

Welcome to btdht’s documentation!

Contents:

	btdht: A python implementation of the Bittorrent distributed hash table
	Dependencies

	Build dependencies

	Installation

	Usage examples

	btdht package
	Submodules
	btdht.dht module

	btdht.utils module

	btdht.krcp module

	btdht.exceptions module

	Module contents

Indices and tables

	Index

	Module Index

	Search Page

btdht: A python implementation of the Bittorrent distributed hash table

[image: github_version] [https://github.com/nitmir/btdht/releases/latest] [image: pypi_version] [https://pypi.python.org/pypi/btdht] [image: licence] [https://www.gnu.org/licenses/gpl-3.0.html] [image: doc] [http://btdht.readthedocs.io]

The aim of btdht is to provide a powerful implementation of the Bittorrent
mainline DHT easily extended to build application over the DHT.
The author currently uses it to crawl the dht and has been able to retrieve
more than 200.000 torrents files a day.

The implementation is fully compliant with the BEP5 [http://www.bittorrent.org/beps/bep_0005.html]
and the kademlia paper 1 (with a predominance of the BEP5 over the paper)
For example, this implementation uses a bucket-based approach for the routing table.

Table of Contents

	btdht: A python implementation of the Bittorrent distributed hash table

	Dependencies

	Build dependencies

	Installation

	Usage examples

Dependencies

	python 2.7 or 3.4 or above

	datrie [https://pypi.python.org/pypi/datrie]

	netaddr [https://pypi.python.org/pypi/netaddr]

Build dependencies

	A C compiler

	cython [https://pypi.python.org/pypi/Cython]

	python header files

Installation

The recommended installation mode is to use a virtualenv [https://virtualenv.pypa.io/en/stable/].

To Install btdht using the last published release, run:

$ pip install btdht

Alternatively if you want to use the version of the git repository, you can clone it:

$ git clone https://github.com/nitmir/btdht
$ cd btdht
$ pip install -r requirements-dev.txt

Then, run make install to compile the sources and create a python package and install it with pip.

For installing or building on linux and unix systems, you will need a C compiler and the python
headers (installing the packages build-essential and python-dev should be enough on debian
like systems, you’ll probably gonna need make, gcc, python2-devel and redhat-rpm-config
on centos like systems).

On windows systems, we provide pre-builded releases for python 2.7 and 3.5 so just running
pip install btdht should be fine. If you want to build from the sources of the repository or,
for another python version, you will also need a C compiler [https://wiki.python.org/moin/WindowsCompilers].

Usage examples

Search for the peers announcing the torrent 0403fb4728bd788fbcb67e87d6feb241ef38c75a
(Ubuntu 16.10 Desktop (64-bit) [http://releases.ubuntu.com/16.10/ubuntu-16.10-desktop-amd64.iso.torrent])

>>> import btdht
>>> import binascii
>>> dht = btdht.DHT()
>>> dht.start() # now wait at least 15s for the dht to boostrap
init socket for 4c323257aa6c4c5c6ccae118db93ccce5bb05d92
Bootstraping
>>> dht.get_peers(binascii.a2b_hex("0403fb4728bd788fbcb67e87d6feb241ef38c75a"))
[
 ('81.171.107.75', 17744),
 ('94.242.250.86', 3813),
 ('88.175.164.228', 32428),
 ('82.224.107.213', 61667),
 ('85.56.118.178', 6881),
 ('78.196.28.4', 38379),
 ('82.251.140.70', 32529),
 ('78.198.108.3', 10088),
 ('78.235.153.136', 10619),
 ('88.189.113.32', 33192),
 ('81.57.9.183', 5514),
 ('82.251.17.155', 14721),
 ('88.168.207.178', 31466),
 ('82.238.89.236', 32970),
 ('78.226.209.88', 2881),
 ('5.164.219.48', 6881),
 ('78.225.252.39', 31002)
]

Subsequent calls to get_peers may return more peers.

You may also inherit btdht.DHT_BASE and overload some of the on_`msg`_(query|response)
functions. See the doc [http://btdht.readthedocs.io] for a full overview of the btdht API.

	1

	Maymounkov, P., & Mazieres, D. (2002, March). Kademlia: A peer-to-peer information system
based on the xor metric. In International Workshop on Peer-to-Peer Systems (pp. 53-65).
Springer Berlin Heidelberg.

btdht package

Submodules

	btdht.dht module

	btdht.utils module

	btdht.krcp module

	btdht.exceptions module

Module contents

btdht.dht module

	DHT

	A DHT class ready for instanciation

	DHT_BASE

	The DHT base class

	Node

	A node of the dht in the routing table

	Bucket

	A bucket of nodes in the routing table

	RoutingTable

	A routing table for one or more DHT_BASE instances

	
class btdht.dht.DHT

	Bases: btdht.dht.DHT_BASE

A DHT class ready for instanciation

	Parameters

	
	routing_table (RoutingTable) – An optional routing table, possibly shared between several
dht instances. If not specified, a new routing table is instanciated.

	bind_port (int [https://docs.python.org/3/library/functions.html#int]) – And optional udp port to use for the dht instance. If not specified, the
hosting system will choose an available port.

	bind_ip (str [https://docs.python.org/3/library/stdtypes.html#str]) – The interface to listen to. The default is "0.0.0.0".

	id (bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – An optional 160 bits long (20 Bytes) id. If not specified, a random one is
generated.

	ignored_ip (set [https://docs.python.org/3/library/stdtypes.html#set]) – A set of ip address in dotted ("1.2.3.4") notation to ignore.
The default is the empty set.

	debuglvl (int [https://docs.python.org/3/library/functions.html#int]) – Level of verbosity, default to 0.

	prefix (str [https://docs.python.org/3/library/stdtypes.html#str]) – A prefix to use in logged messages. The default is "".

	process_queue_size (int [https://docs.python.org/3/library/functions.html#int]) – Size of the queue of messages waiting to be processed by user
defines functions (on_`msg`_(query|response)). see the
register_message method. The default to 500.

	ignored_net (list [https://docs.python.org/3/library/stdtypes.html#list]) – An list of ip networks in cidr notation ("1.2.3.4/5") to ignore.
The default is the value of the attribute ignored_net.

	scheduler (btdht.utils.Scheduler) – A optional Scheduler
instance. If not specified, a new Scheduler is instanciated.

	Note:

	try to use same id and bind_port over dht restart to increase
the probability to remain in other nodes routing table

	
class btdht.dht.DHT_BASE

	Bases: object [https://docs.python.org/3/library/functions.html#object]

The DHT base class

	Parameters

	
	routing_table (RoutingTable) – An optional routing table, possibly shared between several
dht instances. If not specified, a new routing table is instanciated.

	bind_port (int [https://docs.python.org/3/library/functions.html#int]) – And optional udp port to use for the dht instance. If not specified, the
hosting system will choose an available port.

	bind_ip (str [https://docs.python.org/3/library/stdtypes.html#str]) – The interface to listen to. The default is "0.0.0.0".

	id (bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – An optional 160 bits long (20 Bytes) id. If not specified, a random one is
generated.

	ignored_ip (set [https://docs.python.org/3/library/stdtypes.html#set]) – A set of ip address in dotted ("1.2.3.4") notation to ignore.
The default is the empty set.

	debuglvl (int [https://docs.python.org/3/library/functions.html#int]) – Level of verbosity, default to 0.

	prefix (str [https://docs.python.org/3/library/stdtypes.html#str]) – A prefix to use in logged messages. The default is "".

	process_queue_size (int [https://docs.python.org/3/library/functions.html#int]) – Size of the queue of messages waiting to be processed by user
defines functions (on_`msg`_(query|response)). see the
register_message method. The default to 500.

	ignored_net (list [https://docs.python.org/3/library/stdtypes.html#list]) – An list of ip networks in cidr notation ("1.2.3.4/5") to ignore.
The default is the value of the attribute ignored_net.

	scheduler (btdht.utils.Scheduler) – A optional Scheduler
instance. If not specified, a new Scheduler is instanciated.

	Note:

	try to use same id and bind_port over dht restart to increase
the probability to remain in other nodes routing table

	
bind_ip = '0.0.0.0'

	str [https://docs.python.org/3/library/stdtypes.html#str] interface the dht is binded to

	
bind_port = None

	int [https://docs.python.org/3/library/functions.html#int] port the dht is binded to

	
debuglvl = 0

	int [https://docs.python.org/3/library/functions.html#int] the dht instance verbosity level

	
last_msg = 0

	last time we received any message

	
last_msg_rep = 0

	last time we receive a response to one of our messages

	
ignored_ip = []

	set [https://docs.python.org/3/library/stdtypes.html#set] of ignored ip in dotted notation

	
ignored_net = ['0.0.0.0/8', '10.0.0.0/8', '100.64.0.0/10', '127.0.0.0/8', '169.254.0.0/16', '172.16.0.0/12', '192.0.0.0/24', '192.0.2.0/24', '192.168.0.0/16', '198.18.0.0/15', '198.51.100.0/24', '203.0.113.0/24', '224.0.0.0/4', '240.0.0.0/4', '255.255.255.255/32']

	list [https://docs.python.org/3/library/stdtypes.html#list] of default ignored ip networks

	
myid = None

	utils.ID the dht instance id, 160bits long (20 Bytes)

	
prefix = ''

	str [https://docs.python.org/3/library/stdtypes.html#str] prefixing all debug message

	
root = None

	RoutingTable the used instance of the routing table

	
sock = None

	The current dht socket.socket

	
stoped = True

	the state (stoped ?) of the dht

	
threads = []

	list [https://docs.python.org/3/library/stdtypes.html#list] of the Thread [https://docs.python.org/3/library/threading.html#threading.Thread] of the dht instance

	
token = {}

	Token send with get_peers response. Map between ip addresses and a list of random token.
A new token by ip is genereted at most every 5 min, a single token is valid 10 min.
On reception of a announce_peer query from ip, the query is only accepted if we have a
valid token (generated less than 10min ago).

	
mytoken = {}

	Tokens received on get_peers response. Map between ip addresses and received token from ip.
Needed to send announce_peer to that particular ip.

	
transaction_type = {}

	Map beetween transaction id and messages type (to be able to match responses)

	
to_send = <btdht.utils.PollableQueue instance>

	A PollableQueue of messages (data, (ip, port)) to send

	
to_schedule = []

	A list of looping iterator to schedule, passed to _scheduler

	
zombie

	True if dht is stopped but one thread or more remains alive, False otherwise

	
save(filename=None, max_node=None)

	save the current list of nodes to filename.

	Parameters

	
	filename (str [https://docs.python.org/3/library/stdtypes.html#str]) – An optional filename where to save the current list of nodes.
If not provided, the file "dht_`myid`.status is used.

	max_node (int [https://docs.python.org/3/library/functions.html#int]) – An optional integer to limit the number of saved nodes.
If not provided, all of the routing table nodes are saved.

	
load(filename=None, max_node=None)

	load a list of nodes from filename.

	Parameters

	
	filename (str [https://docs.python.org/3/library/stdtypes.html#str]) – An optional filename where to load the list of nodes.
If not provided, the file "dht_`myid`.status is used.

	max_node (int [https://docs.python.org/3/library/functions.html#int]) – An optional integer to limit the number of loaded nodes.
If not provided, all of the file nodes are loaded.

	
start(start_routing_table=True, start_scheduler=True)

	
	Start the dht:

	
	initialize some attributes

	initialize the dht socket (see :meth:init_socket)

	register this instance of the dht in the routing table
(see RoutingTable.register_dht())

	register this instance of the dht in the scheduler

	start the routing table if needed and start_routing_table` is ``True

	start the scheduler if needed and start_scheduler is True

	Parameters

	
	start_routing_table (bool [https://docs.python.org/3/library/functions.html#bool]) – If True (the default) also start the routing table
if needed

	start_scheduler (bool [https://docs.python.org/3/library/functions.html#bool]) – If ``True``(the default) alsp start the scheduler

	
stop()

	Stop the dht:

	Set the attribute stoped to True and wait for threads to terminate

	Close the dht socket

	Raises

	FailToStop – if there is still some alive threads after 30 secondes, with the
list of still alive threads as parameter.

	
stop_bg()

	Lauch the stop process of the dht and return immediately

	
init_socket()

	Initialize the UDP socket of the DHT

	
is_alive()

	Test if all threads of the dht are alive, stop the dht if one of the thread is dead

	Returns

	True if all dht threads are alive, False otherwise and stop all remaining
threads.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
debug(lvl, msg)

	Print msg prefixed with prefix if lvl <= debuglvl

	Parameters

	
	lvl (int [https://docs.python.org/3/library/functions.html#int]) – The debug level of the message to print

	msg (str [https://docs.python.org/3/library/stdtypes.html#str]) – The debug message to print

	Note:

	duplicate messages are removed

	
sleep(t, fstop=None)

	Sleep for t seconds. If the dht is requested to be stop, run fstop() and exit

	Parameters

	
	t (float [https://docs.python.org/3/library/functions.html#float]) – A time to sleep, in seconds

	fstop – A callable with no arguments, called before exiting

	Note:

	Dont use it in the main thread otherwise it can exit before child threads.
Only use it in child threads

)
.. automethod:: build_table
.. automethod:: announce_peer(info_hash, port, delay=0, block=True)
.. automethod:: get_peers(hash, delay=0, block=True, callback=None, limit=10)

	
get_closest_nodes(id, compact=False)

	return the current K closest nodes from id present in the routing table (K = 8)

	Parameters

	
	id (bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – A 160bits (20 Bytes) long identifier for which we want the closest nodes
in the routing table.

	compact (bool [https://docs.python.org/3/library/functions.html#bool]) – If True the nodes infos are returned in compact format.
Otherwise, intances of Node are returned. The default is False.

	Returns

	A list of Node if compact is False, a bytes [https://docs.python.org/3/library/stdtypes.html#bytes] of size
multiple of 26 if compact is True.

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list] if compact is False, a bytes [https://docs.python.org/3/library/stdtypes.html#bytes] otherwise.

	Note:

	Contact information for peers is encoded as a 6-byte string.
Also known as “Compact IP-address/port info” the 4-byte IP address
is in network byte order with the 2 byte port in network byte order
concatenated onto the end.

Contact information for nodes is encoded as a 26-byte string.
Also known as “Compact node info” the 20-byte Node ID in network byte
order and the compact IP-address/port info concatenated to the end.

	
sendto(msg, addr)

	Program a msg to be send over the network

	Parameters

	
	msg (bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The message to send

	addr (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – A couple (ip, port) to send the message to. ip is in dotted notation

	Notes:

	The message is push to the to_send queue.

	
clean()

	Function called every 15s to do some cleanning. It can safely be overload

	
clean_long()

	Function called every 15min to do some cleanning. It can safely be overload

	
register_message(msg)

	
	Register a dht message to be processed by the following user defined functions

	
	on_error()

	on_ping_query()

	on_ping_response()

	on_find_node_query()

	on_find_node_response()

	on_get_peers_query()

	on_get_peers_response()

	on_announce_peer_query()

	on_announce_peer_response()

	…

	Parameters

	msg (bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – A dht message to register like b'error', b'ping',
b'find_node', b'get_peers' or b'announce_peer'

	Note:

	
	on query reception, the function on_``msg``_query will be call with the
query as parameter

	on response reception, the function on_``msg``_response will be called with
the query and the response as parameters

	on error reception, the function on_error will be called with the error and
the query as parameter

	The message kind is in the q key of any dht query message

	
on_announce_peer_response(query, response)

	Function called on a announce_peer response reception. Can safely the overloaded

	Parameters

	
	query (krcp.BMessage) – the sent query object

	response (krcp.BMessage) – the received response object

	Notes:

	For this function to be called on announce_peer response reception, you need to call
register_message() with the parameter b'announce_peer'

	
on_announce_peer_query(query)

	Function called on a announce query reception. Can safely the overloaded

	Parameters

	query (krcp.BMessage) – the received query object

	Notes:

	For this function to be called on announce_peer query reception, you need to call
register_message() with the parameter b'announce_peer'

	
on_find_node_query(query)

	Function called on a find_node query reception. Can safely the overloaded

	Parameters

	query (krcp.BMessage) – the received query object

	Notes:

	For this function to be called on find_node query reception, you need to call
register_message() with the parameter b'find_node'

	
on_find_node_response(query, response)

	Function called on a find_node response reception. Can safely the overloaded

	Parameters

	
	query (krcp.BMessage) – the sent query object

	response (krcp.BMessage) – the received response object

	Notes:

	For this function to be called on find_node response reception, you need to call
register_message() with the parameter b'find_node'

	
on_get_peers_query(query)

	Function called on a get_peers query reception. Can safely the overloaded

	Parameters

	query (krcp.BMessage) – the received query object

	Notes:

	For this function to be called on get_peers query reception, you need to call
register_message() with the parameter b'get_peers'

	
on_get_peers_response(query, response)

	Function called on a get_peers response reception. Can safely the overloaded

	Parameters

	
	query (krcp.BMessage) – the sent query object

	response (krcp.BMessage) – the received response object

	Notes:

	For this function to be called on get_peers response reception, you need to call
register_message() with the parameter b'get_peers'

	
on_ping_query(query)

	Function called on a ping query reception. Can safely the overloaded

	Parameters

	query (krcp.BMessage) – the received query object

	Notes:

	For this function to be called on ping query reception, you need to call
register_message() with the parameter b'ping'

	
on_ping_response(query, response)

	Function called on a ping response reception. Can safely the overloaded

	Parameters

	
	query (krcp.BMessage) – the sent query object

	response (krcp.BMessage) – the received response object

	Notes:

	For this function to be called on ping response reception, you need to call
register_message() with the parameter b'ping'

	
on_error(error, query=None)

	Function called then a query has be responded by an error message.
Can safely the overloaded.

	Parameters

	
	error (krcp.Berror) – An error instance

	query (krcp.BMessage) – An optional query raising the error message

	Notes:

	For this function to be called on error reception, you need to call
register_message() with the parameter b'error'

	
class btdht.dht.Node

	Bases: object [https://docs.python.org/3/library/functions.html#object]

A node of the dht in the routing table

	Parameters

	
	id (bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The 160 bits (20 Bytes) long identifier of the node

	ip (str [https://docs.python.org/3/library/stdtypes.html#str]) – The ip, in dotted notation of the node

	port (int [https://docs.python.org/3/library/functions.html#int]) – The udp dht port of the node

	last_response (int [https://docs.python.org/3/library/functions.html#int]) – Unix timestamp of the last received response from this node

	last_query (int [https://docs.python.org/3/library/functions.html#int]) – Unix timestamp of the last received query from this node

	failed (int [https://docs.python.org/3/library/functions.html#int]) – Number of consecutive queries sended to the node without responses

	Note:

	A good node is a node has responded to one of our queries within the last
15 minutes. A node is also good if it has ever responded to one of our
queries and has sent us a query within the last 15 minutes. After 15 minutes
of inactivity, a node becomes questionable. Nodes become bad when they fail
to respond to multiple queries in a row (3 query in a row in this implementation).

	
port

	UDP port of the node

	
last_response

	Unix timestamp of the last received response from this node

	
last_query

	Unix timestamp of the last received query from this node

	
failed

	Number of reponse pending (increase on sending query to the node, set to 0 on reception from
the node)

	
id

	160bits (20 Bytes) identifier of the node

	
good

	True if the node is a good node. A good node is a node has responded to one of our
queries within the last 15 minutes. A node is also good if it has ever responded to one of
our queries and has sent us a query within the last 15 minutes.

	
bad

	True if the node is a bad node (communication with the node is not possible). Nodes
become bad when they fail to respond to 3 queries in a row.

	
ip

	IP address of the node in dotted notation

	
compact_info()

	Return the compact contact information of the node

	Notes:

	Contact information for peers is encoded as a 6-byte string.
Also known as “Compact IP-address/port info” the 4-byte IP address
is in network byte order with the 2 byte port in network byte order
concatenated onto the end.
Contact information for nodes is encoded as a 26-byte string.
Also known as “Compact node info” the 20-byte Node ID in network byte
order has the compact IP-address/port info concatenated to the end.

	
from_compact_infos(infos)

	This is a classmethod

Instancy nodes from multiple compact node information string

	Parameters

	infos (bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – A string of size multiple of 26

	Returns

	A list of Node instances

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	Notes:

	Contact information for peers is encoded as a 6-byte string.
Also known as “Compact IP-address/port info” the 4-byte IP address
is in network byte order with the 2 byte port in network byte order
concatenated onto the end.
Contact information for nodes is encoded as a 26-byte string.
Also known as “Compact node info” the 20-byte Node ID in network byte
order has the compact IP-address/port info concatenated to the end.

	
from_compact_info(info)

	This is a classmethod

Instancy a node from its compact node infoformation string

	Parameters

	info (bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – A string of length 26

	Returns

	A node instance

	Return type

	Node

	Notes:

	Contact information for peers is encoded as a 6-byte string.
Also known as “Compact IP-address/port info” the 4-byte IP address
is in network byte order with the 2 byte port in network byte order
concatenated onto the end.
Contact information for nodes is encoded as a 26-byte string.
Also known as “Compact node info” the 20-byte Node ID in network byte
order has the compact IP-address/port info concatenated to the end.

	
announce_peer(dht, info_hash, port)

	Send a announce_peer query to the node

	Parameters

	
	dht (DHT_BASE) – The dht instance to use to send the message

	info_hash (bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – A 160bits (20 bytes) torrent id to announce

	port (int [https://docs.python.org/3/library/functions.html#int]) – The tcp port where data for info_hash is available

	Raises

	NoTokenError – if we have no valid token for info_hash. Try to call
get_peers() on this info_hash first.

	
find_node(dht, target)

	Send a find_node query to the node

	Parameters

	
	dht (DHT_BASE) – The dht instance to use to send the message

	target (bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – the 160bits (20 bytes) target node id

	
get_peers(dht, info_hash)

	Send a get_peers query to the node

	Parameters

	
	dht (DHT_BASE) – The dht instance to use to send the message

	info_hash (bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – a 160bits (20 bytes) torrent id

	
ping(dht)

	Send a ping query to the node

	Parameters

	dht (DHT_BASE) – The dht instance to use to send the message

	
class btdht.dht.Bucket

	Bases: list [https://docs.python.org/3/library/stdtypes.html#list]

A bucket of nodes in the routing table

	Parameters

	
	id (bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – A prefix identifier from 0 to 169 bits for the bucket

	id_length (int [https://docs.python.org/3/library/functions.html#int]) – number of signifiant bit in id (can also be seen as the length
between the root and the bucket in the routing table)

	init (iterable) – some values to store initialy in the bucket

	
max_size = 8

	Maximun number of element in the bucket

	
last_changed = 0

	Unix timestamp, last time the bucket had been updated

	
id = None

	A prefix identifier from 0 to 160 bits for the bucket

	
id_length = 0

	Number of signifiant bit in id

	
to_refresh

	True if the bucket need refreshing

	
random_id()

	
	Returns

	A random id handle by the bucket

	Return type

	bytes [https://docs.python.org/3/library/stdtypes.html#bytes]

This is used to send find_nodes for randoms ids in a bucket

	
add(dht, node)

	Try to add a node to the bucket.

	Parameters

	
	dht (DHT_BASE) – The dht instance the node to add is from

	node (Node) – A node to add to the bucket

	Raises

	BucketFull – if the bucket is full

	Notes:

	The addition of a node to a bucket is done as follow:
* if the bucket is not full, just add the node
* if the bucket is full

	if there is some bad nodes in the bucket, remove a bad node and add the
node

	if there is some questionnable nodes (neither good not bad), send a ping
request to the oldest one, discard the node

	if all nodes are good in the bucket, discard the node

	
get_node(id)

	
	Returns

	A Node with Node.id equal to id

	Return type

	Node

	Raises

	NotFound – if no node is found within this bucket

	
own(id)

	
	Parameters

	id (bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – A 60bit (20 Bytes) identifier

	Returns

	True if id is handled by this bucket

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
split(rt, dht)

	Split the bucket into two buckets

	Parameters

	
	rt (RoutingTable) – The routing table handling the bucket

	dht (DHT_BASE) – A dht using rt as routing table

	Returns

	A couple of two bucket, the first one this the last significant bit of its id
equal to 0, the second, equal to 1

	Return type

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	Raises

	BucketNotFull – If the bucket has not max_size elements (and so the split
is not needed)

	
merge(bucket)

	Merge the bucket with bucket

	Parameters

	bucket (Bucket) – a bucket to be merged with

	Returns

	The merged bucket

	Return type

	Bucket

	
class btdht.dht.RoutingTable

	Bases: object [https://docs.python.org/3/library/functions.html#object]

A routing table for one or more DHT_BASE instances

	Parameters

	
	scheduler (utils.Scheduler) – A scheduler instance

	debuglvl (int [https://docs.python.org/3/library/functions.html#int]) – Level of verbosity, default to 0.

	
debuglvl = 0

	int [https://docs.python.org/3/library/functions.html#int] the routing table instance verbosity level

	
trie = None

	The routing table storage data structure, an instance of datrie.Trie

	
stoped = True

	The state (stoped ?) of the routing table

	
need_merge = False

	Is a merge sheduled ?

	
threads = []

	list [https://docs.python.org/3/library/stdtypes.html#list] of the Thread [https://docs.python.org/3/library/threading.html#threading.Thread] of the routing table instance

	
to_schedule = []

	A class:list of couple (weightless thread name, weightless thread function)

	
prefix = ''

	Prefix in logs and threads name

	
zombie

	True if dht is stopped but one thread or more remains alive, False otherwise

	
start()

	start the routing table

	
stop()

	stop the routing table and wait for all threads to terminate

	
stop_bg()

	stop the routing table and return immediately

	
is_alive()

	Test if all routing table threads are alive. If a thread is found dead, stop the
routingtable

	Returns

	True if all routing table threads are alive, False otherwise

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
register_torrent(id)

	Register a torrent id (info_hash) for being tracked by the routing table.
This means that if a node need to be added to the bucket handling ``id``and the
bucket is full, then, this bucket will be split into 2 buckets

	Parameters

	id (bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – A 160 bits (20 Bytes) torrent identifier

	Note:

	torrent ids can automaticaly be release by a dht instance after a get_peers.
For keeping a torrent registered, use the method register_torrent_longterm()

	
release_torrent(id)

	Release a torrent id (info_hash) and program the routing table to be merged

	Parameters

	id (bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – A 160 bits (20 Bytes) torrent identifier

	
register_torrent_longterm(id)

	Same as register_torrent() but garanty that the torrent wont be released
automaticaly by the dht.

	Parameters

	id (bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – A 160 bits (20 Bytes) torrent identifier

	
release_torrent_longterm(id)

	For releasing torrent registered with the :meth`register_torrent_longterm` method

	Parameters

	id (bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – A 160 bits (20 Bytes) torrent identifier

	
register_dht(dht)

	Register a dht instance to the routing table

	Parameters

	dht (DHT_BASE) – A dht instance

	Notes:

	on start, all dht instances automaticaly register themself to their routing tables

	
release_dht(dht)

	Release a dht instance to the routing table, and shedule the routing table for a
merge.

	Notes:

	on stop, dht automatially release itself from the routing table

	
empty()

	Empty the routing table, deleting all buckets

	
debug(lvl, msg)

	same as DHT_BASE.debug()

	
stats()

	
	Returns

	A triple (number of nodes, number of good nodes, number of bad nodes)

	Return type

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
heigth()

	
	Returns

	the height of the tree of the routing table

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
find(id)

	
	Parameters

	id (bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – A 160 bits (20 Bytes) identifier

	Returns

	The bucket handling id

	Return type

	Bucket

	Raises

	KeyError [https://docs.python.org/3/library/exceptions.html#KeyError] – then a racing condition with merging and/or spliting a bucket is met.
This should not happen

	Notes:

	Duging a split or merge of bucket it is possible that the bucket handling id
is not found. find() will retry at most 20 times to get the bucket.
In most case, during those retries, the split and/or merge will end and the bucket
handling id will be returned.

	
get_node(id)

	
	Parameters

	id (bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – A 160 bits (20 Bytes) identifier

	Returns

	A node with id id

	Return type

	Node

	Raises

	NotFound – if no nodes is found

	
get_closest_nodes(id, bad=False)

	Return the K closest nodes from id in the routing table

	Parameters

	
	id (bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – A 160 bits (20 Bytes) identifier

	bad (bool [https://docs.python.org/3/library/functions.html#bool]) – Should we return bad nodes ? The default is False

	Notes:

	If less than K (=8) good nodes is found, bad nodes will be included it solve
the case there the connection where temporary lost and all nodes in the routing
table marked as bad.
In normal operation, we should always find K (=8) good nodes in the routing table.

	
add(dht, node)

	Add a node the the routing table

	Parameters

	
	dht (DHT_BASE) – The dht instance ``node``is from

	node (Node) – The node to add to the routing table

	
split(dht, bucket)

	Split bucket in two

	Parameters

	
	dht (DHT_BASE) – A dht instance

	bucket (Bucket) – A bucket from the routing table to split

	Notes:

	the routing table cover the entire 160bits space

	
merge()

	Request a merge to be perform

btdht.utils module

	bencode

	bencode an arbitrary object

	bdecode

	bdecode an bytes string

	bdecode_rest

	bdecode an bytes string

	enumerate_ids

	Enumerate 2 to the power of size ids from id

	id_to_longid

	convert a random bytes to a unicode string of 1 and 0

	ip_in_nets

	Test if ip is in one of the networks of nets

	nbit

	Allow to retrieve the value of the nth bit of s

	nflip

	Allow to flip the nth bit of s

	nset

	Allow to set the value of the nth bit of s

	ID

	A 160 bit (20 Bytes) string implementing the XOR distance

	PollableQueue

	A queue that can be watch using select.select() [https://docs.python.org/3/library/select.html#select.select]

	Scheduler

	Schedule weightless threads and DHTs io

	
btdht.utils.bencode(obj)

	bencode an arbitrary object

	Parameters

	obj – A combination of dict, list, bytes or int

	Returns

	Its bencoded representation

	Return type

	bytes [https://docs.python.org/3/library/stdtypes.html#bytes]

	Notes:

	This method is just a wrapper around _bencode()

	
btdht.utils.bdecode(s)

	bdecode an bytes string

	Parameters

	s – A bencoded bytes string

	Returns

	Its bencoded representation

	Return type

	A combination of dict [https://docs.python.org/3/library/stdtypes.html#dict], list [https://docs.python.org/3/library/stdtypes.html#list], bytes [https://docs.python.org/3/library/stdtypes.html#bytes] or int [https://docs.python.org/3/library/functions.html#int]

	Raises

	BcodeError – If failing to decode s

	Notes:

	This method is just a wrapper around _bdecode()

	
btdht.utils.bdecode_rest(s)

	bdecode an bytes string

	Parameters

	s – A bencoded bytes string

	Returns

	A couple: (bdecoded representation, rest of the string). If only one bencoded
object is given as argument, then the ‘rest of the string’ will be empty

	Return type

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple] (
combination of dict [https://docs.python.org/3/library/stdtypes.html#dict], list [https://docs.python.org/3/library/stdtypes.html#list], bytes [https://docs.python.org/3/library/stdtypes.html#bytes] or int [https://docs.python.org/3/library/functions.html#int], bytes)

	Raises

	BcodeError – If failing to decode s

	
btdht.utils.enumerate_ids(size, id)

	Enumerate 2 to the power of size ids from id

	Parameters

	
	size (int [https://docs.python.org/3/library/functions.html#int]) – A number of bit to flip in id

	id (bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – A 160 bit (20 Bytes) long id

	Returns

	A list of
id and 2 to the power of size (minus one) ids the furthest from each other

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list]

For instance: if id=("\0" * 20) (~0 * 160), enumerate_ids(4, id) will
return a list with

	'\x00\x00\x00\x00\x00...' (~00000000…)

	'\x80\x00\x00\x00\x00...' (~10000000…)

	'@\x00\x00\x00\x00.......' (~0100000000…)

	'\xc0\x00\x00\x00\x00...' (~11000000…)

The can be see as the tree:

 \x00
 / \
 1/ \0
 / \
 \xc0 \x00
 1/ \0 1/ \0
 / \ / \
\xc0 \x80 @ \x00

The root is id, at each level n, we set the nth bit to 1 left and 0 right, size
if the level we return.

This function may be usefull to lanch multiple DHT instance with ids the most distributed
on the 160 bit space.

	
btdht.utils.id_to_longid(id, l=20)

	convert a random bytes to a unicode string of 1 and 0

For instance: "\0" -> "00000000"

	Parameters

	
	id (bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – A random string

	size (int [https://docs.python.org/3/library/functions.html#int]) – The length of id

	Returns

	The corresponding base 2 unicode string

	Return type

	unicode

	
btdht.utils.ip_in_nets(ip, nets)

	Test if ip is in one of the networks of nets

	Parameters

	
	ip (str [https://docs.python.org/3/library/stdtypes.html#str]) – An ip, in dotted notation

	nets (list [https://docs.python.org/3/library/stdtypes.html#list]) – A list of netaddr.IPNetwork

	Returns

	True if ip is in one of the listed networks, False otherwise

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
btdht.utils.nbit(s, n)

	Allow to retrieve the value of the nth bit of s

	Parameters

	
	s (bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – A byte string

	n (int [https://docs.python.org/3/library/functions.html#int]) – A bit number (n must be smaller than 8 times the length of s)

	Returns

	The value of the nth bit of s (0 or 1)

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
btdht.utils.nflip(s, n)

	Allow to flip the nth bit of s

	Parameters

	
	s (bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – A byte string

	n (int [https://docs.python.org/3/library/functions.html#int]) – A bit number (n must be smaller than 8 times the length of s)

	Returns

	The same string except for the nth bit was flip

	Return type

	bytes [https://docs.python.org/3/library/stdtypes.html#bytes]

	
btdht.utils.nset(s, n, i)

	Allow to set the value of the nth bit of s

	Parameters

	
	s (bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – A byte string

	n (int [https://docs.python.org/3/library/functions.html#int]) – A bit number (n must be smaller than 8 times the length of s)

	i (int [https://docs.python.org/3/library/functions.html#int]) – A bit value (0 or 1)

	Returns

	s where the nth bit was set to i

	Return type

	bytes [https://docs.python.org/3/library/stdtypes.html#bytes]

	
class btdht.utils.ID

	Bases: object [https://docs.python.org/3/library/functions.html#object]

A 160 bit (20 Bytes) string implementing the XOR distance

	Parameters

	id – An optional initial value (bytes [https://docs.python.org/3/library/stdtypes.html#bytes] or ID). If not specified,
a random 160 bit value is generated.

	
value = None

	bytes [https://docs.python.org/3/library/stdtypes.html#bytes], Actual value of the ID

	
classmethod to_bytes(id)

	
	Parameters

	id – A bytes [https://docs.python.org/3/library/stdtypes.html#bytes] or ID

	Returns

	The value of the id

	Return type

	bytes [https://docs.python.org/3/library/stdtypes.html#bytes]

	
startswith(s)

	S.startswith(prefix[, start[, end]]) -> bool

Return True if S starts with the specified prefix, False otherwise.
With optional start, test S beginning at that position.
With optional end, stop comparing S at that position.
prefix can also be a tuple of strings to try.

	
__getitem__(i)

	x.__getitem__(y) <==> x[y]

	
__xor__(other)

	Perform a XOR bit by bit between the current id and other

	Parameters

	other – A bytes [https://docs.python.org/3/library/stdtypes.html#bytes] or ID

	Returns

	The resulted XORed bit by bit string

	Return type

	bytes [https://docs.python.org/3/library/stdtypes.html#bytes]

	
class btdht.utils.PollableQueue

	Bases: Queue.Queue

A queue that can be watch using select.select() [https://docs.python.org/3/library/select.html#select.select]

	Parameters

	maxsize (int [https://docs.python.org/3/library/functions.html#int]) – The maximum size on the queue. If maxsize is <= 0, the queue size is
infinite.

	
sock = None

	A socket.socket object ready for read then here is something to pull from the queue

	
empty()

	Return True if the queue is empty, False otherwise (not reliable!).

	
full()

	Return True if the queue is full, False otherwise (not reliable!).

	
get(block=True, timeout=None)

	Remove and return an item from the queue.

If optional args ‘block’ is true and ‘timeout’ is None (the default),
block if necessary until an item is available. If ‘timeout’ is
a non-negative number, it blocks at most ‘timeout’ seconds and raises
the Empty exception if no item was available within that time.
Otherwise (‘block’ is false), return an item if one is immediately
available, else raise the Empty exception (‘timeout’ is ignored
in that case).

	
get_nowait()

	Remove and return an item from the queue without blocking.

Only get an item if one is immediately available. Otherwise
raise the Empty exception.

	
join()

	Blocks until all items in the Queue have been gotten and processed.

The count of unfinished tasks goes up whenever an item is added to the
queue. The count goes down whenever a consumer thread calls task_done()
to indicate the item was retrieved and all work on it is complete.

When the count of unfinished tasks drops to zero, join() unblocks.

	
put(item, block=True, timeout=None)

	Put an item into the queue.

If optional args ‘block’ is true and ‘timeout’ is None (the default),
block if necessary until a free slot is available. If ‘timeout’ is
a non-negative number, it blocks at most ‘timeout’ seconds and raises
the Full exception if no free slot was available within that time.
Otherwise (‘block’ is false), put an item on the queue if a free slot
is immediately available, else raise the Full exception (‘timeout’
is ignored in that case).

	
put_nowait(item)

	Put an item into the queue without blocking.

Only enqueue the item if a free slot is immediately available.
Otherwise raise the Full exception.

	
qsize()

	Return the approximate size of the queue (not reliable!).

	
task_done()

	Indicate that a formerly enqueued task is complete.

Used by Queue consumer threads. For each get() used to fetch a task,
a subsequent call to task_done() tells the queue that the processing
on the task is complete.

If a join() is currently blocking, it will resume when all items
have been processed (meaning that a task_done() call was received
for every item that had been put() into the queue).

Raises a ValueError if called more times than there were items
placed in the queue.

	
class btdht.utils.Scheduler

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Schedule weightless threads and DHTs io

A weightless threads is a python callable returning an iterator that behave as describe
next. The first returned value must be an integer describing the type of the iterator.
0 means time based and all subsequent yield must return the next timestamp at which the
iterator want to be called. 1 means queue based. The next call to the iterator must return
an instance of PollableQueue. All subsequent yield value are then ignored.
The queue based iterator will be called when something is put on its queue.

	
zombie

	
	Returns

	True if the scheduler is stoped but its threads are still running

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
start(name_prefix="scheduler")

	start the scheduler

	Parameters

	name_prefix (str [https://docs.python.org/3/library/stdtypes.html#str]) – Prefix to the scheduler threads names

	
stop()

	stop the scheduler

	Raises

	FailToStop – if we fail to stop one of the scheduler threads after 30 seconds

	
stop_bg()

	Lauch the stop process of the dht and return immediately

	
is_alive()

	Test if the scheduler main thread is alive

	Returns

	True the scheduler main thread is alive, False otherwise

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
thread_alive(name)

	Test is a weightless threads named name is currently schedule

	Parameters

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of a thread

	Returns

	True if a thread of name name if found

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
add_dht(dht)

	Add a dht instance to be schedule by the scheduler

	Parameters

	dht (dht.DHT_BASE) – A dht instance

	
del_dht(dht)

	Remove a dht instance from the scheduler

	Parameters

	dht (dht.DHT_BASE) – A dht instance

	
add_thread(name, function, user=False)

	Schedule the call of weightless threads

	Parameters

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the thread to add. Must be unique in the Scheduler
instance

	function – A weightless threads, i.e a callable returning an iterator

	user (bool [https://docs.python.org/3/library/functions.html#bool]) – If True the weightless threads is schedule in a secondary thread.
The default is False and the weightless threads is processed in the main
scheduler thread. This is usefull to put controled weightless threads and the main
thread, and all the other (like the user defined on_``msg``_(query|response))
function to the secondary one.

	
del_thread(name, stop_if_empty=True)

	Remove the weightless threads named name

	Parameters

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of a thread

	stop_if_empty (bool [https://docs.python.org/3/library/functions.html#bool]) – If True (the default) and the scheduler has nothing to
schedules, the scheduler will be stopped.

btdht.krcp module

	
class btdht.krcp.BError

	Bases: exceptions.Exception

A base class exception for all bittorrent DHT protocol error exceptions

	Parameters

	
	t (bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The value of the key t of the query for with the error is returned

	e (list [https://docs.python.org/3/library/stdtypes.html#list]) – A couple [error code, error message]

	
e = None

	A list. The first element is an int [https://docs.python.org/3/library/functions.html#int] representing the error code.
The second element is a string containing the error message

	
t = None

	string value representing a transaction ID, must be set to the query transaction ID
for which an error is raises.

	
y = 'e'

	The y key of the error message. For an error message, it is always b"e"

	
encode()

	Bencode the error message

	Returns

	The bencoded error message ready to be send

	Return type

	bytes [https://docs.python.org/3/library/stdtypes.html#bytes]

	
class btdht.krcp.GenericError

	Bases: btdht.krcp.BError

A Generic Error, error code 201

	Parameters

	
	t (bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The value of the key t of the query for with the error is returned

	msg (bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – An optionnal error message

	
class btdht.krcp.MethodUnknownError

	Bases: btdht.krcp.BError

Method Unknown, error code 204

	Parameters

	
	t (bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The value of the key t of the query for with the error is returned

	msg (bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – An optionnal error message

	
class btdht.krcp.ProtocolError

	Bases: btdht.krcp.BError

A Protocol Error, such as a malformed packet, invalid arguments, or bad token,
error code 203

	Parameters

	
	t (bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The value of the key t of the query for with the error is returned

	msg (bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – An optionnal error message

	
class btdht.krcp.ServerError

	Bases: btdht.krcp.BError

A Server Error, error code 202

	Parameters

	
	t (bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The value of the key t of the query for with the error is returned

	msg (bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – An optionnal error message

	
class btdht.krcp.BMessage

	Bases: object [https://docs.python.org/3/library/functions.html#object]

A bittorrent DHT message. This class is able to bdecode a bittorrent DHT message. It
expose then the messages keys t, y, q, errno, errmsg and v as
attributes, and behave itself as a dictionnary for the a or r keys that contains
a secondary dictionnary (see Notes).

	Parameters

	
	addr (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – An optionnal coupe (ip, port) of the sender of the message

	debug (bool [https://docs.python.org/3/library/functions.html#bool]) – True for enabling debug message. The default is False

	Notes:

	A query message is always of the following form with y == b'q':

{
 "t": t,
 "y": y,
 "q": q,
 "a": {...}
}

A response message is always of the following form with y == b'r':

{
 "t": t,
 "y": y,
 "r": {...}
}

An error message is always in response of a query message and of the following form
with y == b'e':

{
 "t": t,
 "y": y,
 "e":[errno, errmsg]
}

The t key is a random string generated with every query. It is used to match
a response to a particular query.

The y key is used to differenciate the type of the message. Its value is b'q'
for a query, b'r' for a response, and b'e' for and error message.

The q is only present on query message and contain the name of the query (ping,
get_peers, announce_peer, find_node)

errno and errmsg are only defined if the message is an error message. They are
respectively the error number (int [https://docs.python.org/3/library/functions.html#int]) and the error describing message of the error.

The v key is set by some DHT clients to the name and version of the client and
is totally optionnal in the protocol.

	
addr

	The couple (ip, port) source of the message

	
errmsg

	The error message of the message if the message is and erro message

	
errno

	The error number of the message if the message is and erro message

	
q

	The q key of the message, should only be define if the message is a query (y is
"q"). It countains the name of the RPC method the query is asking for. Can be
b’ping’`, b'find_node', b'get_peers', b'announce_peer', …

	
t

	The t key, a random string, transaction id used to match queries and responses together.

	
v

	The v key of the message. This attribute is not describe in the BEP5 that describe the
bittorent DHT protocol. It it use as a version flag. Many bittorent client set it to
the name and version of the client.

	
y

	The y` key of the message. Possible value are ``"q" for a query, “r” for a response
and "e" for an error.

	
__getitem__(key)

	Allow to fetch infos from the secondary dictionnary:

self[b"id"] -> b"..."

	Parameters

	key (bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The name of an attribute of the secondary dictionnary to retreive.

	Returns

	The value store for key if found

	Raises

	KeyError [https://docs.python.org/3/library/exceptions.html#KeyError] – if key is not found

	Notes:

	
	Possible keys are:

	
	id

	target

	info_hash

	token

	nodes

	implied_port

	port

	values

	
__delitem__(key)

	Allow to unset attributes from the secondary dictionnary:

del self[b'id']

:param :param bytes key: The name of an attribute of the secondary dictionnary to unset
:return: True if key is found and successfully unset
:raise KeyError: if key is not found

	
__setitem__(key, value)

	Allow to set attributes from the secondary dictionnary:

self[b'id'] = b"..."

	Parameters

	
	key (bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The name of an attribute of the secondary dictionnary to set

	value – The value to set

	Raises

	
	KeyError [https://docs.python.org/3/library/exceptions.html#KeyError] – if key is not one of id, target, info_hash, token, nodes,
implied_port, port, values.

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – if value is not well formated (length, type, …)

	
decode(data, datalen)

	Bdecode a bencoded message and set the current BMessage attributes accordingly

	Parameters

	
	data (bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The bencoded message

	datalen (int [https://docs.python.org/3/library/functions.html#int]) – The length of data

	Returns

	The remaining of data after the first bencoded message of data has been
bdecoded (it may be the empty string if data contains exactly one bencoded
message with no garbade at the end).

	Raises

	
	DecodeError – If we fail to decode the message

	ProtocolError – If the message is decoded but some attributes are missing of
badly formated (length, type, …).

	MissingT – If the message do not have a b"t" key. Indeed,
accordingly to the BEP5, every message (queries, responses, errors) should have
a b"t" key.

	
encode()

	Bencoded the current message if necessary

	Returns

	The bencoded message

	Return type

	bytes [https://docs.python.org/3/library/stdtypes.html#bytes]

	
get(key, default=None)

	
	Parameters

	
	key (bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The name of an attribute of the secondary dictionnary to retreive.

	default – Value to return in case key is not found. The default is None

	Returns

	The value of key if found, else the value of default.

	
response(dht)

	If the message is a query, return the response message to send

	Parameters

	dht (dht.DHT_BASE) – The dht instance from which the message is originated

	Returns

	A BMessage to send as response to the query

	Raises

	
	ProtocolError – if the query is malformated. To send as response to the querier

	MethodUnknownError – If the RPC DHT method asked in the query is unknown.
To send as response to the querier

btdht.exceptions module

	
exception btdht.exceptions.BucketFull

	Bases: exceptions.Exception

Raised then trying to add a node to a Bucket that
already contains Bucket.max_size elements.

	
exception btdht.exceptions.BucketNotFull

	Bases: exceptions.Exception

Raises then trying to split a split a Bucket that
contains less than Bucket.max_size elements.

	
exception btdht.exceptions.NoTokenError

	Bases: exceptions.Exception

Raised then trying to annonce to a node we download an info_hash
using Node.announce_peer but we do not known any valid
token. The error should always be catch and never seen by btdht users.

	
exception btdht.exceptions.FailToStop

	Bases: exceptions.Exception

Raises then we are tying to stop threads but failing at it

	
exception btdht.exceptions.TransactionIdUnknown

	Bases: exceptions.Exception

Raised then receiving a response with an unknown t key

	
exception btdht.exceptions.MissingT

	Bases: exceptions.ValueError

Raised while decoding of a dht message if that message of no key t

	
exception btdht.exceptions.DecodeError

	Bases: exceptions.ValueError

Raised while decoding a dht message

	
exception btdht.exceptions.BcodeError

	Bases: exceptions.Exception

Raised by btdht.utils.bdecode() and btdht.utils.bencode() functions

	
exception btdht.exceptions.NotFound

	Bases: exceptions.Exception

Raised when trying to get a node that do not exists from a Bucket

 Python Module Index

 b

 		 	

 		
 b	

 	[image: -]
 	
 btdht	

 	
 	
 btdht.dht	

 	
 	
 btdht.exceptions	

 	
 	
 btdht.krcp	

 	
 	
 btdht.utils	

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | V
 | Y
 | Z

_

 	
 	__delitem__() (btdht.krcp.BMessage method)

 	__getitem__() (btdht.krcp.BMessage method)

 	(btdht.utils.ID method)

 	
 	__setitem__() (btdht.krcp.BMessage method)

 	__xor__() (btdht.utils.ID method)

A

 	
 	add() (btdht.dht.Bucket method)

 	(btdht.dht.RoutingTable method)

 	add_dht() (btdht.utils.Scheduler method)

 	
 	add_thread() (btdht.utils.Scheduler method)

 	addr (btdht.krcp.BMessage attribute)

 	announce_peer() (btdht.dht.Node method)

B

 	
 	bad (btdht.dht.Node attribute)

 	BcodeError

 	bdecode() (in module btdht.utils)

 	bdecode_rest() (in module btdht.utils)

 	bencode() (in module btdht.utils)

 	BError (class in btdht.krcp)

 	bind_ip (btdht.dht.DHT_BASE attribute)

 	bind_port (btdht.dht.DHT_BASE attribute)

 	
 	BMessage (class in btdht.krcp)

 	btdht (module)

 	btdht.dht (module)

 	btdht.exceptions (module)

 	btdht.krcp (module)

 	btdht.utils (module)

 	Bucket (class in btdht.dht)

 	BucketFull

 	BucketNotFull

C

 	
 	clean() (btdht.dht.DHT_BASE method)

 	
 	clean_long() (btdht.dht.DHT_BASE method)

 	compact_info() (btdht.dht.Node method)

D

 	
 	debug() (btdht.dht.DHT_BASE method)

 	(btdht.dht.RoutingTable method)

 	debuglvl (btdht.dht.DHT_BASE attribute)

 	(btdht.dht.RoutingTable attribute)

 	decode() (btdht.krcp.BMessage method)

 	
 	DecodeError

 	del_dht() (btdht.utils.Scheduler method)

 	del_thread() (btdht.utils.Scheduler method)

 	DHT (class in btdht.dht)

 	DHT_BASE (class in btdht.dht)

E

 	
 	e (btdht.krcp.BError attribute)

 	empty() (btdht.dht.RoutingTable method)

 	(btdht.utils.PollableQueue method)

 	encode() (btdht.krcp.BError method)

 	(btdht.krcp.BMessage method)

 	
 	enumerate_ids() (in module btdht.utils)

 	errmsg (btdht.krcp.BMessage attribute)

 	errno (btdht.krcp.BMessage attribute)

F

 	
 	failed (btdht.dht.Node attribute)

 	FailToStop

 	find() (btdht.dht.RoutingTable method)

 	
 	find_node() (btdht.dht.Node method)

 	from_compact_info() (btdht.dht.Node method)

 	from_compact_infos() (btdht.dht.Node method)

 	full() (btdht.utils.PollableQueue method)

G

 	
 	GenericError (class in btdht.krcp)

 	get() (btdht.krcp.BMessage method)

 	(btdht.utils.PollableQueue method)

 	get_closest_nodes() (btdht.dht.DHT_BASE method)

 	(btdht.dht.RoutingTable method)

 	
 	get_node() (btdht.dht.Bucket method)

 	(btdht.dht.RoutingTable method)

 	get_nowait() (btdht.utils.PollableQueue method)

 	get_peers() (btdht.dht.Node method)

 	good (btdht.dht.Node attribute)

H

 	
 	heigth() (btdht.dht.RoutingTable method)

I

 	
 	id (btdht.dht.Bucket attribute)

 	(btdht.dht.Node attribute)

 	ID (class in btdht.utils)

 	id_length (btdht.dht.Bucket attribute)

 	id_to_longid() (in module btdht.utils)

 	ignored_ip (btdht.dht.DHT_BASE attribute)

 	
 	ignored_net (btdht.dht.DHT_BASE attribute)

 	init_socket() (btdht.dht.DHT_BASE method)

 	ip (btdht.dht.Node attribute)

 	ip_in_nets() (in module btdht.utils)

 	is_alive() (btdht.dht.DHT_BASE method)

 	(btdht.dht.RoutingTable method)

 	(btdht.utils.Scheduler method)

J

 	
 	join() (btdht.utils.PollableQueue method)

L

 	
 	last_changed (btdht.dht.Bucket attribute)

 	last_msg (btdht.dht.DHT_BASE attribute)

 	last_msg_rep (btdht.dht.DHT_BASE attribute)

 	
 	last_query (btdht.dht.Node attribute)

 	last_response (btdht.dht.Node attribute)

 	load() (btdht.dht.DHT_BASE method)

M

 	
 	max_size (btdht.dht.Bucket attribute)

 	merge() (btdht.dht.Bucket method)

 	(btdht.dht.RoutingTable method)

 	
 	MethodUnknownError (class in btdht.krcp)

 	MissingT

 	myid (btdht.dht.DHT_BASE attribute)

 	mytoken (btdht.dht.DHT_BASE attribute)

N

 	
 	nbit() (in module btdht.utils)

 	need_merge (btdht.dht.RoutingTable attribute)

 	nflip() (in module btdht.utils)

 	
 	Node (class in btdht.dht)

 	NotFound

 	NoTokenError

 	nset() (in module btdht.utils)

O

 	
 	on_announce_peer_query() (btdht.dht.DHT_BASE method)

 	on_announce_peer_response() (btdht.dht.DHT_BASE method)

 	on_error() (btdht.dht.DHT_BASE method)

 	on_find_node_query() (btdht.dht.DHT_BASE method)

 	on_find_node_response() (btdht.dht.DHT_BASE method)

 	
 	on_get_peers_query() (btdht.dht.DHT_BASE method)

 	on_get_peers_response() (btdht.dht.DHT_BASE method)

 	on_ping_query() (btdht.dht.DHT_BASE method)

 	on_ping_response() (btdht.dht.DHT_BASE method)

 	own() (btdht.dht.Bucket method)

P

 	
 	ping() (btdht.dht.Node method)

 	PollableQueue (class in btdht.utils)

 	port (btdht.dht.Node attribute)

 	prefix (btdht.dht.DHT_BASE attribute)

 	(btdht.dht.RoutingTable attribute)

 	
 	ProtocolError (class in btdht.krcp)

 	put() (btdht.utils.PollableQueue method)

 	put_nowait() (btdht.utils.PollableQueue method)

Q

 	
 	q (btdht.krcp.BMessage attribute)

 	
 	qsize() (btdht.utils.PollableQueue method)

R

 	
 	random_id() (btdht.dht.Bucket method)

 	register_dht() (btdht.dht.RoutingTable method)

 	register_message() (btdht.dht.DHT_BASE method)

 	register_torrent() (btdht.dht.RoutingTable method)

 	register_torrent_longterm() (btdht.dht.RoutingTable method)

 	
 	release_dht() (btdht.dht.RoutingTable method)

 	release_torrent() (btdht.dht.RoutingTable method)

 	release_torrent_longterm() (btdht.dht.RoutingTable method)

 	response() (btdht.krcp.BMessage method)

 	root (btdht.dht.DHT_BASE attribute)

 	RoutingTable (class in btdht.dht)

S

 	
 	save() (btdht.dht.DHT_BASE method)

 	Scheduler (class in btdht.utils)

 	sendto() (btdht.dht.DHT_BASE method)

 	ServerError (class in btdht.krcp)

 	sleep() (btdht.dht.DHT_BASE method)

 	sock (btdht.dht.DHT_BASE attribute)

 	(btdht.utils.PollableQueue attribute)

 	split() (btdht.dht.Bucket method)

 	(btdht.dht.RoutingTable method)

 	start() (btdht.dht.DHT_BASE method)

 	(btdht.dht.RoutingTable method)

 	(btdht.utils.Scheduler method)

 	
 	startswith() (btdht.utils.ID method)

 	stats() (btdht.dht.RoutingTable method)

 	stop() (btdht.dht.DHT_BASE method)

 	(btdht.dht.RoutingTable method)

 	(btdht.utils.Scheduler method)

 	stop_bg() (btdht.dht.DHT_BASE method)

 	(btdht.dht.RoutingTable method)

 	(btdht.utils.Scheduler method)

 	stoped (btdht.dht.DHT_BASE attribute)

 	(btdht.dht.RoutingTable attribute)

T

 	
 	t (btdht.krcp.BError attribute)

 	(btdht.krcp.BMessage attribute)

 	task_done() (btdht.utils.PollableQueue method)

 	thread_alive() (btdht.utils.Scheduler method)

 	threads (btdht.dht.DHT_BASE attribute)

 	(btdht.dht.RoutingTable attribute)

 	to_bytes() (btdht.utils.ID class method)

 	
 	to_refresh (btdht.dht.Bucket attribute)

 	to_schedule (btdht.dht.DHT_BASE attribute)

 	(btdht.dht.RoutingTable attribute)

 	to_send (btdht.dht.DHT_BASE attribute)

 	token (btdht.dht.DHT_BASE attribute)

 	transaction_type (btdht.dht.DHT_BASE attribute)

 	TransactionIdUnknown

 	trie (btdht.dht.RoutingTable attribute)

V

 	
 	v (btdht.krcp.BMessage attribute)

 	
 	value (btdht.utils.ID attribute)

Y

 	
 	y (btdht.krcp.BError attribute)

 	(btdht.krcp.BMessage attribute)

Z

 	
 	zombie (btdht.dht.DHT_BASE attribute)

 	(btdht.dht.RoutingTable attribute)

 	(btdht.utils.Scheduler attribute)

 _static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/file.png

_static/minus.png

_static/down.png

_static/plus.png

_static/ajax-loader.gif

_static/up-pressed.png

nav.xhtml

 Table of Contents

 		
 Welcome to btdht’s documentation!

 		
 btdht: A python implementation of the Bittorrent distributed hash table

 		
 Dependencies

 		
 Build dependencies

 		
 Installation

 		
 Usage examples

 		
 btdht package

 		
 Submodules

 		
 btdht.dht module

 		
 btdht.utils module

 		
 btdht.krcp module

 		
 btdht.exceptions module

 		
 Module contents

_static/up.png

