results to return.
Some resource types may impose a maximum on the limit parameter; be sure to check the resulting links to determine
whether further data is available. For example:

• http://build.example.org/api/v2/buildrequest?order=builderid&limit=10

• http://build.example.org/api/v2/buildrequest?order=builderid&offset=20&limit=10

Controlling

Data API control operations are handled by POST requests using a simplified form of JSONRPC 2.0
(http://www.jsonrpc.org/specification). The JSONRPC “method” is mapped to the data API “action”, and the pa-
rameters are passed to that application.

The following parts of the protocol are not supported:

• positional parameters

• batch requests

Requests are sent as an HTTP POST, containing the request JSON in the body. The content-type header must be
application/json.

A simple example:

3.2. APIs 369

http://www.jsonrpc.org/specification

Buildbot Documentation, Release 0.9.7

POST http://build.example.org/api/v2/scheduler/4
--> {"jsonrpc": "2.0", "method": "force", "params": {"revision": "abcd", "branch":
→˓"dev"}, "id": 843}
<-- {"jsonrpc": "2.0", "result": {"buildsetid": 44}, "id": 843}

Authentication

Authentication to the REST API is performed in the same manner as authentication to the main web interface. Once
credentials have been established, a cookie will be set, which must be sent to the buildbot REST API with every
request thereafter. For those buildbot instances using OAuth2 authentication providers, access tokens can be used for
automated access. For example, GitHub’s personal access tokens can be used to access the buildbot as a github user
without needing to store the username and password of the user. To use an OAuth2 access token, send a GET request
to the /auth/login with the token URL parameter set to the access token that the OAuth2 provider has given you. A
python example using requests is shown below, where we first authenticate with our OAuth2 access token, and then
are able to request otherwise shielded endpoints:

import requests
s = requests.Session()
s.get("https://<buildbot_url>/auth/login", params={"token": OAUTH_TOKEN})
builders = s.get("https://<buildbot_url>/api/v2/builders").json()

Raml Specs

The Data API is documented in RAML 1.0 format (https://github.com/raml-org/raml-spec/blob/master/versions/raml-
10/raml-10.md). RAML describes and documents all our data, rest, and javascript APIs in a format that can be easily
manipulated by human and machines.

Build

resource type: build

Attributes

• buildid (integer) – the unique ID of this build

• number (integer) – the number of this build (sequential for a given builder)

• builderid (integer) – id of the builder for this build

• buildrequestid (integer) – build request for which this build was performed, or
None if no such request exists

• workerid (integer) – the worker this build ran on

• masterid (integer) – the master this build ran on

• started_at (date) – time at which this build started

• complete (boolean) – true if this build is complete Note that this is a calculated field
(from complete_at != None). Ordering by this field is not optimized by the database layer.

• complete_at? (date) – time at which this build was complete, or None if it’s still
running

• properties? (sourcedproperties) – a dictionary of properties attached to build.

370 Chapter 3. Buildbot Development

https://github.com/raml-org/raml-spec/blob/master/versions/raml-10/raml-10.md

Buildbot Documentation, Release 0.9.7

• results? (integer) – the results of the build (see Build Result Codes), or None if not
complete

• state_string (string) – a string giving detail on the state of the build.

example

{
"builderid": 10,
"buildid": 100,
"buildrequestid": 13,
"workerid": 20,
"complete": false,
"complete_at": null,
"masterid": 824,
"number": 1,
"results": null,
"started_at": 1451001600,
"state_string": "created",
"properties": {}

}

This resource type describes completed and in-progress builds. Much of the contextual data for a build is associated
with the build request, and through it the buildset.

Note: properties

This properties dict is only filled out if the properties filterspec is set.

Meaning that, property filter allows one to request the Builds DATA API like so:

• api/v2/builds?property=propKey1&property=propKey2 (returns Build’s properties which match given keys)

• api/v2/builds?property=* (returns all Build’s properties)

• api/v2/builds?propKey1&property=propKey2&limit=30 (filters combination)

Important: When combined with field filter, to get properties, one should ensure properties field is set.

• api/v2/builds?field=buildid&field=properties&property=workername&property=user

Update Methods

All update methods are available as attributes of master.data.updates.

class buildbot.data.builds.Build

newBuild(builderid, buildrequestid, workerid)

Parameters

• builderid (integer) – builder performing this build

• buildrequstid (integer) – build request being built

• workerid (integer) – worker on which this build is performed

Returns (buildid, number) via Deferred

3.2. APIs 371

Buildbot Documentation, Release 0.9.7

Create a new build resource and return its ID. The state strings for the new build will be set to ‘starting’.

setBuildStateString(buildid, state_string)

Parameters

• buildid (integer) – the build to modify

• state_string (unicode) – new state string for this build

Replace the existing state strings for a build with a new list.

finishBuild(buildid, results)

Parameters

• buildid (integer) – the build to modify

• results (integer) – the build’s results

Mark the build as finished at the current time, with the given results.

Endpoints

path: /builders/{builderid}/builds

Path Keys builderid (number) – the ID of the builder

This path selects all builds for a builder (can return lots of data!)

GET

returns collection of build

path: /builders/{builderid}/builds/{build_number}

Path Keys

• builderid (number) – the ID of the builder

• build_number (number) – the number of the build within the builder

This path selects a specific build by builderid, buildnumber

GET

returns collection of build

POST with method: /builders/{builderid}/builds/{build_number}:stop

Body keys

• method (string) – must be stop

• reason (string) – The reason why the build was stopped

• results (integer) – optionally results value override (default CANCELLED)

POST with method: /builders/{builderid}/builds/{build_number}:rebuild

Body keys method (string) – must be rebuild

path: /buildrequests/{buildrequestid}/builds

Path Keys buildrequestid (number) – the id of the buildrequest

GET

returns collection of build

372 Chapter 3. Buildbot Development

Buildbot Documentation, Release 0.9.7

path: /builds

GET

returns collection of build

path: /builds/{buildid}

Path Keys buildid (number) – the id of the build

This path selects a build by id

GET

returns collection of build

POST with method: /builds/{buildid}:stop

Body keys

• method (string) – must be stop

• reason (string) – The reason why the build was stopped

POST with method: /builds/{buildid}:rebuild

Body keys method (string) – must be rebuild

builder

resource type: builder

Attributes

• builderid (integer) – the ID of this builder

• description? (string) – The description for that builder

• masterids[] (integer) – the ID of the masters this builder is running on

• name (identifier) – builder name

• tags[] (string) – list of tags for this builder

This resource type describes a builder.

Update Methods

All update methods are available as attributes of master.data.updates.

class buildbot.data.builders.Builder

updateBuilderList(masterid, builderNames)

Parameters

• masterid (integer) – this master’s master ID

• builderNames (list) – list of names of currently-configured builders (unicode
strings)

Returns Deferred

3.2. APIs 373

Buildbot Documentation, Release 0.9.7

Record the given builders as the currently-configured set of builders on this master. Masters should call
this every time the list of configured builders changes.

Endpoints

path: /builders

This path selects all builders

GET

returns collection of builder

path: /builders/{builderid}

Path Keys builderid (number) – the ID of the builder

This path selects a builder by builderid

GET

returns collection of builder

path: /masters/{masterid}/builders

Path Keys masterid (number) – the id of the master

This path selects all builders of a given master

GET

returns collection of builder

path: /masters/{masterid}/builders/{builderid}

Path Keys

• masterid (number) – the id of the master

• builderid (number) – the id of the builder

This path selects one builder by id of a given master

GET

returns collection of builder

buildrequest

resource type: buildrequest

Attributes

• buildrequestid (integer) – the unique ID of this buildrequest

• builderid (integer) – the id of the builder linked to this buildrequest

• buildsetid (integer) – the id of the buildset that contains this buildrequest

• claimed (boolean) – True if this buildrequest has been claimed. Note that this is a
calculated field (from claimed_at != None). Ordering by this field is not optimized by the
database layer.

• claimed_at? (date) – time at which this build has last been claimed. None if this
buildrequest has never been claimed or has been unclaimed

374 Chapter 3. Buildbot Development

Buildbot Documentation, Release 0.9.7

• claimed_by_masterid? (integer) – the id of the master that claimed this buil-
drequest. None if this buildrequest has never been claimed or has been unclaimed

• complete (boolean) – true if this buildrequest is complete

• complete_at? (date) – time at which this buildrequest was completed, or None if it’s
still running

• priority (integer) – the priority of this buildrequest

• results? (integer) – the results of this buildrequest (see Build Result Codes), or None
if not complete

• submitted_at (date) – time at which this buildrequest were submitted

• waited_for (boolean) – True if the entity that triggered this buildrequest is waiting for
it to complete. Should be used by an (unimplemented so far) clean shutdown to only start
br that are waited_for.

This resource type describes completed and in-progress buildrequests. Much of the contextual data for a buildrequest
is associated with the buildset that contains this buildrequest.

Update Methods

All update methods are available as attributes of master.data.updates.

class buildbot.data.buildrequests.BuildRequest

claimBuildRequests(brids, claimed_at=None, _reactor=twisted.internet.reactor)

Parameters

• brids (list(integer)) – list of buildrequest id to claim

• claimed_at (datetime) – date and time when the buildrequest is claimed

• _reactor (twisted.internet.interfaces.IReactorTime) – reactor used
to get current time if claimed_at is None

Returns (boolean) whether claim succeeded or not

Claim a list of buildrequests

reclaimBuildRequests(brids, _reactor=twisted.internet.reactor)

Parameters

• brids (list(integer)) – list of buildrequest id to reclaim

• _reactor (twisted.internet.interfaces.IReactorTime) – reactor used
to get current time

Returns (boolean) whether reclaim succeeded or not

Reclaim a list of buildrequests

unclaimBuildRequests(brids)

Parameters brids (list(integer)) – list of buildrequest id to unclaim

Unclaim a list of buildrequests

completeBuildRequests(brids, results, complete_at=None, _reactor=twisted.internet.reactor)

Parameters

3.2. APIs 375

Buildbot Documentation, Release 0.9.7

• brids (list(integer)) – list of buildrequest id to complete

• results (integer) – the results of the buildrequest (see Build Result Codes)

• complete_at (datetime) – date and time when the buildrequest is completed

• _reactor (twisted.internet.interfaces.IReactorTime) – reactor used
to get current time, if complete_at is None

Complete a list of buildrequest with the results status

unclaimExpiredRequests(old, _reactor=twisted.internet.reactor)

Parameters

• old (integer) – time in seconds considered for getting unclaimed buildrequests

• _reactor (twisted.internet.interfaces.IReactorTime) – reactor used
to get current time

Unclaim the previously claimed buildrequests that are older than old seconds and that were never com-
pleted

Endpoints

path: /builders/{builderid}/buildrequests

Path Keys builderid (number) – the ID of the builder

This path selects all buildrequests for a given builder (can return lots of data!)

GET

returns collection of buildrequest

path: /buildrequests

GET

returns collection of buildrequest

path: /buildrequests/{buildrequestid}

Path Keys buildrequestid (number) – the id of the buildrequest

GET

returns collection of buildrequest

POST with method: /buildrequests/{buildrequestid}:cancel

Body keys

• method (string) – must be cancel

• reason (string) – The reason why the buildrequest was cancelled

buildset

resource type: buildset

Attributes

• bsid (integer) – the ID of this buildset

376 Chapter 3. Buildbot Development

Buildbot Documentation, Release 0.9.7

• complete (boolean) – true if all of the build requests in this buildset are complete

• complete_at? (integer) – the time this buildset was completed, or None if not com-
plete

• external_idstring? (string) – an identifier that external applications can use to
identify a submitted buildset; can be None

• parent_buildid? (integer) – optional build id that is the parent for this buildset

• parent_relationship? (string) – relationship identifier for the parent, this is is
configured relationship between the parent build, and the childs buildsets

• reason (string) – the reason this buildset was scheduled

• results? (integer) – the results of the buildset (see Build Result Codes), or None if
not complete

• sourcestamps[] (sourcestamp) – the sourcestamps for this buildset; each element
is a valid sourcestamp entity

• submitted_at (integer) – the time this buildset was submitted

A buildset gathers build requests that were scheduled at the same time, and which share a source stamp, properties,
and so on.

Update Methods

All update methods are available as attributes of master.data.updates.

class buildbot.data.buildsets.Buildset

addBuildset(scheduler=None, sourcestamps=[], reason=’‘, properties={}, builderids=[], exter-
nal_idstring=None, parent_buildid=None, parent_relationship=None)

Parameters

• scheduler (string) – the name of the scheduler creating this buildset

• sourcestamps (list) – sourcestamps for the new buildset; see below

• reason (unicode) – the reason for this build

• properties (dictionary with unicode keys and (source,
property value) values) – properties to set on this buildset

• builderids (list) – names of the builderids for which build requests should be cre-
ated

• external_idstring (unicode) – arbitrary identifier to recognize this buildset later

• parent_buildid (int) – optional build id that is the parent for this buildset

• parent_relationship (unicode) – relationship identifier for the parent, this is is
configured relationship between the parent build, and the childs buildsets

Returns (buildset id, dictionary mapping builder ids to build request ids) via Deferred

Create a new buildset and corresponding buildrequests based on the given parameters. This is the low-level
interface for scheduling builds.

Each sourcestamp in the list of sourcestamps can be given either as an integer, assumed to be a sourcestamp
ID, or a dictionary of keyword arguments to be passed to findSourceStampId.

3.2. APIs 377

Buildbot Documentation, Release 0.9.7

maybeBuildsetComplete(bsid)

Parameters bsid (integer) – buildset that may be complete

Returns Deferred

This method should be called when a build request is finished. It checks the given buildset to see if all of
its buildrequests are finished. If so, it updates the status of the buildset and send the appropriate messages.

Endpoints

path: /buildsets

this path selects all buildsets

GET

returns collection of buildset

path: /buildsets/{bsid}

Path Keys bsid (identifier) – the id of the buildset

this path selects a buildset by id

GET

returns collection of buildset

change

resource type: change

Attributes

• changeid (integer) – the ID of this change

• author (string) – the author of the change in “name”, “name <email>” or just “email”
(with @) format

• branch? (string) – branch on which the change took place, or none for the “default
branch”, whatever that might mean

• category? (string) – user-defined category of this change, or none

• codebase (string) – codebase in this repository

• comments (string) – user comments for this change (aka commit)

• files[] (string) – list of source-code filenames changed

• parent_changeids[] (integer) – The ID of the parents. The data api allow for
several parents, but the core buildbot does not yet support

• project (string) – user-defined project to which this change corresponds

• properties (sourcedproperties) – user-specified properties for this change, rep-
resented as an object mapping keys to tuple (value, source)

• repository (string) – repository where this change occurred

• revision? (string) – revision for this change, or none if unknown

• revlink? (string) – link to a web view of this change

378 Chapter 3. Buildbot Development

Buildbot Documentation, Release 0.9.7

• sourcestamp (sourcestamp) – the sourcestamp resouce for this change

• when_timestamp (integer) – time of the change

A change resource represents a change to the source code monitored by Buildbot.

Update Methods

All update methods are available as attributes of master.data.updates.

class buildbot.data.changes.Change

addChange(files=None, comments=None, author=None, revision=None, when_timestamp=None,
branch=None, category=None, revlink=’‘, properties={}, repository=’‘, codebase=None,
project=’‘, src=None)

Parameters

• files (list of unicode strings) – a list of filenames that were changed

• comments (unicode) – user comments on the change

• author (unicode) – the author of this change

• revision (unicode) – the revision identifier for this change

• when_timestamp (integer) – when this change occurred (seconds since the epoch),
or the current time if None

• branch (unicode) – the branch on which this change took place

• category (unicode) – category for this change

• revlink (string) – link to a web view of this revision

• properties (dictionary with unicode keys and simple values
(JSON-able)) – properties to set on this change. Note that the property source is not
included in this dictionary.

• repository (unicode) – the repository in which this change took place

• project (unicode) – the project this change is a part of

• src (unicode) – source of the change (vcs or other)

Returns the ID of the new change, via Deferred

Add a new change to Buildbot. This method is the interface between change sources and the rest of
Buildbot.

All parameters should be passed as keyword arguments.

All parameters labeled ‘unicode’ must be unicode strings and not bytestrings. Filenames in files, and
property names, must also be unicode strings. This is tested by the fake implementation.

Endpoints

path: /builds/{buildid}/changes

Path Keys buildid (number) – the id of the build

This path selects all changes tested by a build

3.2. APIs 379

Buildbot Documentation, Release 0.9.7

GET

returns collection of change

path: /changes

This path selects all changes. On a reasonabily loaded master, this can quickly return a very large result, tak-
ing minutes to process. A specific query configuration is optimized which allows to get the recent changes:
order:-changeid&limit=<n>

GET

returns collection of change

path: /changes/{changeid}

Path Keys changeid (number) – the id of a change

this path selects one change by id

GET

returns collection of change

path: /sourcestamps/{ssid}/changes

Path Keys ssid (number) – the id of the sourcestamp

This path selects all changes associated to one sourcestamp

GET

returns collection of change

changesource

resource type: changesource

Attributes

• changesourceid (integer) – the ID of this changesource

• master? (master) – the master on which this worker is running, or None if it is inactive

• name (string) – name of this changesource

A changesource generates change objects, for example in response to an update in some repository. A particular
changesource (by name) runs on at most one master at a time.

Update Methods

All update methods are available as attributes of master.data.updates.

class buildbot.data.changesources.ChangeSource

findChangeSourceId(name)

Parameters name (string) – changesource name

Returns changesource ID via Deferred

Get the ID for the given changesource name, inventing one if necessary.

trySetChangeSourceMaster(changesourceid, masterid)

380 Chapter 3. Buildbot Development

Buildbot Documentation, Release 0.9.7

Parameters

• changesourceid (integer) – changesource ID to try to claim

• masterid (integer) – this master’s master ID

Returns True or False, via Deferred

Try to claim the given scheduler for the given master and return True if the scheduler is to be activated
on that master.

Endpoints

path: /changesources

This path selects all changesource.

GET

returns collection of changesource

path: /changesources/{changesourceid}

Path Keys changesourceid (number) – the id of a changesource

This path selects one changesource given its id.

GET

returns collection of changesource

path: /masters/{masterid}/changesources

Path Keys masterid (number) – the id of the master

This path selects all changesources for a given master

GET

returns collection of changesource

path: /masters/{masterid}/changesources/{changesourceid}

Path Keys masterid (number) – the id of the master

This path selects one changesource by id for a given master

GET

returns collection of changesource

forcescheduler

resource type: forcescheduler

Attributes

• all_fields[] (object) –

• builder_names[] (identifier) – names of the builders that this scheduler can trig-
ger

• button_name (string) – label of the button to use in the UI

• label (string) – label of this scheduler to be displayed in the ui

3.2. APIs 381

Buildbot Documentation, Release 0.9.7

• name (identifier) – name of this scheduler

A forcescheduler initiates builds, via a formular in the web UI. At the moment, forceschedulers must be defined on all
the masters where a web ui is configured. A particular forcescheduler runs on the master where the web request was
sent.

Note: This datatype and associated endpoints will be deprecated when bug #2673 (http://trac.buildbot.net/ticket/2673)
will be resolved.

Endpoints

path: /builders/{builderid}/forceschedulers

Path Keys builderid (number) – the ID of the builder

This path selects all force-schedulers for a given builder

GET

returns collection of forcescheduler

path: /forceschedulers

This path selects all forceschedulers.

GET

returns collection of forcescheduler

path: /forceschedulers/{schedulername}

Path Keys schedulername (identifier) – the name of a scheduler

This path selects all changesource.

GET

returns collection of forcescheduler

POST with method: /forceschedulers/{schedulername}:force

Body keys

• method (string) – must be force

• owner (string) – The user who wants to create the buildrequest

• [] – content of the forcescheduler parameter is dependent on the configuration of the
forcescheduler

identifier

resource type: identifier

Logs

resource type: log

Attributes

382 Chapter 3. Buildbot Development

http://trac.buildbot.net/ticket/2673

Buildbot Documentation, Release 0.9.7

• complete (boolean) – true if this log is complete and will not generate additional
logchunks

• logid (integer) – the unique ID of this log

• name (string) – the name of this log (e.g., err.html)

• num_lines (integer) – total number of line of this log

• slug (identifier) – the “slug”, suitable for use in a URL, of this log (e.g., err_html)

• stepid (integer) – id of the step containing this log

• type (identifier) – log type, identified by a single ASCII letter; see logchunk for
details.

example

{
"logid": 60,
"name": "stdio",
"slug": "stdio",
"stepid": 50,
"complete": false,
"num_lines": 0,
"type": "s"

}

A log represents a stream of textual output from a step. The actual output is encoded as a sequence of logchunk
resources. In-progress logs append logchunks as new data is added to the end, and event subscription allows a client
to “follow” the log.

Each log has a “slug” which is unique within the step, and which can be used in paths. The slug is generated by
addLog based on the name, using forceIdentifier and incrementIdentifier to guarantee uniqueness.

Todo

event: build.$buildid.step.$number.log.$logid.newlog
The log has just started. Logs are started when they are created, so this also indicates the creation of a new log.

event: build.$buildid.step.$number.log.$logid.complete
The log is complete.

Update Methods

All update methods are available as attributes of master.data.updates.

class buildbot.data.logs.Log

addLog(stepid, name, type)

Parameters

• stepid (integer) – stepid containing this log

• name (string) – name for the log

Raises KeyError – if a log by the given name already exists

Returns logid via Deferred

3.2. APIs 383

Buildbot Documentation, Release 0.9.7

Create a new log and return its ID. The name need not be unique. This method will generate a unique slug
based on the name.

appendLog(logid, content):

Parameters

• logid (integer) – the log to which content should be appended

• content (unicode) – the content to append

Append the given content to the given log. The content must end with a newline. All newlines in the
content should be UNIX-style (\n).

finishLog(logid)

Parameters logid (integer) – the log to finish

Mark the log as complete.

compressLog(logid)

Parameters logid (integer) – the log to compress

Compress the given log, after it is finished. This operation may take some time.

Endpoints

path: /builders/{builderid}/builds/{build_number}/steps/{step_name}/logs

Path Keys

• builderid (number) – the ID of the builder

• build_number (number) – the number of the build within the builder

• step_name (identifier) – the slug name of the step

This path selects all logs for the given step.

GET

returns collection of log

path: /builders/{builderid}/builds/{build_number}/steps/{step_name}/logs/{log_slug}

Path Keys

• builderid (number) – the ID of the builder

• build_number (number) – the number of the build within the builder

• step_name (identifier) – the slug name of the step

• log_slug (identifier) – the slug name of the log

GET

returns collection of log

path: /builders/{builderid}/builds/{build_number}/steps/{step_number}/logs

Path Keys

• builderid (number) – the ID of the builder

• build_number (number) – the number of the build within the builder

384 Chapter 3. Buildbot Development

Buildbot Documentation, Release 0.9.7

• step_number (number) – the number of the step

This path selects all log of a a specific step

GET

returns collection of log

path: /builders/{builderid}/builds/{build_number}/steps/{step_number}/logs/{log_slug}

Path Keys

• builderid (number) – the ID of the builder

• build_number (number) – the number of the build within the builder

• step_number (number) – the number of the step

• log_slug (identifier) – the slug name of the log

This path selects one log of a a specific step

GET

returns collection of log

path: /builds/{buildid}/steps/{step_number_or_name}/logs

Path Keys

• buildid (number) – the id of the build

• | number step_number_or_name (identifier) – the name or number of the
step

This path selects all logs of a step of a build

GET

returns collection of log

path: /builds/{buildid}/steps/{step_number_or_name}/logs/{log_slug}

Path Keys

• buildid (number) – the id of the build

• | number step_number_or_name (identifier) – the name or number of the
step

• log_slug (identifier) – the slug name of the log

This path selects one log of a a specific step

GET

returns collection of log

path: /logs/{logid}

Path Keys logid (number) – the id of the log

This path selects one log

GET

returns collection of log

path: /steps/{stepid}/logs

Path Keys stepid (number) – the id of the step

3.2. APIs 385

Buildbot Documentation, Release 0.9.7

This path selects all logs for the given step.

GET

returns collection of log

path: /steps/{stepid}/logs/{log_slug}

Path Keys

• stepid (number) – the id of the step

• log_slug (identifier) – the slug name of the log

GET

returns collection of log

logchunk

resource type: logchunk

Attributes

• content (string) – content of the chunk

• firstline (integer) – zero-based line number of the first line in this chunk

• logid (integer) – the ID of log containing this chunk

A logchunk represents a contiguous sequence of lines in a logfile. Logs are not individually addressable in the data
API; instead, they must be requested by line number range. In a strict REST sense, many logchunk resources will
contain the same line.

The chunk contents is represented as a single unicode string. This string is the concatenation of each newline
terminated-line.

Each log has a type, as identified by the “type” field of the corresponding log. While all logs are sequences of unicode
lines, the type gives additional information fo interpreting the contents. The defined types are:

• t – text, a simple sequence of lines of text

• s – stdio, like text but with each line tagged with a stream

• h – HTML, represented as plain text

• d – Deleted, logchunks for this log have been deleted by the Janitor

In the stream type, each line is prefixed by a character giving the stream type for that line. The types are i for input,
o for stdout, e for stderr, and h for header. The first three correspond to normal UNIX standard streams, while the
header stream contains metadata produced by Buildbot itself.

The offset and limit parameters can be used to select the desired lines. These are specified as query parameters
via the REST interface, or as arguments to the get method in Python. The result will begin with line offset (so the
resulting firstline will be equal to the given offset), and will contain up to limit lines.

Following example will get the first 100 lines of a log:

from buildbot.data import resultspec
first_100_lines = yield self.master.data.get(("logs", log['logid'], "contents"),

resultSpec=resultspec.ResultSpec(limit=100))

Following example will get the last 100 lines of a log:

386 Chapter 3. Buildbot Development

Buildbot Documentation, Release 0.9.7

from buildbot.data import resultspec
last_100_lines = yield self.master.data.get(("logs", log['logid'], "contents"),

resultSpec=resultspec.ResultSpec(offset=log['num_lines']-100))

Note: There is no event for a new chunk. Instead, the log resource is updated when new chunks are added, with the
new number of lines. Consumers can then request those lines, if desired.

Update Methods

Log chunks are updated via log.

Endpoints

path: /builders/{builderid}/builds/{build_number}/steps/{step_name}/logs/{log_slug}/contents

Path Keys

• builderid (number) – the ID of the builder

• build_number (number) – the number of the build within the builder

• step_name (identifier) – the slug name of the step

• log_slug (identifier) – the slug name of the log

GET

returns collection of logchunk

path: /builders/{builderid}/builds/{build_number}/steps/{step_number}/logs/{log_slug}/contents

Path Keys

• builderid (number) – the ID of the builder

• build_number (number) – the number of the build within the builder

• step_number (number) – the number of the step

• log_slug (identifier) – the slug name of the log

GET

returns collection of logchunk

path: /builds/{buildid}/steps/{step_number_or_name}/logs/{log_slug}/contents

Path Keys

• buildid (number) – the id of the build

• | number step_number_or_name (identifier) – the name or number of the
step

• log_slug (identifier) – the slug name of the log

GET

returns collection of logchunk

path: /logs/{logid}/contents

3.2. APIs 387

Buildbot Documentation, Release 0.9.7

Path Keys logid (number) – the id of the log

GET

returns collection of logchunk

path: /steps/{stepid}/logs/{log_slug}/contents

Path Keys

• stepid (number) – the id of the step

• log_slug (identifier) – the slug name of the log

GET

returns collection of logchunk

master

resource type: master

Attributes

• active (boolean) – true if the master is active

• last_active (date) – time this master was last marked active

• masterid (integer) – the ID of this master

• name (string) – master name (in the form “hostname:basedir”)

This resource type describes buildmasters in the buildmaster cluster.

Update Methods

All update methods are available as attributes of master.data.updates.

class buildbot.data.masters.Master

masterActive(name, masterid)

Parameters

• name (unicode) – the name of this master (generally hostname:basedir)

• masterid (integer) – this master’s master ID

Returns Deferred

Mark this master as still active. This method should be called at startup and at least once per minute. The
master ID is acquired directly from the database early in the master startup process.

expireMasters()

Returns Deferred

Scan the database for masters that have not checked in for ten minutes. This method should be called about
once per minute.

masterStopped(name, masterid)

Parameters

388 Chapter 3. Buildbot Development

Buildbot Documentation, Release 0.9.7

• name (unicode) – the name of this master

• masterid (integer) – this master’s master ID

Returns Deferred

Mark this master as inactive. Masters should call this method before completing an expected shutdown,
and on startup. This method will take care of deactivating or removing configuration resources like builders
and schedulers as well as marking lost builds and build requests for retry.

Endpoints

path: /builders/{builderid}/masters

Path Keys builderid (number) – the ID of the builder

This path selects all masters supporting a given builder

GET

returns collection of master

path: /builders/{builderid}/{masterid}

Path Keys

• builderid (number) – the ID of the builder

• masterid (number) – the id of the master

This path selects a master by id filtered by given builderid

GET

returns collection of master

path: /masters

This path selects all masters

GET

returns collection of master

path: /masters/{masterid}

Path Keys masterid (number) – the id of the master

This path selects one master given its id

GET

returns collection of master

patch

resource type: patch

Attributes

• patchid (integer) – the unique ID of this patch

• body (string) – patch body as a binary string

3.2. APIs 389

Buildbot Documentation, Release 0.9.7

• level (integer) – patch level - the number of directory names to strip from filenames
in the patch

• subdir (string) – subdirectory in which patch should be applied

• author? (string) – patch author, or None

• comment? (string) – patch comment, or None

This resource type describes a patch. Patches have unique IDs, but only appear embedded in sourcestamps, so those
IDs are not especially useful.

Update Methods

All update methods are available as attributes of master.data.updates.

class buildbot.data.patches.Patch
(no update methods)

rootlink

resource type: rootlink

Attributes name (string) –

Endpoints

path: /

GET

returns collection of rootlink

scheduler

resource type: scheduler

Attributes

• master? (master) – the master on which this scheduler is running, or None if it is
inactive

• name (string) – name of this scheduler

• schedulerid (integer) – the ID of this scheduler

A scheduler initiates builds, often in response to changes from change sources. A particular scheduler (by name) runs
on at most one master at a time.

Note: This data type and associated endpoints is planned to be merged with forcescheduler data type when bug #2673
(http://trac.buildbot.net/ticket/2673) will be resolved.

390 Chapter 3. Buildbot Development

http://trac.buildbot.net/ticket/2673

Buildbot Documentation, Release 0.9.7

Update Methods

All update methods are available as attributes of master.data.updates.

class buildbot.data.schedulers.Scheduler

findSchedulerId(name)

Parameters name (string) – scheduler name

Returns scheduler ID via Deferred

Get the ID for the given scheduler name, inventing one if necessary.

trySetSchedulerMaster(schedulerid, masterid)

Parameters

• schedulerid (integer) – scheduler ID to try to claim

• masterid (integer) – this master’s master ID

Returns True or False, via Deferred

Try to claim the given scheduler for the given master and return True if the scheduler is to be activated on that
master.

Endpoints

path: /masters/{masterid}/schedulers

Path Keys masterid (number) – the id of the master

This path selects all schedulers for a given master

GET

returns collection of scheduler

path: /masters/{masterid}/schedulers/{schedulerid}

Path Keys

• masterid (number) – the id of the master

• schedulerid (number) – the id of the scheduler

This path selects one scheduler by id for a given master

GET

returns collection of scheduler

path: /schedulers

This path selects all schedulers

GET

returns collection of scheduler

path: /schedulers/{schedulerid}

Path Keys schedulerid (number) – the id of the scheduler

This path selects one scheduler by id

GET

3.2. APIs 391

Buildbot Documentation, Release 0.9.7

returns collection of scheduler

sourcedproperties

resource type: sourcedproperties

Attributes [] (object) – Each key of this map is the name of a defined property The value consist
on a couple (source, value)

user-specified properties for this change, represented as an object mapping keys to tuple (value, source)

Properties are present in several data resources, but have a separate endpoints, because they can represent a large
dataset.

Update Methods

All update methods are available as attributes of master.data.updates.

class buildbot.data.properties.Properties

setBuildProperty(buildid, name, value, source)

Parameters

• buildid (integer) – build ID

• name (unicode) – Name of the property to set

• value (Any JSON-able type is accepted (lists, dicts, strings
and numbers)) – Value of the property

• source (unicode) – Source of the property to set

Set a build property. If no property with that name exists in that build, a new property will be created.

setBuildProperties(buildid, props)

Parameters

• buildid (integer) – build ID

• props (IProperties) – Name of the property to set

Synchronise build properties with the db. This sends only one event in the end of the sync, and only if
properties changed. The event contains only the updated properties, for network efficiency reasons.

Endpoints

path: /builds/{buildid}/properties

Path Keys buildid (number) – the id of the build

This path selects all properties of a build

GET

returns collection of sourcedproperties

path: /buildsets/{bsid}/properties

Path Keys bsid (identifier) – the id of the buildset

392 Chapter 3. Buildbot Development

Buildbot Documentation, Release 0.9.7

This path selects all properties of a buildset. Buildset properties is part of the initial properties of a build.

GET

returns collection of sourcedproperties

sourcestamp

resource type: sourcestamp

Attributes

• ssid (integer) – the ID of this sourcestamp

Note: For legacy reasons, the abbreviated name ssid is used instead of
canonical sourcestampid. This might change in the future (bug #3509
(http://trac.buildbot.net/ticket/3509)).

• branch? (string) – code branch, or none for the “default branch”, whatever that might
mean

• codebase (string) – revision for this sourcestamp, or none if unknown

• created_at (date) – the timestamp when this sourcestamp was created

• patch? (patch) – the patch for this sourcestamp, or none

• project (string) – user-defined project to which this sourcestamp corresponds

• repository (string) – repository where this sourcestamp occurred

• revision? (string) – revision for this sourcestamp, or none if unknown

A source stamp represents a particular version of the source code. Absolute sourcestamps specify this completely,
while relative sourcestamps (with revision = None) specify the latest source at the current time. Source stamps can
also have patches; such stamps describe the underlying revision with the given patch applied.

Note that, depending on the underlying version-control system, the same revision may describe different code in
different branches (e.g., SVN) or may be independent of the branch (e.g., Git).

The created_at timestamp can be used to indicate the first time a sourcestamp was seen by Buildbot. This provides
a reasonable default ordering for sourcestamps when more reliable information is not available.

Endpoints

path: /sourcestamps

This path selects all sourcestamps (can return lots of data!)

GET

returns collection of sourcestamp

path: /sourcestamps/{ssid}

Path Keys ssid (number) – the id of the sourcestamp

This path selects one sourcestamp by id

GET

3.2. APIs 393

http://trac.buildbot.net/ticket/3509

Buildbot Documentation, Release 0.9.7

returns collection of sourcestamp

spec

resource type: spec

Attributes

• path (string) –

• plural (string) –

• type (string) –

• type_spec (object) –

Endpoints

path: /application.spec

GET

returns collection of spec

step

resource type: step

Attributes

• stepid (integer) – the unique ID of this step

• buildid (integer) – id of the build containing this step

• complete (boolean) – true if this step is complete

• complete_at? (date) – time at which this step was complete, or None if it’s still run-
ning

• hidden (boolean) – true if the step should not be displayed

• name (identifier) – the step name, unique within the build

• number (integer) – the number of this step (sequential within the build)

• results? (integer) – the results of the step (see Build Result Codes), or None if not
complete

• started_at? (date) – time at which this step started, or None if it hasn’t started yet

• state_string (string) – a string giving detail on the state of the build. The first is
usually one word or phrase; the remainder are sized for one-line display.

• urls[] – a list of URLs associated with this step.

This resource type describes a step in a build. Steps have unique IDs, but are most commonly accessed by name in the
context of their containing builds.

394 Chapter 3. Buildbot Development

Buildbot Documentation, Release 0.9.7

Update Methods

All update methods are available as attributes of master.data.updates.

class buildbot.data.steps.Step

newStep(buildid, name)

Parameters

• buildid (integer) – buildid containing this step

• name (50-character identifier) – name for the step

Returns (stepid, number, name) via Deferred

Create a new step and return its ID, number, and name. Note that the name may be different from the
requested name, if that name was already in use. The state strings for the new step will be set to ‘pending’.

startStep(stepid)

Parameters stepid (integer) – the step to modify

Start the step.

setStepStateString(stepid, state_string)

Parameters

• stepid (integer) – the step to modify

• state_string (unicode) – new state strings for this step

Replace the existing state string for a step with a new list.

addStepURL(stepid, name, url):

Parameters

• stepid (integer) – the step to modify

• name (string) – the url name

• url (string) – the actual url

Returns None via deferred

Add a new url to a step. The new url is added to the list of urls.

finishStep(stepid, results, hidden)

Parameters

• stepid (integer) – the step to modify

• results (integer) – the step’s results

• hidden (boolean) – true if the step should not be displayed

Mark the step as finished at the current time, with the given results.

Endpoints

path: /builders/{builderid}/builds/{build_number}/steps

Path Keys

3.2. APIs 395

Buildbot Documentation, Release 0.9.7

• builderid (number) – the ID of the builder

• build_number (number) – the number of the build within the builder

This path selects all steps for the given build.

GET

returns collection of step

path: /builders/{builderid}/builds/{build_number}/steps/{step_name}

Path Keys

• builderid (number) – the ID of the builder

• build_number (number) – the number of the build within the builder

• step_name (identifier) – the slug name of the step

This path selects a specific step for the given build.

GET

returns collection of step

path: /builders/{builderid}/builds/{build_number}/steps/{step_number}

Path Keys

• builderid (number) – the ID of the builder

• build_number (number) – the number of the build within the builder

• step_number (number) – the number of the step

This path selects a specific step given its step number

GET

returns collection of step

path: /builds/{buildid}/steps

Path Keys buildid (number) – the id of the build

This path selects all steps of a build

GET

returns collection of step

path: /builds/{buildid}/steps/{step_number_or_name}

Path Keys

• buildid (number) – the id of the build

• | number step_number_or_name (identifier) – the name or number of the
step

This path selects one step of a build

GET

returns collection of step

396 Chapter 3. Buildbot Development

Buildbot Documentation, Release 0.9.7

worker

resource type: worker

Attributes

• workerid (integer) – the ID of this worker

• configured_on[] – list of builders on masters this worker is configured on

• connected_to[] – list of masters this worker is attached to

• name (string) – the name of the worker

• workerinfo (object) – information about the worker.

The worker information can be any JSON-able object. In practice, it contains the following
keys, based on information provided by the worker:

– admin (the admin information)

– host (the name of the host)

– access_uri (the access URI)

– version (the version on the worker)

A worker resource represents a worker to the source code monitored by Buildbot.

The contents of the connected_to and configured_on attributes are sensitive to the context of the request. If
a builder or master is specified in the path, then only the corresponding connections and configurations are included in
the result.

Endpoints

path: /builders/{builderid}/workers

Path Keys builderid (number) – the ID of the builder

This path selects all workers configured for a given builder

GET

returns collection of worker

path: /builders/{builderid}/workers/{name}

Path Keys

• builderid (number) – the ID of the builder

• name (identifier) – the name of the worker

This path selects a worker by name filtered by given builderid

GET

returns collection of worker

path: /builders/{builderid}/workers/{workerid}

Path Keys

• builderid (number) – the ID of the builder

• workerid (number) – the id of the worker

3.2. APIs 397

Buildbot Documentation, Release 0.9.7

This path selects a worker by id filtered by given builderid

GET

returns collection of worker

path: /masters/{masterid}/builders/{builderid}/workers

Path Keys

• masterid (number) – the id of the master

• builderid (number) – the id of the builder

This path selects all workers for a given builder and a given master

GET

returns collection of worker

path: /masters/{masterid}/builders/{builderid}/workers/{name}

Path Keys

• masterid (number) – the id of the master

• builderid (number) – the id of the builder

• name (identifier) – the name of the worker

This path selects one workers by name for a given builder and a given master

GET

returns collection of worker

path: /masters/{masterid}/builders/{builderid}/workers/{workerid}

Path Keys

• masterid (number) – the id of the master

• builderid (number) – the id of the builder

• workerid (number) – the id of the worker

This path selects one workers by name for a given builder and a given master

GET

returns collection of worker

path: /masters/{masterid}/workers

Path Keys masterid (number) – the id of the master

This path selects all workers for a given master

GET

returns collection of worker

path: /masters/{masterid}/workers/{name}

Path Keys

• masterid (number) – the id of the master

• name (identifier) – the name of the worker

This path selects one worker by name for a given master

398 Chapter 3. Buildbot Development

Buildbot Documentation, Release 0.9.7

GET

returns collection of worker

path: /masters/{masterid}/workers/{workerid}

Path Keys

• masterid (number) – the id of the master

• workerid (number) – the id of the worker

This path selects one worker by id for a given master

GET

returns collection of worker

path: /workers

this path selects all workers

GET

returns collection of worker

path: /workers/{name_or_id}

Path Keys | number name_or_id (identifier) – the name or id of a worker

this path selects worker by name or id

GET

returns collection of worker

Raw endpoints

Raw endpoints allow to download content in their raw format (i.e. not within a json glue). The
content-disposition http header is set, so that the browser knows which file to store the content to.

path: /builders/{builderid}/builds/{build_number}/steps/{step_name}/logs/{log_slug}/raw

Path Keys

• builderid (number) – the ID of the builder

• build_number (number) – the number of the build within the builder

• step_name (identifier) – the slug name of the step

• log_slug (identifier) – the slug name of the log

This endpoint allows to get the raw logs for downloading into a file. This endpoint does not provide paging capabilities.
For stream log types, the type line header characters are dropped. ‘text/plain’ is used as the mime type except for html
logs, where ‘text/html’ is used. The ‘slug’ is used as the filename for the resulting download. Some browsers are
appending ".txt" or ".html" to this filename according to the mime-type.

path: /builders/{builderid}/builds/{build_number}/steps/{step_number}/logs/{log_slug}/raw

Path Keys

• builderid (number) – the ID of the builder

• build_number (number) – the number of the build within the builder

• step_number (number) – the number of the step

3.2. APIs 399

Buildbot Documentation, Release 0.9.7

• log_slug (identifier) – the slug name of the log

This path downloads the whole log

path: /builds/{buildid}/steps/{step_number_or_name}/logs/{log_slug}/raw

Path Keys

• buildid (number) – the id of the build

• | number step_number_or_name (identifier) – the name or number of the
step

• log_slug (identifier) – the slug name of the log

This path downloads the whole log

path: /logs/{logid}/raw

Path Keys logid (number) – the id of the log

This path downloads the whole log

path: /steps/{stepid}/logs/{log_slug}/raw

Path Keys

• stepid (number) – the id of the step

• log_slug (identifier) – the slug name of the log

This path downloads the whole log

Raml spec verbatim

Sometimes Raml is just clearer than formatted text.

#%RAML 1.0
title: Buildbot Web API
version: v2
mediaType: application/json
traits:

bbget:
responses:

200:
body:

application/json:
type: responseObjects.libraries.types.<<bbtype>>

404:
body:

text/plain:
example: "not found"

bbpost:
body:

type: <<reqtype>>
responses:

200:
body:

application/json:
type: <<resptype>>

404:
body:

text/plain:

400 Chapter 3. Buildbot Development

Buildbot Documentation, Release 0.9.7

example: "not found"
bbgetraw:

responses:
200:

headers:
content-disposition:

description: content disposition header allows browser to
→˓save log file with proper filename

example: attachment; filename=stdio
body:

text/html:
description: "html data if the object is html"

text/plain:
description: "plain text data if the object is text"

types:
build: !include types/build.raml
builder: !include types/builder.raml
buildrequest: !include types/buildrequest.raml
buildset: !include types/buildset.raml
worker: !include types/worker.raml
change: !include types/change.raml
changesource: !include types/changesource.raml
forcescheduler: !include types/forcescheduler.raml
identifier: !include types/identifier.raml
log: !include types/log.raml
logchunk: !include types/logchunk.raml
master: !include types/master.raml
rootlink: !include types/rootlink.raml
scheduler: !include types/scheduler.raml
sourcedproperties: !include types/sourcedproperties.raml
sourcestamp: !include types/sourcestamp.raml
patch: !include types/patch.raml
spec: !include types/spec.raml
step: !include types/step.raml

/:
get:

is:
- bbget: {bbtype: rootlink}

/application.spec:
get:

is:
- bbget: {bbtype: spec}

/builders:
description: This path selects all builders
get:

is:
- bbget: {bbtype: builder}

/{builderid}:
uriParameters:

builderid:
type: number
description: the ID of the builder

description: This path selects a builder by builderid
get:

is:
- bbget: {bbtype: builder}

/forceschedulers:

3.2. APIs 401

Buildbot Documentation, Release 0.9.7

description: This path selects all force-schedulers for a given builder
get:

is:
- bbget: {bbtype: forcescheduler}

/buildrequests:
description: This path selects all buildrequests for a given builder (can

→˓return lots of data!)
get:

is:
- bbget: {bbtype: buildrequest}

/builds:
description: This path selects all builds for a builder (can return lots

→˓of data!)
get:

is:
- bbget: {bbtype: build}

/{build_number}:
uriParameters:

build_number:
type: number
description: the number of the build within the builder

description: This path selects a specific build by builderid,
→˓buildnumber

get:
is:
- bbget: {bbtype: build}

/actions/stop:
post:

description: |
stops one build.

body:
application/json:

properties:
reason:

type: string
required: false
description: The reason why the build was

→˓stopped
results:

type: integer
required: false
description: optionally results value

→˓override (default CANCELLED)
/actions/rebuild:

post:
description: |

rebuilds one build.
body:

application/json:
description: no parameter are needed

/steps:
description: This path selects all steps for the given build.
get:

is:
- bbget: {bbtype: step}

/{step_name}:
uriParameters:

step_name:

402 Chapter 3. Buildbot Development

Buildbot Documentation, Release 0.9.7

type: identifier
description: the slug name of the step

description: This path selects a specific step for the given
→˓build.

get:
is:
- bbget: {bbtype: step}

/logs:
description: This path selects all logs for the given

→˓step.
get:

is:
- bbget: {bbtype: log}

/{log_slug}:
uriParameters:

log_slug:
type: identifier
description: the slug name of the log

get:
description: |

This path selects a specific log in the given
→˓step.

is:
- bbget: {bbtype: log}

/contents:
get:

description: |
This path selects chunks from a specific

→˓log in the given step.
is:
- bbget: {bbtype: logchunk}

/raw:
get:

description: |
This endpoint allows to get the raw logs

→˓for downloading into a file.
This endpoint does not provide paging

→˓capabilities.
For stream log types, the type line

→˓header characters are dropped.
'text/plain' is used as the mime type

→˓except for html logs, where 'text/html' is used.
The 'slug' is used as the filename for

→˓the resulting download. Some browsers are appending ``".txt"`` or ``".html"`` to
→˓this filename according to the mime-type.

is:
- bbgetraw:

/{step_number}:
uriParameters:

step_number:
type: number
description: the number of the step

description: This path selects a specific step given its step
→˓number

get:
is:
- bbget: {bbtype: step}

3.2. APIs 403

Buildbot Documentation, Release 0.9.7

/logs:
description: This path selects all log of a a specific

→˓step
get:

is:
- bbget: {bbtype: log}

/{log_slug}:
uriParameters:

log_slug:
type: identifier
description: the slug name of the log

description: This path selects one log of a a
→˓specific step

get:
is:
- bbget: {bbtype: log}

/contents:
get:

description: |
This path selects chunks from a specific

→˓log in the given step.
is:
- bbget: {bbtype: logchunk}

/raw:
get:

description: |
This path downloads the whole log

is:
- bbgetraw:

/workers:
description: |

This path selects all workers configured for a given builder
get:

is:
- bbget: {bbtype: worker}

/{name}:
description: |

This path selects a worker by name filtered by given builderid
uriParameters:

name:
type: identifier
description: the name of the worker

get:
is:
- bbget: {bbtype: worker}

/{workerid}:
description: |

This path selects a worker by id filtered by given builderid
uriParameters:

workerid:
type: number
description: the id of the worker

get:
is:
- bbget: {bbtype: worker}

/masters:
description: |

404 Chapter 3. Buildbot Development

Buildbot Documentation, Release 0.9.7

This path selects all masters supporting a given builder
get:

is:
- bbget: {bbtype: master}

/{masterid}:
uriParameters:

masterid:
type: number
description: the id of the master

description: |
This path selects a master by id filtered by given builderid

get:
is:
- bbget: {bbtype: master}

/buildrequests:
/{buildrequestid}:

uriParameters:
buildrequestid:

type: number
description: the id of the buildrequest

get:
is:
- bbget: {bbtype: buildrequest}

/builds:
get:

is:
- bbget: {bbtype: build}

/actions/cancel:
post:

description: |
Cancel one buildrequest.
If necessary, this will stop the builds generated by the

→˓buildrequest, including triggered builds.
body:

application/json:
properties:

reason:
type: string
required: false
description: The reason why the buildrequest was

→˓cancelled
get:

is:
- bbget: {bbtype: buildrequest}

/builds:
get:

is:
- bbget: {bbtype: build}

/{buildid}:
description: |

This path selects a build by id
uriParameters:

buildid:
type: number
description: the id of the build

get:
is:

3.2. APIs 405

Buildbot Documentation, Release 0.9.7

- bbget: {bbtype: build}
/actions/stop:

post:
description: |

stops one build.
body:

application/json:
properties:

reason:
type: string
required: false
description: The reason why the build was stopped

/actions/rebuild:
post:

description: |
rebuilds one build.

body:
application/json:

description: no parameter are needed
/changes:

description: |
This path selects all changes tested by a build

get:
is:
- bbget: {bbtype: change}

/properties:
description: |

This path selects all properties of a build
get:

is:
- bbget: {bbtype: sourcedproperties}

/steps:
description: |

This path selects all steps of a build
get:

is:
- bbget: {bbtype: step}

/{step_number_or_name}:
uriParameters:

step_number_or_name:
type: identifier | number
description: the name or number of the step

description: |
This path selects one step of a build

get:
is:
- bbget: {bbtype: step}

/logs:
description: |

This path selects all logs of a step of a build
get:

is:
- bbget: {bbtype: log}

/{log_slug}:
uriParameters:

log_slug:
type: identifier
description: the slug name of the log

406 Chapter 3. Buildbot Development

Buildbot Documentation, Release 0.9.7

description: This path selects one log of a a specific step
get:

is:
- bbget: {bbtype: log}

/contents:
get:

description: |
This path selects chunks from a specific log in

→˓the given step.
is:
- bbget: {bbtype: logchunk}

/raw:
get:

description: |
This path downloads the whole log

is:
- bbgetraw:

/buildsets:
description: this path selects all buildsets
get:

is:
- bbget: {bbtype: buildset}

/{bsid}:
description: this path selects a buildset by id
uriParameters:

bsid:
type: identifier
description: the id of the buildset

get:
is:
- bbget: {bbtype: buildset}

/properties:
description: |

This path selects all properties of a buildset.
Buildset properties is part of the initial properties of a build.

get:
is:
- bbget: {bbtype: sourcedproperties}

/workers:
description: this path selects all workers
get:

is:
- bbget: {bbtype: worker}

/{name_or_id}:
description: this path selects worker by name or id
uriParameters:

name_or_id:
type: identifier | number
description: the name or id of a worker

get:
is:
- bbget: {bbtype: worker}

/changes:
description: |

This path selects **all** changes.
On a reasonabily loaded master, this can quickly return a very large result,

→˓taking minutes to process.

3.2. APIs 407

Buildbot Documentation, Release 0.9.7

A specific query configuration is optimized which allows to get the recent
→˓changes: ``order:-changeid&limit=<n>``

get:
is:
- bbget: {bbtype: change}

/{changeid}:
description: this path selects one change by id
uriParameters:

changeid:
type: number
description: the id of a change

get:
is:
- bbget: {bbtype: change}

/changesources:
description: |

This path selects all changesource.
get:

is:
- bbget: {bbtype: changesource}

/{changesourceid}:
uriParameters:

changesourceid:
type: number
description: the id of a changesource

description: |
This path selects one changesource given its id.

get:
is:
- bbget: {bbtype: changesource}

/forceschedulers:
description: |

This path selects all forceschedulers.
get:

is:
- bbget: {bbtype: forcescheduler}

/{schedulername}:
description: |

This path selects all changesource.
uriParameters:

schedulername:
type: identifier
description: the name of a scheduler

get:
is:
- bbget: {bbtype: forcescheduler}

/actions/force:
post:

description: |
Triggers the forcescheduler

body:
application/json:

properties:
owner:

type: string

408 Chapter 3. Buildbot Development

Buildbot Documentation, Release 0.9.7

required: false
description: The user who wants to create the

→˓buildrequest
'[]':

description: content of the forcescheduler parameter
→˓is dependent on the configuration of the forcescheduler
/logs/{logid}:

uriParameters:
logid:

type: number
description: the id of the log

description: This path selects one log
get:

is:
- bbget: {bbtype: log}

/contents:
get:

description: |
This path selects chunks from a specific log

is:
- bbget: {bbtype: logchunk}

/raw:
get:

description: |
This path downloads the whole log

is:
- bbgetraw:

/masters:
description: This path selects all masters
get:

is:
- bbget: {bbtype: master}

/{masterid}:
description: This path selects one master given its id
uriParameters:

masterid:
type: number
description: the id of the master

get:
is:
- bbget: {bbtype: master}

/builders:
description: This path selects all builders of a given master
get:

is:
- bbget: {bbtype: builder}

/{builderid}:
description: This path selects one builder by id of a given master
uriParameters:

builderid:
type: number
description: the id of the builder

get:
is:
- bbget: {bbtype: builder}

/workers:
description: This path selects all workers for a given builder

→˓and a given master

3.2. APIs 409

Buildbot Documentation, Release 0.9.7

get:
is:
- bbget: {bbtype: worker}

/{name}:
description: This path selects one workers by name for a

→˓given builder and a given master
uriParameters:

name:
type: identifier
description: the name of the worker

get:
is:
- bbget: {bbtype: worker}

/{workerid}:
description: This path selects one workers by name for a

→˓given builder and a given master
uriParameters:

workerid:
type: number
description: the id of the worker

get:
is:
- bbget: {bbtype: worker}

/workers:
description: This path selects all workers for a given master
get:

is:
- bbget: {bbtype: worker}

/{name}:
description: This path selects one worker by name for a given master
uriParameters:

name:
type: identifier
description: the name of the worker

get:
is:
- bbget: {bbtype: worker}

/{workerid}:
description: This path selects one worker by id for a given master
uriParameters:

workerid:
type: number
description: the id of the worker

get:
is:
- bbget: {bbtype: worker}

/changesources:
description: This path selects all changesources for a given master
get:

is:
- bbget: {bbtype: changesource}

/{changesourceid}:
description: This path selects one changesource by id for a given

→˓master
get:

is:
- bbget: {bbtype: changesource}

/schedulers:

410 Chapter 3. Buildbot Development

Buildbot Documentation, Release 0.9.7

description: This path selects all schedulers for a given master
get:

is:
- bbget: {bbtype: scheduler}

/{schedulerid}:
description: This path selects one scheduler by id for a given master
uriParameters:

schedulerid:
type: number
description: the id of the scheduler

get:
is:
- bbget: {bbtype: scheduler}

/schedulers:
description: This path selects all schedulers
get:

is:
- bbget: {bbtype: scheduler}

/{schedulerid}:
uriParameters:

schedulerid:
type: number
description: the id of the scheduler

description: This path selects one scheduler by id
get:

is:
- bbget: {bbtype: scheduler}

/sourcestamps:
description: This path selects all sourcestamps (can return lots of data!)
get:

is:
- bbget: {bbtype: sourcestamp}

/{ssid}:
description: This path selects one sourcestamp by id
uriParameters:

ssid:
type: number
description: the id of the sourcestamp

get:
is:
- bbget: {bbtype: sourcestamp}

/changes:
description: This path selects all changes associated to one sourcestamp
get:

is:
- bbget: {bbtype: change}

/steps:
/{stepid}:

description: This path selects one step by id
uriParameters:

stepid:
type: number
description: the id of the step

/logs:
description: This path selects all logs for the given step.
get:

is:
- bbget: {bbtype: log}

3.2. APIs 411

Buildbot Documentation, Release 0.9.7

/{log_slug}:
uriParameters:

log_slug:
type: identifier
description: the slug name of the log

get:
description: |

This path selects a specific log in the given step.
is:
- bbget: {bbtype: log}

/contents:
get:

description: |
This path selects chunks from a specific log in the given

→˓step.
is:
- bbget: {bbtype: logchunk}

/raw:
get:

description: |
This path downloads the whole log

is:
- bbgetraw:

Data API

The data layer combines access to stored state and messages, ensuring consistency between them, and exposing a
well-defined API that can be used both internally and externally. Using caching and the clock information provided
by the db and mq layers, this layer ensures that its callers can easily receive a dump of current state plus changes to
that state, without missing or duplicating messages.

Sections

The data api is divided into four sections:

• getters - fetching data from the db API, and

• subscriptions - subscribing to messages from the mq layer;

• control - allows state to be changed in specific ways by sending appropriate messages (e.g., stopping a build);
and

• updates - direct updates to state appropriate messages.

The getters and subscriptions are exposed everywhere. Access to the control section should be authenticated at higher
levels, as the data layer does no authentication. The updates section is for use only by the process layer.

The interfaces for all sections but the updates sections are intended to be language-agnostic. That is, they should be
callable from JavaScript via HTTP, or via some other interface added to Buildbot after the fact.

Getter

The getter section can get either a single resource, or a list of resources. Getting a single resource requires a resource
identifier (a tuple of strings) and a set of options to support automatic expansion of links to other resources (thus

412 Chapter 3. Buildbot Development

Buildbot Documentation, Release 0.9.7

saving round-trips). Lists are requested with a partial resource identifier (a tuple of strings) and an optional set of filter
options. In some cases, certain filters are implicit in the path, e.g., the list of buildsteps for a particular build.

Subscriptions

Message subscriptions can be made to anything that can be listed or gotten from the getter sections, using the same
resource identifiers. Options and explicit filters are not supported - a message contains only the most basic information
about a resource, and a list subscription results in a message for every new resource of the desired type. Implicit filters
are supported.

Control

The control sections defines a set of actions that cause Buildbot to behave in a certain way, e.g., rebuilding a build
or shutting down a worker. Actions correspond to a particular resource, although sometimes that resource is the root
resource (an empty tuple).

Updates

The updates section defines a free-form set of methods that Buildbot’s process implementation calls to update data.
Most update methods both modify state via the db API and send a message via the mq API. Some are simple wrappers
for these APIs, while others contain more complex logic, e.g., building a source stamp set for a collection of changes.
This section is the proper place to put common functionality, e.g., rebuilding builds or assembling buildsets.

Concrete Interfaces

Python Interface

Within the buildmaster process, the root of the data API is available at self.master.data, which is a DataConnector
instance.

class buildbot.data.connector.DataConnector
This class implements the root of the data API. Within the buildmaster process, the data connector is available
at self.master.data. The first three sections are implemented with the get and control methods, respectively,
while the updates section is implemented using the updates attribute. The path arguments to these methods
should always be tuples. Integer arguments can be presented as either integers or strings that can be parsed by
int; all other arguments must be strings.

get(path, filters=None, fields=None, order=None, limit=None, offset=None):

Parameters

• path (tuple) – A tuple of path elements representing the API path to fetch. Numbers
can be passed as strings or integers.

• filters – result spec filters

• fields – result spec fields

• order – result spec order

• limit – result spec limit

• offset – result spec offset

Raises InvalidPathError

3.2. APIs 413

Buildbot Documentation, Release 0.9.7

Returns a resource or list via Deferred, or None

This method implements the getter section. Depending on the path, it will return a single resource or a list
of resources. If a single resource is not specified, it returns None.

The filters, fields, order, limit, and offset are passed to the ResultSpec constructor.

The return value is composed of simple Python objects - lists, dicts, strings, numbers, and None.

getEndpoint(path)

Parameters path (tuple) – A tuple of path elements representing the API path. Numbers can
be passed as strings or integers.

Raises InvalidPathError

Returns tuple of endpoint and a dictionary of keyword arguments from the path

Get the endpoint responsible for the given path, along with any arguments extracted from the path. This
can be used by callers that need access to information from the endpoint beyond that returned from get.

produceEvent(rtype, msg, event)

Parameters

• rtype – the name identifying a resource type

• msg – a dictionary describing the msg to send

• event – the event to produce

This method implements the production of an event, for the rtype identified by its name string. Usually,
this is the role of the data layer to produce the events inside the update methods. For the potential use cases
where it would make sense to solely produce an event, and not update data, please use this API, rather than
directly call mq. It ensures the event is sent to all the routingkeys specified by eventPathPatterns.

control(action, args, path)

Parameters

• action – a short string naming the action to perform

• args – dictionary containing arguments for the action

• path (tuple) – A tuple of path elements representing the API path. Numbers can be
passed as strings or integers.

Raises InvalidPathError

Returns a resource or list via Deferred, or None

This method implements the control section. Depending on the path, it may return a new created resource.

allEndpoints()

Returns list of endpoint specifications

This method returns the deprecated API spec. Please use Raml Specs instead.

rtypes
This object has an attribute named for each resource type, named after the singular form (e.g.,
self.master.data.builder). These attributes allow resource types to access one another for purposes of coor-
dination. They are not intended for external access – all external access to the data API should be via the
methods above or update methods.

414 Chapter 3. Buildbot Development

Buildbot Documentation, Release 0.9.7

Updates

The updates section is available at self.master.data.updates, and contains a number of ad-hoc methods needed by the
process modules.

Note: The update methods are implemented in resource type classes, but through some initialization-time magic, all
appear as attributes of self.master.data.updates.

The update methods are found in the resource type pages.

Exceptions

exception buildbot.data.exceptions.DataException
This is a base class for all other Data API exceptions.

exception buildbot.data.exceptions.InvalidPathError
The path argument was invalid or unknown.

exception buildbot.data.exceptions.InvalidOptionError
A value in the options argument was invalid or ill-formed.

exception buildbot.data.exceptions.SchedulerAlreadyClaimedError
Identical to SchedulerAlreadyClaimedError.

Web Interface

The HTTP interface is implemented by the buildbot.www package, as configured by the user. Part of that config-
uration is a base URL, which is considered a prefix for all paths mentioned here.

See Base web application for more information.

Extending the Data API

The data API may be extended in various ways: adding new endpoints, new fields to resource types, new update
methods, or entirely new resource types. In any case, you should only extend the API if you plan to submit the
extensions to be merged into Buildbot itself. Private API extensions are strongly discouraged.

Adding Resource Types

You’ll need to use both plural and singular forms of the resource type; in this example, we’ll
use ‘pub’ and ‘pubs’. You can also follow an existing file, like master/buildbot/data/changes.py
(https://github.com/buildbot/buildbot/blob/master/master/buildbot/data/changes.py), to see when to use which form.

In master/buildbot/data/pubs.py, create a subclass of ResourceType:

from buildbot.data import base

class Pub(base.ResourceType):
name = "pub"
endpoints = []
keyFields = ['pubid']

3.2. APIs 415

https://github.com/buildbot/buildbot/blob/master/master/buildbot/data/changes.py

Buildbot Documentation, Release 0.9.7

class EntityType(types.Entity):
pubid = types.Integer()
name = types.String()
num_taps = types.Integer()
closes_at = types.Integer()

entityType = EntityType(name)

class buildbot.data.base.ResourceType

name

Type string

The singular, lower-cased name of the resource type. This becomes the first component in message routing
keys.

plural

Type string

The plural, lower-cased name of the resource type. This becomes the key containing the data in REST
responses.

endpoints

Type list

Subclasses should set this to a list of endpoint classes for this resource type.

eventPathPatterns

Type str

This attribute should list the message routes where events should be sent, encoded as a REST like endpoint:

pub/:pubid

In the example above, a call to produceEvent({'pubid': 10, 'name':
'Winchester'}, 'opened') would result in a message with routing key ('pub', '10',
'opened').

Several paths can be specified in order to be consistent with rest endpoints.

entityType

Type buildbot.data.types.Entity

The entity type describes the types of all of the fields in this particular resource type. See buildbot.
data.types.Entity and Adding Fields to Resource Types.

The parent class provides the following methods

getEndpoints()

Returns a list of Endpoint instances

This method returns a list of the endpoint instances associated with the resource type.

The base method instantiates each class in the endpoints attribute. Most subclasses can simply list
Endpoint subclasses in endpoints.

produceEvent(msg, event)

Parameters

416 Chapter 3. Buildbot Development

Buildbot Documentation, Release 0.9.7

• msg (dict) – the message body

• event (string) – the name of the event that has occurred

This is a convenience method to produce an event message for this resource type. It formats the routing
key correctly and sends the message, thereby ensuring consistent routing-key structure.

Like all Buildbot source files, every resource type module must have corresponding tests. These should thoroughly
exercise all update methods.

All resource types must be documented in the Buildbot documentation and linked from the bottom of this file (mas-
ter/docs/developer/data.rst (https://github.com/buildbot/buildbot/blob/master/master/docs/developer/data.rst)).

Adding Endpoints

Each resource path is implemented as an Endpoint instance. In most cases, each instance is of a different class, but
this is not required.

The data connector’s get and controlmethods both take a path argument that is used to look up the corresponding
endpoint. The path matching is performed by buildbot.util.pathmatch, and supports automatically extract-
ing variable fields from the path. See that module’s description for details.

class buildbot.data.base.Endpoint

pathPatterns

Type string

This attribute defines the path patterns which incoming paths must match to select this endpoint. Paths are
specified as URIs, and can contain variables as parsed by buildbot.util.pathmatch.Matcher.
Multiple paths are separated by whitespace.

For example, the following specifies two paths with the second having a single variable:

pathPatterns = """
/bugs
/component/i:component_name/bugs

"""

rootLinkName

Type string

If set, then the first path pattern for this endpoint will be included as a link in the root of the API. This
should be set for any endpoints that begin an explorable tree.

isCollection

Type boolean

If true, then this endpoint returns collections of resources.

isRaw

Type boolean

If true, then this endpoint returns raw resource.

Raw resources are used to get the data not encoded in JSON via the rest API. In the REST principles,
this should be done via another endpoint, and not via a query parameter. The get() method from endpoint
should return following data structure:

3.2. APIs 417

https://github.com/buildbot/buildbot/blob/master/master/docs/developer/data.rst
https://github.com/buildbot/buildbot/blob/master/master/docs/developer/data.rst

Buildbot Documentation, Release 0.9.7

{
"raw": u"raw data to be sent to the http client",
"mime-type": u"<mime-type>",
"filename": u"filename_to_be_used_in_content_disposition_attachement_

→˓header"
}

get(options, resultSpec, kwargs)

Parameters

• options (dict) – model-specific options

• resultSpec – a ResultSpec instance describing the desired results

• kwargs (dict) – fields extracted from the path

Returns data via Deferred

Get data from the endpoint. This should return either a list of dictionaries (for list endpoints), a dictionary,
or None (both for details endpoints). The endpoint is free to handle any part of the result spec. When
doing so, it should remove the relevant configuration from the spec. See below.

Any result spec configuration that remains on return will be applied automatically.

control(action, args, kwargs)

Parameters

• action – a short string naming the action to perform

• args – dictionary containing arguments for the action

• kwargs – fields extracted from the path

Continuing the pub example, a simple endpoint would look like this:

class PubEndpoint(base.Endpoint):
pathPattern = ('pub', 'i:pubid')

def get(self, resultSpec, kwargs):
return self.master.db.pubs.getPub(kwargs['pubid'])

Endpoint implementations must have unit tests. An endpoint’s path should be documented in the .rst file for its
resource type.

The initial pass at implementing any endpoint should just ignore the resultSpec argument to get. After that
initial pass, the argument can be used to optimize certain types of queries. For example, if the resource type has many
resources, but most real-life queries use the result spec to filter out all but a few resources from that group, then it
makes sense for the endpoint to examine the result spec and allow the underlying DB API to do that filtering.

When an endpoint handles parts of the result spec, it must remove those parts from the spec before it returns. See the
documentation for ResultSpec for methods to do so.

Note that endpoints must be careful not to alter the order of the filtering applied for a result spec. For example, if an
endpoint implements pagination, then it must also completely implement filtering and ordering, since those operations
precede pagination in the result spec application.

Adding Messages

Message types are defined in master/buildbot/test/util/validation.py (https://github.com/buildbot/buildbot/blob/master/master/buildbot/test/util/validation.py),
via the message module-level value. This is a dictionary of MessageValidator objects, one for each message

418 Chapter 3. Buildbot Development

https://github.com/buildbot/buildbot/blob/master/master/buildbot/test/util/validation.py

Buildbot Documentation, Release 0.9.7

type. The message type is determined from the first atom of its routing key. The events dictionary lists the possible
last atoms of the routing key. It should be identical to the attribute of the ResourceType with the same name.

Adding Update Methods

Update methods are for use by the Buildbot process code, and as such are generally designed to suit the needs of that
code. They generally encapsulate logic common to multiple users (e.g., creating buildsets), and finish by performing
modifications in the database and sending a corresponding message. In general, Buildbot does not depend on timing
of either the database or message broker, so the order in which these operations are initiated is not important.

Update methods are considered part of Buildbot’s user-visible interface, and as such incompatible changes should be
avoided wherever possible. Instead, either add a new method (and potentially re-implement existing methods in terms
of the new method) or add new, optional parameters to an existing method. If an incompatible change is unavoidable,
it should be described clearly in the release notes.

Update methods are implemented as methods of ResourceType subclasses, decorated with @base.
updateMethod:

buildbot.data.base.updateMethod(f)
A decorator for ResourceType subclass methods, indicating that the method should be copied to master.
data.updates.

Returning to the pub example:

class PubResourceType(base.ResourceType):
...
@base.updateMethod
@defer.inlineCallbacks
def setPubTapList(self, pubid, beers):

pub = yield self.master.db.pubs.getPub(pubid)
...
self.produceMessage(pub, 'taps-updated')

Update methods should be documented in master/docs/developer/data.rst (https://github.com/buildbot/buildbot/blob/master/master/docs/developer/data.rst).
They should be thoroughly tested with unit tests. They should have a fake implentation in mas-
ter/buildbot/test/fake/fakedata.py (https://github.com/buildbot/buildbot/blob/master/master/buildbot/test/fake/fakedata.py).
That fake implementation should be tested to match the real implementation in mas-
ter/buildbot/test/unit/test_data_connector.py (https://github.com/buildbot/buildbot/blob/master/master/buildbot/test/unit/test_data_connector.py).

Adding Fields to Resource Types

The details of the fields of a resource type are rigorously enforced at several points in the Buildbot tests. The enforce-
ment is performed by the buildbot.data.types module.

The module provides a number of type classes for basic and compound types. Each resource type class defines its
entity type in its entityType class attribute. Other resource types may refer to this class attribute if they embed an
entity of that type.

The types are used both for tests, and by the REST interface to properly decode user-supplied query parameters.

Basic Types

class buildbot.data.types.Integer
An integer.

3.2. APIs 419

https://github.com/buildbot/buildbot/blob/master/master/docs/developer/data.rst
https://github.com/buildbot/buildbot/blob/master/master/buildbot/test/fake/fakedata.py
https://github.com/buildbot/buildbot/blob/master/master/buildbot/test/fake/fakedata.py
https://github.com/buildbot/buildbot/blob/master/master/buildbot/test/unit/test_data_connector.py
https://github.com/buildbot/buildbot/blob/master/master/buildbot/test/unit/test_data_connector.py

Buildbot Documentation, Release 0.9.7

myid = types.Integer()

class buildbot.data.types.String
A string. Strings must always be Unicode.

name = types.String()

class buildbot.data.types.Binary
A binary bytestring.

data = types.Binary()

class buildbot.data.types.Boolean
A boolean value.

complete = types.Boolean()

class buildbot.data.types.Identifier(length)
An identifier; see Identifier. The constructor argument specifies the maximum length.

ident = types.Identifier(25)

Compound Types

class buildbot.data.types.NoneOk(nestedType)
Either the nested type, or None.

category = types.NoneOk(types.String())

class buildbot.data.types.List(of)
An list of objects. The named constructor argument of specifies the type of the list elements.

tags = types.List(of=types.String())

class buildbot.data.types.SourcedProperties
A data structure representing properties with their sources, in the form {name: (value, source)}. The
property name and source must be Unicode, and the value must be JSON-able.

props = types.SourcedProperties()

Entity Type

class buildbot.data.types.Entity(name)
A data resource is represented by a dictionary with well-known keys. To define those keys and their values,
subclass the Entity class within your ResourceType class and include each field as an attribute:

class MyStuff(base.ResourceType):
name = "mystuff"
...
class EntityType(types.Entity):

myid = types.Integer()
name = types.String()
data = types.Binary()

420 Chapter 3. Buildbot Development

Buildbot Documentation, Release 0.9.7

complete = types.Boolean()
ident = types.Identifier(25)
category = types.NoneOk(types.String())
tags = types.List(of=types.String())
props = types.SourcedProperties()

Then instantiate the class with the resource type name:

entityType = EntityType(name)

To embed another entity type, reference its entityType class attribute:

class EntityType(types.Entity):
...
master = masters.Master.entityType

Data Model

The data api enforces a strong and well-defined model on Buildbot’s data. This model is influenced by REST, in the
sense that it defines resources, representations for resources, and identifiers for resources. For each resource type, the
API specifies

• the attributes of the resource and their types (e.g., changes have a string specifying their project);

• the format of links to other resources (e.g., buildsets to sourcestamp sets);

• the paths relating to the resource type;

• the format of routing keys for messages relating to the resource type;

• the events that can occur on that resource (e.g., a buildrequest can be claimed); and

• options and filters for getting resources.

Some resource type attributes only appear in certain formats, as noted in the documentation for the resource types. In
general, messages do not include any optional attributes, nor links.

Paths are given here separated by slashes, with key names prefixed by : and described below. Similarly, message
routing keys given here are separated by dots, with key names prefixed by $. The translation to tuples and other
formats should be obvious.

All strings in the data model are unicode strings.

Database

As of version 0.8.0, Buildbot has used a database as part of its storage backend. This section describes the database
connector classes, which allow other parts of Buildbot to access the database. It also describes how to modify the
database schema and the connector classes themselves.

Database Overview

All access to the Buildbot database is mediated by database connector classes. These classes provide a functional,
asynchronous interface to other parts of Buildbot, and encapsulate the database-specific details in a single location in
the codebase.

3.2. APIs 421

Buildbot Documentation, Release 0.9.7

The connector API, defined below, is a stable API in Buildbot, and can be called from any other component. Given a
master master, the root of the database connectors is available at master.db, so, for example, the state connector’s
getState method is master.db.state.getState.

The connectors all use SQLAlchemy Core (http://www.sqlalchemy.org/docs/index.html) to achieve (almost) database-
independent operation. Note that the SQLAlchemy ORM is not used in Buildbot. Database queries are carried out in
threads, and report their results back to the main thread via Twisted Deferreds.

Schema

The database schema is maintained with SQLAlchemy-Migrate (https://github.com/openstack/sqlalchemy-migrate).
This package handles the details of upgrading users between different schema versions.

The schema itself is considered an implementation detail, and may change significantly from version to version. Users
should rely on the API (below), rather than performing queries against the database itself.

API

types

Identifier

An “identifier” is a nonempty unicode string of limited length, containing only ASCII alphanumeric characters along
with - (dash) and _ (underscore), and not beginning with a digit Wherever an identifier is used, the documentation
will give the maximum length in characters. The function buildbot.util.identifiers.isIdentifier is
useful to verify a well-formed identifier.

buildrequests

exception buildbot.db.buildrequests.AlreadyClaimedError
Raised when a build request is already claimed, usually by another master.

exception buildbot.db.buildrequests.NotClaimedError
Raised when a build request is not claimed by this master.

class buildbot.db.buildrequests.BuildRequestsConnectorComponent
This class handles the complex process of claiming and unclaiming build requests, based on a polling model:
callers poll for unclaimed requests with getBuildRequests, then attempt to claim the requests with
claimBuildRequests. The claim can fail if another master has claimed the request in the interim.

An instance of this class is available at master.db.buildrequests.

Build requests are indexed by an ID referred to as a brid. The contents of a request are represented as build
request dictionaries (brdicts) with keys

•buildrequestid

•buildsetid

•builderid

•buildername

•priority

•claimed (boolean, true if the request is claimed)

422 Chapter 3. Buildbot Development

http://www.sqlalchemy.org/docs/index.html
https://github.com/openstack/sqlalchemy-migrate

Buildbot Documentation, Release 0.9.7

•claimed_at (datetime object, time this request was last claimed)

•claimed_by_masterid (integer, the id of the master that claimed this buildrequest)

•complete (boolean, true if the request is complete)

•complete_at (datetime object, time this request was completed)

•submitted_at (datetime object, time this request was completed)

•results (integer result code)

•waited_for (boolean)

getBuildRequest(brid)

Parameters brid – build request id to look up

Returns brdict or None, via Deferred

Get a single BuildRequest, in the format described above. This method returns None if there is no such
buildrequest. Note that build requests are not cached, as the values in the database are not fixed.

getBuildRequests(buildername=None, complete=None, claimed=None, bsid=None,
branch=None, repository=None, resultSpec=None)

Parameters

• buildername (string) – limit results to buildrequests for this builder

• complete – if true, limit to completed buildrequests; if false, limit to incomplete buil-
drequests; if None, do not limit based on completion.

• claimed – see below

• bsid – see below

• repository – the repository associated with the sourcestamps originating the requests

• branch – the branch associated with the sourcestamps originating the requests

• resultSpec – resultSpec containing filters sorting and paging request from data/REST
API. If possible, the db layer can optimize the SQL query using this information.

Returns list of brdicts, via Deferred

Get a list of build requests matching the given characteristics.

Pass all parameters as keyword parameters to allow future expansion.

The claimed parameter can be None (the default) to ignore the claimed status of requests; True to
return only claimed builds, False to return only unclaimed builds, or a master ID to return only
builds claimed by a particular master instance. A request is considered unclaimed if its claimed_at
column is either NULL or 0, and it is not complete. If bsid is specified, then only build requests for that
buildset will be returned.

A build is considered completed if its complete column is 1; the complete_at column is not con-
sulted.

claimBuildRequests(brids[, claimed_at=XX])
Parameters

• brids (list) – ids of buildrequests to claim

• claimed_at (datetime) – time at which the builds are claimed

Returns Deferred

3.2. APIs 423

Buildbot Documentation, Release 0.9.7

Raises AlreadyClaimedError

Try to “claim” the indicated build requests for this buildmaster instance. The resulting deferred will fire
normally on success, or fail with AlreadyClaimedError if any of the build requests are already
claimed by another master instance. In this case, none of the claims will take effect.

If claimed_at is not given, then the current time will be used.

As of 0.8.5, this method can no longer be used to re-claim build requests. All given ID’s must be unclaimed.
Use reclaimBuildRequests to reclaim.

Note: On database backends that do not enforce referential integrity (e.g., SQLite), this method
will not prevent claims for nonexistent build requests. On database backends that do not support
transactions (MySQL), this method will not properly roll back any partial claims made before an
AlreadyClaimedError is generated.

reclaimBuildRequests(brids)

Parameters brids (list) – ids of buildrequests to reclaim

Returns Deferred

Raises AlreadyClaimedError

Re-claim the given build requests, updating the timestamp, but checking that the requests are owned by
this master. The resulting deferred will fire normally on success, or fail with AlreadyClaimedError
if any of the build requests are already claimed by another master instance, or don’t exist. In this case,
none of the reclaims will take effect.

unclaimBuildRequests(brids)

Parameters brids (list) – ids of buildrequests to unclaim

Returns Deferred

Release this master’s claim on all of the given build requests. This will not unclaim requests that are
claimed by another master, but will not fail in this case. The method does not check whether a request is
completed.

completeBuildRequests(brids, results[, complete_at=XX])
Parameters

• brids (integer) – build request IDs to complete

• results (integer) – integer result code

• complete_at (datetime) – time at which the buildset was completed

Returns Deferred

Raises NotClaimedError

Complete a set of build requests, all of which are owned by this master instance. This will fail with
NotClaimedError if the build request is already completed or does not exist. If complete_at is not
given, the current time will be used.

unclaimExpiredRequests(old)

Parameters old (int) – number of seconds after which a claim is considered old

Returns Deferred

424 Chapter 3. Buildbot Development

Buildbot Documentation, Release 0.9.7

Find any incomplete claimed builds which are older than old seconds, and clear their claim information.

This is intended to catch builds that were claimed by a master which has since disappeared. As a side
effect, it will log a message if any requests are unclaimed.

builds

class buildbot.db.builds.BuildsConnectorComponent
This class handles builds. One build record is created for each build performed by a master. This record contains
information on the status of the build, as well as links to the resources used in the build: builder, master, worker,
etc.

An instance of this class is available at master.db.builds.

Builds are indexed by buildid and their contents represented as builddicts (build dictionaries), with the following
keys:

•id (the build ID, globally unique)

•number (the build number, unique only within the builder)

•builderid (the ID of the builder that performed this build)

•buildrequestid (the ID of the build request that caused this build)

•workerid (the ID of the worker on which this build was performed)

•masterid (the ID of the master on which this build was performed)

•started_at (datetime at which this build began)

•complete_at (datetime at which this build finished, or None if it is ongoing)

•state_string (short string describing the build’s state)

•results (results of this build; see Build Result Codes)

getBuild(buildid)

Parameters buildid (integer) – build id

Returns Build dictionary as above or None, via Deferred

Get a single build, in the format described above. Returns None if there is no such build.

getBuildByNumber(builderid, number)

Parameters

• builder (integer) – builder id

• number (integer) – build number within that builder

Returns Build dictionary as above or None, via Deferred

Get a single build, in the format described above, specified by builder and number, rather than build id.
Returns None if there is no such build.

getPrevSuccessfulBuild(builderid, number, ssBuild)

Parameters

• builderid (integer) – builder to get builds for

• number (integer) – the current build number. Previous build will be taken from this
number

3.2. APIs 425

Buildbot Documentation, Release 0.9.7

• ssBuild (list) – the list of sourcestamps for the current build number

Returns None or a build dictionary

Returns the last successful build from the current build number with the same reposi-
tory/repository/codebase

getBuilds(builderid=None, buildrequestid=None, complete=None, resultSpec=None)

Parameters

• builderid (integer) – builder to get builds for

• buildrequestid (integer) – buildrequest to get builds for

• complete (boolean) – if not None, filters results based on completeness

• resultSpec – resultSpec containing filters sorting and paging request from data/REST
API. If possible, the db layer can optimize the SQL query using this information.

Returns list of build dictionaries as above, via Deferred

Get a list of builds, in the format described above. Each of the parameters limit the resulting set of builds.

addBuild(builderid, buildrequestid, workerid, masterid, state_string)

Parameters

• builderid (integer) – builder to get builds for

• buildrequestid (integer) – build request id

• workerid (integer) – worker performing the build

• masterid (integer) – master performing the build

• state_string (unicode) – initial state of the build

Returns tuple of build ID and build number, via Deferred

Add a new build to the db, recorded as having started at the current time. This will invent a new number
for the build, unique within the context of the builder.

setBuildStateString(buildid, state_string):

Parameters

• buildid (integer) – build id

• state_string (unicode) – updated state of the build

Returns Deferred

Update the state strings for the given build.

finishBuild(buildid, results)

Parameters

• buildid (integer) – build id

• results (integer) – build result

Returns Deferred

Mark the given build as finished, with complete_at set to the current time.

Note: This update is done unconditionally, even if the build is already finished.

426 Chapter 3. Buildbot Development

Buildbot Documentation, Release 0.9.7

getBuildProperties(buildid)

Parameters buildid – build ID

Returns dictionary mapping property name to value, source, via Deferred

Return the properties for a build, in the same format they were given to addBuild.

Note that this method does not distinguish a non-existent build from a build with no properties, and returns
{} in either case.

setBuildProperty(buildid, name, value, source)

Parameters

• buildid (integer) – build ID

• name (string) – Name of the property to set

• value – Value of the property

• source (string) – Source of the Property to set

Returns Deferred

Set a build property. If no property with that name existed in that build, a new property will be created.

steps

class buildbot.db.steps.StepsConnectorComponent
This class handles the steps performed within the context of a build. Within a build, each step has a unique name
and a unique, 0-based number.

An instance of this class is available at master.db.steps.

Builds are indexed by stepid and their contents represented as stepdicts (step dictionaries), with the following
keys:

•id (the step ID, globally unique)

•number (the step number, unique only within the build)

•name (the step name, an 50-character identifier unique only within the build)

•buildid (the ID of the build containing this step)

•started_at (datetime at which this step began)

•complete_at (datetime at which this step finished, or None if it is ongoing)

•state_string (short string describing the step’s state)

•results (results of this step; see Build Result Codes)

•urls (list of URLs produced by this step. Each urls is stored as a dictionary with keys name and url)

•hidden (true if the step should be hidden in status displays)

getStep(stepid=None, buildid=None, number=None, name=None)

Parameters

• stepid (integer) – the step id to retrieve

• buildid (integer) – the build from which to get the step

• number (integer) – the step number

3.2. APIs 427

Buildbot Documentation, Release 0.9.7

• name (50-character identifier) – the step name

Returns stepdict via Deferred

Get a single step. The step can be specified by

•stepid alone;

•buildid and number, the step number within that build; or

•buildid and name, the unique step name within that build.

getSteps(buildid)

Parameters buildid (integer) – the build from which to get the step

Returns list of stepdicts, sorted by number, via Deferred

Get all steps in the given build, in order by number.

addStep(self, buildid, name, state_string)

Parameters

• buildid (integer) – the build to which to add the step

• name (50-character identifier) – the step name

• state_string (unicode) – the initial state of the step

Returns tuple of step ID, step number, and step name, via Deferred

Add a new step to a build. The given name will be used if it is unique; otherwise, a unique numerical suffix
will be appended.

setStepStateString(stepid, state_string):

Parameters

• stepid (integer) – step ID

• state_string (unicode) – updated state of the step

Returns Deferred

Update the state string for the given step.

finishStep(stepid, results, hidden)

Parameters

• stepid (integer) – step ID

• results (integer) – step result

• hidden (bool) – true if the step should be hidden

Returns Deferred

Mark the given step as finished, with complete_at set to the current time.

Note: This update is done unconditionally, even if the steps are already finished.

addURL(self, stepid, name, url)

Parameters

• stepid (integer) – the stepid to add the url.

428 Chapter 3. Buildbot Development

Buildbot Documentation, Release 0.9.7

• name (string) – the url name

• url (string) – the actual url

Returns None via deferred

Add a new url to a step. The new url is added to the list of urls.

logs

class buildbot.db.logs.LogsConnectorComponent
This class handles log data. Build steps can have zero or more logs. Logs are uniquely identified by name within
a step.

Information about a log, apart from its contents, is represented as a dictionary with the following keys, referred
to as a logdict:

•id (log ID, globally unique)

•stepid (step ID, indicating the containing step)

•name free-form name of this log

•slug (50-identifier for the log, unique within the step)

•complete (true if the log is complete and will not receive more lines)

•num_lines (number of lines in the log)

•type (log type; see below)

Each log has a type that describes how to interpret its contents. See the logchunk resource type for details.

A log is contains a sequence of newline-separated lines of unicode. Log line numbering is zero-based.

Each line must be less than 64k when encoded in UTF-8. Longer lines will be truncated, and a warning logged.

Lines are stored internally in “chunks”, and optionally compressed, but the implementation hides these details
from callers.

getLog(logid)

Parameters logid (integer) – ID of the requested log

Returns logdict via Deferred

Get a log, identified by logid.

getLogBySlug(stepid, slug)

Parameters

• stepid (integer) – ID of the step containing this log

• slug – slug of the logfile to retrieve

Returns logdict via Deferred

Get a log, identified by name within the given step.

getLogs(stepid)

Parameters stepid (integer) – ID of the step containing the desired logs

Returns list of logdicts via Deferred

Get all logs within the given step.

3.2. APIs 429

Buildbot Documentation, Release 0.9.7

getLogLines(logid, first_line, last_line)

Parameters

• logid (integer) – ID of the log

• first_line – first line to return

• last_line – last line to return

Returns see below

Get a subset of lines for a logfile.

The return value, via Deferred, is a concatenation of newline-terminated strings. If the requested last line
is beyond the end of the logfile, only existing lines will be included. If the log does not exist, or has no
associated lines, this method returns an empty string.

addLog(stepid, name, type)

Parameters

• stepid (integer) – ID of the step containing this log

• name (string) – name of the logfile

• slug (50-character identifier) – slug (unique identifier) of the logfile

• type (string) – log type (see above)

Raises KeyError – if a log with the given slug already exists in the step

Returns ID of the new log, via Deferred

Add a new log file to the given step.

appendLog(logid, content)

Parameters

• logid (integer) – ID of the requested log

• content (string) – new content to be appended to the log

Returns tuple of first and last line numbers in the new chunk, via Deferred

Append content to an existing log. The content must end with a newline. If the given log does not exist,
the method will silently do nothing.

It is not safe to call this method more than once simultaneously for the same logid.

finishLog(logid)

Parameters logid (integer) – ID of the log to mark complete

Returns Deferred

Mark a log as complete.

Note that no checking for completeness is performed when appending to a log. It is up to the caller to
avoid further calls to appendLog after finishLog.

compressLog(logid)

Parameters logid (integer) – ID of the log to compress

Returns Deferred

430 Chapter 3. Buildbot Development

Buildbot Documentation, Release 0.9.7

Compress the given log. This method performs internal optimizations of a log’s chunks to reduce the space
used and make read operations more efficient. It should only be called for finished logs. This method may
take some time to complete.

deleteOldLogChunks(older_than_timestamp)

Parameters older_than_timestamp (integer) – the logs whose step’s started_at
is older than older_than_timestamp will be deleted.

Returns Deferred

Delete old logchunks (helper for the logHorizon policy). Old logs have their logchunks deleted from
the database, but they keep their num_lines metadata. They have their types changed to ‘d’, so that the
UI can display something meaningful.

buildsets

class buildbot.db.buildsets.BuildsetsConnectorComponent
This class handles getting buildsets into and out of the database. Buildsets combine multiple build requests that
were triggered together.

An instance of this class is available at master.db.buildsets.

Buildsets are indexed by bsid and their contents represented as bsdicts (buildset dictionaries), with keys

•bsid

•external_idstring (arbitrary string for mapping builds externally)

•reason (string; reason these builds were triggered)

•sourcestamps (list of sourcestamps for this buildset, by ID)

•submitted_at (datetime object; time this buildset was created)

•complete (boolean; true if all of the builds for this buildset are complete)

•complete_at (datetime object; time this buildset was completed)

•results (aggregate result of this buildset; see Build Result Codes)

addBuildset(sourcestamps, reason, properties, builderids, external_idstring=None, par-
ent_buildid=None, parent_relationship=None)

Parameters

• sourcestamps (list) – sourcestamps for the new buildset; see below

• reason (short unicode string) – reason for this buildset

• properties (dictionary, where values are tuples of (value,
source)) – properties for this buildset

• builderids (list of int) – builderids specified by this buildset

• external_idstring (unicode string) – external key to identify this buildset;
defaults to None

• submitted_at (datetime) – time this buildset was created; defaults to the current
time

• parent_buildid (int) – optional build id that is the parent for this buildset

• parent_relationship (unicode) – relationship identifier for the parent, this is is
configured relationship between the parent build, and the childs buildsets

3.2. APIs 431

Buildbot Documentation, Release 0.9.7

Returns buildset ID and buildrequest IDs, via a Deferred

Add a new Buildset to the database, along with BuildRequests for each builder, returning the resulting bsid
via a Deferred. Arguments should be specified by keyword.

Each sourcestamp in the list of sourcestamps can be given either as an integer, assumed to be a sourcestamp
ID, or a dictionary of keyword arguments to be passed to findSourceStampId.

The return value is a tuple (bsid, brids) where bsid is the inserted buildset ID and brids is a
dictionary mapping builderids to build request IDs.

completeBuildset(bsid, results[, complete_at=XX])
Parameters

• bsid (integer) – buildset ID to complete

• results (integer) – integer result code

• complete_at (datetime) – time the buildset was completed

Returns Deferred

Raises KeyError if the buildset does not exist or is already complete

Complete a buildset, marking it with the given results and setting its completed_at to the current
time, if the complete_at argument is omitted.

getBuildset(bsid)

Parameters bsid – buildset ID

Returns bsdict, or None, via Deferred

Get a bsdict representing the given buildset, or None if no such buildset exists.

Note that buildsets are not cached, as the values in the database are not fixed.

getBuildsets(complete=None, resultSpec=None)

Parameters

• complete – if true, return only complete buildsets; if false, return only incomplete build-
sets; if None or omitted, return all buildsets

• resultSpec – resultSpec containing filters sorting and paging request from data/REST
API. If possible, the db layer can optimize the SQL query using this information.

Returns list of bsdicts, via Deferred

Get a list of bsdicts matching the given criteria.

getRecentBuildsets(count=None, branch=None, repository=None,
complete=None):

Parameters

• count (integer) – maximum number of buildsets to retrieve (required).

• branch (string) – optional branch name. If specified, only buildsets affecting such
branch will be returned.

• repository (string) – optional repository name. If specified, only buildsets affect-
ing such repository will be returned.

• complete (Boolean) – if true, return only complete buildsets; if false, return only
incomplete buildsets; if None or omitted, return all buildsets

432 Chapter 3. Buildbot Development

Buildbot Documentation, Release 0.9.7

Returns list of bsdicts, via Deferred

Get “recent” buildsets, as defined by their submitted_at times.

getBuildsetProperties(buildsetid)

Parameters bsid – buildset ID

Returns dictionary mapping property name to value, source, via Deferred

Return the properties for a buildset, in the same format they were given to addBuildset.

Note that this method does not distinguish a nonexistent buildset from a buildset with no properties, and
returns {} in either case.

workers

class buildbot.db.workers.WorkersConnectorComponent
This class handles Buildbot’s notion of workers. The worker information is returned as a dictionary:

•id

•name - the name of the worker

•workerinfo - worker information as dictionary

•connected_to - a list of masters, by ID, to which this worker is currently connected. This list will typ-
ically contain only one master, but in unusual circumstances the same worker may appear to be connected
to multiple masters simultaneously.

•configured_on - a list of master-builder pairs, on which this worker is configured. Each pair is repre-
sented by a dictionary with keys buliderid and masterid.

The worker information can be any JSON-able object. See worker for more detail.

findWorkerId(name=name)

Parameters name (50-character identifier) – worker name

Returns worker ID via Deferred

Get the ID for a worker, adding a new worker to the database if necessary. The worker information for a
new worker is initialized to an empty dictionary.

getWorkers(masterid=None, builderid=None)

Parameters

• masterid (integer) – limit to workers configured on this master

• builderid (integer) – limit to workers configured on this builder

Returns list of worker dictionaries, via Deferred

Get a list of workers. If either or both of the filtering parameters either specified, then the result is limited
to workers configured to run on that master or builder. The configured_on results are limited by the
filtering parameters as well. The connected_to results are limited by the masterid parameter.

getWorker(workerid=None, name=None, masterid=None, builderid=None)

Parameters

• name (string) – the name of the worker to retrieve

• workerid (integer) – the ID of the worker to retrieve

3.2. APIs 433

Buildbot Documentation, Release 0.9.7

• masterid (integer) – limit to workers configured on this master

• builderid (integer) – limit to workers configured on this builder

Returns info dictionary or None, via Deferred

Looks up the worker with the given name or ID, returning None if no matching worker is found. The
masterid and builderid arguments function as they do for getWorkers.

workerConnected(workerid, masterid, workerinfo)

Parameters

• workerid (integer) – the ID of the worker

• masterid (integer) – the ID of the master to which it connected

• workerinfo (dict) – the new worker information dictionary

Returns Deferred

Record the given worker as attached to the given master, and update its cached worker information. The
supplied information completely replaces any existing information.

workerDisconnected(workerid, masterid)

Parameters

• workerid (integer) – the ID of the worker

• masterid (integer) – the ID of the master to which it connected

Returns Deferred

Record the given worker as no longer attached to the given master.

workerConfigured(workerid, masterid, builderids)

Parameters

• workerid (integer) – the ID of the worker

• masterid (integer) – the ID of the master to which it configured

• of integer builderids (list) – the ID of the builders to which it is configured

Returns Deferred

Record the given worker as being configured on the given master and for given builders. This method will
also remove any other builder that were configured previously for same (worker, master) combination.

deconfigureAllWorkersForMaster(masterid)

Parameters masterid (integer) – the ID of the master to which it configured

Returns Deferred

Unregister all the workers configured to a master for given builders. This shall happen when master
disabled or before reconfiguration

changes

class buildbot.db.changes.ChangesConnectorComponent
This class handles changes in the buildbot database, including pulling information from the changes sub-tables.

An instance of this class is available at master.db.changes.

434 Chapter 3. Buildbot Development

Buildbot Documentation, Release 0.9.7

Changes are indexed by changeid, and are represented by a chdict, which has the following keys:

•changeid (the ID of this change)

•parent_changeids (list of ID; change’s parents)

•author (unicode; the author of the change)

•files (list of unicode; source-code filenames changed)

•comments (unicode; user comments)

•is_dir (deprecated)

•links (list of unicode; links for this change, e.g., to web views, review)

•revision (unicode string; revision for this change, or None if unknown)

•when_timestamp (datetime instance; time of the change)

•branch (unicode string; branch on which the change took place, or None for the “default branch”,
whatever that might mean)

•category (unicode string; user-defined category of this change, or None)

•revlink (unicode string; link to a web view of this change)

•properties (user-specified properties for this change, represented as a dictionary mapping keys to
(value, source))

•repository (unicode string; repository where this change occurred)

•project (unicode string; user-defined project to which this change corresponds)

getParentChangeIds(branch, repository, project, codebase)

Parameters

• branch (unicode string) – the branch of the change

• repository (unicode string) – the repository in which this change took place

• project (unicode string) – the project this change is a part of

• codebase (unicode string) –

return the last changeID which matches the repository/project/codebase

addChange(author=None, files=None, comments=None, is_dir=0, links=None, revision=None,
when_timestamp=None, branch=None, category=None, revlink=’‘, properties={}, reposi-
tory=’‘, project=’‘, uid=None)

Parameters

• author (unicode string) – the author of this change

• files – a list of filenames that were changed

• comments – user comments on the change

• is_dir – deprecated

• links (list of unicode strings) – a list of links related to this change, e.g., to
web viewers or review pages

• revision (unicode string) – the revision identifier for this change

• when_timestamp (datetime instance or None) – when this change oc-
curred, or the current time if None

3.2. APIs 435

Buildbot Documentation, Release 0.9.7

• branch (unicode string) – the branch on which this change took place

• category (unicode string) – category for this change (arbitrary use by Buildbot
users)

• revlink (unicode string) – link to a web view of this revision

• properties (dictionary) – properties to set on this change, where values are tuples
of (value, source). At the moment, the source must be 'Change', although this may be
relaxed in later versions.

• repository (unicode string) – the repository in which this change took place

• project (unicode string) – the project this change is a part of

• uid (integer) – uid generated for the change author

Returns new change’s ID via Deferred

Add a Change with the given attributes to the database, returning the changeid via a Deferred. All argu-
ments should be given as keyword arguments.

The project and repository arguments must be strings; None is not allowed.

getChange(changeid, no_cache=False)

Parameters

• changeid – the id of the change instance to fetch

• no_cache (boolean) – bypass cache and always fetch from database

Returns chdict via Deferred

Get a change dictionary for the given changeid, or None if no such change exists.

getChangeUids(changeid)

Parameters changeid – the id of the change instance to fetch

Returns list of uids via Deferred

Get the userids associated with the given changeid.

getRecentChanges(count)

Parameters count – maximum number of instances to return

Returns list of dictionaries via Deferred, ordered by changeid

Get a list of the count most recent changes, represented as dictionaries; returns fewer if that many do not
exist.

Note: For this function, “recent” is determined by the order of the changeids, not by when_timestamp.
This is most apparent in DVCS’s, where the timestamp of a change may be significantly earlier than the
time at which it is merged into a repository monitored by Buildbot.

getChanges()

Returns list of dictionaries via Deferred

Get a list of the changes, represented as dictionaries; changes are sorted, and paged using generic data
query options

getChangesCount()

436 Chapter 3. Buildbot Development

Buildbot Documentation, Release 0.9.7

Returns list of dictionaries via Deferred

Get the number changes, that the query option would return if no paging option where set

getLatestChangeid()

Returns changeid via Deferred

Get the most-recently-assigned changeid, or None if there are no changes at all.

getChangesForBuild(buildid)

Parameters buildid – ID of the build

Returns list of dictionaries via Deferred

Get the “blame” list of changes for a build.

getChangeFromSSid(sourcestampid)

Parameters sourcestampid – ID of the sourcestampid

Returns chdict via Deferred

returns the change dictionary related to the sourcestamp ID.

changesources

exception buildbot.db.changesources.ChangeSourceAlreadyClaimedError
Raised when a changesource request is already claimed by another master.

class buildbot.db.changesources.ChangeSourcesConnectorComponent
This class manages the state of the Buildbot changesources.

An instance of this class is available at master.db.changesources.

Changesources are identified by their changesourceid, which can be objtained from findChangeSourceId.

Changesources are represented by dictionaries with the following keys:

•id - changesource’s ID

•name - changesource’s name

•masterid - ID of the master currently running this changesource, or None if it is inactive

Note that this class is conservative in determining what changesources are inactive: a changesource linked to an
inactive master is still considered active. This situation should never occur, however; links to a master should
be deleted when it is marked inactive.

findChangeSourceId(name)

Parameters name – changesource name

Returns changesource ID via Deferred

Return the changesource ID for the changesource with this name. If such a changesource is already in the
database, this returns the ID. If not, the changesource is added to the database and its ID returned.

setChangeSourceMaster(changesourceid, masterid)

Parameters

• changesourceid – changesource to set the master for

• masterid – new master for this changesource, or None

3.2. APIs 437

Buildbot Documentation, Release 0.9.7

Returns Deferred

Set, or unset if masterid is None, the active master for this changesource. If no master is currently set,
or the current master is not active, this method will complete without error. If the current master is active,
this method will raise ChangeSourceAlreadyClaimedError.

getChangeSource(changesourceid)

Parameters changesourceid – changesource ID

Returns changesource dictionary or None, via Deferred

Get the changesource dictionary for the given changesource.

getChangeSources(active=None, masterid=None)

Parameters

• active (boolean) – if specified, filter for active or inactive changesources

• masterid (integer) – if specified, only return changesources attached associated with
this master

Returns list of changesource dictionaries in unspecified order

Get a list of changesources.

If active is given, changesources are filtered according to whether they are active (true) or inactive
(false). An active changesource is one that is claimed by an active master.

If masterid is given, the list is restricted to schedulers associated with that master.

schedulers

exception buildbot.db.schedulers.SchedulerAlreadyClaimedError
Raised when a scheduler request is already claimed by another master.

class buildbot.db.schedulers.SchedulersConnectorComponent
This class manages the state of the Buildbot schedulers. This state includes classifications of as-yet un-built
changes.

An instance of this class is available at master.db.schedulers.

Schedulers are identified by their schedulerid, which can be objtained from findSchedulerId.

Schedulers are represented by dictionaries with the following keys:

•id - scheduler’s ID

•name - scheduler’s name

•masterid - ID of the master currently running this scheduler, or None if it is inactive

Note that this class is conservative in determining what schedulers are inactive: a scheduler linked to an inactive
master is still considered active. This situation should never occur, however; links to a master should be deleted
when it is marked inactive.

classifyChanges(objectid, classifications)

Parameters

• schedulerid – ID of the scheduler classifying the changes

• classifications (dictionary) – mapping of changeid to boolean, where the
boolean is true if the change is important, and false if it is unimportant

438 Chapter 3. Buildbot Development

Buildbot Documentation, Release 0.9.7

Returns Deferred

Record the given classifications. This method allows a scheduler to record which changes were important
and which were not immediately, even if the build based on those changes will not occur for some time
(e.g., a tree stable timer). Schedulers should be careful to flush classifications once they are no longer
needed, using flushChangeClassifications.

flushChangeClassifications(objectid, less_than=None)

Parameters

• schedulerid – ID of the scheduler owning the flushed changes

• less_than – (optional) lowest changeid that should not be flushed

Returns Deferred

Flush all scheduler_changes for the given scheduler, limiting to those with changeid less than less_than
if the parameter is supplied.

getChangeClassifications(objectid[, branch])
Parameters

• schedulerid (integer) – ID of scheduler to look up changes for

• branch (string or None (for default branch)) – (optional) limit to
changes with this branch

Returns dictionary via Deferred

Return the classifications made by this scheduler, in the form of a dictionary mapping changeid to a
boolean, just as supplied to classifyChanges.

If branch is specified, then only changes on that branch will be given. Note that specifying
branch=None requests changes for the default branch, and is not the same as omitting the branch
argument altogether.

findSchedulerId(name)

Parameters name – scheduler name

Returns scheduler ID via Deferred

Return the scheduler ID for the scheduler with this name. If such a scheduler is already in the database,
this returns the ID. If not, the scheduler is added to the database and its ID returned.

setSchedulerMaster(schedulerid, masterid)

Parameters

• schedulerid – scheduler to set the master for

• masterid – new master for this scheduler, or None

Returns Deferred

Set, or unset if masterid is None, the active master for this scheduler. If no master is currently set, or
the current master is not active, this method will complete without error. If the current master is active,
this method will raise SchedulerAlreadyClaimedError.

getScheduler(schedulerid)

Parameters schedulerid – scheduler ID

Returns scheduler dictionary or None via Deferred

Get the scheduler dictionary for the given scheduler.

3.2. APIs 439

Buildbot Documentation, Release 0.9.7

getSchedulers(active=None, masterid=None)

Parameters

• active (boolean) – if specified, filter for active or inactive schedulers

• masterid (integer) – if specified, only return schedulers attached associated with
this master

Returns list of scheduler dictionaries in unspecified order

Get a list of schedulers.

If active is given, schedulers are filtered according to whether they are active (true) or inactive (false).
An active scheduler is one that is claimed by an active master.

If masterid is given, the list is restricted to schedulers associated with that master.

sourcestamps

class buildbot.db.sourcestamps.SourceStampsConnectorComponent
This class manages source stamps, as stored in the database. A source stamp uniquely identifies a particular
version a single codebase. Source stamps are identified by their ID. It is safe to use sourcestamp ID equality as
a proxy for source stamp equality. For example, all builds of a particular version of a codebase will share the
same sourcestamp ID. This equality does not extend to patches: two sourcestamps generated with exactly the
same patch will have different IDs.

Relative source stamps have a revision of None, meaning “whatever the latest is when this sourcestamp
is interpreted”. While such source stamps may correspond to a wide array of revisions over the lifetime of a
buildbot install, they will only ever have one ID.

An instance of this class is available at master.db.sourcestamps.

•ssid

•branch (branch, or None for default branch)

•revision (revision, or None to indicate the latest revision, in which case this is a relative source stamp)

•patchid (ID of the patch)

•patch_body (body of the patch, or None)

•patch_level (directory stripping level of the patch, or None)

•patch_subdir (subdirectory in which to apply the patch, or None)

•patch_author (author of the patch, or None)

•patch_comment (comment for the patch, or None)

•repository (repository containing the source; never None)

•project (project this source is for; never None)

•codebase (codebase this stamp is in; never None)

•created_at (timestamp when this stamp was first created)

Note that the patch body is a bytestring, not a unicode string.

findSourceStampId(branch=None, revision=Node,
repository=None, project=None, patch_body=None,
patch_level=None, patch_author=None, patch_comment=None,

440 Chapter 3. Buildbot Development

Buildbot Documentation, Release 0.9.7

patch_subdir=None):

Parameters

• branch (unicode string or None) –

• revision (unicode string or None) –

• repository (unicode string or None) –

• project (unicode string or None) –

• codebase (unicode string (required)) –

• patch_body (unicode string or None) – patch body

• patch_level (integer or None) – patch level

• patch_author (unicode string or None) – patch author

• patch_comment (unicode string or None) – patch comment

• patch_subdir (unicode string or None) – patch subdir

Returns ssid, via Deferred

Create a new SourceStamp instance with the given attributes, or find an existing one. In either case, return
its ssid. The arguments all have the same meaning as in an ssdict.

If a new SourceStamp is created, its created_at is set to the current time.

getSourceStamp(ssid)

Parameters

• ssid – sourcestamp to get

• no_cache (boolean) – bypass cache and always fetch from database

Returns ssdict, or None, via Deferred

Get an ssdict representing the given source stamp, or None if no such source stamp exists.

getSourceStamps()

Returns list of ssdict, via Deferred

Get all sourcestamps in the database. You probably don’t want to do this! This method will be extended
to allow appropriate filtering.

getSourceStampsForBuild(buildid)

Parameters buildid – build ID

Returns list of ssdict, via Deferred

Get sourcestamps related to a build.

state

class buildbot.db.state.StateConnectorComponent
This class handles maintaining arbitrary key/value state for Buildbot objects. Each object can store arbitrary
key/value pairs, where the values are any JSON-encodable value. Each pair can be set and retrieved atomically.

Objects are identified by their (user-visible) name and their class. This allows, for example, a
nightly_smoketest object of class NightlyScheduler to maintain its state even if it moves between
masters, but avoids cross-contaminating state between different classes of objects with the same name.

3.2. APIs 441

Buildbot Documentation, Release 0.9.7

Note that “class” is not interpreted literally, and can be any string that will uniquely identify the class for the
object; if classes are renamed, they can continue to use the old names.

An instance of this class is available at master.db.state.

Objects are identified by objectid.

getObjectId(name, class_name)

Parameters

• name – name of the object

• class_name – object class name

Returns the objectid, via a Deferred.

Get the object ID for this combination of a name and a class. This will add a row to the ‘objects’ table if
none exists already.

getState(objectid, name[, default])
Parameters

• objectid – objectid on which the state should be checked

• name – name of the value to retrieve

• default – (optional) value to return if name is not present

Returns state value via a Deferred

Raises KeyError – if name is not present and no default is given

Raises TypeError if JSON parsing fails

Get the state value for key name for the object with id objectid.

setState(objectid, name, value)

Parameters

• objectid – the objectid for which the state should be changed

• name – the name of the value to change

• value (JSON-able value) – the value to set

• returns – value actually written via Deferred

Raises TypeError if JSONification fails

Set the state value for name for the object with id objectid, overwriting any existing value. In case of
two racing writes, the first (as per db rule) one wins, the seconds returns the value from the first.

atomicCreateState(objectid, name, thd_create_callback)

Parameters

• objectid – the objectid for which the state should be created

• name – the name of the value to create

• thd_create_callback – the function to call from thread to create the value if non-
existent. (returns JSON-able value)

• returns – Deferred

Raises TypeError if JSONification fails

442 Chapter 3. Buildbot Development

Buildbot Documentation, Release 0.9.7

Atomically creates the state value for name for the object with id objectid, If there is an existing value,
returns that instead. This implementation ensures the state is created only once for the whole cluster.

Those 3 methods have their threaded equivalent, thdGetObjectId, thdGetState, thdSetState that
are intended to run in synchronous code, (e.g master.cfg environment)

users

class buildbot.db.users.UsersConnectorComponent
This class handles Buildbot’s notion of users. Buildbot tracks the usual information about users – username and
password, plus a display name.

The more complicated task is to recognize each user across multiple interfaces with Buildbot. For example, a
user may be identified as ‘djmitche’ in Subversion, ‘dustin@v.igoro.us‘ in Git, and ‘dustin’ on IRC. To support
this functionality, each user as a set of attributes, keyed by type. The findUserByAttr method uses these
attributes to match users, adding a new user if no matching user is found.

Users are identified canonically by uid, and are represented by usdicts (user dictionaries) with keys

•uid

•identifier (display name for the user)

•bb_username (buildbot login username)

•bb_password (hashed login password)

All attributes are also included in the dictionary, keyed by type. Types colliding with the keys above are ignored.

findUserByAttr(identifier, attr_type, attr_data)

Parameters

• identifier – identifier to use for a new user

• attr_type – attribute type to search for and/or add

• attr_data – attribute data to add

Returns userid via Deferred

Get an existing user, or add a new one, based on the given attribute.

This method is intended for use by other components of Buildbot to search for a user with the given
attributes.

Note that identifier is not used in the search for an existing user. It is only used when creating a new
user. The identifier should be based deterministically on the attributes supplied, in some fashion that will
seem natural to users.

For future compatibility, always use keyword parameters to call this method.

getUser(uid)

Parameters

• uid – user id to look up

• no_cache (boolean) – bypass cache and always fetch from database

Returns usdict via Deferred

Get a usdict for the given user, or None if no matching user is found.

3.2. APIs 443

mailto:'dustin@v.igoro.us

Buildbot Documentation, Release 0.9.7

getUserByUsername(username)

Parameters username (string) – username portion of user credentials

Returns usdict or None via deferred

Looks up the user with the bb_username, returning the usdict or None if no matching user is found.

getUsers()

Returns list of partial usdicts via Deferred

Get the entire list of users. User attributes are not included, so the results are not full userdicts.

updateUser(uid=None, identifier=None, bb_username=None, bb_password=None, attr_type=None,
attr_data=None)

Parameters

• uid (int) – the user to change

• identifier (string) – (optional) new identifier for this user

• bb_username (string) – (optional) new buildbot username

• bb_password (string) – (optional) new hashed buildbot password

• attr_type (string) – (optional) attribute type to update

• attr_data (string) – (optional) value for attr_type

Returns Deferred

Update information about the given user. Only the specified attributes are updated. If no user with the
given uid exists, the method will return silently.

Note that bb_password must be given if bb_username appears; similarly, attr_type requires
attr_data.

removeUser(uid)

Parameters uid (int) – the user to remove

Returns Deferred

Remove the user with the given uid from the database. This will remove the user from any associated
tables as well.

identifierToUid(identifier)

Parameters identifier (string) – identifier to search for

Returns uid or None, via Deferred

Fetch a uid for the given identifier, if one exists.

masters

class buildbot.db.masters.MastersConnectorComponent
This class handles tracking the buildmasters in a multi-master configuration. Masters “check in” periodically.
Other masters monitor the last activity times, and mark masters that have not recently checked in as inactive.

Masters are represented by master dictionaries with the following keys:

•id – the ID of this master

•name – the name of the master (generally of the form hostname:basedir)

444 Chapter 3. Buildbot Development

Buildbot Documentation, Release 0.9.7

•active – true if this master is running

•last_active – time that this master last checked in (a datetime object)

findMasterId(name)

Parameters name (unicode) – name of this master

Returns master id via Deferred

Return the master ID for the master with this master name (generally hostname:basedir). If such
a master is already in the database, this returns the ID. If not, the master is added to the database, with
active=False, and its ID returned.

setMasterState(masterid, active)

Parameters

• masterid (integer) – the master to check in

• active (boolean) – whether to mark this master as active or inactive

Returns boolean via Deferred

Mark the given master as active or inactive, returning true if the state actually changed. If active is true,
the last_active time is updated to the current time. If active is false, then any links to this master,
such as schedulers, will be deleted.

getMaster(masterid)

Parameters masterid (integer) – the master to check in

Returns Master dict or None via Deferred

Get the indicated master.

getMasters()

Returns list of Master dicts via Deferred

Get a list of the masters, represented as dictionaries; masters are sorted and paged using generic data query
options

setAllMastersActiveLongTimeAgo()

Returns None via Deferred

This method is intended to be call by upgrade-master, and will effectively force housekeeping on all
masters at next startup. This method is not intended to be called outside of housekeeping scripts.

builders

class buildbot.db.builders.BuildersConnectorComponent
This class handles the relationship between builder names and their IDs, as well as tracking which masters are
configured for this builder.

Builders are represented by master dictionaries with the following keys:

•id – the ID of this builder

•name – the builder name, a 20-character identifier

•masterids – the IDs of the masters where this builder is configured (sorted by id)

findBuilderId(name)

3.2. APIs 445

Buildbot Documentation, Release 0.9.7

Parameters name (20-character identifier) – name of this builder

Returns builder id via Deferred

Return the builder ID for the builder with this builder name. If such a builder is already in the database,
this returns the ID. If not, the builder is added to the database.

addBuilderMaster(builderid=None, masterid=None)

Parameters

• builderid (integer) – the builder

• masterid (integer) – the master

Returns Deferred

Add the given master to the list of masters on which the builder is configured. This will do nothing if the
master and builder are already associated.

removeBuilderMaster(builderid=None, masterid=None)

Parameters

• builderid (integer) – the builder

• masterid (integer) – the master

Returns Deferred

Remove the given master from the list of masters on which the builder is configured.

getBuilder(builderid)

Parameters builderid (integer) – the builder to check in

Returns Builder dict or None via Deferred

Get the indicated builder.

getBuilders(masterid=None)

Parameters masterid (integer) – ID of the master to which the results should be limited

Returns list of Builder dicts via Deferred

Get all builders (in unspecified order). If masterid is given, then only builders configured on that master
are returned.

Writing Database Connector Methods

The information above is intended for developers working on the rest of Buildbot, and treating the database layer as
an abstraction. The remainder of this section describes the internals of the database implementation, and is intended
for developers modifying the schema or adding new methods to the database layer.

Warning: It’s difficult to change the database schema significantly after it has been released, and very disruptive
to users to change the database API. Consider very carefully the future-proofing of any changes here!

446 Chapter 3. Buildbot Development

Buildbot Documentation, Release 0.9.7

The DB Connector and Components

class buildbot.db.connector.DBConnector
The root of the database connectors, master.db, is a DBConnector instance. Its main purpose is to hold
reference to each of the connector components, but it also handles timed cleanup tasks.

If you are adding a new connector component, import its module and create an instance of it in this class’s
constructor.

class buildbot.db.base.DBConnectorComponent
This is the base class for connector components.

There should be no need to override the constructor defined by this base class.

db
A reference to the DBConnector, so that connector components can use e.g., self.db.pool or
self.db.model. In the unusual case that a connector component needs access to the master, the easiest
path is self.db.master.

checkLength(col, value)
For use by subclasses to check that ‘value’ will fit in ‘col’, where ‘col’ is a table column from the model.
Ignore this check for database engines that either provide this error themselves (postgres) or that do not
enforce maximum-length restrictions (sqlite)

findSomethingId(self, tbl, whereclause, insert_values, _race_hook=None)
Find (using C{whereclause}) or add (using C{insert_values) a row to C{table}, and return the resulting
ID.

hashColumns(*args)
Hash the given values in a consistent manner: None is represented as xf5, an invalid unicode byte; strings
are converted to utf8; and integers are represented by their decimal expansion. The values are then joined
by ‘0’ and hashed with sha1.

doBatch(batch, batch_n=500)
returns an Iterator that batches stuff in order to not push to many thing in a single request. Especially sqlite
has 999 limit on argument it can take in a requests.

Direct Database Access

The connectors all use SQLAlchemy Core (http://www.sqlalchemy.org/docs/index.html) as a wrapper around database
client drivers. Unfortunately, SQLAlchemy is a synchronous library, so some extra work is required to use it in an
asynchronous context like Buildbot. This is accomplished by deferring all database operations to threads, and returning
a Deferred. The Pool class takes care of the details.

A connector method should look like this:

def myMethod(self, arg1, arg2):
def thd(conn):

q = ... # construct a query
for row in conn.execute(q):

... # do something with the results
return ... # return an interesting value

return self.db.pool.do(thd)

Picking that apart, the body of the method defines a function named thd taking one argument, a Connection
object. It then calls self.db.pool.do, passing the thd function. This function is called in a thread, and can make
blocking calls to SQLAlchemy as desired. The do method will return a Deferred that will fire with the return value of
thd, or with a failure representing any exceptions raised by thd.

3.2. APIs 447

http://www.sqlalchemy.org/docs/index.html

Buildbot Documentation, Release 0.9.7

The return value of thd must not be an SQLAlchemy object - in particular, any ResultProxy objects must be
parsed into lists or other data structures before they are returned.

Warning: As the name thd indicates, the function runs in a thread. It should not interact with any other part of
Buildbot, nor with any of the Twisted components that expect to be accessed from the main thread – the reactor,
Deferreds, etc.

Queries can be constructed using any of the SQLAlchemy core methods, using tables from Model, and executed with
the connection object, conn.

Note: SQLAlchemy requires the use of a syntax that is forbidden by pep8. If in where clauses you need to select
rows where a value is NULL, you need to write (tbl.c.value == None). This form is forbidden by pep8 which requires
the use of is None instead of == None. As sqlalchemy is using operator overloading to implement pythonic SQL
statements, and is operator is not overloadable, we need to keep the == operators. In order to solve this issue, buildbot
uses buildbot.db.NULL constant, which is None. So instead of writting tbl.c.value == None, please write tbl.c.value
== NULL)

class buildbot.db.pool.DBThreadPool

do(callable, ...)

Returns Deferred

Call callable in a thread, with a Connection object as first argument. Returns a deferred that will
fire with the results of the callable, or with a failure representing any exception raised during its execution.

Any additional positional or keyword arguments are passed to callable.

do_with_engine(callable, ...)

Returns Deferred

Similar to do, call callable in a thread, but with an Engine object as first argument.

This method is only used for schema manipulation, and should not be used in a running master.

Database Schema

Database connector methods access the database through SQLAlchemy, which requires access to Python objects rep-
resenting the database tables. That is handled through the model.

class buildbot.db.model.Model
This class contains the canonical description of the buildbot schema, It is presented in the form of SQLAlchemy
Table instances, as class variables. At runtime, the model is available at master.db.model, so for example
the buildrequests table can be referred to as master.db.model.buildrequests, and columns are
available in its c attribute.

The source file, master/buildbot/db/model.py (https://github.com/buildbot/buildbot/blob/master/master/buildbot/db/model.py),
contains comments describing each table; that information is not replicated in this documentation.

Note that the model is not used for new installations or upgrades of the Buildbot database. See Modifying the
Database Schema for more information.

metadata
The model object also has a metadata attribute containing a MetaData instance. Connector methods
should not need to access this object. The metadata is not bound to an engine.

448 Chapter 3. Buildbot Development

https://github.com/buildbot/buildbot/blob/master/master/buildbot/db/model.py

Buildbot Documentation, Release 0.9.7

The Model class also defines some migration-related methods:

is_current()

Returns boolean via Deferred

Returns true if the current database’s version is current.

upgrade()

Returns Deferred

Upgrades the database to the most recent schema version.

Caching

Connector component methods that get an object based on an ID are good candidates for caching. The cached
decorator makes this automatic:

buildbot.db.base.cached(cachename)

Parameters cache_name – name of the cache to use

A decorator for “getter” functions that fetch an object from the database based on a single key. The wrapped
method will only be called if the named cache does not contain the key.

The wrapped function must take one argument (the key); the wrapper will take a key plus an optional no_cache
argument which, if true, will cause it to invoke the underlying method even if the key is in the cache.

The resulting method will have a cache attribute which can be used to access the underlying cache.

In most cases, getter methods return a well-defined dictionary. Unfortunately, Python does not handle weak references
to bare dictionaries, so components must instantiate a subclass of dict. The whole assembly looks something like
this:

class ThDict(dict):
pass

class ThingConnectorComponent(base.DBConnectorComponent):

@base.cached('thdicts')
def getThing(self, thid):

def thd(conn):
...
thdict = ThDict(thid=thid, attr=row.attr, ...)
return thdict

return self.db.pool.do(thd)

Tests

It goes without saying that any new connector methods must be fully tested!

You will also want to add an in-memory implementation of the methods to the fake classes in master/buildbot/
test/fake/fakedb.py. Non-DB Buildbot code is tested using these fake implementations in order to isolate that
code from the database code, and to speed-up tests.

The keys and types used in the return value from a connector’s get methods are described in mas-
ter/buildbot/test/util/validation.py (https://github.com/buildbot/buildbot/blob/master/master/buildbot/test/util/validation.py),
via the dbdict module-level value. This is a dictionary of DictValidator objects, one for each return value.

3.2. APIs 449

https://github.com/buildbot/buildbot/blob/master/master/buildbot/test/util/validation.py
https://github.com/buildbot/buildbot/blob/master/master/buildbot/test/util/validation.py

Buildbot Documentation, Release 0.9.7

These values are used within test methods like this:

rv = yield self.db.masters.getMaster(7)
validation.verifyDbDict(self, 'masterdict', rv)

Modifying the Database Schema

Changes to the schema are accomplished through migration scripts, supported by SQLAlchemy-Migrate
(https://github.com/openstack/sqlalchemy-migrate). In fact, even new databases are created with the migration scripts
– a new database is a migrated version of an empty database.

The schema is tracked by a version number, stored in the migrate_version table. This number is incremented for
each change to the schema, and used to determine whether the database must be upgraded. The master will refuse to
run with an out-of-date database.

To make a change to the schema, first consider how to handle any existing data. When adding new columns, this may
not be necessary, but table refactorings can be complex and require caution so as not to lose information.

Create a new script in master/buildbot/db/migrate/versions (https://github.com/buildbot/buildbot/blob/master/master/buildbot/db/migrate/versions),
following the numbering scheme already present. The script should have an update method, which takes an engine
as a parameter, and upgrades the database, both changing the schema and performing any required data migrations.
The engine passed to this parameter is “enhanced” by SQLAlchemy-Migrate, with methods to handle adding, altering,
and dropping columns. See the SQLAlchemy-Migrate documentation for details.

Next, modify master/buildbot/db/model.py (https://github.com/buildbot/buildbot/blob/master/master/buildbot/db/model.py)
to represent the updated schema. Buildbot’s automated tests perform a rudimentary comparison of an upgraded
database with the model, but it is important to check the details - key length, nullability, and so on can sometimes be
missed by the checks. If the schema and the upgrade scripts get out of sync, bizarre behavior can result.

Also, adjust the fake database table definitions in master/buildbot/test/fake/fakedb.py
(https://github.com/buildbot/buildbot/blob/master/master/buildbot/test/fake/fakedb.py) according to your changes.

Your upgrade script should have unit tests. The classes in master/buildbot/test/util/migration.py
(https://github.com/buildbot/buildbot/blob/master/master/buildbot/test/util/migration.py) make this straightforward.
Unit test scripts should be named e.g., test_db_migrate_versions_015_remove_bad_master_objectid.
py.

The master/buildbot/test/integration/test_upgrade.py (https://github.com/buildbot/buildbot/blob/master/master/buildbot/test/integration/test_upgrade.py)
also tests upgrades, and will confirm that the resulting database matches the model. If you encounter implicit indexes
on MySQL, that do not appear on SQLite or Postgres, add them to implied_indexes in master/buidlbot/
db/model.py.

Foreign key checking

PostgreSQL and SQlite db backends are checking the foreign keys consistency. bug #2248
(http://trac.buildbot.net/ticket/2248) needs to be fixed so that we can support foreign key checking for MySQL.

To maintain consistency with real db, fakedb can check the foreign key consistency of your test data. For this, just
enable it with:

self.db = fakedb.FakeDBConnector(self.master, self)
self.db.checkForeignKeys = True

Note that tests that only use fakedb do not really need foreign key consistency, even if this is a good practice to enable
it in new code.

450 Chapter 3. Buildbot Development

https://github.com/openstack/sqlalchemy-migrate
https://github.com/buildbot/buildbot/blob/master/master/buildbot/db/migrate/versions
https://github.com/buildbot/buildbot/blob/master/master/buildbot/db/model.py
https://github.com/buildbot/buildbot/blob/master/master/buildbot/test/fake/fakedb.py
https://github.com/buildbot/buildbot/blob/master/master/buildbot/test/util/migration.py
https://github.com/buildbot/buildbot/blob/master/master/buildbot/test/integration/test_upgrade.py
http://trac.buildbot.net/ticket/2248

Buildbot Documentation, Release 0.9.7

Database Compatibility Notes

Or: “If you thought any database worked right, think again”

Because Buildbot works over a wide range of databases, it is generally limited to database features present in all
supported backends. This section highlights a few things to watch out for.

In general, Buildbot should be functional on all supported database backends. If use of a backend adds minor usage re-
strictions, or cannot implement some kinds of error checking, that is acceptable if the restrictions are well-documented
in the manual.

The metabuildbot tests Buildbot against all supported databases, so most compatibility errors will be caught before a
release.

Index Length in MySQL

MySQL only supports about 330-character indexes. The actual index length is 1000 bytes, but MySQL uses 3-byte
encoding for UTF8 strings. This is a longstanding bug in MySQL - see “Specified key was too long; max key length is
1000 bytes” with utf8 (http://bugs.mysql.com/bug.php?id=4541). While this makes sense for indexes used for record
lookup, it limits the ability to use unique indexes to prevent duplicate rows.

InnoDB only supports indexes up to 255 unicode characters, which is why all indexed columns are limited to 255
characters in Buildbot.

Transactions in MySQL

Unfortunately, use of the MyISAM storage engine precludes real transactions in MySQL. transaction.
commit() and transaction.rollback() are essentially no-ops: modifications to data in the database are
visible to other users immediately, and are not reverted in a rollback.

Referential Integrity in SQLite and MySQL

Neither MySQL nor SQLite enforce referential integrity based on foreign keys. Postgres does enforce, however. If
possible, test your changes on Postgres before committing, to check that tables are added and removed in the proper
order.

Subqueries in MySQL

MySQL’s query planner is easily confused by subqueries. For example, a DELETE query specifying id’s that are IN a
subquery will not work. The workaround is to run the subquery directly, and then execute a DELETE query for each
returned id.

If this weakness has a significant performance impact, it would be acceptable to conditionalize use of the subquery on
the database dialect.

Too Many Variables in SQLite

Sqlite has a limitation on the number of variables it can use. This limitation is usually
SQLITE_LIMIT_VARIABLE_NUMBER=999 (http://www.sqlite.org/c3ref/c_limit_attached.html#sqlitelimitvariablenumber).
There is currently no way with pysqlite to query the value of this limit. The C-api sqlite_limit is just not bound
to the python.

3.2. APIs 451

http://bugs.mysql.com/bug.php?id=4541
http://bugs.mysql.com/bug.php?id=4541
http://www.sqlite.org/c3ref/c_limit_attached.html#sqlitelimitvariablenumber

Buildbot Documentation, Release 0.9.7

When you hit this problem, you will get error like the following:

sqlalchemy.exc.OperationalError: (OperationalError) too many SQL variables
u'DELETE FROM scheduler_changes WHERE scheduler_changes.changeid IN (?, ?, ?,
→˓tons of ?? and IDs 9363, 9362, 9361)

You can use the method doBatch in order to write batching code in a consistent manner.

Testing migrations with real databases

By default Buildbot test suite uses SQLite database for testings database migrations. To use other database
set BUILDBOT_TEST_DB_URL environment variable to value in SQLAlchemy database URL specification
(http://docs.sqlalchemy.org/en/latest/core/engines.html#database-urls).

For example, to run tests with file-based SQLite database you can start tests in the following way:

BUILDBOT_TEST_DB_URL=sqlite:////tmp/test_db.sqlite trial buildbot.test

Run databases in Docker

Docker (https://www.docker.com/) allows to easily install and configure different databases locally in containers.

To run tests with PostgreSQL:

Install psycopg.
pip install psycopg2
Start container with PostgreSQL 9.5.
It will listen on port 15432 on localhost.
sudo docker run --name bb-test-postgres -e POSTGRES_PASSWORD=password \

-p 127.0.0.1:15432:5432 -d postgres:9.5
Start interesting tests
BUILDBOT_TEST_DB_URL=postgresql://postgres:password@localhost:15432/postgres \

trial buildbot.test

To run tests with MySQL:

Install mysqlclient
pip install mysqlclient
Start container with MySQL 5.5.
It will listen on port 13306 on localhost.
sudo docker run --name bb-test-mysql -e MYSQL_ROOT_PASSWORD=password \

-p 127.0.0.1:13306:3306 -d mysql:5.5
Start interesting tests
BUILDBOT_TEST_DB_URL=mysql+mysqldb://root:password@127.0.0.1:13306/mysql \

trial buildbot.test

Messaging and Queues

As of version 0.9.0, Buildbot uses a message-queueing structure to handle asynchronous notifications in a distributed
fashion. This avoids, for the most part, the need for each master to poll the database, allowing masters to react to
events as they happen.

452 Chapter 3. Buildbot Development

http://docs.sqlalchemy.org/en/latest/core/engines.html#database-urls
https://www.docker.com/

Buildbot Documentation, Release 0.9.7

Overview

Buildbot is structured as a hybrid state- and event-based application, which will probably offend adherents of either
pattern. In particular, the most current state is stored in the Database, while any changes to the state are announced
in the form of a message. The content of the messages is sufficient to reconstruct the updated state, allowing external
processes to represent “live” state without polling the database.

This split nature immediately brings to light the problem of synchronizing the two interfaces. Queueing systems can
introduce queueing delays as messages propagate. Likewise, database systems may introduce a delay between com-
mitted modifications and the modified data appearing in queries; for example, with MySQL master/slave replication,
there can be several seconds’ delay before a slave is updated.

Buildbot’s MQ connector simply relays messages, and makes no attempt to coordinate the timing of those messages
with the corresponding database updates. It is up to higher layers to apply such coordination.

Connector API

All access to the queueing infrastructure is mediated by an MQ connector. The connector’s API is defined below. The
connector itself is always available as master.mq, where master is the current BuildMaster instance. The
connector API is quite simple. It is loosely based on AMQP, although simplified because there is only one exchange
(see Queue Schema).

All messages include a “routing key”, which is a tuple of 7-bit ascii strings describing the content of the message.
By convention, the first element of the tuple gives the type of the data in the message. The last element of the tuple
describes the event represented by the message. The remaining elements of the tuple describe attributes of the data in
the message that may be useful for filtering; for example, buildsets may usefully be filtered on buildsetids. The topics
and associated message types are described below in Message Schema.

Filters are also specified with tuples. For a filter to match a routing key, it must have the same length, and each element
of the filter that is not None must match the corresponding routing key element exactly.

class buildbot.mq.base.MQConnector
This is an abstract parent class for MQ connectors, and defines the interface. It should not be instantiated
directly. It is a subclass of buildbot.util.service.AsyncService, and subclasses can override
service methods to start and stop the connector.

produce(routing_key, data)

Parameters

• routing_key (tuple) – the routing key for this message

• data – JSON-serializable body of the message

This method produces a new message and queues it for delivery to any associated consumers.

The routing key and data should match one of the formats given in Message Schema.

The method returns immediately; the caller will not receive any indication of a failure to transmit the
message, although errors will be displayed in twistd.log.

startConsuming(callback, filter[, persistent_name=name])
Parameters

• callback – callable to invoke for matching messages

• filter (tuple) – filter for routing keys of interest

• persistent_name – persistent name for this consumer

Returns a QueueRef instance via Deferred

3.2. APIs 453

Buildbot Documentation, Release 0.9.7

This method will begin consuming messages matching the filter, invoking callback for each message.
See above for the format of the filter.

The callback will be invoked with two arguments: the message’s routing key and the message body, as a
Python data structure. It may return a Deferred, but no special processing other than error handling will
be applied to that Deferred. In particular, note that the callback may be invoked a second time before the
Deferred from the first invocation fires.

A message is considered delivered as soon as the callback is invoked - there is no support for acknowl-
edgements or re-queueing unhandled messages.

Note that the timing of messages is implementation-dependent. It is not guaranteed that messages sent be-
fore the startConsuming method completes will be received. In fact, because the registration process
may not be immediate, even messages sent after the method completes may not be received.

If persistent_name is given, then the consumer is assumed to be persistent, and consumption can be
resumed with the given name. Messages that arrive when no consumer is active are queued and will be
delivered when a consumer becomes active.

waitUntilEvent(filter, check_callback)

Parameters

• filter (tuple) – filter for routing keys of interest

• check_callback (function) – a callback which check if the event has already hap-
pened

Returns a Deferred that fires when the event has been received, and contain tuple (routing_key,
value) representing the event

This method is a helper which returns a defer that fire when a certain event has occured. This is useful
for waiting the end of a build or disconnection of a worker. You shall make sure when using this method
that this event will happen in the future, and take care of race conditions. For that caller must provide a
check_callback which will check of the event has already occured. The whole race-condition-free process
is:

•Register to event

•Check if it has already happened

•If not wait for the event

•Unregister from event

class buildbot.mq.base.QueueRef
The QueueRef returned (via Deferred) from startConsuming can be used to stop consuming messages
when they are no longer needed. Users should be very careful to ensure that consumption is terminated in all
cases.

stopConsuming()
Stop invoking the callback passed to startConsuming. This method can be called multiple times
for the same QueueRef instance without harm.

After the first call to this method has returned, the callback will not be invoked.

Implementations

Several concrete implementations of the MQ connector exist. The simplest is intended for cases where only one master
exists, similar to the SQLite database support. The remainder use various existing queueing applications to support
distributed communications.

454 Chapter 3. Buildbot Development

Buildbot Documentation, Release 0.9.7

Simple

class buildbot.mq.simple.SimpleMQ
The SimpleMQ class implements a local equivalent of a message-queueing server. It is intended for Buildbot
installations with only one master.

Wamp

class buildbot.mq.wamp.WampMQ
The WampMQ class implements message-queueing using a wamp router. This class translates the semantics of
the buildbot mq api to the semantics of the wamp messaging system. The message route is translated to a wamp
topic by joining with dot and prefixing with buildbot namespace. Example message that is sent via wamp is:

topic = "org.buildbot.mq.builds.1.new"
data = {

'builderid': 10,
'buildid': 1,
'buildrequestid': 13,
'workerid': 20,
'complete': False,
'complete_at': None,
'masterid': 824,
'number': 1,
'results': None,
'started_at': 1,
'state_string': u'created'

}

class buildbot.wamp.connector.WampConnector
The WampConnector class implements a buildbot service for wamp. It is managed outside of the mq module
as this protocol can also be reused for worker protocol. The connector support queuing of requests until the
wamp connection is created, but do not support disconnection and reconnection. Reconnection will be supported
as part of a next release of AutobahnPython (https://github.com/crossbario/autobahn-python/issues/295). There
is a chicken and egg problem at the buildbot initialization phasis, so the produce messages are actually not sent
with deferred.

Queue Schema

Buildbot uses a particularly simple architecture: in AMQP terms, all messages are sent to a single topic exchange, and
consumers define anonymous queues bound to that exchange.

In future versions of Buildbot, some components (e.g., schedulers) may use durable queues to ensure that messages
are not lost when one or more masters are disconnected.

Message Schema

This section describes the general structure messages. The specific routing keys and content of each message are
described in the relevant sub-section of Data API.

3.2. APIs 455

https://github.com/crossbario/autobahn-python/issues/295

Buildbot Documentation, Release 0.9.7

Routing Keys

Routing keys are a sequence of strings, usually written with dot separators. Routing keys are represented with variables
when one or more of the words in the key are defined by the content of the message. For example, buildset.$bsid
describes routing keys such as buildset.1984, where 1984 is the ID of the buildset described by the message body.
Internally, keys are represented as tuples of strings.

Body Format

Message bodies are encoded in JSON. The top level of each message is an object (a dictionary).

Most simple Python types - strings, numbers, lists, and dictionaries - are mapped directly to the corresponding JSON
types. Timestamps are represented as seconds since the UNIX epoch in message bodies.

Cautions

Message ordering is generally maintained by the backend implementations, but this should not be depended on. That
is, messages originating from the same master are usually delivered to consumers in the order they were produced.
Thus, for example, a consumer can expect to see a build request claimed before it is completed. That said, consumers
should be resilient to messages delivered out of order, at the very least by scheduling a “reload” from state stored in
the database when messages arrive in an invalid order.

Unit tests should be used to ensure this resiliency.

Some related messages are sent at approximately the same time. Due to the non-blocking nature of message delivery,
consumers should not assume that subsequent messages in a sequence remain queued. For example, upon receipt of a
buildset.$bsid.new message, it is already too late to try to subscribe to the associated build requests messages,
as they may already have been consumed.

Schema Changes

Future versions of Buildbot may add keys to messages, or add new messages. Consumers should expect unknown
keys and, if using wildcard topics, unknown messages.

Python3 compatibility

A good place to start looking for advice to ensure that any code is compatible with both Python-3.x and Python2.6/2.7
is too look at the python-future cheat sheet (http://python-future.org/compatible_idioms.html) . Buildbot uses the
python-future library to ensure compatibility with both Python2.6/2.7 and Python3.x.

Imports

All __future__ import have to happen at the top of the module, anything else is seen as a syntax error. All imports
from the python-future package should happen below __future__ imports, but before any other.

Yes:

from __future__ import print_function
from builtins import str

456 Chapter 3. Buildbot Development

http://python-future.org/compatible_idioms.html

Buildbot Documentation, Release 0.9.7

No:

from twisted.application import internet
from twisted.spread import pb
from builtins import str
from __future__ import print_function

Dictionaries

In python3, dict.iteritems is no longer available. While dict.items() does exist, it can be memory inten-
sive in python2. For this reason, please use the python.future function iteritems().

Example:

d = {"cheese": 4, "bread": 5, "milk": 1}
for item, num in d.iteritems():

print("We have {} {}".format(num, item))

should be written as:

from future.utils import iteritems
d = {"cheese": 4, "bread": 5, "milk": 1}
for item, num in iteritems(d):

print("We have {} {}".format(num, item))

This also applies to the similar methods dict.itervalues() and dict.values(), which have an equivalent
itervalues().

If a list is required, please use list(iteritems(dict)). This is for compatibility with the six library.

For iterating over dictionary keys, please use for key in dict:. For example:

d = {"cheese": 4, "bread": 5, "milk": 1}
for item in d:

print("We have {}".format(item))

Similarly when you want a list of keys:

keys = list(d)

New-style classes

All classes in Python3 are newstyle, so any classes added to the code base must therefore be new-style. This is done
by inheriting object

Old-style:

class Foo:
def __init__(self, bar)

self.bar = bar

new-style:

class Foo(object):
def __init__(self, bar)

self.bar = bar

3.3. Python3 compatibility 457

Buildbot Documentation, Release 0.9.7

When creating new-style classes, it is advised to import object from the builtins module. The reasoning for this can
be read in the python-future documentation (http://python-future.org/changelog.html#newobject-base-object-defines-
fallback-py2-compatible-special-methods)

Strings

Note: This has not yet been implemented in the current code base, and will not be strictly adhered to yet. But it
is important to keep in mind when writing code, that there is a strict distinction between bytestrings and unicode in
Python3’

In python2, there is only one type of string. It can be both unicode and bytestring. In python3, this is no longer the
case. For this reasons all string must be marked with either u'' or b'' to signify if the string is a unicode string or a
bytestring respectively

Example:

u'this is a unicode string, a string for humans to read'
b'This is a bytestring, a string for computers to read'

Exceptions

All exceptions should be written with the as statement. Before:

try:
number = 5 / 0

except ZeroDivisionError, err:
print(err.msg)

After:

try:
number = 5/0

except ZeroDivisionError as err:
print(err.msg)

Basestring

In Python2 there is a basestring type, which both str and unicode inherit. In Python3, only unicode should be of this
type, while bytestrings are type(byte).

For this reason, we use a builtin form python future. Before:

s = "this is a string"
if(isinstance(basestring)):

print "This line will run"

After:

from builtins import str
unicode_s = u"this is a unicode string"
byte_s = b"this is a bytestring"

458 Chapter 3. Buildbot Development

http://python-future.org/changelog.html#newobject-base-object-defines-fallback-py2-compatible-special-methods

Buildbot Documentation, Release 0.9.7

if(isinstance(unicode_s, str)):
print("This line will print")

if(isinstance(byte_s, str):
print("this line will not print")

Print statements

Print statements are gone in python3. Please import from __future__ import print_function at the
very top of the module to enable use of python3 style print functions

Division

Integer division is slightly different in Python3. // is integer division and / is floating point division. For this reason,
we use division from the future module. Before:

2 / 3 = 0

After:

from __future__ import division

2 / 3 = 1.5
2 // 3 = 0

Types

The types standard library has changed in Python3. Please make sure to read the official documentation
(https://docs.python.org/3.3/library/types.html) for the library and adapt accordingly

Classes

The sections contained here document classes that can be used or subclassed.

Note: Some of this information duplicates information available in the source code itself. Consider this information
authoritative, and the source code a demonstration of the current implementation which is subject to change.

Builds

The Build class represents a running build, with associated steps.

Build

class buildbot.process.build.Build

buildid
The ID of this build in the database.

3.4. Classes 459

https://docs.python.org/3.3/library/types.html

Buildbot Documentation, Release 0.9.7

getSummaryStatistic(name, summary_fn, initial_value=None)

Parameters

• name – statistic name to summarize

• summary_fn – callable with two arguments that will combine two values

• initial_value – first value to pass to summary_fn

Returns summarized result

This method summarizes the named step statistic over all steps in which it exists, using
combination_fn and initial_value to combine multiple results into a single result. This trans-
lates to a call to Python’s reduce:

return reduce(summary_fn, step_stats_list, initial_value)

getUrl()

Returns Url as string

Returns url of the build in the UI. Build must be started. This is useful for customs steps.

Workers

The Worker class represents a worker, which may or may not be connected to the master. Instances of this class are
created directly in the Buildbot configuration file.

Worker

class buildbot.worker.Worker

workerid
The ID of this worker in the database.

BuildFactory

BuildFactory Implementation Note

The default BuildFactory, provided in the buildbot.process.factory module, contains an internal list
of BuildStep specifications: a list of (step_class, kwargs) tuples for each. These specification tuples are
constructed when the config file is read, by asking the instances passed to addStep for their subclass and arguments.

To support config files from Buildbot version 0.7.5 and earlier, addStep also accepts the f.addStep(shell.
Compile, command=["make","build"]) form, although its use is discouraged because then the Compile
step doesn’t get to validate or complain about its arguments until build time. The modern pass-by-instance approach
allows this validation to occur while the config file is being loaded, where the admin has a better chance of noticing
problems.

When asked to create a Build, the BuildFactory puts a copy of the list of step specifications into the new Build
object. When the Build is actually started, these step specifications are used to create the actual set of BuildSteps,
which are then executed one at a time. This serves to give each Build an independent copy of each step.

Each step can affect the build process in the following ways:

460 Chapter 3. Buildbot Development

Buildbot Documentation, Release 0.9.7

• If the step’s haltOnFailure attribute is True, then a failure in the step (i.e. if it completes with a result of
FAILURE) will cause the whole build to be terminated immediately: no further steps will be executed, with the
exception of steps with alwaysRun set to True. haltOnFailure is useful for setup steps upon which the
rest of the build depends: if the CVS checkout or ./configure process fails, there is no point in trying to
compile or test the resulting tree.

• If the step’s alwaysRun attribute is True, then it will always be run, regardless of if previous steps have
failed. This is useful for cleanup steps that should always be run to return the build directory or worker into a
good state.

• If the flunkOnFailure or flunkOnWarnings flag is set, then a result of FAILURE or WARNINGS will
mark the build as a whole as FAILED. However, the remaining steps will still be executed. This is appropriate
for things like multiple testing steps: a failure in any one of them will indicate that the build has failed, however
it is still useful to run them all to completion.

• Similarly, if the warnOnFailure or warnOnWarnings flag is set, then a result of FAILURE or WARNINGS
will mark the build as having WARNINGS, and the remaining steps will still be executed. This may be appropriate
for certain kinds of optional build or test steps. For example, a failure experienced while building documentation
files should be made visible with a WARNINGS result but not be serious enough to warrant marking the whole
build with a FAILURE.

In addition, each Step produces its own results, may create logfiles, etc. However only the flags described above
have any effect on the build as a whole.

The pre-defined BuildSteps like CVS and Compile have reasonably appropriate flags set on them already. For
example, without a source tree there is no point in continuing the build, so the CVS class has the haltOnFailure
flag set to True. Look in buildbot/steps/*.py to see how the other Steps are marked.

Each Step is created with an additional workdir argument that indicates where its actions should take place. This is
specified as a subdirectory of the worker’s base directory, with a default value of build. This is only implemented as
a step argument (as opposed to simply being a part of the base directory) because the CVS/SVN steps need to perform
their checkouts from the parent directory.

BuildSetSummaryNotifierMixin

Some status notifiers will want to report the status of all builds all at once for a particular buildset, instead of reporting
each build individually as it finishes. In order to do this, the status notifier must wait for all builds to finish, collect
their results, and then report a kind of summary on all of the collected results. The act of waiting for and collecting
the results of all of the builders is implemented via BuildSetSummaryNotifierMixin, to be subclassed by a
status notification implementation.

BuildSetSummaryNotifierMixin

buildbot.status.buildset.BuildSetSummaryNotifierMixin::
This class provides some helper methods for implementing a status notification that provides notifications for
all build results for a buildset at once.

This class provides the following methods:

buildbot.status.buildset.summarySubscribe()
Call this to start receiving sendBuildSetSummary callbacks. Typically this will be called from the
subclass’s startService method.

buildbot.status.buildset.summaryUnsubscribe()
Call this to stop receiving sendBuildSetSummary callbacks. Typically this will be called from the
subclass’s stopService method.

3.4. Classes 461

Buildbot Documentation, Release 0.9.7

The following methods are hooks to be implemented by the subclass.

buildbot.status.buildset.sendBuildSetSummary(buildset, builds)

Parameters

• buildset – A BuildSet object

• builds – A list of Build objects

This method must be implemented by the subclass. This method is called when all of the builds for a
buildset have finished, and it should initiate sending a summary status for the buildset.

The following attributes must be provided by the subclass.

buildbot.status.buildset.master
This must point to the BuildMaster object.

Change Sources

ChangeSource

class buildbot.changes.base.ChangeSource
This is the base class for change sources.

Subclasses should override the inherited activate and deactivate methods if necessary to handle initial-
ization and shutdown.

Change sources which are active on every master should, instead, override startService and
stopService.

ReconfigurablePollingChangeSource

class buildbot.changes.base.ReconfigurablePollingChangeSource
This is a subclass of ChangeSource which adds polling behavior. Its constructor accepts the
pollInterval and pollAtLaunch arguments as documented for most built-in change sources.

Subclasses should override the poll method. This method may return a Deferred. Calls to poll will not
overlap.

PollingChangeSource

class buildbot.changes.base.PollingChangeSource
This is a legacy class for polling change sources not yet ported to the :py:class::BuildbotService component
lifecycle. Do not use for new code.

RemoteCommands

Most of the action in build steps consists of performing operations on the worker. This is accomplished via
RemoteCommand and its subclasses. Each represents a single operation on the worker.

Most data is returned to a command via updates. These updates are described in detail in Updates.

462 Chapter 3. Buildbot Development

Buildbot Documentation, Release 0.9.7

RemoteCommand

class buildbot.process.remotecommand.RemoteCommand(remote_command, args, collectStd-
out=False, ignore_updates=False,
decodeRC=dict(0), stdioLog-
Name=’stdio’)

Parameters

• remote_command (string) – command to run on the worker

• args (dictionary) – arguments to pass to the command

• collectStdout – if True, collect the command’s stdout

• ignore_updates – true to ignore remote updates

• decodeRC – dictionary associating rc values to buildsteps results constants (e.g.
SUCCESS, FAILURE, WARNINGS)

• stdioLogName – name of the log to which to write the command’s stdio

This class handles running commands, consisting of a command name and a dictionary of arguments. If true,
ignore_updates will suppress any updates sent from the worker.

This class handles updates for stdout, stderr, and header by appending them to s stdio logfile named
by the stdioLogName parameter. Steps that run multiple commands and want to separate those commands’
stdio streams can use this parameter.

It handles updates for rc by recording the value in its rc attribute.

Most worker-side commands, even those which do not spawn a new process on the worker, generate logs and
an rc, requiring this class or one of its subclasses. See Updates for the updates that each command may send.

active
True if the command is currently running

run(step, remote)

Parameters

• step – the buildstep invoking this command

• remote – a reference to the remote WorkerForBuilder instance

Returns Deferred

Run the command. Call this method to initiate the command; the returned Deferred will fire when the
command is complete. The Deferred fires with the RemoteCommand instance as its value.

interrupt(why)

Parameters why (Twisted Failure) – reason for interrupt

Returns Deferred

This method attempts to stop the running command early. The Deferred it returns will fire when the
interrupt request is received by the worker; this may be a long time before the command itself completes,
at which time the Deferred returned from run will fire.

results()

Returns results constant

This method checks the rc against the decodeRC dictionary, and returns results constant

didFail()

3.4. Classes 463

Buildbot Documentation, Release 0.9.7

Returns bool

This method returns True if the results() function returns FAILURE

The following methods are invoked from the worker. They should not be called directly.

remote_update(updates)

Parameters updates – new information from the worker

Handles updates from the worker on the running command. See Updates for the content of the updates.
This class splits the updates out, and handles the ignore_updates option, then calls remoteUpdate
to process the update.

remote_complete(failure=None)

Parameters failure – the failure that caused the step to complete, or None for success

Called by the worker to indicate that the command is complete. Normal completion (even with a nonzero
rc) will finish with no failure; if failure is set, then the step should finish with status EXCEPTION .

These methods are hooks for subclasses to add functionality.

remoteUpdate(update)

Parameters update – the update to handle

Handle a single update. Subclasses must override this method.

remoteComplete(failure)

Parameters failure – the failure that caused the step to complete, or None for success

Returns Deferred

Handle command completion, performing any necessary cleanup. Subclasses should override this method.
If failure is not None, it should be returned to ensure proper processing.

logs
A dictionary of LogFile instances representing active logs. Do not modify this directly – use useLog
instead.

rc
Set to the return code of the command, after the command has completed. For compatibility with shell
commands, 0 is taken to indicate success, while nonzero return codes indicate failure.

stdout
If the collectStdout constructor argument is true, then this attribute will contain all data from stdout,
as a single string. This is helpful when running informational commands (e.g., svnversion), but is not
appropriate for commands that will produce a large amount of output, as that output is held in memory.

To set up logging, use useLog or useLogDelayed before starting the command:

useLog(log, closeWhenFinished=False, logfileName=None)

Parameters

• log – the LogFile instance to add to.

• closeWhenFinished – if true, call finish when the command is finished.

• logfileName – the name of the logfile, as given to the worker. This is stdio for
standard streams.

Route log-related updates to the given logfile. Note that stdio is not included by default, and must be
added explicitly. The logfileName must match the name given by the worker in any log updates.

464 Chapter 3. Buildbot Development

Buildbot Documentation, Release 0.9.7

useLogDelayed(logfileName, activateCallback, closeWhenFinished=False)

Parameters

• logfileName – the name of the logfile, as given to the worker. This is stdio for
standard streams.

• activateCallback – callback for when the log is added; see below

• closeWhenFinished – if true, call finish when the command is finished.

Similar to useLog, but the logfile is only actually added when an update arrives for it. The callback,
activateCallback, will be called with the RemoteCommand instance when the first update for the
log is delivered. It should return the desired log instance, optionally via a Deferred.

With that finished, run the command using the inherited run method. During the run, you can inject data into
the logfiles with any of these methods:

addStdout(data)

Parameters data – data to add to the logfile

Returns Deferred

Add stdout data to the stdio log.

addStderr(data)

Parameters data – data to add to the logfile

Returns Deferred

Add stderr data to the stdio log.

addHeader(data)

Parameters data – data to add to the logfile

Returns Deferred

Add header data to the stdio log.

addToLog(logname, data)

Parameters

• logname – the logfile to receive the data

• data – data to add to the logfile

Returns Deferred

Add data to a logfile other than stdio.

class buildbot.process.remotecommand.RemoteShellCommand(workdir, com-
mand, env=None,
want_stdout=True,
want_stderr=True, time-
out=20*60, maxTime=None,
sigtermTime=None, log-
files={}, usePTY=None,
logEnviron=True, collectSt-
dio=False)

Parameters

• workdir – directory in which command should be executed, relative to the builder’s
basedir.

3.4. Classes 465

Buildbot Documentation, Release 0.9.7

• command (string or list) – shell command to run

• want_stdout – If false, then no updates will be sent for stdout.

• want_stderr – If false, then no updates will be sent for stderr.

• timeout – Maximum time without output before the command is killed.

• maxTime – Maximum overall time from the start before the command is killed.

• sigtermTime – Try to kill the command with SIGTERM and wait for sigtermTime sec-
onds before firing SIGKILL. If None, SIGTERM will not be fired.

• env – A dictionary of environment variables to augment or replace the existing environment
on the worker.

• logfiles – Additional logfiles to request from the worker.

• usePTY – True to use a PTY, false to not use a PTY; the default value is False.

• logEnviron – If false, do not log the environment on the worker.

• collectStdout – If True, collect the command’s stdout.

Most of the constructor arguments are sent directly to the worker; see shell for the details of the formats. The
collectStdout parameter is as described for the parent class.

If shell command contains passwords they can be hidden from log files by passing them as tuple in com-
mand argument. Eg. ['print', ('obfuscated', 'password', 'dummytext')] is logged as
['print', 'dummytext'].

This class is used by the ShellCommand step, and by steps that run multiple customized shell commands.

BuildSteps

There are a few parent classes that are used as base classes for real buildsteps. This section describes the base classes.
The “leaf” classes are described in Build Steps.

See Writing New BuildSteps for a guide to implementing new steps.

BuildStep

class buildbot.process.buildstep.BuildStep(name, description, descriptionDone, description-
Suffix, locks, haltOnFailure, flunkOnWarnings,
flunkOnFailure, warnOnWarnings, warnOnFail-
ure, alwaysRun, progressMetrics, useProgress,
doStepIf, hideStepIf)

All constructor arguments must be given as keyword arguments. Each constructor parameter is copied to the
corresponding attribute.

name
The name of the step. Note that this value may change when the step is started, if the existing name was
not unique.

stepid
The ID of this step in the database. This attribute is not set until the step starts.

description
The description of the step.

descriptionDone
The description of the step after it has finished.

466 Chapter 3. Buildbot Development

Buildbot Documentation, Release 0.9.7

descriptionSuffix
Any extra information to append to the description.

locks
List of locks for this step; see Interlocks.

progressMetrics
List of names of metrics that should be used to track the progress of this build, and build ETA’s for users.
This is generally set in the

useProgress
If true (the default), then ETAs will be calculated for this step using progress metrics. If the step is known
to have unpredictable timing (e.g., an incremental build), then this should be set to false.

doStepIf
A callable or bool to determine whether this step should be executed. See Common Parameters for details.

hideStepIf
A callable or bool to determine whether this step should be shown in the waterfall and build details pages.
See Common Parameters for details.

The following attributes affect the behavior of the containing build:

haltOnFailure
If true, the build will halt on a failure of this step, and not execute subsequent tests (except those with
alwaysRun).

flunkOnWarnings
If true, the build will be marked as a failure if this step ends with warnings.

flunkOnFailure
If true, the build will be marked as a failure if this step fails.

warnOnWarnings
If true, the build will be marked as warnings, or worse, if this step ends with warnings.

warnOnFailure
If true, the build will be marked as warnings, or worse, if this step fails.

alwaysRun
If true, the step will run even if a previous step halts the build with haltOnFailure.

logEncoding
The log encoding to use for logs produced in this step, or None to ues the global default. See Log Handling.

rendered
At the beginning of the step, the renderable attributes are rendered against the properties. There is a slight
delay however when those are not yet rendered, which lead to weird and difficult to reproduce bugs. To
address this problem, a rendered attribute is available for methods that could be called early in the
buildstep creation.

results
This is the result (a code from buildbot.process.results) of the step. This attribute only exists
after the step is finished, and should only be used in getResultSummary .

A few important pieces of information are not available when a step is constructed, and are added later. These
are set by the following methods; the order in which these methods are called is not defined.

setBuild(build)

Parameters build – the Build instance controlling this step.

3.4. Classes 467

Buildbot Documentation, Release 0.9.7

This method is called during setup to set the build instance controlling this worker. Subclasses can override
this to get access to the build object as soon as it is available. The default implementation sets the build
attribute.

build
The build object controlling this step.

setWorker(build)

Parameters build – the Worker instance on which this step will run.

Similarly, this method is called with the worker that will run this step. The default implementation sets the
worker attribute.

worker
The worker that will run this step.

workdir
Implemented as a property. Workdir where actions of the step are happening. The workdir is by order of
priority

•workdir of the step, if defined via constructor argument

•workdir of the BuildFactory (itself defaults to ‘build’).

BuildFactory workdir can be a function of sourcestamp. See Factory Workdir Functions

setDefaultWorkdir(workdir)

Parameters workdir – the default workdir, from the build

Note: This method is deprecated and should not be used anymore, as workdir is calculated automatically
via a property

setupProgress()
This method is called during build setup to give the step a chance to set up progress tracking. It is only
called if the build has useProgress set. There is rarely any reason to override this method.

Execution of the step itself is governed by the following methods and attributes.

startStep(remote)

Parameters remote – a remote reference to the worker-side WorkerForBuilderPb in-
stance

Returns Deferred

Begin the step. This is the build’s interface to step execution. Subclasses should override run to implement
custom behaviors.

run()

Returns result via Deferred

Execute the step. When this method returns (or when the Deferred it returns fires), the step is complete.
The method’s return value must be an integer, giving the result of the step – a constant from buildbot.
process.results. If the method raises an exception or its Deferred fires with failure, then the step
will be completed with an EXCEPTION result. Any other output from the step (logfiles, status strings,
URLs, etc.) is the responsibility of the run method.

Subclasses should override this method. Do not call finished or failed from this method.

start()

468 Chapter 3. Buildbot Development

Buildbot Documentation, Release 0.9.7

Returns None or SKIPPED, optionally via a Deferred.

Begin the step. BuildSteps written before Buildbot-0.9.0 often override this method instead of run, but
this approach is deprecated.

When the step is done, it should call finished, with a result – a constant from buildbot.process.
results. The result will be handed off to the Build.

If the step encounters an exception, it should call failed with a Failure object.

If the step decides it does not need to be run, start can return the constant SKIPPED. In this case, it is
not necessary to call finished directly.

finished(results)

Parameters results – a constant from results

A call to this method indicates that the step is finished and the build should analyze the results and perhaps
proceed to the next step. The step should not perform any additional processing after calling this method.
This method must only be called from the (deprecated) start method.

failed(failure)

Parameters failure – a Failure instance

Similar to finished, this method indicates that the step is finished, but handles exceptions with appro-
priate logging and diagnostics.

This method handles BuildStepFailed specially, by calling finished(FAILURE). This provides
subclasses with a shortcut to stop execution of a step by raising this failure in a context where failed
will catch it. This method must only be called from the (deprecated) start method.

interrupt(reason)

Parameters reason (string or Failure) – why the build was interrupted

This method is used from various control interfaces to stop a running step. The step should be brought to
a halt as quickly as possible, by cancelling a remote command, killing a local process, etc. The step must
still finish with either finished or failed.

The reason parameter can be a string or, when a worker is lost during step processing, a
ConnectionLost failure.

The parent method handles any pending lock operations, and should be called by implementations in
subclasses.

stopped
If false, then the step is running. If true, the step is not running, or has been interrupted.

A step can indicate its up-to-the-moment status using a short summary string. These methods allow step sub-
classes to produce such summaries.

updateSummary()
Update the summary, calling getCurrentSummary or getResultSummary as appropriate. New-
style build steps should call this method any time the summary may have changed. This method is de-
bounced, so even calling it for every log line is acceptable.

getCurrentSummary()

Returns dictionary, optionally via Deferred

Returns a dictionary containing status information for a running step. The dictionary can have a step key
with a unicode value giving a summary for display with the step. This method is only called while the step
is running.

3.4. Classes 469

Buildbot Documentation, Release 0.9.7

New-style build steps should override this method to provide a more interesting summary than the default
u"running".

getResultSummary()

Returns dictionary, optionally via Deferred

Returns a dictionary containing status information for a completed step. The dictionary can have keys
step and build, each with unicode values. The step key gives a summary for display with the step,
while the build key gives a summary for display with the entire build. The latter should be used sparingly,
and include only information that the user would find relevant for the entire build, such as a number of test
failures. Either or both keys can be omitted.

This method is only called while the step is finished. The step’s result is available in self.results at
that time.

New-style build steps should override this method to provide a more interesting summary than the default,
or to provide any build summary information.

getBuildResultSummary()

Returns dictionary, optionally via Deferred

Returns a dictionary containing status information for a completed step. This method calls
getResultSummary , and automatically compute a build key from the step key according to the
updateBuildSummaryPolicy

describe(done=False)

Parameters done – If true, the step is finished.

Returns list of strings

Describe the step succinctly. The return value should be a sequence of short strings suitable for display in
a horizontally constrained space.

Note: Be careful not to assume that the step has been started in this method. In relatively rare circum-
stances, steps are described before they have started. Ideally, unit tests should be used to ensure that this
method is resilient.

Note: This method is not called for new-style steps. Instead, override getCurrentSummary and
getResultSummary .

Build steps have statistics, a simple key/value store of data which can later be aggregated over all steps in a
build. Note that statistics are not preserved after a build is complete.

hasStatistic(stat)

Parameters stat (string) – name of the statistic

Returns True if the statistic exists on this step

getStatistic(stat, default=None)

Parameters

• stat (string) – name of the statistic

• default – default value if the statistic does not exist

Returns value of the statistic, or the default value

470 Chapter 3. Buildbot Development

Buildbot Documentation, Release 0.9.7

getStatistics()

Returns a dictionary of all statistics for this step

setStatistic(stat, value)

Parameters

• stat (string) – name of the statistic

• value – value to assign to the statistic

Returns value of the statistic

Build steps support progress metrics - values that increase roughly linearly during the execution of the step,
and can thus be used to calculate an expected completion time for a running step. A metric may be a count of
lines logged, tests executed, or files compiled. The build mechanics will take care of translating this progress
information into an ETA for the user.

setProgress(metric, value)

Parameters

• metric (string) – the metric to update

• value (integer) – the new value for the metric

Update a progress metric. This should be called by subclasses that can provide useful progress-tracking
information.

The specified metric name must be included in progressMetrics.

The following methods are provided as utilities to subclasses. These methods should only be invoked after the
step is started.

workerVersion(command, oldversion=None)

Parameters

• command (string) – command to examine

• oldversion – return value if the worker does not specify a version

Returns string

Fetch the version of the named command, as specified on the worker. In practice, all commands on a
worker have the same version, but passing command is still useful to ensure that the command is imple-
mented on the worker. If the command is not implemented on the worker, workerVersion will return
None.

Versions take the form x.ywhere x and y are integers, and are compared as expected for version numbers.

Buildbot versions older than 0.5.0 did not support version queries; in this case, workerVersion will
return oldVersion. Since such ancient versions of Buildbot are no longer in use, this functionality is
largely vestigial.

workerVersionIsOlderThan(command, minversion)

Parameters

• command (string) – command to examine

• minversion – minimum version

Returns boolean

This method returns true if command is not implemented on the worker, or if it is older than
minversion.

3.4. Classes 471

Buildbot Documentation, Release 0.9.7

checkWorkerHasCommand(command)

Parameters command (string) – command to examine

This method raise WorkerTooOldError if command is not implemented on the worker

getWorkerName()

Returns string

Get the name of the worker assigned to this step.

Most steps exist to run commands. While the details of exactly how those commands are constructed are left to
subclasses, the execution of those commands comes down to this method:

runCommand(command)

Parameters command – RemoteCommand instance

Returns Deferred

This method connects the given command to the step’s worker and runs it, returning the Deferred from
run.

The BuildStep class provides methods to add log data to the step. Subclasses provide a great deal of user-
configurable functionality on top of these methods. These methods can be called while the step is running, but
not before.

addLog(name, type=”s”, logEncoding=None)

Parameters

• name – log name

• type – log type; see logchunk

• logEncoding – the log encoding, or None to use the step or global default (see Log
Handling)

Returns Log instance via Deferred

Add a new logfile with the given name to the step, and return the log file instance.

getLog(name)

Parameters name – log name

Raises

• KeyError – if there is no such log

• KeyError – if no such log is defined

Returns Log instance

Return an existing logfile, previously added with addLog. Note that this return value is synchronous, and
only available after addLog‘s deferred has fired.

addCompleteLog(name, text)

Parameters

• name – log name

• text – content of the logfile

Returns Deferred

472 Chapter 3. Buildbot Development

Buildbot Documentation, Release 0.9.7

This method adds a new log and sets text as its content. This is often useful to add a short logfile
describing activities performed on the master. The logfile is immediately closed, and no further data can
be added.

If the logfile’s content is a bytestring, it is decoded with the step’s log encoding or the global default log
encoding. To add a logfile with a different character encoding, perform the decode operation directly and
pass the resulting unicode string to this method.

addHTMLLog(name, html)

Parameters

• name – log name

• html – content of the logfile

Returns Deferred

Similar to addCompleteLog, this adds a logfile containing pre-formatted HTML, allowing more ex-
pressiveness than the text format supported by addCompleteLog.

addLogObserver(logname, observer)

Parameters

• logname – log name

• observer – log observer instance

Add a log observer for the named log. The named log need not have been added already: the observer will
be connected when the log is added.

See Adding LogObservers for more information on log observers.

addLogWithFailure(why, logprefix=’‘)

Parameters

• why (Failure) – the failure to log

• logprefix – prefix for the log name

Returns Deferred

Add log files displaying the given failure, named <logprefix>err.text and <logprefix>err.
html.

addLogWithException(why, logprefix=’‘)

Parameters

• why (Exception) – the exception to log

• logprefix – prefix for the log name

Returns Deferred

Similar to addLogWithFailure, but for an Exception instead of a Failure.

Along with logs, build steps have an associated set of links that can be used to provide additional information
for developers. Those links are added during the build with this method:

addURL(name, url)

Parameters

• name – URL name

• url – the URL

3.4. Classes 473

Buildbot Documentation, Release 0.9.7

Add a link to the given url, with the given name to displays of this step. This allows a step to provide
links to data that is not available in the log files.

LoggingBuildStep

class buildbot.process.buildstep.LoggingBuildStep(name, locks, haltOnFailure, flunkOn-
Warnings, flunkOnFailure, warnOn-
Warnings, warnOnFailure, alwaysRun,
progressMetrics, useProgress, doStepIf,
hideStepIf)

The remaining arguments are passed to the BuildStep constructor.

Warning: Subclasses of this class are always old-style steps. As such, this class will be removed after
Buildbot-0.9.0. Instead, subclass BuildStep and mix in ShellMixin to get similar behavior.

This subclass of BuildStep is designed to help its subclasses run remote commands that produce standard
I/O logfiles. It:

•tracks progress using the length of the stdout logfile

•provides hooks for summarizing and evaluating the command’s result

•supports lazy logfiles

•handles the mechanics of starting, interrupting, and finishing remote commands

•detects lost workers and finishes with a status of RETRY

logfiles
The logfiles to track, as described for ShellCommand. The contents of the class-level logfiles
attribute are combined with those passed to the constructor, so subclasses may add log files with a class
attribute:

class MyStep(LoggingBuildStep):
logfiles = dict(debug='debug.log')

Note that lazy logfiles cannot be specified using this method; they must be provided as constructor argu-
ments.

setupLogsRunCommandAndProcessResults(cmd, stdioLog=None, closeLogWhenFinished=True, errorMessages=None, logfiles=None, lazylogfiles=False):

Parameters

• command – the RemoteCommand instance to start

• stdioLog – an optional Log object where the stdout of the command will be stored.

• closeLogWhenFinished – a boolean

• logfiles – optional dictionary see ShellCommand

• lazylogfiles – optional boolean see ShellCommand

Returns step result from buildbot.process.results

Note:

This method permits an optional errorMessages parameter, allowing errors detected early in
the command process to be logged. It will be removed, and its use is deprecated.

474 Chapter 3. Buildbot Development

Buildbot Documentation, Release 0.9.7

Handle all of the mechanics of running the given command. This sets up all required logfiles, and calls the
utility hooks described below.

Subclasses should use that method if they want to launch multiple commands in a single step. One could
use that method, like for example

@defer.inlineCallbacks
def run(self):

cmd = RemoteCommand(...)
res = yield self.setupLogRunCommandAndProcessResults(cmd)
if res == results.SUCCESS:

cmd = RemoteCommand(...)
res = yield self.setupLogRunCommandAndProcessResults(cmd)

defer.returnValue(res)

To refine the status output, override one or more of the following methods. The LoggingBuildStep imple-
mentations are stubs, so there is no need to call the parent method.

commandComplete(command)

Parameters command – the just-completed remote command

This is a general-purpose hook method for subclasses. It will be called after the remote command has
finished, but before any of the other hook functions are called.

evaluateCommand(command)

Parameters command – the just-completed remote command

Returns step result from buildbot.process.results

This hook should decide what result the step should have.

CommandMixin

The runCommand method can run a RemoteCommand instance, but it’s no help in building that object or interpret-
ing the results afterward. This mixin class adds some useful methods for running commands.

This class can only be used in new-style steps.

class buildbot.process.buildstep.CommandMixin
Some remote commands are simple enough that they can boil down to a method call. Most of these take an
abandonOnFailure argument which, if true, will abandon the entire buildstep on command failure. This is
accomplished by raising BuildStepFailed.

These methods all write to the stdio log (generally just for errors). They do not close the log when finished.

runRmdir(dir, abandonOnFailure=True)

Parameters

• dir – directory to remove

• abndonOnFailure – if true, abandon step on failure

Returns Boolean via Deferred

Remove the given directory, using the rmdir command. Returns False on failure.

runMkdir(dir, abandonOnFailure=True)

Parameters

3.4. Classes 475

Buildbot Documentation, Release 0.9.7

• dir – directory to create

• abndonOnFailure – if true, abandon step on failure

Returns Boolean via Deferred

Create the given directory and any parent directories, using the mkdir command. Returns False on failure.

pathExists(path)

Parameters path – path to test

Returns Boolean via Deferred

Determine if the given path exists on the worker (in any form - file, directory, or otherwise). This uses the
stat command.

runGlob(path)

Parameters path – path to test

Returns list of filenames

Get the list of files matching the given path pattern on the worker. This uses Python’s glob module. If the
runGlob method fails, it aborts the step.

getFileContentFromWorker(path, abandonOnFailure=False)

Parameters path – path of the file to download from worker

Returns string via deferred (content of the file)

Get the content of a file on the worker.

ShellMixin

Most Buildbot steps run shell commands on the worker, and Buildbot has an impressive array of configuration param-
eters to control that execution. The ShellMixin mixin provides the tools to make running shell commands easy and
flexible.

This class can only be used in new-style steps.

class buildbot.process.buildstep.ShellMixin
This mixin manages the following step configuration parameters, the contents of which are documented in the
manual. Naturally, all of these are renderable.

command

workdir

env

want_stdout

want_stderr

usePTY

logfiles

lazylogfiles

timeout

maxTime

logEnviron

476 Chapter 3. Buildbot Development

Buildbot Documentation, Release 0.9.7

interruptSignal

sigtermTime

initialStdin

decodeRC

setupShellMixin(constructorArgs, prohibitArgs=[])

Parameters

• constructorArgs (dict) – constructor keyword arguments

• prohibitArgs (list) – list of recognized arguments to reject

Returns keyword arguments destined for BuildStep

This method is intended to be called from the shell constructor, passed any keyword arguments not oth-
erwise used by the step. Any attributes set on the instance already (e.g., class-level attributes) are used as
defaults. Attributes named in prohibitArgs are rejected with a configuration error.

The return value should be passed to the BuildStep constructor.

makeRemoteShellCommand(collectStdout=False, collectStderr=False, **overrides)

Parameters

• collectStdout – if true, the command’s stdout wil be available in cmd.stdout on
completion

• collectStderr – if true, the command’s stderr wil be available in cmd.stderr on
completion

• overrides – overrides arguments that might have been passed to setupShellMixin

Returns RemoteShellCommand instance via Deferred

This method constructs a RemoteShellCommand instance based on the instance attributes and any
supplied overrides. It must be called while the step is running, as it examines the worker capabilities
before creating the command. It takes care of just about everything:

•Creating log files and associating them with the command

•Merging environment configuration

•Selecting the appropriate workdir configuration

All that remains is to run the command with runCommand.

The ShellMixin class implements getResultSummary , returning a summary of the command.
If no command was specified or run, it falls back to the default getResultSummary based on
descriptionDone. Subclasses can override this method to return a more appropriate status.

Exceptions

exception buildbot.process.buildstep.BuildStepFailed
This exception indicates that the buildstep has failed. It is useful as a way to skip all subsequent processing
when a step goes wrong. It is handled by BuildStep.failed.

3.4. Classes 477

Buildbot Documentation, Release 0.9.7

BaseScheduler

class buildbot.schedulers.base.BaseScheduler
This is the base class for all Buildbot schedulers. See Writing Schedulers for information on writing new
schedulers.

__init__(name, builderNames, properties={}, codebases={‘’:{}})

Parameters

• name – (positional) the scheduler name

• builderName – (positional) a list of builders, by name, for which this scheduler can
queue builds

• properties – a dictionary of properties to be added to queued builds

• codebases – the codebase configuration for this scheduler (see user documentation)

Initializes a new scheduler.

The scheduler configuration parameters, and a few others, are available as attributes:

name
This scheduler’s name.

builderNames

Type list

Builders for which this scheduler can queue builds.

codebases

Type dict

The codebase configuration for this scheduler.

properties

Type Properties instance

Properties that this scheduler will attach to queued builds. This attribute includes the scheduler prop-
erty.

schedulerid

Type integer

The ID of this scheduler in the schedulers table.

Subclasses can consume changes by implementing gotChange and calling startConsumingChanges
from startActivity.

startConsumingChanges(self, fileIsImportant=None, change_filter=None, onlyImportant=False)

Parameters

• fileIsImportant (callable) – a callable provided by the user to distinguish im-
portant and unimportant changes

• change_filter (buildbot.changes.filter.ChangeFilter instance) – a
filter to determine which changes are even considered by this scheduler, or None to con-
sider all changes

• onlyImportant (boolean) – If True, only important changes, as specified by
fileIsImportant, will be added to the buildset.

478 Chapter 3. Buildbot Development

Buildbot Documentation, Release 0.9.7

Returns Deferred

Subclasses should call this method when becoming active in order to receive changes. The parent class will
take care of filtering the changes (using change_filter) and (if fileIsImportant is not None)
classifying them.

gotChange(change, important)

Parameters

• change (Change) – the new change

• important (boolean) – true if the change is important

Returns Deferred

This method is called when a change is received. Schedulers which consume changes should implement
this method.

If the fileIsImportant parameter to startConsumingChanges was None, then all changes are
considered important. It is guaranteed that the codebase of the change is one of the scheduler’s codebase.

Note: The change instance will instead be a change resource in later versions.

The following methods are available for subclasses to queue new builds. Each creates a new buildset with a
build request for each builder.

addBuildsetForSourceStamps(self, sourcestamps=[], waited_for=False, reason=’‘, exter-
nal_idstring=None, properties=None, builderNames=None)

Parameters

• sourcestamps (list) – a list of full sourcestamp dictionaries or sourcestamp IDs

• waited_for (boolean) – if true, this buildset is being waited for (and thus should
continue during a clean shutdown)

• reason (string) – reason for the build set

• external_idstring (string) – external identifier for the buildset

• properties (Properties instance) – properties - in addition to those in the scheduler
configuration - to include in the buildset

• builderNames (list) – a list of builders for the buildset, or None to use the sched-
uler’s configured builderNames

Returns (buildset ID, buildrequest IDs) via Deferred

Add a buildset for the given source stamps. Each source stamp must be specified as a complete source
stamp dictionary (with keys revision, branch, project, repository, and codebase), or an
integer sourcestampid.

The return value is a tuple. The first tuple element is the ID of the new buildset. The second tuple element
is a dictionary mapping builder name to buildrequest ID.

addBuildsetForSourceStampsWithDefaults(reason, sourcestamps, waited_for=False, prop-
erties=None, builderNames=None)

Parameters

• reason (string) – reason for the build set

• sourcestamps (list) – partial list of source stamps to build

3.4. Classes 479

Buildbot Documentation, Release 0.9.7

• waited_for (boolean) – if true, this buildset is being waited for (and thus should
continue during a clean shutdown)

• properties (Properties instance) – properties - in addition to those in the scheduler
configuration - to include in the buildset

• builderNames (list) – a list of builders for the buildset, or None to use the sched-
uler’s configured builderNames

Returns (buildset ID, buildrequest IDs) via Deferred, as for
addBuildsetForSourceStamps

Create a buildset based on the supplied sourcestamps, with defaults applied from the scheduler’s configu-
ration.

The sourcestamps parameter is a list of source stamp dictionaries, giving the required parameters. Any
unspecified values, including sourcestamps from unspecified codebases, will be filled in from the sched-
uler’s configuration. If sourcestamps is None, then only the defaults will be used. If sourcestamps
includes sourcestamps for codebases not configured on the scheduler, they will be included anyway, al-
though this is probably a sign of an incorrect configuration.

addBuildsetForChanges(waited_for=False, reason=’‘, external_idstring=None, changeids=[],
builderNames=None, properties=None)

Parameters

• waited_for (boolean) – if true, this buildset is being waited for (and thus should
continue during a clean shutdown)

• reason (string) – reason for the build set

• external_idstring (string) – external identifier for the buildset

• changeids (list) – changes from which to construct the buildset

• builderNames (list) – a list of builders for the buildset, or None to use the sched-
uler’s configured builderNames

• properties (Properties instance) – properties - in addition to those in the scheduler
configuration - to include in the buildset

Returns (buildset ID, buildrequest IDs) via Deferred, as for
addBuildsetForSourceStamps

Add a buildset for the given changes (changeids). This will take sourcestamps from the latest of any
changes with the same codebase, and will fill in sourcestamps for any codebases for which no changes are
included.

The active state of the scheduler is tracked by the following attribute and methods.

active
True if this scheduler is active

activate()

Returns Deferred

Subclasses should override this method to initiate any processing that occurs only on active schedulers.
This is the method from which to call startConsumingChanges, or to set up any timers or message
subscriptions.

deactivate()

Returns Deferred

480 Chapter 3. Buildbot Development

Buildbot Documentation, Release 0.9.7

Subclasses should override this method to stop any ongoing processing, or wait for it to complete. The
method’s returned Deferred should not fire until the processing is complete.

The state-manipulation methods are provided by buildbot.util.state.StateMixin. Note that no
locking of any sort is performed between these two functions. They should only be called by an active scheduler.

getState(name[, default])
Parameters

• name – state key to fetch

• default – default value if the key is not present

Returns Deferred

This calls through to buildbot.db.state.StateConnectorComponent.getState, using
the scheduler’s objectid.

setState(name, value)

Parameters

• name – state key

• value – value to set for the key

Returns Deferred

This calls through to buildbot.db.state.StateConnectorComponent.setState, using
the scheduler’s objectid.

ForceScheduler

The force scheduler has a symbiotic relationship with the web application, so it deserves some further description.

Parameters

The force scheduler comes with a fleet of parameter classes. This section contains information to help users or
developers who are interested in adding new parameter types or hacking the existing types.

class buildbot.schedulers.forceshed.BaseParameter(name, label, regex, **kwargs)
This is the base implementation for most parameters, it will check validity, ensure the arg is present if the
required attribute is set, and implement the default value. It will finally call updateFromKwargs to
process the string(s) from the HTTP POST.

The BaseParameter constructor converts all keyword arguments into instance attributes, so it is generally
not necessary for subclasses to implement a constructor.

For custom parameters that set properties, one simple customization point is getFromKwargs:

getFromKwargs(kwargs)
Parameters kwargs – a dictionary of the posted values

Given the passed-in POST parameters, return the value of the property that should be set.

For more control over parameter parsing, including modifying sourcestamps or changeids, override the
updateFromKwargs function, which is the function that ForceScheduler invokes for processing:

updateFromKwargs(master, properties, changes, sourcestamps, collector, kwargs)
Parameters

• master – the BuildMaster instance

3.4. Classes 481

Buildbot Documentation, Release 0.9.7

• properties – a dictionary of properties
• changes – a list of changeids that will be used to build the SourceStamp for the

forced builds
• sourcestamps – the SourceStamp dictionary that will be passed to the build;

some parameters modify sourcestamps rather than properties.
• collector – a buildbot.schedulers.forcesched.
ValidationErrorCollector object, which is used by nestedParameter to
collect errors from its childs

• kwargs – a dictionary of the posted values
This method updates properties, changes, and/or sourcestamps according to the re-
quest. The default implementation is good for many simple uses, but can be overridden for more
complex purposes.

When overriding this function, take all parameters by name (not by position), and include an
**unused catch-all to guard against future changes.

The remaining attributes and methods should be overridden by subclasses, although
BaseParameter provides appropriate defaults.

name
The name of the parameter. This corresponds to the name of the property that your parameter
will set. This name is also used internally as identifier for http POST arguments

label
The label of the parameter, as displayed to the user. This value can contain raw HTML.

fullName()
A fully-qualified name that uniquely identifies the parameter in the scheduler. This name is used
internally as the identifier for HTTP POST arguments. It is a mix of name and the parent’s name
(in the case of nested parameters). This field is not modifiable.

type
A string identifying the type that the parameter conforms to. It is used by the angular applica-
tion to find which angular directive to use for showing the form widget. The available values
are visible in www/base/src/app/common/directives/forcefields/forcefields.directive.coffee
(https://github.com/buildbot/buildbot/blob/master/www/base/src/app/common/directives/forcefields/forcefields.directive.coffee).

Examples of how to create a custom parameter widgets are available in the buildbot source code
in directories:

•www/codeparameter (https://github.com/buildbot/buildbot/blob/master/www/codeparameter)
•www/nestedexample (https://github.com/buildbot/buildbot/blob/master/www/nestedexample)

default
The default value to use if there is no user input. This is also used to fill in the form presented to
the user.

required
If true, an error will be shown to user if there is no input in this field

multiple
If true, this parameter represents a list of values (e.g. list of tests to run)

regex
A string that will be compiled as a regex and used to validate the string value of this parameter.
If None, then no validation will take place.

parse_from_args(l)
return the list of object corresponding to the list or string passed default function will just call
parse_from_arg with the first argument

482 Chapter 3. Buildbot Development

https://github.com/buildbot/buildbot/blob/master/www/base/src/app/common/directives/forcefields/forcefields.directive.coffee
https://github.com/buildbot/buildbot/blob/master/www/codeparameter
https://github.com/buildbot/buildbot/blob/master/www/nestedexample

Buildbot Documentation, Release 0.9.7

parse_from_arg(s)
return the object corresponding to the string passed default function will just return the unmodi-
fied string

Nested Parameters

The NestedParameter class is a container for parameters. The original motivating purpose for this feature is the
multiple-codebase configuration, which needs to provide the user with a form to control the branch (et al) for each
codebase independently. Each branch parameter is a string field with name ‘branch’ and these must be disambiguated.

In Buildbot nine, this concept has been extended to allow grouping different parameters into UI containers. Details of
the available layouts is described in NestedParameter.

Each of the child parameters mixes in the parent’s name to create the fully qualified fullName. This allows, for
example, each of the ‘branch’ fields to have a unique name in the POST request. The NestedParameter handles adding
this extra bit to the name to each of the children. When the kwarg dictionary is posted back, this class also converts
the flat POST dictionary into a richer structure that represents the nested structure.

As illustration, if the nested parameter has the name ‘foo’, and has children ‘bar1’ and ‘bar2’, then the POST will
have entries like “foo.bar1” and “foo.bar2”. The nested parameter will translate this into a dictionary in the ‘kwargs’
structure, resulting in something like:

kwargs = {
...
'foo': {

'bar1': '...',
'bar2': '...'

}
}

Arbitrary nesting is allowed and results in a deeper dictionary structure.

Nesting can also be used for presentation purposes. If the name of the NestedParameter is empty, the nest is
“anonymous” and does not mangle the child names. However, in the HTML layout, the nest will be presented as a
logical group.

IRenderable

buildbot.interfaces.IRenderable::
Providers of this class can be “rendered”, based on available properties, when a build is started.

getRenderingFor(iprops)

Parameters iprops – the IProperties provider supplying the properties of the build.

Returns the interpretation of the given properties, optionally in a Deferred.

IProperties

buildbot.interfaces.IProperties::
Providers of this interface allow get and set access to a build’s properties.

getProperty(propname, default=None)
Get a named property, returning the default value if the property is not found.

hasProperty(propname)
Determine whether the named property exists.

3.4. Classes 483

Buildbot Documentation, Release 0.9.7

setProperty(propname, value, source)
Set a property’s value, also specifying the source for this value.

getProperties()
Get a buildbot.process.properties.Properties instance. The interface of this class is not
finalized; where possible, use the other IProperties methods.

IConfigurator

buildbot.interfaces.IConfigurator::
A configurator is an object which configures several components of Buildbot in a coherent manner. This can be
used to implement higher level configuration tools.

configure(config_dict)
Alter the buildbot config_dict, as defined in master.cfg

like the master.cfg, this is run out of the main reactor thread, so this can block, but this can’t call most
Buildbot facilities.

ResultSpecs

Result specifications are used by the Data API to describe the desired results of a get call. They can be used to filter,
sort and paginate the contents of collections, and to limit the fields returned for each item.

Python calls to get call can pass a ResultSpec instance directly. Requests to the HTTP REST API are converted
into instances automatically.

Implementers of Data API endpoints can ignore result specifications entirely, except where efficiency suffers. Any
filters, sort keys, and so on still present after the endpoint returns its result are applied generically. ResultSpec
instances are mutable, so endpoints that do apply some of the specification can remove parts of the specification.

Result specifications are applied in the following order:

• Field Selection (fields)

• Filters

• Order

• Pagination (limit/offset)

• Properties

Only fields & properties are applied to non-collection results. Endpoints processing a result specification should take
care to replicate this behavior.

class buildbot.data.resultspec.ResultSpec
A result specification has the following attributes, which should be treated as read-only:

filters
A list of Filter instances to be applied. The result is a logical AND of all filters.

fields
A list of field names that should be included, or None for no sorting. if the field names all begin with -,
then those fields will be omitted and all others included.

order
A list of field names to sort on. if any field name begins with -, then the ordering on that field will be in
reverse.

484 Chapter 3. Buildbot Development

Buildbot Documentation, Release 0.9.7

limit
The maximum number of collection items to return.

offset
The 0-based index of the first collection item to return.

properties

A list of Property instances to be applied. The result is a logical AND of all properties.

All of the attributes can be supplied as constructor keyword arguments.

Endpoint implementations may call these methods to indicate that they have processed part of the result
spec. A subsequent call to apply will then not waste time re-applying that part.

popProperties()
If a property exists, return its values list and remove it from the result spec.

popFilter(field, op)
If a filter exists for the given field and operator, return its values list and remove it from the result spec.

popBooleanFilter(field)
If a filter exists for the field, remove it and return the expected value (True or False); otherwise return
None. This method correctly handles odd cases like field__ne=false.

popStringFilter(field)
If one string filter exists for the field, remove it and return the expected value (as string); otherwise
return None.

popIntegerFilter(field)
If one integer filter exists for the field, remove it and return the expected value (as integer); otherwise
return None. raises ValueError if the field is not convertible to integer.

removePagination()
Remove the pagination attributes (limit and offset) from the result spec. And endpoint that calls
this method should return a ListResult instance with its pagination attributes set appropriately.

removeOrder()
Remove the order attribute.

popField(field)
Remove a single field from the fields attribute, returning True if it was present. Endpoints can use
this in conditionals to avoid fetching particularly expensive fields from the DB API.

The following method is used internally to apply any remaining parts of a result spec that are not handled
by the endpoint.

apply(data)
Apply the result specification to the data, returning a transformed copy of the data. If the data is a
collection, then the result will be a ListResult instance.

class buildbot.data.resultspec.Filter(field, op, values)

Parameters

• field (string) – the field to filter on

• op (string) – the comparison operator (e.g., “eq” or “gt”)

• values (list) – the values on the right side of the operator

A filter represents a limitation of the items from a collection that should be returned.

Many operators, such as “gt”, only accept one value. Others, such as “eq” or “ne”, can accept multiple values.
In either case, the values must be passed as a list.

3.4. Classes 485

Buildbot Documentation, Release 0.9.7

class buildbot.data.resultspec.Property(values)

Parameters values (list) – the values on the right side of the operator (eq)

A property represents an item of a foreign table.

In either case, the values must be passed as a list.

Protocols

To exchange information over the network between master and worker we need to use protocol.

buildbot.worker.protocols.base provide interfaces to implement wrappers around protocol specific calls,
so other classes which use them do not need to know about protocol calls or handle protocol specific exceptions.

class buildbot.worker.protocols.base.Listener(master)

Parameters master – buildbot.master.BuildMaster instance

Responsible for spawning Connection instances and updating registrations. Protocol-specific subclasses are
instantiated with protocol-specific parameters by the buildmaster during startup.

class buildbot.worker.protocols.base.Connection(master, worker)
Represents connection to single worker

proxies
Dictionary containing mapping between Impl classes and Proxy class for this protocol This may be
overridden by subclass to declare its proxy implementations

createArgsProxies(args)

Returns shallow copy of args dictionary with proxies instead of impls

Helper method that will use proxies, and replace Impl objects by specific Proxy counterpart.

notifyOnDisconnect(cb)

Parameters cb – callback

Returns buildbot.util.subscriptions.Subscription

Register a callback to be called if worker gets disconnected

loseConnection()
Close connection

remotePrint(message)

Parameters message (string) – message for worker

Returns Deferred

Print message to worker log file

remoteGetWorkerInfo()

Returns Deferred

Get worker information, commands and version, put them in dictionary then return back

remoteSetBuilderList(builders)

Parameters builders (List) – list with wanted builders

Returns Deferred containing PB references XXX

Take list with wanted builders and send them to worker, return list with created builders

486 Chapter 3. Buildbot Development

Buildbot Documentation, Release 0.9.7

remoteStartCommand(remoteCommand, builderName, commandId, commandName, args)

Parameters

• remoteCommand – RemoteCommandImpl instance

• builderName (string) – self explanatory

• commandId (string) – command number

• commandName (string) – command which will be executed on worker

• args (List) – arguments for that command

Returns Deferred

Start command on worker

remoteShutdown()

Returns Deferred

Shutdown the worker, causing its process to halt permanently.

remoteStartBuild(builderName)
:param builderName name of the builder for which the build is starting :returns: Deferred

Just starts build

remoteInterruptCommand(builderName, commandId, why)

Parameters

• builderName (string) – self explanatory

• commandId (string) – command number

• why (string) – reason to interrupt

Returns Deferred

Interrupt the command executed on builderName with given commandId on worker, print reason “why” to
worker logs

Following classes are describing the worker -> master part of the protocol.

In order to support old workers, we must make sure we do not change the current pb protocol. This is why we
implement a Impl vs Proxy methods. All the objects that are referenced from the workers for remote calls have
an Impl and a Proxy base classes in this module.

Impl classes are subclassed by buildbot master, and implement the actual logic for the protocol api. Proxy classes
are implemented by the worker/master protocols, and implements the demux and de-serialization of protocol calls.

On worker sides, those proxy objects are replaced by a proxy object having a single method to call master side
methodss:

class buildbot.worker.protocols.base.workerProxyObject

callRemote(message, *args, **kw)
calls the method "remote_" + message on master side

class buildbot.worker.protocols.base.RemoteCommandImpl
Represents a RemoteCommand status controller

remote_update(updates)

Parameters updates – dictionary of updates

3.4. Classes 487

Buildbot Documentation, Release 0.9.7

Called when the workers has updates to the current remote command

possible keys for updates are:

•stdout: Some logs where captured in remote command’s stdout. value: <data> as string

•stderr: Some logs where captured in remote command’s stderr. value: <data> as string

•header: remote command’s header text. value: <data> as string

•log: one of the watched logs has received some text. value: (<logname> as string,
<data> as string)

•rc: Remote command exited with a return code. value: <rc> as integer

•elapsed: Remote command has taken <elapsed> time. value: <elapsed seconds> as
float

•stat: sent by the stat command with the result of the os.stat, converted to a tuple. value: <stat>
as tuple

•files: sent by the glob command with the result of the glob.glob. value: <files> as list
of string

•got_revision: sent by the source commands with the revision checked out. value: <revision>
as string

•repo_downloaded: sent by the repo command with the list of patches downloaded by repo.
value: <downloads> as list of string

class buildbot.worker.protocols.base.FileWriterImpl
Class used to implement data transfer between worker and master

class buildbot.worker.protocols.base.FileReaderImpl(object)

remote_read(maxLength)

Parameters maxLength – maximum length of the data to send

Returns data read

called when worker needs more data

remote_close()
Called when master should close the file

WorkerManager

WorkerRegistration

class buildbot.worker.manager.WorkerRegistration(master, worker)
Represents single Worker registration

unregister()
Remove registartion for worker

update(worker_config, global_config)

Parameters

• worker_config (Worker) – new Worker instance

• global_config (MasterConfig) – Buildbot config

488 Chapter 3. Buildbot Development

Buildbot Documentation, Release 0.9.7

Update the registration in case the port or password has changed.

NOTE: You should invoke this method after calling WorkerManager.register(worker)

WorkerManager

class buildbot.worker.manager.WorkerManager(master)
Handle Worker registrations for mulitple protocols

register(worker)

Parameters worker (Worker) – new Worker instance

Returns WorkerRegistration

Creates WorkerRegistration instance.

NOTE: You should invoke .update() on returned WorkerRegistration instance

Logs

class buildbot.process.log.Log
This class handles write-only access to log files from running build steps. It does not provide an interface for
reading logs - such access should occur directly through the Data API.

Instances of this class can only be created by the addLog method of a build step.

name
The name of the log.

type
The type of the log, represented as a single character. See logchunk for details.

logid
The ID of the logfile.

decoder
A callable used to decode bytestrings. See logEncoding.

subscribe(receiver)

Parameters receiver (callable) – the function to call

Register receiver to be called with line-delimited chunks of log data. The callable is invoked as
receiver(stream, chunk), where the stream is indicated by a single character, or None for logs
without streams. The chunk is a single string containing an arbitrary number of log lines, and terminated
with a newline. When the logfile is finished, receiver will be invoked with None for both arguments.

The callable cannot return a Deferred. If it must perform some asynchronous operation, it will need to
handle its own Deferreds, and be aware that multiple overlapping calls may occur.

Note that no “rewinding” takes place: only log content added after the call to subscribewill be supplied
to receiver.

finish()

Returns Deferred

This method indicates that the logfile is finished. No further additions will be permitted.

In use, callers will receive a subclass with methods appropriate for the log type:

3.4. Classes 489

Buildbot Documentation, Release 0.9.7

class buildbot.process.log.TextLog

addContent(text):

Parameters text – log content

Returns Deferred

Add the given data to the log. The data need not end on a newline boundary.

class buildbot.process.log.HTMLLog

addContent(text):

Parameters text – log content

Returns Deferred

Same as TextLog.addContent.

class buildbot.process.log.StreamLog
This class handles logs containing three interleaved streams: stdout, stderr, and header. The resulting log
maintains data distinguishing these streams, so they can be filtered or displayed in different colors. This class is
used to represent the stdio log in most steps.

addStdout(text)

Parameters text – log content

Returns Deferred

Add content to the stdout stream. The data need not end on a newline boundary.

addStderr(text)

Parameters text – log content

Returns Deferred

Add content to the stderr stream. The data need not end on a newline boundary.

addHeader(text)

Parameters text – log content

Returns Deferred

Add content to the header stream. The data need not end on a newline boundary.

LogObservers

class buildbot.process.logobserver.LogObserver
This is a base class for objects which receive logs from worker commands as they are produced. It does not
provide an interface for reading logs - such access should occur directly through the Data API.

See Adding LogObservers for help creating and using a custom log observer.

The three methods that subclasses may override follow. None of these methods may return a Deferred. It is up
to the callee to handle any asynchronous operations. Subclasses may also override the constructor, with no need
to call LogObserver‘s constructor.

outReceived(data):

Parameters data (unicode) – received data

490 Chapter 3. Buildbot Development

Buildbot Documentation, Release 0.9.7

This method is invoked when a “chunk” of data arrives in the log. The chunk contains one or more
newline-terminated unicode lines. For stream logs (e.g., stdio), output to stderr generates a call to
errReceived, instead.

errReceived(data):

Parameters data (unicode) – received data

This method is similar to outReceived, but is called for output to stderr.

headerReceived(data):

Parameters data (unicode) – received data

This method is similar to outReceived, but is called for header output.

finishReceived()
This method is invoked when the observed log is finished.

class buildbot.process.logobserver.LogLineObserver
This subclass of LogObserver calls its subclass methods once for each line, instead of once per chunk.

outLineReceived(line):

Parameters line (unicode) – received line, without newline

Like outReceived, this is called once for each line of output received. The argument does not contain
the trailing newline character.

errLineReceived(line):

Parameters line (unicode) – received line, without newline

Similar to outLineReceived, but for stderr.

headerLineReceived(line):

Parameters line (unicode) – received line, without newline

Similar to outLineReceived, but for header output..

finishReceived()
This method, inherited from LogObserver, is invoked when the observed log is finished.

class buildbot.process.logobserver.LineConsumerLogObserver
This subclass of LogObserver takes a generator function and “sends” each line to that function. This allows
consumers to be written as stateful Python functions, e.g.,

def logConsumer(self):
while True:

stream, line = yield
if stream == 'o' and line.startswith('W'):

self.warnings.append(line[1:])

def __init__(self):
...
self.warnings = []
self.addLogObserver('stdio', logobserver.LineConsumerLogObserver(self.

→˓logConsumer))

Each yield expression evaluates to a tuple of (stream, line), where the stream is one of ‘o’, ‘e’, or ‘h’ for
stdout, stderr, and header, respectively. As with any generator function, the yield expression will raise a
GeneratorExit exception when the generator is complete. To do something after the log is finished, just
catch this exception (but then re-raise it or return)

3.4. Classes 491

Buildbot Documentation, Release 0.9.7

def logConsumer(self):
while True:

try:
stream, line = yield
if stream == 'o' and line.startswith('W'):

self.warnings.append(line[1:])
except GeneratorExit:

self.warnings.sort()
return

Warning: This use of generator functions is a simple Python idiom first described in
PEP 342 (https://www.python.org/dev/peps/pep-0342/). It is unrelated to the generators used in
inlineCallbacks. In fact, consumers of this type are incompatible with asynchronous programming,
as each line must be processed immediately.

class buildbot.process.logobserver.BufferLogObserver(wantStdout=True, wantSt-
derr=False)

Parameters

• wantStdout (boolean) – true if stdout should be buffered

• wantStderr (boolean) – true if stderr should be buffered

This subclass of LogObserver buffers stdout and/or stderr for analysis after the step is complete. This can
cause excessive memory consumption if the output is large.

getStdout()

Returns unicode string

Return the accumulated stdout.

getStderr()

Returns unicode string

Return the accumulated stderr.

Authentication

class buildbot.www.auth.AuthBase
This class is the base class for all authentication methods. All authentications are not done at the same level,
so several optional methods are available. This class implements default implementation. The login session
is stored via twisted’s request.getSession(), and detailed used information is stored in request.
getSession().user_info. The session information is then sent to the UI via the config constant (in
the user attribute of config)

userInfoProvider
Authentication modules are responsible for providing user information as detailed as possible. When there
is a need to get additional information from another source, a userInfoProvider can optionally be specified.

reconfigAuth(master, new_config)

Parameters

• master – the reference to the master

• new_config – the reference to the new configuration

492 Chapter 3. Buildbot Development

https://www.python.org/dev/peps/pep-0342/

Buildbot Documentation, Release 0.9.7

Reconfigure the authentication module. In the base class, this simply sets self.master.

maybeAutoLogin(request)

Parameters request – the request object

Returns Deferred

This method is called when /config.js is fetched. If the authentication method supports automatic
login, e.g., from a header provided by a frontend proxy, this method handles the login.

If it succeeds, the method sets request.getSession().user_info. If the login fails unex-
pectedly, it raises resource.Error. The default implementation simply returns without setting
user_info.

getLoginResource()
Return the resource representing /auth/login.

getLogout()
Return the resource representing /auth/logout.

updateUserInfo(request)

Parameters request – the request object

Separate entrypoint for getting user information. This is a mean to call self.userInfoProvider if provided.

class buildbot.www.auth.UserInfoProviderBase
Class that can be used, to get more info for the user like groups, in a separate database.

getUserInfo(username)

returns the user infos, from the username used for login (via deferred)

returns a dict with following keys:

•email: email address of the user

•full_name: Full name of the user, like “Homer Simpson”

•groups: groups the user belongs to, like [”duff fans”, “dads”]

class buildbot.www.oauth2.OAuth2Auth
OAuth2Auth implements oauth2 2 phases authentication. With this method /auth/login is called twice.
Once without argument. It should return the URL the browser has to redirect in order to perform oauth2 au-
thentication, and authorization. Then the oauth2 provider will redirect to /auth/login?code=???, and
buildbot web server will verify the code using the oauth2 provider.

Typical login process is:

•UI calls the /auth/login api, and redirect the browser to the returned oauth2 provider url

•oauth2 provider shows a web page with a form for the user to authenticate, and ask the user the permission
for buildbot to access its account.

•oauth2 provider redirects the browser to /auth/login?code=???

•OAuth2Auth module verifies the code, and get the user’s additional information

•buildbot UI is reloaded, with the user authenticated.

This implementation is using requests (http://docs.python-requests.org/en/latest/) subclasses must override fol-
lowing class attributes: * name Name of the oauth plugin * faIcon font awesome class to use for login button
logo * resourceEndpoint URI of the resource where the authentication token is used * authUri URI the
browser is pointed to to let the user enter creds * tokenUriURI to verify the browser code and get auth token *

3.4. Classes 493

http://docs.python-requests.org/en/latest/

Buildbot Documentation, Release 0.9.7

authUriAdditionalParams Additional parameters for the authUri * tokenUriAdditionalParams
Additional parameters for the tokenUri

getUserInfoFromOAuthClient(self, c)
This method is called after a successful authentication to get additional information about the user from
the oauth2 provider.

Avatars

Buildbot’s avatar support associate a small image with each user.

class buildbot.www.avatar.AvatarBase
Class that can be used, to get more the avatars for the users. This can be used for the authenticated users, but
also for the users referenced by changes.

getUserAvatar(self, email, size, defaultAvatarUrl)

returns the user’s avatar, from the user’s email (via deferred). If the data is directly available, this function
returns a tuple (mime_type, picture_raw_data). If the data is available in another URL, this function
can raise resource.Redirect(avatar_url), and the web server will redirect to the avatar_url.

Web Server Classes

Most of the source in master/buildbot/www (https://github.com/buildbot/buildbot/blob/master/master/buildbot/www)
is self-explanatory. However, a few classes and methods deserve some special mention.

Resources

class buildbot.www.resource.Redirect(url)
This is a subclass of Twisted Web’s Error. If this is raised within asyncRenderHelper, the user will be
redirected to the given URL.

class buildbot.www.resource.Resource
This class specializes the usual Twisted Web Resource class.

It adds support for resources getting notified when the master is reconfigured.

needsReconfig
If True, reconfigResource will be called on reconfig.

reconfigResource(new_config)

Parameters new_config – new MasterConfig instance

Returns Deferred if desired

Reconfigure this resource.

It’s surprisingly difficult to render a Twisted Web resource asynchronously. This method makes it quite a bit
easier:

asyncRenderHelper(request, callable, writeError=None)

Parameters

• request – the request instance

• callable – the render function

• writeError – optional callable for rendering errors

494 Chapter 3. Buildbot Development

https://github.com/buildbot/buildbot/blob/master/master/buildbot/www

Buildbot Documentation, Release 0.9.7

This method will call callable, which can return a Deferred, with the given request. The value
returned from this callable will be converted to an HTTP response. Exceptions, including Error sub-
classes, are handled properly. If the callable raises Redirect, the response will be a suitable HTTP 302
redirect.

Use this method as follows:

def render_GET(self, request):
return self.asyncRenderHelper(request, self.renderThing)

3.4. Classes 495

Buildbot Documentation, Release 0.9.7

496 Chapter 3. Buildbot Development

CHAPTER 4

Release Notes

Buildbot 0.9.7 (2017-05-09)

Core Bug fixes

• Fix UserPasswordAuth authentication on py3 and recent browsers. (is-
sue # 3162 (https://github.com/buildbot/buildbot/issues/3162), issue # 3163
(https://github.com/buildbot/buildbot/issues/3163)). The py3 fix also requires Twisted https://github.
com/twisted/twisted/pull/773.

• Console View now display changes the same way as in Recent Changes page.

• Fix issue with Console View when no change source is configured but still builds have got_revision prop-
erty

Components Bug fixes

• Allow renderables in options and definitions of step CMake. Currently only dicts and lists with renderables
inside are allowed.

• OAuth Authentication are now working with RolesFromEmails.

• DockerLatentWorker: _image_exists does not raise anymore if it encounters an image with <none>
tag

• Fix command line parameters for Robocopy step verbose option

Core Features

• Builds state_string is now automatically computed according to the BuildStep.
getResultSummary, BuildStep.description and updateBuildSummaryPolicy from
Common Parameters. This allows the dashboards and reporters to get a descent summary text of the build
without fetching the steps.

497

https://github.com/buildbot/buildbot/issues/3162
https://github.com/buildbot/buildbot/issues/3162
https://github.com/buildbot/buildbot/issues/3163
https://github.com/twisted/twisted/pull/773
https://github.com/twisted/twisted/pull/773

Buildbot Documentation, Release 0.9.7

• New configurators section, which can be used to create higher level configuration modules for Buildbot.

• New JanitorConfigurator which can be used to create a builder which save disk space by removing old
logs from the database.

Components Features

• Added a https://pushover.net/ reporter as buildbot.reporters.pushover.PushoverNotifier

• property argument in SetPropery is now renderable.

Buildbot 0.9.6 (2017-04-19)

Core Bug fixes

• buildbot.www.authz.endpointmatchers.AnyControlEndpointMatcher now actually
doesn’t match GET requests. Before it would act like an AnyEndpointMatcher since the GET had a different
case.

• Passing unicode builderNames to ForceScheduler no longer causes an error.

• Fix issue with :bb:sched::Nightly change classification raising foreign key exceptions (issue # 3021
(https://github.com/buildbot/buildbot/issues/3021))

• Fixes an exception found buildbot_net_usage_data._sendWithUrlib when running through the
tutorial using Python 3.

• usePTY configuration of the ShellCommand now works as expected with recent version of buildbot-worker.

Components Bug fixes

• pollAtLaunch of the GitHubPullrequestPoller now works as expected. Also the author email won’t
be displayed as None

• GerritChangeSource and GerritStatusPush now use the master’s environment including PATH vari-
able to find the ssh binary.

• SlaveDirectoryUploadCommand no longer throws exceptions because the file “is used by another pro-
cess” under Windows

UI Bug fixes

• Fix waterfall scrolling and zooming in current browsers

• console_view now properly uses revlink metadata to link to changes.

• Fixed Console View infinite loading spinner when no change have been recorded yet (issue # 3060
(https://github.com/buildbot/buildbot/issues/3060)).

Core Features

• new Virtual Builders concept for better integration of frameworks which store the build config along side the
source code.

498 Chapter 4. Release Notes

https://pushover.net/
https://github.com/buildbot/buildbot/issues/3021
https://github.com/buildbot/buildbot/issues/3060

Buildbot Documentation, Release 0.9.7

Components Features

• BitBucket now sets the event property on each change to what the X-Event-Key header contains.

• GitHubPullrequestPoller now adds additional information about the pull request to properties. The
property argument is removed and is populated with the repository full name.

• GitHub now sets the event property on each change to what the X-GitHub-Event header contains.

• Changed GitHubAuth now supports GitHub Enterprise when setting new serverURL argument.

• GitLab now sets the event property on each change to what the X-Gitlab-Event header contains.

• GitHub now process git tag push events

• GitHub now adds more information about the pull request to the properties. This syncs features with
GitHubPullrequestPoller

• GitLab now process git tag push events

• GitLab now supports authentication with the secret token

UI Features

• Reworked Console View and Waterfall View for better usability and better integration with virtual builders

• Javascript Data Module collections now have a $resolved attribute which allows dashboard to know when
the data is loaded.

Buildbot 0.9.5 (2017-03-18)

Bug fixes

• Fix issue with compressing empty log

• Fix issue with db being closed by wrong thread

• Fix issue with buildbot_worker not closing file handles when using the transfer steps

• Fix issue with buildbot requesting too many permissions from GitHub’s OAuth

• Fix HTTPStep to accept json as keyword argument.

• Updated OpenStackLatentWorker to use keystoneauth1 so it will support latest python-novaclient pack-
ages.

• Include RpmLint step in steps plugins.

Core Features

• Experimental support for Python 3.5 and 3.6. Note that complete support depends on fixes to be released in
Twisted 17.2.0.

• New experimental Secret Management framework, which allows to securely declare secrets, reusable in your
steps.

• New Writing Dashboards with Flask or Bottle plugin, which allows to write custom dashboard with traditional
server side web frameworks.

4.3. Buildbot 0.9.5 (2017-03-18) 499

Buildbot Documentation, Release 0.9.7

• Added AnyControlEndpointMatcher and EnableSchedulerEndpointMatcher for better con-
figurability of the access control. If you have access control to your Buildbot, it is recommended you add
AnyControlEndpointMatcher at the end of your access control configuration.

• Schedulers can now be toggled on and off from the UI. Useful for temporarily disabling periodic timers.

Components Features

• FileUpload now supports setting the url title text that is visible in the web UI. FileUpload now supports
custom description and descriptionDone text.

• EC2LatentWorker now provides instance id as the instance property enabling use of the AWS toolkit.

• Add GitHub pull request Poller to list of available changesources.

• OAuth2LoginResource now supports the token URL parameter. If a user wants to authenticate through
OAuth2 with a pre- generated token (such as the access_token provided by GitHub) it can be passed to
/auth/login as the token URL parameter and the user will be authenticated to buildbot with those credentials.

• New reporter GitHubCommentPush can comment on GitHub PRs

• GitPoller now supports polling tags in a git repository.

• MultipleFilUpload now supports the glob parameter. If glob is set to True all workersrcs parameters will
be run through glob and the result will be uploaded to masterdest

• Changed OpenStackLatentWorker to default to v2 of the Nova API. The novaclient package has had a
deprecation warning about v1.1 and would use v2 anyway.

Deprecations and Removals

• master/contrib and worker/contrib directories have been moved to their own repository at https:
//github.com/buildbot/buildbot-contrib/

Buildbot 0.9.4 (2017-02-08)

Database upgrade

A database upgrade is necessary for this release (see upgrade-master).

Bug fixes

• Like for buildbot start, buildbot upgrade-master will now erase an old pidfile if the process is
not live anymore instead of just failing.

• Change properties ‘value’ changed from String(1024) to Text. Requires upgrade master. (bug #3197
(http://trac.buildbot.net/ticket/3197))

• When using REST API, it is now possible to filter and sort in descending order at the same time.

• Fix issue with HttpStatusPush raising datetime is not JSON serializable error.

• Fix issue with log viewer not properly rendering color codes.

• Fixed log viewer selection and copy-paste for Firefox (bug #3662 (http://trac.buildbot.net/ticket/3662)).

500 Chapter 4. Release Notes

https://github.com/buildbot/buildbot-contrib/
https://github.com/buildbot/buildbot-contrib/
http://trac.buildbot.net/ticket/3197
http://trac.buildbot.net/ticket/3662

Buildbot Documentation, Release 0.9.7

• Fix issue with DelayedCalled already called, and worker missing notification email never received.

• schedulers and change_source are now properly taking configuration change in account with
buildbot reconfig.

• setuptools is now explicitly marked as required. The dependency was previously implicit.

• buildbotNetUsageData now uses requests if available and will default to HTTP if a bogus SSL im-
plementation is found. It will also correctly send information about the platform type.

Features

• Buildbot now uses JWT (https://en.wikipedia.org/wiki/JSON_Web_Token) to store its web UI Sessions. Ses-
sions now persist upon buildbot restart. Sessions are shared between masters. Session expiration time is config-
urable with c['www']['cookie_expiration_time'] see www .

• Builders page has been optimized and can now be displayed with 4 http requests whatever is the builder count
(previously, there was one http request per builder).

• Builder and Worker page build list now have the numbuilds= option which allows to show more builds.

• Masters page now shows more information about a master (workers, builds, activity timer)

• Workers page improvements:

– Shows which master the worker is connected to.

– Shows correctly the list of builders that this master is configured on (not the list of buildermaster
which nobody cares about).

– Shows list of builds per worker similar to the builders page.

– New worker details page displays the list of builds built by this worker using database optimized query.

Deprecations and Removals

• Some deprecated broken Contrib Scripts were removed.

• buildbot.www.hooks.googlecode has been removed, since the Google Code service has been shut
down.

• buildbot.util.json has been deprecated in favor of the standard library json. simplejson will not
be used anymore if found in the virtualenv.

Buildbot 0.9.3 (2017-01-11)

Bug fixes

• Fix BitbucketStatusPush ep should start with / assertion error.

• Fix duplicate worker use case, where a worker with the same name would make the other worker also disconnect
(bug #3656 (http://trac.buildbot.net/ticket/3656))

• GitPoller: buildPushesWithNoCommits now rebuilds for a known branch that was updated to an
existing commit.

• Fix issue with log viewer not staying at bottom of the log when loading log lines.

4.5. Buildbot 0.9.3 (2017-01-11) 501

https://en.wikipedia.org/wiki/JSON_Web_Token
http://trac.buildbot.net/ticket/3656

Buildbot Documentation, Release 0.9.7

• Fixed addBuildURLs in Trigger to use results from triggered builds to include in the URL name exposed by
API.

• Fix Wamp mq support by removing debug, debug_amp and debug_app from the mq config, which is not
available in latest version of Python Autobahn (http://autobahn.ws). You can now use wamp_debug_level
option instead.

• fix issue with factory.workdir AttributeError are not properly reported.

Features

• Optimize the memory consumption of the log compression process. Buildbot do not load the whole log into
memory anymore. This should improve a lot buildbot memory footprint.

• Changed the build page so that the preview of the logs are shown in live. It is a preview means the last lines of
log. How many lines is configurable per user in the user settings page.

• Log viewer line numbers are no longer selectable, so that it is easier to copy paste.

• DockerLatentWorker accepts now renderable Dockerfile

• Renderer function can now return IRenderable objects.

• new SetProperties which allows to generate and transform properties separately.

• Handle new workers in windows_service.py script.

• Sort the builders in the waterfall view by name instead of ID.

Buildbot 0.9.2 (2016-12-13)

Bug fixes

• Fix GitHubAuth to retrieve all organizations instead of only those publicly available.

• Fixed ref to point to branch instead of commit sha in GitlabStatusPush

• IRC maybeColorize is able to highlight single words and stop colorization at the end. The previous imple-
mentation only stopped colorization but not boldface.

• fix compatibility issue with mysql5 (do not set default value for TEXT column).

• Fixed addChange in Change to use the revlink configuration option to generate the revlink.

• fix threading issue in DockerLatentWorker

Features

• Implement BitbucketAuth.

• New GerritEventLogPoller poller to poll Gerrit changes via http API.

• New GerritVerifyStatusPush can send multiple review status for the same Gerrit change.

• IRC appends the builder URL to a successful/failed build if available

• MailNotifier now accepts useSmtps parameter for initiating connection over an SSL/TLS encrypted
connection (SMTPS)

502 Chapter 4. Release Notes

http://autobahn.ws

Buildbot Documentation, Release 0.9.7

• New support for Mesos and Marathon (https://mesosphere.github.io/marathon/) via
MarathonLatentWorker. Marathon is a production-grade container orchestration platform for
Mesosphere’s Data- center Operating System (DC/OS) and Apache Mesos.

• password in DockerLatentWorker and HyperLatentWorker, can be None. In that case, they will
be auto-generated from random number.

• StashStatusPush now accepts key, buildName, endDescription, startDescription, and
verbose parameters to control the JSON sent to Stash.

• Buildbot can now be configured to deny read access to REST api resources based on authorization rules.

4.6. Buildbot 0.9.2 (2016-12-13) 503

https://mesosphere.github.io/marathon/

Buildbot Documentation, Release 0.9.7

504 Chapter 4. Release Notes

CHAPTER 5

Older Release Notes

Release Notes for Buildbot 0.9.1

The following are the release notes for Buildbot 0.9.1. This version was released on November 1, 2016.

See Upgrading to Nine for a guide to upgrading from 0.8.x to 0.9.x

Master

Features

• Add support for hyper.sh via HyperLatentWorker Hyper (https://hyper.sh) is a CaaS solution for hosting
docker container in the cloud, billed to the second. It forms a very cost efficient solution to run your CI in the
cloud.

• The Trigger step now supports unimportantSchedulerNames

• add a UI button to allow to cancel the whole queue for a builder

• Buildbot log viewer now support 256 colors ANSI codes

• new GitHub which correctly checkout the magic branch like refs/pull/xx/merge.

• MailNotifier now supports a schedulers constructor argument that allows you to send mail only for builds
triggered by the specified list of schedulers.

• MailNotifier now supports a branches constructor argument that allows you to send mail only for builds
triggered by the specified list of branches.

• Optimization of the data api filtering, sorting and paging, speeding up a lot the UI when the master has lots of
builds.

• GerritStatusPush now accepts a notify parameter to control who gets emailed by Gerrit.

• Add a format_fn parameter to the HttpStatusPush reporter to customize the information being pushed.

• Latent Workers can now start in parallel.

505

https://hyper.sh

Buildbot Documentation, Release 0.9.7

– The build started by latent worker will be created while the latent worker is substantiated.

– Latent Workers will now report startup issues in the UI.

• Workers will be temporarily put in quarantine in case of build preparation issues. This avoids master and
database overload in case of bad worker configuration. The quarantine is implemented with an exponential
back-off timer.

• Master Stop will now stop all builds, and wait for all workers to properly disconnect. Previously, the worker
connections was stopped, which incidentally made all their builds marked retried. Now, builds started with a
Triggereable scheduler will be cancelled, while other builds will be retried. The master will make sure that
all latent workers are stopped.

• The MessageFormatter class also allows inline-templates with the template parameter.

• The MessageFormatter class allows custom mail’s subjects with the subject and subject_name
parameters.

• The MessageFormatter class allows extending the context given to the Templates via the ctx parameter.

• The new MessageFormatterMissingWorker class allows to customize the message sent when a worker
is missing.

• The OpenStackLatentWorker worker now supports rendering the block device parameters. The
volume_size parameter will be automatically calculated if it is None.

Fixes

• fix the UI to allow to cancel a buildrequest (bug #3582 (http://trac.buildbot.net/ticket/3582))

• GitHub change hook now correctly use the refs/pull/xx/merge branch for testing PRs.

• Fix the UI to better adapt to different screen width (bug #3614 (http://trac.buildbot.net/ticket/3614))

• Don’t log AlreadyClaimedError. They are normal in case of Trigger cancelling, and in a multimaster
configuration.

• Fix issues with worker disconnection. When a worker disconnects, its current buildstep must be interrupted and
the buildrequests should be retried.

• Fix the worker missing email notification.

• Fix issue with worker builder list not being updated in UI when buildmaster is reconfigured (bug #3629
(http://trac.buildbot.net/ticket/3629))

Changes for Developers

Features

• New SharedService can be used by steps, reporters, etc to implement per master resource limit.

• New HTTPClientService can be used by steps, reporters, etc to implement HTTP client.
This class will automatically choose between treq (https://pypi.python.org/pypi/treq) and txrequests
(https://pypi.python.org/pypi/txrequests), whichever is installed, in order to access HTTP servers. This class
comes with a fake implementation helping to write unit tests.

• All HTTP reporters have been ported to HTTPClientService

506 Chapter 5. Older Release Notes

http://trac.buildbot.net/ticket/3582
http://trac.buildbot.net/ticket/3614
http://trac.buildbot.net/ticket/3629
https://pypi.python.org/pypi/treq
https://pypi.python.org/pypi/txrequests

Buildbot Documentation, Release 0.9.7

Fixes

Deprecations, Removals, and Non-Compatible Changes

• By default, non-distinct commits received via buildbot.status.web.hooks.github.
GitHubEventHandler now get recorded as a Change. In this way, a commit pushed to a branch
that is not being watched (e.g. a dev branch) will still get acted on when it is later pushed to a branch that
is being watched (e.g. master). In the past, such a commit would get ignored and not built because it was
non-distinct. To disable this behavior and revert to the old behavior, install a ChangeFilter that checks the
github_distinct property:

ChangeFilter(filter_fn=lambda c: c.properties.getProperty('github_distinct'))

• setup.py ‘scripts’ have been converted to console_scripts entry point. This makes them more portable and
compatible with wheel format. Most consequences are for the windows users:

– buildbot.bat does not exist anymore, and is replaced by buildbot.exe, which is generated by the
console_script entrypoint.

– buildbot_service.py is replaced by buildbot_windows_service.exe, which is generated
by the console_script entrypoint As this script has been written in 2006, has only inline documentation and
no unit tests, it is not guaranteed to be working. Please help improving the windows situation.

• The user and password parameters of the HttpStatusPush reporter have been deprecated in favor of the
auth parameter.

• The template_name parameter of the MessageFormatter class has been deprecated in favor of
template_filename.

Worker

Fixes

Changes for Developers

Deprecations, Removals, and Non-Compatible Changes

• The worker now requires at least Twisted 10.2.0.

• setup.py ‘scripts’ have been converted to console_scripts entry point. This makes them more portable and
compatible with wheel format. Most consequences are for the windows users:

– buildbot_worker.bat does not exist anymore, and is replaced by buildbot_worker.exe,
which is generated by the console_script entrypoint.

– buildbot_service.py is replaced by buildbot_worker_windows_service.exe, which is
generated by the console_script entrypoint As this script has been written in 2006, has only inline doc-
umentation and no unit tests, it is not guaranteed to be working. Please help improving the windows
situation.

• AbstractLatentWorker is now in buildbot.worker.latent instead of buildbot.worker.
base.

Details

For a more detailed description of the changes made in this version, see the git log itself:

5.1. Release Notes for Buildbot 0.9.1 507

Buildbot Documentation, Release 0.9.7

git log v0.9.0..v0.9.1

Release Notes for Buildbot 0.9.0

The following are the release notes for Buildbot 0.9.0. This version was released on October 6, 2016.

This is a concatenation of important changes done between 0.8.12 and 0.9.0. This does not contain details of the
bug fixes related to the nine beta and rc period. This document was written during the very long period of nine
development. It might contain some incoherencies, please help us and report them on irc or trac.

See Upgrading to Nine for a guide to upgrading from 0.8.x to 0.9.x

Master

This version represents a refactoring of Buildbot into a consistent, well-defined application composed of loosely
coupled components. The components are linked by a common database backend and a messaging system. This
allows components to be distributed across multiple build masters. It also allows the rendering of complex web status
views to be performed in the browser, rather than on the buildmasters.

The branch looks forward to committing to long-term API compatibility, but does not reach that goal. The Buildbot-
0.9.x series of releases will give the new APIs time to “settle in” before we commit to them. Commitment will wait
for Buildbot-1.0.0 (as per http://semver.org). Once Buildbot reaches version 1.0.0, upgrades will become much easier
for users.

To encourage contributions from a wider field of developers, the web application is designed to look like a normal
AngularJS application. Developers familiar with AngularJS, but not with Python, should be able to start hacking on
the web application quickly. The web application is “pluggable”, so users who develop their own status displays can
package those separately from Buildbot itself.

Other goals:

• An approachable HTTP REST API, with real time event features used by the web application but available for
any other purpose.

• A high degree of coverage by reliable, easily-modified tests.

• “Interlocking” tests to guarantee compatibility. For example, the real and fake DB implementations must both
pass the same suite of tests. Then no unseen difference between the fake and real implementations can mask
errors that will occur in production.

Requirements

The buildbot package requires Python 2.7 – Python 2.5 and 2.6 are no longer supported. The buildbot-slave
package requires Python 2.6 or higher – Python 2.4 and 2.5 are no longer supported.

No additional software or systems, aside from some minor Python packages, are required.

But the devil is in the details:

• If you want to do web development, or build the buildbot-www package, you’ll need Node. It’s an Angular
app, and that’s how such apps are developed. We’ve taken pains to not make either a requirement for users - you
can simply ‘pip install’ buildbot-www and be on your way. This is the case even if you’re hacking on the
Python side of Buildbot.

• For a single master, nothing else is required.

508 Chapter 5. Older Release Notes

http://semver.org

Buildbot Documentation, Release 0.9.7

Note for distro package maintainers: The npm dependency hell

In order to build the buildbot-www package, you’ll need Node.

Node has a very specific package manager named npm, which has the interesting property of allowing different version
of package to co-exist in the same environment. The node ecosystem also has the habit of creating packages for a few
line of code.

Buildbot UI uses the node ecosystem to build its javascript UI.

The buildsystem that we use is called guanlecoja (https://www.npmjs.com/package/guanlecoja), which is just an inte-
gration of various javascript build tools.

Through npm dependency hell, guanlecoja is depending on 625 npm packages/versions. We do not advise you to try
and package all those npm build dependencies. They are not required in order to run buildbot.

We do release pre-built packages in the form of the wheel (http://pythonwheels.com/) format on pypi. Those wheels
contain the full python source code, and prebuilt javascript source code.

Depending on distro maintainers feedback, we could also release source tarballs with prebuilt javascript, but those
would be pypi packages with different names, e.g. buildbot_www_prebuilt.0.9.0.tar.gz.

Another option would be to package a guanlecoja (https://www.npmjs.com/package/guanlecoja) that would embed all
its dependencies inside one package.

Detailed requirements

see Requirements

Features

Buildbot-0.9.0 introduces the Data API, a consistent and scalable method for accessing and updating the state of the
Buildbot system. This API replaces the existing, ill-defined Status API, which has been removed. Buildbot-0.9.0
introduces new WWW Server Interface using websocket for realtime updates. Buildbot code that interacted with the
Status API (a substantial portion!) has been rewritten to use the Data API. Individual features and improvements to
the Data API are not described on this page.

• Buildbot now supports plugins. They allow Buildbot to be extended by using components distributed indepen-
dently from the main code. They also provide for a unified way to access all components. When previously the
following construction was used:

from buildbot.kind.other.bits import ComponentClass

... ComponentClass ...

the following construction achieves the same result:

from buildbot.plugins import kind

... kind.ComponentClass ...

Kinds of components that are available this way are described in Plugin Infrastructure in Buildbot.

Note: While the components can be still directly imported as buildbot.kind.other.bits, this might
not be the case after Buildbot v1.0 is released.

5.2. Release Notes for Buildbot 0.9.0 509

https://www.npmjs.com/package/guanlecoja
http://pythonwheels.com/
https://www.npmjs.com/package/guanlecoja

Buildbot Documentation, Release 0.9.7

• Both the P4 source step and P4 change source support ticket-based authentication.

• OpenStack latent slaves now support block devices as a bootable volume.

• Add new Cppcheck step.

• Add a new Docker latent Workers.

• Add a new configuration for creating custom services in out-of-tree CI systems or plugins. See buildbot.
util.service.BuildbotService

• Add try_ssh configuration file setting and --ssh command line option for the try tool to specify the com-
mand to use for connecting to the build master.

• GitHub change hook now supports application/json format.

• Add support for dynamically adding steps during a build. See Dynamic Build Factories.

• GitPoller now supports detecting new branches

• Git supports an “origin” option to give a name to the remote repo.

• Mercurial hook was updated and modernized. It is no longer necessary to fork. One can now extend PYTHON-
PATH via the hook configuration. Among others, it permits to use a buildbot virtualenv instead of installing
buildbot in all the system. Added documentation inside the hook. Misc. clean-up and reorganization in order to
make the code a bit more readable.

• UI templates can now be customizable. You can provide html or jade overrides to the www plugins, to customize
the UI

• The irc command hello now returns ‘Hello’ in a random language if invoked more than once.

• Triggerable now accepts a reason parameter.

• GerritStatusPush now accepts a builders parameter.

• StatusPush callback now receives build results (success/failure/etc) with the buildFinished event.

• There’s a new renderable type, Transform.

• GitPoller now has a buildPushesWithNoCommits option to allow the rebuild of already known com-
mits on new branches.

• Add GitLab authentication plugin for web UI. See buildbot.www.oauth2.GitLabAuth.

• CMake build step is added. It provides a convenience interface to CMake (https://cmake.org/cmake/help/latest/)
build system.

• MySQL InnoDB tables are now supported.

• HttpStatusPush has been ported to reporter API.

• StashStatusPush has been ported to reporter API.

• GithubStatusPush has been ported to reporter API.

• summaryCB of GerritStatusPush now gets not only pre-processed information but the actual build as
well.

• EC2LatentWorker supports VPCs, instance profiles, and advanced volume mounts.

• New steps for Visual Studio 2015 (VS2015, VC14, and MsBuild14).

• The P4 step now obfuscates the password in status logs.

• Added support for specifying the depth of a shallow clone in Git.

510 Chapter 5. Older Release Notes

https://cmake.org/cmake/help/latest/

Buildbot Documentation, Release 0.9.7

• OpenStackLatentWorker now uses a single novaclient instance to not require re-authentication when
starting or stopping instances.

• Buildbot UI introduces branch new Authentication, and Authorizations framework.

Please look at their respective guide in WWW Server

• buildbot stop now waits for complete buildmaster stop by default.

• New --no-wait argument for buildbot stop which allows not to wait for complete master shutdown.

• New LocalWorker worker to run a worker in the master process, requires buildbot-worker package
installed.

• GerritStatusPush now includes build properties in the startCB and reviewCB functions. startCB
now must return a dictionary.

• add tool to send usage data to buildbot.net buildbotNetUsageData

• new GitHub which correctly checkout the magic branch like refs/pull/xx/merge.

• Enable parallel builds with Visual Studio and MSBuild.

Reporters

Status plugins have been moved into the reporters namespace. Their API has slightly to changed in order to adapt
to the new data API. See respective documentation for details.

• GerritStatusPush renamed to GerritStatusPush

• MailNotifier renamed to MailNotifier

• MailNotifier argument messageFormatter should now be a MessageFormatter, due to removal
of data api, custom message formaters need to be rewritten.

• MailNotifier argument previousBuildGetter is not supported anymore

• Gerrit supports specifying an SSH identity file explicitly.

• Added StashStatusPush status hook for Atlassian Stash

• MailNotifier no longer forces SSL 3.0 when useTls is true.

• GerritStatusPush callbacks slightly changed signature, and include a master reference instead of a status
reference.

• new GitLabStatusPush to report builds results to GitLab.

• new HipchatStatusPush to report build results to Hipchat.

Fixes

• Buildbot is now compatible with SQLAlchemy 0.8 and higher, using the newly-released SQLAlchemy-Migrate.

• The version check for SQLAlchemy-Migrate was fixed to accept more version string formats.

• The HTTPStep step’s requeset parameters are now renderable.

• With Git(), force the updating submodules to ensure local changes by the build are overwitten. This both ensures
more consistent builds and avoids errors when updating submodules.

• Buildbot is now compatible with Gerrit v2.6 and higher.

To make this happen, the return result of reviewCB and summaryCB callback has changed from

5.2. Release Notes for Buildbot 0.9.0 511

Buildbot Documentation, Release 0.9.7

(message, verified, review)

to

{'message': message,
'labels': {'label-name': value,

...
}

}

The implications are:

– there are some differences in behaviour: only those labels that were provided will be updated

– Gerrit server must be able to provide a version, if it can’t the GerritStatusPush will not work

Note: If you have an old style reviewCB and/or summaryCB implemented, these will still work, however
there could be more labels updated than anticipated.

More detailed information is available in GerritStatusPush section.

• P4Source‘s server_tz parameter now works correctly.

• The revlink in changes produced by the Bitbucket hook now correctly includes the changes/ portion of
the URL.

• PBChangeSource‘s git hook master/contrib/git_buildbot.py (https://github.com/buildbot/buildbot-
contrib/blob/master/master/contrib/git_buildbot.py) now supports git tags

A pushed git tag generates a change event with the branch property equal to the tag name. To schedule builds
based on buildbot tags, one could use something like this:

c['schedulers'].append(
SingleBranchScheduler(name='tags',

change_filter=filter.ChangeFilter(
branch_re='v[0-9]+\.[0-9]+\.[0-9]+(?:-pre|rc[0-9]+|p[0-9]+)?')

treeStableTimer=None,
builderNames=['tag_build']))

• Missing “name” and “email” properties received from Gerrit are now handled properly

• Fixed bug which made it impossible to specify the project when using the BitBucket dialect.

• The PyLint step has been updated to understand newer output.

• Fixed SVN master-side source step: if a SVN operation fails, the repository end up in a situation when a
manual intervention is required. Now if SVN reports such a situation during initial check, the checkout will be
clobbered.

• The build properties are now stored in the database in the build_properties table.

• The list of changes in the build page now displays all the changes since the last sucessful build.

• GitHub change hook now correctly responds to ping events.

• GitHub change hook now correctly use the refs/pull/xx/merge branch for testing PRs.

• buildbot.steps.http steps now correctly have url parameter renderable

• When no arguments are used buildbot checkconfig now uses buildbot.tac to locate the master
config file.

512 Chapter 5. Older Release Notes

https://github.com/buildbot/buildbot-contrib/blob/master/master/contrib/git_buildbot.py

Buildbot Documentation, Release 0.9.7

• buildbot.util.flatten now correctly flattens arbitrarily nested lists. buildbot.util.flattened_iterator provides an
iterable over the collection which may be more efficient for extremely large lists.

• The PyFlakes and PyLint steps no longer parse output in Buildbot log headers (bug #3337
(http://trac.buildbot.net/ticket/3337)).

• GerritChangeSource is now less verbose by default, and has a debug option to enable the logs.

• P4Source no longer relies on the perforce server time to poll for new changes.

• The commit message for a change from P4Source now matches what the user typed in.

• Fix incompatibility with MySQL-5.7 (bug #3421 (http://trac.buildbot.net/ticket/3421))

• Fix incompatibility with postgresql driver psycopg2 (bug #3419 (http://trac.buildbot.net/ticket/3419), further
regressions will be caught by travis)

• Made Interpolate safe for deepcopy or serialization/deserialization

• sqlite access is serialized in order to improve stability (bug #3565 (http://trac.buildbot.net/ticket/3565))

Deprecations, Removals, and Non-Compatible Changes

• Seamless upgrading between buildbot 0.8.12 and buildbot 0.9.0 is not supported. Users should start from a clean
install but can reuse their config according to the Upgrading to Nine guide.

• BonsaiPoller is removed.

• buildbot.ec2buildslave is removed; use buildbot.buildslave.ec2 instead.

• buildbot.libvirtbuildslave is removed; use buildbot.buildslave.libvirt instead.

• buildbot.util.flatten flattens lists and tuples by default (previously only lists). Additionally, flattening something
that isn’t the type to flatten has different behaviour. Previously, it would return the original value. Instead, it
now returns an array with the original value as the sole element.

• buildbot.tac does not support print statements anymore. Such files should now use print as a function
instead (see https://docs.python.org/3.0/whatsnew/3.0.html#print-is-a-function for more details). Note that this
applies to both python2.x and python3.x runtimes.

• Deprecated workdir property has been removed, builddir property should be used instead.

• To support MySQL InnoDB, the size of six VARCHAR(256) columns changes.(author, branch,
category, name); object_state.name; user.identifier was reduced to VARCHAR(255).

• StatusPush has been removed from buildbot. Please use the much simpler HttpStatusPush instead.

• Worker changes described in below worker section will probably impact a buildbot developer who uses undoc-
umented ‘slave‘ API. Undocumented APIs have been replaced without failover, so any custom code that uses it
shall be updated with new undocumented API.

• Web server does not provide /png and /redirect anymore (bug #3357 (http://trac.buildbot.net/ticket/3357)). This
functionality is used to implement build status images. This should be easy to implement if you need it. One
could port the old image generation code, or implement a redirection to http://shields.io/.

• Support of worker-side usePTY was removed from buildbot-worker. usePTY argument was removed
from WorkerForBuilder and Worker classes.

• html is no longer permitted in ‘label’ attributes of forcescheduler parameters.

• public_html directory is not created anymore in buildbot create-master (it’s not used for some
time already). Documentation was updated with suggestions to use third party web server for serving static file.

5.2. Release Notes for Buildbot 0.9.0 513

http://trac.buildbot.net/ticket/3337
http://trac.buildbot.net/ticket/3421
http://trac.buildbot.net/ticket/3419
http://trac.buildbot.net/ticket/3565
https://docs.python.org/3.0/whatsnew/3.0.html#print-is-a-function
http://trac.buildbot.net/ticket/3357
http://shields.io/

Buildbot Documentation, Release 0.9.7

• usePTY default value has been changed from slave-config to None (use of slave-config will still
work).

• /json web status was removed. Data API should be used instead.

WebStatus

The old, clunky WebStatus has been removed. You will like the new interface! RIP WebStatus, you were a good
friend.

remove it and replace it with www configuration.

Requirements

• Support for python 2.6 was dropped from the master.

• Buildbot’s tests now require at least Mock-0.8.0.

• SQLAlchemy-Migrate-0.6.1 is no longer supported.

• Builder names are now restricted to unicode strings or ASCII bytestrings. Encoded bytestrings are not accepted.

Steps

• New-style steps are now the norm, and support for old-style steps is deprecated. Upgrade your steps to new-style
now, as support for old-style steps will be dropped after Buildbot-0.9.0. See New-Style Build Steps for details.

– Status strings for old-style steps could be supplied through a wide variety of conflicting means
(describe, description, descriptionDone, descriptionSuffix, getText, and
setText, to name just a few). While all attempts have been made to maintain compatibility, you may
find that the status strings for old-style steps have changed in this version. To fix steps that call setText,
try setting the descriptionDone attribute directly, instead – or just rewrite the step in the new style.

• Old-style source steps (imported directly from buildbot.steps.source) are no longer supported on the
master.

• The monotone source step got an overhaul and can now better manage its database (initialize and/or migrate it,
if needed). In the spirit of monotone, buildbot now always keeps the database around, as it’s an append-only
database.

Changes and Removals

• Buildslave names must now be 50-character identifier. Note that this disallows some common characters in
bulidslave names, including spaces, /, and ..

• Builders now have “tags” instead of a category. Builders can have multiple tags, allowing more flexible builder
displays.

• ForceScheduler has the following changes:

– The default configuration no longer contains four AnyPropertyParameter instances.

– Configuring codebases is now mandatory, and the deprecated branch, repository, project,
revision are not supported anymore in ForceScheduler

– buildbot.schedulers.forcesched.BaseParameter.updateFromKwargs now takes a
collector parameter used to collect all validation errors

514 Chapter 5. Older Release Notes

Buildbot Documentation, Release 0.9.7

• Periodic, Nightly and NightlyTriggerable have the following changes:

– The Periodic and Nightly schedulers can now consume changes and use onlyIfChanged and
createAbsoluteTimestamps.

– All “timed” schedulers now handle codebases the same way. Configuring codebases is strongly
recommended. Using the branch parameter is discouraged.

• Logs are now stored as Unicode strings, and thus must be decoded properly from the bytestrings provided by
shell commands. By default this encoding is assumed to be UTF-8, but the logEncoding parameter can be
used to select an alternative. Steps and individual logfiles can also override the global default.

• The PB status service uses classes which have now been removed, and anyway is redundant to the REST API,
so it has been removed. It has taken the following with it:

– buildbot statuslog

– buildbot statusgui (the GTK client)

– buildbot debugclient

The PBListener status listener is now deprecated and does nothing. Accordingly, there is no external access
to status objects via Perspective Broker, aside from some compatibility code for the try scheduler.

The debugPassword configuration option is no longer needed and is thus deprecated.

• The undocumented and un-tested TinderboxMailNotifier, designed to send emails suitable for the aban-
doned and insecure Tinderbox tool, has been removed.

• Buildslave info is no longer available via Interpolate and the SetSlaveInfo buildstep has been removed.

• The undocumented path parameter of the MasterShellCommand buildstep has been renamed workdir
for better consistency with the other steps.

• The name and source of a Property have to be unicode or ascii string.

• Property values must be serializable in JSON.

• IRC has the following changes:

– categories parameter is deprecated and removed. It should be replaced with tags=[cat]

– noticeOnChannel parameter is deprecated and removed.

• workdir behavior has been unified:

– workdir attribute of steps is now a property in BuildStep, and choose the workdir given following
priority:

* workdir of the step, if defined

* workdir of the builder (itself defaults to ‘build’)

* setDefaultWorkdir() has been deprecated, but is now behaving the same for all the steps: Setting
self.workdir if not already set

• Trigger now has a getSchedulersAndProperties method that can ve overridden to support dynamic
triggering.

• `master.cfg is now parsed from a thread. Previously it was run in the main thread, and thus slowing down
the master in case of big config, or network access done to generate the config.

• SVNPoller‘s svnurl parameter has been changed to repourl.

• Providing Latent AWS EC2 credentials by the .ec2/aws_id file is deprecated: Use the standard .aws/
credentials file, instead.

5.2. Release Notes for Buildbot 0.9.0 515

Buildbot Documentation, Release 0.9.7

Changes for Developers

• Botmaster no longer service parent for workers. Service parent functionality has been transferred to Worker-
Manager. It should be noted Botmaster no longer has a slaves field as it was moved to WorkerManager.

• The sourcestamp DB connector now returns a patchid field.

• Buildbot no longer polls the database for jobs. The db_poll_interval configuration parameter and the db
key of the same name are deprecated and will be ignored.

• The interface for adding changes has changed. The new method is master.data.updates.addChange
(implemented by addChange), although the old interface (master.addChange) will remain in place for a
few versions. The new method:

– returns a change ID, not a Change instance;

– takes its when_timestamp argument as epoch time (UNIX time), not a datetime instance; and

– does not accept the deprecated parameters who, isdir, is_dir, and when.

– requires that all strings be unicode, not bytestrings.

Please adjust any custom change sources accordingly.

• A new build status, CANCELLED, has been added. It is used when a step or build is deliberately cancelled by
a user.

• This upgrade will delete all rows from the buildrequest_claims table. If you are using this table for
analytical purposes outside of Buildbot, please back up its contents before the upgrade, and restore it afterward,
translating object IDs to scheduler IDs if necessary. This translation would be very slow and is not required for
most users, so it is not done automatically.

• All of the schedulers DB API methods now accept a schedulerid, rather than an objectid. If you have custom
code using these methods, check your code and make the necessary adjustments.

• The addBuildsetForSourceStamp method has become addBuildsetForSourceStamps, and
its signature has changed. The addBuildsetForSourceStampSetDetails method has be-
come addBuildsetForSourceStampsWithDefaults, and its signature has changed. The
addBuildsetForSourceStampDetails method has been removed. The addBuildsetForLatest
method has been removed. It is equivalent to addBuildsetForSourceStampDetails with
sourcestamps=None. These methods are not yet documented, and their interface is not stable. Consult
the source code for details on the changes.

• The preStartConsumingChanges and startTimedSchedulerService hooks have been removed.

• The triggerable schedulers trigger method now requires a list of sourcestamps, rather than a dictionary.

• The SourceStamp class is no longer used. It remains in the codebase to support loading data from pickles on
upgrade, but should not be used in running code.

• The BuildRequest class no longer has full source or sources attributes. Use the data API to get this
information (which is associated with the buildset, not the build request) instead.

• The undocumented BuilderControl method submitBuildRequest has been removed.

• The debug client no longer supports requesting builds (the requestBuild method has been removed). If
you have been using this method in production, consider instead creating a new change source, using the
ForceScheduler, or using one of the try schedulers.

• The buildbot.misc.SerializedInvocation class has been removed; use buildbot.util.
debounce.method instead.

516 Chapter 5. Older Release Notes

Buildbot Documentation, Release 0.9.7

• The progress attributes of both buildbot.process.buildstep.BuildStep and buildbot.
process.build.Build have been removed. Subclasses should only be accessing the progress-tracking
mechanics via the buildbot.process.buildstep.BuildStep.setProgress method.

• The BuilderConfig nextSlave keyword argument takes a callable. This callable now receives
BuildRequest instance in its signature as 3rd parameter. For retro-compatibility, all callable taking only
2 parameters will still work.

• properties object is now directly present in build, and not in build_status. This should not change much unless
you try to access your properties via step.build.build_status. Remember that with PropertiesMixin, you can
access properties via getProperties on the steps, and on the builds objects.

Slaves/Workers

Transition to “worker” terminology

Since version 0.9.0 of Buildbot “slave”-based terminology is deprecated in favor of “worker”-based terminology.

For details about public API changes see Transition to “worker” terminology, and Release Notes for Buildbot 0.9.0b8
release notes.

• The buildbot-slave package has been renamed to buildbot-worker.

• Buildbot now requires import to be sorted using isort (https://isort.readthedocs.io/en/stable/). Please run make
isort before creating a PR or use any available editor plugin in order to reorder your imports.

Requirements

• buildbot-worker requires Python 2.6

Features

• The Buildbot worker now includes the number of CPUs in the information it supplies to the master on con-
nection. This value is autodetected, but can be overridden with the --numcpus argument to buildslave
create-worker.

• The DockerLatentWorker image attribute is now renderable (can take properties in account).

• The DockerLatentWorker sets environment variables describing how to connect to the mas-
ter. Example dockerfiles can be found in master/contrib/docker (https://github.com/buildbot/buildbot-
contrib/blob/master/master/contrib/docker).

• DockerLatentWorker now has a hostconfig parameter that can be used to setup host configuration
when creating a new container.

• DockerLatentWorker now has a networking_config parameter that can be used to setup container
networks.

• The DockerLatentWorker volumes attribute is now renderable.

Fixes

Changes for Developers

• EC2 Latent Worker upgraded from boto2 to boto3.

5.2. Release Notes for Buildbot 0.9.0 517

https://isort.readthedocs.io/en/stable/
https://github.com/buildbot/buildbot-contrib/blob/master/master/contrib/docker

Buildbot Documentation, Release 0.9.7

Deprecations, Removals, and Non-Compatible Changes

• buildmaster and worker no longer supports old-style source steps.

• On Windows, if a ShellCommand step in which command was specified as a list is executed, and a list ele-
ment is a string consisting of a single pipe character, it no longer creates a pipeline. Instead, the pipe character is
passed verbatim as an argument to the program, like any other string. This makes command handling consistent
between Windows and Unix-like systems. To have a pipeline, specify command as a string.

• Support for python 2.6 was dropped from the master.

• public_html directory is not created anymore in buildbot create-master (it’s not used for some
time already). Documentation was updated with suggestions to use third party web server for serving static file.

• usePTY default value has been changed from slave-config to None (use of slave-config will still
work).

• GithubStatusPush reporter was renamed to GitHubStatusPush.

• Worker commands version bumped to 3.0.

• Master/worker protocol has been changed:

– slave_commands key in worker information was renamed to worker_commands.

– getSlaveInfo remote method was renamed to getWorkerInfo.

– slave-config value of usePTY is not supported anymore.

– slavesrc command argument was renamed to workersrc in uploadFile and
uploadDirectory commands.

– slavedest command argument was renamed to workerdest in downloadFile command.

– Previously deprecated WorkerForBuilder.remote_shutdown() remote command has been re-
moved.

Details

For a more detailed description of the changes made in this version, see the git log itself:

git log v0.8.12..v0.9.0

Release Notes for Buildbot 0.9.0rc4

The following are the release notes for Buildbot 0.9.0rc4. This version was released on September 28, 2016.

See Upgrading to Nine for a guide to upgrading from 0.8.x to 0.9.x

Master

Fixes

• Fix the UI to better adapt to different screen width (bug #3614 (http://trac.buildbot.net/ticket/3614))

• Add more REST api documentation (document /raw endpoints, and POST actions)

518 Chapter 5. Older Release Notes

http://trac.buildbot.net/ticket/3614

Buildbot Documentation, Release 0.9.7

Details

For a more detailed description of the changes made in this version, see the git log itself:

git log v0.9.0rc3..v0.9.0rc4

Release Notes for Buildbot 0.9.0rc3

The following are the release notes for Buildbot 0.9.0rc3. This version was released on September 14, 2016.

See Upgrading to Nine for a guide to upgrading from 0.8.x to 0.9.x

Master

Features

• add tool to send usage data to buildbot.net buildbotNetUsageData

Fixes

• Publish python module buildbot.buildslave in the dist files

• Upgrade to guanlecoja 0.7 (for compatibility with node6)

• Fix invocation of trial on windows, with twisted 16+

• Fix rare issue which makes buildbot throw a exception when there is a sourcestamp with no change for a
particular codebase.

Details

For a more detailed description of the changes made in this version, see the git log itself:

git log v0.9.0rc2..v0.9.0rc3

Release Notes for Buildbot 0.9.0rc2

The following are the release notes for Buildbot 0.9.0rc2. This version was released on August 23, 2016.

See Upgrading to Nine for a guide to upgrading from 0.8.x to 0.9.x

Master

Features

• add a UI button to allow to cancel the whole queue for a builder

5.4. Release Notes for Buildbot 0.9.0rc3 519

Buildbot Documentation, Release 0.9.7

Fixes

• fix the UI to allow to cancel a buildrequest (bug #3582 (http://trac.buildbot.net/ticket/3582))

• Fix BitbucketPullrequestPoller change detection

• Fix customization for template_type in email reporter

• fix DockerLatent integration of volumes mounting

• misc doc fixes

• fix buildbot not booting when builder tags contains duplicates

• forcesched: fix owner parameter when no authentication is used

• REST: fix problem with twisted 16 error reporting

• CORS: format errors according to API type

• Dockerfiles fix and upgrade Ubuntu to 16.04

• Fixes #3430 Increased size of builder identifier from 20 to 50 (brings it in line to size of steps and workers in
same module).

• Fix missing VS2015 entry_points

• removed the restriction on twisted < 16.3.0 now that autobahn 0.16.0 fixed the issue

Changes for Developers

Features

Fixes

Deprecations, Removals, and Non-Compatible Changes

• remove repo from worker code (obsoleted by repo master source step)

Worker

Fixes

Changes for Developers

Deprecations, Removals, and Non-Compatible Changes

Details

For a more detailed description of the changes made in this version, see the git log itself:

git log v0.9.0rc1..v0.9.0rc2

520 Chapter 5. Older Release Notes

http://trac.buildbot.net/ticket/3582

Buildbot Documentation, Release 0.9.7

Release Notes for Buildbot 0.9.0rc1

The following are the release notes for Buildbot 0.9.0rc1.

See Upgrading to Nine for a guide to upgrading from 0.8.x to 0.9.x

Master

Features

• new HipchatStatusPush to report build results to Hipchat.

• new steps for Visual Studio 2015 (VS2015, VC14, and MsBuild14).

• The P4 step now obfuscates the password in status logs.

• Added support for specifying the depth of a shallow clone in Git.

• OpenStackLatentWorker now uses a single novaclient instance to not require re-authentication when
starting or stopping instances.

• The dist parameter in RpmBuild is now renderable.

• new BitbucketStatusPush to report build results to a Bitbucket Cloud repository.

Fixes

• GerritStatusPush now includes build properties in the startCB and reviewCB functions. startCB
now must return a dictionary.

• Fix TypeError exception with HgPoller if usetimestamps=False is used (bug #3562
(http://trac.buildbot.net/ticket/3562))

• Fix recovery upon master unclean kill or crash (bug #3564 (http://trac.buildbot.net/ticket/3564))

• sqlite access is serialized in order to improve stability (bug #3565 (http://trac.buildbot.net/ticket/3565))

• Docker latent worker has been fixed (bug #3571 (http://trac.buildbot.net/ticket/3571))

Changes for Developers

Features

Fixes

Deprecations, Removals, and Non-Compatible Changes

• Support for python 2.6 was dropped from the master.

• public_html directory is not created anymore in buildbot create-master (it’s not used for some
time already). Documentation was updated with suggestions to use third party web server for serving static file.

• usePTY default value has been changed from slave-config to None (use of slave-config will still
work).

• GithubStatusPush reporter was renamed to GitHubStatusPush.

5.6. Release Notes for Buildbot 0.9.0rc1 521

http://trac.buildbot.net/ticket/3562
http://trac.buildbot.net/ticket/3564
http://trac.buildbot.net/ticket/3565
http://trac.buildbot.net/ticket/3571

Buildbot Documentation, Release 0.9.7

Worker

Deprecations, Removals, and Non-Compatible Changes

• The buildbot-slave package has finished being renamed to buildbot-worker.

Worker

Fixes

• runGlob() uses the correct remote protocol for both CommandMixin and ComposititeStepMixin.

• Rename glob() to runGlob() in CommandMixin

Changes for Developers

• EC2 Latent Worker upgraded from boto2 to boto3.

Deprecations, Removals, and Non-Compatible Changes

• Worker commands version bumped to 3.0.

• Master/worker protocol has been changed:

– slave_commands key in worker information was renamed to worker_commands.

– getSlaveInfo remote method was renamed to getWorkerInfo.

– slave-config value of usePTY is not supported anymore.

– slavesrc command argument was renamed to workersrc in uploadFile and
uploadDirectory commands.

– slavedest command argument was renamed to workerdest in downloadFile command.

– Previously deprecated WorkerForBuilder.remote_shutdown() remote command has been re-
moved.

Details

For a more detailed description of the changes made in this version, see the git log itself:

git log v0.9.0b9..v0.9.0rc1

Note that Buildbot-0.8.11 was never released.

Release Notes for Buildbot 0.9.0b9

The following are the release notes for Buildbot 0.9.0b9 This version was released on May 10, 2016.

See Upgrading to Nine for a guide to upgrading from 0.8.x to 0.9.x

522 Chapter 5. Older Release Notes

Buildbot Documentation, Release 0.9.7

Master

Features

• new GitLabStatusPush to report builds results to GitLab.

• buildbot stop now waits for complete buildmaster stop by default.

• New --no-wait argument for buildbot stop which allows not to wait for complete master shutdown.

• Builder page is now sorted by builder name

• LogViewer page now supports ANSI color codes, and is displayed white on black.

Changes for Developers

• Speed improvements for integration tests by use of SynchronousTestCase, and in-memory sqlite.

• Buildbot now requires import to be sorted using isort (https://isort.readthedocs.io/en/stable/). Please run make
isort before creating a PR or use any available editor plugin in order to reorder your imports.

Fixes

• OpenStackLatentWorker uses the novaclient API correctly now.

• The MsBuild4 and MsBuild12 steps work again (bug #2878 (http://trac.buildbot.net/ticket/2878)).

• Scheduler changes are now identified by serviceid instead of objectid (bug #3532
(http://trac.buildbot.net/ticket/3532))

• Make groups optional in LdapUserInfo (bug #3511 (http://trac.buildbot.net/ticket/3511))

• Buildbot nine do not write pickles anymore in the master directory

• Fix build page to not display build urls, but rather directly the build-summary, which already contain the URL.

• UI Automatically reconnect on disconnection from the websocket. (bug #3462
(http://trac.buildbot.net/ticket/3462))

Deprecations, Removals, and Non-Compatible Changes

• The buildmaster now requires at least Twisted-14.0.1.

• The web ui has upgrade its web components dependencies to latest versions
(https://github.com/buildbot/guanlecoja-ui/tree/master#changelog). This can impact web-ui plugin.

• Web server does not provide /png and /redirect anymore (bug #3357 (http://trac.buildbot.net/ticket/3357)). This
functionality is used to implement build status images. This should be easy to implement if you need it. One
could port the old image generation code, or implement a redirection to http://shields.io/.

• Support of worker-side usePTY was removed from buildbot-worker. usePTY argument was removed
from WorkerForBuilder and Worker classes.

• html is no longer permitted in ‘label’ attributes of forcescheduler parameters.

• LocalWorker now requires buildbot-worker package, instead of buildbot-slave.

• Collapse Request Functions now takes master as first argument. The previous callable contained too few data in
order to be really usable. As collapseRequests has never been released outside of beta, backward compatibility
with previous release has not been implemented.

5.7. Release Notes for Buildbot 0.9.0b9 523

https://isort.readthedocs.io/en/stable/
http://trac.buildbot.net/ticket/2878
http://trac.buildbot.net/ticket/3532
http://trac.buildbot.net/ticket/3511
http://trac.buildbot.net/ticket/3462
https://github.com/buildbot/guanlecoja-ui/tree/master#changelog
http://trac.buildbot.net/ticket/3357
http://shields.io/

Buildbot Documentation, Release 0.9.7

• This is the last version of buildbot nine which supports python 2.6 for the master. Next version will drop python
2.6 support.

Worker

Fixes

• buildbot-worker script now outputs message to terminal.

• Windows helper script now called buildbot-worker.bat (was buildbot_worker.bat, notice under-
score), so that buildbot-worker command can be used in virtualenv both on Windows and POSIX systems.

Changes for Developers

• SLAVEPASS environment variable is not removed in default-generated buildbot.tac. Environment vari-
ables are cleared in places where they are used (e.g. in Docker Latent Worker contrib scripts).

• Master-part handling has been removed from buildbot-worker log watcher (bug #3482
(http://trac.buildbot.net/ticket/3482)).

• WorkerDetectedError exception type has been removed.

Details

For a more detailed description of the changes made in this version, see the git log itself:

git log v0.9.0b8..v0.9.0b9

Release Notes for Buildbot 0.9.0b8

The following are the release notes for Buildbot 0.9.0b8 This version was released on April 11, 2016.

See Upgrading to Nine for a guide to upgrading from 0.8.x to 0.9.x

Master

Features

• GitPoller now has a buildPushesWithNoCommits option to allow the rebuild of already known com-
mits on new branches.

• Add GitLab authentication plugin for web UI. See buildbot.www.oauth2.GitLabAuth.

• DockerLatentWorker now has a hostconfig parameter that can be used to setup host configuration
when creating a new container.

• DockerLatentWorker now has a networking_config parameter that can be used to setup container
networks.

• The DockerLatentWorker volumes attribute is now renderable.

• CMake build step is added. It provides a convenience interface to CMake (https://cmake.org/cmake/help/latest/)
build system.

524 Chapter 5. Older Release Notes

http://trac.buildbot.net/ticket/3482
https://cmake.org/cmake/help/latest/

Buildbot Documentation, Release 0.9.7

• MySQL InnoDB tables are now supported.

• HttpStatusPush has been ported to reporter API.

• StashStatusPush has been ported to reporter API.

• GithubStatusPush has been ported to reporter API.

• summaryCB of GerritStatusPush now gets not only pre-processed information but the actual build as
well.

• EC2LatentWorker supports VPCs, instance profiles, and advanced volume mounts.

Fixes

• Fix loading LdapUserInfo plugin and its documentation (bug #3371 (http://trac.buildbot.net/ticket/3371)).

• Fix deprecation warnings seen with docker-py >= 1.4 when passing arguments to docker_client.
start().

• GitHubEventHandler now uses the ['repository']['html_url'] key in the webhook payload to
populate repository, as the previously used ['url'] and ['clone_url'] keys had a different format
between push and pull requests and GitHub and GitHub Enterprise instances.

• Fix race condition where log compression could lead to empty log results in reporter api

• Error while applying db upgrade is now properly reported in the buildbot upgrade-master command line.

• Made Interpolate safe for deepcopy or serialization/deserialization

• Optimized UI REST requests for child builds and change page.

• Fix DockerLatentWorker use of volume parameter, they now propely manage src:dest syntax.

• Fix DockerLatentWorker to properly create properties so that docker parameters can be renderable.

• Lock down autobahn version for python 2.6 (note that autobahn and twisted are no longer supporting 2.6, and
thus do not receive security fixes anymore).

• Fix docs and example to always use port 8020 for the web ui.

Deprecations, Removals, and Non-Compatible Changes

• Deprecated workdir property has been removed, builddir property should be used instead.

• To support MySQL InnoDB, the size of six VARCHAR(256) columns changes.(author, branch,
category, name); object_state.name; user.identifier was reduced to VARCHAR(255).

• StatusPush has been removed from buildbot. Please use the much simpler HttpStatusPush instead.

Changes for Developers

Worker changes described in below worker section will probably impact a buildbot developer who uses undocumented
‘slave‘ API. Undocumented APIs have been replaced without failover, so any custom code that uses it shall be updated
with new undocumented API.

5.8. Release Notes for Buildbot 0.9.0b8 525

http://trac.buildbot.net/ticket/3371

Buildbot Documentation, Release 0.9.7

Worker

Package buildbot-slave is being renamed buildbot-worker. As the work is not completely finished, neither buildbot-
slave==0.9.0b8 or buildbot-worker==0.9.0b8 have been released.

You can safely use any version of buildbot-slave with buildbot==0.9.0b8, either buildbot-slave==0.8.12 or buildbot-
slave==0.9.0b7.

Transition to “worker” terminology

Since version 0.9.0 of Buildbot “slave”-based terminology is deprecated in favor of “worker”-based terminology.

For details about public API changes see Transition to “worker” terminology.

API changes done without providing fallback:

Old name New name
buildbot.buildslave.manager buildbot.worker.manager
buildbot.buildslave.manager.BuildslaveRegistration buildbot.worker.manager.WorkerRegistration
buildbot.buildslave.manager.BuildslaveRegistration.buildslave buildbot.worker.manager.WorkerRegistration.worker
buildbot.buildslave.manager.BuildslaveManager buildbot.worker.manager.WorkerManager
buildbot.buildslave.manager.BuildslaveManager.slaves buildbot.worker.manager.WorkerManager.workers
buildbot.buildslave.manager.BuildslaveManager.getBuildslaveByName buildbot.worker.manager.WorkerManager.getWorkerByName
buildbot.buildslave.docker.DockerLatentBuildSlave buildbot.worker.docker.DockerLatentWorker
buildbot.buildslave.local.LocalBuildSlave buildbot.worker.local.LocalWorker
buildbot.buildslave.local.LocalBuildSlave.LocalBuildSlaveFactory buildbot.worker.local.LocalWorker.LocalWorkerFactory
buildbot.buildslave.local.LocalBuildSlave.remote_slave buildbot.worker.local.LocalWorker.remote_worker
buildbot.buildslave.base module with all contents buildbot.worker.base
buildbot.buildslave.AbstractBuildSlave.updateSlave buildbot.worker.AbstractWorker.updateWorker
buildbot.buildslave.AbstractBuildSlave.slavebuilders buildbot.worker.AbstractWorker.workerforbuilders
buildbot.buildslave.AbstractBuildSlave.updateSlaveStatus buildbot.worker.AbstractWorker.updateWorkerStatus
buildbot.buildslave.AbstractLatentBuildSlave.updateSlave buildbot.worker.AbstractLatentWorker.updateWorker
buildbot.buildslave.BuildSlave.slave_status buildbot.worker.Worker.worker_status
buildbot.config.MasterConfig.load_slaves load_workers
buildbot.master.BuildMaster.buildslaves buildbot.master.BuildMaster.workers
buildbot.process.build.Build.slavebuilder workerforbuilder
buildbot.process.build.Build.setSlaveEnvironment setWorkerEnvironment
buildbot.process.build.Build.slaveEnvironment workerEnvironment
buildbot.process.build.Build.getSlaveCommandVersion getWorkerCommandVersion
buildbot.process.build.Build.setupSlaveBuilder setupWorkerForBuilder
buildbot.process.builder.Build.canStartWithSlavebuilder canStartWithWorkerForBuilder
buildbot.process.slavebuilder.AbstractSlaveBuilder.getSlaveCommandVersion buildbot.process.workerforbuilder.AbstractWorkerForBuilder.getWorkerCommandVersion
buildbot.process.slavebuilder.AbstractSlaveBuilder.attached method argument slave was renamed worker
buildbot.buildslave.AbstractBuildSlave.slave_commands buildbot.worker.AbstractWorker.worker_commands
buildbot.buildslave.AbstractBuildSlave.slave_environ buildbot.worker.AbstractWorker.worker_environ
buildbot.buildslave.AbstractBuildSlave.slave_basedir buildbot.worker.AbstractWorker.worker_basedir
buildbot.buildslave.AbstractBuildSlave.slave_system buildbot.worker.AbstractWorker.worker_system
buildbot.buildslave.AbstractBuildSlave.buildslaveid buildbot.worker.AbstractWorker.workerid
buildbot.buildslave.AbstractBuildSlave.addSlaveBuilder buildbot.worker.AbstractWorker.addWorkerForBuilder
buildbot.buildslave.AbstractBuildSlave.removeSlaveBuilder buildbot.worker.AbstractWorker.removeWorkerForBuilder
buildbot.buildslave.AbstractBuildSlave.messageReceivedFromSlave buildbot.worker.AbstractWorker.messageReceivedFromWorker
buildbot.process.slavebuilder.LatentSlaveBuilder constructor positional argument slave was renamed worker

Continued on next page

526 Chapter 5. Older Release Notes

Buildbot Documentation, Release 0.9.7

Table 5.1 – continued from previous page
Old name New name
buildbot.process.buildrequestdistributor.BasicBuildChooser.nextSlave nextWorker
buildbot.process.buildrequestdistributor.BasicBuildChooser.slavepool workerpool
buildbot.process.buildrequestdistributor.BasicBuildChooser.preferredSlaves preferredWorkers
buildbot.process.buildrequestdistributor.BasicBuildChooser.rejectedSlaves rejectedSlaves
buildbot.steps.shell.ShellCommand.slaveEnvironment (Note: this variable is renderable) buildbot.steps.shell.ShellCommand.workerEnvironment
buildbot.status.slave buildbot.status.worker
buildbot.status.slave.SlaveStatus buildbot.status.worker.WorkerStatus
buildbot.interfaces.IStatusReceiver.slaveConnected with all implementations buildbot.interfaces.IStatusReceiver.workerConnected
buildbot.interfaces.IStatusReceiver.slaveDisconnected with all implementations buildbot.interfaces.IStatusReceiver.workerDisconnected
buildbot.status.master.Status.slaveConnected buildbot.status.master.Status.workerConnected
buildbot.status.master.Status.slaveDisconnected buildbot.status.master.Status.workerDisconnected
buildbot.status.master.Status.slavePaused buildbot.status.master.Status.workerPaused
buildbot.status.master.Status.slaveUnpaused buildbot.status.master.Status.workerUnpaused
buildbot.status.master.Status.buildslaves buildbot.status.master.Status.workers
buildbot.status.base.StatusReceiverBase.slavePaused buildbot.status.base.StatusReceiverBase.workerPaused
buildbot.status.base.StatusReceiverBase.slaveUnpaused buildbot.status.base.StatusReceiverBase.workerUnpaused
buildbot.interfaces.IStatus.getSlaveNames with all implementations buildbot.interfaces.IStatus.getWorkerNames
buildbot.interfaces.IStatus.getSlave with all implementations buildbot.interfaces.IStatus.getWorker
buildbot.interfaces.IBuildStatus.getSlavename with all implementations buildbot.interfaces.IBuildStatus.getWorkername
buildbot.status.build.BuildStatus.setSlavename buildbot.status.build.BuildStatus.setWorkername
buildbot.status.build.BuildStatus.slavename buildbot.status.build.BuildStatus.workername (also it was moved from class static attribute to instance attribute)
buildbot.interfaces.IBuilderStatus.getSlaves with all implementations buildbot.interfaces.IBuilderStatus.getWorkers
buildbot.status.builder.BuilderStatus.slavenames buildbot.status.builder.BuilderStatus.workernames
buildbot.status.builder.BuilderStatus.setSlavenames buildbot.status.builder.BuilderStatus.setWorkernames
buildbot.process.botmaster.BotMaster.slaveLost buildbot.process.botmaster.BotMaster.workerLost
buildbot.process.botmaster.BotMaster.getBuildersForSlave buildbot.process.botmaster.BotMaster.getBuildersForWorker
buildbot.process.botmaster.BotMaster.maybeStartBuildsForSlave buildbot.process.botmaster.BotMaster.maybeStartBuildsForWorker
buildbot.locks.RealSlaveLock buildbot.locks.RealWorkerLock
buildbot.locks.RealSlaveLock.maxCountForSlave buildbot.locks.RealWorkerLock.maxCountForWorker
buildbot.protocols.base.Connection constructor positional argument buildslave was renamed worker
buildbot.protocols.base.Connection.buidslave buildbot.protocols.base.Connection.worker
buildbot.protocols.base.Connection.remoteGetSlaveInfo buildbot.protocols.base.Connection.remoteGetWorkerInfo
buildbot.protocols.pb.Connection constructor positional argument buildslave was renamed worker

Other changes done without providing fallback:

• Functions argument buildslaveName renamed to workerName.

• Loop variables, local variables, helper functions:

Old name New name
s w or worker
sl w or worker
bs (“buildslave”) w
sb wfb (“worker for builder”)
bs1(), bs2() w1(), w2()
bslave worker
BS1_NAME, BS1_ID, BS1_INFO W1_NAME, W1_ID, W1_INFO

• In buildbot.config.BuilderConfig.getConfigDict result 'slavenames' key changed to
'workernames'; 'slavebuilddir' key changed to 'workerbuilddir'; 'nextSlave' key
changed to 'nextWorker'.

5.8. Release Notes for Buildbot 0.9.0b8 527

Buildbot Documentation, Release 0.9.7

• buildbot.process.builder.BuilderControl.ping now generates ["ping", "no
worker"] event, instead of ["ping", "no slave"].

• buildbot.plugins.util.WorkerChoiceParameter (previously BuildslaveChoiceParameter)
label was changed from Build slave to Worker.

• buildbot.plugins.util.WorkerChoiceParameter (previously BuildslaveChoiceParameter)
default name was changed from slavename to workername.

• buildbot.status.builder.SlaveStatus fallback was removed. SlaveStatus was moved
to buildbot.status.builder.slave previously, and now it’s buildbot.status.worker.
WorkerStatus.

• buildbot.status.status_push.StatusPush events generation changed (this module will be com-
pletely removed in 0.9.x):

– instead of slaveConnected with data slave=... now generated workerConnected event with
data worker=...;

– instead of slaveDisconnected with data slavename=... now generated
workerDisconnected with data workername=...;

– instead of slavePaused with data slavename=... now generated workerPaused event with data
workername=...;

– instead of slaveUnpaused with data slavename=... now generated workerUnpaused event
with data workername=...;

• buildbot.status.build.BuildStatus.asDict returns worker name under 'worker' key, in-
stead of 'slave' key.

• buildbot.status.builder.BuilderStatus.asDict returns worker names under 'workers'
key, instead of 'slaves' key.

• Definitely privately used “slave”-named variables and attributes were renamed, including tests modules, classes
and methods.

Database

Database API changes done without providing fallback.

528 Chapter 5. Older Release Notes

Buildbot Documentation, Release 0.9.7

Old name New name
buildbot.db.buildslaves.
BuildslavesConnectorComponent.getBuildslaves
(rewritten in nine) and buildbot.db.buildslaves.
BuildslavesConnectorComponent.getBuildslave
(introduced in nine) results uses instead of 'slaveinfo' key

'workerinfo' key

buildbot.db.model.Model.buildslaves buildbot.db.model.Model.
workers

buildbot.db.model.Model.
configured_buildslaves

buildbot.db.model.Model.
configured_workers

buildbot.db.model.Model.
connected_buildslaves

buildbot.db.model.Model.
connected_workers

buildbot.db.buildslaves.
BuildslavesConnectorComponent.
findBuildslaveId (introduced in
nine)

buildbot.db.workers.
WorkersConnectorComponent.
findWorkerId

buildbot.db.buildslaves.
BuildslavesConnectorComponent.
deconfigureAllBuidslavesForMaster (introduced in
nine, note typo Buidslaves)

buildbot.db.workers.
WorkersConnectorComponent.
deconfigureAllWorkersForMaster

buildbot.db.buildslaves.
BuildslavesConnectorComponent.
buildslaveConfigured (introduced in
nine)

buildbot.db.workers.
WorkersConnectorComponent.
workerConfigured

buildbot.db.buildslaves.
BuildslavesConnectorComponent.
buildslaveConfigured method argument
buildslaveid was renamed (introduced in nine)

workerid

buildbot.db.buildslaves.
BuildslavesConnectorComponent.getBuildslave

buildbot.db.workers.
WorkersConnectorComponent.
getWorker

buildbot.db.buildslaves.
BuildslavesConnectorComponent.getBuildslaves
method argument _buildslaveid was renamed (introduced in
nine)

_workerid

buildbot.db.buildslaves.
BuildslavesConnectorComponent.
buildslaveConnected (introduced in
nine)

buildbot.db.workers.
WorkersConnectorComponent.
workerConnected

buildbot.db.buildslaves.
BuildslavesConnectorComponent.
buildslaveConnected method argument slaveinfo was
renamed (introduced in nine)

workerinfo

buildbot.db.buildslaves.
BuildslavesConnectorComponent.
buildslaveConnected method argument buildslaveid
was renamed (introduced in nine)

workerid

buildbot.db.buildslaves.
BuildslavesConnectorComponent.
buildslaveDisconnected (introduced in
nine)

buildbot.db.workers.
WorkersConnectorComponent.
workerDisconnected

buildbot.db.buildslaves.
BuildslavesConnectorComponent.
buildslaveDisconnected method argument
buildslaveid was renamed (introduced in nine)

workerid

buildbot.db.builds.BuildsConnectorComponent.
getBuilds method argument buildslaveid was renamed
(introduced in nine)

workerid

buildbot.db.builds.BuildsConnectorComponent.
addBuild method argument buildslaveid was renamed
(introduced in nine)

workerid

buildbot.reporters.message.MessageFormatter
template variable slavename

workername

5.8. Release Notes for Buildbot 0.9.0b8 529

Buildbot Documentation, Release 0.9.7

Data API

Python API changes:

Old name New name
buildbot.data.buildslaves workers
buildbot.data.buildslaves.BuildslaveEndpoint WorkerEndpoint
buildbot.data.buildslaves.BuildslavesEndpoint WorkersEndpoint
buildbot.data.buildslaves.Buildslave Worker
buildbot.data.buildslaves.Buildslave.
buildslaveConfigured

workerConfigured

buildbot.data.buildslaves.Buildslave.
findBuildslaveId

findWorkerId

buildbot.data.buildslaves.Buildslave.
buildslaveConnected

workerConnected

buildbot.data.buildslaves.Buildslave.
buildslaveDisconnected

workerDisconnected

buildbot.data.buildslaves.Buildslave.
deconfigureAllBuidslavesForMaster

deconfigureAllWorkersForMaster

buildslaveid in function arguments and API specification workerid
slaveinfo in function arguments and API specification workerinfo

Changed REST endpoints:

Old name New name
/buildslaves /workers
/buildslaves/n:buildslaveid /workers/n:workerid
/buildslaves/n:buildslaveid/builds /workers/n:workerid/builds
/buildslaves/:buildslaveid/builds/
:buildid

/workers/:workerid/builds/:buildid

/masters/n:masterid/buildslaves /masters/n:masterid/workers
/masters/n:masterid/buildslaves/
n:buildslaveid

/masters/n:masterid/workers/
n:workerid

/masters/n:masterid/builders/
n:builderid/buildslaves

/masters/n:masterid/builders/
n:builderid/workers

/masters/n:masterid/builders/
n:builderid/buildslaves/n:buildslaveid

/masters/n:masterid/builders/
n:builderid/workers/n:workerid

/builders/n:builderid/buildslaves /builders/n:builderid/workers
/builders/n:builderid/buildslaves/
n:buildslaveid

/builders/n:builderid/workers/
n:workerid

Changed REST object keys:

Old name New name
buildslaveid workerid
slaveinfo workerinfo
buildslave worker
buildslaves workers

data_module version bumped from 1.2.0 to 2.0.0.

Web UI

In base web UI (www/base) and Material Design web UI (www/md_base) all “slave”-named messages and identi-
fiers were renamed to use “worker” names and new REST API endpoints.

530 Chapter 5. Older Release Notes

Buildbot Documentation, Release 0.9.7

MQ layer

buildslaveid key in messages were replaced with workerid.

Details

For a more detailed description of the changes made in this version, see the git log itself:

git log v0.9.0b7..v0.9.0b8

Release Notes for Buildbot 0.9.0b7

The following are the release notes for Buildbot 0.9.0b7 This version was released on February 14, 2016.

See Upgrading to Nine for a guide to upgrading from 0.8.x to 0.9.x

Master

Features

Fixes

• Fix incompatibility with MySQL-5.7 (bug #3421 (http://trac.buildbot.net/ticket/3421))

• Fix incompatibility with postgresql driver psycopg2 (bug #3419 (http://trac.buildbot.net/ticket/3419), further
regressions will be caught by travis)

• Fix regressions in forcescheduler UI (bug #3416 (http://trac.buildbot.net/ticket/3416), bug #3418
(http://trac.buildbot.net/ticket/3418), bug #3422 (http://trac.buildbot.net/ticket/3422))

Deprecations, Removals, and Non-Compatible Changes

• The buildbot Python dist now (finally) requires SQLAlchemy-0.8.0 or later and SQLAlchemy-Migrate-0.9.0
or later. While the old pinned versions (0.7.10 and 0.7.2, respectively) still work, this compatibility is no longer
tested and this configuration should be considered deprecated.

Changes for Developers

Slave

Features

Fixes

Deprecations, Removals, and Non-Compatible Changes

Details

For a more detailed description of the changes made in this version, see the git log itself:

5.9. Release Notes for Buildbot 0.9.0b7 531

http://trac.buildbot.net/ticket/3421
http://trac.buildbot.net/ticket/3419
http://trac.buildbot.net/ticket/3416
http://trac.buildbot.net/ticket/3418
http://trac.buildbot.net/ticket/3422

Buildbot Documentation, Release 0.9.7

git log v0.9.0b6..v0.9.0b7

Release Notes for Buildbot 0.9.0b6

The following are the release notes for Buildbot 0.9.0b6 This version was released on January 20, 2016.

See Upgrading to Nine for a guide to upgrading from 0.8.x to 0.9.x

Master

Features

• Builders ui page has improved tag filtering capabilities

• Home page enhanced with the list of recent builds sorted by builder

• IRC reporter has been partially ported to work on data api.

Fixes

• better stability and reliability in the UI thanks to switch to buildbot data-module

• fix irc

Changes for Developers

• properties object is now directly present in build, and not in build_status. This should not change much unless
you try to access your properties via step.build.build_status. Remember that with PropertiesMixin, you can
access properties via getProperties on the steps, and on the builds objects.

• Javascript Data Module is now integrated, which sets a definitive API for accessing buildbot data in angularJS
UI.

Slave

Features

• The DockerLatentBuildSlave image attribute is now renderable (can take properties in account).

• The DockerLatentBuildSlave sets environment variables describing how to connect to the mas-
ter. Example dockerfiles can be found in master/contrib/docker (https://github.com/buildbot/buildbot-
contrib/blob/master/master/contrib/docker).

Details

For a more detailed description of the changes made in this version, see the git log itself:

git log v0.9.0b5..v0.9.0b6

532 Chapter 5. Older Release Notes

https://github.com/buildbot/buildbot-contrib/blob/master/master/contrib/docker

Buildbot Documentation, Release 0.9.7

Release Notes for Buildbot 0.9.0b5

The following are the release notes for Buildbot 0.9.0b5. This version was released on October 21, 2015.

See Upgrading to Nine for a guide to upgrading from 0.8.x to 0.9.x

Master

This version addresses http://trac.buildbot.net/wiki/SecurityAlert090b4 by preventing dissemination of hook informa-
tion via the web UI.

This also reverts the addition of the frontend data service in 0.9.0b4, as that contained many bugs. It will be re-landed
in a subsequent release.

Slave

No changes.

For a more detailed description of the changes made in this version, see the git log itself:

git log v0.9.0b4..0.9.0b5

Release Notes for Buildbot 0.9.0b4

The following are the release notes for Buildbot 0.9.0b4 This version was released on October 20, 2015.

See Upgrading to Nine for a guide to upgrading from 0.8.x to 0.9.x

Master

This version is very similar to 0.9.0b3, re-released due to issues with PyPI uploads.

Changes for Developers

• The data API’s startConsuming method has been removed. Instead of calling this method with a data API
path, call self.master.mq.startConsuming with an appropriate message routing pattern.

Slave

No changes since 0.9.0b3.

Details

For a more detailed description of the changes made in this version, see the git log itself:

git log v0.9.0b3..v0.9.0b4

5.11. Release Notes for Buildbot 0.9.0b5 533

http://trac.buildbot.net/wiki/SecurityAlert090b4

Buildbot Documentation, Release 0.9.7

Release Notes for Buildbot 0.9.0b3

The following are the release notes for Buildbot 0.9.0b3. This version was released on October 18, 2015.

See Upgrading to Nine for a guide to upgrading from 0.8.x to 0.9.x

Master

Features

• The irc command hello now returns ‘Hello’ in a random language if invoked more than once.

• Triggerable now accepts a reason parameter.

• GerritStatusPush now accepts a builders parameter.

• StatusPush callback now receives build results (success/failure/etc) with the buildFinished event.

• There’s a new renderable type, Transform.

• Buildbot now supports wamp as a mq backend. This allows to run a multi-master configuration. See MQ
Specification.

Fixes

• The PyFlakes and PyLint steps no longer parse output in Buildbot log headers (bug #3337
(http://trac.buildbot.net/ticket/3337)).

• GerritChangeSource is now less verbose by default, and has a debug option to enable the logs.

• P4Source no longer relies on the perforce server time to poll for new changes.

• The commit message for a change from P4Source now matches what the user typed in.

Deprecations, Removals, and Non-Compatible Changes

• The buildbot.status.results module no longer exists and has been renamed to buildbot.
process.results.

Slave

Features

• The Buildbot slave now includes the number of CPUs in the information it supplies to the master on con-
nection. This value is autodetected, but can be overridden with the --numcpus argument to buildslave
create-slave.

Details

For a more detailed description of the changes made in this version, see the git log itself:

git log v0.9.0b2..v0.9.0b3

534 Chapter 5. Older Release Notes

http://trac.buildbot.net/ticket/3337

Buildbot Documentation, Release 0.9.7

Release Notes for Buildbot 0.9.0b2

The following are the release notes for Buildbot 0.9.0b2. Buildbot 0.9.0b2 was released on August, 2 2015.

Master

Features

• Mercurial hook was updated and modernized. It is no longer necessary to fork. One can now extend PYTHON-
PATH via the hook configuration. Among others, it permits to use a buildbot virtualenv instead of installing
buildbot in all the system. Added documentation inside the hook. Misc. clean-up and reorganization in order to
make the code a bit more readable.

• UI templates can now be customizable. You can provide html or jade overrides to the www plugins, to customize
the UI

• UI side bar is now fixed by default for large screens.

Fixes

• Fix setup for missing www.hooks module

• Fix setup to install only on recents version of pip (>=1.4). This prevents unexpected upgrade to nine from people
who just use pip install -U buildbot

• Fix a crash in the git hook.

• Add checks to enforce slavenames are identifiers.

Deprecations, Removals, and Non-Compatible Changes

Changes for Developers

• The BuilderConfig nextSlave keyword argument takes a callable. This callable now receives
BuildRequest instance in its signature as 3rd parameter. For retro-compatibility, all callable taking only
2 parameters will still work.

• Data api provides a way to query the build list per slave.

• Data api provides a way to query some build properties in a build list.

Slave

• buildbot-slave now requires Python 2.6

Features

• Schedulers: the codebases parameter can now be specified in a simple list-of-strings form.

Fixes

• Fix two race conditions in the integration tests

5.14. Release Notes for Buildbot 0.9.0b2 535

Buildbot Documentation, Release 0.9.7

Deprecations, Removals, and Non-Compatible Changes

• Providing Latent AWS EC2 credentials by the .ec2/aws_id file is deprecated: Use the standard .aws/
credentials file, instead.

Details

For a more detailed description of the changes made in this version, see the git log itself:

git log v0.9.0b1..v0.9.0b2

Release Notes for Buildbot 0.9.0b1

The following are the release notes for Buildbot 0.9.0b1. Buildbot 0.9.0b1 was released on the 25th of June, 2015.

Master

This version represents a refactoring of Buildbot into a consistent, well-defined application composed of loosely
coupled components. The components are linked by a common database backend and a messaging system. This
allows components to be distributed across multiple build masters. It also allows the rendering of complex web status
views to be performed in the browser, rather than on the buildmasters.

The branch looks forward to committing to long-term API compatibility, but does not reach that goal. The Buildbot-
0.9.x series of releases will give the new APIs time to “settle in” before we commit to them. Commitment will wait
for Buildbot-1.0.0 (as per http://semver.org). Once Buildbot reaches version 1.0.0, upgrades will become much easier
for users.

To encourage contributions from a wider field of developers, the web application is designed to look like a normal
AngularJS application. Developers familiar with AngularJS, but not with Python, should be able to start hacking on
the web application quickly. The web application is “pluggable”, so users who develop their own status displays can
package those separately from Buildbot itself.

Other goals:

• An approachable HTTP REST API, used by the web application but available for any other purpose.

• A high degree of coverage by reliable, easily-modified tests.

• “Interlocking” tests to guarantee compatibility. For example, the real and fake DB implementations must both
pass the same suite of tests. Then no unseen difference between the fake and real implementations can mask
errors that will occur in production.

Requirements

The buildbot package requires Python 2.6 or higher – Python 2.5 is no longer supported. The buildbot-slave
package requires Python 2.5 or higher – Python 2.4 is no longer supported.

No additional software or systems, aside from some minor Python packages, are required.

But the devil is in the details:

• If you want to do web development, or build the buildbot-www package, you’ll need Node. It’s an Angular
app, and that’s how such apps are developed. We’ve taken pains to not make either a requirement for users - you

536 Chapter 5. Older Release Notes

http://semver.org

Buildbot Documentation, Release 0.9.7

can simply ‘pip install’ buildbot-www and be on your way. This is the case even if you’re hacking on the
Python side of Buildbot.

• For a single master, nothing else is required.

Minor Python Packages

• Buildbot requires at least Twisted-11.0.0.

• Buildbot works python-dateutil >= 1.5

Known Limitations of 0.9.0b1

The following feature will be implemented for Buildbot 0.9.1 Milestone.

• Multimaster is not supported as of Buildbot 0.9.0. http://trac.buildbot.net/ticket/2644

• Not all status plugin are converted to the new reporter API. Only email and Gerrit reporters are fully supported.
Irc support is limited, and not converted to reporter api http://trac.buildbot.net/ticket/2648

Features

Buildbot-0.9.0 introduces the Data API, a consistent and scalable method for accessing and updating the state of the
Buildbot system. This API replaces the existing, ill-defined Status API, which has been removed. Buildbot-0.9.0
introduces new WWW Server Interface using websocket for realtime updates. Buildbot code that interacted with the
Status API (a substantial portion!) has been rewritten to use the Data API. Individual features and improvements to
the Data API are not described on this page.

• Buildbot now supports plugins. They allow Buildbot to be extended by using components distributed indepen-
dently from the main code. They also provide for a unified way to access all components. When previously the
following construction was used:

from buildbot.kind.other.bits import ComponentClass

... ComponentClass ...

the following construction achieves the same result:

from buildbot.plugins import kind

... kind.ComponentClass ...

Kinds of components that are available this way are described in Plugin Infrastructure in Buildbot.

Note: While the components can be still directly imported as buildbot.kind.other.bits, this might
not be the case after Buildbot v1.0 is released.

• Both the P4 source step and P4 change source support ticket-based authentication.

• OpenStack latent slaves now support block devices as a bootable volume.

• Add new Cppcheck step.

• Add a new Docker latent BuildSlave.

5.15. Release Notes for Buildbot 0.9.0b1 537

http://trac.buildbot.net/ticket/2644
http://trac.buildbot.net/ticket/2648

Buildbot Documentation, Release 0.9.7

• Add a new configuration for creating custom services in out-of-tree CI systems or plugins. See buildbot.
util.service.BuildbotService

• Add try_ssh configuration file setting and --ssh command line option for the try tool to specify the com-
mand to use for connecting to the build master.

• GitHub change hook now supports application/json format.

• Add support for dynamically adding steps during a build. See Dynamic Build Factories.

• GitPoller now supports detecting new branches

• Git supports an “origin” option to give a name to the remote repo.

Reporters

Status plugins have been moved into the reporters namespace. Their API has slightly to changed in order to adapt
to the new data API. See respective documentation for details.

• GerritStatusPush renamed to GerritStatusPush

• MailNotifier renamed to MailNotifier

• MailNotifier argument messageFormatter should now be a MessageFormatter, due to removal
of data api, custom message formaters need to be rewritten.

• MailNotifier argument previousBuildGetter is not supported anymore

• Gerrit supports specifying an SSH identity file explicitly.

• Added StashStatusPush status hook for Atlassian Stash

• MailNotifier no longer forces SSL 3.0 when useTls is true.

• GerritStatusPush callbacks slightly changed signature, and include a master reference instead of a status
reference.

• GitHubStatus now accepts a context parameter to be passed to the GitHub Status API.

• Buildbot UI introduces branch new Authentication, and Authorizations framework.

Please look at their respective guide in WWW Server

Fixes

• Buildbot is now compatible with SQLAlchemy 0.8 and higher, using the newly-released SQLAlchemy-Migrate.

• The version check for SQLAlchemy-Migrate was fixed to accept more version string formats.

• The HTTPStep step’s requeset parameters are now renderable.

• With Git(), force the updating submodules to ensure local changes by the build are overwitten. This both ensures
more consistent builds and avoids errors when updating submodules.

• Buildbot is now compatible with Gerrit v2.6 and higher.

To make this happen, the return result of reviewCB and summaryCB callback has changed from

(message, verified, review)

to

538 Chapter 5. Older Release Notes

Buildbot Documentation, Release 0.9.7

{'message': message,
'labels': {'label-name': value,

...
}

}

The implications are:

– there are some differences in behaviour: only those labels that were provided will be updated

– Gerrit server must be able to provide a version, if it can’t the GerritStatusPush will not work

Note: If you have an old style reviewCB and/or summaryCB implemented, these will still work, however
there could be more labels updated than anticipated.

More detailed information is available in GerritStatusPush section.

• P4Source‘s server_tz parameter now works correctly.

• The revlink in changes produced by the Bitbucket hook now correctly includes the changes/ portion of
the URL.

• PBChangeSource‘s git hook master/contrib/git_buildbot.py (https://github.com/buildbot/buildbot-
contrib/blob/master/master/contrib/git_buildbot.py) now supports git tags

A pushed git tag generates a change event with the branch property equal to the tag name. To schedule builds
based on buildbot tags, one could use something like this:

c['schedulers'].append(
SingleBranchScheduler(name='tags',

change_filter=filter.ChangeFilter(
branch_re='v[0-9]+\.[0-9]+\.[0-9]+(?:-pre|rc[0-9]+|p[0-9]+)?')

treeStableTimer=None,
builderNames=['tag_build']))

• Missing “name” and “email” properties received from Gerrit are now handled properly

• Fixed bug which made it impossible to specify the project when using the BitBucket dialect.

• The PyLint step has been updated to understand newer output.

• Fixed SVN master-side source step: if a SVN operation fails, the repository end up in a situation when a
manual intervention is required. Now if SVN reports such a situation during initial check, the checkout will be
clobbered.

• The build properties are now stored in the database in the build_properties table.

• The list of changes in the build page now displays all the changes since the last sucessful build.

• GitHub change hook now correctly responds to ping events.

• buildbot.steps.http steps now correctly have url parameter renderable

• When no arguments are used buildbot checkconfig now uses buildbot.tac to locate the master
config file.

• buildbot.util.flatten now correctly flattens arbitrarily nested lists. buildbot.util.flattened_iterator provides an
iterable over the collection which may be more efficient for extremely large lists.

5.15. Release Notes for Buildbot 0.9.0b1 539

https://github.com/buildbot/buildbot-contrib/blob/master/master/contrib/git_buildbot.py

Buildbot Documentation, Release 0.9.7

Deprecations, Removals, and Non-Compatible Changes

• BonsaiPoller is removed.

• buildbot.ec2buildslave is removed; use buildbot.buildslave.ec2 instead.

• buildbot.libvirtbuildslave is removed; use buildbot.buildslave.libvirt instead.

• buildbot.util.flatten flattens lists and tuples by default (previously only lists). Additionally, flattening something
that isn’t the type to flatten has different behaviour. Previously, it would return the original value. Instead, it
now returns an array with the original value as the sole element.

• buildbot.tac does not support print statements anymore. Such files should now use print as a function
instead (see https://docs.python.org/3.0/whatsnew/3.0.html#print-is-a-function for more details). Note that this
applies to both python2.x and python3.x runtimes.

WebStatus

The old, clunky WebStatus has been removed. You will like the new interface! RIP WebStatus, you were a good
friend.

remove it and replace it with www configuration.

Requirements

• Buildbot’s tests now require at least Mock-0.8.0.

• SQLAlchemy-Migrate-0.6.1 is no longer supported.

• Builder names are now restricted to unicode strings or ASCII bytestrings. Encoded bytestrings are not accepted.

Steps

• New-style steps are now the norm, and support for old-style steps is deprecated. Such support will be removed
in the next release.

– Status strings for old-style steps could be supplied through a wide variety of conflicting means
(describe, description, descriptionDone, descriptionSuffix, getText, and
setText, to name just a few). While all attempts have been made to maintain compatibility, you may
find that the status strings for old-style steps have changed in this version. To fix steps that call setText,
try setting the descriptionDone attribute directly, instead – or just rewrite the step in the new style.

• Old-style source steps (imported directly from buildbot.steps.source) are no longer supported on the
master.

• The monotone source step got an overhaul and can now better manage its database (initialize and/or migrate it,
if needed). In the spirit of monotone, buildbot now always keeps the database around, as it’s an append-only
database.

Changes and Removals

• Buildslave names must now be 50-character identifier. Note that this disallows some common characters in
bulidslave names, including spaces, /, and ..

540 Chapter 5. Older Release Notes

https://docs.python.org/3.0/whatsnew/3.0.html#print-is-a-function

Buildbot Documentation, Release 0.9.7

• Builders now have “tags” instead of a category. Builders can have multiple tags, allowing more flexible builder
displays.

• ForceScheduler has the following changes:

– The default configuration no longer contains four AnyPropertyParameter instances.

– Configuring codebases is now mandatory, and the deprecated branch, repository, project,
revision are not supported anymore in ForceScheduler

– buildbot.schedulers.forcesched.BaseParameter.updateFromKwargs now takes a
collector parameter used to collect all validation errors

• Periodic, Nightly and NightlyTriggerable have the following changes:

– The Periodic and Nightly schedulers can now consume changes and use onlyIfChanged and
createAbsoluteTimestamps.

– All “timed” schedulers now handle codebases the same way. Configuring codebases is strongly
recommended. Using the branch parameter is discouraged.

• Logs are now stored as Unicode strings, and thus must be decoded properly from the bytestrings provided by
shell commands. By default this encoding is assumed to be UTF-8, but the logEncoding parameter can be
used to select an alternative. Steps and individual logfiles can also override the global default.

• The PB status service uses classes which have now been removed, and anyway is redundant to the REST API,
so it has been removed. It has taken the following with it:

– buildbot statuslog

– buildbot statusgui (the GTK client)

– buildbot debugclient

The PBListener status listener is now deprecated and does nothing. Accordingly, there is no external access
to status objects via Perspective Broker, aside from some compatibility code for the try scheduler.

The debugPassword configuration option is no longer needed and is thus deprecated.

• The undocumented and un-tested TinderboxMailNotifier, designed to send emails suitable for the aban-
doned and insecure Tinderbox tool, has been removed.

• Buildslave info is no longer available via Interpolate and the SetSlaveInfo buildstep has been removed.

• The undocumented path parameter of the MasterShellCommand buildstep has been renamed workdir
for better consistency with the other steps.

• The name and source of a Property have to be unicode or ascii string.

• Property values must be serializable in JSON.

• IRC has the following changes:

– categories parameter is deprecated and removed. It should be replaced with tags=[cat]

– noticeOnChannel parameter is deprecated and removed.

• workdir behavior has been unified:

– workdir attribute of steps is now a property in BuildStep, and choose the workdir given following
priority:

* workdir of the step, if defined

* workdir of the builder (itself defaults to ‘build’)

5.15. Release Notes for Buildbot 0.9.0b1 541

Buildbot Documentation, Release 0.9.7

* setDefaultWorkdir() has been deprecated, but is now behaving the same for all the steps: Setting
self.workdir if not already set

• Trigger now has a getSchedulersAndProperties method that can ve overridden to support dynamic
triggering.

• `master.cfg is now parsed from a thread. Previously it was run in the main thread, and thus slowing down
the master in case of big config, or network access done to generate the config.

• SVNPoller‘s svnurl parameter has been changed to repourl.

Changes for Developers

• Botmaster no longer service parent for buildslaves. Service parent functionality has been transferred to Build-
slaveManager. It should be noted Botmaster no longer has a slaves field as it was moved to BuildslaveMan-
ager.

• The sourcestamp DB connector now returns a patchid field.

• Buildbot no longer polls the database for jobs. The db_poll_interval configuration parameter and the db
key of the same name are deprecated and will be ignored.

• The interface for adding changes has changed. The new method is master.data.updates.addChange
(implemented by addChange), although the old interface (master.addChange) will remain in place for a
few versions. The new method:

– returns a change ID, not a Change instance;

– takes its when_timestamp argument as epoch time (UNIX time), not a datetime instance; and

– does not accept the deprecated parameters who, isdir, is_dir, and when.

– requires that all strings be unicode, not bytestrings.

Please adjust any custom change sources accordingly.

• A new build status, CANCELLED, has been added. It is used when a step or build is deliberately cancelled by
a user.

• This upgrade will delete all rows from the buildrequest_claims table. If you are using this table for
analytical purposes outside of Buildbot, please back up its contents before the upgrade, and restore it afterward,
translating object IDs to scheduler IDs if necessary. This translation would be very slow and is not required for
most users, so it is not done automatically.

• All of the schedulers DB API methods now accept a schedulerid, rather than an objectid. If you have custom
code using these methods, check your code and make the necessary adjustments.

• The addBuildsetForSourceStamp method has become addBuildsetForSourceStamps, and
its signature has changed. The addBuildsetForSourceStampSetDetails method has be-
come addBuildsetForSourceStampsWithDefaults, and its signature has changed. The
addBuildsetForSourceStampDetails method has been removed. The addBuildsetForLatest
method has been removed. It is equivalent to addBuildsetForSourceStampDetails with
sourcestamps=None. These methods are not yet documented, and their interface is not stable. Consult
the source code for details on the changes.

• The preStartConsumingChanges and startTimedSchedulerService hooks have been removed.

• The triggerable schedulers’ trigger method now requires a list of sourcestamps, rather than a dictionary.

• The SourceStamp class is no longer used. It remains in the codebase to support loading data from pickles on
upgrade, but should not be used in running code.

542 Chapter 5. Older Release Notes

Buildbot Documentation, Release 0.9.7

• The BuildRequest class no longer has full source or sources attributes. Use the data API to get this
information (which is associated with the buildset, not the build request) instead.

• The undocumented BuilderControl method submitBuildRequest has been removed.

• The debug client no longer supports requesting builds (the requestBuild method has been removed). If
you have been using this method in production, consider instead creating a new change source, using the
ForceScheduler, or using one of the try schedulers.

• The buildbot.misc.SerializedInvocation class has been removed; use buildbot.util.
debounce.method instead.

• The progress attributes of both buildbot.process.buildstep.BuildStep and buildbot.
process.build.Build have been removed. Subclasses should only be accessing the progress-tracking
mechanics via the buildbot.process.buildstep.BuildStep.setProgress method.

Slave

Features

Fixes

Deprecations, Removals, and Non-Compatible Changes

• buildmaster and buildslave no longer supports old-style source steps.

• On Windows, if a ShellCommand step in which command was specified as a list is executed, and a list ele-
ment is a string consisting of a single pipe character, it no longer creates a pipeline. Instead, the pipe character is
passed verbatim as an argument to the program, like any other string. This makes command handling consistent
between Windows and Unix-like systems. To have a pipeline, specify command as a string.

Details

For a more detailed description of the changes made in this version, see the git log itself:

git log v0.8.10..v0.9.0b1

Release Notes for Buildbot 0.8.11

The following are the release notes for Buildbot 0.8.11. This version was released on the 20th of April, 2015.

Master

Requirements:

• Buildbot works python-dateutil >= 1.5

5.16. Release Notes for Buildbot 0.8.11 543

Buildbot Documentation, Release 0.9.7

Features

• GitHub change hook now supports application/json format.

• Buildbot is now compatible with Gerrit v2.6 and higher.

To make this happen, the return result of reviewCB and summaryCB callback has changed from

(message, verified, review)

to

{'message': message,
'labels': {'label-name': value,

...
}

}

The implications are:

– there are some differences in behaviour: only those labels that were provided will be updated

– Gerrit server must be able to provide a version, if it can’t the GerritStatusPush will not work

Note: If you have an old style reviewCB and/or summaryCB implemented, these will still work, however
there could be more labels updated than anticipated.

More detailed information is available in GerritStatusPush section.

• Buildbot now supports plugins. They allow Buildbot to be extended by using components distributed indepen-
dently from the main code. They also provide for a unified way to access all components. When previously the
following construction was used:

from buildbot.kind.other.bits import ComponentClass

... ComponentClass ...

the following construction achieves the same result:

from buildbot.plugins import kind

... kind.ComponentClass ...

Kinds of components that are available this way are described in Plugin Infrastructure in Buildbot.

Note: While the components can be still directly imported as buildbot.kind.other.bits, this might
not be the case after Buildbot v1.0 is released.

• GitPoller now supports detecting new branches

• MasterShellCommand now renders the path argument.

• ShellMixin: the workdir can now be overridden in the call to makeRemoteShellCommand.

• GitHub status target now allows to specify a different base URL for the API (usefule for GitHub enterprise
installations). This feature requires txgithub of version 0.2.0 or better.

544 Chapter 5. Older Release Notes

Buildbot Documentation, Release 0.9.7

• GitHub change hook now supports payload validation using shared secret, see the GitHub hook documentation
for details.

• Added StashStatusPush status hook for Atlassian Stash

• Builders can now have multiple “tags” associated with them. Tags can be used in various status classes as filters
(eg, on the waterfall page).

• MailNotifier no longer forces SSL 3.0 when useTls is true.

• GitHub change hook now supports function as codebase argument.

• GitHub change hook now supports pull_request events.

• Trigger: the getSchedulersAndProperties customization method has been backported from Nine.
This provides a way to dynamically specify which schedulers (and the properties for that scheduler) to trigger
at runtime.

Fixes

• GitHub change hook now correctly responds to ping events.

• buildbot.steps.http steps now correctly have url parameter renderable

• MasterShellCommand now correctly logs the working directory where it was run.

• With Git(), force the updating submodules to ensure local changes by the build are overwitten. This both ensures
more consistent builds and avoids errors when updating submodules.

• With Git(), make sure ‘git submodule sync’ is called before ‘git submodule update’ to update stale remote urls
(bug #2155 (http://trac.buildbot.net/ticket/2155)).

Deprecations, Removals, and Non-Compatible Changes

• The builder parameter “category” is deprecated and is replaced by a parameter called “tags”.

Changes for Developers

• Trigger: createTriggerProperties now takes one argument (the properties to generate).

• Trigger: getSchedulers method is no longer used and was removed.

Slave

Features

Fixes

Deprecations, Removals, and Non-Compatible Changes

Details

For a more detailed description of the changes made in this version, see the git log itself:

git log v0.8.10..532cf49

5.16. Release Notes for Buildbot 0.8.11 545

http://trac.buildbot.net/ticket/2155

Buildbot Documentation, Release 0.9.7

Release Notes for Buildbot 0.8.10

The following are the release notes for Buildbot 0.8.10. Buildbot 0.8.10 was released on the 2nd of December, 2014.

Master

Features

• Both the P4 source step and P4 change source support ticket-based authentication.

• Clickable ‘categories’ links added in ‘Waterfall’ page (web UI).

Fixes

• Buildbot is now compatible with SQLAlchemy 0.8 and higher, using the newly-released SQLAlchemy-Migrate.

• The HTTPStep step’s request parameters are now renderable.

• Fixed content spoofing vulnerabilities (bug #2589 (http://trac.buildbot.net/ticket/2589)).

• Fixed cross-site scripting in status_json (bug #2943 (http://trac.buildbot.net/ticket/2943)).

• GerritStatusPush supports specifying an SSH identity file explicitly.

• Fixed bug which made it impossible to specify the project when using the BitBucket dialect.

• Fixed SVN master-side source step: if a SVN operation fails, the repository end up in a situation when a
manual intervention is required. Now if SVN reports such a situation during initial check, the checkout will be
clobbered.

• Fixed master-side source steps to respect the specified timeout when removing files.

Deprecations, Removals, and Non-Compatible Changes

Changes for Developers

Slave

Features

Fixes

Deprecations, Removals, and Non-Compatible Changes

Details

For a more detailed description of the changes made in this version, see the git log itself:

git log v0.8.9..eight

Release Notes for Buildbot 0.8.9

The following are the release notes for Buildbot 0.8.9. Buildbot 0.8.9 was released on 14 June, 2014.

546 Chapter 5. Older Release Notes

http://trac.buildbot.net/ticket/2589
http://trac.buildbot.net/ticket/2943

Buildbot Documentation, Release 0.9.7

Master

Features

• The following optional parameters have been added to EC2LatentBuildSlave

– Boolean parameter spot_instance, default False, creates a spot instance.

– Float parameter max_spot_price defines the maximum bid for a spot instance.

– List parameter volumes, takes a list of (volume_id, mount_point) tuples.

– String parameter placement is appended to the region parameter, e.g.
region='us-west-2', placement='b' will result in the spot request being placed in
us-west-2b.

– Float parameter price_multiplier specifies the percentage bid above the 24-hour average spot
price.

– Dict parameter tags specifies AWS tags as key/value pairs to be applied to new instances.

With spot_instance=True, an EC2LatentBuildSlave will attempt to create a spot instance with the
provided spot price, placement, and so on.

• The web hooks now include support for Bitbucket, GitLab and Gitorious.

• The GitHub webhook has been updated to work with v3 of the GitHub webhook API.

• The GitHub webhook can now optionally ignore non-distinct commits (bug #1861
(http://trac.buildbot.net/ticket/1861)).

• The HgPoller and GitPoller now split filenames on newlines, rather than whitespace, so files containing
whitespace are handled correctly.

• Add ‘pollAtLaunch’ flag for polling change sources. This allows a poller to poll immediately on launch and get
changes that occurred while it was down.

• Added the BitbucketPullrequestPoller changesource.

• The GitPoller can now be configured to poll all available branches (pull request 1010
(https://github.com/buildbot/buildbot/pull/1010)).

• The P4Source changesource now supports Perforce servers in a different timezone than the buildbot master
(pull request 728 (https://github.com/buildbot/buildbot/pull/728)).

• Each Scheduler type can now take a ‘reason’ argument to customize the reason it uses for triggered builds.

• A new argument createAbsoluteSourceStamps has been added to SingleBranchScheduler for
use with multiple codebases.

• A new argument createAbsoluteSourceStamps has been added to Nightly for use with multiple
codebases.

• The Periodic scheduler now supports codebases.

• The ForceScheduler now takes a buttonName argument to specify the name of the button on the force-
build form.

• Master side source checkout steps now support patches (bug #2098 (http://trac.buildbot.net/ticket/2098)).
The Git and Mercurial steps use their inbuilt commands to apply patches (bug #2563
(http://trac.buildbot.net/ticket/2563)).

• Master side source checkout steps now support retry option (bug #2465 (http://trac.buildbot.net/ticket/2465)).

5.18. Release Notes for Buildbot 0.8.9 547

http://trac.buildbot.net/ticket/1861
https://github.com/buildbot/buildbot/pull/1010
https://github.com/buildbot/buildbot/pull/728
http://trac.buildbot.net/ticket/2098
http://trac.buildbot.net/ticket/2563
http://trac.buildbot.net/ticket/2465

Buildbot Documentation, Release 0.9.7

• Master-side source checkout steps now respond to the “stop build” button (bug #2356
(http://trac.buildbot.net/ticket/2356)).

• Git source checkout step now supports reference repositories.

• The Git step now uses the git clean option -f twice, to also remove untracked directories managed by another
git repository. See bug #2560 (http://trac.buildbot.net/ticket/2560).

• The branch and codebase arguments to the Git step are now renderable.

• Gerrit integration with Git Source step on master side (bug #2485 (http://trac.buildbot.net/ticket/2485)).

• P4 source step now supports more advanced options.

• The master-side SVN step now supports authentication for mode=export, fixing bug #2463
(http://trac.buildbot.net/ticket/2463).

• The SVN step will now canonicalize URL’s before matching them for better accuracy.

• The SVN step now obfuscates the password in status logs, fixing bug #2468 (http://trac.buildbot.net/ticket/2468).

• SVN source step and ShellCommand now support password obfuscation. (bug #2468
(http://trac.buildbot.net/ticket/2468) and bug #1748 (http://trac.buildbot.net/ticket/1748)).

• CVS source step now checks for “sticky dates” from a previous checkout before updating an existing source
directory.

• :Repo now supports a depth flag when initializing the repo. This controls the amount of git history to down-
load.

• The manifestBranch of the bb:step:Repo step is now renderable

• New source step Monotone added on master side.

• New source step Darcs added on master side.

• A new Robocopy step is available for Windows builders (pull request 728
(https://github.com/buildbot/buildbot/pull/728)).

• The attributes description, descriptionDone and descriptionSuffix have been moved from
ShellCommand to its superclass BuildStep so that any class that inherits from BuildStep can provide a
suitable description of itself.

• A new FlattenList Renderable has been added which can flatten nested lists.

• Added new build steps for VC12, VS2013 and MsBuild12.

• The mode parameter of the VS steps is now renderable (bug #2592 (http://trac.buildbot.net/ticket/2592)).

• The HTTPStep step can make arbitrary HTTP requests from the master, allowing communication with external
APIs. This new feature requires the optional txrequests and requests Python packages.

• A new MultipleFileUpload step was added to allow uploading several files (or directories) in a single
step.

• Information about the buildslaves (admin, host, etc) is now persisted in the database and available even if the
slave is not connected.

• Buildslave info can now be retrieved via Interpolate and a new SetSlaveInfo buildstep.

• The GNUAutotools factory now has a reconf option to run autoreconf before ./configure.

• Builder configurations can now include a description, which will appear in the web UI to help humans
figure out what the builder does.

• The WebStatus builder page can now filter pending/current/finished builds by property parameters of the form
?property.<name>=<value>.

548 Chapter 5. Older Release Notes

http://trac.buildbot.net/ticket/2356
http://trac.buildbot.net/ticket/2560
http://trac.buildbot.net/ticket/2485
http://trac.buildbot.net/ticket/2463
http://trac.buildbot.net/ticket/2468
http://trac.buildbot.net/ticket/2468
http://trac.buildbot.net/ticket/1748
https://github.com/buildbot/buildbot/pull/728
http://trac.buildbot.net/ticket/2592

Buildbot Documentation, Release 0.9.7

• The WebStatus StatusResourceBuilder page can now take the maxsearch argument

• The WebStatus has a new authz “view” action that allows you to require users to logged in to view the WebStatus.

• The WebStatus now shows revisions (+ codebase) where it used to simply say “multiple rev”.

• The Console view now supports codebases.

• The web UI for Builders has been updated:

– shows the build ‘reason’ and ‘interested users’

– shows sourcestamp information for builders that use multiple codebases (instead of the generic “mul-
tiple rev” placeholder that was shown before).

• The waterfall and atom/rss feeds can be filtered with the project url paramter.

• The WebStatus Authorization support now includes a view action which can be used to restrict read-only
access to the Buildbot instance.

• The web status now has options to cancel some or all pending builds.

• The WebStatus now interprets ANSI color codes in stdio output.

• It is now possible to select categories to show in the waterfall help

• The web status now automatically scrolls output logs (pull request 1078
(https://github.com/buildbot/buildbot/pull/1078)).

• The web UI now supports a PNG Status Resource that can be accessed publicly from for example README.md
files or wikis or whatever other resource. This view produces an image in PNG format with information about
the last build for the given builder name or whatever other build number if is passed as an argument to the view.

• Revision links for commits on SouceForge (Allura) are now automatically generated.

• The ‘Rebuild’ button on the web pages for builds features a dropdown to choose whether to rebuild from exact
revisions or from the same sourcestamps (ie, update branch references)

• Build status can be sent to GitHub. Depends on txgithub package. See GitHubStatusPush and GitHub
Commit Status (https://github.com/blog/1227-commit-status-api).

• The IRC bot of IRC will, unless useRevisions is set, shorten long lists of revisions printed when a build starts;
it will only show two, and the number of additional revisions included in the build.

• A new argument summaryCB has been added to GerritStatusPush, to allow sending one review per build-
set. Sending a single “summary” review per buildset is now the default if neither summaryCB nor reviewCB
are specified.

• The comments field of changes is no longer limited to 1024 characters on MySQL and Postgres. See bug #2367
(http://trac.buildbot.net/ticket/2367) and pull request 736 (https://github.com/buildbot/buildbot/pull/736).

• HTML log files are no longer stored in status pickles (pull request 1077
(https://github.com/buildbot/buildbot/pull/1077))

• Builds are now retried after a slave is lost (pull request 1049 (https://github.com/buildbot/buildbot/pull/1049)).

• The buildbot status client can now access a build properties via the getProperties call.

• The start, restart, and reconfig commands will now wait for longer than 10 seconds as long as the
master continues producing log lines indicating that the configuration is progressing.

• Added new config option protocols which allows to configure multiple protocols on single master.

• RemoteShellCommands can be killed by SIGTERM with the sigtermTime parameter before resorting to
SIGKILL (bug #751 (http://trac.buildbot.net/ticket/751)). If the slave’s version is less than 0.8.9, the slave
will kill the process with SIGKILL regardless of whether sigtermTime is supplied.

5.18. Release Notes for Buildbot 0.8.9 549

https://github.com/buildbot/buildbot/pull/1078
https://github.com/blog/1227-commit-status-api
https://github.com/blog/1227-commit-status-api
http://trac.buildbot.net/ticket/2367
https://github.com/buildbot/buildbot/pull/736
https://github.com/buildbot/buildbot/pull/1077
https://github.com/buildbot/buildbot/pull/1049
http://trac.buildbot.net/ticket/751

Buildbot Documentation, Release 0.9.7

• Introduce an alternative way to deploy Buildbot and try the pyflakes tutorial using Docker.

• Added zsh and bash tab-completions support for ‘buildbot’ command.

• An example of a declarative configuration is included in master/contrib/SimpleConfig.py, with
copious comments.

• Systemd unit files for Buildbot are available in the master/contrib/ (https://github.com/buildbot/buildbot-
contrib/blob/master/master/contrib/) directory.

• We’ve added some extra checking to make sure that you have a valid locale before starting buildbot (#2608).

Forward Compatibility

In preparation for a more asynchronous implementation of build steps in Buildbot 0.9.0, this version introduces support
for new-style steps. Existing old-style steps will continue to function correctly in Buildbot 0.8.x releases and in
Buildbot 0.9.0, but support will be dropped soon afterward. See New-Style Build Steps, below, for guidance on
rewriting existing steps in this new style. To eliminate ambiguity, the documentation for this version only reflects
support for new-style steps. Refer to the documentation for previous versions for infrormation on old-style steps.

Fixes

• Fixes an issue where GitPoller sets the change branch to refs/heads/master - which isn’t compatible
with Git (pull request 1069 (https://github.com/buildbot/buildbot/pull/1069)).

• Fixed an issue where the Git and CVS source steps silently changed the workdir to 'build' when the
‘copy’ method is used.

• The CVS source step now respects the timeout parameter.

• The Git step now uses the git submodule update option –init when updating the submodules of an existing
repository, so that it will receive any newly added submodules.

• The web status no longer relies on the current working directory, which is not set correctly by some initscripts,
to find the templates/ directory (bug #2586 (http://trac.buildbot.net/ticket/2586)).

• The Perforce source step uses the correct path separator when the master is on Windows and the build slave is
on a POSIX OS (pull request 1114 (https://github.com/buildbot/buildbot/pull/1114)).

• The source steps now correctly interpolate properties in env.

• GerritStatusPush now supports setting scores with Gerrit 2.6 and newer

• The change hook no longer fails when passing unicode to change_hook_auth (pull request 996
(https://github.com/buildbot/buildbot/pull/996)).

• The source steps now correctly interpolate properties in env.

• Whitespace is properly handled for StringParameter, so that appropriate validation errors are raised for
required parameters (pull request 1084 (https://github.com/buildbot/buildbot/pull/1084)).

• Fix a rare case where a buildtep might fail from a GeneratorExit exception (pull request 1063
(https://github.com/buildbot/buildbot/pull/1063)).

• Fixed an issue where UTF-8 data in logs caused RSS feed exceptions (bug #951
(http://trac.buildbot.net/ticket/951)).

• Fix an issue with unescaped author names causing invalid RSS feeds (bug #2596
(http://trac.buildbot.net/ticket/2596)).

• Fixed an issue with pubDate format in feeds.

550 Chapter 5. Older Release Notes

https://github.com/buildbot/buildbot-contrib/blob/master/master/contrib/
https://github.com/buildbot/buildbot/pull/1069
http://trac.buildbot.net/ticket/2586
https://github.com/buildbot/buildbot/pull/1114
https://github.com/buildbot/buildbot/pull/996
https://github.com/buildbot/buildbot/pull/1084
https://github.com/buildbot/buildbot/pull/1063
http://trac.buildbot.net/ticket/951
http://trac.buildbot.net/ticket/2596

Buildbot Documentation, Release 0.9.7

• Fixed an issue where the step text value could cause a TypeError in the build detail page (pull request 1061
(https://github.com/buildbot/buildbot/pull/1061)).

• Fix failures where git clean fails but could be clobbered (pull request 1058
(https://github.com/buildbot/buildbot/pull/1058)).

• Build step now correctly fails when the git clone step fails (pull request 1057
(https://github.com/buildbot/buildbot/pull/1057)).

• Fixed a race condition in slave shutdown (pull request 1019 (https://github.com/buildbot/buildbot/pull/1019)).

• Now correctly unsubscribes StatusPush from status updates when reconfiguring (pull request 997
(https://github.com/buildbot/buildbot/pull/997)).

• Fixes parsing git commit messages that are blank.

• Git no longer fails when work dir exists but isn’t a checkout (bug #2531 (http://trac.buildbot.net/ticket/2531)).

• The haltOnFailure and flunkOnFailure attributes of ShellCommand are now renderable. (bug #2486
(http://trac.buildbot.net/ticket/2486)).

• The rotateLength and maxRotatedFile arguments are no longer treated as strings in buildbot.tac. This
fixes log rotation. The upgrade_master command will notify users if they have this problem.

• Buildbot no longer specifies a revision when pulling from a mercurial (bug #438
(http://trac.buildbot.net/ticket/438)).

• The WebStatus no longer incorrectly refers to fields that might not be visible.

• The GerritChangeSource now sets a default author, fixing an exception that occured when Gerrit didn’t report
an owner name/email.

• Respects the RETRY status when an interrupt occurs.

• Fixes an off-by-one error when the tryclient is finding the current git branch.

• Improve the Mercurial source stamp extraction in the try client.

• Fixes some edge cases in timezone handling for python < 2.7.4 (bug #2522
(http://trac.buildbot.net/ticket/2522)).

• The EC2LatentBuildSlave will now only consider available AMI’s.

• Fixes a case where the first build runs on an old slave instead of a new one after reconfig (bug #2507
(http://trac.buildbot.net/ticket/2507)).

• The e-mail address validation for the MailNotifier status receiver has been improved.

• The --db parameter of buildbot create-master is now validated.

• No longer ignores default choice for ForceScheduler list parameters

• Now correctly handles BuilderConfig(..., mergeRequests=False) (bug #2555
(http://trac.buildbot.net/ticket/2555)).

• Now excludes changes from sourcestamps when they aren’t in the DB (bug #2554
(http://trac.buildbot.net/ticket/2554)).

• Fixes a compatibility issue with HPCloud in the OpenStack latent slave.

• Allow _ as a valid character in JSONP callback names.

• Fix build start time retrieval in the WebStatus grid view.

• Increase the length of the DB fields changes.comments and buildset_properties.
property_value.

5.18. Release Notes for Buildbot 0.8.9 551

https://github.com/buildbot/buildbot/pull/1061
https://github.com/buildbot/buildbot/pull/1058
https://github.com/buildbot/buildbot/pull/1057
https://github.com/buildbot/buildbot/pull/1019
https://github.com/buildbot/buildbot/pull/997
http://trac.buildbot.net/ticket/2531
http://trac.buildbot.net/ticket/2486
http://trac.buildbot.net/ticket/438
http://trac.buildbot.net/ticket/2522
http://trac.buildbot.net/ticket/2507
http://trac.buildbot.net/ticket/2555
http://trac.buildbot.net/ticket/2554

Buildbot Documentation, Release 0.9.7

Deprecations, Removals, and Non-Compatible Changes

• The slave-side source steps are deprecated in this version of Buildbot, and master-side support will be removed
in a future version. Please convert any use of slave-side steps (imported directly from buildbot.steps.
source, rather than from a specific module like buildbot.steps.source.svn) to use master-side steps.

• Both old-style and new-style steps are supported in this version of Buildbot. Upgrade your steps to new-style
now, as support for old-style steps will be dropped after Buildbot-0.9.0. See New-Style Build Steps for details.

– The LoggingBuildStep class has been deprecated, and support will be removed along with support for
old-style steps after the Buildbot-0.9.0 release. Instead, subclass BuildStep and mix in ShellMixin
to get similar behavior.

• slavePortnum option deprecated, please use c['protocols']['pb']['port'] to set up PB port

• The buildbot.process.mtrlogobserver module have been renamed to buildbot.steps.
mtrlogobserver.

• The buildmaster now requires at least Twisted-11.0.0.

• The buildmaster now requires at least sqlalchemy-migrate 0.6.1.

• The hgbuildbot Mercurial hook has been moved to contrib/, and does not work with recent versions of
Mercurial and Twisted. The runtimes for these two tools are incompatible, yet hgbuildbot attempts to run
both in the same Python interpreter. Mayhem ensues.

• The try scheduler’s --connect=ssh method no longer supports waiting for results (--wait).

• The former buildbot.process.buildstep.RemoteCommand class and its subclasses are now in
buildbot.process.remotecommand, although imports from the previous path will continue to work.
Similarly, the former buildbot.process.buildstep.LogObserver class and its subclasses are now
in buildbot.process.logobserver, although imports from the previous path will continue to work.

• The undocumented BuildStep method checkDisconnect is deprecated and now does nothing as the han-
dling of disconnects is now handled in the failed method. Any custom steps adding this method as a callback
or errback should no longer do so.

• The build step MsBuild is now called MsBuild4 as multiple versions are now supported. An alias is provided
so existing setups will continue to work, but this will be removed in a future release.

Changes for Developers

• The CompositeStepMixin now provides a runGlob method to check for files on the slave that match a
given shell-style pattern.

• The BuilderStatus now allows you to pass a filter_fn argument to generateBuilds.

Slave

Features

• Added zsh and bash tab-completions support for ‘buildslave’ command.

• RemoteShellCommands accept the new sigtermTime parameter from master. This allows processes to be killed
by SIGTERM before resorting to SIGKILL (bug #751 (http://trac.buildbot.net/ticket/751))

• Commands will now throw a ValueError if mandatory args are not present.

• Added a new remote command GlobPath that can be used to call Python’s glob.glob on the slave.

552 Chapter 5. Older Release Notes

http://trac.buildbot.net/ticket/751

Buildbot Documentation, Release 0.9.7

Fixes

• Fixed an issue when buildstep stop() was raising an exception incorrectly if timeout for buildstep wasn’t set or
was None (see pull request 753 (https://github.com/buildbot/buildbot/pull/753)) thus keeping watched logfiles
open (this prevented their removal on Windows in subsequent builds).

• Fixed a bug in P4 source step where the timeout parameter was ignored.

• Fixed a bug in P4 source step where using a custom view-spec could result in failed syncs due to incorrectly
generated command-lines.

• The logwatcher will use /usr/xpg4/bin/tail on Solaris, it if is available (pull request 1065
(https://github.com/buildbot/buildbot/pull/1065)).

Deprecations, Removals, and Non-Compatible Changes

Details

For a more detailed description of the changes made in this version, see the git log itself:

git log v0.8.8..v0.8.9

Release Notes for Buildbot v0.8.8

The following are the release notes for Buildbot v0.8.8 Buildbot v0.8.8 was released on August 22, 2013

Master

Features

• The MasterShellCommand step now correctly handles environment variables passed as list.

• The master now poll the database for pending tasks when running buildbot in multi-master mode.

• The algorithm to match build requests to slaves has been rewritten pull request 615
(https://github.com/buildbot/buildbot/pull/615). The new algorithm automatically takes locks into account, and
will not schedule a build only to have it wait on a lock. The algorithm also introduces a canStartBuild
builder configuration option which can be used to prevent a build request being assigned to a slave.

• buildbot stop and buildbot restart now accept --clean to stop or restart the master cleanly
(allowing all running builds to complete first).

• The IRC bot now supports clean shutdown and immediate shutdown by using the command ‘shutdown’. To
allow the command to function, you must provide allowShutdown=True.

• CopyDirectory has been added.

• BuildslaveChoiceParameter has been added to provide a way to explicitly choose a buildslave for a
given build.

• default.css now wraps preformatted text by default.

• Slaves can now be paused through the web status.

• The latent buildslave support is less buggy, thanks pull request 646
(https://github.com/buildbot/buildbot/pull/646).

5.19. Release Notes for Buildbot v0.8.8 553

https://github.com/buildbot/buildbot/pull/753
https://github.com/buildbot/buildbot/pull/1065
https://github.com/buildbot/buildbot/pull/615
https://github.com/buildbot/buildbot/pull/646

Buildbot Documentation, Release 0.9.7

• The treeStableTimer for AnyBranchScheduler now maintains separate timers for separate branches,
codebases, projects, and repositories.

• SVN has a new option preferLastChangedRev=True to use the last changed revision for got_revision

• The build request DB connector method getBuildRequests can now filter by branch and repository.

• A new SetProperty step has been added in buildbot.steps.master which can set a property directly
without accessing the slave.

• The new LogRenderable step logs Python objects, which can contain renderables, to the logfile. This is
helpful for debugging property values during a build.

• ‘buildbot try’ now has an additional option –property option to set properties. Unlike the existing option –
properties option, this new option supports setting only a single property and therefore allows commas to be
included in the property name and value.

• The Git step has a new config option, which accepts a dict of git configuration options to pass to the low-level
git commands. See Git for details.

• In ShellCommand ShellCommand now validates its arguments during config and will identify any invalid
arguments before a build is started.

• The list of force schedulers in the web UI is now sorted by name.

• OpenStack-based Latent Buildslave support was added. See pull request 666
(https://github.com/buildbot/buildbot/pull/666).

• Master-side support for P4 is available, and provides a great deal more flexibility than the old slave-side step.
See pull request 596 (https://github.com/buildbot/buildbot/pull/596).

• Master-side support for Repo is available. The step parameters changed to camelCase. repo_downloads,
and manifest_override_url properties are no longer hardcoded, but instead consult as default values via
renderables. Renderable are used in favor of callables for syncAllBranches and updateTarball.

• Builder configurations can now include a description, which will appear in the web UI to help humans
figure out what the builder does.

• GNUAutoconf and other pre-defined factories now work correctly (bug #2402
(http://trac.buildbot.net/ticket/2402))

• The pubDate in RSS feeds is now rendered correctly (bug #2530 (http://trac.buildbot.net/ticket/2530))

Deprecations, Removals, and Non-Compatible Changes

• The split_file function for SVNPoller may now return a dictionary instead of a tuple. This allows it to
add extra information about a change (such as project or repository).

• The workdir build property has been renamed to builddir. This change accurately reflects its content; the
term “workdir” means something different. workdir is currently still supported for backwards compatibility,
but will be removed eventually.

• The Blocker step has been removed.

• Several polling ChangeSources are now documented to take a pollInterval argument, instead of
pollinterval. The old name is still supported.

• StatusReceivers’ checkConfig method should no longer take an errors parameter. It should indicate errors by
calling error.

• Build steps now require that their name be a string. Previously, they would accept anything, but not behave
appropriately.

554 Chapter 5. Older Release Notes

https://github.com/buildbot/buildbot/pull/666
https://github.com/buildbot/buildbot/pull/596
http://trac.buildbot.net/ticket/2402
http://trac.buildbot.net/ticket/2530

Buildbot Documentation, Release 0.9.7

• The web status no longer displays a potentially misleading message, indicating whether the build can be rebuilt
exactly.

• The SetProperty step in buildbot.steps.shell has been renamed to
SetPropertyFromCommand.

• The EC2 and libvirt latent slaves have been moved to buildbot.buildslave.ec2 and buildbot.
buildslave.libirt respectively.

• Pre v0.8.7 versions of buildbot supported passing keyword arguments to buildbot.process.
BuildFactory.addStep, but this was dropped. Support was added again, while still being deprecated,
to ease transition.

Changes for Developers

• Added an optional build start callback to buildbot.status.status_gerrit.GerritStatusPush
This release includes the fix for bug #2536 (http://trac.buildbot.net/ticket/2536).

• An optional startCB callback to GerritStatusPush can be used to send a message back to the committer.
See the linked documentation for details.

• bb:sched:ChoiceStringParameter has a new method getChoices that can be used to generate content dynam-
ically for Force scheduler forms.

Slave

Features

• The fix for Twisted bug #5079 is now applied on the slave side, too. This fixes a perspective broker mem-
ory leak in older versions of Twisted. This fix was added on the master in Buildbot-0.8.4 (see bug #1958
(http://trac.buildbot.net/ticket/1958)).

• The --nodaemon option to buildslave start now correctly prevents the slave from forking before
running.

Deprecations, Removals, and Non-Compatible Changes

Details

For a more detailed description of the changes made in this version, see the git log itself:

git log v0.8.7..v0.8.8

Release Notes for Buildbot v0.8.7

The following are the release notes for Buildbot v0.8.7. Buildbot v0.8.7 was released on September 22, 2012. Buildbot
0.8.7p1 was released on November 21, 2012.

5.20. Release Notes for Buildbot v0.8.7 555

http://trac.buildbot.net/ticket/2536
http://trac.buildbot.net/ticket/1958

Buildbot Documentation, Release 0.9.7

0.8.7p1

In addition to what’s listed below, the 0.8.7p1 release adds the following.

• The SetPropertiesFromEnv step now correctly gets environment variables from the slave, rather than
those set on the master. Also, it logs the changes made to properties.

• The master-side Git source step now doesn’t try to clone a branch called HEAD. This is what git does by
default, and specifying it explicitly doesn’t work as expected.

• The Git step properly deals with the case when there is a file called FETCH_HEAD in the checkout.

• Buildbot no longer forks when told not to daemonize.

• Buildbot’s startup is now more robust. See bug #1992 (http://trac.buildbot.net/ticket/1992).

• The Trigger step uses the provided list of source stamps exactly, if given, instead of adding them to the
sourcestamps of the current build. In 0.8.7, they were combined with the source stamps for the current build.

• The Trigger step again completely ignores the source stamp of the current build, if alwaysUseLatest is
set. In 0.8.7, this was mistakenly changed to only ignore the specified revision of the source stamp.

• The Triggerable scheduler is again properly passing changes through to the scheduled builds. See bug
#2376 (http://trac.buildbot.net/ticket/2376).

• Web change hooks log errors, allowing debugging.

• The base change hook now properly decodes the provided date.

• CVSMailDir has been fixed.

• Importing buildbot.test no longer causes python to exit, if mock insn’t installed. The fixes pydoc -k
when buildbot is installed.

• Mercurial properly updates to the correct branch, when using inrepo branches.

• Buildbot now doesn’t fail on invalid UTF-8 in a number of places.

• Many documentation updates and fixes.

Master

Features

• Buildbot now supports building projects composed of multiple codebases. New schedulers can aggregate
changes to multiple codebases into source stamp sets (with one source stamp for each codebase). Source steps
then check out each codebase as required, and the remainder of the build process proceeds normally. See the
Multiple-Codebase Builds for details.

– The format of the got_revision property has changed for multi-codebase builds. It is now a dictionary
keyed by codebase.

• Source and ShellCommand steps now have an optional descriptionSuffix, a suffix to the
description/descriptionDone values. For example this can help distinguish between multiple
Compile steps that are applied to different codebases.

• The Git step has a new getDescription option, which will run git describe after checkout normally.
See Git for details.

• A new interpolation placeholder Interpolate, with more regular syntax, is available.

• A new ternary substitution operator :? and :#? is available with the Interpolate class.

556 Chapter 5. Older Release Notes

http://trac.buildbot.net/ticket/1992
http://trac.buildbot.net/ticket/2376
http://trac.buildbot.net/ticket/2376

Buildbot Documentation, Release 0.9.7

• IRenderable.getRenderingFor can now return a deferred.

• The Mercurial hook now supports multiple masters. See pull request 436
(https://github.com/buildbot/buildbot/pull/436).

• There’s a new poller for Mercurial: HgPoller.

• The new HTPasswdAprAuth uses libaprutil (through ctypes) to validate the password against the hash from
the .htpasswd file. This adds support for all hash types htpasswd can generate.

• GitPoller has been rewritten. It now supports multiple branches and can share a directory between multiple
pollers. It is also more resilient to changes in configuration, or in the underlying repository.

• Added a new property httpLoginUrl to buildbot.status.web.authz.Authz to render a nice Lo-
gin link in WebStatus for unauthenticated users if useHttpHeader and httpLoginUrl are set.

• ForceScheduler has been updated:

– support for multiple codebases via the codebases parameter

– NestedParameter to provide a logical grouping of parameters.

– CodebaseParameter to set the branch/revision/repository/project for a codebase

– new HTML/CSS customization points. Each parameter is contained in a row with multiple ‘class’ at-
tributes associated with them (eg, ‘force-string’ and ‘force-nested’) as well as a unique id to use with
Javascript. Explicit line-breaks have been removed from the HTML generator and are now controlled
using CSS.

• The SVNPoller now supports multiple projects and codebases. See pull request 443
(https://github.com/buildbot/buildbot/pull/443).

• The MailNotifier now takes a callable to calculate the “previous” build for purposes of determining status
changes. See pull request 489 (https://github.com/buildbot/buildbot/pull/489).

• The copy_properties parameter, given a list of properties to copy into the new build request, has been
deprecated in favor of explicit use of set_properties.

Deprecations, Removals, and Non-Compatible Changes

• Buildbot master now requires at least Python-2.5 and Twisted-9.0.0.

• Passing a BuildStep subclass (rather than instance) to addStep is no longer supported. The addStep
method now takes exactly one argument.

• Buildbot master requires python-dateutil version 1.5 to support the Nightly scheduler.

• ForceScheduler has been updated to support multiple codebases. The branch/revision/repository/project
are deprecated; if you have customized these values, simply provide them as
codebases=[CodebaseParameter(name='', ...)].

– The POST URL names for AnyPropertyParameter fields have changed. For example, ‘prop-
erty1name’ is now ‘property1_name’, and ‘property1value’ is now ‘property1_value’. Please update any
bookmarked or saved URL’s that used these fields.

– forcesched.BaseParameter API has changed quite a bit and is no longer backwards compatible.
Updating guidelines:

* get_from_post is renamed to getFromKwargs

* update_from_post is renamed to updateFromKwargs. This function’s parameters are now
called via named parameters to allow subclasses to ignore values it doesn’t use. Subclasses should

5.20. Release Notes for Buildbot v0.8.7 557

https://github.com/buildbot/buildbot/pull/436
https://github.com/buildbot/buildbot/pull/443
https://github.com/buildbot/buildbot/pull/489

Buildbot Documentation, Release 0.9.7

add **unused for future compatibility. A new parameter sourcestampset is provided to allow
subclasses to modify the sourcestamp set, and will probably require you to add the **unused field.

• The parameters to the callable version of build.workdir have changed. Instead of a single sourcestamp, a
list of sourcestamps is passed. Each sourcestamp in the list has a different codebase

• The undocumented renderable _ComputeRepositoryURL is no longer imported to buildbot.steps.
source. It is still available at buildbot.steps.source.oldsource.

• IProperties.render now returns a deferred, so any code rendering properties by hand will need to take
this into account.

• baseURL has been removed in SVN to use just repourl - see bug #2066 (http://trac.buildbot.net/ticket/2066).
Branch info should be provided with Interpolate.

from buildbot.steps.source.svn import SVN
factory.append(SVN(baseURL="svn://svn.example.org/svn/"))

can be replaced with

from buildbot.process.properties import Interpolate
from buildbot.steps.source.svn import SVN
factory.append(SVN(repourl=Interpolate("svn://svn.example.org/svn/%(src::branch)s
→˓")))

and

from buildbot.steps.source.svn import SVN
factory.append(SVN(baseURL="svn://svn.example.org/svn/%%BRANCH%%/project"))

can be replaced with

from buildbot.process.properties import Interpolate
from buildbot.steps.source.svn import SVN
factory.append(SVN(repourl=Interpolate("svn://svn.example.org/svn/%(src::branch)s/
→˓project")))

and

from buildbot.steps.source.svn import SVN
factory.append(SVN(baseURL="svn://svn.example.org/svn/", defaultBranch="branches/
→˓test"))

can be replaced with

from buildbot.process.properties import Interpolate
from buildbot.steps.source.svn import SVN
factory.append(SVN(repourl=Interpolate("svn://svn.example.org/svn/%(src::branch:-
→˓branches/test)s")))

• The P4Sync step, deprecated since 0.8.5, has been removed. The P4 step remains.

• The fetch_spec argument to GitPoller is no longer supported. GitPoller now only downloads
branches that it is polling, so specifies a refspec itself.

• The format of the changes produced by SVNPoller has changed: directory pathnames end with a forward
slash. This allows the split_file function to distinguish between files and directories. Customized split
functions may need to be adjusted accordingly.

558 Chapter 5. Older Release Notes

http://trac.buildbot.net/ticket/2066

Buildbot Documentation, Release 0.9.7

• FlattenList has been deprecated in favor of Interpolate. Interpolate doesn’t handle functions as keyword argu-
ments. The following code using WithProperties

from buildbot.process.properties import WithProperties
def determine_foo(props):

if props.hasProperty('bar'):
return props['bar']

elif props.hasProperty('baz'):
return props['baz']

return 'qux'
WithProperties('%(foo)s', foo=determine_foo)

can be replaced with

from zope.interface import implementer
from buildbot.interfaces import IRenderable
from buildbot.process.properties import Interpolate
@implementer(IRenderable)
class determineFoo(object):

def getRenderingFor(self, props):
if props.hasProperty('bar'):

return props['bar']
elif props.hasProperty('baz'):

return props['baz']
return 'qux'

Interpolate('%s(kw:foo)s', foo=determineFoo())

Changes for Developers

• BuildStep.start can now optionally return a deferred and any errback will be handled gracefully. If
you use inlineCallbacks, this means that unexpected exceptions and failures raised will be captured and
logged and the build shut down normally.

• The helper methods getState and setState from BaseScheduler have been factored into buildbot.
util.state.StateMixin for use elsewhere.

Slave

Features

Deprecations, Removals, and Non-Compatible Changes

• The P4Sync step, deprecated since 0.8.5, has been removed. The P4 step remains.

Details

For a more detailed description of the changes made in this version, see the Git log itself:

git log v0.8.6..v0.8.7

5.20. Release Notes for Buildbot v0.8.7 559

Buildbot Documentation, Release 0.9.7

Older Versions

Release notes for older versions of Buildbot are available in the master/docs/relnotes/
(https://github.com/buildbot/buildbot/blob/master/master/docs/relnotes/) directory of the source tree. Starting
with version 0.8.6, they are also available under the appropriate version at http://buildbot.net/buildbot/docs.

Release Notes for Buildbot v0.8.6p1

The following are the release notes for Buildbot v0.8.6p1. Buildbot v0.8.6 was released on March 11, 2012. Buildbot
v0.8.6p1 was released on March 25, 2012.

0.8.6p1

In addition to what’s listed below, the 0.8.6p1 release adds the following.

• Builders are no longer displayed in the order they were configured. This was never intended behavior, and will
become impossible in the distributed architecture planned for Buildbot-0.9.x. As of 0.8.6p1, builders are sorted
naturally: lexically, but with numeric segments sorted numerically.

• Slave properties in the configuration are now handled correctly.

• The web interface buttons to cancel individual builds now appear when configured.

• The ForceScheduler’s properties are correctly updated on reconfig - bug #2248
(http://trac.buildbot.net/ticket/2248).

• If a slave is lost while waiting for locks, it is properly cleaned up - bug #2247
(http://trac.buildbot.net/ticket/2247).

• Crashes when adding new steps to a factory in a reconfig are fixed - bug #2252
(http://trac.buildbot.net/ticket/2252).

• MailNotifier AttributeErrors are fixed - bug #2254 (http://trac.buildbot.net/ticket/2254).

• Cleanup from failed builds is improved - bug #2253 (http://trac.buildbot.net/ticket/2253).

Master

• If you are using the GitHub hook, carefully consider the security implications of allowing un-authenticated
change requests, which can potentially build arbitrary code. See bug #2186 (http://trac.buildbot.net/ticket/2186).

Deprecations, Removals, and Non-Compatible Changes

• Forced builds now require that a ForceScheduler be defined in the Buildbot configuration. For compatible
behavior, this should look like:

from buildbot.schedulers.forcesched import ForceScheduler
c['schedulers'].append(ForceScheduler(

name="force",
builderNames=["b1", "b2", ...]))

Where all of the builder names in the configuration are listed. See the documentation for the much more flexible
configuration options now available.

560 Chapter 5. Older Release Notes

https://github.com/buildbot/buildbot/blob/master/master/docs/relnotes/
http://buildbot.net/buildbot/docs
http://trac.buildbot.net/ticket/2248
http://trac.buildbot.net/ticket/2247
http://trac.buildbot.net/ticket/2252
http://trac.buildbot.net/ticket/2254
http://trac.buildbot.net/ticket/2253
http://trac.buildbot.net/ticket/2186

Buildbot Documentation, Release 0.9.7

• This is the last release of Buildbot that will be compatible with Python 2.4. The next version will minimally
require Python-2.5. See bug #2157 (http://trac.buildbot.net/ticket/2157).

• This is the last release of Buildbot that will be compatible with Twisted-8.x.y. The next version will minimally
require Twisted-9.0.0. See bug #2182 (http://trac.buildbot.net/ticket/2182).

• buildbot start no longer invokes make if a Makefile.buildbot exists. If you are using this func-
tionality, consider invoking make directly.

• The buildbot sendchange option --username has been removed as promised in bug #1711
(http://trac.buildbot.net/ticket/1711).

• StatusReceivers’ checkConfig method should now take an additional errors parameter and call its addError
method to indicate errors.

• The Gerrit status callback now gets an additional parameter (the master status). If you use this callback, you
will need to adjust its implementation.

• SQLAlchemy-Migrate version 0.6.0 is no longer supported. See Buildmaster Requirements.

• Older versions of SQLite which could limp along for previous versions of Buildbot are no longer supported.
The minimum version is 3.4.0, and 3.7.0 or higher is recommended.

• The master-side Git step now checks out ‘HEAD’ by default, rather than master, which translates to the default
branch on the upstream repository. See pull request 301 (https://github.com/buildbot/buildbot/pull/301).

• The format of the repository strings created by hgbuildbot has changed to contain the entire repository URL,
based on the web.baseurl value in hgrc. To continue the old (incorrect) behavior, set hgbuildbot.
baseurl to an empty string as suggested in the Buildbot manual.

• Master Side SVN Step has been corrected to properly use --revision when alwaysUseLatest is set to
False when in the full mode. See bug #2194 (http://trac.buildbot.net/ticket/2194)

• Master Side SVN Step paramater svnurl has been renamed repourl, to be consistent with other master-side source
steps.

• Master Side Mercurial step parameter baseURL has been merged with repourl parameter. The behavior
of the step is already controlled by branchType parameter, so just use a single argument to specify the
repository.

• Passing a buildbot.process.buildstep.BuildStep subclass (rather than instance) to buildbot.
process.factory.BuildFactory.addStep has long been deprecated, and will be removed in version
0.8.7.

• The hgbuildbot tool now defaults to the ‘inrepo’ branch type. Users who do not explicitly set a branch type
would previously have seen empty branch strings, and will now see a branch string based on the branch in the
repository (e.g., default).

Changes for Developers

• The interface for runtime access to the master’s configuration has changed considerably. See Configuration for
more details.

• The DB connector methods completeBuildset, completeBuildRequest, and
claimBuildRequest now take an optional complete_at parameter to specify the completion
time explicitly.

• Buildbot now sports sourcestamp sets, which collect multiple sourcestamps used to generate a single build,
thanks to Harry Borkhuis. See pull request 287 (https://github.com/buildbot/buildbot/pull/287).

5.21. Release Notes for Buildbot v0.8.6p1 561

http://trac.buildbot.net/ticket/2157
http://trac.buildbot.net/ticket/2182
http://trac.buildbot.net/ticket/1711
https://github.com/buildbot/buildbot/pull/301
http://trac.buildbot.net/ticket/2194
https://github.com/buildbot/buildbot/pull/287

Buildbot Documentation, Release 0.9.7

• Schedulers no longer have a schedulerid, but rather an objectid. In a related change,
the schedulers table has been removed, along with the buildbot.db.schedulers.
SchedulersConnectorComponent.getSchedulerId method.

• The Dependent scheduler tracks its upstream buildsets using buildbot.db.schedulers.
StateConnectorComponent, so the scheduler_upstream_buildsets table has been removed,
along with corresponding (undocumented) buildbot.db.buildsets.BuildsetsConnector
methods.

• Errors during configuration (in particular in BuildStep constructors), should be reported by calling
buildbot.config.error.

Features

• The IRC status bot now display build status in colors by default. It is controllable and may be disabled with
useColors=False in constructor.

• Buildbot can now take advantage of authentication done by a front-end web server - see pull request 266
(https://github.com/buildbot/buildbot/pull/266).

• Buildbot supports a simple cookie-based login system, so users no longer need to enter a username and password
for every request. See the earlier commits in pull request 278 (https://github.com/buildbot/buildbot/pull/278).

• The master-side SVN step now has an export method which is similar to copy, but the build directory does not
contain Subversion metdata. (bug #2078 (http://trac.buildbot.net/ticket/2078))

• Property instances will now render any properties in the default value if necessary. This makes possible
constructs like

command=Property('command', default=Property('default-command'))

• Buildbot has a new web hook to handle push notifications from Google Code - see pull request 278
(https://github.com/buildbot/buildbot/pull/278).

• Revision links are now generated by a flexible runtime conversion configured by revlink - see pull request
280 (https://github.com/buildbot/buildbot/pull/280).

• Shell command steps will now “flatten” nested lists in the command argument. This allows substitution of
multiple command-line arguments using properties. See bug #2150 (http://trac.buildbot.net/ticket/2150).

• Steps now take an optional hideStepIf parameter to suppress the step from the waterfall and build details in
the web. (bug #1743 (http://trac.buildbot.net/ticket/1743))

• Trigger steps with waitForFinish=True now receive a URL to all the triggered builds. This URL is
displayed in the waterfall and build details. See bug #2170 (http://trac.buildbot.net/ticket/2170).

• The master/contrib/fakemaster.py script allows you to run arbitrary commands on a slave by emu-
lating a master. See the file itself for documentation.

• MailNotifier allows multiple notification modes in the same instance. See bug #2205
(http://trac.buildbot.net/ticket/2205).

• SVNPoller now allows passing extra arguments via argument extra_args. See bug #1766
(http://trac.buildbot.net/ticket/1766)

Slave

562 Chapter 5. Older Release Notes

https://github.com/buildbot/buildbot/pull/266
https://github.com/buildbot/buildbot/pull/278
http://trac.buildbot.net/ticket/2078
https://github.com/buildbot/buildbot/pull/278
https://github.com/buildbot/buildbot/pull/280
https://github.com/buildbot/buildbot/pull/280
http://trac.buildbot.net/ticket/2150
http://trac.buildbot.net/ticket/1743
http://trac.buildbot.net/ticket/2170
http://trac.buildbot.net/ticket/2205
http://trac.buildbot.net/ticket/1766

Buildbot Documentation, Release 0.9.7

Deprecations, Removals, and Non-Compatible Changes

• BitKeeper support is in the “Last-Rites” state, and will be removed in the next version unless a maintainer steps
forward.

Features

Details

For a more detailed description of the changes made in this version, see the Git log itself:

git log buildbot-0.8.5..buildbot-0.8.6

Older Versions

Release notes for older versions of Buildbot are available in the master/docs/relnotes/
(https://github.com/buildbot/buildbot/blob/master/master/docs/relnotes/) directory of the source tree, or in the
archived documentation for those versions at http://buildbot.net/buildbot/docs.

Note that Buildbot-0.8.11 was never released.

5.21. Release Notes for Buildbot v0.8.6p1 563

https://github.com/buildbot/buildbot/blob/master/master/docs/relnotes/
http://buildbot.net/buildbot/docs

Buildbot Documentation, Release 0.9.7

564 Chapter 5. Older Release Notes

CHAPTER 6

Indices and Tables

• genindex

• cfg

• sched

• chsrc

• step

• reporter

• cmdline

• msg

• event

• rtype

• rpath

• raction

• modindex

• search

565

Buildbot Documentation, Release 0.9.7

566 Chapter 6. Indices and Tables

CHAPTER 7

Copyright

This documentation is part of Buildbot.

Buildbot is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License
as published by the Free Software Foundation, version 2.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
Public License for more details.

You should have received a copy of the GNU General Public License along with this program; if not, write to the Free
Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.

Copyright Buildbot Team Members

567

Buildbot Documentation, Release 0.9.7

568 Chapter 7. Copyright

Buildmaster Configuration Index

B
buildbotNetUsageData, 73
buildbotURL, 64
buildCacheSize, 65
builders, 133

C
caches, 65
change_source, 79
changeCacheSize, 65
codebaseGenerator, 76
collapseRequests, 66
configurators, 233

D
db, 61
db_url, 61
dbconfig, 233

L
logCompressionLimit, 64
logCompressionMethod, 64
logEncoding, 65
logMaxSize, 64
logMaxTailSize, 64

M
manhole, 68
metrics, 69
mq, 62
multiMaster, 64

P
prioritizeBuilders, 67
properties, 67
protocols, 67

R
reporter, 194

revlink, 75

S
schedulers, 96
secretsProviders, 73
services, 232
stats-service, 69

T
title, 64
titleURL, 64

U
user_managers, 74

V
validation, 75

W
workers, 115
www, 213

569

Buildbot Documentation, Release 0.9.7

570 Buildmaster Configuration Index

Scheduler Index

A
AnyBranchScheduler, 100

C
ChoiceStringParameter, 112

D
Dependent, 100

F
ForceScheduler, 107

I
InheritBuildParameter, 113

N
Nightly, 102
NightlyTriggerable, 106

P
Periodic, 101

S
Scheduler, 98
SingleBranchScheduler, 98

T
Triggerable, 105
Try_Jobdir, 103
Try_Userpass, 103

W
WorkerChoiceParameter, 114

571

Buildbot Documentation, Release 0.9.7

572 Scheduler Index

Change Source Index

B
BitBucket, 230
BitbucketPullrequestPoller, 91
BzrLaunchpadEmailMaildirSource, 83
BzrPoller, 87

C
Change Hooks, 95
CVSMaildirSource, 81

G
GerritChangeSource, 92
GerritEventLogPoller, 94
GitHub, 229
GitHubPullrequestPoller, 90
GitLab, 231
Gitorious, 232
GitPoller, 88

H
HgPoller, 89

M
Mercurial, 228

P
P4Source, 85
PBChangeSource, 83

S
SVNCommitEmailMaildirSource, 82
SVNPoller, 86

573

Buildbot Documentation, Release 0.9.7

574 Change Source Index

Build Step Index

B
BuildEPYDoc, 177
Bzr, 159

C
CMake, 169
Compile, 170
Configure, 169
CopyDirectory, 176
Cppcheck, 173
CVS, 158

D
Darcs, 163
DebCowbuilder, 190
DebLintian, 190
DebPbuilder, 189
DELETE, 190
DirectoryUpload, 181

F
FileDownload, 180
FileExists, 176
FileUpload, 179

G
Gerrit, 162
GET, 190
Git, 155
GitHub, 163

H
HEAD, 190
HLint, 190
HTTPStep, 190

J
JSONPropertiesDownload, 182
JSONStringDownload, 182

L
LogRenderable, 184

M
MakeDirectory, 177
MasterShellCommand, 183
MaxQ, 190
Mercurial, 154
MockBuildSRPM, 189
MockRebuild, 189
Monotone, 164
MsBuild12, 171
MsBuild14, 171
MsBuild4, 171
MTR, 174
MultipleFileUpload, 181

O
OPTIONS, 191

P
P4, 160
PerlModuleTest, 174
POST, 190
PUT, 190
PyFlakes, 177
PyLint, 178

R
RemoveDirectory, 176
RemovePYCs, 179
Repo, 161
Robocopy, 173
RpmBuild, 188
RpmLint, 188

S
SetProperties, 184
SetPropertiesFromEnv, 186

575

Buildbot Documentation, Release 0.9.7

SetProperty, 184
SetPropertyFromCommand, 185
ShellCommand, 164
ShellSequence, 167
Sphinx, 178
StringDownload, 182
SubunitShellCommand, 175
SVN, 157

T
Test, 174
TreeSize, 174
Trial, 178
Trigger, 186

V
VC10, 171
VC11, 171
VC12, 171
VC14, 171
VC6, 171
VC7, 171
VC8, 171
VC9, 171
VCExpress9, 171
VS2003, 171
VS2005, 171
VS2008, 171
VS2010, 171
VS2012, 171
VS2013, 171
VS2015, 171

576 Build Step Index

Reporter Target Index

B
BitbucketStatusPush, 209

G
GerritStatusPush, 203
GerritVerifyStatusPush, 212
GitHubCommentPush, 208
GitHubStatusPush, 207
GitLabStatusPush, 210

H
HipchatStatusPush, 210
HttpStatusPush, 206

I
IRC, 200

M
MailNotifier, 195

P
Pushover, 200

S
StashStatusPush, 208

577

Buildbot Documentation, Release 0.9.7

578 Reporter Target Index

Configurator Target Index

J
JanitorConfigurator, 234

579

Buildbot Documentation, Release 0.9.7

580 Configurator Target Index

Build Worker Index

D
DockerLatentWorker, 128

E
EC2LatentWorker, 117

L
LibVirtWorker, 123

O
OpenStackLatentWorker, 125

581

Buildbot Documentation, Release 0.9.7

582 Build Worker Index

Command Line Index

C
checkconfig, 269
cleanupdb, 269
create-master, 268
create-worker, 277

R
restart (buildbot), 268
restart (worker), 277

S
sendchange, 273
sighup, 269
start (buildbot), 268
start (worker), 277
stop (buildbot), 268
stop (worker), 278

T
try, 269

U
upgrade-master, 268
user, 274

583

Buildbot Documentation, Release 0.9.7

584 Command Line Index

Data API Event Index

B
build.$buildid.step.$number.log.$logid.complete,

383
build.$buildid.step.$number.log.$logid.newlog,

383

585

Buildbot Documentation, Release 0.9.7

586 Data API Event Index

REST/Data API Resource Type Index

B
build, 370
builder, 373
buildrequest, 374
buildset, 376

C
change, 378
changesource, 380
collection, 367

F
forcescheduler, 381

I
identifier, 382

L
log, 382
logchunk, 386

M
master, 388

P
patch, 389

R
rootlink, 390

S
scheduler, 390
sourcedproperties, 392
sourcestamp, 393
spec, 394
step, 394

W
worker, 397

587

Buildbot Documentation, Release 0.9.7

588 REST/Data API Resource Type Index

REST/Data API Path Index

/
/, 390
/application.spec, 394
/builders, 374
/builders/{builderid}, 374
/builders/{builderid}/buildrequests, 376
/builders/{builderid}/builds, 372
/builders/{builderid}/builds/{build_number},

372
/builders/{builderid}/builds/{build_number}/steps,

395
/builders/{builderid}/builds/{build_number}/steps/{step_name},

396
/builders/{builderid}/builds/{build_number}/steps/{step_name}/logs,

384
/builders/{builderid}/builds/{build_number}/steps/{step_name}/logs/{log_slug},

384
/builders/{builderid}/builds/{build_number}/steps/{step_name}/logs/{log_slug}/contents,

387
/builders/{builderid}/builds/{build_number}/steps/{step_name}/logs/{log_slug}/raw,

399
/builders/{builderid}/builds/{build_number}/steps/{step_number},

396
/builders/{builderid}/builds/{build_number}/steps/{step_number}/logs,

384
/builders/{builderid}/builds/{build_number}/steps/{step_number}/logs/{log_slug},

385
/builders/{builderid}/builds/{build_number}/steps/{step_number}/logs/{log_slug}/contents,

387
/builders/{builderid}/builds/{build_number}/steps/{step_number}/logs/{log_slug}/raw,

399
/builders/{builderid}/forceschedulers,

382
/builders/{builderid}/masters, 389
/builders/{builderid}/workers, 397
/builders/{builderid}/workers/{name},

397
/builders/{builderid}/workers/{workerid},

397

/builders/{builderid}/{masterid}, 389
/buildrequests, 376
/buildrequests/{buildrequestid}, 376
/buildrequests/{buildrequestid}/builds,

372
/builds, 372
/builds/{buildid}, 373
/builds/{buildid}/changes, 379
/builds/{buildid}/properties, 392
/builds/{buildid}/steps, 396
/builds/{buildid}/steps/{step_number_or_name},

396
/builds/{buildid}/steps/{step_number_or_name}/logs,

385
/builds/{buildid}/steps/{step_number_or_name}/logs/{log_slug},

385
/builds/{buildid}/steps/{step_number_or_name}/logs/{log_slug}/contents,

387
/builds/{buildid}/steps/{step_number_or_name}/logs/{log_slug}/raw,

400
/buildsets, 378
/buildsets/{bsid}, 378
/buildsets/{bsid}/properties, 392
/changes, 380
/changes/{changeid}, 380
/changesources, 381
/changesources/{changesourceid}, 381
/forceschedulers, 382
/forceschedulers/{schedulername}, 382
/logs/{logid}, 385
/logs/{logid}/contents, 387
/logs/{logid}/raw, 400
/masters, 389
/masters/{masterid}, 389
/masters/{masterid}/builders, 374
/masters/{masterid}/builders/{builderid},

374
/masters/{masterid}/builders/{builderid}/workers,

398

589

Buildbot Documentation, Release 0.9.7

/masters/{masterid}/builders/{builderid}/workers/{name},
398

/masters/{masterid}/builders/{builderid}/workers/{workerid},
398

/masters/{masterid}/changesources, 381
/masters/{masterid}/changesources/{changesourceid},

381
/masters/{masterid}/schedulers, 391
/masters/{masterid}/schedulers/{schedulerid},

391
/masters/{masterid}/workers, 398
/masters/{masterid}/workers/{name}, 398
/masters/{masterid}/workers/{workerid},

399
/schedulers, 391
/schedulers/{schedulerid}, 391
/sourcestamps, 393
/sourcestamps/{ssid}, 393
/sourcestamps/{ssid}/changes, 380
/steps/{stepid}/logs, 385
/steps/{stepid}/logs/{log_slug}, 386
/steps/{stepid}/logs/{log_slug}/contents,

388
/steps/{stepid}/logs/{log_slug}/raw, 400
/workers, 399
/workers/{name_or_id}, 399

590 REST/Data API Path Index

REST/Data API Actions Index

/
/builders/{builderid}/builds/{build_number}:rebuild,

372
/builders/{builderid}/builds/{build_number}:stop,

372
/buildrequests/{buildrequestid}:cancel,

376
/builds/{buildid}:rebuild, 373
/builds/{buildid}:stop, 373
/forceschedulers/{schedulername}:force,

382

591

Buildbot Documentation, Release 0.9.7

592 REST/Data API Actions Index

Python Module Index

b
buildbot.changes.base, 462
buildbot.config, 300
buildbot.data.connector, 413
buildbot.data.exceptions, 415
buildbot.data.resultspec, 484
buildbot.data.types, 419
buildbot.db.base, 447
buildbot.db.builders, 445
buildbot.db.buildrequests, 422
buildbot.db.builds, 425
buildbot.db.buildsets, 431
buildbot.db.changes, 434
buildbot.db.changesources, 437
buildbot.db.connector, 447
buildbot.db.logs, 429
buildbot.db.masters, 444
buildbot.db.model, 448
buildbot.db.pool, 447
buildbot.db.schedulers, 438
buildbot.db.sourcestamps, 440
buildbot.db.state, 441
buildbot.db.steps, 427
buildbot.db.users, 443
buildbot.db.workers, 433
buildbot.mq.base, 453
buildbot.mq.simple, 455
buildbot.mq.wamp, 455
buildbot.process.build, 459
buildbot.process.buildstep, 466
buildbot.process.log, 489
buildbot.process.logobserver, 490
buildbot.process.results, 329
buildbot.schedulers.base, 478
buildbot.schedulers.forceshed, 481
buildbot.steps.source, 153
buildbot.util, 308
buildbot.util.bbcollections, 313
buildbot.util.debounce, 314

buildbot.util.eventual, 314
buildbot.util.identifiers, 320
buildbot.util.lineboundaries, 321
buildbot.util.lru, 312
buildbot.util.maildir, 316
buildbot.util.misc, 317
buildbot.util.netstrings, 317
buildbot.util.pathmatch, 318
buildbot.util.poll, 315
buildbot.util.sautils, 318
buildbot.util.service, 321
buildbot.util.state, 319
buildbot.util.topicmatch, 319
buildbot.wamp.connector, 455
buildbot.worker, 460
buildbot.worker.manager, 488
buildbot.worker.protocols.base, 486
buildbot.www.auth, 492
buildbot.www.avatar, 494
buildbot.www.oauth2, 493
buildbot.www.resource, 494

593

Buildbot Documentation, Release 0.9.7

594 Python Module Index

Index

Symbols
–allow-shutdown

buildbot-worker-create-worker command line op-
tion, 40

–config
buildbot-create-master command line option, 37

–db
buildbot-create-master command line option, 37

–force
buildbot-create-master command line option, 36

–keepalive
buildbot-worker-create-worker command line op-

tion, 40
–log-count

buildbot-create-master command line option, 37
buildbot-worker-create-worker command line op-

tion, 40
–log-size

buildbot-create-master command line option, 37
buildbot-worker-create-worker command line op-

tion, 40
–maxdelay

buildbot-worker-create-worker command line op-
tion, 40

–no-logrotate
buildbot-create-master command line option, 37
buildbot-worker-create-worker command line op-

tion, 40
–relocatable

buildbot-create-master command line option, 37
–umask

buildbot-worker-create-worker command line op-
tion, 40

__call__() (buildbot.util.poll.Poller method), 316
__init__() (DbConfig method), 233
__init__() (buildbot.config.FileLoader method), 302
__init__() (buildbot.schedulers.base.BaseScheduler

method), 478
__init__() (buildbot.util.service.BuildbotService

method), 323
__init__() (buildbot.util.service.SharedService method),

322
_builder_name_matches() (build-

bot.statistics.capture.CaptureBuildDuration
method), 362

_builder_name_matches() (build-
bot.statistics.capture.CaptureBuildDurationAllBuilders
method), 363

_builder_name_matches() (build-
bot.statistics.capture.CaptureBuildEndTime
method), 362

_builder_name_matches() (build-
bot.statistics.capture.CaptureBuildEndTimeAllBuilders
method), 362

_builder_name_matches() (build-
bot.statistics.capture.CaptureBuildStartTime
method), 361

_builder_name_matches() (build-
bot.statistics.capture.CaptureBuildStartTimeAllBuilders
method), 361

_builder_name_matches() (build-
bot.statistics.capture.CaptureBuildTimes
method), 361

_builder_name_matches() (build-
bot.statistics.capture.CaptureData method),
363

_builder_name_matches() (build-
bot.statistics.capture.CaptureDataAllBuilders
method), 363

_builder_name_matches() (build-
bot.statistics.capture.CaptureDataBase
method), 363

_builder_name_matches() (build-
bot.statistics.capture.CaptureProperty method),
360

_builder_name_matches() (build-
bot.statistics.capture.CapturePropertyAllBuilders
method), 360

_claimService() (buildbot.util.service.ClusteredService

595

Buildbot Documentation, Release 0.9.7

method), 322
_err_msg() (buildbot.statistics.capture.CaptureBuildTimes

method), 361
_getServiceId() (buildbot.util.service.ClusteredService

method), 322
_retValParams() (build-

bot.statistics.capture.CaptureBuildDuration
method), 362

_retValParams() (build-
bot.statistics.capture.CaptureBuildEndTime
method), 362

_retValParams() (build-
bot.statistics.capture.CaptureBuildStartTime
method), 361

_retValParams() (build-
bot.statistics.capture.CaptureBuildTimes
method), 361

_unclaimService() (buildbot.util.service.ClusteredService
method), 322

A
activate() (buildbot.schedulers.base.BaseScheduler

method), 480
activate() (buildbot.util.service.ClusteredService

method), 322
active (buildbot.process.remotecommand.RemoteCommand

attribute), 463
active (buildbot.schedulers.base.BaseScheduler attribute),

480
addBuild() (buildbot.db.builds.BuildsConnectorComponent

method), 426
addBuilderMaster() (build-

bot.db.builders.BuildersConnectorComponent
method), 446

addBuildset() (buildbot.data.buildsets.Buildset method),
377

addBuildset() (buildbot.db.buildsets.BuildsetsConnectorComponent
method), 431

addBuildsetForChanges() (build-
bot.schedulers.base.BaseScheduler method),
480

addBuildsetForSourceStamps() (build-
bot.schedulers.base.BaseScheduler method),
479

addBuildsetForSourceStampsWithDefaults() (build-
bot.schedulers.base.BaseScheduler method),
479

addChange() (buildbot.data.changes.Change method),
379

addChange() (buildbot.db.changes.ChangesConnectorComponent
method), 435

addCompleteLog() (buildbot.process.buildstep.BuildStep
method), 472

addError() (buildbot.config.ConfigErrors method), 303

addHeader() (buildbot.process.log.StreamLog method),
490

addHeader() (buildbot.process.remotecommand.RemoteCommand
method), 465

addHTMLLog() (buildbot.process.buildstep.BuildStep
method), 473

addLog() (buildbot.data.logs.Log method), 383
addLog() (buildbot.db.logs.LogsConnectorComponent

method), 430
addLog() (buildbot.process.buildstep.BuildStep method),

472
addLogObserver() (buildbot.process.buildstep.BuildStep

method), 473
addLogWithException() (build-

bot.process.buildstep.BuildStep method),
473

addLogWithFailure() (build-
bot.process.buildstep.BuildStep method),
473

addStderr() (buildbot.process.log.StreamLog method),
490

addStderr() (buildbot.process.remotecommand.RemoteCommand
method), 465

addStdout() (buildbot.process.log.StreamLog method),
490

addStdout() (buildbot.process.remotecommand.RemoteCommand
method), 465

addStep() (buildbot.db.steps.StepsConnectorComponent
method), 428

addToLog() (buildbot.process.remotecommand.RemoteCommand
method), 465

addURL, 254
addURL() (buildbot.db.steps.StepsConnectorComponent

method), 428
addURL() (buildbot.process.buildstep.BuildStep

method), 473
allEndpoints() (buildbot.data.connector.DataConnector

method), 414
AlreadyClaimedError, 422
alwaysRun (buildbot.process.buildstep.BuildStep at-

tribute), 467
AnyBranchScheduler Scheduler, 100
append() (buildbot.util.lineboundaries.LineBoundaryFinder

method), 321
appendLog() (buildbot.db.logs.LogsConnectorComponent

method), 430
apply() (buildbot.data.resultspec.ResultSpec method),

485
AsyncMultiService (class in buildbot.util.service), 321
asyncRenderHelper() (buildbot.www.resource.Resource

method), 494
AsyncService (class in buildbot.util.service), 321
asyncSleep() (in module buildbot.util), 311
atomicCreateState() (build-

596 Index

Buildbot Documentation, Release 0.9.7

bot.db.state.StateConnectorComponent
method), 442

AuthBase (class in buildbot.www.auth), 492
AvatarBase (class in buildbot.www.avatar), 494
AWS EC2, 117

B
BaseParameter (class in buildbot.schedulers.forceshed),

481
BaseScheduler (class in buildbot.schedulers.base), 478
BasicBuildFactory, 139
BasicSVN, 140
bdict, 425
Binary (class in buildbot.data.types), 420
BitBucket Change Source, 230
BitbucketPullrequestPoller Change Source, 91
BitbucketStatusPush (built-in class), 209
BitbucketStatusPush Reporter Target, 209
Boolean (class in buildbot.data.types), 420
brdict, 422
brid, 422
bsdict, 431
bsid, 431
BufferLogObserver (class in build-

bot.process.logobserver), 492
build (buildbot.process.buildstep.BuildStep attribute),

468
Build (class in buildbot.process.build), 459
Build Factory, 136

BasicBuildFactory, 139
BasicSVN, 140
CPAN, 140
Distutils, 140
GNUAutoconf, 139
QuickBuildFactory, 140
Trial, 141

Build Steps
BuildEPYDoc, 177
Bzr, 159
CMake, 169
Compile, 169
Configure, 168
CopyDirectory, 176
Cppcheck, 172
CVS, 158
Darcs, 163
DebCowbuilder, 190
DebLintian, 190
DebPbuilder, 189
DELETE, 190
DirectoryUpload, 181
FileDownload, 179
FileExists, 176
FileUpload, 179

Gerrit, 162
GET, 190
Git, 155
GitHub, 163
HEAD, 190
HLint, 190
HTTPStep, 190
JSONPropertiesDownload, 182
JSONStringDownload, 182
LogRenderable, 184
MakeDirectory, 176
MasterShellCommand, 183
MaxQ, 190
Mercurial, 154
MockBuildSRPM, 188
MockRebuild, 189
Monotone, 163
MsBuild12, 171
MsBuild14, 171
MsBuild4, 171
MTR, 174
MultipleFileUpload, 181
OPTIONS, 190
P4, 160
PerlModuleTest, 174
POST, 190
PUT, 190
PyFlakes, 177
PyLint, 178
RemoveDirectory, 176
RemovePYCs, 179
Repo, 161
Robocopy, 173
RpmBuild, 188
RpmLint, 188
SetProperties, 184
SetPropertiesFromEnv, 186
SetProperty, 184
SetPropertyFromCommand, 185
ShellCommand, 164
ShellSequence, 167
Sphinx, 178
StringDownload, 182
SubunitShellCommand, 175
SVN, 157
Test, 174
TreeSize, 174
Trial, 178
Trigger, 186
VC10, 171
VC11, 171
VC12, 171
VC14, 171
VC6, 171

Index 597

Buildbot Documentation, Release 0.9.7

VC7, 171
VC8, 171
VC9, 171
VCExpress9, 171
VS2003, 171
VS2005, 171
VS2008, 171
VS2010, 171
VS2012, 171
VS2013, 171
VS2015, 171

Build Workers
DockerLatentWorker, 128
EC2LatentWorker, 117
LibVirtWorker, 123
OpenStackLatentWorker, 125

buildAdditionalContext(), 199
buildbot-create-master command line option

–config, 37
–db, 37
–force, 36
–log-count, 37
–log-size, 37
–no-logrotate, 37
–relocatable, 37

buildbot-worker-create-worker command line option
–allow-shutdown, 40
–keepalive, 40
–log-count, 40
–log-size, 40
–maxdelay, 40
–no-logrotate, 40
–umask, 40

buildbot.changes.base (module), 462
buildbot.changes.bitbucket.BitbucketPullrequestPoller

(built-in class), 91
buildbot.changes.gerritchangesource.GerritChangeFilter

(built-in class), 94
buildbot.changes.gerritchangesource.GerritChangeSource

(built-in class), 92
buildbot.changes.gerritchangesource.GerritEventLogPoller

(built-in class), 94
buildbot.changes.github.GitHubPullrequestPoller (built-

in class), 90
buildbot.changes.mail.BzrLaunchpadEmailMaildirSource

(built-in class), 83
buildbot.changes.mail.CVSMaildirSource (built-in class),

81
buildbot.changes.mail.SVNCommitEmailMaildirSource

(built-in class), 82
buildbot.changes.pb.PBChangeSource (built-in class), 83
buildbot.changes.svnpoller.SVNPoller (built-in class), 86
buildbot.config (module), 300
buildbot.data.builders.Builder (built-in class), 373

buildbot.data.buildrequests.BuildRequest (built-in class),
375

buildbot.data.builds.Build (built-in class), 371
buildbot.data.buildsets.Buildset (built-in class), 377
buildbot.data.changes.Change (built-in class), 379
buildbot.data.changesources.ChangeSource (built-in

class), 380
buildbot.data.connector (module), 413
buildbot.data.exceptions (module), 415
buildbot.data.logs.Log (built-in class), 383
buildbot.data.masters.Master (built-in class), 388
buildbot.data.patches.Patch (built-in class), 390
buildbot.data.properties.Properties (built-in class), 392
buildbot.data.resultspec (module), 484
buildbot.data.schedulers.Scheduler (built-in class), 391
buildbot.data.steps.Step (built-in class), 395
buildbot.data.types (module), 419
buildbot.db.base (module), 447
buildbot.db.builders (module), 445
buildbot.db.buildrequests (module), 422
buildbot.db.builds (module), 425
buildbot.db.buildsets (module), 431
buildbot.db.changes (module), 434
buildbot.db.changesources (module), 437
buildbot.db.connector (module), 447
buildbot.db.logs (module), 429
buildbot.db.masters (module), 444
buildbot.db.model (module), 448
buildbot.db.pool (module), 447
buildbot.db.schedulers (module), 438
buildbot.db.sourcestamps (module), 440
buildbot.db.state (module), 441
buildbot.db.steps (module), 427
buildbot.db.users (module), 443
buildbot.db.workers (module), 433
buildbot.interfaces.IConfigured (class in buildbot.config),

304
buildbot.ldapuserinfo.LdapUserInfo (built-in class), 220
buildbot.mq.base (module), 453
buildbot.mq.simple (module), 455
buildbot.mq.wamp (module), 455
buildbot.plugins.worker.DockerLatentWorker (built-in

class), 128
buildbot.plugins.worker.HyperLatentWorker (built-in

class), 131
buildbot.plugins.worker.MarathonLatentWorker (built-in

class), 132
buildbot.process.build (module), 459
buildbot.process.buildstep (module), 466
buildbot.process.buildstep.CommandMixin (class in

buildbot.process.buildstep), 475
buildbot.process.buildstep.ShellMixin (class in build-

bot.process.buildstep), 476

598 Index

Buildbot Documentation, Release 0.9.7

buildbot.process.factory.BasicBuildFactory (built-in
class), 140

buildbot.process.factory.BasicSVN (built-in class), 140
buildbot.process.factory.CPAN (built-in class), 140
buildbot.process.factory.Distutils (built-in class), 140
buildbot.process.factory.GNUAutoconf (built-in class),

139
buildbot.process.factory.QuickBuildFactory (built-in

class), 140
buildbot.process.factory.Trial (built-in class), 141
buildbot.process.log (module), 489
buildbot.process.logobserver (module), 490
buildbot.process.results (module), 329
buildbot.reporters.bitbucket.BitbucketStatusPush (built-

in class), 209
buildbot.reporters.github.GitHubCommentPush (built-in

class), 208
buildbot.reporters.github.GitHubStatusPush (built-in

class), 207
buildbot.reporters.gitlab.GitLabStatusPush (built-in

class), 210
buildbot.reporters.hipchat.HipchatStatusPush (built-in

class), 210
buildbot.reporters.mail.MailNotifier (built-in class), 195
buildbot.reporters.pushover.PushoverNotifier (built-in

class), 200
buildbot.reporters.stash.StashStatusPush (built-in class),

208
buildbot.schedulers.base (module), 478
buildbot.schedulers.forceshed (module), 481
buildbot.schedulers.timed.NightlyTriggerable (built-in

class), 106
buildbot.statistics.capture.Capture (built-in class), 359
buildbot.statistics.capture.CaptureBuildDuration (built-in

class), 362
buildbot.statistics.capture.CaptureBuildDuration.default_callback()

(built-in function), 362
buildbot.statistics.capture.CaptureBuildDurationAllBuilders

(built-in class), 362
buildbot.statistics.capture.CaptureBuildEndTime (built-in

class), 362
buildbot.statistics.capture.CaptureBuildEndTime.default_callback()

(built-in function), 362
buildbot.statistics.capture.CaptureBuildEndTimeAllBuilders

(built-in class), 362
buildbot.statistics.capture.CaptureBuildStartTime (built-

in class), 361
buildbot.statistics.capture.CaptureBuildStartTime.default_callback()

(built-in function), 361
buildbot.statistics.capture.CaptureBuildStartTimeAllBuilders

(built-in class), 361
buildbot.statistics.capture.CaptureBuildTimes (built-in

class), 360
buildbot.statistics.capture.CaptureData (built-in class),

363
buildbot.statistics.capture.CaptureDataAllBuilders (built-

in class), 363
buildbot.statistics.capture.CaptureDataBase (built-in

class), 363
buildbot.statistics.capture.CaptureProperty (built-in

class), 360
buildbot.statistics.capture.CapturePropertyAllBuilders

(built-in class), 360
buildbot.statistics.capture.CapturePropertyBase (built-in

class), 359
buildbot.statistics.capture.CapturePropertyBase.default_callback()

(built-in function), 360
buildbot.statistics.stats_service.StatsService (built-in

class), 357
buildbot.statistics.storage_backends.influxdb_client.InfluxStorageService

(built-in class), 358
buildbot.statistis.storage_backends.base.StatsStorageBase

(built-in class), 358
buildbot.status.status_gerrit.GerritStatusPush (built-in

class), 203
buildbot.status.status_gerrit_verify_status.GerritVerifyStatusPush

(built-in class), 212
buildbot.steps.cmake.CMake (class in build-

bot.steps.source), 169
buildbot.steps.master.LogRenderable (class in build-

bot.steps.source), 184
buildbot.steps.master.MasterShellCommand (class in

buildbot.steps.source), 183
buildbot.steps.master.SetProperty (class in build-

bot.steps.source), 184
buildbot.steps.mswin.Robocopy (class in build-

bot.steps.source), 173
buildbot.steps.python.BuildEPYDoc (class in build-

bot.steps.source), 177
buildbot.steps.python.PyFlakes (class in build-

bot.steps.source), 177
buildbot.steps.python.Sphinx (class in build-

bot.steps.source), 178
buildbot.steps.python_twisted.RemovePYCs (class in

buildbot.steps.source), 179
buildbot.steps.python_twisted.Trial (class in build-

bot.steps.source), 178
buildbot.steps.shell.Configure (class in build-

bot.steps.source), 169
buildbot.steps.shell.SetPropertyFromCommand (class in

buildbot.steps.source), 185
buildbot.steps.shell.ShellCommand (class in build-

bot.steps.source), 165
buildbot.steps.shellsequence.ShellArg (class in build-

bot.steps.source), 168
buildbot.steps.shellsequence.ShellSequence (class in

buildbot.steps.source), 168
buildbot.steps.source (module), 153

Index 599

Buildbot Documentation, Release 0.9.7

buildbot.steps.source.bzr.Bzr (class in build-
bot.steps.source), 159

buildbot.steps.source.cvs.CVS (class in build-
bot.steps.source), 158

buildbot.steps.source.darcs.Darcs (class in build-
bot.steps.source), 163

buildbot.steps.source.gerrit.Gerrit (class in build-
bot.steps.source), 162

buildbot.steps.source.git.Git (class in build-
bot.steps.source), 155

buildbot.steps.source.github.GitHub (class in build-
bot.steps.source), 163

buildbot.steps.source.mercurial.Mercurial (class in build-
bot.steps.source), 154

buildbot.steps.source.mtn.Monotone (class in build-
bot.steps.source), 164

buildbot.steps.source.p4.P4 (class in build-
bot.steps.source), 160

buildbot.steps.source.repo.Repo (class in build-
bot.steps.source), 161

buildbot.steps.source.repo.RepoDownloadsFromChangeSource
(class in buildbot.steps.source), 162

buildbot.steps.source.repo.RepoDownloadsFromProperties
(class in buildbot.steps.source), 162

buildbot.steps.source.svn.SVN (class in build-
bot.steps.source), 157

buildbot.steps.subunit.SubunitShellCommand (class in
buildbot.steps.source), 175

buildbot.steps.transfer.DirectoryUpload (class in build-
bot.steps.source), 181

buildbot.steps.transfer.FileDownload (class in build-
bot.steps.source), 180

buildbot.steps.transfer.FileUpload (class in build-
bot.steps.source), 180

buildbot.steps.transfer.JSONPropertiesDownload (class
in buildbot.steps.source), 182

buildbot.steps.transfer.JSONStringDownload (class in
buildbot.steps.source), 182

buildbot.steps.transfer.MultipleFileUpload (class in
buildbot.steps.source), 181

buildbot.steps.transfer.StringDownload (class in build-
bot.steps.source), 182

buildbot.steps.trigger.Trigger (class in build-
bot.steps.source), 186

buildbot.steps.worker.SetPropertiesFromEnv (class in
buildbot.steps.source), 186

buildbot.util (module), 308
buildbot.util.bbcollections (module), 313
buildbot.util.ConfiguredMixin (class in buildbot.config),

304
buildbot.util.debounce (module), 314
buildbot.util.eventual (module), 314
buildbot.util.identifiers (module), 320
buildbot.util.lineboundaries (module), 321

buildbot.util.lru (module), 312
buildbot.util.maildir (module), 316
buildbot.util.misc (module), 317
buildbot.util.netstrings (module), 317
buildbot.util.pathmatch (module), 318
buildbot.util.poll (module), 315
buildbot.util.sautils (module), 318
buildbot.util.service (module), 321
buildbot.util.state (module), 319
buildbot.util.topicmatch (module), 319
buildbot.wamp.connector (module), 455
buildbot.worker (module), 460
buildbot.worker.docker.DockerLatentWorker (built-in

class), 128
buildbot.worker.ec2.EC2LatentWorker (built-in class),

117
buildbot.worker.hyper.HyperLatentWorker (built-in

class), 131
buildbot.worker.libvirt.LibVirtWorker (built-in class),

123
buildbot.worker.manager (module), 488
buildbot.worker.marathon.MarathonLatentWorker (built-

in class), 132
buildbot.worker.openstack.OpenStackLatentWorker

(built-in class), 125
buildbot.worker.protocols.base (module), 486
buildbot.www.auth (module), 492
buildbot.www.auth.HTPasswdAuth (built-in class), 217
buildbot.www.auth.NoAuth (built-in class), 216
buildbot.www.auth.RemoteUserAuth (built-in class), 219
buildbot.www.auth.UserPasswordAuth (built-in class),

216
buildbot.www.authz.Authz (built-in class), 223
buildbot.www.authz.endpointmatchers.AnyControlEndpointMatcher

(built-in class), 224
buildbot.www.authz.endpointmatchers.AnyEndpointMatcher

(built-in class), 224
buildbot.www.authz.endpointmatchers.EnableSchedulerEndpointMatcher

(built-in class), 225
buildbot.www.authz.endpointmatchers.EndpointMatcherBase

(built-in class), 224
buildbot.www.authz.endpointmatchers.ForceBuildEndpointMatcher

(built-in class), 224
buildbot.www.authz.endpointmatchers.RebuildBuildEndpointMatcher

(built-in class), 225
buildbot.www.authz.endpointmatchers.StopBuildEndpointMatcher

(built-in class), 225
buildbot.www.authz.roles.RolesFromEmails (built-in

class), 225
buildbot.www.authz.roles.RolesFromGroups (built-in

class), 225
buildbot.www.authz.roles.RolesFromOwner (built-in

class), 226
buildbot.www.authz.roles.RolesFromUsername (built-in

600 Index

Buildbot Documentation, Release 0.9.7

class), 226
buildbot.www.avatar (module), 494
buildbot.www.oauth2 (module), 493
buildbot.www.oauth2.BitbucketAuth (built-in class), 218
buildbot.www.oauth2.GitHubAuth (built-in class), 217
buildbot.www.oauth2.GitLabAuth (built-in class), 218
buildbot.www.oauth2.GoogleAuth (built-in class), 217
buildbot.www.resource (module), 494
buildbotNetUsageData (Buildmaster Config), 73
BuildbotService (class in buildbot.util.service), 323
buildbotURL (buildbot.config.MasterConfig attribute),

300
buildbotURL (Buildmaster Config), 64
buildCacheSize (Buildmaster Config), 65
builddir (buildbot.config.BuilderConfig attribute), 302
BuildEPYDoc Build Step, 177
BuilderConfig (class in buildbot.config), 302
builderNames (buildbot.schedulers.base.BaseScheduler

attribute), 478
Builders

DB Connector Component, 445
priority, 66, 242

builders (buildbot.config.MasterConfig attribute), 301
builders (Buildmaster Config), 133
BuildersConnectorComponent (class in build-

bot.db.builders), 445
buildid, 425
buildid (buildbot.process.build.Build attribute), 459
Buildmaster Config

buildbotNetUsageData, 73
buildbotURL, 64
buildCacheSize, 65
builders, 133
caches, 65
change_source, 79
changeCacheSize, 65
codebaseGenerator, 76
collapseRequests, 66
configurators, 233
db, 61
db_url, 61
dbconfig, 232
logCompressionLimit, 64
logCompressionMethod, 64
logEncoding, 64
logMaxSize, 64
logMaxTailSize, 64
manhole, 67
metrics, 69
mq, 62
multiMaster, 64
prioritizeBuilders, 66
properties, 67
protocols, 67

reporter, 194
revlink, 75
schedulers, 96
secretsProviders, 73
services, 232
stats-service, 69
title, 64
titleURL, 64
user_managers, 74
validation, 75
workers, 114
www, 213

BuildRequests
DB Connector Component, 422

BuildRequestsConnectorComponent (class in build-
bot.db.buildrequests), 422

Builds
collapsing, 241
DB Connector Component, 425
merging, 66, 135
priority, 135, 243

BuildsConnectorComponent (class in buildbot.db.builds),
425

Buildsets
DB Connector Component, 431

BuildsetsConnectorComponent (class in build-
bot.db.buildsets), 431

BuildStep (class in buildbot.process.buildstep), 466
Buildstep Parameter, 151

alwaysRun, 152
description, 152
descriptionDone, 152
descriptionSuffix, 152
doStepIf, 152
flunkOnFailure, 152
flunkOnWarnings, 151
haltOnFailure, 151
hideStepIf, 152
locks, 152
logEncoding, 153
updateBuildSummaryPolicy, 153
warnOnFailure, 152
warnOnWarnings, 152

BuildStep URLs, 254
BuildStepFailed, 477
Bzr Build Step, 159
BzrLaunchpadEmailMaildirSource Change Source, 82
BzrPoller Change Source, 87

C
cached() (in module buildbot.db.base), 449
caches (buildbot.config.MasterConfig attribute), 301
caches (Buildmaster Config), 65

Index 601

Buildbot Documentation, Release 0.9.7

callRemote() (buildbot.worker.protocols.base.workerProxyObject
method), 487

cancelAfter() (in module buildbot.util.misc), 317
CANCELLED (in module buildbot.process.results), 330
canStartBuild (buildbot.config.BuilderConfig attribute),

303
category (buildbot.config.BuilderConfig attribute), 303
Change Hooks Change Source, 95
Change Sources, 79

BitBucket, 230
BitbucketPullrequestPoller, 91
BzrLaunchpadEmailMaildirSource, 82
BzrPoller, 87
Change Hooks, 95
CVSMaildirSource, 81
GerritChangeSource, 92
GerritEventLogPoller, 94
GitHub, 228
GitHubPullrequestPoller, 90
GitLab, 231
Gitorious, 232
GitPoller, 88
HgPoller, 89
Mercurial, 228
P4Source, 85
PBChangeSource, 83
SVNCommitEmailMaildirSource, 82
SVNPoller, 85

change_source (Buildmaster Config), 79
change_sources (buildbot.config.MasterConfig attribute),

301
changeCacheSize (Buildmaster Config), 65
changeid, 434
Changes

DB Connector Component, 434
ChangesConnectorComponent (class in build-

bot.db.changes), 434
ChangeSource (class in buildbot.changes.base), 462
ChangeSourceAlreadyClaimedError, 437
ChangeSources

DB Connector Component, 437
ChangeSourcesConnectorComponent (class in build-

bot.db.changesources), 437
chdict, 434
checkconfig Command Line Subcommand, 269
checkConfig() (buildbot.statistics.stats_service.StatsService

method), 357
checkConfig() (buildbot.util.service.BuildbotService

method), 323
checkLength() (buildbot.db.base.DBConnectorComponent

method), 447
checkWorkerHasCommand() (build-

bot.process.buildstep.BuildStep method),
471

ChoiceStringParameter Scheduler, 112
claimBuildRequests() (build-

bot.data.buildrequests.BuildRequest method),
375

claimBuildRequests() (build-
bot.db.buildrequests.BuildRequestsConnectorComponent
method), 423

classifyChanges() (build-
bot.db.schedulers.SchedulersConnectorComponent
method), 438

cleanupdb Command Line Subcommand, 269
ClusteredService (class in buildbot.util.service), 321
CMake Build Step, 169
code (buildbot.util.service.IHTTPResponse attribute),

327
codebaseGenerator (buildbot.config.MasterConfig at-

tribute), 301
codebaseGenerator (Buildmaster Config), 76
codebases (buildbot.schedulers.base.BaseScheduler at-

tribute), 478
collapseRequests (buildbot.config.BuilderConfig at-

tribute), 303
collapseRequests (buildbot.config.MasterConfig at-

tribute), 301
collapseRequests (Buildmaster Config), 66
command (buildbot.process.buildstep.buildbot.process.buildstep.ShellMixin

attribute), 476
Command Line Subcommands

checkconfig, 269
cleanupdb, 269
create-master, 268
create-worker, 277
restart (buildbot), 268
restart (worker), 277
sendchange, 273
sighup, 269
start (buildbot), 268
start (worker), 277
stop (buildbot), 268
stop (worker), 277
try, 269
upgrade-master, 268
user, 274

commandComplete() (build-
bot.process.buildstep.LoggingBuildStep
method), 475

ComparableMixin (class in buildbot.util), 308
Compile Build Step, 169
completeBuildRequests() (build-

bot.data.buildrequests.BuildRequest method),
375

completeBuildRequests() (build-
bot.db.buildrequests.BuildRequestsConnectorComponent
method), 424

602 Index

Buildbot Documentation, Release 0.9.7

completeBuildset() (build-
bot.db.buildsets.BuildsetsConnectorComponent
method), 432

compressLog() (buildbot.data.logs.Log method), 384
compressLog() (buildbot.db.logs.LogsConnectorComponent

method), 430
ConfigErrors, 303
Configurator

IConfigurator, 484
Configurators

JanitorConfigurator, 233
configurators (Buildmaster Config), 233
Configure Build Step, 168
configure(), 484
Connection (class in buildbot.worker.protocols.base), 486
consume() (buildbot.statistics.capture.CaptureBuildTimes

method), 361
consume() (buildbot.statistics.capture.CaptureDataBase

method), 363
consume() (buildbot.statistics.capture.CapturePropertyBase

method), 360
content() (buildbot.util.service.IHTTPResponse method),

327
control() (buildbot.data.base.Endpoint method), 418
control() (buildbot.data.connector.DataConnector

method), 414
CopyDirectory Build Step, 176
CPAN, 140
Cppcheck Build Step, 172
create-master Command Line Subcommand, 268
create-worker Command Line Subcommand, 277
createArgsProxies() (build-

bot.worker.protocols.base.Connection method),
486

CVS Build Step, 158
CVSMaildirSource Change Source, 81

D
Darcs Build Step, 163
DataConnector (class in buildbot.data.connector), 413
DataException, 415
datetime2epoch() (in module buildbot.util), 309
db (buildbot.config.MasterConfig attribute), 301
db (buildbot.db.base.DBConnectorComponent attribute),

447
db (Buildmaster Config), 61
DB Connector Component

Builders, 445
BuildRequests, 422
Builds, 425
Buildsets, 431
Changes, 434
ChangeSources, 437
Logs, 429

Masters, 444
Schedulers, 438
SourceStamps, 440
State, 441
Steps, 427
Users, 443
Workers, 433

db_url (Buildmaster Config), 61
dbconfig (Buildmaster Config), 232
DbConfig (built-in class), 233
DBConnector (class in buildbot.db.connector), 447
DBConnectorComponent (class in buildbot.db.base), 447
DBThreadPool (class in buildbot.db.pool), 448
deactivate() (buildbot.schedulers.base.BaseScheduler

method), 480
deactivate() (buildbot.util.service.ClusteredService

method), 322
DebCowbuilder Build Step, 190
DebLintian Build Step, 190
Debouncer (class in buildbot.util.debounce), 315
DebPbuilder Build Step, 189
decoder (buildbot.process.log.Log attribute), 489
decodeRC (buildbot.process.buildstep.buildbot.process.buildstep.ShellMixin

attribute), 477
deconfigureAllWorkersForMaster() (build-

bot.db.workers.WorkersConnectorComponent
method), 434

default (buildbot.schedulers.forceshed.BaseParameter at-
tribute), 482

defaultdict (class in buildbot.util.bbcollections), 313
deferredLocked() (in module buildbot.util.misc), 317
DELETE Build Step, 190
delete() (buildbot.util.service.HTTPClientService

method), 326
deleteOldLogChunks() (build-

bot.db.logs.LogsConnectorComponent
method), 431

Dependent Scheduler, 100
describe() (buildbot.process.buildstep.BuildStep

method), 470
description (buildbot.config.BuilderConfig attribute), 303
description (buildbot.process.buildstep.BuildStep at-

tribute), 466
descriptionDone (buildbot.process.buildstep.BuildStep

attribute), 466
descriptionSuffix (buildbot.process.buildstep.BuildStep

attribute), 467
didFail() (buildbot.process.remotecommand.RemoteCommand

method), 463
diffSets() (in module buildbot.util), 309
DirectoryUpload Build Step, 181
Distutils, 140
do() (buildbot.db.pool.DBThreadPool method), 448

Index 603

Buildbot Documentation, Release 0.9.7

do_with_engine() (buildbot.db.pool.DBThreadPool
method), 448

doBatch() (buildbot.db.base.DBConnectorComponent
method), 447

Docker, 128
DockerLatentWorker Build Worker, 128
doStepIf (buildbot.process.buildstep.BuildStep attribute),

467

E
EC2LatentWorker Build Worker, 117
email

MailNotifier, 195
Endpoint (class in buildbot.data.base), 417
endpoints (buildbot.data.base.ResourceType attribute),

416
ensureHasSSL() (in module buildbot.util.service), 329
Entity (class in buildbot.data.types), 420
entityType (buildbot.data.base.ResourceType attribute),

416
env (buildbot.config.BuilderConfig attribute), 303
env (buildbot.process.buildstep.buildbot.process.buildstep.ShellMixin

attribute), 476
environment variable

HOME, 43
INCLUDE, 172
LIB, 172
P4PASSWD, 85
P4PORT, 85
P4USER, 85
PATH, 32, 43, 86, 135, 166, 172, 183, 281
PYTHONPATH, 32, 43, 141, 165, 179, 262–264,

281
TMP, 186

epoch2datetime() (in module buildbot.util), 309
error() (in module buildbot.config), 303
errors (buildbot.config.ConfigErrors attribute), 303
evaluateCommand() (build-

bot.process.buildstep.LoggingBuildStep
method), 475

event
build.$buildid.step.$number.log.$logid.complete,

383
build.$buildid.step.$number.log.$logid.newlog, 383

eventPathPatterns (buildbot.data.base.ResourceType at-
tribute), 416

eventually() (in module buildbot.util.eventual), 314
EXCEPTION (in module buildbot.process.results), 329
expireMasters() (buildbot.data.masters.Master method),

388

F
factory (buildbot.config.BuilderConfig attribute), 302

failed() (buildbot.process.buildstep.BuildStep method),
469

FAILURE (in module buildbot.process.results), 329
feed() (buildbot.util.netstrings.NetstringParser method),

317
fields (buildbot.data.resultspec.ResultSpec attribute), 484
File Transfer, 179
FileDownload Build Step, 179
FileExists Build Step, 176
FileLoader (class in buildbot.config), 302
FileReaderImpl (class in buildbot.worker.protocols.base),

488
FileUpload Build Step, 179
FileWriterImpl (class in buildbot.worker.protocols.base),

488
Filter (class in buildbot.data.resultspec), 485
filters (buildbot.data.resultspec.ResultSpec attribute), 484
findBuilderId() (buildbot.db.builders.BuildersConnectorComponent

method), 445
findChangeSourceId() (build-

bot.data.changesources.ChangeSource
method), 380

findChangeSourceId() (build-
bot.db.changesources.ChangeSourcesConnectorComponent
method), 437

findMasterId() (buildbot.db.masters.MastersConnectorComponent
method), 445

findSchedulerId(), 391
findSchedulerId() (build-

bot.db.schedulers.SchedulersConnectorComponent
method), 439

findSomethingId() (build-
bot.db.base.DBConnectorComponent method),
447

findUserByAttr() (build-
bot.db.users.UsersConnectorComponent
method), 443

findWorkerId() (buildbot.db.workers.WorkersConnectorComponent
method), 433

finish() (buildbot.process.log.Log method), 489
finishBuild() (buildbot.data.builds.Build method), 372
finishBuild() (buildbot.db.builds.BuildsConnectorComponent

method), 426
finished() (buildbot.process.buildstep.BuildStep method),

469
finishLog() (buildbot.data.logs.Log method), 384
finishLog() (buildbot.db.logs.LogsConnectorComponent

method), 430
finishReceived() (build-

bot.process.logobserver.LogLineObserver
method), 491

finishReceived() (build-
bot.process.logobserver.LogObserver method),
491

604 Index

Buildbot Documentation, Release 0.9.7

finishStep() (buildbot.data.steps.Step method), 395
finishStep() (buildbot.db.steps.StepsConnectorComponent

method), 428
fireEventually() (in module buildbot.util.eventual), 314
flatten() (in module buildbot.util), 310
flattened_iterator() (in module buildbot.util), 310
flunkOnFailure (buildbot.process.buildstep.BuildStep at-

tribute), 467
flunkOnFailure (buildbot.process.results.ResultComputingConfigMixin

attribute), 330
flunkOnWarnings (buildbot.process.buildstep.BuildStep

attribute), 467
flunkOnWarnings (build-

bot.process.results.ResultComputingConfigMixin
attribute), 330

flush() (buildbot.util.lineboundaries.LineBoundaryFinder
method), 321

flushChangeClassifications() (build-
bot.db.schedulers.SchedulersConnectorComponent
method), 439

flushEventualQueue() (in module buildbot.util.eventual),
314

Forced Builds, 107
forceIdentifier() (in module buildbot.util.identifiers), 320
ForceScheduler Scheduler, 107
formatInterval() (in module buildbot.util), 308
fullName() (buildbot.schedulers.forceshed.BaseParameter

method), 482

G
Gerrit Build Step, 162
Gerrit integration

Repo Build Step, 161
GerritChangeSource Change Source, 92
GerritEventLogPoller Change Source, 94
GerritStatusPush (built-in class), 203
GerritStatusPush Reporter Target, 203
GerritVerifyStatusPush Reporter Target, 212
GET Build Step, 190
get() (buildbot.data.base.Endpoint method), 418
get() (buildbot.util.service.HTTPClientService method),

326
get() (DbConfig method), 233
get() (in module buildbot.util.lru), 312
getBuild() (buildbot.db.builds.BuildsConnectorComponent

method), 425
getBuildByNumber() (build-

bot.db.builds.BuildsConnectorComponent
method), 425

getBuilder() (buildbot.db.builders.BuildersConnectorComponent
method), 446

getBuilders() (buildbot.db.builders.BuildersConnectorComponent
method), 446

getBuildProperties() (build-
bot.db.builds.BuildsConnectorComponent
method), 426

getBuildRequest() (build-
bot.db.buildrequests.BuildRequestsConnectorComponent
method), 423

getBuildRequests() (build-
bot.db.buildrequests.BuildRequestsConnectorComponent
method), 423

getBuildResultSummary() (build-
bot.process.buildstep.BuildStep method),
470

getBuilds() (buildbot.db.builds.BuildsConnectorComponent
method), 426

getBuildset() (buildbot.db.buildsets.BuildsetsConnectorComponent
method), 432

getBuildsetProperties() (build-
bot.db.buildsets.BuildsetsConnectorComponent
method), 433

getBuildsets() (buildbot.db.buildsets.BuildsetsConnectorComponent
method), 432

getChange() (buildbot.db.changes.ChangesConnectorComponent
method), 436

getChangeClassifications() (build-
bot.db.schedulers.SchedulersConnectorComponent
method), 439

getChangeFromSSid() (build-
bot.db.changes.ChangesConnectorComponent
method), 437

getChanges() (buildbot.db.changes.ChangesConnectorComponent
method), 436

getChangesCount() (build-
bot.db.changes.ChangesConnectorComponent
method), 436

getChangesForBuild() (build-
bot.db.changes.ChangesConnectorComponent
method), 437

getChangeSource() (build-
bot.db.changesources.ChangeSourcesConnectorComponent
method), 438

getChangeSources() (build-
bot.db.changesources.ChangeSourcesConnectorComponent
method), 438

getChangeUids() (build-
bot.db.changes.ChangesConnectorComponent
method), 436

getConfigDict() (buildbot.config.buildbot.interfaces.IConfigured
method), 304

getConfigDict() (buildbot.config.buildbot.util.ConfiguredMixin
method), 304

getCurrentSummary() (build-
bot.process.buildstep.BuildStep method),
469

getEndpoint() (buildbot.data.connector.DataConnector

Index 605

Buildbot Documentation, Release 0.9.7

method), 414
getEndpoints() (buildbot.data.base.ResourceType

method), 416
getExtraParams(), 212
getFileContentFromWorker() (build-

bot.process.buildstep.buildbot.process.buildstep.CommandMixin
method), 476

getFinalState() (buildbot.steps.source.buildbot.steps.shellsequence.ShellSequence
method), 168

getFromKwargs() (build-
bot.schedulers.forceshed.BaseParameter
method), 481

getLatestChangeid() (build-
bot.db.changes.ChangesConnectorComponent
method), 437

getLog() (buildbot.db.logs.LogsConnectorComponent
method), 429

getLog() (buildbot.process.buildstep.BuildStep method),
472

getLogBySlug() (build-
bot.db.logs.LogsConnectorComponent
method), 429

getLoginResource() (buildbot.www.auth.AuthBase
method), 493

getLogLines() (buildbot.db.logs.LogsConnectorComponent
method), 429

getLogout() (buildbot.www.auth.AuthBase method), 493
getLogs() (buildbot.db.logs.LogsConnectorComponent

method), 429
getMaster() (buildbot.db.masters.MastersConnectorComponent

method), 445
getMasters() (buildbot.db.masters.MastersConnectorComponent

method), 445
getMessage(), 212
getName() (buildbot.util.service.SharedService method),

323
getObjectId() (buildbot.db.state.StateConnectorComponent

method), 442
getParentChangeIds() (build-

bot.db.changes.ChangesConnectorComponent
method), 435

getPrevSuccessfulBuild() (build-
bot.db.builds.BuildsConnectorComponent
method), 425

getProperties(), 484
getProperty(), 483
getRecentChanges() (build-

bot.db.changes.ChangesConnectorComponent
method), 436

getRecipientList(), 211
getRenderingFor(), 483
getResultSummary() (build-

bot.process.buildstep.BuildStep method),
470

getScheduler() (buildbot.db.schedulers.SchedulersConnectorComponent
method), 439

getSchedulers() (buildbot.db.schedulers.SchedulersConnectorComponent
method), 439

getSchedulersAndProperties() (in module build-
bot.steps.source), 187

getService() (buildbot.util.service.HTTPClientService
static method), 325

getService() (buildbot.util.service.SharedService
method), 323

getSourceStamp() (build-
bot.db.sourcestamps.SourceStampsConnectorComponent
method), 441

getSourceStamps() (build-
bot.db.sourcestamps.SourceStampsConnectorComponent
method), 441

getSourceStampsForBuild() (build-
bot.db.sourcestamps.SourceStampsConnectorComponent
method), 441

getState() (buildbot.db.state.StateConnectorComponent
method), 442

getState() (buildbot.schedulers.base.BaseScheduler
method), 481

getState() (buildbot.util.state.StateMixin method), 319,
320

getStatistic() (buildbot.process.buildstep.BuildStep
method), 470

getStatistics() (buildbot.process.buildstep.BuildStep
method), 470

getStderr() (buildbot.process.logobserver.BufferLogObserver
method), 492

getStdout() (buildbot.process.logobserver.BufferLogObserver
method), 492

getStep() (buildbot.db.steps.StepsConnectorComponent
method), 427

getSteps() (buildbot.db.steps.StepsConnectorComponent
method), 428

getSummaryStatistic() (buildbot.process.build.Build
method), 459

getUrl() (buildbot.process.build.Build method), 460
getUser() (buildbot.db.users.UsersConnectorComponent

method), 443
getUserAvatar() (buildbot.www.avatar.AvatarBase

method), 494
getUserByUsername() (build-

bot.db.users.UsersConnectorComponent
method), 443

getUserInfo() (buildbot.www.auth.UserInfoProviderBase
method), 493

getUserInfoFromOAuthClient() (build-
bot.www.oauth2.OAuth2Auth method),
494

getUsers() (buildbot.db.users.UsersConnectorComponent
method), 444

606 Index

Buildbot Documentation, Release 0.9.7

getWorker() (buildbot.db.workers.WorkersConnectorComponent
method), 433

getWorkerName() (buildbot.process.buildstep.BuildStep
method), 472

getWorkers() (buildbot.db.workers.WorkersConnectorComponent
method), 433

Git Build Step, 155
GitHub Build Step, 163
GitHub Change Source, 228
GitHubCommentPush (built-in class), 208
GitHubCommentPush Reporter Target, 207
GitHubPullrequestPoller Change Source, 90
GitHubStatusPush (built-in class), 207
GitHubStatusPush Reporter Target, 207
GitLab Change Source, 231
GitLabStatusPush (built-in class), 210
GitLabStatusPush Reporter Target, 210
Gitorious Change Source, 232
GitPoller Change Source, 88
GNUAutoconf, 139
gotChange() (buildbot.schedulers.base.BaseScheduler

method), 479

H
haltOnFailure (buildbot.process.buildstep.BuildStep at-

tribute), 467
haltOnFailure (buildbot.process.results.ResultComputingConfigMixin

attribute), 330
hashColumns() (buildbot.db.base.DBConnectorComponent

method), 447
hasProperty(), 483
hasStatistic() (buildbot.process.buildstep.BuildStep

method), 470
HEAD Build Step, 190
HgPoller Change Source, 89
hideStepIf (buildbot.process.buildstep.BuildStep at-

tribute), 467
HipchatStatusPush Reporter Target, 210
hits (in module buildbot.util.lru), 312
HLint Build Step, 190
HOME, 43
HTMLLog (class in buildbot.process.log), 490
HTTP Requests, 190
HTTPClientService (class in buildbot.util.service), 325,

327
HttpStatusPush (built-in class), 206
HttpStatusPush Reporter Target, 206
HTTPStep Build Step, 190

I
Identifier (class in buildbot.data.types), 420
identifierToUid() (build-

bot.db.users.UsersConnectorComponent
method), 444

IHTTPResponse (class in buildbot.util.service), 327
in_reactor() (in module buildbot.util), 311
INCLUDE, 172
incrementIdentifier() (in module buildbot.util.identifiers),

320
InheritBuildParameter Scheduler, 113
initialStdin (buildbot.process.buildstep.buildbot.process.buildstep.ShellMixin

attribute), 477
InsertFromSelect (class in buildbot.util.sautils), 318
Integer (class in buildbot.data.types), 419
interrupt() (buildbot.process.buildstep.BuildStep

method), 469
interrupt() (buildbot.process.remotecommand.RemoteCommand

method), 463
interruptSignal (buildbot.process.buildstep.buildbot.process.buildstep.ShellMixin

attribute), 476
inv() (in module buildbot.util.lru), 313
InvalidOptionError, 415
InvalidPathError, 415
IRC, 200
IRC Reporter Target, 200
is_current() (buildbot.db.model.Model method), 449
isActive() (buildbot.util.service.ClusteredService

method), 322
isCollection (buildbot.data.base.Endpoint attribute), 417
isIdentifier() (in module buildbot.util.identifiers), 320
isRaw (buildbot.data.base.Endpoint attribute), 417
iterPatterns() (buildbot.util.pathmatch.Matcher method),

319

J
JanitorConfigurator Configurators, 233
join_list() (in module buildbot.util), 311
json() (buildbot.util.service.IHTTPResponse method),

327
JSONPropertiesDownload Build Step, 182
JSONStringDownload Build Step, 182

K
KeyedSets (class in buildbot.util.bbcollections), 313

L
label (buildbot.schedulers.forceshed.BaseParameter at-

tribute), 482
lazylogfiles (buildbot.process.buildstep.buildbot.process.buildstep.ShellMixin

attribute), 476
LIB, 172
libvirt, 123
LibVirtWorker Build Worker, 123
limit (buildbot.data.resultspec.ResultSpec attribute), 484
LineBoundaryFinder (class in build-

bot.util.lineboundaries), 321
LineConsumerLogObserver (class in build-

bot.process.logobserver), 491

Index 607

Buildbot Documentation, Release 0.9.7

links, 254
List (class in buildbot.data.types), 420
Listener (class in buildbot.worker.protocols.base), 486
loadConfig() (buildbot.config.FileLoader method), 302
loadConfigDict() (in module buildbot.config), 302
loadFromDict() (buildbot.config.MasterConfig class

method), 301
locks (buildbot.config.BuilderConfig attribute), 303
locks (buildbot.process.buildstep.BuildStep attribute),

467
Log (class in buildbot.process.log), 489
logCompressionLimit (buildbot.config.MasterConfig at-

tribute), 300
logCompressionLimit (Buildmaster Config), 64
logCompressionMethod (buildbot.config.MasterConfig

attribute), 300
logCompressionMethod (Buildmaster Config), 64
logEncoding (buildbot.config.MasterConfig attribute),

300
logEncoding (buildbot.process.buildstep.BuildStep at-

tribute), 467
logEncoding (Buildmaster Config), 64
logEnviron (buildbot.process.buildstep.buildbot.process.buildstep.ShellMixin

attribute), 476
logfiles (buildbot.process.buildstep.buildbot.process.buildstep.ShellMixin

attribute), 476
logfiles (buildbot.process.buildstep.LoggingBuildStep at-

tribute), 474
LoggingBuildStep (class in buildbot.process.buildstep),

474
logid (buildbot.process.log.Log attribute), 489
LogLineObserver (class in buildbot.process.logobserver),

491
logMaxSize (buildbot.config.MasterConfig attribute), 300
logMaxSize (Buildmaster Config), 64
logMaxTailSize (buildbot.config.MasterConfig attribute),

300
logMaxTailSize (Buildmaster Config), 64
LogObserver (class in buildbot.process.logobserver), 490
LogRenderable Build Step, 184
Logs

DB Connector Component, 429
logs (buildbot.process.remotecommand.RemoteCommand

attribute), 464
LogsConnectorComponent (class in buildbot.db.logs),

429
loseConnection() (build-

bot.worker.protocols.base.Connection method),
486

M
MaildirService (class in buildbot.util.maildir), 316
MailNotifier Reporter Target, 195
MakeDirectory Build Step, 176

makeList() (in module buildbot.util), 309
makeRemoteShellCommand() (build-

bot.process.buildstep.buildbot.process.buildstep.ShellMixin
method), 477

Manhole, 67
manhole (buildbot.config.MasterConfig attribute), 301
manhole (Buildmaster Config), 67
master (buildbot.util.state.StateMixin attribute), 319
master (in module buildbot.status.buildset), 462
masterActive() (buildbot.data.masters.Master method),

388
MasterConfig (class in buildbot.config), 300
Masters

DB Connector Component, 444
MastersConnectorComponent (class in build-

bot.db.masters), 444
MasterShellCommand Build Step, 183
masterStopped() (buildbot.data.masters.Master method),

388
Matcher (class in buildbot.util.pathmatch), 318
matches() (buildbot.util.topicmatch.TopicMatcher

method), 319
max_size (in module buildbot.util.lru), 312
MaxQ Build Step, 190
maxTime (buildbot.process.buildstep.buildbot.process.buildstep.ShellMixin

attribute), 476
maybeAutoLogin() (buildbot.www.auth.AuthBase

method), 493
maybeBuildsetComplete() (build-

bot.data.buildsets.Buildset method), 377
Mercurial Build Step, 154
Mercurial Change Source, 228
messageReceived() (buildbot.util.maildir.MaildirService

method), 316
metadata (buildbot.db.model.Model attribute), 448
method() (in module buildbot.util.debounce), 314
method() (in module buildbot.util.poll), 315
metrics (buildbot.config.MasterConfig attribute), 301
metrics (Buildmaster Config), 69
misses (in module buildbot.util.lru), 312
MockBuildSRPM Build Step, 188
MockRebuild Build Step, 189
Model (class in buildbot.db.model), 448
Monotone Build Step, 163
moveToCurDir() (buildbot.util.maildir.MaildirService

method), 316
mq (Buildmaster Config), 62
MQConnector (class in buildbot.mq.base), 453
MsBuild12 Build Step, 171
MsBuild14 Build Step, 171
MsBuild4 Build Step, 171
MTR Build Step, 174
multiMaster (buildbot.config.MasterConfig attribute),

301

608 Index

Buildbot Documentation, Release 0.9.7

multiMaster (Buildmaster Config), 64
multiple (buildbot.schedulers.forceshed.BaseParameter

attribute), 482
MultipleFileUpload Build Step, 181
MySQL, 62

limitations, 424, 451

N
name (buildbot.config.buildbot.util.ConfiguredMixin at-

tribute), 304
name (buildbot.config.BuilderConfig attribute), 302
name (buildbot.data.base.ResourceType attribute), 416
name (buildbot.process.buildstep.BuildStep attribute),

466
name (buildbot.process.log.Log attribute), 489
name (buildbot.schedulers.base.BaseScheduler attribute),

478
name (buildbot.schedulers.forceshed.BaseParameter at-

tribute), 482
name (buildbot.util.state.StateMixin attribute), 319
naturalSort() (in module buildbot.util), 308
needsReconfig (buildbot.www.resource.Resource at-

tribute), 494
NetstringParser (class in buildbot.util.netstrings), 317
newBuild() (buildbot.data.builds.Build method), 371
newStep() (buildbot.data.steps.Step method), 395
nextBuild (buildbot.config.BuilderConfig attribute), 303
nextWorker (buildbot.config.BuilderConfig attribute),

303
Nightly Scheduler, 102
NightlyTriggerable Scheduler, 106
none_or_str() (in module buildbot.util), 310
NoneOk (class in buildbot.data.types), 420
NotABranch (in module buildbot.util), 311
NotClaimedError, 422
notify() (in module buildbot.util), 311
notifyOnDisconnect() (build-

bot.worker.protocols.base.Connection method),
486

now() (in module buildbot.util), 310

O
OAuth2Auth (class in buildbot.www.oauth2), 493
objdict, 442
objectid, 442
offset (buildbot.data.resultspec.ResultSpec attribute), 485
OpenStackLatentWorker Build Worker, 125
OPTIONS Build Step, 190
order (buildbot.data.resultspec.ResultSpec attribute), 484

P
P4 Build Step, 160
P4PASSWD, 85
P4PORT, 85

P4Source Change Source, 85
P4USER, 85
parse_from_arg() (build-

bot.schedulers.forceshed.BaseParameter
method), 482

parse_from_args() (build-
bot.schedulers.forceshed.BaseParameter
method), 482

PATH, 32, 43, 86, 135, 166, 172, 183, 281
pathExists() (buildbot.process.buildstep.buildbot.process.buildstep.CommandMixin

method), 476
pathPatterns (buildbot.data.base.Endpoint attribute), 417
PBChangeSource Change Source, 83
Periodic Scheduler, 101
PerlModuleTest Build Step, 174
plural (buildbot.data.base.ResourceType attribute), 416
Poller (class in buildbot.util.poll), 316
PollingChangeSource (class in buildbot.changes.base),

462
popBooleanFilter() (buildbot.data.resultspec.ResultSpec

method), 485
popField() (buildbot.data.resultspec.ResultSpec method),

485
popFilter() (buildbot.data.resultspec.ResultSpec method),

485
popIntegerFilter() (buildbot.data.resultspec.ResultSpec

method), 485
popProperties() (buildbot.data.resultspec.ResultSpec

method), 485
popStringFilter() (buildbot.data.resultspec.ResultSpec

method), 485
POST Build Step, 190
post() (buildbot.util.service.HTTPClientService method),

326
Postgres, 62
prioritizeBuilders (buildbot.config.MasterConfig at-

tribute), 301
prioritizeBuilders (Buildmaster Config), 66
priority (buildbot.config.ReconfigurableServiceMixin at-

tribute), 305
produce() (buildbot.mq.base.MQConnector method), 453
produceEvent() (buildbot.data.base.ResourceType

method), 416
produceEvent() (buildbot.data.connector.DataConnector

method), 414
progressMetrics (buildbot.process.buildstep.BuildStep at-

tribute), 467
Properties, 53, 142

branch, 143
builddir, 143
builder, 135
buildername, 143
buildnumber, 143
Common Properties, 143

Index 609

Buildbot Documentation, Release 0.9.7

from forced build, 203
from GerritChangeSource, 93
from scheduler, 96
from steps, 184
from worker, 115
global, 67
got_revision, 143
Interpolate, 144
IProperties, 483
IRenderable, 483
JSONPropertiesDownload, 183
Property, 144
Renderer, 146
scheduler, 143
Transform, 146
tree-size-KiB, 174
triggering schedulers, 186
warnings-count, 170
WithProperties, 147
workername, 143

properties (buildbot.config.BuilderConfig attribute), 303
properties (buildbot.config.MasterConfig attribute), 300
properties (buildbot.data.resultspec.ResultSpec attribute),

485
properties (buildbot.schedulers.base.BaseScheduler at-

tribute), 478
properties (Buildmaster Config), 67
Property (class in buildbot.data.resultspec), 485
protocols (buildbot.config.MasterConfig attribute), 301
protocols (Buildmaster Config), 67
proxies (buildbot.worker.protocols.base.Connection at-

tribute), 486
Pushover, 200
Pushover Reporter Target, 200
PUT Build Step, 190
put() (buildbot.util.service.HTTPClientService method),

326
put() (in module buildbot.util.lru), 312
PyFlakes Build Step, 177
PyLint Build Step, 178
Python Enhancement Proposals

PEP 328, 313
PYTHONPATH, 32, 43, 141, 165, 179, 262–264, 281

Q
QueueRef (class in buildbot.mq.base), 454
QuickBuildFactory, 140

R
rc (buildbot.process.remotecommand.RemoteCommand

attribute), 464
reclaimBuildRequests() (build-

bot.data.buildrequests.BuildRequest method),
375

reclaimBuildRequests() (build-
bot.db.buildrequests.BuildRequestsConnectorComponent
method), 424

reconfigAuth() (buildbot.www.auth.AuthBase method),
492

reconfigResource() (buildbot.www.resource.Resource
method), 494

reconfigService() (build-
bot.statistics.stats_service.StatsService
method), 357

reconfigService() (buildbot.util.service.BuildbotService
method), 324

reconfigServiceWithBuildbotConfig() (build-
bot.config.ReconfigurableServiceMixin
method), 305

reconfigServiceWithSibling() (build-
bot.util.service.BuildbotService method),
324

ReconfigurablePollingChangeSource (class in build-
bot.changes.base), 462

ReconfigurableServiceMixin (class in buildbot.config),
305

Redirect (class in buildbot.www.resource), 494
refhits (in module buildbot.util.lru), 312
regex (buildbot.schedulers.forceshed.BaseParameter at-

tribute), 482
register() (buildbot.worker.manager.WorkerManager

method), 489
registerConsumers() (build-

bot.statistics.stats_service.StatsService
method), 357

remote_close() (buildbot.worker.protocols.base.FileReaderImpl
method), 488

remote_complete() (build-
bot.process.remotecommand.RemoteCommand
method), 464

remote_read() (buildbot.worker.protocols.base.FileReaderImpl
method), 488

remote_update() (build-
bot.process.remotecommand.RemoteCommand
method), 464

remote_update() (build-
bot.worker.protocols.base.RemoteCommandImpl
method), 487

RemoteCommand (class in build-
bot.process.remotecommand), 463

RemoteCommandImpl (class in build-
bot.worker.protocols.base), 487

remoteComplete() (build-
bot.process.remotecommand.RemoteCommand
method), 464

remoteGetWorkerInfo() (build-
bot.worker.protocols.base.Connection method),
486

610 Index

Buildbot Documentation, Release 0.9.7

remoteInterruptCommand() (build-
bot.worker.protocols.base.Connection method),
487

remotePrint() (buildbot.worker.protocols.base.Connection
method), 486

remoteSetBuilderList() (build-
bot.worker.protocols.base.Connection method),
486

RemoteShellCommand (class in build-
bot.process.remotecommand), 465

remoteShutdown() (build-
bot.worker.protocols.base.Connection method),
487

remoteStartBuild() (build-
bot.worker.protocols.base.Connection method),
487

remoteStartCommand() (build-
bot.worker.protocols.base.Connection method),
486

remoteUpdate() (buildbot.process.remotecommand.RemoteCommand
method), 464

removeBuilderMaster() (build-
bot.db.builders.BuildersConnectorComponent
method), 446

removeConsumers() (build-
bot.statistics.stats_service.StatsService
method), 357

RemoveDirectory Build Step, 176
removeOrder() (buildbot.data.resultspec.ResultSpec

method), 485
removePagination() (buildbot.data.resultspec.ResultSpec

method), 485
RemovePYCs Build Step, 179
removeUser() (buildbot.db.users.UsersConnectorComponent

method), 444
renderable, 143, 213, 248
rendered (buildbot.process.buildstep.BuildStep attribute),

467
Repo Build Step, 161

Gerrit integration, 161
reporter (Buildmaster Config), 194
Reporter Targets

BitbucketStatusPush, 209
GerritStatusPush, 203
GerritVerifyStatusPush, 212
GitHubCommentPush, 207
GitHubStatusPush, 207
GitLabStatusPush, 210
HipchatStatusPush, 210
HttpStatusPush, 206
IRC, 200
MailNotifier, 195
Pushover, 200
StashStatusPush, 208

required (buildbot.schedulers.forceshed.BaseParameter
attribute), 482

Resource (class in buildbot.www.resource), 494
Resource Action

/builders/{builderid}/builds/{build_number}:rebuild,
372

/builders/{builderid}/builds/{build_number}:stop,
372

/buildrequests/{buildrequestid}:cancel, 376
/builds/{buildid}:rebuild, 373
/builds/{buildid}:stop, 373
/forceschedulers/{schedulername}:force, 382

Resource Path
/, 390
/application.spec, 394
/builders, 374
/builders/{builderid}, 374
/builders/{builderid}/{masterid}, 389
/builders/{builderid}/buildrequests, 376
/builders/{builderid}/builds, 372
/builders/{builderid}/builds/{build_number}, 372
/builders/{builderid}/builds/{build_number}/steps,

395
/builders/{builderid}/builds/{build_number}/steps/{step_name},

396
/builders/{builderid}/builds/{build_number}/steps/{step_name}/logs,

384
/builders/{builderid}/builds/{build_number}/steps/{step_name}/logs/{log_slug},

384
/builders/{builderid}/builds/{build_number}/steps/{step_name}/logs/{log_slug}/contents,

387
/builders/{builderid}/builds/{build_number}/steps/{step_name}/logs/{log_slug}/raw,

399
/builders/{builderid}/builds/{build_number}/steps/{step_number},

396
/builders/{builderid}/builds/{build_number}/steps/{step_number}/logs,

384
/builders/{builderid}/builds/{build_number}/steps/{step_number}/logs/{log_slug},

385
/builders/{builderid}/builds/{build_number}/steps/{step_number}/logs/{log_slug}/contents,

387
/builders/{builderid}/builds/{build_number}/steps/{step_number}/logs/{log_slug}/raw,

399
/builders/{builderid}/forceschedulers, 382
/builders/{builderid}/masters, 389
/builders/{builderid}/workers, 397
/builders/{builderid}/workers/{name}, 397
/builders/{builderid}/workers/{workerid}, 397
/buildrequests, 376
/buildrequests/{buildrequestid}, 376
/buildrequests/{buildrequestid}/builds, 372
/builds, 372
/builds/{buildid}, 373
/builds/{buildid}/changes, 379

Index 611

Buildbot Documentation, Release 0.9.7

/builds/{buildid}/properties, 392
/builds/{buildid}/steps, 396
/builds/{buildid}/steps/{step_number_or_name},

396
/builds/{buildid}/steps/{step_number_or_name}/logs,

385
/builds/{buildid}/steps/{step_number_or_name}/logs/{log_slug},

385
/builds/{buildid}/steps/{step_number_or_name}/logs/{log_slug}/contents,

387
/builds/{buildid}/steps/{step_number_or_name}/logs/{log_slug}/raw,

400
/buildsets, 378
/buildsets/{bsid}, 378
/buildsets/{bsid}/properties, 392
/changes, 380
/changes/{changeid}, 380
/changesources, 381
/changesources/{changesourceid}, 381
/forceschedulers, 382
/forceschedulers/{schedulername}, 382
/logs/{logid}, 385
/logs/{logid}/contents, 387
/logs/{logid}/raw, 400
/masters, 389
/masters/{masterid}, 389
/masters/{masterid}/builders, 374
/masters/{masterid}/builders/{builderid}, 374
/masters/{masterid}/builders/{builderid}/workers,

398
/masters/{masterid}/builders/{builderid}/workers/{name},

398
/masters/{masterid}/builders/{builderid}/workers/{workerid},

398
/masters/{masterid}/changesources, 381
/masters/{masterid}/changesources/{changesourceid},

381
/masters/{masterid}/schedulers, 391
/masters/{masterid}/schedulers/{schedulerid}, 391
/masters/{masterid}/workers, 398
/masters/{masterid}/workers/{name}, 398
/masters/{masterid}/workers/{workerid}, 399
/schedulers, 391
/schedulers/{schedulerid}, 391
/sourcestamps, 393
/sourcestamps/{ssid}, 393
/sourcestamps/{ssid}/changes, 380
/steps/{stepid}/logs, 385
/steps/{stepid}/logs/{log_slug}, 386
/steps/{stepid}/logs/{log_slug}/contents, 388
/steps/{stepid}/logs/{log_slug}/raw, 400
/workers, 399
/workers/{name_or_id}, 399

Resource Type

build, 370
builder, 373
buildrequest, 374
buildset, 376
change, 378
changesource, 380
collection, 367
forcescheduler, 381
identifier, 382
log, 382
logchunk, 386
master, 388
patch, 389
rootlink, 390
scheduler, 390
sourcedproperties, 392
sourcestamp, 393
spec, 394
step, 394
worker, 397

ResourceType (class in buildbot.data.base), 416
restart (buildbot) Command Line Subcommand, 268
restart (worker) Command Line Subcommand, 277
ResultComputingConfigMixin (class in build-

bot.process.results), 330
resultConfig (buildbot.process.results.ResultComputingConfigMixin

attribute), 330
results (buildbot.process.buildstep.BuildStep attribute),

467
Results (in module buildbot.process.results), 330
results() (buildbot.process.remotecommand.RemoteCommand

method), 463
ResultSpec (class in buildbot.data.resultspec), 484
RETRY (in module buildbot.process.results), 329
revlink (Buildmaster Config), 75
Robocopy Build Step, 173
rootLinkName (buildbot.data.base.Endpoint attribute),

417
RpmBuild Build Step, 188
RpmLint Build Step, 188
rtypes (buildbot.data.connector.DataConnector attribute),

414
run() (buildbot.process.buildstep.BuildStep method), 468
run() (buildbot.process.remotecommand.RemoteCommand

method), 463
runCommand() (buildbot.process.buildstep.BuildStep

method), 472
runGlob() (buildbot.process.buildstep.buildbot.process.buildstep.CommandMixin

method), 476
runMkdir() (buildbot.process.buildstep.buildbot.process.buildstep.CommandMixin

method), 475
runRmdir() (buildbot.process.buildstep.buildbot.process.buildstep.CommandMixin

method), 475

612 Index

Buildbot Documentation, Release 0.9.7

S
sa_version() (in module buildbot.util.sautils), 318
safeTranslate() (in module buildbot.util), 309
Scheduler Scheduler, 98
SchedulerAlreadyClaimedError, 415, 438
schedulerid (buildbot.schedulers.base.BaseScheduler at-

tribute), 478
Schedulers

AnyBranchScheduler, 100
ChoiceStringParameter, 112
DB Connector Component, 438
Dependent, 100
ForceScheduler, 107
InheritBuildParameter, 113
Nightly, 102
NightlyTriggerable, 106
Periodic, 101
Scheduler, 98
SingleBranchScheduler, 98
Triggerable, 105
Try_Jobdir, 103
Try_Userpass, 103
WorkerChoiceParameter, 114

schedulers (buildbot.config.MasterConfig attribute), 301
schedulers (Buildmaster Config), 96
SchedulersConnectorComponent (class in build-

bot.db.schedulers), 438
secretsProviders (Buildmaster Config), 73
sendBuildSetSummary() (in module build-

bot.status.buildset), 462
sendchange Command Line Subcommand, 273
Service Mixins

ReconfigurableServiceMixin, 304
Service utilities

ClusteredService, 321
services (buildbot.config.MasterConfig attribute), 301
services (Buildmaster Config), 232
set() (DbConfig method), 233
setAllMastersActiveLongTimeAgo() (build-

bot.db.masters.MastersConnectorComponent
method), 445

setBasedir() (buildbot.util.maildir.MaildirService
method), 316

setBuild() (buildbot.process.buildstep.BuildStep
method), 467

setBuildProperties() (buildbot.data.properties.Properties
method), 392

setBuildProperty() (buildbot.data.properties.Properties
method), 392

setBuildProperty() (build-
bot.db.builds.BuildsConnectorComponent
method), 427

setBuildStateString() (buildbot.data.builds.Build
method), 372

setChangeSourceMaster() (build-
bot.db.changesources.ChangeSourcesConnectorComponent
method), 437

setDefaultWorkdir() (build-
bot.process.buildstep.BuildStep method),
468

setMasterState() (build-
bot.db.masters.MastersConnectorComponent
method), 445

setProgress() (buildbot.process.buildstep.BuildStep
method), 471

SetProperties Build Step, 184
SetPropertiesFromEnv Build Step, 186
SetProperty Build Step, 184
setProperty(), 483
SetPropertyFromCommand Build Step, 185
setSchedulerMaster() (build-

bot.db.schedulers.SchedulersConnectorComponent
method), 439

setState() (buildbot.db.state.StateConnectorComponent
method), 442

setState() (buildbot.schedulers.base.BaseScheduler
method), 481

setStatistic() (buildbot.process.buildstep.BuildStep
method), 471

setStepStateString() (buildbot.data.steps.Step method),
395

setupProgress() (buildbot.process.buildstep.BuildStep
method), 468

setupShellMixin() (build-
bot.process.buildstep.buildbot.process.buildstep.ShellMixin
method), 477

setWorker() (buildbot.process.buildstep.BuildStep
method), 468

SharedService (class in buildbot.util.service), 322
ShellCommand Build Step, 164
ShellSequence Build Step, 167
shouldRunTheCommand() (build-

bot.steps.source.buildbot.steps.shellsequence.ShellSequence
method), 168

sighup Command Line Subcommand, 269
sigtermTime (buildbot.process.buildstep.buildbot.process.buildstep.ShellMixin

attribute), 477
SimpleMQ (class in buildbot.mq.simple), 455
SingleBranchScheduler Scheduler, 98
SKIPPED (in module buildbot.process.results), 329
skipUnless() (in module buildbot.util.service), 329
SourcedProperties (class in buildbot.data.types), 420
SourceStamps

DB Connector Component, 440
SourceStampsConnectorComponent (class in build-

bot.db.sourcestamps), 440
Sphinx Build Step, 178
SQLite, 62

Index 613

Buildbot Documentation, Release 0.9.7

limitations, 424, 451
ssdict, 440
ssid, 440
start (buildbot) Command Line Subcommand, 268
start (worker) Command Line Subcommand, 277
start() (buildbot.process.buildstep.BuildStep method),

468
start() (buildbot.util.debounce.Debouncer method), 315
start() (buildbot.util.poll.Poller method), 316
startConsuming() (buildbot.mq.base.MQConnector

method), 453
startConsumingChanges() (build-

bot.schedulers.base.BaseScheduler method),
478

startStep() (buildbot.data.steps.Step method), 395
startStep() (buildbot.process.buildstep.BuildStep

method), 468
StashStatusPush (built-in class), 209
StashStatusPush Reporter Target, 208
State

DB Connector Component, 441
StateConnectorComponent (class in buildbot.db.state),

441
StateMixin (class in buildbot.util.state), 319
stats-service (Buildmaster Config), 69
stdout (buildbot.process.remotecommand.RemoteCommand

attribute), 464
stepdict, 427
stepid, 427
stepid (buildbot.process.buildstep.BuildStep attribute),

466
Steps

DB Connector Component, 427
StepsConnectorComponent (class in buildbot.db.steps),

427
stop (buildbot) Command Line Subcommand, 268
stop (worker) Command Line Subcommand, 277
stop() (buildbot.util.debounce.Debouncer method), 315
stop() (buildbot.util.poll.Poller method), 316
stopConsuming() (buildbot.mq.base.QueueRef method),

454
stopped (buildbot.process.buildstep.BuildStep attribute),

469
stopService() (buildbot.statistics.stats_service.StatsService

method), 357
StreamLog (class in buildbot.process.log), 490
String (class in buildbot.data.types), 420
StringDownload Build Step, 182
strings (buildbot.util.netstrings.NetstringParser attribute),

318
stripUrlPassword() (in module buildbot.util), 311
subscribe() (buildbot.process.log.Log method), 489
SubunitShellCommand Build Step, 175
SUCCESS (in module buildbot.process.results), 329

summarySubscribe() (in module buildbot.status.buildset),
461

summaryUnsubscribe() (in module build-
bot.status.buildset), 461

SVN Build Step, 157
SVNCommitEmailMaildirSource Change Source, 82
SVNPoller Change Source, 85

T
Test Build Step, 174
TextLog (class in buildbot.process.log), 489
thd_postStatsValue() (build-

bot.statistics.storage_backends.influxdb_client.InfluxStorageService
method), 359

thd_postStatsValue() (build-
bot.statistis.storage_backends.base.StatsStorageBase
method), 358

timeout (buildbot.process.buildstep.buildbot.process.buildstep.ShellMixin
attribute), 476

title (buildbot.config.MasterConfig attribute), 300
title (Buildmaster Config), 64
titleURL (buildbot.config.MasterConfig attribute), 300
titleURL (Buildmaster Config), 64
TMP, 186
TopicMatcher (class in buildbot.util.topicmatch), 319
TreeSize Build Step, 174
Trial, 141
Trial Build Step, 178
Trigger Build Step, 186
Triggerable Scheduler, 105
Triggers, 105
try Command Line Subcommand, 269
Try_Jobdir Scheduler, 103
Try_Userpass Scheduler, 103
trySetChangeSourceMaster() (build-

bot.data.changesources.ChangeSource
method), 380

trySetSchedulerMaster(), 391
type (buildbot.process.log.Log attribute), 489
type (buildbot.schedulers.forceshed.BaseParameter at-

tribute), 482

U
unclaimBuildRequests() (build-

bot.data.buildrequests.BuildRequest method),
375

unclaimBuildRequests() (build-
bot.db.buildrequests.BuildRequestsConnectorComponent
method), 424

unclaimExpiredRequests() (build-
bot.data.buildrequests.BuildRequest method),
376

unclaimExpiredRequests() (build-
bot.db.buildrequests.BuildRequestsConnectorComponent

614 Index

Buildbot Documentation, Release 0.9.7

method), 424
unregister() (buildbot.worker.manager.WorkerRegistration

method), 488
unsupported format character, 147
update() (buildbot.worker.manager.WorkerRegistration

method), 488
updateBuilderList() (buildbot.data.builders.Builder

method), 373
updateFromKwargs() (build-

bot.schedulers.forceshed.BaseParameter
method), 481

updateMethod() (in module buildbot.data.base), 419
updateSummary() (buildbot.process.buildstep.BuildStep

method), 469
updateUser() (buildbot.db.users.UsersConnectorComponent

method), 444
updateUserInfo() (buildbot.www.auth.AuthBase

method), 493
upgrade() (buildbot.db.model.Model method), 449
upgrade-master Command Line Subcommand, 268
useLog() (buildbot.process.remotecommand.RemoteCommand

method), 464
useLogDelayed() (build-

bot.process.remotecommand.RemoteCommand
method), 464

useProgress (buildbot.process.buildstep.BuildStep
attribute), 467

usePTY (buildbot.process.buildstep.buildbot.process.buildstep.ShellMixin
attribute), 476

user Command Line Subcommand, 274
user_managers (buildbot.config.MasterConfig attribute),

301
user_managers (Buildmaster Config), 74
userInfoProvider (buildbot.www.auth.AuthBase at-

tribute), 492
UserInfoProviderBase (class in buildbot.www.auth), 493
Users

DB Connector Component, 443
UsersConnectorComponent (class in buildbot.db.users),

443
UTC (in module buildbot.util), 309

V
validation (buildbot.config.MasterConfig attribute), 301
validation (Buildmaster Config), 75
VC10 Build Step, 171
VC11 Build Step, 171
VC12 Build Step, 171
VC14 Build Step, 171
VC6 Build Step, 171
VC7 Build Step, 171
VC8 Build Step, 171
VC9 Build Step, 171
VCExpress9 Build Step, 171

Visual C++, 171
Visual Studio, 171
VS2003 Build Step, 171
VS2005 Build Step, 171
VS2008 Build Step, 171
VS2010 Build Step, 171
VS2012 Build Step, 171
VS2013 Build Step, 171
VS2015 Build Step, 171

W
wait() (in module buildbot.util), 311
waitUntilEvent() (buildbot.mq.base.MQConnector

method), 454
WampConnector (class in buildbot.wamp.connector), 455
WampMQ (class in buildbot.mq.wamp), 455
want_stderr (buildbot.process.buildstep.buildbot.process.buildstep.ShellMixin

attribute), 476
want_stdout (buildbot.process.buildstep.buildbot.process.buildstep.ShellMixin

attribute), 476
WARNINGS (in module buildbot.process.results), 329
warnOnFailure (buildbot.process.buildstep.BuildStep at-

tribute), 467
warnOnFailure (buildbot.process.results.ResultComputingConfigMixin

attribute), 330
warnOnWarnings (buildbot.process.buildstep.BuildStep

attribute), 467
warnOnWarnings (build-

bot.process.results.ResultComputingConfigMixin
attribute), 330

workdir (buildbot.process.buildstep.buildbot.process.buildstep.ShellMixin
attribute), 476

workdir (buildbot.process.buildstep.BuildStep attribute),
468

worker (buildbot.process.buildstep.BuildStep attribute),
468

Worker (class in buildbot.worker), 460
workerbuilddir (buildbot.config.BuilderConfig attribute),

303
WorkerChoiceParameter Scheduler, 114
workerConfigured() (build-

bot.db.workers.WorkersConnectorComponent
method), 434

workerConnected() (build-
bot.db.workers.WorkersConnectorComponent
method), 434

workerDisconnected() (build-
bot.db.workers.WorkersConnectorComponent
method), 434

workerid (buildbot.worker.Worker attribute), 460
WorkerManager (class in buildbot.worker.manager), 489
workernames (buildbot.config.BuilderConfig attribute),

302

Index 615

Buildbot Documentation, Release 0.9.7

workerProxyObject (class in build-
bot.worker.protocols.base), 487

WorkerRegistration (class in buildbot.worker.manager),
488

Workers
AWS EC2, 117
DB Connector Component, 433
Docker, 128
latent, 117
libvirt, 123
limiting concurrency, 115
local, 117

workers (buildbot.config.MasterConfig attribute), 301
workers (Buildmaster Config), 114
WorkersConnectorComponent (class in build-

bot.db.workers), 433
workerVersion() (buildbot.process.buildstep.BuildStep

method), 471
workerVersionIsOlderThan() (build-

bot.process.buildstep.BuildStep method),
471

worst_status() (in module buildbot.process.results), 330
www (buildbot.config.MasterConfig attribute), 301
www (Buildmaster Config), 213

Y
yieldMetricsValue() (build-

bot.statistics.stats_service.StatsService
method), 358

616 Index

	Buildbot Tutorial
	First Run
	First Buildbot run with Docker
	A Quick Tour
	Further Reading

	Buildbot Manual
	Introduction
	Installation
	Concepts
	Secret Management
	Configuration
	Transition to ``worker'' terminology
	Customization
	New-Style Build Steps
	Command-line Tool
	Resources
	Optimization
	Plugin Infrastructure in Buildbot
	Deployment

	Buildbot Development
	General Documents
	APIs
	Python3 compatibility
	Classes

	Release Notes
	Buildbot 0.9.7 (2017-05-09)
	Buildbot 0.9.6 (2017-04-19)
	Buildbot 0.9.5 (2017-03-18)
	Buildbot 0.9.4 (2017-02-08)
	Buildbot 0.9.3 (2017-01-11)
	Buildbot 0.9.2 (2016-12-13)

	Older Release Notes
	Release Notes for Buildbot 0.9.1
	Release Notes for Buildbot 0.9.0
	Release Notes for Buildbot 0.9.0rc4
	Release Notes for Buildbot 0.9.0rc3
	Release Notes for Buildbot 0.9.0rc2
	Release Notes for Buildbot 0.9.0rc1
	Release Notes for Buildbot 0.9.0b9
	Release Notes for Buildbot 0.9.0b8
	Release Notes for Buildbot 0.9.0b7
	Release Notes for Buildbot 0.9.0b6
	Release Notes for Buildbot 0.9.0b5
	Release Notes for Buildbot 0.9.0b4
	Release Notes for Buildbot 0.9.0b3
	Release Notes for Buildbot 0.9.0b2
	Release Notes for Buildbot 0.9.0b1
	Release Notes for Buildbot 0.8.11
	Release Notes for Buildbot 0.8.10
	Release Notes for Buildbot 0.8.9
	Release Notes for Buildbot v0.8.8
	Release Notes for Buildbot v0.8.7
	Release Notes for Buildbot v0.8.6p1

	Indices and Tables
	Copyright
	Buildmaster Configuration Index
	Scheduler Index
	Change Source Index
	Build Step Index
	Reporter Target Index
	Configurator Target Index
	Build Worker Index
	Command Line Index
	Data API Event Index
	REST/Data API Resource Type Index
	REST/Data API Path Index
	REST/Data API Actions Index
	Python Module Index

