
Buckaroo Documentation

LoopPerfect Limited

Feb 01, 2019

Contents

1 Buckaroo 3
1.1 Contents . 3

i

ii

Buckaroo Documentation

These docs have moved! Please see the GitHub Wiki.

Contents 1

https://github.com/LoopPerfect/buckaroo/wiki/

Buckaroo Documentation

2 Contents

CHAPTER 1

Buckaroo

Buckaroo is a dependency manager for C/C++. Using Buckaroo, it is easy to add external modules to your project in
a controlled and cross-platform manner.

To use Buckaroo, you will also need to install Buck. Buck is a build system developed and maintained by Facebook,
and it is used by all Buckaroo packages.

1.1 Contents

1.1.1 Installation

Buckaroo is available for macOS, Linux and Windows (preview).

macOS

Buckaroo can be installed using Homebrew.

Add Facebook’s tap so that Homebrew can find Buck.

brew tap facebook/fb
brew tap loopperfect/lp
brew install loopperfect/lp/buckaroo

The Homebrew formula will install Buck and Java, if required.

Verify your installation with:

buckaroo version

Finally, fetch the cookbook with:

buckaroo update

3

https://buckbuild.com/
https://brew.sh/

Buckaroo Documentation

Linux

Debian and Ubuntu via .deb

We provide a .deb file for Debian and Ubuntu. To install it, download buckaroo.deb and double-click to install.

Alternatively, you can use the command-line:

wget -O buckaroo.deb 'https://github.com/LoopPerfect/buckaroo/releases/download/v1.4.
→˓1/buckaroo.deb'
sudo dpkg -i buckaroo.deb

Finally, fetch the cookbook with:

buckaroo update

Linuxbrew

Buckaroo can be installed using Linuxbrew.

Add Facebook’s tap so that Linuxbrew can find Buck.

brew tap facebook/fb
brew tap loopperfect/lp
brew install loopperfect/lp/buckaroo

The Linuxbrew formula will install Buck and Java, if required.

Verify your installation with:

buckaroo version

Finally, fetch the cookbook with:

buckaroo update

Windows (preview)

Ensure that you have Buck installed, then clone the Buckaroo source-code from GitHub:

git clone git@github.com:njlr/buckaroo.git
cd buckaroo
git checkout tags/v1.0.0

Build Buckaroo with Buck:

buck build :buckaroo-cli

Buck will output a runnable Jar file in the output folder:

java -jar .\\buck-out\\gen\\buckaroo-cli.jar

Ensure that this command is on your PATH.

Finally, fetch the cookbook with:

4 Chapter 1. Buckaroo

https://github.com/LoopPerfect/buckaroo/releases
http://linuxbrew.sh/
https://buckbuild.com/

Buckaroo Documentation

buckaroo update

Analytics

By default, Buckaroo will report usage statistics to our servers. These logs allow us to improve Buckaroo by targeting
real-world usage. All logs are transferred over HTTPS and are not shared with any third-party.

What is Shared?

The analytics events are as follows:

{
session, // Random UUID generated on installation
data: {
os, // The OS name, e.g. "macOS"
version, // The version of Buckaroo installed
command // The command sent to Buckaroo

}
}

If in doubt, please refer to the source-code of Buckaroo or drop us an email.

Disabling Analytics

If you wish to disable analytics, follow these steps:

1. Launch Buckaroo at least once:

buckaroo version

2. Open the buckaroo.json file in your Buckaroo home folder:

open ~/.buckaroo/config.json

3. Remove the property “analytics”. For example:

{
"cookBooks": [
{

"name": "buckaroo-recipes",
"url": "git@github.com:loopperfect/buckaroo-recipes.git"

}
]

}

1.1.2 Quickstart

Creating a Project

The fastest way to get started is to use the Quickstart feature.

First, create a directory for your project:

1.1. Contents 5

https://github.com/LoopPerfect/buckaroo
mailto:buckaroo@loopperfect.com

Buckaroo Documentation

mkdir my-project
cd my-project

Now, run the Buckaroo quickstart command:

buckaroo quickstart

This command will generate a hello-world application, folders for your source-code and a Buck build file. Buckaroo
does not require a particular project layout, so feel free to tweak the Buck file.

Let’s verify that the project is working as expected:

buck run :main

You now have everything ready to start installing dependencies.

Adding a dependency

Once you have a project file, we can start adding dependencies. Let’s add range-v3 by Eric Niebler. range-v3 is a
powerful range library for C++ 11 and up.

buckaroo install ericniebler/range-v3

Buckaroo will have downloaded the range-v3 source-code from GitHub and installed it locally in your project folder.
We can now use the library in a sample application!

Sample Application

Our example requires some C++ 14 features, so if your compiler does not enable them by default we will need to
update the project’s .buckconfig file.

Update .buckconfig to:

[cxx]
cxxflags = -std=c++14

Now, let’s update the main.cpp file to a simple range-v3 example:

#include <iostream>
#include <vector>
#include <range/v3/all.hpp>

int main() {
auto const xs = std::vector<int>({ 1, 2, 3, 4, 5 });
auto const ys = xs
| ranges::view::transform([](auto x) { return x * x; })
| ranges::to_vector;

for (auto const& i : ys) {
std::cout << i << std::endl;

}
return 0;

}

Run the project again and you will see a list of square numbers, computed by range-v3.

6 Chapter 1. Buckaroo

https://github.com/ericniebler/range-v3

Buckaroo Documentation

buck run :main

.gitignore

If you are tracking your project with Git, add the following to your .gitignore:

/buck-out/
/.buckd/
/buckaroo/
BUCKAROO_DEPS
.buckconfig.local

Explore Buckaroo

range-v3 is just one of the many packages already available for Buckaroo. You can browse them on buckaroo.pm,
request more on the wishlist or create your own!

1.1.3 Command Line Interface

Buckaroo provides a command-line interface for managing your project’s dependencies. The following commands are
the recommended way to use Buckaroo.

Init

buckaroo init

Init is used to generate a project file in the current directory.

Quickstart

buckaroo quickstart

Quickstart is similar to Init, but also generates the necessary boiler-plate for a new C++ project. You should use
Quickstart when starting a new project.

Resolve

buckaroo resolve

Reads the project file in the working directory and runs the dependency resolution algorithm, storing the results in the
lock file. If there is already a lock file present, then it is overwritten. No dependencies are actually installed.

Install

Install adds and installs dependencies to your project.

1.1. Contents 7

https://buckaroo.pm
https://github.com/LoopPerfect/buckaroo-wishlist

Buckaroo Documentation

buckaroo install google/gtest

or just

buckaroo i google/gtest

Install can be used to add dependencies to your project. Since introducing a new dependency can result in a versioning
conflict, the resolution process is run again. This may overwrite your lock file.

Furthermore you can also ommit the organization name and list more than one package at the same time

buckaroo install gtest boost/asio

Install can also fetch buckaroo compatible projects from GitHub, BitBucket and GitLab using the following syntax:

buckaroo install github+loopperfect/neither
buckaroo install bitbucket+org/example
buckaroo install gitlab+org/example

If you do not supply a module name, then the existing dependencies of the project are fetched and installed. If there is
no lock file present, then the resolution process will be run first.

buckaroo install

Resolve

Resolves the dependencies and regenerates the lock-file (buckaroo.lock.json). The lock-file specifies the exact versions
of all dependencies to ensure the reproducibility of your project.

Resolve is automatically called when installing or uninstalling a dependency. You may want to run this if one of your
dependencies updates.

Uninstall

buckaroo uninstall google/gtest

or

buckaroo u google/gtest

Uninstall can be used to remove a dependency from your project. Note that the remaining dependencies are recomputed
since their resolved versions may have changed as a result. This may overwrite your lock file.

Upgrade

buckaroo upgrade

Upgrades the installed dependencies to the latest compatible version.

8 Chapter 1. Buckaroo

Buckaroo Documentation

Update

buckaroo update

Updates the cook-books installed on your system. This allows you to use benefit from recipe improvements, additions
and fixes since you first installed Buckaroo.

Version

buckaroo version

Outputs the version of Buckaroo that is installed.

Help

buckaroo help

1.1.4 Integrations

Buckaroo has integration with leading Git hosting providers, which allows for recipes to exist directly in source-
control. To use a hosted project as a recipe, the following conditions must be met:

• The project must have at least one tag, which is a semantic version (e.g. “v1.0”)

• The project must contain a buckaroo.json file at the root level.

If you would like to create a recipe from a project, see the packaging guide.

GitHub

A GitHub dependency is referred to with the prefix github+. So, for example, to install LoopPerfect/neither
you would run:

buckaroo install github+loopperfect/neither

Buckaroo will generate the Git URL from the project name and owner, fetch the repository and read the buckaroo.
json file.

BitBucket

A BitBucket dependency is referred to with the prefix bitbucket+. So, for example, to install org/example you
would run:

buckaroo install bitbucket+org/example

GitLab

A GitLab dependency is referred to with the prefix gitlab+. So, for example, to install org/example you would
run:

1.1. Contents 9

Buckaroo Documentation

buckaroo install gitlab+org/example

Transitive Dependencies

VCS-hosted recipes can even have transitive dependencies! These are specified using the usual syntax in the project
file of the repository. When resolving dependencies, Buckaroo will read this project file to generate further recipes to
resolve. Note that the lock file of the dependency is ignored, and the cookbook of the current system is used to resolve
the dependencies of the recipe.

What if a project is deleted, or a tag is changed?

Once a VCS-hosted dependency has been resolved, the exact commit hash of the tag is written to the lock file. This
means that future installations will use the same version that was resolved on the first install. If this version becomes
unavailable later, the resolution process can be re-run to fetch the current available version.

1.1.5 Creating a Package

This is a guide for creating a Buckaroo recipe from a GitHub, BitBucket or GitLab project. This is the quickest way
to create and manage a package that already lives in source-control. It is also recommended, since it allows you to
control updates to your recipe.

For this guide, we will be adding Buckaroo support for an example project. However, the steps are generic, so you
should be able to follow them using your own project.

If you would like to jump straight to a working GitHub recipe, take a look at LoopPerfect/neither. The important files
are BUCK and buckaroo.json.

Requirements

To follow this guide, you will need the following:

• Git

• A GitHub account

• Buckaroo (see Installation)

• Buck

The steps are nearly identical for BitBucket and GitLab.

1. Fork the example project

Fork the example project on GitHub.

2. Fetch the Project

Next, fetch your fork from GitHub using Git:

git clone https://github.com/<YOUR_GITHUB_USERNAME>/buckaroo-github-example.git
cd buckaroo-github-example

10 Chapter 1. Buckaroo

https://github.com/LoopPerfect/buckaroo-github-example
https://github.com/LoopPerfect/neither
https://www.github.com/
https://github.com/LoopPerfect/buckaroo-github-example

Buckaroo Documentation

3. Ensure that the project builds with Buck

All Buckaroo packages build with Buck, so we need to make sure that the BUCK files are correct.

In our example, we have a single library called example. Try building it using Buck:

buck build :example

If you are using your own project that does not yet build with Buck, then you will need to write the appropriate Buck
files. Head over to the Buck website for more guidance, or you can follow this article on Hackernoon.

Note: To work with Buckaroo, your Buck target must be marked PUBLIC. To do this, simply add the following to
your target definition:

visibility = [
'PUBLIC',

]

4. Create the Project File

Now that we are sure the project can build with Buck, we need to create a project file. The project file gives Buckaroo
various bits of meta-data about your recipe.

buckaroo init

This will create a buckaroo.json file. Open it, and ensure that the target field points to your Buck target.

For our example, the target is "example". The final buckaroo.json file might look like this:

{
"name": "buckaroo-github-example",
"target": "example"

}

Commit the project file to GitHub:

git add buckaroo.json
git commit -m "Adds Buckaroo project file"
git push

5. Create a release

Head over to the GitHub web-page for your project and create a release. It is important that you name the release in a
format that Buckaroo understands. Buckaroo expects a version number prefixed with a "v". Some valid names are:

• "v1.0.0"

• "v0.2"

• "v3"

For this guide, we will name the release "v0.1.0".

1.1. Contents 11

https://buckbuild.com/
https://hackernoon.com/how-to-create-a-buck-based-c-c-project-38b85273d6a6

Buckaroo Documentation

6. Test your package

Create a new folder alongside your project directory:

cd ../
mkdir test
cd test

Create a Buckaroo project in this directory:

buckaroo quickstart

Now we can install the GitHub recipe:

buckaroo install github+<YOUR_GITHUB_USERNAME>/buckaroo-github-example

You should see a few changes to your working directory:

• buckaroo.lock.json will contain an exact version of your GitHub recipe

• buckaroo/ will contain a copy of your recipe

• BUCKAROO_DEPS will have been generated, ready to include in your BUCK file.

Open test/src/main.cpp and update it to use your recipe:

#include <iostream>
#include <sum.hpp>

int main() {
std::cout << "sum(1, 2) = " << sum(1, 2) << std::endl;
return 0;

}

Now run your program using Buck:

buck run :test

If everything has worked correctly, you will see the following output:

sum(1, 2) = 3

1.1.6 Anatomy of a Recipe

A Buckaroo recipe is a file that describes a module that can be imported into your projects. Recipes are encoded as
JSON.

Example

For example, here’s a recipe for the Beast HTTP library:

{
"name": "Beast",
"license": "BSL-1.0",
"url": "https://github.com/vinniefalco/beast",
"github": {

(continues on next page)

12 Chapter 1. Buckaroo

https://github.com/vinniefalco/beast/

Buckaroo Documentation

(continued from previous page)

"owner": "vinniefalco",
"project": "beast"

},
"versions": {
"0.0.1": {

"source": {
"url": "https://github.com/vinniefalco/Beast/archive/

→˓6d5547a32c50ec95832c4779311502555ab0ee1f.zip",
"sha256": "8a600dfa3394164f79ad7dfa6942d8d4b6c6c7e5b8cc9b5f82519b682db25aae",
"subPath": "Beast-6d5547a32c50ec95832c4779311502555ab0ee1f"

},
"buck": {

"url": "https://raw.githubusercontent.com/njlr/Beast/
→˓71d1bde64bf5ee52579441b00ad446959231d8d2/BUCK",

"sha256": "1dce5d9f5c883e193e54c2dfc033a5485b9e8e87bb34d8c38ab03ed148ccd968"
},
"dependencies": {

"boost/range": "1.63.0",
"boost/intrusive": "1.63.0",
"boost/lexical-cast": "1.63.0",
"boost/math": "1.63.0",
"boost/system": "1.63.0",
"boost/asio": "1.63.0"

}
}

}
}

Name

"name": "Beast",

This is the friendly name of the package.

Note that the file-name of the recipe is the identifier used by the install command, so the name field may contain
spaces, etc.

Meta-data

"license": "BSL-1.0",
"url": "https://github.com/vinniefalco/beast",
"github": {

"owner": "vinniefalco",
"project": "beast"

},

This optional meta-data is used to generate the pages on buckaroo.pm. Note that the license should be a comma-
separated list of SPDX codes.

1.1. Contents 13

https://www.buckaroo.pm
https://spdx.org/licenses/

Buckaroo Documentation

Versions

"versions": {

The versions element is a dictionary of semantic versions to source locations.

"0.0.1": {
"source": {
"url": "https://github.com/vinniefalco/Beast/archive/

→˓6d5547a32c50ec95832c4779311502555ab0ee1f.zip",
"sha256": "8a600dfa3394164f79ad7dfa6942d8d4b6c6c7e5b8cc9b5f82519b682db25aae",
"subPath": "Beast-6d5547a32c50ec95832c4779311502555ab0ee1f"

},
"buck": {
"url": "https://raw.githubusercontent.com/njlr/Beast/

→˓71d1bde64bf5ee52579441b00ad446959231d8d2/BUCK",
"sha256": "1dce5d9f5c883e193e54c2dfc033a5485b9e8e87bb34d8c38ab03ed148ccd968"

},
"dependencies": {
"boost/range": "1.63.0",
"boost/intrusive": "1.63.0",
"boost/lexical-cast": "1.63.0",
"boost/math": "1.63.0",
"boost/system": "1.63.0",
"boost/asio": "1.63.0"

}
}

Each version object contains information on how to fetch the source-code. In case the source-code does not contain a
BUCK file, one may be injected using the information in the buck element.

Source

"source": {
"url": "https://github.com/vinniefalco/Beast/archive/

→˓6d5547a32c50ec95832c4779311502555ab0ee1f.zip",
"sha256": "8a600dfa3394164f79ad7dfa6942d8d4b6c6c7e5b8cc9b5f82519b682db25aae",
"subPath": "Beast-6d5547a32c50ec95832c4779311502555ab0ee1f"

},

Every source should point to a zip-file containing the source-code of the module. It is hashed to ensure integrity, so
always choose a URL that is stable.

The subPath element can be used to change the root of the source-code.

For example, suppose the zip-file has this structure:

.
+-- module.zip

+-- sources
+-- include

+-- math.hpp
+-- utils.hpp

If the subPath is "sources/include", then the extracted code would be:

14 Chapter 1. Buckaroo

Buckaroo Documentation

.
+-- math.hpp
+-- utils.hpp

This feature is particularly useful for GitHub, which puts source-code into a sub-folder called
<project>-<commit>.

Buck

"buck": {
"url": "https://raw.githubusercontent.com/njlr/Beast/

→˓71d1bde64bf5ee52579441b00ad446959231d8d2/BUCK",
"sha256": "1dce5d9f5c883e193e54c2dfc033a5485b9e8e87bb34d8c38ab03ed148ccd968"

},

The buck element points to a remote Buck definition. If present, the remote BUCK file gets saved into the root folder
of the source-code. This allows us to support packages that do not currently support Buck.

The buck element is only required when the source-code does not already contain a BUCK file.

Dependencies

"dependencies": {
"boost/range": "1.63.0",
"boost/intrusive": "1.63.0",
"boost/lexical-cast": "1.63.0",
"boost/math": "1.63.0",
"boost/system": "1.63.0",
"boost/asio": "1.63.0",
"github+loopperfect/neither": "*"

}

The dependencies element defines the modules that the recipe requires to build. These are of the following format:

(<source>+)?<owner>/<project>: <version>

The source section is optional and is used to refer to recipes outside of the official cookbook. The most common
source is GitHub (see github), and more will be added over time.

A small DSL is provided for versioning:

* // Any version
v1 // Exactly version 1.0.0
2 // Exactly version 2.0.0
1.2 // Exactly version 1.2.0
1.2.3 // Exactly version 1.2.3
1.0.1 - 4.3 // Between 1.0.1 and 4.3 inclusive
[7.2, 7.3, 8] // Either 7.2.0, 7.3.0 or 8.0.0
>= 4.7 // Version 4.7 or greater
<= 6.5.1 // Version 6.5.1 or greater

When multiple versions of a dependency can be resolved, the higher version is always chosen.

1.1. Contents 15

Buckaroo Documentation

1.1.7 Caching

Buckaroo will cache files downloaded from the network and clones of Git repositories. This prevents duplicate work,
and can even enable Buckaroo to work offline in some cases.

Clearing the Cache

If you would like to reclaim some disc space, it is safe to delete the Buckaroo cache folder. The location of the cache
folder will vary by platform:

macOS

~/Library/Caches/Buckaroo

Linux

~/.cache/Buckaroo

Windows

C:\Users\<USERNAME>\Local Settings\Application Data\Buckaroo\Cache

Any Other Platform

~/.buckaroo/caches

16 Chapter 1. Buckaroo

	Buckaroo
	Contents

