
Briz Documentation
Release 0.36.0

Briz

September 27, 2017





Contents

1 Rapid to Develop and Quick to run 3

2 Features 5
2.1 Easy to Add Dependancies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Introducing new Routing System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Identity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.4 PSR-7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.5 Basic Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

i



ii



Briz Documentation, Release 0.36.0

Briz is an easy to use PHP framework designed to write powerful web applications ranging from simple api to large
web applications.

Contents 1



Briz Documentation, Release 0.36.0

2 Contents



CHAPTER 1

Rapid to Develop and Quick to run

It is faster than many micro frameworks out there. Even if you use most features like route inheritance, identity,
controllers and views (as in Briz loaded in the chart) it will still be faster than many popular micro frameworks.
so dont worry about speed.

Fork Briz on GitHub

3

https://github.com/brizphp/briz


Briz Documentation, Release 0.36.0

4 Chapter 1. Rapid to Develop and Quick to run



CHAPTER 2

Features

Briz has a good set of features to help you.

Easy to Add Dependancies

Briz uses dependancy injection. It is not that strict. so adding dependancies is very easy.

Introducing new Routing System

Briz comes with a new Routing system. it helps in easily extending and seperating your web application. Route
inheritance helps you to specify a route extends another route. this works just as in a programming language.

Identity

Identity is about identifying a route from one another. this feature can also be used in other parts using a trait.

PSR-7

Briz supports PSR-7. You can work interoperably with any Psr-7 message implementations.

view Briz Hello world for basic hello world examples or view Quick Start for more details.

Basic Usage

require './vendor/autoload.php';
$app = new Briz\App();
$app->route("web", function($router){

$router->get('/',function($b){
$b->response->write('hello world');

}
$router->get('/{name}',function($b){

$data = 'hello'.$b->args['name'];
$b->response->write($data);

5



Briz Documentation, Release 0.36.0

});
});
$app->run();

Contents:

Briz Hello world

Since Briz is a super flexible framework. you have many ways to write a hello world program.

install

You need composer to install Briz.

$ composer create-project briz/briz helloworld

this command creates briz inside the directory helloworld.

Basic Hello world

This version uses echo instead of PSR-7 response object. edit index.php in www directory.

<?php
//autoload the required files
require './vendor/autoload.php';

// create a new application instance
$app = new Briz\App();

//create a router with the name web
$app->route("web", function($router){

//a route for GET requests to '/'

$router->get('/',function($b){
echo "Hello World";

});
});

//run the application
$app->run();

PSR-7 Hello World

this version uses built in PSR-7 response object. edit index.php in www directory.

<?php
//autoload the required files
require './vendor/autoload.php';

// create a new application instance
$app = new Briz\App();

//create a router with the name web

6 Chapter 2. Features



Briz Documentation, Release 0.36.0

$app->route("web", function($router){

//a route for GET requests to '/'

$router->get('/',function($b){
$b->response->write("hello world");

});
});

$app->run();

Hello World with Renderer

this version uses renderer so that we can use view. edit index.php in www directory. some framework features
requires usage of renderer to work.

<?php
//autoload the required files
require './vendor/autoload.php';

// create a new application instance
$app = new Briz\App();

//create a router with the name gen
$app->route("gen", function($router){

//a route for GET requests to '/'

$router->get('/',function($b){
$b->renderer('hello');

});
});

$app->run();

now create a directory gen (router name) inside MyApp/views and create a file hello.view.php in it with any
content like this one,

hello world

HelloWorld with controller

<?php
//autoload the required files
require './vendor/autoload.php';

// create a new application instance
$app = new Briz\App();

//create a router with the name gen
$app->route("gen", function($router){

//a route for GET requests to '/'
$router->get('/','HelloController@sayHello');

});

2.5. Basic Usage 7



Briz Documentation, Release 0.36.0

$app->run();

now create a file (controller) HelloController.php in MyApp/Controllers directory.

<?php
namespace MyApp\Controllers;

use Briz\Concrete\BController;
class HelloController extends BController
{

public function sayHello()
{

$this->response->write("hello world");
}

}

more

usage of Briz framework for creating a web app and simple mobile api at the same time is explained in Quick Start

Quick Start

Let’s create a simple two page website and a mobile application API for the website. this is very simple when using
Briz.

Installation

You can install Briz using composer which is the recommended way.

$ composer create-project briz/briz quickstart

replace the quickstart with the path to the directory you want to install. this will install all depandancies and make it
ready to run.

if you like the other way you can use git-repository . clone it or use download zip option. then run the following
command after navigating to the target directory (after extracting th zip if you did it in that way),

$ composer install

Running

You can easily run Briz navigating to www direcory and run the php Development Server. assuming the code is at the
directory quickstart, if you prefer other servers such as apache don’t frogetpoint it to www

$ cd quickstart/www
$ php -S localhost:8000

now navigate to http://localhost:8000 using your favourite browser. you can see the Briz web page running.

Code

now use your favourite editor to open www/index.php. the default code in this file will be enough, since we are
using the same code for this quickstart. let me explain,

8 Chapter 2. Features

https://github.com/brizphp/briz


Briz Documentation, Release 0.36.0

web

<?php
require '../vendor/autoload.php';
$app = new Briz\App();

$app->route("web", function($router){
$router->get('/',function($briz){

$data = 'hello';
$briz->renderer('hello',['title'=>'Welcome to Briz Framework',

'content'=>'Thanks for using Briz Framework. You can Learn More at Our Documentaion Page ',
'link'=>'http://briz.readthedocs.org/en/latest/'

]);
});

});

$app->run();

this code will create a new Briz app and stores a reference to it in the $app variable. $app->route() function
accepts four arguments but only two is required. first argument is route name it is gven as “web”. the second argument
is a callbak function. to which accepts we pass $router. now we can use $router to generate actual routes.

$router->get() function is used to create a Route with HTTP GET method. the first argument / indicates that
it will match with the url http://localhost:8000. you can find more on Route Patterns section. the second
parameter is a function which accepts a bridge $briz. $briz->renderer() is a function to render using a renderer
which determine which view class should be used for loading. the first argument is hello. which is the route file it
will be stored as hello.view.php under MyApp/views/web. keep thid file as it is.

mobile

Now you can create a mobile API for the above website with very few lines of code. The router web in above code
contains only one route. even if it contains hundreds of routes we can create mobile part without much difficulty as
long as you stick with renderer for rendering. now add the following code before $app->run(); . what we do
here is making the route mobile as a child of route web. so it will inherit the properties of it’s parent. and set an
Identity header to it for constrining access. and set the renderer to render results as Json.

$app->route('mobile',function($router){

// Identify using header identity.
// if a header With X-Request-Cli with value android encountered then it will use this router
$router->identify('header','X-Request-Cli','mobile');

//now the responses will be rendererd as json
$router->setRenderer('JsonView');

},'web');

Thats it. our website will render pages as json when acccessed with mobile. $router->identify() is used
to provide an identity for the route. so, this will run only if certain conditions are satisfied. here we use a header
identity which will match if there is a header with X-Request-Cli with the value mobile. then we set a render to
JsonView. which means renderer will output everything as json. the last parameter web is the parent name. now we
have to run it. for that lets make an html page mobile.html to mock mobile by sending the required header.

<html>
<body>
<script>
var request = new XMLHttpRequest();

2.5. Basic Usage 9

http://php.net/manual/en/language.types.callable.php


Briz Documentation, Release 0.36.0

var path = "http://localhost:8000";
request.onreadystatechange = function(){
if(request.readyState == 4 && request.status == 200)
{

document.getElementById('yt').innerHTML = request.responseText;
}
};
request.open("GET",path,true);
request.setRequestHeader("X-Request-Cli","mobile");
request.send();

</script>
<p id ="yt">loading...</p>
</body>

This html code is just for sending the required request. i am not explaining it. it sends a request to localhost:8000
including header X-Request-Cli with value mobile. open this page in browser to see the result yourself. this is
a json response our mobile device have to decode it and render it using mobile ui.

Note: if mobile.html is not loading then it is due to Cross Origin policy in php development server. in that case
add cors support or move mobile.html to www directory and access it using localhost:8000/mobile.html

now your website is ready for both mobile and web. if accessed directly in browser it will provide text rich result. but
when accessed using mobile.html it will send response as JSON.

If you want you can create an Identity for a checking domain or sub domain and use it instead of header identity. multi
platform is not only the use of identity. you can create an identity for checking user roles and then create different
routers for different users. this will create a perfect seperation between users. and there are many other uses. visit
Identity to learn how to create an identity

Basics

Routing

in modern web frameworks all requests will be handled by a router. in our case there are two files in www
folder 1 is an .htaccess file and other is an index.php file all requests to this web server will come to the ac-
cess point index.php since it is the only web accessable part. so without .htaccess file our typcal request will
be localhost:8000/index.php/hello but our .htaccess file passess all requests to index.php if there is
no file extension such as .php .js etc. so we will have to use only localhost:8000/hello instead of
localhost:8000/index.php/hello.

well, that is not the routing we are talking about. routing is done by router component. it generates appropriate
responses based on the request for this it uses the url after localhost:8000 here it is /hello. so if create a route
for /hello it defines what should we do when our request reaches localhost:800/hello.

you can find more about routing at Routing page.

controller

controllers controlls the route. it is the main component of the system. when a request is recived by index.php it
is passed to the router. router finds an appropriate controller to do actions related to the path in the url. and then
this controller decides what to do. in Briz you can pass set a controller in two ways. as a callback function or as a
Controller class. the

10 Chapter 2. Features



Briz Documentation, Release 0.36.0

//Using Controller as a callback
$router->get('/{name}',function($briz){

$briz->render('hello',['name' => 'briz->']);
});

//Using Controller as a class
$router->get('/profile/{name}','ProfileController@show');

‘’

when using a controller as a callback you are using can use passed $briz to handle rendering. then when using
controller as a class it should be stored in the controller namespace. by default it is at MyApp\controllers so you
should store it there. the ProfileController@show shows that we should use the public method show in the
controller class named ProfileController

we have another options of using to directly define route in $app->route() that will be explained in Routing
section. more on controllers can be found at Controllers page.

Views

Views are all about how the data is sent to the user. in a typical MVC workflow the application logic is seperated
from view. we pass the output generated from controller to the view. The renderer is responsible for rendering the
view. view_engines or renderers decide how to process the input. the default view_engines consists of components
like ParsedView and JsonView for rendering html and JSON respectively.

Routing

The basics of Routing in Briz is explaind at Routing section in Basics you can have a look at it.

Basic Routing

The App::route() will create a new router with the name specified. we can use this router to create routes.

lets discuss about basic routing,

$app = new Briz\App();
$app->route("web", function($router){

//code
$router->get('/','IndexController@show');

});

that will create a router with the name web. inside it you can specify routes. here
$router->get(’/’,’IndexController@show’); is such a route

the second argument to the above method can be an anonymous function or a controller. if a controller is used the
above code will change to

$app = new Briz\App();
$app->route("web", "SomeController");

where SomeController is the controller name . if so routes will be generated from the controller. see Controller
Routing below. but i think the anonymous function version is better because it provides more flexibility. that was my
personal opinion. you can use anything you like.

2.5. Basic Usage 11



Briz Documentation, Release 0.36.0

GET Route

The code shown above $router->get() is a get route.

$router->get('/details','IndexController@show');

This defines a GET route to the Controller IndexController and the method show in it. if this route matches
to our url then it will execute the method show in IndexController. if no method name is specified it will use
index method by default.

if you are using a callback function instead of a controller you can use.

$router->get('/details',function($b){
$b->renderer('index',['title'=>'home']);

}

POST Route

$router->post('/','IndexController@create');

you can use POST routes when you have want to match a route with http POST method. see getParsedBody in Request
for how to retrive post body.

PUT, DELETE, OPTIONS and PATCH

You can also create routes for PUT DELETE, OPTIONS and PATCH. but some of these routes may not be supported
by most of the browsers. so you will need an adapter to convert browser requests to these HTTP methods from a
dummy method such as post. see Faking request method.

//example of a put route

$router->put('/','IndexController@edit');

//example of a delete route

$router->delete('/','IndexController@delete');

//example of options route

$router->options('/','IndexController@show');

//example of patch route

$router->patch('/','IndexController');

ANY

If you want a route to match all the HTTP methods specified above. then you can use any method.

$router->any('/help','HelpController');

this will match any methods specified above. it will route to index method of HelpController

12 Chapter 2. Features



Briz Documentation, Release 0.36.0

Matching more than one method using set

You can also match multiple Http methods with set

$router->set(['GET','POST'],'/help','HelpController');

the first parameter is an array specifying http methods. in the code above GET and POST methods are specified.

Controller Routing

It is possible to pass router directly to a controller. I am assuming you read Controllers before reading this resource.

when a router is directly passed to a Controller. the controller will have to generate routes. for this we use Docblock.
Here @Route is used to specify a route

<?php
namespace MyApp\Controllers;

use Briz\Concrete\BController;

class AdminController extends BController
{

/**
* @Route [get]

*/
public function index()
{

$this->response->write('Administration Panel');
}

/**
*
* @Use app

* @Route [get,post]

*/
public function details($app,$n)
{

$this->renderer('details',[]);
}

}

here the comma seperated values in @Route inside [] in the doc block is used as HTTP methods to resolve routes.
these routes are resolved as /admin since the first method name is index and /admin/details/{name} . the
first part is the name of the controller before Controller in lower case. here it is admin. the second part is the
name of the method. and last part is parameters passed to it. if there are n number of @Use anotation then first n
parameters will be discarded. here it discards the $app in details this way

Route Inheritance

The first parameter passed to $app->route() is route name. the second parameter is controller and the third
parameter is parent. the parent should be name of another router.

a child route will have all the properties of its parent. including routes and identities. as stated in Quick Start the main
advatage of this is to extend current route.

if a child route matches then its parent will be ignored.

2.5. Basic Usage 13



Briz Documentation, Release 0.36.0

Route Patterns

//static route matches only /hello
$route->get('/hello','handler');

//dynamic route matches with hello/*
$route->get('/hello/{name}','handler');

// Matches /user/42, but not /user/xyz
$r->get('/user/{id:\d+}', 'handler');

// Matches /user/foobar, but not /user/foo/bar
$r->get('/user/{name}', 'handler');

// Matches /user/foo/bar as well
$r->get('/user/{name:.+}', 'handler');

// This route
$r->get('/user/{id:\d+}[/{name}]', 'handler');
// Is equivalent to these two routes
$r->get('/user/{id:\d+}', 'handler');
$r->get('/user/{id:\d+}/{name}', 'handler');

// This route is NOT valid, because optional parts can only occur at the end
$r->get('/user[/{id:\d+}]/{name}', 'handler');

Controllers

controllers are a great way to keep code clean. From here onwards only controller class(not closure) will be treated
as controllers and closure controllers will be specifically called closure controllers( see Basics ). controllers helps to
increase reusability of code. and it helps to group code better based on functionality

Basics

You must specify a controller directly from router or pass router to controller.

to specify a controller from router

$app = new App();
$app->route('name',function($r){

$r->get('/','IndexController');
$r->get('/contact','IndexController@contact');

},'parent',$args);

IndexController@contact means the contact method at IndexController

here a router instance is passed to $r and using $r->get() we set route / to IndexController since no
method is specified it will use the default index method. next we set /contact to contact method of
IndexController. @ is the spererator to identify controller from action (action is another name commonly used
for methods inside a controller)

Or we pass the controller to router.

$app = new App();
$app->route('admin','AdminController');

14 Chapter 2. Features



Briz Documentation, Release 0.36.0

here we passed the router to AdminController . more about controller routing is available at Controller Routing
section.

Creating a controller

a controller must be inside controller namespace which is by default MyApp\Controllers if you look at
MyApp/Controllers directory you can see a file ErrorsController Dont delete that file. it is your re-
sponsibility to care that file. you can edit it in the way you want but dont delete it.

back to creating controller. the controller should extend Briz\Concrete\BController. if you dont do so
nothing is wrong. it will still work. but you will not get access to some helper methods such as renderer() and
show404()

basic structure of a controller is as follows

namespace MyApp\Controllers;

use Briz\Concrete\BController;

class IndexController extends BController
{

/**
* Index Page

*/
public function index()
{

$this->renderer('index',['param'=>'value']);
}

/**
* Contact page.

*
* @Use app

*/
public function contact($app)
{

$data = $app;
$this->renderer('index',['name'=>$app]);

}
}

this is our IndexController with the routes we defined above in Basics . index method will match with the route
/ and contact method will match with the route /contact if used with the routes defined above. if you want to know
what is the @Use in the docblock above the function contact, read the section below.

Dependancy Injection and Passing Values

Dependancies are the components used by the Briz. In Briz adding a dependancy is very easy. dependancies are added
using the config files in config directory. there is a container for storing all the dependancies. every value stored in this
container can be accessed

consider there are two routes /profile and /profile/{name} for get method (see Route Patterns). which will
point to the methods index and showProfile in the controller ProfileController

namespace MyApp\Controllers;

use Briz\Concrete\BController;

2.5. Basic Usage 15



Briz Documentation, Release 0.36.0

/**
* Profile controller

*
* @Use auth

*/
class ProfileController extends BController
{

/**
* Index Page

*
* @Use membership

*/
public function index($mem)
{

$min = $mem->type();
$name = $this->auth->getname();
$this->renderer('profile',['name'=>$name,'mem'=>$min]);

}

/**
* show profile.

*
* @Use app_name

*/
public function showProfile($app,$name)
{

$data = $app;
$this->renderer('index',['name'=>$app,'user'=>$name]);

}
}

we can pass dependancies using @Use in docblock. it specifies which components should be loaded from container.
by default you will have request and response dependancies injected. you can pass more using @Use. here we use
two imaginary components auth and membership. if we want a dependancy available everywhere in the class the
@Use can be used above the class as in the example above. in that case it will be in the form $component where
component is the key for the value stored in the container use it as $this->component inside a method. when the
dependancy is only needed inside a method we can pass it using @Use above the method. in that case it will be passed
to the arguments in the function. if there are two injections then it will be passed to first two function parameters in
order. this is done by the internal ControllerResolver which resolves the controller for router.

the showProfile method has one parameter from @Use and one from /profile/{name} the parameter from
route will be stored to $name in that method. which means the @Use parameters will be resolved before route
parameters

there is no limit on what should be stored in container. here app_name is a string storing the application name. you
can edit it inside config/application.php.

Note: if you dont want to use or don’t like using @Use annotation to get values. you can simply use something like
$mem = $this->container->get(’membership’) inside the method. the container holds reference
to all dependancies. you can access it using $this->container->get(’key’) method. more about this at
Container Reference.

16 Chapter 2. Features



Briz Documentation, Release 0.36.0

Available Methods

The Following Methods are Available from BController class. if you create a new Response object then there must
a return statement with that Response or set $this->response to that object.

show404

displaying 404 page. you can edit its default look inside ErrorsController

show404()
Show a 404 response message

Returns Psr\Http\Message\ResponseInterface with 404 Page

usage

public function show($name)
{

if($this->notFound($name)
{

return $this->show404();
}

}

redirect

redirect($url, $code=302)
redirect to a given url

Parameters

• $url (string) – Url to redirect

• $code (int) – code to redirect.

Returns Psr\Http\Message\ResponseInterface with redirect

usage

public function show($name,$redirectUrl)
{

if($this->isAuthorized)
{

return $this->redirect($redirectUrl);
}

}

renderer

use ther selected renderer to process the input to generate response

renderer()
minimum number of arguments is two. but can have more than that based on number of responses.

Parameters

• $name (string) – Name of the rendering

2.5. Basic Usage 17



Briz Documentation, Release 0.36.0

• $params (array|object) – Array or object containing data in ’key’ => ’value’ for-
mat

Returns Psr\Http\Message\ResponseInterface with processed output

Basic usage

public function show($name,$redirectUrl)
{

$params = $arrayOrObject;
$this->renderer('hello',$params);

}

View

views are the rendering part of Briz. it sets outout for sending response. renderer constructs response from views.
where the viewfiles are stored depends upon the viewEngine and views class used. the default view engine uses the
configration from config/view.php to store the file. the default location is MyApp/views. the default view engine
requires you to store it in a directory with the same name as the router.

By default only the class ParsedView will use the view file configuration for view directory. it requies you to store
files with a .view.php file extension. You can use other view engines like twig if you want.

ParsedView

ParsedView is a class which uses view directory. it checks if the view file exists and parses array or object to
variables to the file. it then stores it’s output to response.

if we call renderer like

$b->renderer('hello',['name'=>'haseeb','greet'=>'hello']);

if the name of the router is web. it will check inside views/web for the file hello.view.php and converts the
array to variables. so, we can use it in view file like $greet and $name. if our view file contains,

<?php
echo "$greet $name";
?>

it will output

hello haseeb

JsonView

the JsonView will generate output in JSON format and sets a Json content-type header. this will not use any files.

DirectView

This view is not of much use. it will just write to response evrything thrown at it. it expects an array to be single
dimentional.

18 Chapter 2. Features



Briz Documentation, Release 0.36.0

View Configuration

the view configurations should be stored inside config\view.php

If you open this file you can find what are the values stored init.

Identity

Identity is a global way for checking several conditions are satisfied. an identity will be given access to the Container.
using this container an Identity can check for some conditions are satisfied or it can add values to the container.

for example, the default Identity included with Briz header identity checks if a header with a specific value
exists in the request. for doing this it accesses request from container and checks request headers.

An identity should extend Briz\Base\Identity. and it must have a method identify() which will contain
the logic. the container will be available as $this->container inside an identity. have a look at Container
Reference for more details about container

Creating an identity

for example lets create a simple identity for checking port number

create a directory Identities under MyApp and create a file PortIdentity.php

<?php
namespace MyApp\Identities;

use Briz\Base\Identity;

/**
* Identity for checking port values.

*/
class PortIdentity extends Identity
{

/**
* Check for port.

*
* @param int $port

* @return bool

*/
public function identify($port, $v='')
{

$request = $this->container->get('request');
if($request->getUri()->getPort() == $port){

return true;
}
return false;

}
}

This code checks if a specific port $port is matched with the port number in the request.$v is initialized with blank
value because IdentityInterface for identities requires two parameters for method identify().

at first, we need to register the identity. for this edit config\identities.php and add a key port and set its
value to our class name with namespace. Then this file will look like,

2.5. Basic Usage 19



Briz Documentation, Release 0.36.0

<?php
return [

'header' => 'Briz\Beam\HeaderIdentity',
'port' => 'MyApp\Identities\PortIdentity'

];

next in your Quick Start file (or the default www/index.php when briz is installed ). edit the line for checking
identity.

//$router->identify('header','X-Request-Cli','mobile');

$router->identify('port',8080,'');

just like above we had to pass a blank third parameter inside $router->identify(). now use PHP Development
Server to go to localhost:8000 by

$ php -S localhost:8000

and then after exiting, goto localhost:8080 by typing

$ php -S localhost:8080

check both and see the difference yourself. Now you have created your first Identity.

Using Identities outsite Route

you can also use identities outside the Route. for that, you have to use IdentityTrait. As traits provide automated
copy paste in php. we can use IdentityTrait to add some methods and variables for accessing Identity to
your Controller.

adding the trait.

class IdentityController
{

use \Briz\Beam\IdentityTrait;

public function idcheck()
{

//code goes here.
}

}

the use \Briz\Beam\IdentityTrait; will add the identity management trait for your controller.

now, you have the following methods and two protected arrays $identifies, the list of identites registered
with the class and $idt_keyIndex, the key index

addIdentity

add a new identity.

this function can accept any number of arguments. you need to pass minimum two arguments.

addIdentity(string $name, mixed $value)

Parameters

• $name (string) – The name of the identity in container

20 Chapter 2. Features



Briz Documentation, Release 0.36.0

• $value (mixed) – value to be identified

Throws BadMethodCallException , InvalidArgumentException

removeIdentity()

Remove an added Identity.

removeIdentity(string $name, mixed $key)

Parameters

• $name (string) – The name of the identity in container

• $value (mixed) – second argumet passed when AddIdentity was called.

removeAllIdentity()

if a name is specified it will only remove all identities under that name

removeAllIdentity(string|null $name = null)

Parameters

• $name (string|null) – optional name.

identifyAll()

check if all added identities matches.

identifyAll()

Returns boolean

identifyByName()

identifies everything under a name if no key is specified otherwise check for identity matched by key.

identifyByName(string $name, mixed|null $key = null)

Parameters

• $name (string|null) – name of the identity.

• $key (mixed|null) – second parameter when added Identity

Returns boolean

Providers

Providers are the components used by a Briz application. if a provider is added to the system container it will be avail-
able everywhere in the application. in Briz Request and Response components are providers.since they should
be available everywhere in the system they are added to the system container using config\providers.php
file. everything in this file will be available inside container. the logger in this file is an external component called
monolog

With Briz you can easily add providers. Briz is designed for easily adding any components into the system. i call it as
“just use it strategy”. so you can use many external components easily.

2.5. Basic Usage 21



Briz Documentation, Release 0.36.0

Creating a Provider

Since there is no default model in Briz, I decided to add it first. it is the M in any MVC framework (Model View
Controller). models are classes which should work with data. mainly they are used for communicating with database.
since we dont have it by default, it is just VC. so to make it MVC we are adding a model.

there are two types of models which are widely used

1. Active Record.

2. Data mapper.

php-active-record and Eloquent are examples of active record type models. spot-2 and doctrine are examples of data
mapper approch.

Both are good and have thier own advantages and disadvantages. you have to find it yourself. here i am going to add
php active record as a provider in example.

Example

Here we are going to add php active record as a provider. so that we will have an active record model implementation
ready to use. first find details about php active record from Php active record website . there is a quick start guide in
that website. i am using the same connection code in that page bellow. but with few changes to pass arguments.

create a directory Providers inside MyApp. where we will store all our providrs. and create an file PhpAR.php
in it.

<?php
namespace MyApp\Providers;

use Activerecord;

class PhpAR
{

/**
* @param string $root root directory

* @param string $app user directory name

*/
public static function register($root,$app)
{

$cfg = ActiveRecord\Config::instance();
$cfg->set_model_directory($root.'/'.$app.'/Models');
$cfg->set_connections(

array(
'development' => 'mysql://dev:dev@localhost/bridge',
'test' => 'mysql://username:password@localhost/test_database_name',
'production' => 'mysql://username:password@localhost/production_database_name'

)
);
$cfg->set_default_connection('development');

}
}

here we created a class PhpAR and a static method register in it. next we have to find what values from con-
tainer are needed by this provider. here we will need to pass the location of the model directory. we have to store
this value in MyApp/Models. currently MyApp directory is at /home/projects/briz so i will have to use
/home/projects/briz/MyApp/Models as path to models. to get this path we have to pass root_dir and
app from container. so we defined two parameters $root and $app for this function. the rest of the code is copy

22 Chapter 2. Features

http://www.phpactiverecord.org


Briz Documentation, Release 0.36.0

paste from the quick start at phpactiverecord website. you have to edit user name and password. visit phpactiverecord
website for more details

for this we need to have php active record library available in our application. for this we can use composer.

$ composer require php-activerecord/php-activerecord

Now registering the provider, if you want to register this provider globally. you can use config/providers.php
file. it will return an array containing providers to application initialization code which will add this to container. there
is a format for adding content to this array.

NameSpace\Class@StaticMethod@argument@argument2

So, for our provider we will have to add "MyApp\Providers\PhpAR@register@root_dir@app" to this
array. here MyApp\Providers\PhpAR is the class with namespace. and register is the static method and
root_dir and app are parameters from container passed to this provider.

if you want it only available to a single controller. you can just load it inside that controller by passing arguments from
container.

Container Reference

this section describes about how to use container and what data are available for you by default.

Using Container

to add data to container use:

$this->container['key'] = 'value'

to get data from container you have two ways:

// access directly
$value = $this->container['key'];

//this method has an advantage of interoperability. so it is recommended.
$value = $this->container->get('key');

to check if a key exists in a container:

if($this->container->has('key')){
//do something

}

Default data

the default data available in container are the following,

Keys set by Briz\App.php

key Details
framework an instance of Briz\App
root_dir the root directory
inherit an object containing details about parent and child relationship
container a reference to container itself.

2.5. Basic Usage 23



Briz Documentation, Release 0.36.0

Keys set by config/application.php

Key Details
app Application namespace
app_name Application name
controller_namespace Controller Namespace
log_dir Directory for logging errors
display_errors if sets to true it will display errors ONLY IF application error_reporting is set
output_chunk_size output chunk size when sending response.
fake_method The request faking string.

Keys set by config/collections.php

key Details
routes a collection containing all routes.
route_collector holds refernce to individual routes for each router.
id holds reference to all idenities registered.

Keys set by config/view.php

key Details
view_engine view engine namespace.
default_view_class default renderer class for view.
view_dir path to the directory where view details are stored.

Keys set by config/providers.php

key Details
server Server parameters in $_SERVER stored as a collection.
router The route collection.
request PSR-7 Request implementation by Briz.
response PSR-7 Response implementation by Briz.
logger helper for logging.
FakeMethod It will change the method of an request based on a head (see fakingrequestmethod)

Collections

A collection is a wrapper around an array. basic and most common operations on an array are implemented as
methods in a collection. in Briz collections uses Briz\Base\Collection class.

Adding an empty collection to Container

If you want an empty collection available throughout the application from start. then you can add it to the con-
tainer using config/collections.php file. you can add a collection in this file by adding "name" =>
"init_collection" to the array.

24 Chapter 2. Features



Briz Documentation, Release 0.36.0

adding non empty collection to container

To add a non empty container which should be available throughout the application you have to use it as a provider
(see Providers section)

constructing

you can create a new collection by

use Briz\Base\Collection;

$collection = new Collection();

Creating from an array

You can create a collection from an array by passing it to the constructor.

use Briz\Base\Collection;

$array = [ 'name' => 'value','foo' => 'bar'];

$collection = new Collection($array);

Adding/replacing

set

we can add content to a collection by using set method. if a key already exists it will get replaced by new value.

Usage:

$collection->set('key','value');

replace

The replace($array) method will replace the collection with the elements of new array.

Usage:

$array = ['a'=>'b','c'=>'d'];

$collection->replace($array);

merge

To merge values an array with existing collection you can use merge($array) method.

Usage:

2.5. Basic Usage 25



Briz Documentation, Release 0.36.0

$array = ['a'=>'b','c'=>'d'];

$collection->merge($array);

//to merge two collections
$newCollection = new Collection(['key'=>'value','foo'=>'bb','bar'=>'h']);
$newCollection->merge($collection->all());

Get values

get

get($key, $default) method is used to get a value from a collection. $default is the value which we will
use if there is no value available. if we don’t set the $default the collection will return null if key doesn’t exist.

Usage:

//If key not found it will return an empty array otherwise return the value
$value = $collection->get('key',[]);

//it will return null if key is not in collection. otherwise will return the value.
$value = $collection->get('key');

all

The all() method will return all key value pairs stored in the collection as an array.

Usage:

$value = $collection->all();

Remove Items

remove

To remove a single item you can use remove($key).

Usage:

$collection->remove('key');

clear

clear() will remove all items from the collection. then the collection will be an empty collection.

Usage:

$collection->clear();

26 Chapter 2. Features



Briz Documentation, Release 0.36.0

Checking

has

The has($key) method is used to check if a key exists in the collection.

Usage:

if($collection->has('key'))
{

//do something
}

isempty

check if a collection is empty with isempty()

Usage:

if($collection->isempty())
{

//do something
}

count

get the number of items in a array

Usage:

$count = $collection->count();

Operations

Each

The each($callback) method will return the collection after executing a callback function of each elements in
the array.

Usage:

//callback to add prefix.
$callback = function($key,$value){

$key = 'rf_'.$key;
$value = 'rf_'.$value;

}

$collection->each($callback);

Request

In Briz Request is a PSR-7 implementation. it reprecents an incoming request received by the server. since it uses
Psr\Http\Message\ServerRequestInterface you can access and inspect any request parameters.

2.5. Basic Usage 27



Briz Documentation, Release 0.36.0

the request is available as request inside the container (see Container Reference ). this is loaded to con-
troller by default. so it is available as $this->request inside controller. or you can get it from container as
$container->get(’request’);

from here onwards assume $this->request = $container->get(’request’);

Request Method

The HTTP request methods supported by Briz are,

• CONNECT

• DELETE

• GET

• HEAD

• OPTIONS

• PATCH

• POST

• PUT

• TRACE

getMethod

The getMethod() function is used to retrieve HTTP method of the request. it returns a string value reprecenting
HTTP request method.

usage:

$method = $this->request->getMethod();

withMethod

With withMethod($method) you can create a copy or clone of the current request with another method. so if you
want to change the request method you have to use

$this->request = $this->request->withMethod($method);

where $method is a supported HTTP method.

Faking request method

Most browsers dosn’t support any methods other than GET and POST. so we can create a fake method. the default
method faking string is X-HTTP-Method-Override. you can edit it inside config/application.php file.
if this string is added in request header or request body it will override with the new one.

Usage:

<input type="hidden" name="X-HTTP-Method-Override" value="put">

28 Chapter 2. Features



Briz Documentation, Release 0.36.0

Uri

There is an interface in PSR-7 for reprecenting Uri Psr\Http\Message\UriInterface. So in request uri
reprecents an object of a class implementing that interface. more about our implementation is explained in Uri

getUri

The getUri() method is used to retrieve the Uri object

Usage:

$uri = $this->request->getUri();

//now you can use $uri object like,
$port = $uri->getPort();

withUri

The withUri($uri) method will create a request object with a new uri

Usage:

//this will change the request Uri
$this->request = $this->request->withUri($uri);

getRequestTarget

The getRequestTarget() method will retrieve our request target. if our uri is
www.example.com/page/item/1?a=b the ‘/page/item/1?a=b part is called request target. this
method will retrieve this part as string.

Usage:

$target = $this->request->getRequestTarget();

withRequestTarget

The withRequestTarget() method will create a clone of the request object with the specified string request
target .

Usage:

$request = $this->request->withRequestTarget();

Server Parameters

The server parameters part of the request are mostly derived from $_SERVER super global. but they can also contain
other values.

2.5. Basic Usage 29



Briz Documentation, Release 0.36.0

getServerParams

The getServerParams() method is used to retrieve server parameters as an array.

Usage:

$params = $this->request->getServerParams();

//then we can use it like $params['xyz'] etc.

Cookies

getCookieParams

this method will retrieve request cookies as an array.

Usage:

$cookies = $this->request->getCookieParams();

withCookieParams

withCookieParams(array $cookies) method will clone the request with the given array of cookies

Usage:

//this will change the request cookies
$this->request = $this->request->withCookieParams($array);

Query String

consider the url http://example.com/briz/i?a=b&c=d the a=b&c=d part is called query string. query
string parameters are a=b and c=d

getQueryParams

The getQueryParams() method will retrieve query string parameters as an array.

Usage:

$queryParams = $this->request->getQueryParams();

withQueryParams

withQueryParams(array $query) method will clone the request with given array of query params.

Usage:

//this will change the request query parameters
$this->request = $this->request->withQueryParams($queryasArray);

30 Chapter 2. Features



Briz Documentation, Release 0.36.0

Uploaded Files

There is an interface in PSR-7 to reprecent UploadedFiles (Psr\Http\Message\UploadedFileInterface).
so we will use our implementation of this interface for reprecting uploaded files. Each uploaded File is reprecented by
Briz\Http\UploadedFile class.

getUploadedFiles()

This method will retrieve an array of Psr\Http\Message\UploadedFileInterface objects reprecenting
each uploaded file.

Usage:

$files = $this->request->getUploadedFiles();

withUploadedFiles

The withUploadedFiles(array $uploadedFiles) method will create a clone of the current request with
an array of uploaded files.

//this will change the uploaded files with current request
$this->request = $this->request->withUploadedFiles($uploadedFiles);

Request Body

Http request body usually contains POST data. when you use HTTP POST method the request will send your data o
server in the request body. You can get this body directly or can get a parsed version (the data in $_POST is actually
parsed version)

getBody

The getBody() method is used to get unparsed HTTP body as it is available in pure HTTP message as a stream
object.

// unparsed body
$body = $this->request->getBody();

getParsedBody

The getParsedBody() method will retrieve a parsed body with respect to the content type header as string. the
default content types supported are,

Content Type Return value
application/x-www-form-urlencoded array
multipart/form-data array
application/json array
application/xml object
text/xml object

Usage:

2.5. Basic Usage 31



Briz Documentation, Release 0.36.0

$body = $this->request->getParsedBody();

registerParser

The registerParser($type, $callable) method will add a new parser for parsing current request body. it
will override existing parser if an existing content type is used as $type. $callable is a callback function to parse
http body. the callback function must return an array or an object. the callback function will get a string containing
unparsed body as input.

Usage:

//parser to parse json as object instead of array.
$parser = function($body){

return json_decode($body);
};

$this->registerParser("application/json", $parser);

$body = $this->getParsedBody();

withBody

the withBody(StreamInterface $body) method will return an instance of request object with given stream
object.

Usage:

$this->request = $this->request->withBody($newStream);

Headers

getHeaders

The method getHeaders() Retrieves all Request header values as an array.

Usage:

$headers = $this->request->getHeaders();

hasHeader

hasHeader($name) method checks if the current request has a header $name. it will return a boolean value.

Usage:

if($this->request->hasHeader($name))
{

//do something.
}

32 Chapter 2. Features



Briz Documentation, Release 0.36.0

getHeader

The getHeader($name) method returns header values for the header $name. since an Http header can have
multiple values it returns an array.

Usage:

$header = $this->request->getHeader($name);

Note: since some clients send multiple headers as comma seperated values. you may get only single value even if
multiple header are there. a better alternative is to explode() getHeaderLine()

getHeaderLine

The getHeaderLine($name) method will return a string containing comma seperated values of the header spec-
ified by $name

Usage:

$header = $this->request->getHeaderLine($name);

withHeader

The withHeader($name, $value) method will return an instance with the provided value replacing the speci-
fied header. please note that this will replace the header.

Usage:

$request = $this->request->withHeader($name, $value);

withAddedHeader

unlike withHeader the withAddedHeader($name, $value) will return an instance of request object with
appending a header to the current header.

Usage:

$request = $this->request->withAddedHeader($name, $value);

withoutHeader

it will return an instance of the request after removing a header

Usage:

$request = $this->request->withoutHeader($name);

HTTP version

The http protocol version supported by briz are 1.0, 1.1 and 2.0

2.5. Basic Usage 33



Briz Documentation, Release 0.36.0

getProtocolVersion

The getProtocolVersion() method will return HTTP protocol version of the request.

Usage:

$version = $this->request->getProtocolVersion();

withProtocolVersion

The withProtocolVersion($version) method returns an instance of current request with the given protocol
version

Usage:

$request = $this->request->withProtocolVersion($version);

Response

In Briz a response object implementing Psr\Http\Message\ResponseInterface is used to reprecent
outgoing response. Briz will send this as response to client after processing. in briz default response object is
Briz\Http\Response

the response is available as response inside the container. so you can use
$this->container->get(’response’); to get the current response object. it is loaded inside the
controller as $this->response.

This Page assume $this->response = $this->container->get(’response’)

HTTP Status

an HTTP response will contain a three digit status code which explains the status of the current response to the client.
the most common HTTP status anybody know is 404 Not Found since it is an error message. there are other status
codes too. in Briz\Http\Response status codes and reason phrases are defined as below.

protected static $phrases = [
// INFORMATIONAL CODES
100 => 'Continue',
101 => 'Switching Protocols',
102 => 'Processing',
// SUCCESS CODES
200 => 'OK',
201 => 'Created',
202 => 'Accepted',
203 => 'Non-Authoritative Information',
204 => 'No Content',
205 => 'Reset Content',
206 => 'Partial Content',
207 => 'Multi-status',
208 => 'Already Reported',
// REDIRECTION CODES
300 => 'Multiple Choices',
301 => 'Moved Permanently',
302 => 'Found',
303 => 'See Other',

34 Chapter 2. Features



Briz Documentation, Release 0.36.0

304 => 'Not Modified',
305 => 'Use Proxy',
306 => 'Switch Proxy', // Deprecated
307 => 'Temporary Redirect',
// CLIENT ERROR
400 => 'Bad Request',
401 => 'Unauthorized',
402 => 'Payment Required',
403 => 'Forbidden',
404 => 'Not Found',
405 => 'Method Not Allowed',
406 => 'Not Acceptable',
407 => 'Proxy Authentication Required',
408 => 'Request Time-out',
409 => 'Conflict',
410 => 'Gone',
411 => 'Length Required',
412 => 'Precondition Failed',
413 => 'Request Entity Too Large',
414 => 'Request-URI Too Large',
415 => 'Unsupported Media Type',
416 => 'Requested range not satisfiable',
417 => 'Expectation Failed',
418 => 'I\'m a teapot',
422 => 'Unprocessable Entity',
423 => 'Locked',
424 => 'Failed Dependency',
425 => 'Unordered Collection',
426 => 'Upgrade Required',
428 => 'Precondition Required',
429 => 'Too Many Requests',
431 => 'Request Header Fields Too Large',
451 => 'Unavailable For Legal Reasons',
// SERVER ERROR
500 => 'Internal Server Error',
501 => 'Not Implemented',
502 => 'Bad Gateway',
503 => 'Service Unavailable',
504 => 'Gateway Time-out',
505 => 'HTTP Version not supported',
506 => 'Variant Also Negotiates',
507 => 'Insufficient Storage',
508 => 'Loop Detected',
511 => 'Network Authentication Required',

];

For normal response the status will be 200 OK. The codes above are the only codes supported by Briz. But you have
an option to change the reason phrase.

getStatusCode

The getStatusCode() will return the current status code set with the response object as integer.

Usage:

$status = $this->response->getStatusCode();

2.5. Basic Usage 35



Briz Documentation, Release 0.36.0

getReasonPhrase

The getReasonPhrase() method will return the current reason Phrase set with the response object

Usage:

$reason = $this->response->getReasonPhrase();

withStatus

withStatus($code, $reasonPhrase = ’’) method creates an instance or clone of current response object
with new status code. if optional $reasonPhrase is given it will change the reasonPhrase from default one.

Usage:

$reason = $this->response->withStatus($code);

Response Body

Http Response body contains what you will get in browser window. it is the Html part of the response.

write

the write($data) or setContent($data) will write data to output stream of briz response object which will
be latter added to the output stream of php after processing.

Usage:

$this->response->write($data);
//OR
$this->response->setContent($data);

getBody

The getBody() method will return current response body as a stream object
(Psr\Http\Message\StreamInterface).

Usage:

$this->response->getBody();

withBody

the withBody(StreamInterface $body) method will return an instance of response object with given stream
object.

Usage:

$this->response = $this->response->withBody($newStream);

36 Chapter 2. Features



Briz Documentation, Release 0.36.0

Headers

setHeader

The setHeader($header, $value, $replace = true) will add a new http header. $header is the
header name and $value is the header value in string. if the optional $replace is set to false it will append the
header without replacing it.

Usage:

//replace
$this->response->setHeader($header,$value);
//append
$this->response->setHeader($header2,$value,false);

Other header methods

other header methods are exactly same as the one in Request Headers

HTTP Version

the supported operations on http protocol version are exactly same as the one in request HTTP version

Uri

In PSR-7 URI is reprecented by an implementation of Psr\Http\Message\UriInterface.
we implement this as Briz\Http\Uri. according to PSR7 a uri is of
the format scheme://authority/path?query#fragment or in more detail
scheme:[//[user:password@]host[:port]][/]path[?query][#fragment]. but what we
need in most cases is regular url like scheme://host:port/path?query#fragment

You can get the Uri object of current request from request inside the container. from here onwards assume that:

$this->request = $this->container->get('request');
$uri = $this->request->getUri();

Scheme

Uri schemes supported by Briz are HTTP and HTTPS or it can be blank as a placeholder. Other uri schemes will result
in an InvalidArgumentException.

getScheme

The method getScheme() will return the scheme

Usage:

$scheme = $uri->getScheme();

2.5. Basic Usage 37



Briz Documentation, Release 0.36.0

withScheme

The withScheme($scheme) method will return an instance of the Uri object with the given scheme.

Usage:

$uri = $uri->withScheme($scheme);

Host

A host can be an IP address or an address like example.com or long address like web.www.ex.example.com

getHost

The getHost() method will return a string host name.

Usage:

$host = $uri->getHost();

withHost

The withHost($host) method will return an instance of the Uri object with the new Host.

Usage:

$host = $uri->withHost($host);

Port

a port number must be between 1 and 65535. the default port number of http is 80 and that of https is 443. If
you are using a port number other than default one then you must specify it. http://example.com is actually
http://example.com:80. since 80 is the default port of http it is nor given. the briz quick start tutorial will start
php development server at port 8000. so you have to specify it as http://localhost:8000 since 8000 is not the
default port.

getPort

The getPort() method will return the port number as integer.

Usage:

$port = $uri->getPort();

withPort

The withPort($port) method will return an instance of the uri object with the given port number.

Usage:

38 Chapter 2. Features



Briz Documentation, Release 0.36.0

$uri = $uri->withPort($port);

Path

getPath

gets the current uri path.

Usage:

$path = $uri->getPath();

withPath

return an instance of current uri with given path.

Usage:

$uri = $uri->withPath($path);

Query String

The Query String is separated from the preceding part by a question mark.

getQuery

The getQuery() method will return the query string

Usage:

$query = $uri->getQuery();

withQuery

The method withQuery($query) will return an instance of the Uri object with given query string.

Usage:

$uri = $uri->withQuery($query);

Fragment

the part of the Uri after # is called Uri Fragment. it is usually used as identifiers for sections in html page.

getFragment

The getFragment() method will return the Uri fragment as string.

Usage:

2.5. Basic Usage 39



Briz Documentation, Release 0.36.0

$fragment = $uri->getFragment();

withFragment

The withFragment($fragment) method will return a clone of the Uri object with given fragment.

Usage:

$uri = $uri->withFragment($fragment);

User Information

Uri as defined by rfc3986 and PSR-7 can contain user information. user information is usename and password.
empty passwords are also valid.

getUserInfo

this method will retrieve username:password format string. if there is no password it will return username. if
there is no usename or password it will return a blank string.

Usage:

$user = $uri->getUserInfo();

getAuthority

The getAuthority() will return the URI authority, in [user-info@]host[:port] format.

Usage:

$authority = $uri->getAuthority();

withUserInfo

withUserInfo($user, $password) returns an instance of the Uri with the given user info. the password is
optional.

Usage:

$uri = $uri->withUserInfo($user, $password);

40 Chapter 2. Features



Index

Symbols
() ( method), 17, 20, 21

41


	Rapid to Develop and Quick to run
	Features
	Easy to Add Dependancies
	Introducing new Routing System
	Identity
	PSR-7
	Basic Usage


