
bufferkdtree Documentation
Release 1.1

Fabian Gieseke

December 01, 2015

Contents

1 Contents 3
1.1 Quick Overview . 3
1.2 Installation . 4
1.3 Examples . 5
1.4 Reference . 9
1.5 License . 11
1.6 Changes . 11
1.7 Citations . 12

2 Index 13

i

ii

bufferkdtree Documentation, Release 1.1

The bufferkdtree library is a Python library that aims at accelerating nearest neighbor computations using both k-d
trees and graphics processing cards (GPUs) via OpenCL. The source code is published under the GNU General Public
License Version 2 (GPLv2).

Contents 1

https://www.khronos.org/opencl/OpenCL

bufferkdtree Documentation, Release 1.1

2 Contents

CHAPTER 1

Contents

1.1 Quick Overview

The main approach provided by the bufferkdtree package is an efficient many-core implementation (suitable for, e.g.,
GPUs) for processing huge amounts of nearest neighor queries by means of so-called buffer k-d trees. Such trees
depict modifications of standard k-d trees that can be used to make use of the massive parallelism provided by today’s
many-core devices (such as GPUs).

Buffer k-d trees aim at scenarios, where you are given both a large reference (e.g., 1,000,000 points) and a huge
query set (e.g., 10,000,000 points or more) with an input space of moderate dimensionality (e.g., from d=5 to d=25
dimensions). The general workflow is sketched below; the key idea is to “delay” the processing of nearest neighbor
queries until enough work is gathered that can be processed by the many-core device.

Workflow: Initially, all queries are given in the input queue. The computation of nearest neighbors takes place in
iterations. In each iteration, the procedure FindLeafBatch removes query indices from both queues and distributes
them to the buffers (or removes them if no further processing is needed). In case enough work has been gathered,
the procedure ProcessAllBuffers is invoked, which updates the nearest neighbors and reinserts all query indices into
reinsert. The process stops as soon as both queues and all buffers are empty. For each query (index), an associated
stack is stored, which is used to traverse the overall tree.

Note that each query is traversed in the same manner as for a standard k-d tree traversal (given the same tree depth).
However, in contrast to the original traversal, queries are now grouped together before the nearest neighbors are

3

bufferkdtree Documentation, Release 1.1

updated in each leaf. This greatly improves the performance on today’s many-core devices, since similar memory
regions are processed by neighbored threads.

A detailed description of the techniques used and an experimental evaluation of the implementation using massive
astronomical data sets are provided in:

Fabian Gieseke, Justin Heinermann, Cosmin Oancea, and Christian Igel. Buffer k-d Trees: Processing Massive Nearest
Neighbor Queries on GPUs. In: Proceedings of the 31st International Conference on Machine Learning (ICML) 32(1),
2014, 172-180. [pdf] [bibtex]

Implicit Hardware Caches
The brute-force step that takes place to empty the leaves via the many-core device makes use of implicit hardware
caches. To achieve satisfying speed-ups, this feature has to be supported by the device (see, e.g., the Kepler GK110
Whitepaper)

1.2 Installation

1.2.1 Quick Installation

Warning: The authors are not responsible for any implications that stem from the use of this software.

The package is available on PyPI, but can also be installed from the sources. For instance, to install the package via
PyPI on Linux machines, type:

$ sudo pip install bufferkdtree

To install the package from the sources, first get the current version via:

$ git clone https://github.com/gieseke/bufferkdtree.git

Subsequently, install the package locally via:

$ cd bufferkdtree
$ python setup.py install --user

or, globally for all users, via:

$ sudo python setup.py build
$ sudo python setup.py install

1.2.2 Dependencies

The bufferkdtree package has been tested under various Linux-based systems such as Ubuntu and OpenSUSE and
requires Python 2.6 or 2.7. Below, some installation instructions are given for Linux-based systems; similar steps have
to be conducted on other systems.

To install the package, a working C/C++ compiler, OpenCL, Swig, and the Python development files (headers) along
with setuptools need to be available. Further, the NumPy package (>=1.6.1) is needed.

On Ubuntu 12.04/14.04, for instance, the following command can be used to install most dependencies (except for
OpenCL):

4 Chapter 1. Contents

http://jmlr.org/proceedings/papers/v32/gieseke14.pdf
http://www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf
http://www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf
https://pypi.python.org/pypi
https://pypi.python.org/pypi
https://www.khronos.org/opencl/OpenCL
http://www.swig.org/
https://pypi.python.org/pypi/setuptools
http://www.numpy.org

bufferkdtree Documentation, Release 1.1

$ sudo apt-get install python2.7 python-dev swig build-essential python-numpy python-setuptools

On an OpenSUSE system, the corresponding command is:

$ sudo zypper install python python-devel swig python-numpy python-setuptools

Compatibility
The implementation is based on the efficient use of implicit hardware caches. Thus, to obtain good speed-ups, the
system’s GPU has to support this feature! Current architectures such as Nvidia’s Kepler architecture exhibit such
caches, see, e.g., the Kepler GK110 Whitepaper.

1.2.3 OpenCL

OpenCL needs to be installed correctly. Make sure that the OpenCL header files are available, for example by setting
the C_INCLUDE_PATH environment variable in the .bashrc file on Linux systems. For instance, in case CUDA is
installed with header files being located in /usr/local/cuda/include, then the following command should
update the environment variable:

export C_INCLUDE_PATH=$C_INCLUDE_PATH:/usr/local/cuda/include

1.2.4 Virtualenv & Pip

We recommend to install the package via virtualenv and pip. On Ubuntu 12.04/14.04, for instance, the following
commands can be used to install virtualenv and pip:

$ sudo apt-get install python-virtualenv python-pip

Afterwards, create a new virtual environment and install the Numpy package:

$ mkdir ~/.virtualenvs
$ cd ~/.virtualenvs
$ virtualenv bufferkdtree
$ source bufferkdtree/bin/activate
$ pip install numpy==1.6.1

Given the activated virtual environment, follow the instructions above to install the bufferkdtree package (Quick In-
stallation).

1.3 Examples

The following two examples sketch the use of the different implementations and can be found in the examples directory
of the bufferkdtree package.

1.3.1 Toy Example

import numpy
from bufferkdtree.neighbors import NearestNeighbors

n_neighbors = 10
plat_dev_ids = {0:[0]}

1.3. Examples 5

http://www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf

bufferkdtree Documentation, Release 1.1

n_jobs = 1
verbose = 0

All implementations are provided via the NearestNeighbors class, which exhibits a similar layout as the corre-
sponding class of the scikit-learn package. The parameter n_jobs determines the number of threads that shall be
used by the standard k-d tree implementation (CPU). The parameter plat_dev_ids determines the OpenCL de-
vices that shall be used by the buffer k-d tree implementation (OpenCL): Each key of the dictionary corresponds to a
OpenCL platform id and for each platform id, a list of associated device ids can be provided. For this example, the
first platform and its first device are used.

Next, a small artificial data set is generated, where X contains the points, one row per point:

X = numpy.random.uniform(low=-1, high=1, size=(10000,10))

The package provides three implementations (brute, kd_tree, or buffer_kd_tree), which can be invoked via
the algorithm keyword of the constructor:

(1) apply buffer k-d tree implementation
nbrs_buffer_kd_tree = NearestNeighbors(algorithm="buffer_kd_tree", \

tree_depth=9, \
plat_dev_ids=plat_dev_ids, \
verbose=verbose)

nbrs_buffer_kd_tree.fit(X)
dists, inds = nbrs_buffer_kd_tree.kneighbors(X, n_neighbors=n_neighbors)
print("\nbuffer_kd_tree output\n" + unicode(dists[0]))

(2) apply brute-force implementation
nbrs_brute = NearestNeighbors(algorithm="brute", \

plat_dev_ids=plat_dev_ids, \
verbose=verbose)

nbrs_brute.fit(X)
dists, inds = nbrs_brute.kneighbors(X, n_neighbors=n_neighbors)
print("\nbrute output\n" + unicode(dists[0]))

(3) apply k-d tree mplementation
nbrs_kd_tree = NearestNeighbors(algorithm="kd_tree", \

n_jobs=n_jobs, \
verbose=verbose)

nbrs_kd_tree.fit(X)
dists, inds = nbrs_kd_tree.kneighbors(X, n_neighbors=n_neighbors)
print("\nkd_tree output\n" + unicode(dists[0]) + "\n")

For a detailed description of the remaining keywords, see the description of the documentation of the NearestNeighbors
class. The above steps yield the following output:

Nearest Neighbors
=================

This example demonstrates the use of the different
implementations given on a small artifical data set.

buffer_kd_tree output
[0. 1.0035212 1.09866345 1.11734533 1.13440645 1.17730558

1.1844281 1.20736992 1.2085104 1.21593559]

brute output
[0. 1.0035212 1.09866357 1.11734521 1.13440645 1.17730546

1.18442798 1.20736992 1.2085104 1.21593571]

6 Chapter 1. Contents

http://scikit-learn.org/stable/modules/generated/sklearn.neighbors.NearestNeighbors.html

bufferkdtree Documentation, Release 1.1

kd_tree output
[0. 1.0035212 1.09866357 1.11734521 1.13440645 1.17730546

1.18442798 1.20736992 1.2085104 1.21593571]

Brute-Force
The brute-force implementatation is only used for comparison in relatively low-dimensional spaces; the performance
is suboptimal for higher dimensional feature spaces (but superior over other matrix based implementations making use
e.g., CUBLAS, for low-dimensional spaces).

1.3.2 Large-Scale Querying

The main purpose of the buffer k-d tree implementation is to speed up the querying phase given both a large number
of reference and a huge number of query points. The next data example is based on astronomical data from the Sloan
Digital Sky Survey (the data set will be downloaded automatically):

import time
import generate
from bufferkdtree.neighbors import NearestNeighbors

parameters
plat_dev_ids = {0:[0,1,2,3]}
n_jobs = 8
verbose = 0
n_neighbors=10

Note that four devices of the first platform are used now (0,1,2,3). The helper function defined next is used to time the
runtimes needed for the training and testing phases of each method:

def run_algorithm(algorithm="buffer_kd_tree", tree_depth=None, leaf_size=None):

nbrs = NearestNeighbors(n_neighbors=n_neighbors, \
algorithm=algorithm, \
tree_depth=tree_depth, \
leaf_size=leaf_size, \
n_jobs = n_jobs, \
plat_dev_ids=plat_dev_ids, \
verbose=verbose)

start_time = time.time()
nbrs.fit(Xtrain)
end_time = time.time()
print("Fitting time: %f" % (end_time-start_time))

start_time = time.time()
dists, inds = nbrs.kneighbors(Xtest)
end_time = time.time()
print("Testing time: %f" % (end_time-start_time))

print("Parsing data ...")
Xtrain, Ytrain, Xtest = generate.get_data_set(NUM_TRAIN=2000000, NUM_TEST=10000000)
print("-------------------------------- DATA --------------------------------")
print("Number of training patterns:\t %i" % Xtrain.shape[0])
print("Number of test patterns:\t %i" % Xtest.shape[0])
print("Dimensionality of patterns:\t%i" % Xtrain.shape[1])
print("--")

1.3. Examples 7

http://www.sdss.org/collaboration/citing-sdss
http://www.sdss.org/collaboration/citing-sdss

bufferkdtree Documentation, Release 1.1

print("\n\nRunning the GPU version ...")
run_algorithm(algorithm="buffer_kd_tree", tree_depth=9)

print("\n\nRunning the CPU version ...")
run_algorithm(algorithm="kd_tree", leaf_size=32)

Note that either tree_depth or leaf_size is used to determine the final tree depth, see the documentation. For
this example, large sets of reference (two million) and query points (ten million) are generated:

Loading the data this way should yield an output like:

Nearest Neighbors
=================

This example demonstrates the use of both tree-based
implementations on a large-scale data set.

-------------------------------- DATA --------------------------------
Number of training patterns: 2000000
Number of test patterns: 10000000
Dimensionality of patterns: 10
--

Finally, both implementations are invoked to compute the 10 nearest neighbors for each query point:

The above code yields the folling output on an Ubuntu 14.04 system (64 bit) with an Intel(R) Core(TM) i7-4790K
running at 4.00GHz (4 cores, 8 hardware threads), 32GB RAM, two Geforce Titan Z GPUs (with two devices each),
CUDA 6.5 and Nvidia driver version 340.76:

Running the GPU version ...
Fitting time: 1.394939
Testing time: 11.148126

Running the CPU version ...
Fitting time: 0.681938
Testing time: 314.787735

The parameters tree_depth and leaf_size play an important role: In case tree_depth is not None, then
leaf_size is ignored. Otherwise, leaf_size is used to automatically determine the corresponding tree depth
(such that at most leaf_size points are stored in a single leaf). For kd_tree, setting the leaf size to, e.g., 32 is
usually a good choice. For buffer_kd_tree, a smaller tree depth is often needed to achieve a good performance
(e.g., tree_depth=9 for 1,000,000 reference points).

Performance
The performance might depend on the particular OpenCL version Nvidia driver. For instance, we observed similar
speed-ups (per device) with a weeker Gefore GTX 770 given CUDA 5.5 and Nvidia driver version 319.23.

Tree Construction
Both implementations are based on the standard rule for splitting nodes during the construction (cyclic, median based).
Other splitting rules might be beneficial, but are, in general, data set dependent. Other construction schemes will be
available in future for all tree-based schemes.

8 Chapter 1. Contents

bufferkdtree Documentation, Release 1.1

1.4 Reference

All neighbor implementations can be invoked via the main NearestNeighbors class, which exhibits a similar
structure as the corresponding class from the scikit-learn package:

class bufferkdtree.neighbors.NearestNeighbors(n_neighbors=5, algorithm=’buffer_kd_tree’,
tree_depth=None, leaf_size=30, split-
ting_type=’cyclic’, n_train_chunks=1,
plat_dev_ids={0: [0]}, al-
lowed_train_mem_percent_chunk=0.15,
allowed_test_mem_percent=0.55, n_jobs=1,
verbose=0, **kwargs)

The ‘NearestNeighbors’ provides access to all nearest neighbor implementations. It has simmilar parameters as
the corresponding implementation of the scikit-learn package.

The main method is the “buffer_kd_tree”, which can be seen as mix between the “brute” and the “kd_tree”
implementations.

Parameters n_neighbors : int (default 5)

Number of neighbors used

algorithm : {“brute”, “kd_tree”, “buffer_kd_tree”}, optional (default=”buffer_kd_tree”)

The algorithm that shall be used to compute the nearest neighbors. One of - ‘brute’:
brute-force search - ‘kd_tree’: k-d tree based search - ‘buffer_kd_tree’: buffer k-d tree
based search (with GPUs)

tree_depth : int or None, optional (default=None)

Passed to the ‘kd_tree’ and ‘buffer_kd_tree’ implementation. In case ‘tree_depth’ is
specified, a tree of such a depth is built (‘tree_depth’ has priority over ‘leaf_size’).

leaf_size : int, optional (default=30)

Passed to the ‘kd_tree’ and ‘buffer_kd_tree’ implementation. In case ‘leaf_size’ is set,
the corresponding tree depth is computed (is ignored in case tree_depth is not None).

splitting_type : {‘cyclic’}, optional (default=’cyclic’)

Passed to the ‘kd_tree’ and ‘buffer_kd_tree’ implementation. The splitting rule that
shall be used to construct the kd tree. Currently, only “cyclic” is supported.

n_train_chunks : int, optional (default=1)

Passed to the ‘buffer_kd_tree’ implementation. The number of chunks the training pat-
terns shall be processed in; only needed in case the training patterns do not fit on the
GPU (in case n_train_chunks is too small, it is increased automatically).

plat_dev_ids : dict, optional (default={0:[0]})

Passed to the ‘brute’ and the ‘buffer_kd_tree’ implementation. The platforms and de-
vices that shall be used. E.g., plat_dev_ids={0:[0,1]} makes use of platform 0 and the
first two devices.

allowed_train_mem_percent_chunk : float, optional (default=0.15)

Passed to the ‘buffer_kd_tree’ implementation. The amount of memory (OpenCL) used
for the training patterns (in percent).

allowed_test_mem_percent : float, optional (default=0.55)

1.4. Reference 9

http://scikit-learn.org/stable/modules/generated/sklearn.neighbors.NearestNeighbors.html
http://scikit-learn.org
http://scikit-learn.org

bufferkdtree Documentation, Release 1.1

Passed to the ‘buffer_kd_tree’ implementation. The amount of memory (OpenCL) used
for the test/query patterns (in percent).

n_jobs : int, optional (default=1)

Passed to the ‘kd_tree’ implementation. The number of threads used for the querying
phase.

verbose : int, optional (default=0)

The verbosity level (0=no output, 1=output)

Notes

The brute-force implementatation is only used for comparison in relatively low-dimensional spaces; the perfor-
mance is suboptimal for higher dimensional feature spaces (but even superior over other matrix based imple-
mentations making use e.g., CUBLAS).

The performance of the GPU implementations depends on the corresponding architecture. An important ingre-
dient is the support of automatic hardware caches.

Only single-precision is supported until now.

Examples

>>> import numpy
>>> from bufferkdtree.neighbors.base import NearestNeighbors
>>> X = numpy.random.uniform(low=-1,high=1,size=(10000,10))
>>> nbrs = NearestNeighbors(n_neighbors=10, algorithm="buffer_kd_tree", tree_depth=9, plat_dev_ids={0:[0]})
>>> nbrs.fit(X)
>>> dists, inds = nbrs.kneighbors(X)

fit(X)
Fit the model to the given data.

Parameters X : array-like, shape (n_samples, n_features)

The set of training/reference points, where ‘n_samples’ is the number points and
‘n_features’ the number of features.

Returns self : instance of NearestNeighbors

The object itself

kneighbors(X=None, n_neighbors=None, return_distance=True)
Finds the nearest neighbors for a given set of points.

Parameters X : array-like, shape (n_samples, n_features)

The set of query points. If not provided, the neighbors of each point in the training data
are returned (in this case, the query point itself is not considered its own neighbor.

n_neighbors : int or None, optional (default=None)

The number of nearest neighbors that shall be returned for each query points. If ‘None’,
then the default values provided to the constructor is used.

return_distance : bool, optional (default=True)

If False, then the distances associated with each query will not be returned. Otherwise,
they will be returned.

10 Chapter 1. Contents

bufferkdtree Documentation, Release 1.1

Returns dist : array

The array containing the distances

idx : array

The array containing the indices

1.5 License

The source code is published under the GNU General Public License Version 2 (GPLv2).

1.6 Changes

1.6.1 Release 1.1 (Dezember 2015)

• Fixed wrong parameter assignment in ‘kneighbors’ method of both neighbors/kd_tree/base.py and neigh-
bors/buffer_kdtree/base.py

• Added Multi-GPU support to brute-force approach (for benchmark purposes)

• Adapted parameter settings for buffer k-d tree implementation

• Added benchmark example

1.6.2 Release 1.0.2 (September 2015)

• Adapted building process

1.6.3 Release 1.0.1 (September 2015)

• Adapted building process

• Fixed small bugs

1.6.4 Release 1.0 (September 2015)

• First major release

• Python wrappers for three implementations (‘brute’, ‘kd_tree’, ‘buffer_kd_tree’)

• Performance improvements for both kd-tree based implementations

• Multi-OpenCL-Device support for ‘buffer_kd_tree’ implementation

• Large-scale construction for ‘buffer_kd_tree’ implementation

• Multi-OpenCL-Device support for query phase (queries are processed in chunks)

• Added Sphinx documentation

1.5. License 11

http://www.gnu.org/licenses/old-licenses/gpl-2.0.html

bufferkdtree Documentation, Release 1.1

1.7 Citations

If you wish to cite a paper that describes the techniques and the implementation for buffer k-d trees, please make use
of the following work:

Fabian Gieseke, Justin Heinermann, Cosmin Oancea, and Christian Igel. Buffer k-d Trees: Processing Massive Nearest
Neighbor Queries on GPUs. In: Proceedings of the 31st International Conference on Machine Learning (ICML) 32(1),
2014, 172-180. [pdf] [bibtex]

12 Chapter 1. Contents

http://jmlr.org/proceedings/papers/v32/gieseke14.pdf

CHAPTER 2

Index

• genindex

13

bufferkdtree Documentation, Release 1.1

14 Chapter 2. Index

Index

F
fit() (bufferkdtree.neighbors.NearestNeighbors method),

10

K
kneighbors() (bufferkdtree.neighbors.NearestNeighbors

method), 10

N
NearestNeighbors (class in bufferkdtree.neighbors), 9

15

	Contents
	Quick Overview
	Installation
	Examples
	Reference
	License
	Changes
	Citations

	Index

