

Welcome to Browbeat documentation

Contents:

	Introduction

	Installation
	Install Browbeat on Undercloud

	(Optional) Install Kibana Visualizations

	Install Browbeat from your local machine (Not Manintained)

	Install/Setup Browbeat Machine

	Using Keystone Public Endpoint

	Uploading Images to the overcloud

	Additional Components Installation
	Install Monitoring Host (Carbon/Graphite/Grafana)

	Usage
	Run Browbeat performance tests from Undercloud

	Running Shaker

	Correlating test run with logs

	Interpreting Browbeat Results

	Working with Multiple Clouds

	Compare software-metadata from two different runs

	Compare performance of two different runs

	Cleanup Rally resources

	Cleanup sqlalchemy collectd configuration

	Generate CSV file/Google Sheets from Rally json file

	Plugins
	Rally

	Charts
	Chart - add_per_iteration_complete_data

	Chart - add_duplicate_atomic_actions_iteration_additive_data

	Chart - add_all_resources_additive_data

	Developing against Quickstart
	Why use Quickstart?

	Limitations

	Hardware Requirements

	Localhost Preparation

	Create a Quickstart cloud

	Connecting to your Undercloud/Overcloud from your local machine

	Setup Browbeat against your Quickstart Cloud

	Troubleshooting

	Contributing
	Setup

	Making changes

	Local testing

	Submit Changes

	Changes to a review

Indices and tables

	Index

	Module Index

	Search Page

Introduction

This started as a project to help determine the number of database
connections a given OpenStack deployment uses via stress tests. It has
since grown into a set of Ansible playbooks to help check deployments
for known issues, install tools, run performance stress workloads and
change parameters of the overcloud.

Installation

Browbeat is currently installed via an ansible playbook. In a Tripleo
environment it can be installed directly on the Undercloud or a separate
machine. The installation can be run from either your local machine or
directly on the machine you want Browbeat installed on.

Install Browbeat on Undercloud

This is usually the easiest installation due to many requirements are satisfied
on the Undercloud. In some cases it may not be desired to install Browbeat on
the Undercloud (Ex. Limited Resource requirements or Non-Tripleo installed
cloud)

Requirements

Hardware

	Undercloud Machine (Baremetal or Virtual Machine)

Networking

	Access to Public API endpoints

	Access to Keystone Admin Endpoint

Note

For tripleo, public API endpoints are located on the External
Network by default. The Keystone Admin Endpoint is deployed on the ctlplane
network by default. These networking requirements should be validated before
attempting an installation.

 Usage

Usage

Run Browbeat performance tests from Undercloud

For Running the workloads from Undercloud

$ ssh undercloud-root
[root@undercloud ~]# su - stack
[stack@undercloud ~]$ cd browbeat/
[stack@undercloud browbeat]$. .browbeat-venv/bin/activate
(.browbeat-venv)[stack@undercloud browbeat]$ vi browbeat-config.yaml # Edit browbeat-config.yaml to control how many stress tests are run.
(.browbeat-venv)[stack@undercloud browbeat]$./browbeat.py <workload> #rally, shaker or "all"

Running Shaker

Running Shaker requires the shaker image to be built, which in turn requires
instances to be able to access the internet. The playbooks for this installation
have been described in the installation documentation but for the sake of
convenience they are being mentioned here as well.

$ ansible-playbook -i hosts.yml install/shaker_build.yml

Note

The playbook to setup networking is provided as an example only and
might not work for you based on your underlay/overlay network setup. In such
cases, the exercise of setting up networking for instances to be able to access
the internet is left to the user.

 Plugins

Plugins

Rally

Scenario - dynamic-workloads

Dynamic workloads are workloads that aim to simulate a realistic Openstack customer environment, by introducing elements of randomness into the simulation. A list of the different workloads that are part of this Browbeat Rally Plugin is mentioned below.

VM:

	create_delete_servers: Create ‘N’ VMs(without floating IP), and delete ‘M’
randomly chosen VMs from this list of VMs.

	migrate_servers: Create ‘N’ VMs(with floating IP), and migrate ‘M’ randomly
chosen VMs from this list of VMs across computes, before resizing them.

	swap_floating_ips_between_servers: Swap floating IPs between 2 servers. Ping
until failure after dissociating floating IPs, before swapping them. Ping until
success after swapping floating IPs between 2 servers.

Octavia:

	create_loadbalancers: Create ‘N’ loadbalancers with specified ‘M’ pools and ‘K’
clients per Loadbalancer.

	delete_loadbalancers: Deletes ‘M’ loadbalancers randomly from ‘N’ loadbalancers

	delete_members_random_lb: Deletes ‘M’ members from a random loadbalancer

Trunk(pod simulation):

	pod_fip_simulation: Simulate pods with floating ips using subports on trunks and
VMs. Create ‘N’ trunks and VMs and ‘M’ subports per trunk/VM. Ping a random subport
of each trunk/VM from a jumphost.

	add_subports_to_random_trunks: Add ‘M’ subports to ‘N’ randomly chosen trunks. This
is to simulate pods being added to an existing VM.

	delete_subports_from_random_trunks: Delete ‘M’ subports from ‘N’ randomly chosen
trunks. This is is to simulate pods being destroyed.

	swap_floating_ips_between_random_subports: Swap floating IPs between 2 randomly
chosen subports from 2 trunks.

Provider network:

	provider_netcreate_nova_boot_ping: Creates a provider Network and Boots VM and ping

	provider_net_nova_boot_ping: Boots a VM and ping on random existing provider network

	provider_net_nova_delete: Delete all VM’s and provider network

Shift on Stack:

shift_on_stack: Runs specified kube-burner workload through e2e-benchmarking. e2e-benchmarking is a [repository](https://github.com/cloud-bulldozer/e2e-benchmarking.git) that contains scripts to stress Openshift clusters. This workload uses e2e-benchmarking to test Openshift on Openstack.

Context - browbeat_delay

This context allows a setup and cleanup delay to be introduced into a scenario.

Context - browbeat_persist_network

This context creates network resources that persist upon completion of a rally run. It is used in conjunction with the nova_boot_persist_with_network and nova_boot_persist_with_network_volume plugin scenarios. You can also use neutron purge command to purge a project/tenant of neutron network resources.

Scenario - nova_boot_persist

This scenario creates instances without a network that persist upon completion of a rally run. This scenario is best used for excerising the Telemetry systems within an OpenStack Cloud. Alternatively, it can be used to put idle instances on a cloud for other workloads to compete for resources. The scenario is referenced in the Telemetry Browbeat configurations in order to build a “stepped” workload that can be used to analyze Telemetry performance and scalability.

Scenario - nova_boot_persist_with_volume

This scenario creates instances that have an attached volume and persist upon completion of a rally run. This scenario is best used for excerising the Telemetry systems within an OpenStack Cloud. It increases the Telemetry workload by creating more resources that the Telemetry services must collect and process metrics over. Alternatively, it can be used to put idle instances on a cloud for other workloads to compete for resources. The scenario is referenced in the Telemetry Browbeat configurations in order to build a “stepped” workload that can be used to analyze Telemetry scalability.

Scenario - nova_boot_persist_with_network

This scenario creates instances that are attached to a network and persist upon completion of a rally run. This scenario is best used for excerising the Telemetry systems within an OpenStack Cloud. It increases the Telemetry workload by creating more resources that the Telemetry services must collect and process metrics over. Alternatively, it can be used to put idle instances on a cloud for other workloads to compete for resources. The scenario is referenced in the Telemetry Browbeat configurations in order to build a “stepped” workload that can be used to analyze Telemetry scalability.

Scenario - nova_boot_persist_with_network_fip

This scenario creates instances with a nic and associates a floating ip that persist upon completion of a rally run. It is used as a workload with Telemetry by spawning many instances that have many metrics for the Telemetry subsystem to collect upon.

Scenario - nova_boot_persist_with_network_volume

This scenario create instances with a nic and a volume that persist upon completion of a rally run. It is used as a workload with Telemetry by spawning many instances that have many metrics for the Telemetry subsystem to collect upon.

Scenario - nova_boot_persist_with_network_volume_fip

This scenario creates instances with a nic, a volume and associates a floating ip that persist upon completion of a rally run. It is used as a workload with Telemetry by spawning many instances that have many metrics for the Telemetry subsystem to collect upon.

 Charts

Charts

To include any of the custom charts from Browbeat in a scenario, the following lines will have to be included in the python file of the program.

import sys
import os
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), '../reports')))
from generate_scenario_duration_charts import ScenarioDurationChartsGenerator # noqa: E402

The custom charts will appear in the “Scenario Data” section of the Rally HTML report.

Chart - add_per_iteration_complete_data

This plugin generates a stacked area graph for duration trend for each atomic action in an iteration.
To include this chart in any scenario, add the following lines at the end of the run() function of the scenario in the python file.

self.duration_charts_generator = ScenarioDurationChartsGenerator()
self.duration_charts_generator.add_per_iteration_complete_data(self)

The graphs will appear under the “Per iteration” section of “Scenario Data” in the Rally HTML report.
The resulting graphs will look like the images below.

[image: Iteration 1 Chart]
[image: Iteration 2 Chart]
[image: Iteration 3 Chart]
[image: Iteration 4 Chart]

Chart - add_duplicate_atomic_actions_iteration_additive_data

This plugin generates line graphs for atomic actions that have been executed more than once in the same iteration.
To include this chart in any scenario, add the following lines at the end of the run() function of the scenario in the python file.

self.duration_charts_generator = ScenarioDurationChartsGenerator()
self.duration_charts_generator.add_duplicate_atomic_actions_iteration_additive_data(self)

The graphs will appear under the “Aggregated” section of “Scenario Data” in the Rally HTML report.
The resulting graphs will look like the images below.

[image: Duplicate Atomic Actions Duration Line Chart]

Chart - add_all_resources_additive_data

This plugin generates a line graph for duration data from each resource created by Rally.
To include this chart in any scenario, add the following lines at the end of the run() function of the scenario in the python file.

self.duration_charts_generator = ScenarioDurationChartsGenerator()
self.duration_charts_generator.add_all_resources_additive_data(self)

The graphs will appear under the “Aggregated” section of “Scenario Data” in the Rally HTML report.
The resulting graphs will look like the images below.

[image: Resource Atomic Actions Duration Line Chart]

 Developing against Quickstart

Developing against Quickstart

This document helps you with creating a Tripleo Virtual Cloud on your local machine to assist
with developing/testing Browbeat.

Why use Quickstart?

Tripleo-Quickstart enables us to have an entire tiny cloud to run Browbeat against. It gives
you a virtual Undercloud, virtual Overcloud Controller and Computes and other virtual nodes as
well. This allows you (with understood limitations) to run Browbeat, test commits, or develop
actively with new code without requring a full set of hardware or to run code through CI.

Limitations

Since everything is virtualized on your local hardware, any performance results are subject to the
limitations of your hardware as well as performance behaving with “noisy neighbors”. This is only
recommended for testing Browbeat and/or gaining familiarity with OpenStack Tripleo Clouds.

Hardware Requirements

Memory will most likely be your limitation:

	16GiB Memory+Swap

	Undercloud, 1 Controller

	32GiB Memory is recommended

	Undercloud, 1 Controller

	Undercloud, 1 Controller, 1 Compute

	Undercloud, 3 Controllers

4 physical cpu cores is recommended with at least 50GB of free disk space ideally on an SSD.

Localhost Preparation

Ensure that sshd is running on your localhost

[akrzos@bithead ~]$ sudo systemctl enable sshd
[akrzos@bithead ~]$ sudo systemctl start sshd

Map 127.0.0.2 to your local host

[akrzos@bithead ~]$ sudo cat /etc/hosts
127.0.0.1 localhost localhost.localdomain localhost4 localhost4.localdomain4 127.0.0.2
::1 localhost localhost.localdomain localhost6 localhost6.localdomain6

Create a Quickstart cloud

Download quickstart.sh

[akrzos@bithead ~]$ curl -O https://raw.githubusercontent.com/openstack/tripleo-quickstart/master/quickstart.sh

Install dependencies

[akrzos@bithead ~]$ bash quickstart.sh --install-deps

Create Configuration and Nodes YAML Files

For this usage of Tripleo-quickstart, there are two configuration files to build a cloud,
quickstart_config.yml and quickstart_nodes.yml configuration file. Quickstart_config.yml contains
some basic options you may configure for your under/over clouds including ssl, cached image urls,
enabling telemetry, and the networking setup. The nodes configuration file defines the
amount of resources for your virtual overcloud including node count, Three examples are included
here.

quickstart_config.yml

Allow unsupported distros to deploy QuickStart (Ex. Fedora 24)
supported_distro_check: false

Turn off Undercloud SSL
undercloud_generate_service_certificate: false

Turn off Overcloud SSL
ssl_overcloud: false

Turn off introspection
step_introspect: false

Version of OpenStack (Ex: newton, ocata, pike)
release: ocata

#overcloud_as_undercloud: false
#force_cached_images: true
#dlrn_hash: current-passed-ci

Use cached images when possible
#undercloud_image_url: http://walkabout.foobar.com/ci-images/ocata/current-passed-ci/undercloud.qcow2
#ipa_image_url: http://walkabout.foobar.com/ci-images/ocata/current-passed-ci/ironic-python-agent.tar
#overcloud_image_url: http://walkabout.foobar.com/ci-images/ocata/current-passed-ci/overcloud-full.tar

Tell tripleo how we want things done.
extra_args: >-
 --ntp-server pool.ntp.org

This config is extremely resource intensive, so we disable telemetry
in order to reduce the overall memory footprint
This is not required in newton
telemetry_args: >-
 {% if release != 'newton' %}
 -e {{ overcloud_templates_path }}/environments/disable-telemetry.yaml
 {% endif %}

network_isolation: true
network_isolation_type: 'single-nic-vlans'

Network setting on the virthost
external_network_cidr: 192.168.23.0/24
networks:
 - name: overcloud
 bridge: brovc
 address: "{{ undercloud_network_cidr|nthhost(2) }}"
 netmask: "{{ undercloud_network_cidr|ipaddr('netmask') }}"

 - name: external
 bridge: brext
 forward_mode: nat
 address: "{{ external_network_cidr|nthhost(1) }}"
 netmask: "{{ external_network_cidr|ipaddr('netmask') }}"
 dhcp_range:
 - "{{ external_network_cidr|nthhost(10) }}"
 - "{{ external_network_cidr|nthhost(50) }}"
 nat_port_range:
 - 1024
 - 65535

Below are the networking options you will most likely need to adjust for your local environment
some are dervived from other vars and do not need to be adjusted.
undercloud_external_network_cidr: 172.21.0.0/24
undercloud_networks:
 external:
 address: "{{ undercloud_external_network_cidr|nthhost(1) }}"
 netmask: "{{ undercloud_external_network_cidr|ipaddr('netmask') }}"
 address6: "{{ undercloud_external_network_cidr6|nthhost(1) }}"
 device_type: ovs
 type: OVSIntPort
 ovs_bridge: br-ctlplane
 ovs_options: '"tag=10"'
 tag: 10

network_environment_args:
 ControlPlaneSubnetCidr: "{{ undercloud_network_cidr|ipaddr('prefix') }}"
 ControlPlaneDefaultRoute: "{{ undercloud_network_cidr|nthhost(1) }}"
 EC2MetadataIp: "{{ undercloud_network_cidr|nthhost(1) }}"

 ExternalNetCidr: 172.21.0.0/24
 ExternalAllocationPools: [{"start": "172.21.0.10", "end": "172.21.0.100"}]
 ExternalInterfaceDefaultRoute: 172.21.0.1
 NeutronExternalNetworkBridge: "''"

 InternalApiNetCidr: 172.16.0.0/24
 InternalApiAllocationPools: [{"start": "172.16.0.10", "end": "172.16.0.200"}]

 StorageNetCidr: 172.18.0.0/24
 StorageAllocationPools: [{"start": "172.18.0.10", "end": "172.18.0.200"}]

 StorageMgmtNetCidr: 172.19.0.0/24
 StorageMgmtAllocationPools: [{"start": "172.19.0.10", "end": "172.19.0.200"}]

 TenantNetCidr: 172.17.0.0/24
 TenantAllocationPools: [{"start": "172.17.0.10", "end": "172.17.0.250"}]
 DnsServers: ['{{ external_network_cidr6|nthhost(1) }}']

quickstart_nodes.yml - 1 Controller

Undercloud Virtual Hardware
undercloud_memory: 8192
undercloud_vcpu: 2

Controller Virtual Hardware
control_memory: 6144
control_vcpu: 2

Define a single controller node
overcloud_nodes:
 - name: control_0
 flavor: control
 virtualbmc_port: 6230

node_count: 1

deployed_server_overcloud_roles:
 - name: Controller
 hosts: "$(sed -n 1,1p /etc/nodepool/sub_nodes)"

topology: >-
 --compute-scale 0

quickstart_nodes.yml - 1 Controller, 1 Compute

Undercloud Virtual Hardware
undercloud_memory: 8192
undercloud_vcpu: 2

Controller Virtual Hardware
control_memory: 6144
control_vcpu: 2

Compute Virtual Hardware
compute_memory: 4096
compute_vcpu: 1

overcloud_nodes:
 - name: control_0
 flavor: control
 virtualbmc_port: 6230
 - name: compute_0
 flavor: compute
 virtualbmc_port: 6231

node_count: 2

deployed_server_overcloud_roles:
 - name: Controller
 hosts: "$(sed -n 1,1p /etc/nodepool/sub_nodes)"

topology: >-
 --compute-scale 1
 --control-scale 1

quickstart_nodes.yml - 3 Controllers

Undercloud Virtual Hardware
undercloud_memory: 8192
undercloud_vcpu: 2

Controller Virtual Hardware
control_memory: 6144
control_vcpu: 1

Define a single controller node
overcloud_nodes:
 - name: control_0
 flavor: control
 virtualbmc_port: 6230
 - name: control_1
 flavor: control
 virtualbmc_port: 6231
 - name: control_2
 flavor: control
 virtualbmc_port: 6232

node_count: 3

deployed_server_overcloud_roles:
 - name: Controller
 hosts: "$(sed -n 1,1p /etc/nodepool/sub_nodes)"

topology: >-
 --compute-scale 0
 --control-scale 3

Run quickstart.sh playbooks

You can change version of OpenStack (Ex. newton, ocata, master) you need by editing the release
yaml parameter in quickstart_config.yaml (above).

time bash quickstart.sh -v -c quickstart_config.yml -N quickstart_nodes.yml -I -t all -p quickstart.yml -T all -X 127.0.0.2

time bash quickstart.sh -v -c quickstart_config.yml -N quickstart_nodes.yml -I -t all -p quickstart-extras-undercloud.yml -T none 127.0.0.2

time bash quickstart.sh -v -c quickstart_config.yml -N quickstart_nodes.yml -I -t all -p quickstart-extras-overcloud-prep.yml -T none 127.0.0.2

time bash quickstart.sh -v -c quickstart_config.yml -N quickstart_nodes.yml -I -t all -p quickstart-extras-overcloud.yml -T none 127.0.0.2

If all 4 playbooks completed without errors, you should have a local tripleo quickstart cloud. In
order to validate, I would recommend ssh-ing into the Undercloud and issuing various openstack cli
commands against the overcloud to verify the health of your quickstart-deployment.

Connecting to your Undercloud/Overcloud from your local machine

Create a vlan10 for external network access

[root@bithead network-scripts]# cat ifcfg-brovc.10
DEVICE=brovc.10
ONBOOT=yes
HOTPLUG=no
NM_CONTROLLED=no
VLAN=yes
IPADDR=172.21.0.2
NETMASK=255.255.255.0
BOOTPROTO=none
MTU=1500
[root@bithead network-scripts]# ifup brovc.10

You can now access the overcloud’s external/public api endpoints from your local machine and
install Browbeat for benchmarking against it.

Setup Browbeat against your Quickstart Cloud

After you have your Quickstart cloud up and the networking connectivity working, you will want
to run Browbeat against it so you can begin contributing. Simply run the script in the utils folder
to install Browbeat for usage on the new Tripleo Quickstart cloud.

[akrzos@bithead ~]$ git clone git@github.com:openstack/browbeat.git
Cloning into 'browbeat'...
Warning: Permanently added 'github.com,192.30.253.112' (RSA) to the list of known hosts.
remote: Counting objects: 8567, done.
remote: Compressing objects: 100% (28/28), done.
remote: Total 8567 (delta 19), reused 18 (delta 15), pack-reused 8523
Receiving objects: 100% (8567/8567), 5.52 MiB | 3.44 MiB/s, done.
Resolving deltas: 100% (4963/4963), done.
Checking connectivity... done.
[akrzos@bithead ~]$ cd browbeat/
[akrzos@bithead browbeat]$./utils/oooq-browbeat-install.sh
Installing Browbeat on localhost
...(Truncated)
~/code/browbeat-refactor/browbeat
[akrzos@bithead browbeat]$. .browbeat-venv/bin/activate
(.browbeat-venv) [akrzos@bithead browbeat]$./browbeat.py -s conf/quickstart.yml rally
2017-12-13 15:46:34,648 - browbeat.config - INFO - Config conf/quickstart.yml validated
2017-12-13 15:46:34,657 - browbeat.config - INFO - Workload quickstart-shaker-l2 validated as shaker
2017-12-13 15:46:34,665 - browbeat.config - INFO - Workload quickstart-rally validated as rally
2017-12-13 15:46:34,665 - browbeat - INFO - Browbeat test suite kicked off
2017-12-13 15:46:34,665 - browbeat - INFO - Browbeat UUID: 8e869626-a596-4ec7-b0b1-ac7f2bf915a7
2017-12-13 15:46:34,666 - browbeat - INFO - Running workload(s): rally
2017-12-13 15:46:34,666 - browbeat - INFO - shaker workload quickstart-shaker-l2 disabled via cli
2017-12-13 15:46:34,666 - browbeat - INFO - rally workload quickstart-rally is enabled
2017-12-13 15:46:34,666 - browbeat.rally - INFO - Running Rally workload: quickstart-rally
2017-12-13 15:46:34,666 - browbeat.rally - INFO - Running Scenario: authentic-keystone
2017-12-13 15:46:34,669 - browbeat.rally - INFO - Running with scenario_args: {'concurrency': 1, 'times': 1}
2017-12-13 15:47:08,665 - browbeat.rally - INFO - Generating Rally HTML for task_id : 399b90d9-5bc2-431c-b7c9-b7782fef2dde
2017-12-13 15:47:10,224 - browbeat.rally - INFO - Running Scenario: create-list-network
2017-12-13 15:47:10,226 - browbeat.rally - INFO - Running with scenario_args: {'concurrency': 1, 'times': 1}
2017-12-13 15:47:45,781 - browbeat.rally - INFO - Generating Rally HTML for task_id : 544b7cc4-b15c-4308-8f1b-158f06f1b002
2017-12-13 15:47:47,414 - browbeat.rally - INFO - Running Scenario: boot-list-cirros
2017-12-13 15:47:47,417 - browbeat.rally - INFO - Running with scenario_args: {'flavor_name': 'm1.xtiny', 'concurrency': 1, 'image_name': 'cirros', 'times': 1}
2017-12-13 15:53:42,181 - browbeat.rally - INFO - Generating Rally HTML for task_id : 52c348d4-edba-4a3e-bfd9-48ee97cd6613
2017-12-13 15:53:44,566 - browbeat.workloadbase - INFO - Total scenarios executed:3
2017-12-13 15:53:44,566 - browbeat.workloadbase - INFO - Total tests executed:3
2017-12-13 15:53:44,566 - browbeat.workloadbase - INFO - Total tests passed:3
2017-12-13 15:53:44,566 - browbeat.workloadbase - INFO - Total tests failed:0
2017-12-13 15:53:44,568 - browbeat - INFO - Saved browbeat result summary to /home/akrzos/code/browbeat-refactor/browbeat/results/20171213-154634.report
2017-12-13 15:53:44,568 - browbeat - INFO - Browbeat finished successfully, UUID: 8e869626-a596-4ec7-b0b1-ac7f2bf915a7
(.browbeat-venv) [akrzos@bithead browbeat]$ ls results/
20171213-154634 20171213-154634.report browbeat-Rally-run.log

Troubleshooting

View Undercloud and Overcloud Instance

[root@bithead ~]# sudo su - stack -c 'virsh list --all'
 Id Name State
--
 1 undercloud running
 3 compute_0 running
 4 control_0 running

Accessing Virtual Baremetal Nodes consoles

[root@bithead ~]# sudo su - stack -c 'virsh -c qemu:///session console undercloud'
Connected to domain undercloud
Escape character is ^]

Red Hat Enterprise Linux Server 7.3 (Maipo)
Kernel 3.10.0-514.26.2.el7.x86_64 on an x86_64

undercloud login:

Get to Undercloud via ssh

[akrzos@bithead ~]$ ssh -F ~/.quickstart/ssh.config.ansible undercloud
Warning: Permanently added '127.0.0.2' (ECDSA) to the list of known hosts.
Warning: Permanently added 'undercloud' (ECDSA) to the list of known hosts.
Last login: Tue Sep 19 13:25:33 2017 from gateway
[stack@undercloud ~]$

Get to Overcloud nodes via ssh

[akrzos@bithead ~]$ ssh -F ~/.quickstart/ssh.config.ansible overcloud-controller-0
Warning: Permanently added '127.0.0.2' (ECDSA) to the list of known hosts.
Warning: Permanently added 'undercloud' (ECDSA) to the list of known hosts.
Last login: Tue Sep 19 13:25:33 2017 from gateway
[heat-admin@overcloud-controller-0 ~]$

Other gotchas

Make sure your / partition does not fill up with cached images as they can take a large amount
of space

[root@bithead ~]# df -h /var/cache/tripleo-quickstart/
Filesystem Size Used Avail Use% Mounted on
/dev/mapper/fedora_dhcp23--196-root 50G 40G 6.9G 86% /
[root@bithead ~]# du -sh /var/cache/tripleo-quickstart/
5.4G /var/cache/tripleo-quickstart/

Further Documentation

Tripleo Quickstart docs [https://docs.openstack.org/tripleo-quickstart/latest/]

 Contributing

Contributing

Contributions are most welcome! You must first create a
Launchpad account and follow the instructions here [https://docs.openstack.org/infra/manual/developers.html#account-setup]
to get started as a new OpenStack contributor.

Once you’ve signed the contributor license agreement and read through
the above documentation, add your public SSH key under the ‘SSH Public Keys’
section of review.openstack.org [https://review.openstack.org/#/settings/].

You can view your public key using:

$ cat ~/.ssh/id_*.pub

Setup

Set your username and email for review.openstack.org:

$ git config --global user.email "example@example.com"
$ git config --global user.name "example"
$ git config --global --add gitreview.username "example"

Next, Clone the github repository:

$ git clone https://github.com/openstack/browbeat.git

You need to have git-review in order to be able to submit patches using
the gerrit code review system. You can install it using:

$ sudo yum install git-review

To set up your cloned repository to work with OpenStack Gerrit

$ git review -s

Making changes

It’s useful to create a branch to do your work, name it something
related to the change you’d like to introduce.

$ cd browbeat
$ git branch my_special_enhancement
$ git checkout !$

Now you can make your changes and then commit.

$ git add /path/to/files/changed
$ git commit

Use a descriptive commit title followed by an empty space.
You should type a small justification of what you are
changing and why.

Local testing

Before submitting code to Gerrit you should do at least some minimal local
testing, like running tox -e linters. This could be automated if you
activate pre-commit [https://pre-commit.com/] hooks:

pip install --user pre-commit
to enable automatic run on commit:
pre-commit install --install-hooks
to uninstall hooks
pre-commit uninstall

Please note that the pre-commit feature is available only on repositories that
do have .pre-commit-config.yaml [https://github.com/openstack/browbeat/blob/master/.pre-commit-config.yaml] file.

Running tox -e linters is recommended as it may include additional linting
commands than just pre-commit. So, if you run tox you don’t need to run
pre-commit manually.

Implementation of pre-commit is very fast and saves a lot of disk space
because internally it does cache any linter-version and reuses it between
repositories, as opposed to tox which uses environments unique to each
repository (usually more than one). Also by design pre-commit always pins
linters, making less like to break code because linter released new version.

Another reason why pre-commit is very fast is because it runs only
on modified files. You can force it to run on the entire repository via
pre-commit run -a command.

Upgrading linters is done via pre-commit autoupdate but this should be
done only as a separate change request.

Submit Changes

Now you’re ready to submit your changes for review:

$ git review

If you want to make another patchset from the same commit you can
use the amend feature after further modification and saving.

$ git add /path/to/files/changed
$ git commit --amend
$ git review

Changes to a review

If you want to submit a new patchset from a different location
(perhaps on a different machine or computer for example) you can
clone the Browbeat repo again (if it doesn’t already exist) and then
use git review against your unique Change-ID:

$ git review -d Change-Id

Change-Id is the change id number as seen in Gerrit and will be
generated after your first successful submission.

The above command downloads your patch onto a separate branch. You might
need to rebase your local branch with remote master before running it to
avoid merge conflicts when you resubmit the edited patch. To avoid this
go back to a “safe” commit using:

$ git reset --hard commit-number

Then,

$ git fetch origin

$ git rebase origin/master

Make the changes on the branch that was setup by using the git review -d
(the name of the branch is along the lines of
review/username/branch_name/patchsetnumber).

Add the files to git and commit your changes using,

$ git commit --amend

You can edit your commit message as well in the prompt shown upon
executing above command.

Finally, push the patch for review using,

$ git review

Adding functionality

If you are adding new functionality to Browbeat please add testing for that functionality in.

$ ci-scripts/install-and-check.sh

See the README.rst in the ci-scripts folder for more details on the structure of the script and how to add additional tests.

Contributing to stockpile

We currently use featureset001 [https://github.com/redhat-performance/stockpile/blob/master/config/featureset001.yml] of
stockpile [https://github.com/redhat-performance/stockpile]
to gather config. Please follow instructions [https://github.com/redhat-performance/stockpile#contributing]
to contribute to stockpile.

 Index

Index

 Browbeat as a CI tool

Browbeat as a CI tool

If you would like to make your own CI job add your bootstrapping script to
ci-scripts/<openstack installer> and Ansible/Python components into normal
locations in the repository. Try and provide as many defaults as possible so
that job definitions on the Jenkins end can remain small and easily defined.
this will help us keep script changes in the repository and better test them
before merging.

Browbeat as a Quickstart Extra

TripleO Quickstart [https://github.com/openstack/tripleo-quickstart] provides
an extensible interface to allow “Extras” to add to its core functionality
of generating an entirely virtual Openstack Deployment using TripleO. The focus
of this script is to deploy baremetal clouds in continuous integration (CI) for
effective and extensible automated benchmarking.

Invoking Locally

Please read The Extras Documentation [https://review.openstack.org/#/c/346733/22/doc/source/working-with-extras.rst]
for a general background on how TripleO Quickstart Extras operate. Please also
reference The Baremetal Environments Documentation [http://images.rdoproject.org/docs/baremetal/] if you need to configure your
job to run on baremetal.

Browbeat provides two playbooks for use with Quickstart
quickstart-browbeat.yml and
baremetal-virt-undercloud-tripleo-browbeat.yml the first playbook is for
deploying an entirely virtual setup on a single baremetal machine. The second
playbook creates a virtual undercloud on a undercloud host machine and deploys a
baremetal overcloud as configured by the users hardware environment.

Dependencies for this script (at least for Fedora 25) are

$ sudo dnf install ansible git python-virtualenv gcc redhat-rpm-config openssl-devel

To run virtual TripleO Quickstart CI set the following environmental vars and
run quickstart-virt.sh this will create a TripleO environment and run a short
Browbeat test. Since this is an all virtual setup, it is not suggested for
serious benchmarking.

export WORKSPACE={TripleO Quickstart Workspace}
export RELEASE={release}
export VIRTHOST={undercloud-fqdn}

pushd $WORKSPACE/browbeat/ci-scripts/tripleo

bash quickstart-virt.sh

To run the baremetal CI follow the requisite steps to setup a hardware
environment (this is nontrival) then create a workspace folder and clone
TripleO Quickstart and Browbeat into that workspace. Set the variables below
and then run microbrow.sh. There must be an all.yml file in the HW_ENV
directory for overriding some browbeat variables with ones specific to the CI
environment.

export WORKSPACE={TripleO Quickstart Workspace}
export HW_ENV={hw-env}
export RELEASE={release}
export GRAPH_HOST={Graphite + grafana host}
export GRAFANA_USER={username}
export GRAFANA_PASS={password}
export CLOUD_NAME={cloud-name}
export BENCHMARK={benchmark config file ex browbeat-basic.yaml.j2}
export ELASTIC_HOST={elastic host}
export VIRTHOST={undercloud-fqdn}
export GRAFANA_APIKEY={apikey}

pushd $WORKSPACE/browbeat/ci-scripts/tripleo

bash microbrow.sh

Configurable Options

By default a cloud will be setup and a very basic benchmark will be run and all
results will be placed only in the browbeat/results folder on the virtual
undercloud.

If configured to use Elasticsearch metadata and benchmarks results will be
inserted into Elasticsearch for easier visualization and storage. If Grafana is
enabled performance metrics will be gathered from all cloud nodes and stored
into the configured graphite instance to be processed by the Grafana dashboards
created using the given username and password.

If enabled these dashboards will be automatically overwritten after each run to
reflect the number of nodes in your cloud and other changes that may occur
between runs.

_images/Iteration2.png
Aggregated Per iteration

| Iteration 1 v |

Atomic actions duration data as stacked area

Iterations trend
Duration(in seconds)

@ neution create_netwiork % neutron create_subnet @ neutron.create_port & novaboot_server
8780

8000
6000
4,000

2000

Atomic action

_images/Iteration3.png
Aggregated Per iteration

[Iteration 2 v |

Atomic actions duration data as stacked area

Iterations trend
Duration(in seconds)

@ neution create_netwiork % neutron create_subnet @ neutron.create_port & novaboot_server
7363
7000

6000
5000
4000
3000
2000
1000

0.000
o

Atomic action

_images/Duplicate_Atomic_Actions_Duration_Line_Chart.png
Aggregated Per iteration

neutron.create_port additive duration data as line chart

Iterations trend

@neutron create_port(1) < netron.create_port(2)
0.885

0850

0800

0750 ><

0.700

0,663
1

Hteration sequence number

nova.boot_server additive duration data as line chart

Iterations trend

@novaboot_server(1) novaboot_server(2)
659 —

Hteration sequence number

_images/Iteration1.png
Aggregated Per iteration

| Iteration 0 v |

Atomic actions duration data as stacked area

Iterations trend

Duration(in seconds)

@ neution create_netwiork % neutron create_subnet @ neutron.create_port & novaboot_server
8207

6000

4,000

2000

Atomic action

_static/ajax-loader.gif

_images/Iteration4.png
Aggregated Per iteration

Iteration 3

Atomic actions duration data as stacked area

Ilterations trend
Duration(in seconds)

o @neutron.create_network neutron create_subnet @ neutron.create_port % nova.boot_server

6000

5000

4000

3000

2000

1000

0.000

o

Atomic action

_images/Resource_Atomic_Actions_Duration_Line_Chart.png
Resources atomic action duration line chart

Resources trend

Duration(in seconds)
@neutron.create_network neutron create_subnet @ neutron.create_port % nova.boot_server

6509
6000
5000
4000
300
2000

1,000}~

0.000
1

Resource count

_static/comment-bright.png

_static/comment-close.png

_static/comment.png

nav.xhtml

 Table of Contents

 		
 Welcome to Browbeat documentation

 		
 Introduction

 		
 Installation

 		
 Install Browbeat on Undercloud

 		
 Requirements

 		
 On the Undercloud

 		
 (Optional) Install Browbeat instance workloads

 		
 (Optional) Install Collectd

 		
 (Optional) Install Browbeat Grafana dashboards

 		
 (Optional) Install Browbeat Prometheus/Grafana/Collectd

 		
 (Optional) Install Browbeat Common Logging through filebeat

 		
 (Optional) Install Kibana Visualizations

 		
 Install Browbeat from your local machine (Not Manintained)

 		
 From your local machine

 		
 (Optional) Install collectd

 		
 (Optional) Install Browbeat Grafana dashboards

 		
 Install/Setup Browbeat Machine

 		
 Requirements

 		
 Preparing the Machine (CentOS 7)

 		
 (Optional) Install collectd

 		
 (Optional) Install Browbeat Grafana dashboards

 		
 Considerations for additional Browbeat Installs

 		
 Using Keystone Public Endpoint

 		
 Uploading Images to the overcloud

 		
 Additional Components Installation

 		
 Install Monitoring Host (Carbon/Graphite/Grafana)

 		
 Prerequisites

 		
 Installation

 		
 Usage

 		
 Run Browbeat performance tests from Undercloud

 		
 Running Shaker

 		
 Correlating test run with logs

 		
 Interpreting Browbeat Results

 		
 Working with Multiple Clouds

 		
 Compare software-metadata from two different runs

 		
 Compare performance of two different runs

 		
 Cleanup Rally resources

 		
 Cleanup sqlalchemy collectd configuration

 		
 Generate CSV file/Google Sheets from Rally json file

 		
 Plugins

 		
 Rally

 		
 Scenario - dynamic-workloads

 		
 Context - browbeat_delay

 		
 Context - browbeat_persist_network

 		
 Scenario - nova_boot_persist

 		
 Scenario - nova_boot_persist_with_volume

 		
 Scenario - nova_boot_persist_with_network

 		
 Scenario - nova_boot_persist_with_network_fip

 		
 Scenario - nova_boot_persist_with_network_volume

 		
 Scenario - nova_boot_persist_with_network_volume_fip

 		
 Charts

 		
 Chart - add_per_iteration_complete_data

 		
 Chart - add_duplicate_atomic_actions_iteration_additive_data

 		
 Chart - add_all_resources_additive_data

 		
 Developing against Quickstart

 		
 Why use Quickstart?

 		
 Limitations

 		
 Hardware Requirements

 		
 Localhost Preparation

 		
 Create a Quickstart cloud

 		
 Download quickstart.sh

 		
 Install dependencies

 		
 Create Configuration and Nodes YAML Files

 		
 Connecting to your Undercloud/Overcloud from your local machine

 		
 Setup Browbeat against your Quickstart Cloud

 		
 Troubleshooting

 		
 View Undercloud and Overcloud Instance

 		
 Accessing Virtual Baremetal Nodes consoles

 		
 Get to Under