

Bridgekeeper

[image: _images/bridgekeeper.svg]
 [https://bridgekeeper.readthedocs.io/][image: _images/bridgekeeper1.svg]
 [https://pypi.python.org/pypi/bridgekeeper/]

Who would cross the Bridge of Death

must answer me these questions three,

ere the other side he see.

—The Bridgekeeper, Monty Python and the Holy Grail

Bridgekeeper is a permissions library for Django [https://djangoproject.com/] projects, where permissions are defined in your code, rather than in your database.

It’s heavily inspired by django-rules [https://github.com/dfunckt/django-rules], but with one important difference: it works on QuerySets as well as individual model instances.

This means that you can efficiently show a ListView [https://docs.djangoproject.com/en/1.11/ref/class-based-views/generic-display/#django.views.generic.list.ListView] of all of the model instances that your user is allowed to edit, for instance, without having your permission-checking code in two different places.

Bridgekeeper works on Django 2.0+ on Python 3.5+, and is licensed under the MIT License.

Warning

Bridgekeeper (and these docs!) are a work in progress.

Tutorial

	Installing Bridgekeeper

	Defining Permissions
	Defining Our First Permission

	Blanket Rules

	Matching Against Model Instance Attributes

	Traversing Relationships

	Combining Rules Together

	Using Permissions In Views
	Filtering QuerySets

	Class-Based Views

	What next?

Guides

	Writing Rules and Permissions
	Blanket Rules

	Checking Permissions
	Checking Permissions on an Object

	Checking Permissions on a QuerySet

	Checking Permissions For All Possible Instances

	Checking Permissions For Any Possible Instances

	Permission Check Summary

	Using permissions in views

	Django REST Framework integration
	Installation

	Permission Naming

Reference

	Rules
	The Rule API

	Built-in Blanket Rules

	Rule Classes

	Built-in rule instances

	Extension Points (For Writing Your Own Rule Subclasses)

	Convenience Helpers
	QuerySet and Manager Classes

	View Mixins

	Django REST Framework integration

	Changelog
	dev

	0.7

	0.5

	0.4

	0.3

	0.2

Indices and tables

	Index

	Module Index

	Search Page

Installing Bridgekeeper

First, install the bridgekeeper package from PyPI.

$ pip install bridgekeeper
or, if you're using pipenv
$ pipenv install bridgekeeper

Then, add Bridgekeeper to your settings.py:

 INSTALLED_APPS = (
 'django.contrib.admin',
 'django.contrib.auth',
 # ...
+ 'bridgekeeper',
)

 # ...

 AUTHENTICATION_BACKENDS = (
 'django.contrib.auth.backends.ModelBackend',
+ 'bridgekeeper.backends.RulePermissionBackend',
)

Note

Order doesn’t matter for either the INSTALLED_APPS [https://docs.djangoproject.com/en/1.11/ref/settings/#std:setting-INSTALLED_APPS] or AUTHENTICATION_BACKENDS [https://docs.djangoproject.com/en/1.11/ref/settings/#std:setting-AUTHENTICATION_BACKENDS] entry.

You might not already have the AUTHENTICATION_BACKENDS [https://docs.djangoproject.com/en/1.11/ref/settings/#std:setting-AUTHENTICATION_BACKENDS] setting in your settings.py; if not, you’ll have to add it.

Defining Permissions

In this tutorial, we’ll be using a example app, an online stock management portal for shrubberies; we’ll define some permissions for it in this section, then use them in views in the next section. It has a single app called shrubberies, with a models.py looks something like this:

shrubberies/models.py

from django.contrib.auth.models import User
from django.db import models

class Store(models.Model):
 name = models.CharField(max_length=255)

class Branch(models.Model):
 store = models.ForeignKey(Store, on_delete=models.CASCADE)
 name = models.CharField(max_length=255)

class Shrubbery(models.Model):
 branch = models.ForeignKey(Branch, on_delete=models.PROTECT)
 name = models.CharField(max_length=255)
 price = models.DecimalField(max_digits=5, decimal_places=2)

class Profile(models.Model):
 """User profile.

 Every user has one Profile object attached to them, which is
 automatically created when the user is added, and holds information
 about which branch of which store they belong to and what their
 role is.
 """

 user = models.OneToOneField(User, on_delete=models.CASCADE)
 branch = models.ForeignKey(Branch, on_delete=models.PROTECT)
 role = models.CharField(max_length=16, choices=(
 ('apprentice', 'Apprentice Shrubber'),
 ('shrubber', 'Shrubber'),
))

Defining Our First Permission

In Bridgekeeper, permissions are defined by rules. A rule is an object that can be given a user and a model instance, and decides whether or not to allow that user access to that instance.

Note

From that description, you might be thinking that a rule object is just a function with the signature (user, model_instance) -> bool. While you can certainly think of them that way, internally they’re a little more complex than that, for reasons that will become apparent in the next section.

One of the simplest rules in Bridgekeeper is the built-in is_staff rule, which answers “yes” if the user trying to log in has is_staff [https://docs.djangoproject.com/en/1.11/ref/contrib/auth/#django.contrib.auth.models.User.is_staff] set, or “no” otherwise.

We turn a rule into a permission by assigning it to a name. We do that by creating a file called permissions.py inside our app, importing bridgekeeper.perms (which is a Python dictionary 1 that maps permission names to their corresponding rules) and adding entries to it.

shrubberies/permissions.py

from bridgekeeper import perms
from bridgekeeper.rules import is_staff

perms['shrubbery.create_store'] = is_staff
perms['shrubbery.update_store'] = is_staff
perms['shrubbery.delete_store'] = is_staff

Note

We’ve used permission names that follow the convention set by Django’s built-in permissions mechanism [https://docs.djangoproject.com/en/1.11/topics/auth/default/#topic-authorization], so that they’re used by other apps that expect that naming convention, such as Django’s built-in admin. You can use whatever permission names you like, although it’s best to namespace them with the name of your app followed by a full stop at the start (e.g. shrubbery.foo).

These permissions are now fully working; if you wanted, you could skip right through to the next section to see how to use them in your views. Don’t, though, because Bridgekeeper is capable of far more.

Blanket Rules

A blanket rule is a rule that decides whether or not to allow access based solely on the user that’s trying to access the resource. They’ll either allow access to everything or nothing at all, hence the name.

We’ve already used one blanket rule—the built-in is_staff rule—but we can also define our own, by using the blanket_rule decorator to wrap a function that takes a user and returns a boolean.

In this example, we’re using the role attribute on each user’s associated Profile instance to restrict access to users that have been assigned a particular role:

shrubberies/rules.py

from bridgekeeper.rules import blanket_rule

@blanket_rule
def is_apprentice(user):
 return user.profile.role == 'apprentice'

@blanket_rule
def is_shrubber(user):
 return user.profile.role == 'shrubber'

If we were given a requirement like this:

Only shrubbers can edit shrubberies.

We could use our new is_shrubber rule the same way that we used is_staff before:

shrubberies/permissions.py

from .rules import is_shrubber

perms['shrubbery.update_shrubbery'] = is_shrubber

Matching Against Model Instance Attributes

Blanket rules let us allow or deny access to entire model classes based on the user, but we can also allow access to only certain instances. Consider the following requirement:

Users can only edit shrubberies that belong to their branch.

We can model this as a Bridgekeeper rule by creating an instance of the Attribute class:

shrubberies/permissions.py

from bridgekeeper.rules import Attribute

perms['shrubbery.update_shrubbery'] = Attribute('branch', lambda user: user.profile.branch)

You can think of Attribute as the Bridgekeeper equivalent to the standard library’s getattr() [https://docs.python.org/3/library/functions.html#getattr] function. It will only allow access when the attribute named in the first argument (here, 'branch') matches whatever is in the second argument. The second argument can either be a constant, or—as we’ve used here—a function that takes the current user and returns something to match against.

Traversing Relationships

What if we change the requirement to something like this?

Users can only edit shrubberies that belong to their store.

Shrubberies don’t have a store attribute; we have to go through the branch attribute to figure out which store a shrubbery belongs to, so we can’t use Attribute.

This is where the Relation class comes in. Relation is similar to Attribute, but instead of taking a constant or function as its last argument, it takes another rule object, which is applied to the other side of the relation.

shrubberies/permissions.py

from bridgekeeper.rules import Relation

from . import models

perms['shrubbery.update_shrubbery'] = Relation(
 'branch',
 # This rule gets checked against the branch object, not the shrubbery
 Attribute('store', lambda user: user.profile.branch.store),
)

Combining Rules Together

All of the rules that we’ve seen so far are quite simple, each only checking one thing. Fortunately, Bridgekeeper rules can be combined together, letting us model much more complex requirements.

We do this using the &, | and ~ operators. (If you’ve used Q [https://docs.djangoproject.com/en/1.11/ref/models/querysets/#django.db.models.Q] objects, combining Bridgekeeper rules will feel familiar.)

	Prefixing a rule with ~ inverts it. For example, the expression ~is_apprentice returns a rule that allows access to everyone that is not an apprentice shrubber.

	Combining two rules with | allows access if either rule matches. For example, is_staff | is_shrubber allows access to users that are either administrative staff or shrubbers.

	Combining two rules with & allows access if both rules match. For example, is_staff & is_shrubber allows access to users that are both administrative staff and shrubbers.

For a more complex example, let’s say that we needed to model the following requirement:

Administrative staff (with is_staff set) can edit all shrubberies in the system. Shrubbers can edit all shrubberies in the store they belong to. Apprentice shrubbers can edit all shrubberies in their branch.

First, we need to rephrase this requirement so that it’s made up of simpler rules combined with and, or, and not.

Users can edit shrubberies if:

	They are administrative staff (with is_staff set), or

	They are a shrubber, and the shrubbery belongs to the same store as them, or

	They are an apprentice shrubber, and the shrubbery belongs to the same branch as them

In earlier sections of this chapter, we’ve already talked about rules that allow access to staff users and users with particular roles. We’ve also already discussed rules that allow access only to shrubberies belonging to the same store or branch as the user trying to access them. All we need to do now is combine them together:

shrubberies/permissions.py

from bridgekeeper.rules import is_staff
from .rules import is_shrubber, is_apprentice
from . import models

perms['shrubbery.update_shrubbery'] = is_staff | (
 is_shrubber & Relation(
 'branch',
 Attribute('store', lambda user: user.profile.branch.store),
)
) | (
 is_apprentice & Attribute('branch', lambda user: user.profile.branch)
)

	1

	bridgekeeper.perms is actually an instance of PermissionMap, which is a subclass of dict [https://docs.python.org/3/library/stdtypes.html#dict] with a few small changes, but you can treat it as a normal dictionary anyway.

Using Permissions In Views

Now that we’ve got our permissions defined, we need to write views that actually use them. If you’ve already used Django’s built-in permission mechanism, Bridgekeeper integrates with that:

shrubberies/views.py

from django.http import Http404
from django.shortcuts import get_object_or_404
from django.template.response import TemplateResponse

from . import models

def shrubbery_edit(request, shrubbery_id):
 shrubbery = get_object_or_404(models.Shrubbery, id=shrubbery_id)
 if not request.user.has_perm('shrubberies.update_shrubbery', shrubbery):
 raise Http404()
 return TemplateResponse(request, 'shrubbery_edit.html', {
 'shrubbery': shrubbery,
 })

We can also check permissions directly through Bridgekeeper. Remember, bridgekeeper.perms is more or less just a dict, so we can pull it out of there and call the rule’s check() method:

shrubberies/views.py

from bridgekeeper import perms

def shrubbery_edit(request, shrubbery_id):
 # ...
 if not perms['shrubberies.update_shrubbery'].check(request.user, shrubbery):
 raise Http404()
 # ...

Note

If you use Django’s has_perm() [https://docs.djangoproject.com/en/1.11/ref/contrib/auth/#django.contrib.auth.models.User.has_perm], like in our first example, Django will consult all of your authentication backends to check permissions. For instance, if you’ve assigned permissions to users in your database through Django’s built-in user_permissions [https://docs.djangoproject.com/en/1.11/ref/contrib/auth/#django.contrib.auth.models.User.user_permissions], they’ll be checked as well. Similarly, if you have a third-party authentication backend (e.g. for social media, LDAP or Active Directory integration) that provides some form of permission checking, that will be checked too.

If you use Bridgekeeper directly, like in our second example, only Bridgekeeper permissions will be checked; in most cases this is what you want.

Filtering QuerySets

If we’re displaying a list, we can also filter a QuerySet so that it only contains objects that the currently-logged-in user holds a certain permission on.

shrubberies/views.py

from bridgekeeper import perms
from django.core.paginator import Paginator
from django.template.response import TemplateResponse

from . import models

def shrubbery_list(request, shrubbery_id):
 all_shrubberies = models.Shrubbery.objects.all()
 shrubberies = perms['shrubberies.view_shrubbery'].filter(request.user, all_shrubberies)

 # 'shrubberies' is just a regular queryset, so we can do anything
 # we would do with a normal queryset; in this case, let's paginate it
 paginator = Paginator(shrubberies, 10)
 page = paginator.page(1)

 return TemplateResponse(request, 'shrubbery_list.html', {
 'paginator': paginator,
 'page': page,
 'shrubberies': page.object_list,
 })

Class-Based Views

All of the examples we’ve used so far have been function-based views. Of course, everything that we’ve covered so far will work inside a class-based view, but Bridgekeeper also comes with a handy shortcut in the form of QuerySetPermissionMixin.

shrubberies/views.py

from bridgekeeper.mixins import QuerySetPermissionMixin
from django.views.generic import ListView, UpdateView

from . import models

class ShrubberyListView(QuerySetPermissionMixin, ListView):
 model = models.Shrubbery
 permission_name = 'shrubberies.view_shrubbery'

class ShrubberyUpdateView(QuerySetPermissionMixin, UpdateView):
 model = models.Shrubbery
 permission_name = 'shrubberies.update_shrubbery'

That’s all there is to it; these two views will now only show shrubberies that the currently-logged-in user has permission to view.

What next?

That’s the end of the tutorial; you should now be able to get started modelling your permissions with Bridgekeeper now!

You can read about the other ways you can check permissions, including more convenience shortcuts you can enable and ways to check things like whether somebody could, hypothetically, have a permission in the Checking Permissions guide. Or, find out more detail about writing rules and permissions in the Writing Rules and Permissions guide.

If there’s something that you don’t understand after following through this tutorial, or that you think could be explained better, please file a documentation bug [https://github.com/excitedleigh/bridgekeeper/issues/new?labels=docs] so that we can improve the docs for future users.

Writing Rules and Permissions

In Bridgekeeper, a rule is something that is given a user and a resource, and either allows or blocks access to the resource. Rules are instances of the Rule class (or rather, subclasses of that class), and can be combined together into composite rules.

A Bridgekeeper permission consists of a name, usually conforming to Django permission name conventions e.g. shrubberies.update_shrubbery, and a rule. Permissions are created by assigning a rule instance to a name in bridgekeeper.perms, which acts like a dictionary:

from bridgekeeper.rules import Attribute, is_staff
from bridgekeeper import perms

perms['foo.update_widget'] = is_staff

The rules module provides a range of pre-made rule instances as well as rule classes you can instantiate, as shown above. You can also combine rules using the & (and), | (or), and ~ (not) operators:

perms['foo.view_widget'] = is_staff | Attribute(
 'company', lambda user: user.company)

Finally, if none of the built-in rules do what you want, you can subclass Rule yourself and write your own.

Blanket Rules

We introduced what blanket rules are, as well as how to write a custom one, in the Blanket Rules section of the tutorial. There, we defined one rule for each role, but if we had more than two roles that might get a bit repetitive.

If you need your blanket rules to take arguments, the easiest way is to write a function that returns a rule, like so:

shrubberies/rules.py

from bridgekeeper.rules import blanket_rule

def has_role(role):

 def checker(user):
 return user.profile.role == role

 return blanket_rule(checker, repr_string=f"has_role({role!r})")

In this case, we’re using the optional repr_string argument to override how the rule is displayed when debugging, so that we can see what the role argument is. (We’re using PEP 498 [https://www.python.org/dev/peps/pep-0498/] f-strings here, which are supported in Python 3.6+, but you don’t have to.)

Checking Permissions

There are two ways to check which permissions a user has using Bridgekeeper.

	Use the methods on the User [https://docs.djangoproject.com/en/1.11/ref/contrib/auth/#django.contrib.auth.models.User] model, which consult Bridgekeeper via its integration into Django’s pluggable authorisation system. You can only make the types of checks Django has built-in support for this way, which means you can’t check against QuerySets. Also, if you have multiple different authorisation backends (including Django’s built in ModelBackend [https://docs.djangoproject.com/en/1.11/ref/contrib/auth/#django.contrib.auth.backends.ModelBackend]), these methods will consult all of them.

	Check against permissions in Bridgekeeper directly. This is the only way to filter QuerySets according to a permission; this method always uses the permissions defined in Bridgekeeper as a single source of truth and does not consult other backends.

Checking Permissions on an Object

Given an instance of our Shrubbery model called shrubbery, and a User [https://docs.djangoproject.com/en/1.11/ref/contrib/auth/#django.contrib.auth.models.User] instance user, here’s how we’d check to see whether the user has permission to update it:

from bridgekeeper import perms

through Django:
user.has_perm('shrubberies.update_shrubbery', obj=shrubbery)
or through Bridgekeeper:
perms['shrubberies.update_shrubbery'].check(user, shrubbery)

Both of these expressions will return either True or False. Aside from the caveat described above regarding authorisation backends other than Bridgekeeper, these two calls are equivalent; in fact, when you call has_perm() [https://docs.djangoproject.com/en/1.11/ref/contrib/auth/#django.contrib.auth.models.User.has_perm], Django will trigger a call to check() under the hood.

Checking Permissions on a QuerySet

Of course, Bridgekeeper’s headline feature is that it works with QuerySets; given a user and a permission, it can filter down a QuerySet to only return instances for which the user holds the permission.

All we need to do is call filter() instead of check(), and pass it a QuerySet instead of a single model instance:

qs = models.Shrubbery.objects.all()
filtered_qs = perms['shrubberies.view_shrubbery'].filter(user, qs)

Bridgekeeper’s filter() takes any QuerySet, and returns another normal QuerySet (it actually just calls the QuerySet’s filter() [https://docs.djangoproject.com/en/1.11/ref/models/querysets/#django.db.models.query.QuerySet.filter] method internally). This means you can call filter() [https://docs.djangoproject.com/en/1.11/ref/models/querysets/#django.db.models.query.QuerySet.filter], exclude() [https://docs.djangoproject.com/en/1.11/ref/models/querysets/#django.db.models.query.QuerySet.exclude] or order_by() [https://docs.djangoproject.com/en/1.11/ref/models/querysets/#django.db.models.query.QuerySet.order_by] your QuerySet before you pass it in, or you can filter() [https://docs.djangoproject.com/en/1.11/ref/models/querysets/#django.db.models.query.QuerySet.filter], exclude() [https://docs.djangoproject.com/en/1.11/ref/models/querysets/#django.db.models.query.QuerySet.exclude], order_by() [https://docs.djangoproject.com/en/1.11/ref/models/querysets/#django.db.models.query.QuerySet.order_by], slice or paginate the QuerySet that Bridgekeeper returns to you.

Checking Permissions For All Possible Instances

Django’s has_perm() [https://docs.djangoproject.com/en/1.11/ref/contrib/auth/#django.contrib.auth.models.User.has_perm] (and thus also Bridgekeeper’s check()) allows supplying only a permission name, and not an object instance:

user.has_perm('shrubberies.view_shrubbery')
or,
perms['shrubberies.view_shrubbery'].check(user)

Once again, these calls are equivalent, aside from the caveat described above regarding authorisation backends other than Bridgekeeper.

When you check permissions like this without supplying an instance, Bridgekeeper will return True if and only if the user has that permission for every possible instance that could ever exist. (This is not the same thing as checking whether the user has the permission for every instance currently in the database; in fact, this check doesn’t actually hit the database at all.)

As an example of this, let’s say that the shrubberies.view_shrubbery permission was defined to allow staff users access to all shrubberies, and everyone else access to shrubberies in their own branch:

perms['shrubberies.view_shrubbery'] = is_staff | Attribute(
 'branch', lambda user: user.profile.branch,
)

In this case, the check would return True for a staff user, since they will always have access to every possible shrubbery. It will return False for a regular user, even if every shrubbery currently in the database belongs to their branch, because it is possible for a shrubbery to be created that belongs to a different branch, which they would then be blocked from editing.

Checking Permissions For Any Possible Instances

Bridgekeeper also provides a second method, is_possible_for(), which is the opposite of the above behaviour, in a way:

perms['shrubberies.update_shrubbery'].is_possible_for(user)

This check will return True if and only if the user could possibly have that permission for any possible instance that could exist. (Once again, this is not the same as checking whether the user has the permission for at least one instance currently in the database, and once again it doesn’t actually hit the database at all.)

As an example of this, let’s say that the shrubberies.view_shrubbery permission was defined to allow only shrubbers to edit shrubberies inside their own branch, using the is_shrubber rule we created in the Blanket Rules section of the tutorial and combining it with an Attribute check:

perms['shrubberies.view_shrubbery'] = is_shrubber & Attribute(
 'branch', lambda user: user.profile.branch,
)

In this case, the check will return False for a user with the 'apprentice' role, because only users with the 'shrubber' role can access anything. It will always return True for a shrubber, however, even if there are no shrubberies belonging to their branch currently in the database, beacuse it is possible for a shrubbery to exist that belongs to their branch, which they would then be allowed to edit.

Note

The behaviours in this section are effectively implemented by checking whether a permission is always allowed (in the case of check()) or always denied (in the case of is_possible_for()) due to the presence of blanket rules.

In normal use, these methods should always behave how you’d expect. However, if you create a combination of rules that just happens to be tautological for a particular user, Bridgekeeper isn’t clever enough to detect that.

This also means that the checks described in this section usually won’t need to hit the database.

has_module_perms()

Bridgekeeper also supports Django’s has_module_perms() [https://docs.djangoproject.com/en/1.11/ref/contrib/auth/#django.contrib.auth.models.User.has_module_perms] method. The following call:

user.has_module_perms('shrubberies')

is equivalent to calling is_possible_for() on every permission whose name begins with shrubberies., and returning True if any one of them returns True.

Permission Check Summary

	Meaning

	Django

	Bridgekeeper

	User has permission foo.bar
for object x

	u.has_perm('foo.bar', x)

	perms['foo.bar'].check(u, x)

	User has permission foo.bar
for all possible objects

	u.has_perm('foo.bar')

	perms['foo.bar'].check(u)

	It is possible for the user to
have permission foo.bar for
some object

	n/a

	perms['foo.bar'].is_possible_for(u)

	It is possible for the user to
have some permission foo.*
for some object

	u.has_module_perms('foo')

	n/a

	Filter the queryset qs to
only the objects that the user
has permission foo.bar for

	n/a

	perms['foo.bar'].filter(u, qs)

Using permissions in views

Bridgekeeper provides a QuerySetPermissionMixin, which will filter a view down to only objects that the currently logged-in user has access to. It works on ListView, DetailView, and most views that operate on the database except CreateView, and is used like this:

from bridgekeeper.mixins import QuerySetPermissionMixin

class MyView(QuerySetPermissionMixin, DetailView):
 permission_name = 'applicants.view_applicant'
 model = Applicant

Caution

QuerySetPermissionMixin will return 404 both for objects that don’t exist and objects the user can’t access. It might be tempting to try to distinguish between an the two, by returning e.g. 404 for the former and 403 for the latter. Generally, though, it’s desirable from a security perspective to not let the user tell the difference between these two cases unless you really need to.

If you’re concerned about users getting unexpected 404s when they try to access a page without being logged in, one alternative is to reword your 404.html accordingly, or even embed a login form there if users aren’t logged in.

Bridgekeeper also provides CreatePermissionGuardMixin, which will validate unsaved model instances in a CreateView (or any subclass of ModelFormView) against a given permission, and raise SuspiciousOperation [https://docs.djangoproject.com/en/1.11/ref/exceptions/#django.core.exceptions.SuspiciousOperation], thus preventing the call to .save(), if it does not pass. It’s used like this:

from bridgekeeper.mixins import CreatePermissionGuardMixin

class MyView(CreatePermissionGuardMixin, CreateView):
 permission_name = 'applicants.create_applicant'
 model = Applicant

Note

Unlike QuerySetPermissionMixin, CreatePermissionGuardMixin is only a safety net; you still need to write your forms and views so that a user can’t create instances they shouldn’t be allowed to, but the mixin will protect you against logic errors in your code, possibly combined with malicious users.

Django REST Framework integration

Installation

If you want to use Django REST Framework and Bridgekeeper together, you’ll need to add the following to your settings.py:

REST_FRAMEWORK = {
 'DEFAULT_PERMISSION_CLASSES': (
 'bridgekeeper.rest_framework.RulePermissions',
),
 'DEFAULT_FILTER_BACKENDS': ('bridgekeeper.rest_framework.RuleFilter',),
}

Warning

These settings only set the default permission classes and filter backends. If you override either permission_classes or filter_backends in any APIView or ViewSet subclass, you’ll need to make sure Bridgekeeper’s classes are included in those locations too.

Permission Naming

Once you’ve changed your settings, all of your API views will automatically apply the appropriate permissions. In order for them to do so, they need to be named according to the conventional Django permission naming scheme. Given a Django app called app_name and a model called ModelName, the following permissions will be checked:

	app_name.view_modelname for all requests.

	app_name.add_modelname for POST requests.

	app_name.change_modelname for PUT and PATCH requests.

	app_name.delete_modelname for DELETE requests.

One side-effect of this is that your API consumers will not be able to make changes if they have add, change or delete permissions on some object but don’t also have view permissions for that same object. That being said, it doesn’t make sense for a user to be able to change something they can’t see anyway.

Rules

Rule library that forms the core of Bridgekeeper.

This module defines the Rule base class, as well as a
number of built-in rules.

The Rule API

	
class bridgekeeper.rules.Rule

	Base class for rules.

All rules are instances of this class, but not directly;
use (or write!) a subclass instead, as this class will raise
NotImplementedError [https://docs.python.org/3/library/exceptions.html#NotImplementedError] if you try to actually do anything
with it.

	
check(user, instance=None)

	Check if a user satisfies this rule.

Given a user, return a boolean indicating if that user satisfies
this rule for a given instance, or if none is provided,
every instance.

	
filter(user, queryset)

	Filter a queryset to instances that satisfy this rule.

Given a queryset and a user, this method will return a filtered
queryset that contains only instances from the original
queryset for which the user satisfies this rule.

	Parameters

	
	queryset (django.db.models.QuerySet) – The initial queryset to filter

	user (django.contrib.auth.models.User [https://docs.djangoproject.com/en/1.11/ref/contrib/auth/#django.contrib.auth.models.User]) – The user to match against.

	Returns

	A filtered queryset

	Return type

	django.db.models.QuerySet

Warning

If you are subclassing this class, don’t override this
method; override query() instead.

	
is_possible_for(user)

	Check if it is possible for a user to satisfy this rule.

Returns True if it is possible for an instance to exist for
which the given user satisfies this rule, False
otherwise.

For example, in a multi-tenanted app, you might have a rule
that allows access to model instances if a user is a staff user,
or if the instance’s tenant matches the user’s tenant.

In that case, check(), when called without an instance,
would return True only for staff users (since only they can
see every instance). This method would return True for all
users, because every user could possibly see an instance
(whether it’s one that exists currently in the database, or a
hypothetical one that might in the future).

Cases where this method would return False include where a
user doesn’t have the right role or subscription plan to use a
feature at all; this method is the single-permission equivalent
of has-module-perms.

Built-in Blanket Rules

	
bridgekeeper.rules.always_allow

	Rule that always allows access to everything.

	
bridgekeeper.rules.always_deny

	Rule that never allows access to anything.

	
bridgekeeper.rules.is_authenticated

	Rule that allows access to users for whom
is_authenticated [https://docs.djangoproject.com/en/1.11/ref/contrib/auth/#django.contrib.auth.models.User.is_authenticated] is True.

	
bridgekeeper.rules.is_superuser

	Rule that allows access to users for whom
is_superuser [https://docs.djangoproject.com/en/1.11/ref/contrib/auth/#django.contrib.auth.models.User.is_superuser] is True.

	
bridgekeeper.rules.is_staff

	Rule that allows access to users for whom
is_staff [https://docs.djangoproject.com/en/1.11/ref/contrib/auth/#django.contrib.auth.models.User.is_staff] is True.

	
bridgekeeper.rules.is_active

	Rule that allows access to users for whom
is_active [https://docs.djangoproject.com/en/1.11/ref/contrib/auth/#django.contrib.auth.models.User.is_active] is True.

Rule Classes

	
class bridgekeeper.rules.Attribute(attr, matches)

	Rule class that checks the value of an instance attribute.

This rule is satisfied by model instances where the attribute
given in attr matches the value given in matches.

	Parameters

	
	attr (str [https://docs.python.org/3/library/stdtypes.html#str]) – An attribute name to match against on the
model instance.

	value – The value to match against, or a callable that takes
a user and returns a value to match against.

For instance, if you had a model class Widget with an attribute
colour that was either 'red', 'green' or 'blue',
you could limit access to blue widgets with the following:

blue_widgets_only = Attribute('colour', matches='blue')

Restricting access in a multi-tenanted application by matching a
model’s tenant to the user’s might look like this:

applications_by_tenant = Attribute('tenant',
 lambda user: user.tenant)

Warning

This rule uses Python equality (==) when checking a
retrieved Python object, but performs an equality check on the
database when filtering a QuerySet. Avoid using it with
imprecise types (e.g. floats), and ensure that you are using the
correct Python type (e.g. decimal.Decimal [https://docs.python.org/3/library/decimal.html#decimal.Decimal] for decimals
rather than floats or strings), to prevent inconsistencies.

	
class bridgekeeper.rules.Relation(attr, rule)

	Check that a rule applies to a ForeignKey.

	Parameters

	
	attr (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of a foreign key attribute to check.

	rule (Rule) – Rule to check the foreign key against.

For example, given Applicant and Application models,
to allow access to all applications to anyone who has permission to
access the related applicant:

perms['foo.view_application'] = Relation(
 'applicant', perms['foo.view_applicant'])

	
class bridgekeeper.rules.ManyRelation(query_attr, rule)

	Check that a rule applies to a many-object relationship.

This can be used in a similar fashion to Relation, but
across a ManyToManyField [https://docs.djangoproject.com/en/1.11/ref/models/fields/#django.db.models.ManyToManyField], or the remote
end of a ForeignKey [https://docs.djangoproject.com/en/1.11/ref/models/fields/#django.db.models.ForeignKey].

	Parameters

	
	query_attr (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of a many-object relationship to check. This
This is the name that you
use when filtering this relationship using .filter().
If you are on the side of the relationship where the field
is defined, this is typically the lowercased model name (e.g.
mymodel on its own, not mymodel_set), unless you’ve
set related_name [https://docs.djangoproject.com/en/1.11/ref/models/fields/#django.db.models.ForeignKey.related_name] or
related_query_name [https://docs.djangoproject.com/en/1.11/ref/models/fields/#django.db.models.ForeignKey.related_query_name].

	rule (Rule) – Rule to check the foreign object against.

For example, given Agency and Customer models,
to allow agency users access only to customers that have a
relationship with their agency:

perms['foo.view_customer'] = ManyRelation(
 'agency', Is(lambda user: user.agency))

	
class bridgekeeper.rules.Is(instance)

	Rule class that checks the identity of the instance.

This rule is satisfied only by a the provided model instance.

	Parameters

	instance – The instance to match against, or a callable that
takes a user and returns a value to match against.

For instance, if you only wanted a user to be able to update their
own profile:

own_profile = Is(lambda user: user.profile)

	
class bridgekeeper.rules.In(collection)

	Rule class that checks the instance is a member of a collection.

This rule is satisfied only by model instances that are members of
the provided collection.

	Parameters

	collection – The collection to match against, or a callable
that takes a user and returns a value to match against.

For instance, if you only wanted to match groups a user is in:

own_profile = Is(lambda user: user.profile)

Built-in rule instances

	
bridgekeeper.rules.current_user = Is(<function <lambda>>)

	Rule class that checks the identity of the instance.

This rule is satisfied only by a the provided model instance.

	Parameters

	instance – The instance to match against, or a callable that
takes a user and returns a value to match against.

For instance, if you only wanted a user to be able to update their
own profile:

own_profile = Is(lambda user: user.profile)

	
bridgekeeper.rules.in_current_groups = In(<function <lambda>>)

	Rule class that checks the instance is a member of a collection.

This rule is satisfied only by model instances that are members of
the provided collection.

	Parameters

	collection – The collection to match against, or a callable
that takes a user and returns a value to match against.

For instance, if you only wanted to match groups a user is in:

own_profile = Is(lambda user: user.profile)

Extension Points (For Writing Your Own Rule Subclasses)

	
class bridgekeeper.rules.Rule

	If you want to create your own rule class, these are the methods you
need to override.

	
query(user)

	Generate a Q [https://docs.djangoproject.com/en/1.11/ref/models/querysets/#django.db.models.Q] object.

Note

This method is used internally by filter(); subclasses
will need to override it but you should never need to call
it directly.

Given a user, return a Q [https://docs.djangoproject.com/en/1.11/ref/models/querysets/#django.db.models.Q] object which
will filter a queryset down to only instances for which the
given user satisfies this rule.

Alternatively, return UNIVERSAL if this user satisfies
this rule for every possible object, or EMPTY if
this user cannot satisfy this rule for any possible object.
(These two values are usually only returned in “blanket
rules” which depend only on some property of the user, e.g.
the built-in is_staff, but these are usually best created
with the blanket_rule decorator.)

	Parameters

	user (django.contrib.auth.models.User [https://docs.djangoproject.com/en/1.11/ref/contrib/auth/#django.contrib.auth.models.User]) – The user to match against.

	Returns

	A query that will filter a queryset to match this
rule.

	Return type

	django.db.models.Q [https://docs.djangoproject.com/en/1.11/ref/models/querysets/#django.db.models.Q]

	
check(user, instance=None)

	Check if a user satisfies this rule.

Given a user, return a boolean indicating if that user satisfies
this rule for a given instance, or if none is provided,
every instance.

	
bridgekeeper.rules.UNIVERSAL = UNIVERSAL

	

	
bridgekeeper.rules.EMPTY = EMPTY

	

Convenience Helpers

QuerySet and Manager Classes

	
class bridgekeeper.querysets.PermissionQuerySet(model=None, query=None, using=None, hints=None)

	A QuerySet subclass that provides a convenience method.

	
visible_to(user, permission)

	Filter the QuerySet to objects a user has a permission for.

	Parameters

	
	user (django.contrib.auth.models.User [https://docs.djangoproject.com/en/1.11/ref/contrib/auth/#django.contrib.auth.models.User]) – User to check permission against.

	permission (str [https://docs.python.org/3/library/stdtypes.html#str]) – Permission to check.

This method only works with permissions that are defined in
perms;
regular Django row-level permission checkers can’t be invoked on
the QuerySet level.

It is a convenience wrapper around
filter().

View Mixins

	
class bridgekeeper.mixins.CreatePermissionGuardMixin(permission_map=None, *args, **kwargs)

	A view that checks permissions before creating model instances.

Use this mixin with CreateView [https://docs.djangoproject.com/en/1.11/ref/class-based-views/generic-editing/#django.views.generic.edit.CreateView],
and supply the permission_name of a Bridgekeeper permission.
Your view will then do two things:

	Check that it’s possible for a user to create any new instances
at all (i.e. that
is_possible_for() returns True
on the supplied permission). If not, the mixin raises
PermissionDenied [https://docs.djangoproject.com/en/1.11/ref/exceptions/#django.core.exceptions.PermissionDenied].

	Just before the form is saved, checks the unsaved model instance
against the supplied permission; if it fails, the mixin raises
SuspiciousOperation [https://docs.djangoproject.com/en/1.11/ref/exceptions/#django.core.exceptions.SuspiciousOperation].

Note that unlike QuerySetPermissionMixin, this mixin won’t
automatically apply permissions for you. Ideally, your view (or
the form class your view uses) should make it impossible for
users to create instances they’re not allowed to create; fields
that must be set to a certain value should be set automatically and
not displayed in the form, choice fields should have their
choices limited to only values the user is allowed to set, and
so on.

Bridgekeeper can’t (and arguably shouldn’t) reach into your form
and modify it for you. Instead, this mixin provides a last line of
defence; if your view has a bug where a user can create something
they’re not allowed to, the mixin will prevent the object from
actually being created, and crash loudly in a way that your error
reporting systems can pick up, allowing you to fix the bug.

	
permission_name

	The name of the Bridgekeeper permission to check against, e.g.
'shrubberies.update_shrubbery'.

	
class bridgekeeper.mixins.QuerySetPermissionMixin(permission_map=None, *args, **kwargs)

	View mixin that filters QuerySets according to a permission.

Use this mixin with any class-based view that expects a
get_queryset method (e.g.
ListView [https://docs.djangoproject.com/en/1.11/ref/class-based-views/generic-display/#django.views.generic.list.ListView],
DetailView [https://docs.djangoproject.com/en/1.11/ref/class-based-views/generic-display/#django.views.generic.detail.DetailView],
UpdateView [https://docs.djangoproject.com/en/1.11/ref/class-based-views/generic-editing/#django.views.generic.edit.UpdateView], or any other views
that subclass from
MultipleObjectMixin [https://docs.djangoproject.com/en/1.11/ref/class-based-views/mixins-multiple-object/#django.views.generic.list.MultipleObjectMixin] or
SingleObjectMixin [https://docs.djangoproject.com/en/1.11/ref/class-based-views/mixins-single-object/#django.views.generic.detail.SingleObjectMixin]), and
supply a permission_name attribute with the name of a
Bridgekeeper permission.

The view’s queryset will then be automatically filtered to objects
that the user requesting the page has the supplied permission for.
For multiple-object views like
ListView [https://docs.djangoproject.com/en/1.11/ref/class-based-views/generic-display/#django.views.generic.list.ListView], objects the user
doesn’t have the permission for just won’t be in the list.
For single-object views like
UpdateView [https://docs.djangoproject.com/en/1.11/ref/class-based-views/generic-editing/#django.views.generic.edit.UpdateView], attempts to access
objects the user doesn’t have the permission for will just 404.

	
permission_name

	The name of the Bridgekeeper permission to check against, e.g.
'shrubberies.update_shrubbery'.

Django REST Framework integration

	
class bridgekeeper.rest_framework.BridgekeeperRESTMixin

	Mixin for Django REST Framework integration classes.

	
get_action(request, view, obj=None)

	Return the action that a particular request is performing.

Usually, this is one of 'view', 'add', 'change'
or 'delete'. This is used by get_permission_name()
to generate the name of the appropriate permission.

	Returns

	Name of an action.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
get_operand_name(request, view, obj=None)

	Return the name of the thing that a request is acting on.

The default implementation works if obj is a model instance
(when it is provided), or if view is a view that has either
a queryset attribute or get_queryset() method
(otherwise).

This is used by get_permission_name() to generate the name
of the appropriate permission.

	Returns

	A tuple in the form (app_label, operand_name).

	Return type

	(str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str])

	
get_permission(request, view, obj=None)

	Return a rule object to check against for this request.

The default implementation just looks up the name returned by
get_permission_name().

	Returns

	Rule object.

	Return type

	bridgekeeper.rules.Rule

	
get_permission_name(request, view, obj=None)

	Return the name of the permission to use for a request.

The default implementation returns a name of the form
'{app_label}.{action}_{operand_name}', which will result in
something like 'shrubberies.view_shrubber' or
'shrubberies.delete_shrubbery'.

app_label and operand_name are provided by
get_operand_name(), and action is provided by
get_action(), so if you need to override this behaviour,
it may be easier to override those methods instead.

	Returns

	Permission name.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
skip_permission_checks(request, view, obj=None)

	Skips all permission checks for certain requests.

The default implementation will skip permission checks for
the APIRootView view class used by the built-in
DefaultRouter.

	Returns

	Whether to skip permission checks for the
given request.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
class bridgekeeper.rest_framework.RuleFilter

	Django REST Framework filter class for Bridgekeeper.

This filter class doesn’t expect any client interaction or present
any UI to the API explorer; it’s simply a mechanism for
automatically filtering QuerySets according to Bridgekeeper
permissions.

Note that this filter will always check the view permission;
this means that if a particular user has permissions to edit but not
view something, they’ll get 404s on everything. That said, it
doesn’t make much sense for users to have edit but not view
permissions on something anyway.

	
class bridgekeeper.rest_framework.RulePermissions

	Django REST Framework permission class for Bridgekeeper.

Note that this class does not, by itself, perform queryset
filtering on list views, since Django REST Framework doesn’t provide
an API for permission classes to do so.

Changelog

dev

	Breaking change: Relation and ManyRelation no longer require the model class on the other side of the relation to be passed in as an argument.

	Breaking change: ManyRelation removes the attr argument, requiring only query_attr.

	Breaking change: Python 3.4 and Django 1.11 are no longer supported.

0.7

Add In permission class, and two predefined rule instances, current_user and in_current_groups.

0.5

	Minor Django REST Framework-related fixes.

0.4

	Added initial support for Django REST Framework.

	Documentation improvements.

0.3

	Renamed predicates to rules, because the latter is a more accessible term that describe the concept just as well. Besides, “permissions are made up of rules” sounds a lot better than “permissions are made up of predicates”.

	Renamed ambient predicates to blanket rules, because it’s a more descriptive name. Note that the @ambient decorator is now called @blanket_rule, because having a @blanket decorator would be weird.

0.2

	Renamed bridgekeeper.registry.registry to bridgekeeper.perms.

	Renamed bridgekeeper.predicates.Predicate.apply() to check()

	Changed bridgekeeper.predicates.Predicate.filter() so that it takes the user object as the first argument, for consistency with the rest of the library (i.e. it’s singnature went from filter(queryset, user) to filter(user, queryset)).

 Python Module Index

 b

 		 	

 		
 b	

 	[image: -]
 	
 bridgekeeper	

 	
 	
 bridgekeeper.mixins	

 	
 	
 bridgekeeper.querysets	

 	
 	
 bridgekeeper.rest_framework	

 	
 	
 bridgekeeper.rules	

Index

 A
 | B
 | C
 | E
 | F
 | G
 | I
 | M
 | P
 | Q
 | R
 | S
 | U
 | V

A

 	
 	always_allow (in module bridgekeeper.rules)

 	
 	always_deny (in module bridgekeeper.rules)

 	Attribute (class in bridgekeeper.rules)

B

 	
 	bridgekeeper.mixins (module)

 	bridgekeeper.querysets (module)

 	
 	bridgekeeper.rest_framework (module)

 	bridgekeeper.rules (module)

 	BridgekeeperRESTMixin (class in bridgekeeper.rest_framework)

C

 	
 	check() (bridgekeeper.rules.Rule method), [1]

 	
 	CreatePermissionGuardMixin (class in bridgekeeper.mixins)

 	current_user (in module bridgekeeper.rules)

E

 	
 	EMPTY (in module bridgekeeper.rules)

F

 	
 	filter() (bridgekeeper.rules.Rule method)

G

 	
 	get_action() (bridgekeeper.rest_framework.BridgekeeperRESTMixin method)

 	get_operand_name() (bridgekeeper.rest_framework.BridgekeeperRESTMixin method)

 	
 	get_permission() (bridgekeeper.rest_framework.BridgekeeperRESTMixin method)

 	get_permission_name() (bridgekeeper.rest_framework.BridgekeeperRESTMixin method)

I

 	
 	In (class in bridgekeeper.rules)

 	in_current_groups (in module bridgekeeper.rules)

 	Is (class in bridgekeeper.rules)

 	is_active (in module bridgekeeper.rules)

 	
 	is_authenticated (in module bridgekeeper.rules)

 	is_possible_for() (bridgekeeper.rules.Rule method)

 	is_staff (in module bridgekeeper.rules)

 	is_superuser (in module bridgekeeper.rules)

M

 	
 	ManyRelation (class in bridgekeeper.rules)

P

 	
 	permission_name (bridgekeeper.mixins.CreatePermissionGuardMixin attribute)

 	(bridgekeeper.mixins.QuerySetPermissionMixin attribute)

 	
 	PermissionQuerySet (class in bridgekeeper.querysets)

Q

 	
 	query() (bridgekeeper.rules.Rule method)

 	
 	QuerySetPermissionMixin (class in bridgekeeper.mixins)

R

 	
 	Relation (class in bridgekeeper.rules)

 	Rule (class in bridgekeeper.rules), [1]

 	
 	RuleFilter (class in bridgekeeper.rest_framework)

 	RulePermissions (class in bridgekeeper.rest_framework)

S

 	
 	skip_permission_checks() (bridgekeeper.rest_framework.BridgekeeperRESTMixin method)

U

 	
 	UNIVERSAL (in module bridgekeeper.rules)

V

 	
 	visible_to() (bridgekeeper.querysets.PermissionQuerySet method)

 _static/comment-bright.png

_static/ajax-loader.gif

_static/comment-close.png

_static/comment.png

_static/down-pressed.png

nav.xhtml

 Table of Contents

 		
 Bridgekeeper

 		
 Installing Bridgekeeper

 		
 Defining Permissions

 		
 Defining Our First Permission

 		
 Blanket Rules

 		
 Matching Against Model Instance Attributes

 		
 Traversing Relationships

 		
 Combining Rules Together

 		
 Using Permissions In Views

 		
 Filtering QuerySets

 		
 Class-Based Views

 		
 What next?

 		
 Writing Rules and Permissions

 		
 Blanket Rules

 		
 Checking Permissions

 		
 Checking Permissions on an Object

 		
 Checking Permissions on a QuerySet

 		
 Checking Permissions For All Possible Instances

 		
 Checking Permissions For Any Possible Instances

 		
 has_module_perms()

 		
 Permission Check Summary

 		
 Using permissions in views

 		
 Django REST Framework integration

 		
 Installation

 		
 Permission Naming

 		
 Rules

 		
 The Rule API

 		
 Built-in Blanket Rules

 		
 Rule Classes

 		
 Built-in rule instances

 		
 Extension Points (For Writing Your Own Rule Subclasses)

 		
 Convenience Helpers

 		
 QuerySet and Manager Classes

 		
 View Mixins

 		
 Django REST Framework integration

 		
 Changelog

 		
 dev

 		
 0.7

 		
 0.5

 		
 0.4

 		
 0.3

 		
 0.2

_static/file.png

_static/minus.png

_static/down.png

_static/up-pressed.png

_static/up.png

_static/plus.png

