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CHAPTER 1

Introduction

Brian is a clock driven simulator for spiking neural networks, written in the Python programming language.

The simulator is written almost entirely in Python. The idea is that it can be used at various levels of abstraction
without the steep learning curve of software like Neuron, where you have to learn their own programming language
to extend their models. As a language, Python is well suited to this task because it is easy to learn, well known and
supported, and allows a great deal of flexibility in usage and in designing interfaces and abstraction mechanisms. As
an interpreted language, and therefore slower than say C++, Python is not the obvious choice for writing a computa-
tionally demanding scientific application. However, the SciPy module for Python provides very efficient linear algebra
routines, which means that vectorised code can be very fast.

Here’s what the Python web site has to say about themselves:

Python is an easy to learn, powerful programming language. It has efficient high-level data structures and
a simple but effective approach to object-oriented programming. Python’s elegant syntax and dynamic
typing, together with its interpreted nature, make it an ideal language for scripting and rapid application
development in many areas on most platforms.

The Python interpreter and the extensive standard library are freely available in source or binary form for
all major platforms from the Python Web site, http://www.python.org/, and may be freely distributed. The
same site also contains distributions of and pointers to many free third party Python modules, programs
and tools, and additional documentation.

As an example of the ease of use and clarity of programs written in Brian, the following script defines and runs a
randomly connected network of 4000 integrate and fire neurons with exponential currents:

from brian import =

eqS:' [}

dv/dt = (ge+gi-(v+49xmV))/ (20*ms) : volt
dge/dt = -ge/ (5%xms) : volt

dgi/dt = —-gi/ (10*ms) : volt

P=NeuronGroup (4000, model=eqgs, threshold=-50+mV, reset=-60~+mV)
P.v=-60+mV

Pe=P.subgroup (3200)

Pi=P.subgroup (800)

Ce=Connection (Pe,P, 'ge',weight=1.62+mV, sparseness=0.02)



http://www.python.org
http://www.neuron.yale.edu/neuron/
http://www.scipy.org/
http://www.python.org/
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Ci=Connection(Pi,P, 'gi',weight=-9+mV, sparseness=0.02)
M=SpikeMonitor (P)

run (1xsecond)

raster_plot (M)

show ()

As an example of the output of Brian, the following two images reproduce figures from Diesmann et al. 1999 on
synfire chains. The first is a raster plot of a synfire chain showing the stabilisation of the chain.

Synfire chain raster plot
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The simulation of 1000 neurons in 10 layers, each all-to-all connected to the next, using integrate and fire neurons with
synaptic noise for 100ms of simulated time took 1 second to run with a timestep of 0.1ms on a 2.4GHz Intel Xeon
dual-core processor. The next image is of the state space, figure 3:
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The figure computed 50 averages for each of 121 starting points over 100ms at a timestep of 0.1ms and took 201s to
run on the same processor as above.
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CHAPTER 2

Installation

If you already have a copy of Python 2.5-2.7, try the Quick installation below, otherwise take a look at Manual
installation.

2.1 Quick installation

2.1.1 easy_install / pip

The easiest way to install the most recent version of Brian if you already have a version of Python 2.5-2.7 including
the easy_install script is to simply run the following in a shell:

’ easy_install brian

This will download and install Brian and all its required packages (NumPy, SciPy, etc.).

Similarly, you can use the pip utility:

’ pip install brian

Note that there are some optimisations you can make after installation, see the section below on Optimisations.

2.1.2 Debian/Ubuntu packages

If you use a Debian-based Linux distribution (in addition to Debian itself, this includes for example Ubuntu or Linux
Mint), you can install Brian directly from your favourite package manager (e.g. Synaptic or the Ubuntu Software
Centre), thanks to the packages provided by the NeuroDebian team.

The package is called python-brian, the documentation and tutorials can be found in python-brian-doc. To
install these packages from the command-line use:

sudo apt-get install python-brian python-brian-doc



http://neuro.debian.net/
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Note that in contrast to the procedure described above for easy_install / pip, you will not necessarily get the most
recent version of Brian this way. On the other hand, you do not have to take care of future updates yourself, as the
Brian package gets updated with the standard update process. Additionally, the Brian package already includes all
the compiled C code mentioned in the Optimisations section. Another way to install Brian which combines these
advantages with up-to-date versions is to directly add the NeuroDebian repository to your software sources.

2.2 Manual installation

Installing Brian requires the following components:
1. Python version 2.5-2.7.
NumPy and Scipy packages for Python: an efficient scientific library.
PyLab package for Python: a plotting library similar to Matlab (see the detailed installation instructions).

SymPy package for Python: a library for symbolic mathematics (not mandatory yet for Brian).

A

Brian itself (don’t forget to download the extras.zip file, which includes examples, tutorials, and a complete
copy of the documentation). Brian is also a Python package and can be installed as explained below.

Fortunately, Python packages are very quick and easy to install, so the whole process shouldn’t take very long.
We also recommend using the following for writing programs in Python (see details below):

1. Eclipse IDE with PyDev

2. IPython shell

Finally, if you want to use the (optional) automatic C++ code generation features of Brian, you should have the gcc
compiler installed (on Cygwin if you are running on Windows).

Mac users: The Enthought Python Distribution (EPD ) is free for academics and contains all the libraries necessary to
run Brian. Otherwise, the Scipy Superpack for Intel OS X also includes versions of Numpy, Scipy, Pylab and IPython.

Windows users: the Python(x,y) distribution includes all the packages (including Eclipse and IPython) above except
Brian (which is available as an optional plugin).

Another option is the Anaconda distribution, which also includes all the packages above except Brian and Eclipse.

2.2.1 Installing Python packages

On Windows, Python packages (including Brian) are generally installed simply by running an .exe file. On other
operating systems, you can download the source release (typically a compressed archive .tar.gz or .zip that you need
to unzip) and then install the package by typing the following in your shell:

python setup.py install

2.2.2 Installing Eclipse

Eclipse is an Integrated Development Environment (IDE) for any programming language. PyDev is a plugin for
Eclipse with features specifically for Python development. The combination of these two is excellent for Python
development (it’s what we use for writing Brian).

To install Eclipse, go to their web page and download any of the base language IDEs. It doesn’t matter which one, but
Python is not one of the base languages so you have to choose an alternative language. Probably the most useful is the
C++ one or the Java one. The C++ one can be downloaded here.

6 Chapter 2. Installation


http://neuro.debian.net/index.html#repository-howto
http://www.python.org/download/
http://www.scipy.org/Download
http://matplotlib.sourceforge.net/
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http://www.eclipse.org/cdt/downloads.php
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Having downloaded and installed Eclipse, you should download and install the PyDev plugin from their web site. The
best way to do this is directly from within the Eclipse IDE. Follow the instructions on the PyDev manual page.

2.2.3 Installing IPython

IPython is an interactive shell for Python. It has features for SciPy and PyLab built in, so it is a good choice for
scientific work. Download from their page. If you are using Windows, you will also need to download PyReadline
from the same page.

2.2.4 C++ compilers

The default for Brian is to use the gcc compiler which will be installed already on most unix or linux distributions. If
you are using Windows, you can install cygwin (make sure to include the gcc package). Alternatively, some but not
all versions of Microsoft Visual C++ should be compatible, but this is untested so far. See the documentation for the
SciPy Weave package for more information on this. Mac users should have XCode installed so as to have access to
gce and hence take advantage of brian compiled code. See also the section on Compiled code.

2.3 Testing

You can test whether Brian has installed properly by running Python and typing the following two lines:

from brian import =«
brian_sample_run ()

A sample network should run and produce a raster plot.

2.4 Optimisations

After a successful installation, there are some optimisations you can make to your Brian installation to get it running
faster using compiled C code. We do not include these as standard because they do not work on all computers, and
we want Brian to install without problems on all computers. Note that including all the optimisations can result in
significant speed increases (around 30%).

These optimisations are described in detail in the section on Compiled code.

2.3. Testing 7
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CHAPTER 3

Getting started

3.1 Tutorials

These tutorials cover some basic topics in writing Brian scripts in Python. The complete source code for the tutorials
is available in the tutorials folder in the extras package.

3.1.1 Tutorials for Python and Scipy

Python

The first thing to do in learning how to use Brian is to have a basic grasp of the Python programming language. There
are lots of good tutorials already out there. The best one is probably the official Python tutorial. There is also a course
for biologists at the Pasteur Institute: Introduction to programming using Python.

NumPy, SciPy and Pylab

The first place to look is the SciPy documentation website. To start using Brian, you do not need to understand much
about how NumPy and SciPy work, although understanding how their array structures work will be useful for more
advanced uses of Brian.

The syntax of the Numpy and Pylab functions is very similar to Matlab. If you already know Matlab, you could read
this tutorial: NumPy for Matlab users and this list of Matlab-Python translations (pdf version here). A tutorial is also
available on the web site of Pylab.

3.1.2 Tutorial 1: Basic Concepts

In this tutorial, we introduce some of the basic concepts of a Brian simulation:
* Importing the Brian module into Python

» Using quantities with units



http://docs.python.org/tut/
http://www.pasteur.fr/formation/infobio/python/
http://docs.scipy.org/doc/
http://scipy.org/NumPy_for_Matlab_Users
http://mathesaurus.sourceforge.net/
http://brian.di.ens.fr/matlab-python-xref.pdf
http://matplotlib.sourceforge.net/users/pyplot_tutorial.html
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* Defining a neuron model by its differential equation

 Creating a group of neurons

* Running a network

* Looking at the output of the network

* Modifying the state variables of the network directly

* Defining the network structure by connecting neurons

* Doing a raster plot of the output

* Plotting the membrane potential of an individual neuron
The following Brian classes will be introduced:

* NeuronGroup

* Connection

e SpikeMonitor

* StateMonitor

We will build a Brian program that defines a randomly connected network of integrate and fire neurons and plot its
output.

This tutorial assumes you know:

* The very basics of Python, the import keyword, variables, basic arithmetical expressions, calling functions,
lists

* The simplest leaky integrate and fire neuron model
The best place to start learning Python is the official tutorial:
http://docs.python.org/tut/

Tutorial contents
Tutorial 1g: Recording membrane potentials
In the previous part of this tutorial, we plotted a raster plot of the firing times of the network. In this tutorial, we

introduce a way to record the value of the membrane potential for a neuron during the simulation, and plot it. We
continue as before:

from brian import =«

tau = 20 x msecond # membrane time constant

vVt = -50 * mvolt # spike threshold

Vr = -60 % mvolt # reset value

El = -49 x mvolt # resting potential (same as the reset)
psp = 0.5 % mvolt # postsynaptic potential size

G = NeuronGroup (N=40, model='dv/dt = —(V-El)/tau : volt',
threshold=Vt, reset=Vr)

C = Connection (G, G)
C.connect_random (sparseness=0.1, weight=psp)

This time we won’t record the spikes.

10 Chapter 3. Getting started
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Recording states

Now we introduce a second type of monitor, the StateMonitor. The first argument is the group to monitor, and
the second is the state variable to monitor. The keyword record can be an integer, list or the value True. If it is an
integer i, the monitor will record the state of the variable for neuron i. If it’s a list of integers, it will record the states
for each neuron in the list. If it’s set to True it will record for all the neurons in the group.

’M = StateMonitor (G, 'V', record=0) ‘

And then we continue as before:

’G.V = Vr + rand(40) = (Vt - Vr) ‘

But this time we run it for a shorter time so we can look at the output in more detail:

’run(ZOO * msecond) ‘

Having run the simulation, we plot the results using the plot command from PyLab which has the same syntax as the
Matlab plot " command, i.e. plot (xvals,yvals, ...). The StateMonitor monitors the times at which it
monitored a value in the array M. t imes, and the values in the array M[0]. The notation M[1i] means the array of
values of the monitored state variable for neuron 1.

In the following lines, we scale the times so that they’re measured in ms and the values so that they’re measured in
mV. We also label the plot using PyLab’s x1abel, ylabel and title functions, which again mimic the Matlab
equivalents.

plot (M.times / ms, M[0] / mV)

xlabel ('Time (in ms) ")

ylabel ('Membrane potential (in mV)"'")
title('Membrane potential for neuron 0'")
show ()

3.1. Tutorials 11
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Membrane potential for neuron 0
-48

-56

Memrane potential (in my)
i .

0 0 100 150 200
Time [im ma)

You can clearly see the leaky integration exponential decay toward the resting potential, as well as the jumps when a
spike was received.

Tutorial 1a: The simplest Brian program

Importing the Brian module

The first thing to do in any Brian program is to load Brian and the names of its functions and classes. The standard
way to do this is to use the Python from ... import =« statement.

from brian import =«

Integrate and Fire model

The neuron model we will use in this tutorial is the simplest possible leaky integrate and fire neuron, defined by the
differential equation:

tau dV/dt = -(V-El)

and with a threshold value Vt and reset value Vr.

Parameters

Brian has a system for defining physical quantities (quantities with a physical dimension such as time). The code
below illustrates how to use this system, which (mostly) works just as you’d expect.

12 Chapter 3. Getting started
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tau = 20 * msecond # membrane time constant

vVt = -50 « mvolt # spike threshold

Vr = -60 * mvolt # reset value

El = -60 » mvolt # resting potential (same as the reset)

The built in standard units in Brian consist of all the fundamental ST units like second and metre, along with a selection
of derived SI units such as volt, farad, coulomb. All names are lowercase following the SI standard. In addition, there
are scaled versions of these units using the standard SI prefixes m=1/1000, K=1000, etc.

Neuron model and equations

The simplest way to define a neuron model in Brian is to write a list of the differential equations that define it. For
the moment, we’ll just give the simplest possible example, a single differential equation. You write it in the following
form:

’dx/dt = f(x) : unit

where x is the name of the variable, f (x) can be any valid Python expression, and unit is the physical units of the
variable x. In our case we will write:

’dV/dt = —(V-El)/tau : volt

to define the variable V with units volt.

To complete the specification of the model, we also define a threshold and reset value and create a group of 40 neurons
with this model.

G = NeuronGroup (N=40, model='dV/dt = —(V-El)/tau : volt',
threshold=Vt, reset=Vr)

The statement creates a new object ‘G’ which is an instance of the Brian class NeuronGroup, initialised with the
values in the line above and 40 neurons. In Python, you can call a function or initialise a class using keyword arguments
as well as ordered arguments, so if I defined a function f (x, y) I could callitas £ (1, 2) oras f (y=2,x=1) and
get the same effect. See the Python tutorial for more information on this.

For the moment, we leave the neurons in this group unconnected to each other, each evolves separately from the others.

Simulation

Finally, we run the simulation for 1 second of simulated time. By default, the simulator uses a timestep dt = 0.1 ms.

run (1 * second)

And that’s it! To see some of the output of this network, go to the next part of the tutorial.

Exercise

The units system of Brian is useful for ensuring that everything is consistent, and that you don’t make hard to find
mistakes in your code by using the wrong units. Try changing the units of one of the parameters and see what happens.

3.1. Tutorials 13
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Solution

You should see an error message with a Python traceback (telling you which functions were being called when the
error happened), ending in a line something like:

Brian.units.DimensionMismatchError: The differential equations
are not homogeneous!, dimensions were (m"2 kg s*-3 A"-1)
(m"~2 kg s*-4 A"-1)

Tutorial 1b: Counting spikes

In the previous part of the tutorial we looked at the following:
* Importing the Brian module into Python
 Using quantities with units
* Defining a neuron model by its differential equation
 Creating a group of neurons
* Running a network
In this part, we move on to looking at the output of the network.

The first part of the code is the same.

from brian import =«

tau = 20 » msecond # membrane time constant

vVt = -50 * mvolt # spike threshold

Vr = -60 % mvolt # reset value

El = -60 % mvolt # resting potential (same as the reset)
G = NeuronGroup (N=40, model='dv/dt = - (V-El)/tau : volt',

threshold=Vt, reset=Vr)

Counting spikes

Now we would like to have some idea of what this network is doing. In Brian, we use monitors to keep track of
the behaviour of the network during the simulation. The simplest monitor of all is the SpikeMonitor, which just
records the spikes from a given NeuronGroup.

M = SpikeMonitor (G)

Results

Now we run the simulation as before:

’run(l * second) ‘

And finally, we print out how many spikes there were:

’print M.nspikes ‘

14 Chapter 3. Getting started
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So what’s going on? Why are there 40 spikes? Well, the answer is that the initial value of the membrane potential for
every neuron is 0 mV, which is above the threshold potential of -50 mV and so there is an initial spike at t=0 and then
it resets to -60 mV and stays there, below the threshold potential. In the next part of this tutorial, we’ll make sure there
are some more spikes to see.

Tutorial 1d: Introducing randomness

In the previous part of the tutorial, all the neurons start at the same values and proceed deterministically, so they all
spike at exactly the same times. In this part, we introduce some randomness by initialising all the membrane potentials
to uniform random values between the reset and threshold values.

‘We start as before:

from brian import =«

tau = 20 x msecond # membrane time constant

vVt = -50 * mvolt # spike threshold

Vr = -60 % mvolt # reset value

El = -49 % mvolt # resting potential (same as the reset)
G = NeuronGroup (N=40, model='dv/dt = - (V-El)/tau : volt',

threshold=Vt, reset=Vr)

M = SpikeMonitor (G)

But before we run the simulation, we set the values of the membrane potentials directly. The notation G . V refers to the
array of values for the variable V in group G. In our case, this is an array of length 40. We set its values by generating
an array of random numbers using Brian’s rand function. The syntax is rand (size) generates an array of length
s1ize consisting of uniformly distributed random numbers in the interval O, 1.

G.V = Vr + rand(40) * (Vt - Vr)

And now we run the simulation as before.

run (1 * second)

print M.nspikes

But this time we get a varying number of spikes each time we run it, roughly between 800 and 850 spikes. In the next
part of this tutorial, we introduce a bit more interest into this network by connecting the neurons together.

Tutorial 1c: Making some activity

In the previous part of the tutorial we found that each neuron was producing only one spike. In this part, we alter the
model so that some more spikes will be generated. What we’ll do is alter the resting potential E1 so that it is above
threshold, this will ensure that some spikes are generated. The first few lines remain the same:

from brian import =«

tau = 20 x msecond # membrane time constant
vVt = -50 * mvolt # spike threshold
Vr = -60 % mvolt # reset value

But we change the resting potential to -49 mV, just above the spike threshold:
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El = -49 x mvolt # resting potential (same as the reset)

And then continue as before:

G = NeuronGroup (N=40, model='dv/dt = - (V-El)/tau : volt',
threshold=Vt, reset=Vr)

M

SpikeMonitor (G)
run (1 * second)

print M.nspikes

Running this program gives the output 84 0. That’s because every neuron starts at the same initial value and proceeds
deterministically, so that each neuron fires at exactly the same time, in total 21 times during the 1s of the run.

In the next part, we’ll introduce a random element into the behaviour of the network.

Exercises

1. Try varying the parameters and seeing how the number of spikes generated varies.

2. Solve the differential equation by hand and compute a formula for the number of spikes generated. Compare
this with the program output and thereby partially verify it. (Hint: each neuron starts at above the threshold and
so fires a spike immediately.)

Solution

Solving the differential equation gives:
V = El + (Vr-El) exp (-t/tau)
Setting V=Vt at time t gives:
t = tau log( (Vr-El) / (Vt-El) )

If the simulator runs for time T, and fires a spike immediately at the beginning of the run it will then generate n spikes,
where:

n=[TH]+1

If you have m neurons all doing the same thing, you get nm spikes. This calculation with the parameters above gives:
t=48.0ms n =21 nm = 840

As predicted.

Tutorial 1e: Connecting neurons
In the previous parts of this tutorial, the neurons are still all unconnected. We add in connections here. The model we

use is that when neuron i is connected to neuron j and neuron i fires a spike, then the membrane potential of neuron j
is instantaneously increased by a value psp. We start as before:

from brian import =«

tau = 20 * msecond # membrane time constant
vVt = =50 % mvolt # spike threshold
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Vr = -60 % mvolt # reset value
El = -49 % mvolt # resting potential (same as the reset)

Now we include a new parameter, the PSP size:

psp = 0.5 % mvolt # postsynaptic potential size

And continue as before:

G = NeuronGroup (N=40, model='dV/dt = —(V-El)/tau : volt',
threshold=Vt, reset=Vr)

Connections

We now proceed to connect these neurons. Firstly, we declare that there is a connection from neurons in G to neurons
in G. For the moment, this is just something that is necessary to do, the reason for doing it this way will become clear
in the next tutorial.

C = Connection (G, G)

Now the interesting part, we make these neurons be randomly connected with probability 0.1 and weight psp. Each
neuron i in G will be connected to each neuron j in G with probability 0.1. The weight of the connection is the amount
that is added to the membrane potential of the target neuron when the source neuron fires a spike.

’C.connect_random(sparseness:o.l, weight=psp) ‘

These two previous lines could be done in one line:

’C = Connection (G, G, sparseness=0.1,weight=psp)

Now we continue as before:

M = SpikeMonitor (G)

G.V = Vr + rand(40) = (Vt - Vr)

run (1 * second)

print M.nspikes

You can see that the number of spikes has jumped from around 800-850 to around 1000-1200. In the next part of the
tutorial, we’ll look at a way to plot the output of the network.

Exercise

Try varying the parameter psp and see what happens. How large can you make the number of spikes output by the
network? Why?

Solution

The logically maximum number of firings is 400,000 = 40 * 1000 / 0.1, the number of neurons in the network * the
time it runs for / the integration step size (you cannot have more than one spike per step).
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In fact, the number of firings is bounded above by 200,000. The reason for this is that the network updates in the

following way:
1. Integration step
2. Find neurons above threshold
3. Propagate spikes

4. Reset neurons which spiked

You can see then that if neuron i has spiked at time t, then it will not spike at time t+dt, even if it receives spikes from
another neuron. Those spikes it receives will be added at step 3 at time t, then reset to Vr at step 4 of time t, then
the thresholding function at time t+dt is applied at step 2, before it has received any subsequent inputs. So the most a

neuron can spike is every other time step.

Tutorial 1f: Recording spikes

In the previous part of the tutorial, we defined a network with not entirely trivial behaviour, and printed the number of
spikes. In this part, we’ll record every spike that the network generates and display a raster plot of them. We start as

before:
from brian import =«
tau = 20 x msecond # membrane time constant
vVt = =50 % mvolt # spike threshold
Vr = -60 % mvolt # reset value
El = -49 x mvolt # resting potential (same as the reset)
psp = 0.5 % mvolt # postsynaptic potential size
G = NeuronGroup (N=40, model='dv/dt = - (V-El)/tau volt"',
threshold=Vt, reset=Vr)
C = Connection (G, G)
C.connect_random(sparseness=0.1, weight=psp)

M = SpikeMonitor (G)

G.V = Vr + rand(40) * (Vt - Vr)

run(l * second)

print M.nspikes

Having run the network, we simply use the raster_plot () function provided by Brian. After creating plots, we
have to use the show () function to display them. This function is from the PyLab module that Brian uses for its built

in plotting routines.

raster_plot ()
show ()

18
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As you can see, despite having introduced some randomness into our network, the output is very regular indeed. In
the next part we introduce one more way to plot the output of a network.

3.1.3 Tutorial 2: Connections

In this tutorial, we will cover in more detail the concept of a Connect ion in Brian.

Tutorial contents

Tutorial 2a: The concept of a Connection

The network

In this first part, we’ll build a network consisting of three neurons. The first two neurons will be under direct control
and have no equations defining them, they’ll just produce spikes which will feed into the third neuron. This third
neuron has two different state variables, called Va and Vb. The first two neurons will be connected to the third neuron,
but a spike arriving at the third neuron will be treated differently according to whether it came from the first or second
neuron (which you can consider as meaning that the first two neurons have different types of synapses on to the third
neuron).

The program starts as follows.

from brian import =«

tau_a = 1 * ms
tau_b = 10 * ms
vt = 10 *» mV
Vr = 0 » mV
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Differential equations

This time, we will have multiple differential equations. We will use the Equations object, although you could
equally pass the multi-line string defining the differential equations directly when initialising the NeuronGroup
object (see the next part of the tutorial for an example of this).

egs = Equations('''
dva/dt = -Va/tau_a : volt
dvb/dt = -Vb/tau_b : volt

|||)

So far, we have defined a model neuron with two state variables, Va and Vb, which both decay exponentially towards
0, but with different time constants tau_a and tau_b. This is just so that you can see the difference between them
more clearly in the plot later on.

SpikeGeneratorGroup

Now we introduce the SpikeGeneratorGroup class. This is a group of neurons without a model, which just
produces spikes at the times that you specify. You create a group like this by writing:

G = SpikeGeneratorGroup (N, spiketimes)

where N is the number of neurons in the group, and spiketimes is a list of pairs (i, t) indicating that neuron i
should fire at time t. In fact, spiketimes can be any ‘iterable container’ or ‘generator’, but we don’t cover that
here (see the detailed documentation for SpikeGeneratorGroup).

In our case, we want to create a group with two neurons, the first of which (neuron 0) fires at times 1 ms and 4 ms, and
the second of which (neuron 1) fires at times 2 ms and 3 ms. The list of spiketimes then is:

spiketimes = [(0, 1 = ms), (0, 4 x ms),
(1, 2 » ms), (1, 3 = ms)]

and we create the group as follows:

’Gl = SpikeGeneratorGroup (2, spiketimes)

Now we create a second group, with one neuron, according to the model we defined earlier.

’GZ = NeuronGroup (N=1, model=eqgs, threshold=Vt, reset=Vr) ‘

Connections

In Brian, a Connect ion from one NeuronGroup to another is defined by writing:

C = Connection (G, H,state)

Here G is the source group, H is the target group, and state is the name of the target state variable. When a neuron 1
in G fires, Brian finds all the neurons j in H that i in G is connected to, and adds the amount C [1, j] to the specified
state variable of neuron j in H. Here C[1, j] is the (i,j)th entry of the connection matrix of C (which is initially all
Z€ero).
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To start with, we create two connections from the group of two directly controlled neurons to the group of one neuron
with the differential equations. The first connection has the target state Va and the second has the target state Vb.

Cl
Cc2

Connection (Gl, G2, 'va'")
Connection(Gl, G2, 'Vb'")

So far, this only declares our intention to connect neurons in group G1 to neurons in group G2, because the connection
matrix is initially all zeros. Now, with connection C1 we connect neuron 0 in group G1 to neuron 0 in group G2, with
weight 3 mV. This means that when neuron O in group G1 fires, the state variable Va of the neuron in group G2 will
be increased by 6 mV. Then we use connection C2 to connection neuron 1 in group G1 to neuron 0 in group G2, this
time with weight 3 mV.

C1[0, 0] = 6 * mV
c2[1, 0] = 3 * mV

The net effect of this is that when neuron 0 of G1 fires, Va for the neuron in G2 will increase 6 mV, and when neuron
1 of G1 fires, Vb for the neuron in G2 will increase 3 mV.

Now we set up monitors to record the activity of the network, run it and plot it.

Ma = StateMonitor (G2, 'Va', record=True)
Mb = StateMonitor (G2, 'Vb', record=True)

run (10 * ms)
plot (Ma.times, Mal[O0])

plot (Mb.times, Mb[O0])
show ()
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The two plots show the state variables Va and Vb for the single neuron in group G2. Va is shown in blue, and Vb in
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green. According to the differential equations, Va decays much faster than Vb (time constant 1 ms rather than 10 ms),
but we have set it up (through the connection strengths) that an incoming spike from neuron O of G1 causes a large
increase of 6 mV to Va, whereas a spike from neuron 1 of G1 causes a smaller increase of 3 mV to Vb. The value
for Va then jumps at times 1 ms and 4 ms, when we defined neuron 0 of G1 to fire, and decays almost back to rest
in between. The value for Vb jumps at times 2 ms and 3 ms, and because the times are closer together and the time
constant is longer, they add together.

In the next part of this tutorial, we’ll see how to use this system to do something useful.

Exercises

1. Try playing with the parameters tau_a, tau_lb and the connection strengths, C1 [0, 0] and C2[0, 1]. Try
changing the list of spike times.

2. In this part of the tutorial, the states Va and Vb are independent of one another. Try rewriting the differential
equations so that they’re not independent and play around with that.

3. Write a network with inhibitory and excitatory neurons. Hint: you only need one connection.

4. Write a network with inhibitory and excitatory neurons whose actions have different time constants (for example,
excitatory neurons have a slower effect than inhibitory ones).

Solutions

3. Simple write C [1, j]=-3*mV to make the connection from neuron i to neuron j inhibitory.

4. See the next part of this tutorial.

Tutorial 2b: Excitatory and inhibitory currents

In this tutorial, we use multiple connections to solve a real problem, how to implement two types of synapses with
excitatory and inhibitory currents with different time constants.

The scheme

The scheme we implement is the following diffential equations:

taum dV/dt=-V + ge - gi

taue dge/dt = -ge

taui dgi/dt = -gi
An excitatory neuron connects to state ge, and an inhibitory neuron connects to state gi. When an excitatory spike
arrives, ge instantaneously increases, then decays exponentially. Consequently, V will initially but continuously rise
and then fall. Solving these equations, if V(0)=0, ge(0)=g0 corresponding to an excitatory spike arriving at time 0, and
gi(0)=0 then:

gi=0

ge = g0 exp(-t/taue)

V = (exp(-t/taum) - exp(-t/taue)) taue g0 / (taum-taue)

We use a very short time constant for the excitatory currents, a longer one for the inhibitory currents, and an even
longer one for the membrane potential.
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from brian import =«

taum = 20 x ms
taue = 1 * ms
taui = 10 * ms
vVt = 10 * mV
Vr = 0 » mV

egs = Equations('''
dv/dt = (-V+ge—gi)/taum : volt
dge/dt = -ge/taue : volt
dgi/dt = -gi/taui : volt

vll)

Connections

As before, we’ll have a group of two neurons under direct control, the first of which will be excitatory this time, and
the second will be inhibitory. To demonstrate the effect, we’ll have two excitatory spikes reasonably close together,
followed by an inhibitory spike later on, and then shortly after that two excitatory spikes close together.

spiketimes = [(0, 1 % ms), (0, 10 = ms),
(1, 40 = ms),
(0, 50 % ms), (0, 55 % ms)]
Gl = SpikeGeneratorGroup (2, spiketimes)

Cl = Connection(Gl, G2, 'ge')
C2 = Connection(Gl, G2, 'gi')

G2 = NeuronGroup (N=1, model=eqgs, threshold=Vt,

reset=Vr)

The weights are the same - when we increase ge the effect on V is excitatory and when we increase gi the effect on

V is inhibitory.

C1[0, 0] = 3 * mV
c2[1, 0] = 3 * mV

We set up monitors and run as normal.

Mv = StateMonitor (G2, 'V', record=True)
Mge = StateMonitor (G2, 'ge', record=True)
Mgi = StateMonitor (G2, 'gi', record=True)

run (100 = ms)

This time we do something a little bit different when plotting it. We want a plot with two subplots, the top one will
show V, and the bottom one will show both ge and gi. We use the subplot command from pylab which mimics

the same command from Matlab.

figure ()

subplot (211)

plot (Mv.times, Mv[O0])
subplot (212)

plot (Mge.times, Mge[0])
plot (Mgi.times, Mgi[0])
show ()
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The top figure shows the voltage trace, and the bottom figure shows ge in blue and gi in green. You can see that
although the inhibitory and excitatory weights are the same, the inhibitory current is much more powerful. This is
because the effect of ge or gi on V is related to the integral of the differential equation for those variables, and gi
decays much more slowly than ge. Thus the size of the negative deflection at 40 ms is much bigger than the excitatory
ones, and even the double excitatory spike after the inhibitory one can’t cancel it out.

In the next part of this tutorial, we set up our first serious network, with 4000 neurons, excitatory and inhibitory.

Exercises

1. Try changing the parameters and spike times to get a feel for how it works.
2. Try an equivalent implementation with the equation taum dV/dt = -V+ge+gi

3. Verify that the differential equation has been solved correctly.

Solutions

Solution for 2:
Simply use the line C2[1, 0] = -3»mV to get the same effect.
Solution for 3:

First, set up the situation we described at the top for which we already know the solution of the differential equations,
by changing the spike times as follows:

spiketimes = [(0,0*ms) ]
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Now we compute what the values ought to be as follows:

t = Mv.times
Vpredicted = (exp(-t/taum) - exp(-t/taue))x*tauex* (3*mV) / (taum-taue)

Now we can compute the difference between the predicted and actual values:

’Vdiff = abs (Vpredicted - Mv[0])

This should be zero:

’print max (Vdiff)

Sure enough, it’s as close as you can expect on a computer. When I run this it gives me the value 1.3 aV, which is 1.3
* 107-18 volts, i.e. effectively zero given the finite precision of the calculations involved.

Tutorial 2c: The CUBA network

In this part of the tutorial, we set up our first serious network that actually does something. It implements the CUBA
network, Benchmark 2 from:

Simulation of networks of spiking neurons: A review of tools and strategies (2006). Brette, Rudolph,
Carnevale, Hines, Beeman, Bower, Diesmann, Goodman, Harris, Zirpe, Natschlager, Pecevski, Ermen-
trout, Djurfeldt, Lansner, Rochel, Vibert, Alvarez, Muller, Davison, El Boustani and Destexhe. Journal of
Computational Neuroscience

This is a network of 4000 neurons, of which 3200 excitatory, and 800 inhibitory, with exponential synaptic currents.
The neurons are randomly connected with probability 0.02.

from brian import =«
taum = 20 x ms # membrane time constant
taue = 5 x ms # excitatory synaptic time constant
taui = 10 * ms # inhibitory synaptic time constant
vVt = =50 * mV # spike threshold
Vr = =60 * mV # reset value
El = 49 « mV # resting potential
we = (60 = 0.27 / 10) = mV # excitatory synaptic weight
wi = (20 » 4.5 / 10) * mV # inhibitory synaptic weight
egs = Equations('''
dv/dt = (ge-gi-(V-El))/taum : volt
dge/dt = -ge/taue : volt
dgi/dt = -gi/taui : volt
)

So far, this has been pretty similar to the previous part, the only difference is we have a couple more parameters, and
we’ve added a resting potential E1 into the equation for V.

Now we make lots of neurons:

G = NeuronGroup (4000, model=eqgs, threshold=Vt, reset=Vr)

Next, we divide them into subgroups. The subgroup () method of a NeuronGroup returns a new NeuronGroup
that can be used in exactly the same way as its parent group. At the moment, the subgrouping mechanism can only
be used to create contiguous groups of neurons (so you can’t have a subgroup consisting of neurons 0-100 and also
200-300 say). We designate the first 3200 neurons as Ge and the second 800 as Gi, these will be the excitatory and
inhibitory neurons.
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Ge = G.subgroup (3200) # Excitatory neurons
Gi G.subgroup (800)

# Inhibitory neurons

Now we define the connections. As in the previous part of the tutorial, ge is the excitatory current and gi is the
inhibitory one. Ce says that an excitatory neuron can synapse onto any neuron in G, be it excitatory or inhibitory.
Similarly for inhibitory neurons. We also randomly connect Ge and Gi to the whole of G with probability 0.02 and

the weights given in the list of parameters at the top.

v

Ci = Connection (Gi, G,

Ce = Connection(Ge, G, 'ge', sparseness=0.02,
gi', sparseness=0.02,

weight=we)
weight=wi)

Set up some monitors as usual. The line record=0 in the St ateMonitor declarations indicates that we only want

to record the activity of neuron 0. This saves time and memory.

M = SpikeMonitor (G)

MV = StateMonitor (G, 'V', record=0)
Mge = StateMonitor (G, 'ge', record=0)
Mgi = StateMonitor (G, 'gi', record=0)

And in order to start the network off in a somewhat more realistic state, we initialise the membrane potentials uniformly

randomly between the reset and the threshold.

’G.V = Vr + (Vt - Vr) % rand(len(G))

Now we run.

’run(BOO * ms)

|

And finally we plot the results. Just for fun, we do a rather more complicated plot than we’ve been doing so far, with
three subplots. The upper one is the raster plot of the whole network, and the lower two are the values of v (on the left)
and ge and gi (on the right) for the neuron we recorded from. See the PyLab documentation for an explanation of the
plotting functions, but note that the raster._plot () keyword newfigure=False instructs the (Brian) function
raster_plot () notto create a new figure (so that it can be placed as a subplot of a larger figure).

subplot (211)

subplot (223)

plot (MV.times / ms, MV[0] / mV)
xlabel ('Time (ms) ')

ylabel ('V (mV) ")

subplot (224)

plot (Mge.times / ms, Mge[0] / mV)
plot (Mgi.times / ms, Mgi[0] / mV)
xlabel ('Time (ms) ")

ylabel ('ge and gi (mV)"')
legend(('ge', 'gi'), 'upper right")
show ()

raster_plot (M, title='The CUBA network', newfigure=False)

26
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3.2 Examples

These examples cover some basic topics in writing Brian scripts in Python. The complete source code for the examples
is available in the examples folder in the extras package.

3.2.1 electrophysiology

Example: voltageclamp (electrophysiology)

Voltage-clamp experiment

from brian import =
from brian.library.electrophysiology import x

defaultclock.dt = .01 % ms

taum = 20 * ms

gl = 20 % nS

Cm = taum » gl

Re = 50 * Mohm

Ce = 0.2 * ms / Re

N =1

Rs = .9 » Re

tauc = Rs » Ce # critical tau_ u

3.2. Examples

27




Brian Documentation, Release 1.4.4

egs = Equations('''

dvm/dt=(-gl*vm+i_inj)/Cm : volt

)

eqgs += electrode (.2 * Re, Ce)

egs += voltage_clamp(vm='v_el', v_cmd=20 * mV, i_inj='"i_cmd', i_rec='ic',
Re=.8 » Re, Rs=.9 % Re, tau_u=.2 * ms)

setup = NeuronGroup (N, model=eqgs)

setup.v = 0 * mV
recording = StateMonitor (setup, 'ic', record=True)
soma = StateMonitor (setup, 'vm', record=True)

run (200 = ms)

figure ()

plot (recording.times / ms, recording[0] / nA, 'k'")
figure ()

plot (soma.times / ms, soma[0] / mV, 'b')

show ()

Example: compensation_ex3_quality (electrophysiology)

Example of quality check method. Requires binary files “current.npy” and “rawtrace.npy’.

Rossant et al., “A calibration-free electrode compensation method” J. Neurophysiol 2012

import os

from brian import =

import numpy as np

from brian.library.electrophysiology import =x

working_dir = os.path.dirname( file )

# load data
dt = 0.l*ms

current = np.load(os.path.join(working dir, "current.npy")) # 10000-long vector, 1s_
—duration

rawtrace = np.load(os.path.join(working_dir, "trace.npy")) # 10000-long vector, 1s_
—duration

compensatedtrace = np.load(os.path.join(working_dir, "compensatedtrace.npy")) #,
—obtained with examplel

t = linspace(0., 1., len(current))

# get trace quality of both raw and compensated traces

r = get_trace_quality (rawtrace, current, full=True)

rcomp = get_trace_quality (compensatedtrace, current, full=True)

spikes = r["spikes"]

print "Quality coefficient for raw: $%.3f and for compensated trace: %.31f" % \
(r["correlation"], rcomp["correlation"])

# plot trace and spikes
plot (t, rawtrace, 'k')

plot (t, compensatedtrace, 'g')

plot (t[spikes], rawtrace[spikes], 'ok")

plot (t[spikes], compensatedtrace[spikes], 'og')
show ()
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Example: compensation_ex2_spikes (electrophysiology)

Example of spike detection method. Requires binary files “current.npy” and “rawtrace.npy’.

Rossant et al., “A calibration-free electrode compensation method” J. Neurophysiol 2012

import os

from brian import =

import numpy as np

from brian.library.electrophysiology import =

working_dir = os.path.dirname( file )

# load data
dt = 0.lxms

current = np.load(os.path.join(working dir, "current.npy")) # 10000-long vector, 1s_
—duration

rawtrace = np.load(os.path.join(working_dir, "trace.npy")) # 10000-long vector, 1s,
—duration

t = linspace(0., 1., len(current))

# find spikes and compute score
spikes, scores = find_spikes (rawtrace, dt=dt, check_quality=True)

# plot trace and spikes

plot (t, rawtrace, 'k')

plot (t [spikes], rawtrace[spikes], 'or')
show ()

Example: threshold_analysis (electrophysiology)

Analysis of spike threshold.

Loads a current clamp voltage trace, compensates (remove electrode voltage) and analyses the spikes.

from brian import =
from brian.library.electrophysiology import x
import numpy

dt=.1l+ms

Vraw = numpy.load("trace.npy") # Raw current clamp trace

I = numpy.load("current.npy")

V, _ = Lp_compensate (I, Vraw, dt) # Electrode compensation
# Peaks

spike_criterion=find_spike_criterion (V)
print "Spike detected when V exceeds",float (spike_criterion/mv), "mv"
peaks=spike_peaks (V,vc=spike_criterion) # vc is optional

# Onsets (= spike threshold)
onsets=spike_onsets (V,criterion=3+dt,vc=spike_criterion) # Criterion: dV/dt>3 V/s

# Spike-triggered average of V
STA=spike_shape (V, onsets=onsets, before=100, after=100)

print "Spike duration:",float (spike_duration (V,onsets=onsets) «dt/ms), "ms"
print "Reset potential:", float (reset_potential (V,peaks=peaks)/mV), "mv"
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# Spike threshold statistics
slope=slope_threshold (V,onsets=onsets, T=int (5xms/dt))

# Subthreshold trace
subthreshold=-spike_mask (V)

t=arange (len (V) ) xdt

subplot (221)

plot (t/ms,V/mv, 'k')

plot (t [peaks]/ms,V[peaks]/mV,".b")

plot (t [onsets]/ms,V[onsets]/mV,".r")

subplot (222)

plot (((arange (len (STA))-100) xdt) /ms, STA/mV, 'k")
subplot (223)

plot (t [subthreshold] /ms,V[subthreshold]/mv, 'k")
subplot (224)

plot (slope/ms,V[onsets]/mv, '.")

show ()

Example: AEC (electrophysiology)

AEC experiment (current-clamp)

from brian import =«
from brian.library.electrophysiology import =
from time import time

myclock = Clock(dt=.1 % ms)
clock_rec = Clock(dt=.1 * ms)

#log_level_ debug()

taum = 20 * ms

gl = 20 » nS

Cm = taum * gl

Re = 50 % Mohm

Ce = 0.1 » ms / Re

egs = Equations('''
dvm/dt=(-gl*vm+i_in7j) /Cm volt
I:amp

)
eqgs += electrode (.6 * Re, Ce)

egs += current_clamp(vm='v_el',
setup = NeuronGroup (l, model=egs,
board = AEC (setup, 'Y,
recording = StateMonitor (board,
soma = StateMonitor (setup,

i_inj='i_cmd',
clock=myclock)

clock_rec)

'record',
record=True,

'v_rec',
lvml,

run (50 = ms)
board.command =
run (200 * ms)
board.command = 0 % nA
run (150 * ms)
board.start_injection ()
tl = time ()

.5 x nA

i_cmd='1",

record=True,
clock=myclock)

Re=.4 % Re, Ce=Ce)

clock=myclock)
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run(l % second)

t2 time ()

print 'Duration:', t2 - tl, 's'
board.stop_injection ()

run (100 * ms)

board.estimate ()

print 'Re=', sum(board.Ke) +* ohm
board.switch_on ()

run (50 * ms)

board.command = .5 * nA

run (200 * ms)

board.command = 0 % nA

run (150 * ms)

board.switch_off ()

figure ()

plot (recording.times / ms, recording[0] / mV, 'b')
plot (soma.times / ms, soma[0] / mV, 'r'")
figure ()

plot (board.Ke)

show ()

Example: SEVC (electrophysiology)

Voltage-clamp experiment (SEVC)

from brian import =«
from brian.library.electrophysiology import =

defaultclock.dt = .01 % ms

taum = 20 * ms # membrane time constant
gl = 1. / (50 %= Mohm) # leak conductance

Cm taum * gl # membrane capacitance

Re 50 % Mohm # electrode resistance

Ce = 0.1 » ms / Re # electrode capacitance
egs = Equations('''

dvm/dt=(-gl*vm+i_inj)/Cm : volt

I:amp

)

egs += current_clamp(i_cmd='1', Re=Re, Ce=Ce)

setup = NeuronGroup(l, model=eqgs)

ampli = SEVC (setup, 'v_rec', 'I', 1 * kHz, gain=250 * nS, gain2=50 % nS / ms)

recording = StateMonitor (ampli, 'record', record=True)
soma = StateMonitor (setup, 'vm', record=True)
ampli.command = 20 * mV

run (200 * ms)

figure ()

plot (recording.times / ms, recording[0] / nA, 'k')
figure ()

plot (soma.times / ms, somal[0] / mV, 'b'")

show ()

3.2. Examples 31




Brian Documentation, Release 1.4.4

Example: bridge (electrophysiology)

Bridge experiment (current-clamp)

from brian import =«
from brian.library.electrophysiology import =

defaultclock.dt = .01 * ms
#log_level_debug ()

taum = 20 * ms

gl = 20 % nS

Cm = taum * gl

Re = 50 % Mohm

Ce = 0.5 » ms / Re
N = 10

egs = Equations('''

dvm/dt=(-glxvm+i_inj) /Cm : volt

#Rbridge:ohm

CC:farad

I:amp

)

eqgs += electrode (.6 * Re, Ce)

#egs+=current_clamp (vm='v_el',i_inj='i_cmd',i_cmd='I"',Re=.4+Re, Ce=Ce,

# bridge="'Rbridge')

eqgs += current_clamp(vm='v_el', i_inj='i _cmd', i_cmd='I"', Re=.4 % Re, Ce=Ce,
bridge=Re, capa_comp='CC")

setup = NeuronGroup (N, model=eqgs)

setup.I = 0 % nA

setup.v = 0 * mV

#setup.Rbridge=1inspace (0+Mohm, 60+Mohm, N)

setup.CC = linspace(0 % Ce, Ce, N)

recording = StateMonitor (setup, 'v_rec', record=True)

run (50 * ms)
setup.I = .5 % nA
run (200 ms)
setup.I = 0 % nA
run (150 * ms)
for i in range (N) :
plot (recording.times / ms + i1 % 400, recording[i] / mV, 'k'")
show ()

*

Example: DCC (electrophysiology)

An example of single-electrode current clamp recording with discontinuous current clamp (using the electrophysiology
library).

from brian import =
from brian.library.electrophysiology import x

defaultclock.dt = 0.01 * ms

taum = 20 * ms # membrane time constant
gl = 1. / (50 x= Mohm) # leak conductance
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Cm = taum * gl # membrane capacitance

Re = 50 » Mohm # electrode resistance

Ce = 0.1 » ms / Re # electrode capacitance
egs = Equations('''

dvm/dt=(-gl*vm+i_inj)/Cm : volt

Rbridge:ohm # bridge resistance

I:amp # command current

)

egs += current_clamp(i_cmd='1', Re=Re, Ce=Ce)

setup = NeuronGroup(l, model=eqgs)

ampli = DCC(setup, 'v_rec', 'I', 1 % kHz)

soma = StateMonitor (setup, 'vm', record=True)

recording = StateMonitor (setup, 'v_rec', record=True)
DCCrecording = StateMonitor (ampli, 'record', record=True)

# No compensation

run (50 * ms)
ampli.command = .5 * nA
run (100 = ms)
ampli.command = 0 % nA
run (50 * ms)

ampli.set_frequency (2 * kHz)
ampli.command = .5 * nA

run (100 = ms)

ampli.command = 0 % nA

run (50 * ms)

plot (recording.times / ms, recording[0] / mVv, 'b')

(
plot (DCCrecording.times / ms, DCCrecording[0] / mV, 'k'")
plot (soma.times / ms, soma[0] / mV, 'r'")
show ()

Example: compensation_ex1 (electrophysiology)

Example of L"p electrode compensation method. Requires binary files “current.npy” and “rawtrace.npy”.

Rossant et al., “A calibration-free electrode compensation method” J. Neurophysiol 2012

import os

from brian import =

import numpy as np

from brian.library.electrophysiology import x

working_dir = os.path.dirname( file )

# load data
dt = 0.1lxms

current = np.load(os.path.join(working_dir, "current.npy")) # 10000-1ong vector, 1s_
—duration

rawtrace = np.load(os.path.join(working dir, "trace.npy")) # 10000-1long vector, 1s_
—duration

t = linspace (0., 1., len(current))

# launch compensation
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r = Lp_compensate (current, rawtrace, dt, p=1.0, full=True)
# print best parameters
print "Best parameters: R, tau, Vr, Re, taue:"

print r["params"]

# plot traces
subplot (211)

plot (t, current, 'k')

subplot (212)

plot (t, rawtrace, 'k'") # raw trace
plot (t, r["Vfull"], 'b")

plot (t, r["Vcompensated"], 'g')

show ()

# full model trace (neuron and electrode)
# compensated trace

3.2.2 misc

Example: cable (misc)

Dendrite with 100 compartments

from brian import =

from brian.compartments import x

from brian.library.ionic_currents import =«
=1
100
length / nseg

Cm =1 » uF / cm *x 2

gl = 0.02 % msiemens / cm *x 2
diam = 1 % um

area pi * diam x dx

E1l * mV

Ri
ra

length
nseg
dx

* mm

0
100 % ohm * cm
= Ri « 4 / (pli » diam =+ 2)

Cm / gl
.5 (diam /

"Time constant =",
"Space constant =",

print

print *

segments = {}
for i in range (nseq):
segments[i] MembraneEquation (Cm * area)

segments[0] += Current ('I:nA'")

cable Compartments (segments)
for i in range(nseg - 1):

cable.connect (i, 1 + 1, ra = dx)

neuron NeuronGroup (1, model=cable)
#neuron.vm_0=10+mV

neuron.I_0 .05 + nA

trace [l

(gl = Ri))

* *

.5

+ leak_current (gl % area, El)
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for i in range (10):
trace.append (StateMonitor (neuron, 'vm_' + str(l10 % i), record=True))

run (200 * ms)
for i in range(10):

plot (trace[i] .times / ms, tracel[i] [0] / mV)
show ()

Example: stopping (misc)

Network to demonstrate stopping a simulation during a run

Have a fully connected network of integrate and fire neurons with input fed by a group of Poisson neurons with a
steadily increasing rate, want to determine the point in time at which the network of integrate and fire neurons switches
from no firing to all neurons firing, so we have a network_operation called stop_condition that calls the stop() function
if the monitored network firing rate is above a minimum threshold.

from brian import =«
clk = Clock ()
Vr = 0 » mV

El = 0 » mV
vt = 10 * mV

tau = 10 * ms

weight = 0.2 » mV

duration = 100 % msecond

max_input_rate = 10000 = Hz

num_input_neurons = 1000

input_connection_p = 0.1

rate_per_neuron = max_input_rate / (num_input_neurons * input_connection_p)

P = PoissonGroup (num_input_neurons, lambda t: rate_per_neuron * (t / duration))

G = NeuronGroup (1000, model='dV/dt=-(V-El)/tau : volt', threshold=Vt, reset=Vr)
G.V = Vr + (Vt - Vr) = rand(len(G))

CPG = Connection (P, G, weight=weight, sparseness=input_connection_p)
CGG = Connection (G, G, weight=weight)
MP = PopulationRateMonitor (G, bin=1 % ms)
@network_operation
def stop_condition():
if MP.rate[-1] % Hz > 10 = Hz:
stop ()

run (duration)

print "Reached population rate>10 Hz by time", clk.t, "+/- 1 ms."
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Example: topographic_map2 (misc)

Topographic map - an example of complicated connections. Two layers of neurons. The first layer is connected
randomly to the second one in a topographical way. The second layer has random lateral connections. Each neuron
has a position x[i].

from brian import =«

N = 100

tau = 10 * ms

tau_e = 2 x ms # AMPA synapse
egqs = ''"

dv/dt=(I-v)/tau : volt
dI/dt=-I/tau_e : volt

rates = zeros(N) = Hz

rates[N / 2 — 10:N / 2 4+ 10] = ones(20) = 30 % Hz

layerl = PoissonGroup (N, rates=rates)

layerl.x = linspace (0., 1., len(layerl)) # abstract position between 0 and 1

layer2 = NeuronGroup (N, model=eqgs, threshold=10 * mV, reset=0 * mV)

layer2. = linspace (0., 1., len(layer2))

w

# Generic connectivity function
topomap = lambda i, j, x, y, sigma: exp(-abs(x[i] - yI[]j]l) / sigma)

feedforward = Connection(layerl, layer2, sparseness=.5,
weight=lambda i, j:topomap(i, j, layerl.x, layer2.x, .3) =

[

<~>3 * mV)
recurrent = Connection(layer2, layer2, sparseness=.5,

weight=lambda i, Jj:topomap (i, Jj, layerl.x, layer2.x, .2) =
—5 * mV)

spikes = SpikeMonitor (layer?2)

run(l % second)

subplot (211)

raster_plot (spikes)

subplot (223)

imshow (feedforward.W.todense (), interpolation='nearest', origin='lower")
title('Feedforward connection strengths')

subplot (224)

imshow (recurrent.W.todense (), interpolation='nearest', origin='lower")
title('Recurrent connection strengths')

show ()

Example: transient_sync (misc)

Transient synchronisation in a population of noisy IF neurons with distance-dependent synaptic weights (organised as
aring)

from brian import =«

tau = 10 * ms
N = 100
v0 = 5 x mV
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sigma = 4 * mV

group = NeuronGroup (N, model='dv/dt=(v0-v)/tau + sigmaxxi/tauxx.5 : volt', \
threshold=10 » mV, reset=0 *» mV)

C = Connection(group, group, 'v', weight=lambda i, j:.4 % mV * cos(2. » pi = (i - 3J).

—x 1./ N))

S = SpikeMonitor (group)

R = PopulationRateMonitor (group)

group.v = rand(N) x 10 * mV

run (5000 % ms)

subplot (211)

raster_plot (S)

subplot (223)

imshow (C.W.todense (), interpolation='nearest')
title('Synaptic connections')

subplot (224)

plot (R.times / ms, R.smooth_rate(2 » ms, filter='flat'))
title('Firing rate')

show ()

Example: pulsepacket (misc)

This example basically replicates what the Brian PulsePacket object does, and then compares to that object.

from brian import =
from random import gauss, shuffle

# Generator for pulse packet

def pulse_packet (t, n, sigma):
# generate a list of n times with Gaussian distribution, sort them in time, and
# then randomly assign the neuron numbers to them

times = [gauss(t, sigma) for i in range(n)]
times.sort ()
neuron = range (n)

shuffle (neuron)
return zip(neuron, times) # returns a list of pairs (i,t)

Gl = SpikeGeneratorGroup (1000, pulse_packet (50 % ms, 1000, 5 *» ms))
M1 SpikeMonitor (G1)
PRM1 = PopulationRateMonitor (Gl, bin=1 x ms)

G2 = PulsePacket (50 * ms, 1000, 5 % ms)
M2 = SpikeMonitor (G2)
PRM2 = PopulationRateMonitor (G2, bin=1 * ms)

run (100 = ms)

subplot (221)
raster_plot (M1)
subplot (223)
plot (PRM1l.rate)
subplot (222)
raster_plot (M2)
subplot (224)
plot (PRM2.rate)
show ()
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Example: mirollo_strogatz (misc)

Mirollo-Strogatz network

from brian import =

tau = 10 * ms
v0 = 11 = mV
N = 20

w = .1 % mV

group = NeuronGroup (N, model='dv/dt=(v0-v)/tau

%m\/)

W = Connection (group, group, 'v', weight=w)

group.v = rand(N) * 10 x mV

S = SpikeMonitor (group)

run (300 = ms)

raster_plot (S)
show ()

volt',

threshold=10 » mV, reset=0 =

Example: CUBA (misc)

This is a Brian script implementing a benchmark described in the following review paper:

Simulation of networks of spiking neurons: A review of tools and strategies (2007). Brette, Rudolph, Carnevale, Hines,
Beeman, Bower, Diesmann, Goodman, Harris, Zirpe, Natschlager, Pecevski, Ermentrout, Djurfeldt, Lansner, Rochel,
Vibert, Alvarez, Muller, Davison, El Boustani and Destexhe. Journal of Computational Neuroscience 23(3):349-98

Benchmark 2: random network of integrate-and-fire neurons with exponential synaptic currents

Clock-driven implementation with exact subthreshold integration (but spike times are aligned to the grid)

R. Brette - Oct 2007

Brian is a simulator for spiking neural networks written in Python, developed by R. Brette and D. Goodman. http:

//brian.di.ens.fr

from brian import =
import time

start_time = time.time ()
taum = 20 * ms

taue = 5 * ms

taui = 10 * ms

vVt = -50 % mV

Vr = -60 % mV

El = -49 x mV

egs = Equations('''

dv/dt = (ge+gi-(v-El))/taum volt

dge/dt = -ge/taue volt
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dgi/dt = —-gi/taui : volt
'l')

P = NeuronGroup (4000, model=eqgs, threshold=Vt, reset=Vr, refractory=5 * ms)
P.v = Vr

P.ge = 0 x mV

P 0 » mV

.gi

P.subgroup (3200)
Pi = P.subgroup (800)
(

we = (60 = 0.27 / 10) = mV # excitatory synaptic weight (voltage)
wi = (=20 = 4.5 / 10) = mV # inhibitory synaptic weight

Ce = Connection(Pe, P, 'ge', weight=we, sparseness=0.02)

Ci = Connection(Pi, P, 'gi', weight=wi, sparseness=0.02)

P.v = Vr + rand(len(P)) * (Vt - Vr)

# Record the number of spikes
Me = PopulationSpikeCounter (Pe)
Mi = PopulationSpikeCounter (Pi)
# A population rate monitor

M = PopulationRateMonitor (P)

print "Network construction time:", time.time() - start_time, "seconds"
print len(P), "neurons in the network"

print "Simulation running..."

run (1 * msecond)

start_time = time.time ()

run (1l * second)

duration = time.time () - start_time

print "Simulation time:", duration, "seconds"

print Me.nspikes, "excitatory spikes"

print Mi.nspikes, "inhibitory spikes"

plot (M.times / ms, M.smooth_rate(2 *» ms, 'gaussian'))
show ()

Example: current_clamp (misc)

An example of single-electrode current clamp recording with bridge compensation (using the electrophysiology li-
brary).

from brian import =
from brian.library.electrophysiology import x

taum = 20 * ms # membrane time constant
gl = 1. / (50 %= Mohm) # leak conductance

Cm = taum » gl # membrane capacitance

Re = 50 * Mohm # electrode resistance

Ce = 0.5 » ms / Re # electrode capacitance

egs = Equations('''
dvm/dt=(-glxvm+i_inj)/Cm : volt
Rbridge:ohm # bridge resistance
I:amp # command current

lvl)
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egs += current_clamp(i_cmd='1', Re=Re, Ce=Ce, bridge='Rbridge')

setup = NeuronGroup(l, model=eqgs)
soma = StateMonitor (setup, 'vm', record=True)
recording = StateMonitor (setup, 'v_rec', record=True)

# No compensation
run (50 + ms)
setup.I = .5 % nA
run (100 = ms)
setup.I = 0 % nA
run (50 = ms)

# Full compensation
setup.Rbridge = Re
run (50 * ms)
setup.I = .5 * nA
run (100 = ms)
setup.I = 0 % nA
run (50 * ms)

plot (recording.times / ms, recording[0] / mVv, 'b')
plot (soma.times / ms, somal[0] / mV, 'r')
show ()

Example: phase_locking (misc)

Phase locking of IF neurons to a periodic input

from brian import =«

tau = 20 » ms

N = 100

b = 1.2 # constant current mean, the modulation varies
f = 10 % Hz

T

egs =

dv/dt=(-v+a*sin (2+pixf*t)+b)/tau : 1

a : 1

neurons = NeuronGroup (N, model=eqgs, threshold=1l, reset=0)
neurons.v = rand(N)

neurons.a = linspace (.05, 0.75, N)

S = SpikeMonitor (neurons)

trace = StateMonitor (neurons, 'v', record=50)

run (1000 % ms)

subplot (211)

raster_plot (S)

subplot (212)

plot (trace.times / ms, trace[50])
show ()
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Example: correlated_inputs2 (misc)

An example with correlated spike trains From: Brette, R. (2007). Generation of correlated spike trains.

from brian import =

N = 100

c = .2

nu = linspace(lxHz, 10xHz, N)

P = c+dot (nu.reshape ((N,1)), nu.reshape((l,N)))/mean (nu*=*2)
tauc = 5x*ms

spikes = mixture_process(nu, P, tauc, lxsecond)

input = SpikeGeneratorGroup (N, spikes)

S = SpikeMonitor (input)
run (1000 % ms)

raster_plot (S)
show ()

Example: rate_model (misc)

A rate model

from brian import =

N = 50000

tau = 20 » ms
I =10 % Hz
egs = '"!'
dv/dt=(I-v)/tau : Hz # note the unit here: this is the output rate
Tra

group = NeuronGroup (N, eqgs, threshold=PoissonThreshold())
S = PopulationRateMonitor (group, bin=1 * ms)

run (100 = ms)

plot (S.rate)
show ()

Example: timed_array (misc)

An example of the TimedArray class used for applying input currents to neurons.

from brian import =«

N =5

duration = 100 % ms
Vr = -60 % mV

vVt = -50 * mV

tau = 10 * ms

Rmin = 1 * Mohm

Rmax = 10 = Mohm
freq = 50 % Hz
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threshold='v>vt")

int (duration / defaultclock.dt))
Inf)

k = 10 « nA

eqgs = T

dv/dt = (- (V-Vr)+RxI)/tau volt

R : ohm

I : amp

Tra

G = NeuronGroup (N, egs, reset='V=Vr',
G.R = linspace (Rmin, Rmax, N)

t = linspace(0 % second, duration,

I = clip(k % sin(2 %« pi » freq * t), O,
G.I = TimedArray (I)

M = MultiStateMonitor (G, record=True)

run (duration)

subplot (211)
M['I'].plot ()
ylabel ('I (amp) ")
subplot (212)
M['V'].plot ()
ylabel ('V (volt)")
show ()

Example: noisy_ring (misc)

Integrate-and-fire neurons with noise

from brian import =

tau = 10 * ms
sigma = .5
N = 100
J = -1
mu = 2
eqgs = nwn
dv/dt=mu/tau+sigma/tau**.5+«xi : 1
group = NeuronGroup (N, model=egs,
C = Connection(group, group, 'v')
for i in range(N) :

Cli, (4 + 1) % N] = J

threshold=1,

reset=0)

#C.connect_full (group, group, weight=J)

#for 1 in range (N) :
# cli,i]=0

S = SpikeMonitor (group)

trace = StateMonitor (group, 'v',

run (500 = ms)

record=True)
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i, t = S.spikes[-1]

subplot (211)

raster_plot (S)

subplot (212)

plot (trace.times / ms, trace[0])
show ()

Example: delays (misc)

Random network with external noise and transmission delays

from brian import =

tau = 10 » ms
sigma = 5 * mV
egs = 'dv/dt = -v/tautsigmaxxi/tau*x*.5 : volt'

P = NeuronGroup (4000, model=eqgs, threshold=10 * mV, reset=0 * mV, \
refractory=5 * ms)

P.v = -60 » mV

Pe = P.subgroup(3200)

Pi = P.subgroup (800)

C = Connection(P, P, 'v', delay=2 * ms)

C.connect_random(Pe, P, 0.05, weight=.7 » mV)

C.connect_random(Pi, P, 0.05, weight= -2.8 % mV)

M = SpikeMonitor (P, True)

run(l % second)

print 'Mean rate =', M.nspikes / 4000. / second

raster_plot (M)

show ()

Example: after_potential (misc)

A model with depolarizing after-potential.

from brian import =

v0=20.5+mV

egs = T

dv/dt = (v0-v)/(30*ms) : volt # the membrane equation
dAP/dt = -AP/ (3*ms) : volt # the after-potential

vm = v+AP : volt # total membrane potential

IF = NeuronGroup (l, model=eqgs, threshold='vm>20xmV',
reset="v=0+mV; AP=10+mV")

Mv = StateMonitor (IF, 'vm', record=True)

run (500 = ms)
plot (Mv.times / ms, Mv[0] / mV)
show ()

Example: named_threshold (misc)

Example with named threshold and reset variables
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from brian import =

T

eqgs =

dge/dt = —-ge/ (5+ms) : volt

dgi/dt = —gi/ (10*ms) : volt

dx/dt = (ge+gi-(x+49xmV))/ (20+«ms) : volt

P = NeuronGroup (4000, model=eqs, threshold='x>-50+mV', \
reset=Refractoriness (-60 » mV, 5 % ms, state='x"))

#P=NeuronGroup (4000, model=eqgs, threshold=Threshold (-50+mV, state="x"), \

# reset=Reset (-60+mV, state="'x")) # without refractoriness

P.x = —-60 » mV

Pe = P.subgroup (3200)

(
Pi = P.subgroup (800)
Ce = Connection(Pe, P, 'ge', weight=1.62 % mV, sparseness=0.02)
Ci = Connection(Pi, P, 'gi', weight= -9 % mV, sparseness=0.02)

M = SpikeMonitor (P)
run (1l » second)
raster_plot (M)
show ()

Example: ring (misc)

A ring of integrate-and-fire neurons.

from brian import =

tau = 10 * ms
v0 = 11 » mV
N = 20

w = 1 % mV

ring = NeuronGroup (N, model='dv/dt=(v0-v)/tau : volt', threshold=10 » mV, reset=0 =
f—)H‘lV)

W = Connection(ring, ring, 'v')
for i in range (N) :
Wlii, (1 + 1) % N] = w

ring.v = rand(N) » 10 % mV
S = SpikeMonitor (ring)
run (300 = ms)

raster_plot (S)
show ()

Example: I-F_curve2 (misc)

Input-Frequency curve of a IF model Network: 1000 unconnected integrate-and-fire neurons (leaky IF) with an input
parameter v0O. The input is set differently for each neuron. Spikes are sent to a spike counter (counts the spikes emitted
by each neuron).

from brian import =
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N = 1000

tau = 10 * ms

egs = '"!'

dv/dt=(v0-v) /tau : volt

v0 : volt

group = NeuronGroup (N, model=eqgs, threshold=10 » mV, reset=0 x mV, refractory=5 % ms)
group.v = 0 * mV

group.v0 = linspace(0 * mV, 20 % mV, N)
counter = SpikeCounter (group)

duration = 5 % second

run (duration)

plot (group.v0 / mV, counter.count / duration)
show ()

Example: adaptive_threshold (misc)

A model with adaptive threshold (increases with each spike)

from brian import =
eqs . LI B

dv/dt = -v/(10+ms) : volt

dvt/dt = (10*mV-vt)/ (15*ms) : volt

reset = '"!'
v=0+mV
vt+=3+mV

IF = NeuronGroup (l, model=eqgs, reset=reset, threshold='v>vt')
IF.rest ()

PG = PoissonGroup(l, 500 = Hz)

C = Connection (PG, IF, 'v', weight=3 % mV)

Mv = StateMonitor (IF, 'v', record=True)
Mvt = StateMonitor (IF, 'vt', record=True)

run (100 = ms)

plot (Mv.times / ms, Mv[0] / mV)
plot (Mvt.times / ms, Mvt[0] / mV)

show ()

Example: spike_triggered_average (misc)

Example of the use of the function spike_triggered_average. A white noise is filtered by a gaussian filter (low pass
filter) which output is used to generate spikes (poission process) Those spikes are used in conjunction with the input
signal to retrieve the filter function.
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from brian import =

from brian.hears import =«

from numpy.random import randn
from numpy.linalg import norm

from matplotlib import pyplot

dt = 0.1lxms
defaultclock.dt = dt

stimulus_duration = 15000+ms

stimulus = randn (int (stimulus_duration/ dt))
#rfilter

n=200

filt = exp (- ((linspace(0.5,n,n))—(n+5)/2)*x2/(n/3));
filt = filt/norm(£filt)«1000;
filtered_stimulus = convolve (stimulus, filt)

neuron = PoissonGroup (l,lambda t:filtered_stimulus[int (t/dt)])

spikes = SpikeMonitor (neuron)

run (stimulus_duration, report="text")

spikes = spikes[0] #resulting spikes

max_interval = 20xms #window duration of the spike triggered average

onset = 10*ms

sta,time_axis = spike_triggered_average (spikes,stimulus,max_interval,dt,onset=onset,

—display=True)

figure ()

plot (time_axis, filt/max (filt))

plot (time_axis, sta/max (sta))

xlabel ("time axis'")

ylabel ('sta'")

legend(('real filter', 'estimated filter'))

show ()

Example: leaky_if (misc)

A very simple example Brian script to show how to implement a leaky integrate and fire model. In this example, we
also drive the single leaky integrate and fire neuron with regularly spaced spikes from the SpikeGeneratorGroup.

from brian import =

tau = 10 » ms

Vr = =70 * mV

vVt = -55 %x mV

G = NeuronGroup(l, model='dv/dt = - (V-Vr)/tau : volt', threshold=Vt, reset=Vr)
spikes = [(0, txsecond) for t in linspace (10 * ms, 100 * ms, 25)]

input = SpikeGeneratorGroup(l, spikes)

C = Connection (input, G)
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c[0, 0] =5 » mVv
M = StateMonitor (G, 'V', record=True)

G.V = Vr

run (100 = ms)

plot (M.times / ms, M[0] / mV)
show ()

Example: I-F_curve (misc)

Input-Frequency curve of a neuron (cortical RS type) Network: 1000 unconnected integrate-and-fire neurons (Brette-
Gerstner) with an input parameter I. The input is set differently for each neuron. Spikes are sent to a ‘neuron’ group
with the same size and variable n, which has the role of a spike counter.

from brian import =«
from brian.library.IF import =

N = 1000

egqs = Brette_Gerstner() + Current ('I:amp')

print egs

group = NeuronGroup (N, model=eqgs, threshold= -20 * mV, reset=AdaptiveReset ())
group.vm = —-70 * mV

group.I = linspace(0 = nA, 1 % nA, N)

counter = NeuronGroup (N, model='n:1")
C = IdentityConnection (group, counter, 'n'")

i =N=x 8/ 10
trace = StateMonitor (group, 'vm', record=i)

duration = 5 % second

run (duration)

subplot (211)

plot (group.I / nA, counter.n / duration)
xlabel ('I (nA)"'")

ylabel ('Firing rate (Hz)')

subplot (212)

plot (trace.times / ms, tracel[i] / mV)
xlabel ("Time (ms) ")

ylabel ("Vm (mV) ")

show ()

Example: heterogeneous_delays (misc)

Script demonstrating use of a Connect ion with homogenenous delays

The network consists of a ‘starter’ neuron which fires a single spike at time t=0, connected to 100 leaky integrate and
fire neurons with different delays for each target neuron, with the delays forming a quadratic curve centred at neuron
50. The longest delay is 10ms, and the network is run for 40ms. At the end, the delays are plotted above a colour plot
of the membrane potential of each of the target neurons as a function of time (demonstrating the delays).

from brian import =«
# Starter neuron, threshold is below 0 so it fires immediately, reset is below
# threshold so it fires only once.
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= NeuronGroup(l, model='V:1'", threshold= -1.0, reset= -2.0)
100 LIF neurons, no reset or threshold so they will not spike
= NeuronGroup (100, model='dv/dt=-V/ (10*ms) :volt")
Connection with delays, here the delays are specified as a function of (i, 7)
giving the delay from neuron i1 to neuron j. In this case there is only one
presynaptic neuron so 1 will be 0.
= Connection (G, H, weight=5 % mV, max_delay=10 % ms,
delay=lambda i, j:10 * ms = (3 / 50. — 1) =*x 2)
M = StateMonitor(H, 'V', record=True)
run (40 = ms)
subplot (211)
# These are the delays from neuron 0 to neuron 1 in ms
plot ([C.delay[0, 1] / ms for i in range (100)1])
ylabel ('Delay (ms) ")
title('Delays')
subplot (212)
# M.values is an array of all the recorded values, here transposed to make
# it fit with the plot above.
imshow (M.values.T, aspect='auto', extent=(0, 100, 40, 0))
xlabel ("Neuron number'")
ylabel ('Time (ms) ")
title('Potential')
show ()

Q 3 F= % T = Q

Example: spikes_io (misc)

This script demonstrates how to save/load spikes in AER format from inside Brian.

from brian import =
#HEHAFA AR AAAFAAAAAAFAFAH SAVING #######HHAHAHAHAAFAFAFAAA

# First we need to generate some spikes
N = 1000
g = PoissonGroup (N, 200xHz)

# And set up a monitor to record those spikes to the disk
Maer = AERSpikeMonitor (g, './dummy.aedat')

# Now we can run
run (100+ms)

# This line executed automatically when the script ends, but here we
# need to close the file because we re-use it from within the same script
Maer.close()

clear (all = True)
reinit_default_clock ()
#H##AAAAA AR A A A AR A A HH#H#H LOADING #####HH##H#AAAAAHAHAHAAAAS

# Now we can re-load the spikes
addr, timestamps = load_aer ('./dummy.aedat")

# Feed them to a SpikeGeneratorGroup
group = SpikeGeneratorGroup (N, (addr, timestamps))
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# The group can now be used as any other, here we choose to monitor
# the spikes
newM = SpikeMonitor (group, record = True)

run (100+ms)
# And plot the result

raster_plot (newM)
show ()

Example: COBAHH (misc)

This is an implementation of a benchmark described in the following review paper:

Simulation of networks of spiking neurons: A review of tools and strategies (2006). Brette, Rudolph, Carnevale,
Hines, Beeman, Bower, Diesmann, Goodman, Harris, Zirpe, NatschlAger, Pecevski, Ermentrout, Djurfeldt, Lansner,
Rochel, Vibert, Alvarez, Muller, Davison, El Boustani and Destexhe. Journal of Computational Neuroscience

Benchmark 3: random network of HH neurons with exponential synaptic conductances
Clock-driven implementation (no spike time interpolation)
18. Brette - Dec 2007

70s for dt=0.1 ms with exponential Euler

from brian import =«

# Parameters

area = 20000 % umetre *x 2

Cm = (1 » ufarad * cm *%* —-2) = area

gl = (5e-5 % siemens * cm %% —2) * area
El = -60 * mV

EK = =90 « mV

ENa = 50 * mV

g_na = (100 » msiemens * cm *x —2) % area
g_kd = (30 » msiemens x cm %% —2) * area
VI = -63 * mV

# Time constants

taue = 5 * ms

taui = 10 » ms

# Reversal potentials

Ee = 0 « mV

Ei -80 * mV

we 6 * nS # excitatory synaptic weight (voltage)
wi = 67 = nS # inhibitory synaptic weight

# The model

egs = Equations('''

dv/dt = (gl* (El-v)+gex (Ee-v)+gix (Ei-v) -\
g_nax* (mxm*m) *hx (v—ENa) —\
g_kd* (n*n*n*n) * (v—EK) ) /Cm : volt

dm/dt = alpham* (1-m)-betam*m : 1
dn/dt = alphanx* (1-n)-betan*n : 1
dh/dt = alphahx* (1-h)-betah+h : 1
dge/dt = —-gex (l./taue) : siemens
dgi/dt = —-gi*(l./taui) : siemens
alpham = 0.32% (mVx*—1) * (13+mV-v+VT)/ \
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(exp ((13*mV-v+VT)/ (4+mV))—-1.)/ms : Hz
betam = 0.28% (mV**—1) % (v-VT-40*mV) / \

(exp ((v=VT-40+mV) / (5+mV))—-1) /ms : Hz
alphah = 0.128%exp ((17+mV-v+VT)/ (18+mV)) /ms : Hz
betah = 4./ (1+exp ((40+*mV-v+VT)/ (5xmV))) /ms : Hz
alphan = 0.032% (mV**—1) % (15+mV-v+VT)/ \

(exp ((15*mV—-v+VT) / (5+mV))~-1.) /ms : Hz
betan = .5*exp ((10*mV-v+VT)/ (40+mV)) /ms : Hz
)

P = NeuronGroup (4000, model=egs,
threshold=EmpiricalThreshold (threshold= -20 * mV,
refractory=3 * ms),
implicit=True, freeze=True)
Pe = P.subgroup (3200)

Pi = P.subgroup (800)
Ce = Connection(Pe, P, 'ge', weight=we, sparseness=0.02)
Ci = Connection(Pi, P, 'gi', weight=wi, sparseness=0.02)

# Initialization

P.v = E1 + (randn(len(P)) = 5 — 5) % mV
P.ge = (randn(len(P)) = 1.5 + 4) % 10. % nS
P.gi = (randn(len(P)) = 12 + 20) = 10. = nS

# Record the number of spikes and a few traces
trace = StateMonitor (P, 'v', record=[1l, 10, 100])

run (1l * second)

tracel[l])
trace[10])
trace[100])
)

plot
plot
plot
show

Example: poissongroup (misc)

Poisson input to an IF model

from brian import =

PG = PoissonGroup(l, lambda t:200 *« Hz = (1 + cos(2 « pi = t * 50 = Hz)))
IF = NeuronGroup(l, model='dv/dt=-v/ (10+ms) : volt', reset=0 » volt, threshold=10 =,
—mV )

C = Connection (PG, IF, 'v', weight=3 % mV)

MS = SpikeMonitor (PG, True)
Mv = StateMonitor (IF, 'v', record=True)
rates = StateMonitor (PG, 'rate', record=True)

run (100 * ms)

subplot (211)

plot (rates.times / ms, rates[0] / Hz)
subplot (212)

plot (Mv.times / ms, Mv[0] / mV)

show ()
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Example: two_neurons (misc)

Two connected neurons with delays

from brian import =«
tau = 10 * ms
w = -1 » mV
vl = 11 » mV
neurons = NeuronGroup (2, model='dv/dt=(v0-v)/tau : volt', threshold=10 » mV, reset=0_
—x mv, \
max_delay=5 % ms)

neurons.v = rand(2) * 10 % mV

W = Connection (neurons, neurons, 'v', delay=2 x ms)
W[0, 1] = w

W[l, 0] = w

S = StateMonitor (neurons, 'v', record=True)
#mymonitor=SpikeMonitor (neurons[0])

mymonitor = PopulationSpikeCounter (neurons)

run (500 * ms)

plot (S.times / ms, S[0] / mV)
plot (S.times / ms, S[1] /
show ()

Example: multipleclocks (misc)

This example demonstrates using different clocks for different objects in the network. The clock simclock is the
clock used for the underlying simulation. The clock monclock is the clock used for monitoring the membrane
potential. This monitoring takes place less frequently than the simulation update step to save time and memory.
Finally, the clock inputclock controls when the external ‘current’ IText should be updated. In this case, we
update it infrequently so we can see the effect on the network.

This example also demonstrates the @network_operation decorator. A function with this decorator will be run as part
of the network update step, in sync with the clock provided (or the default one if none is provided).

from brian import =
# define the three clocks
simclock = Clock (dt=0.1 + ms)
monclock = Clock (dt=0.3 % ms)
inputclock = Clock (dt=100 * ms)
# simple leaky I&F model with external 'current' Iext as a parameter
tau = 10 » ms
egs = '''
dv/dt = (-V+Iext)/tau : volt
Iext: volt
# A single leaky I&F neuron with simclock as its clock
G = NeuronGroup (l, model=eqgs, reset=0 x mV, threshold=10 * mV, clock=simclock)
G.V = 5 % mV
# This function will be run in sync with inputclock i.e. every 100 ms
@network_operation (clock=inputclock)
def update_TIext():
G.Iext = rand(len(G)) * 20 = mV
# V is monitored in sync with monclock
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MV = StateMonitor (G, 'V', record=0, clock=monclock)

# run and plot

run (1000 % ms)

plot (MV.times / ms, MV[0] / mV)

show ()

# You should see 10 different regions, sometimes Iext will be above threshold

# in which case you will see regular spiking at different rates, and sometimes
# it will be below threshold in which case you'll see exponential decay to that
# value

Example: HodgkinHuxley (misc)

Hodgkin-Huxley model Assuming area 1*cm**2

from brian import =
from brian.library.ionic_currents import =«

#defaultclock.dt=.01+ms # more precise

El = 10.6 » mV

EK = =12 » mV

ENa = 120 » mV

egs = MembraneEquation(l = uF) + leak_current (.3 x msiemens, El)

egs += K_current_HH (36 * msiemens, EK) + Na_current_HH(120 » msiemens, ENa)
eqgs += Current ('I:amp')

neuron = NeuronGroup (l, egs, implicit=True, freeze=True)
trace = StateMonitor (neuron, 'vm', record=True)

run (100 * ms)

neuron.I = 10 = uA

run (100 * ms)

plot (trace.times / ms, tracel[0] / mV)
show ()

Example: stim2d (misc)

Example of a 2D stimulus, see the complete description at the Brian Cookbook.

from brian import =
import scipy.ndimage as im

__all = ['bar', 'StimulusArrayGroup']

def bar (width, height, thickness, angle):

rro

An array of given dimensions with a bar of given thickness and angle
rr

stimulus = zeros ((width, height))

stimulus[:, int (height / 2. - thickness / 2.):int (height / 2. + thickness / 2.)]1_
—= 1.

stimulus = im.rotate(stimulus, angle, reshape=False)

return stimulus
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class StimulusArrayGroup (PoissonGroup) :

rro

A group of neurons which fire with a given stimulus at a given rate

The argument °“stimulus’ ' should be a 2D array with values between 0 and 1.
The point in the stimulus array at position (y,x) will correspond to the
neuron with index i=y#width+x. This neuron will fire Poisson spikes at

‘‘ratesxstimulus[y,x] " Hz. The stimulus will start at time "~ “onset '
for ' ‘duration’’
rrr
def _ init_ (self, stimulus, rate, onset, duration):
height, width = stimulus.shape
stim = stimulus.ravel () *rate
self.stimulus = stim

def stimfunc(t) :
if onset < t < (onset + duration):
return stim

else:
return 0. * Hz
PoissonGroup.__init__ (self, width » height, stimfunc)
if name == '__main__ ':

import pylab

subplot (121)

stim = bar (100, 100, 10, 90) = 0.9 + 0.1
pylab.imshow (stim, origin='lower")
pylab.gray ()

G = StimulusArrayGroup (stim, 50 » Hz, 100 * ms, 100 * ms)
M = SpikeMonitor (G)

run (300 * ms)

subplot (122)

raster_plot (M)

axis (xmin=0, xmax=300)

show ()

Example: reliability (misc)

Reliability of spike timing. See e.g. Mainen & Sejnowski (1995) for experimental results in vitro.

18. Brette

from brian import =

# The common noisy input

N = 25

tau_input = 5 * ms

input = NeuronGroup (l, model='dx/dt=-x/tau_input+ (2./tau_input)**.5xx1i:1")

# The noisy neurons receiving the same input
tau = 10 * ms
sigma = .015
egs_neurons =
dx/dt=(0.9+.5+I-x) /taut+sigmax (2./tau) **.5xxi:1
I :1

v

T

neurons = NeuronGroup (N, model=egs_neurons, threshold=1, reset=0, refractory=5 % ms)
neurons.x = rand(N)
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neurons.I = linked_var (input, 'x') # input.x is continuously fed into neurons.I
spikes = SpikeMonitor (neurons)

run (500 * ms)
raster_plot (spikes)
show ()

Example: minimalexample (misc)

Very short example program.

from brian import =

T

eqgs =

dv/dt = (ge+gi-(v+49xmV))/ (20*ms) : volt
dge/dt = -ge/ (5*ms) : volt

dgi/dt = —-gi/ (10*ms) : volt

v

P = NeuronGroup (4000, model=egs,
threshold= -50 * mV, reset= -60 * mV)
P.v = -60 » mV + 10 » mV » rand(len(P))
= P.subgroup (3200)
Pi = P.subgroup(800)

]
(0]
|

Q
(0]
|

= Connection(Pe, P, 'ge', weight=1.62 % mV, sparseness=0.02)
Ci = Connection(Pi, P, 'gi', weight= -9 % mV, sparseness=0.02)

M = SpikeMonitor (P)

run (1l » second)

i=20
while len (M[1]) <= 1:
i+=1

print "The firing rate of neuron", i, "is", firing_rate(M[i]) = Hz
print "The coefficient of variation neuron", i, "is", CV(M[i])
raster_plot (M)

show ()

Example: using_classes (misc)

Example of using derived classes in Brian

Using a class derived from one of Brian’s classes can be a useful way of organising code in complicated simulations. A
class such as a NeuronGroup can itself create further NeuronGroup, Connection and NetworkOperation
objects. In order to have these objects included in the simulation, the derived class has to include them in its
contained_objects list (this tells Brian to add these to the Net work when the derived class object is added
to the network).

from brian import =

class PoissonDrivenGroup (NeuronGroup) :

rrr

This class is a group of leaky integrate-and-fire neurons driven by
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external Poisson inputs. The class creates the Poisson inputs and
connects them to itself.

rrr

def _ _init__ (self, N, rate, weight):

tau = 10 » ms
eqs = T
dv/dt = -V/tau : 1

v

# It's essential to call the initialiser of the base class
super (PoissonDrivenGroup, self).__init__ (N, egs, reset=0, threshold=1)
self.poisson_group = PoissonGroup (N, rate)
self.conn = Connection(self.poisson_group, self, 'V'")
self.conn.connect_one_to_one (weight=weight)
self.contained_objects += [self.poisson_group,

self.conn]

G PoissonDrivenGroup (100, 100 » Hz, .3)
M = SpikeMonitor (G)

M_pg = SpikeMonitor (G.poisson_group)
trace = StateMonitor (G, 'V', record=0)

run (1l = second)

subplot (311)

raster_plot (M_pg)
title('Input spikes')
subplot (312)

raster_plot (M)

title ('Output spikes')
subplot (313)

plot (trace.times, tracel[0])
title('Sample trace')
show ()

Example: poisson (misc)

This example demonstrates the PoissonGroup object. Here we have used a custom function to generate different rates
at different times.

This example also demonstrates a custom SpikeMonitor.

#import brian_no_units # uncomment to run faster
from brian import =

# Rates

rl = arange (101, 201) % 0.1 x Hz
r2 arange(l, 101) = 0.1 % Hz

def myrates(t):
if t < 10 » second:
return rl
else:
return r2
# More compact: myrates=lambda t: (t<l0+second and rl) or r2
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# Neuron group
P = PoissonGroup (100, myrates)

# Calculation of rates
ns = zeros(len(P))

def ratemonitor (spikes):
ns[spikes] += 1

Mf = SpikeMonitor (P, function=ratemonitor)
M = SpikeMonitor (P)

# Simulation and plotting

run (10 » second)
print "Rates after 10s:"
print ns / (10 * second)

ns[:] = 0

run (10 * second)

print "Rates after 20s:"
print ns / (10 » second)

raster_plot ()
show ()

Example: adaptive (misc)

An adaptive neuron model

from brian import =«

PG = PoissonGroup(l, 500 = Hz)

T

eqgs =
dv/dt = (-w-v)/(10xms) : volt # the membrane equation
dw/dt = -w/(30*ms) : volt # the adaptation current

# The adaptation variable increases with each spike
IF = NeuronGroup(l, model=eqs, threshold=20 x mV,
reset=""'v = 0xmV
w += 3xmV ''")

C = Connection (PG, IF, 'v', weight=3 % mV)
MS = SpikeMonitor (PG, True)

Mv = StateMonitor (IF, 'v', record=True)

Mw = StateMonitor (IF, 'w', record=True)

run (100 * ms)

plot (Mv.times / ms, Mv[0] / mV)
plot (Mw.times / ms, Mw[0] /

show ()

56

Chapter 3. Getting started




Brian Documentation, Release 1.4.4

Example: van_rossum_metric (misc)

Example of how to use the van Rossum metric.

The VanRossumMetric function, which is defined as a monitor and therefore works online, computes the metric
between every neuron in a given population. The present example show the concept of phase locking: N neurons are
driven by sinusoidal inputs with different amplitude.

Use: output=VanRossumMetric(source, tau=4 * ms)
source is a NeuronGroup of N neurons tau is the time constant of the kernel used in the metric

output is a monitor with attribute distance which is the distance matrix between the neurons in source

from brian import =
from time import time

tau=20+ms

N=100

b=1.2 # constant current mean, the modulation varies
f=10+Hz

delta =2+*ms

eqS:' (]
dv/dt=(-v+a*sin (2+xpixfxt)+b) /tau : 1
a 1

neurons=NeuronGroup (N, model=eqgs, threshold=1, reset=0)
neurons.v=rand (N)

neurons.a=linspace(.05,0.75,N)

S=SpikeMonitor (neurons)
trace=StateMonitor (neurons, 'v', record=50)

van_rossum_metric=VanRossumMetric (neurons, tau=4 »* ms)
run (1000+ms)

raster_plot (S)
title('Raster plot'")

figure ()

title('Distance matrix between spike trains')
imshow (van_rossum_metric.distance)

colorbar ()

show ()

Example: realtime_plotting (misc)

Realtime plotting example

# These lines are necessary for interactive plotting when launching from the

# Eclipse IDE, they may not be necessary in every environment.

import matplotlib

matplotlib.use ('WXAgg') # You may need to experiment, try WXAgg, GITKAgg, QTAgg, TkAgg

from brian import =
###### Set up the standard CUBA example ######
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N = 4000
egs = '"!'

dv/dt = (ge+gi-(v+49xmV))/ (20+«ms) : volt
dge/dt = —-ge/ (5*ms) : volt

dgi/dt = -gi/ (10xms) : volt

P = NeuronGroup (N, egs, threshold= -50 x* mV, reset= —-60 % mV)
P.v = -60 » mV + 10 » mV % rand(len(P))

Pe = P.subgroup (3200)

Pi = P.subgroup (800)

Ce Connection(Pe, P, 'ge', weight=1.62 » mV, sparseness=0.02)
Ci = Connection(Pi, P, 'gi', weight= -9 % mV, sparseness=0.02)

M = SpikeMonitor (P)
trace = RecentStateMonitor (P, 'v', record=range(5), duration=200 % ms)

ion ()

subplot (211)

raster_plot (M, refresh=10 x ms, showlast=200 * ms, redraw=False)
subplot (212)

trace.plot (refresh=10 * ms, showlast=200 % ms)

run (1l = second)

ioff () # switch interactive mode off
show () # and wait for user to close the window before shutting down

Example: topographic_map (misc)

Topographic map - an example of complicated connections. Two layers of neurons. The first layer is connected
randomly to the second one in a topographical way. The second layer has random lateral connections.

from brian import =

N = 100

tau = 10 * ms

tau_e = 2 x ms # AMPA synapse
egs = '"!'

dv/dt=(I-v)/tau : volt
dI/dt=-I/tau_e : volt

rates = zeros(N) * Hz
rates[N / 2 — 10:N / 2 4+ 10] = ones(20) = 30 % Hz
layerl = PoissonGroup (N, rates=rates)

layer2 = NeuronGroup (N, model=eqgs, threshold=10 * mV, reset=0 * mV)
topomap = lambda i, Jj:exp(-abs(i - j) %= .1) * 3 % mV
feedforward = Connection(layerl, layer2, sparseness=.5, weight=topomap)

#feedforward/[2, 3]=1*mV

lateralmap = lambda i, j:exp(-abs(i - j) = .05) * 0.5 x mV
recurrent = Connection(layer2, layer2, sparseness=.5, weight=lateralmap)

spikes = SpikeMonitor (layer?2)
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run(l % second)

subplot (211)

raster_plot (spikes)

subplot (223)

imshow (feedforward.W.todense (), interpolation='nearest', origin='lower")
title('Feedforward connection strengths')

subplot (224)

imshow (recurrent.W.todense (), interpolation='nearest', origin='lower")
title('Recurrent connection strengths')

show ()

Example: if (misc)

A very simple example Brian script to show how to implement an integrate and fire model. In this example, we also
drive the single integrate and fire neuron with regularly spaced spikes from the SpikeGeneratorGroup.

from brian import =«

tau = 10 » ms
Vr = =70 * mV
vVt = =55 % mV

G = NeuronGroup (1, model='V:volt', threshold=Vt, reset=Vr)
input = SpikeGeneratorGroup(l, [(0, t * ms) for t in linspace (10, 100, 25)1])

C = Connection (input, G)
C[0, 0] = 2 * mV

M = StateMonitor (G, 'V', record=True)

G.V = Vr

run (100 * ms)

plot (M.times / ms, M[0] / mV)
show ()

Example: remotecontrolclient (misc)

Example of using RemoteControlServer and RemoteControlClient to control a simulation as it runs in
Brian.

Run the script remotecontrolserver.py before running this.

from brian import =«
import time

client = RemoteControlClient ()
time.sleep(l)

subplot (121)
plot (xclient.evaluate (' (M.times, M.values)'))

client.execute('G.I = 1.1")
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time.sleep(l)

subplot (122)
plot (xclient.evaluate (' (M.times, M.values)'))

client.stop()

show ()

Example: linked_var (misc)

Example showing 1 inked var (), connecting two different NeuronGroup variables. Here we show something
like a simplified haircell and auditory nerve fibre model where the hair cells and ANFs are implemented as two separate
NeuronGroup objects. The hair cells filter their inputs via a differential equation, and then emit graded amounts of
neurotransmitter (variable ‘y’) to the auditory nerve fibres input current (variable ‘I").

from brian import =

N =5

f = 50 %« Hz

a_min = 1.0

a_max = 100.0
tau_haircell = 50 * ms
tau = 10 * ms

duration = 100 % ms

egs_haircells = "'’

input = a*sin(2xpixfxt) : 1

x = clip(input, 0, Inf)**(1.0/3.0) : 1
a : 1

dy/dt = (x-y)/tau_haircell : 1

haircells = NeuronGroup (N, egs_haircells)
haircells.a = linspace(a_min, a_max, N)
M_haircells = MultiStateMonitor (haircells, vars=('input', 'y'), record=True)

egs_nervefibres = "'''

dv/dt = (I-V)/tau : 1

I :1

nervefibres = NeuronGroup (N, egs_nervefibres, reset=0, threshold=1)
nervefibres.I = linked_var (haircells, 'y'")

M_nervefibres = MultiStateMonitor (nervefibres, record=True)

run (duration)

subplot (221)
M_haircells['input'].plot ()
ylabel ('haircell.input')
subplot (222)
M_haircells['y'].plot ()
ylabel ('haircell.y")
subplot (223)
M_nervefibres['I'].plot ()
ylabel ('nervefibres.I")
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subplot (224)
M_nervefibres['V'].plot ()
ylabel ('nervefibres.V")
show ()

Example: gap_junctions (misc)

Network of noisy IF neurons with gap junctions

from brian import =

N = 300

v0 = 5 % mV
tau = 20 x ms
sigma = 5 * mV
vt = 10 » mV
vr = 0 % mV

g_gap = 1. / N
beta = 60 * mV » 2 * ms
delta = vt - vr

T

eqgs =
dv/dt=(v0-v) /tautg_gap* (u-Nxv) /tau : volt
du/dt=(Nxv0-u) /tau : volt # input from other neurons

def myreset (P, spikes):

P.v[spikes] = vr # reset
P.v += g_gap * beta * len(spikes) # spike effect
P.u —-= delta * len(spikes)
group = NeuronGroup (N, model=eqgs, threshold=vt, reset=myreset)

@network_operation

def noise(cl):
x = randn (N) % sigma * (cl.dt / tau) *=* .5
group.v += x
group.u += sum(x)

trace = StateMonitor (group, 'v', record=[0, 1])
spikes = SpikeMonitor (group)
rate = PopulationRateMonitor (group)

run(l % second)

subplot (311)

raster_plot (spikes)

subplot (312)

plot (trace.times / ms, trace[0] / mV)

plot (trace.times / ms, tracel[l] / mV)

subplot (313)

plot (rate.times / ms, rate.smooth_rate(5 * ms) / Hz)
show ()
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Example: remotecontrolserver (misc)
Example of using RemoteControlServer and RemoteControlClient to control a simulation as it runs in
Brian.

After running this script, run remotecontrolclient.py or paste the code from that script into an IPython shell for inter-
active control.

from brian import =«
egs = T

dv/dt = (I-V)/(10xms)+0.1*xxix(2/(10*ms))*x.5 : 1
I :1

G = NeuronGroup (3, eqgs, reset=0, threshold=1l)
M RecentStateMonitor (G, 'V', duration=50+ms)

server = RemoteControlServer ()

run (lelO*second)

Example: non_reliability (misc)

Reliability of spike timing. See e.g. Mainen & Sejnowski (1995) for experimental results in vitro.
Here: a constant current is injected in all trials.

18. Brette

from brian import =«

N = 25
tau = 20 * ms
sigma = .015

[

egs_neurons =
dx/dt=(1.1-x)/taut+sigmax (2./tau) »*.5*xi:1

neurons = NeuronGroup (N, model=eqgs_neurons, threshold=1, reset=0, refractory=5 % ms)
spikes = SpikeMonitor (neurons)

run (500 = ms)
raster_plot (spikes)
show ()

Example: correlated_inputs (misc)

An example with correlated spike trains From: Brette, R. (2007). Generation of correlated spike trains.

from brian import =

N = 100

#input = HomogeneousCorrelatedSpikeTrains (N, r=10 x Hz, c=0.1, tauc=10 x ms)
c = .2

nu = linspace(lxHz, 10xHz, N)
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P = c+dot (nu.reshape ((N,1)), nu.reshape((l,N)))/mean (nu*«*2)
tauc = 5x*ms

spikes = mixture_process(nu, P, tauc, lxsecond)
#spikes = [(i,t#second) for i,t in spikes]
input = SpikeGeneratorGroup (N, spikes)

S = SpikeMonitor (input)

#S2 = PopulationRateMonitor (input)

#M = StateMonitor (input, 'rate', record=0)
run (1000 % ms)

#subplot (211)

raster_plot (S)

#subplot (212)

#plot (S2.times / ms, S2.smooth_rate (5 * ms))
#plot (M.times / ms, M[O0] / Hz)

show ()

Example: explF_network (misc)

A network of exponential IF models with synaptic conductances

from brian import =

from brian.library.IF import =

from brian.library.synapses import x
import time

C = 200 + pF

taum = 10 * msecond
gL = C / taum
EL = =70 * mV
VT = -55 % mV

DeltaT = 3 % mV

# Synapse parameters
Ee = 0 » mvolt

Ei = -80 » mvolt
taue = 5 * msecond
taui = 10 * msecond

egs = exp_IF(C, gL, EL, VT, DeltaT)

# Two different ways of adding synaptic currents:

eqgs += Current ('''

Ie=gex* (Ee-vm) : amp

dge/dt=-ge/taue : siemens

)

egs += exp_conductance('gi', Ei, tauil) # from library.synapses

P = NeuronGroup (4000, model=egs, threshold= -20 x mvolt, reset=EL, refractory=2 % ms)
Pe = P.subgroup(3200)
Pi = P.subgroup(800)

we = 1.5 x nS # excitatory synaptic weight
wi = 2.5 « we # inhibitory synaptic weight
Ce = Connection(Pe, P, 'ge', weight=we, sparseness=0.05)
Ci = Connection(Pi, P, 'gi', weight=wi, sparseness=0.05)

# Initialization
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P.vm = randn(len(P)) » 10 * mV - 70 % mV
P.ge = (randn(len(P)) = 2 + 5) % we
P.gi = (randn(len(P)) = 2 + 5) * wi

# Excitatory input to a subset of excitatory and inhibitory neurons

# Excitatory
# Inhibitory
input_layerl =
input_layer2 =

Pe.subgroup (200)
Pi.subgroup (200)
inputl = PoissonGroup (200, rates=lambda t:
input2 = PoissonGroup (200, rates=lambda t:
input_col = IdentityConnection(inputl, input_layerl,
input_co2 = IdentityConnection (input2, input_layer2,

# Record the number of spikes
M = SpikeMonitor (P)

print "Simulation running..."
start_time = time.time ()

run (500 * ms)

duration = time.time () - start_time
print "Simulation time:", duration,
print M.nspikes / 4000., "spikes per neuron"
raster_plot (M)

show ()

"seconds"

neurons are excited for the first 200 ms
neurons are excited for the first 100 ms

(t < 200 » ms and 2000 % Hz)
(t < 100 » ms and 2000 % Hz)

or O ~ Hz)
or 0 = Hz)
weight=we)
weight=we)

'ge',
'ge',

Example: COBA (misc)

This is a Brian script implementing a benchmark described in the following review paper:

Simulation of networks of spiking neurons: A review of tools and strategies (2007). Brette, Rudolph, Carnevale, Hines,
Beeman, Bower, Diesmann, Goodman, Harris, Zirpe, Natschlager, Pecevski, Ermentrout, Djurfeldt, Lansner, Rochel,
Vibert, Alvarez, Muller, Davison, El Boustani and Destexhe. Journal of Computational Neuroscience 23(3):349-98

Benchmark 1: random network of integrate-and-fire neurons with exponential synaptic conductances

Clock-driven implementation with Euler integration (no spike time interpolation)

R. Brette - Dec 2007

Brian is a simulator for spiking neural networks written in Python, developed by R. Brette and D. Goodman. http:

//brian.di.ens.fr

from brian import =
import time

# Time constants

taum = 20 * msecond

taue = 5 * msecond

taui = 10 » msecond

# Reversal potentials

Ee = (0. + 60.) * mvolt
Ei = (-80. + 60.) * mvolt

start_time = time.time ()
egs = Equations('''
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dv/dt = (-v+gex (Ee-v)+gix (Ei-v))«(l./taum) : volt
dge/dt = —-gex(1l./taue) : 1
dgi/dt = —-gi*(1l./taui) : 1

Tra )
# NB 1: conductances are 1in units of the leak conductance
# NB 2: multiplication is faster than division

P = NeuronGroup (4000, model=eqs, threshold=10 x mvolt, \
reset=0 * mvolt, refractory=5 * msecond,
order=1, compile=True)

Pe = P.subgroup(3200)

Pi = P.subgroup(800)

we = 6. / 10. # excitatory synaptic weight (voltage)

wi = 67. / 10. # inhibitory synaptic weight

Ce = Connection(Pe, P, 'ge', weight=we, sparseness=0.02)

Ci = Connection(Pi, P, 'gi', weight=wi, sparseness=0.02)
# Initialization
P.v = (randn(len(P)) = 5 — 5) % mvolt

P.ge = randn(len(P)) = 1.5 + 4
P.gi = randn(len(P)) » 12 + 20

# Record the number of spikes
Me = PopulationSpikeCounter (Pe)
Mi = PopulationSpikeCounter (Pi)

print "Network construction time:", time.time() - start_time, "seconds"
print "Simulation running..."
start_time = time.time ()

run (1l * second)

duration = time.time() - start_time

print "Simulation time:", duration, "seconds"
print Me.nspikes, "excitatory spikes"

print Mi.nspikes, "inhibitory spikes"

3.2.3 audition
Example: licklider (audition)

Spike-based adaptation of Licklider’s model of pitch processing (autocorrelation with delay lines) with phase locking.

Romain Brette

from brian import =
defaultclock.dt = .02 % ms

# Ear and sound
max_delay = 20 « ms # 50 Hz

tau_ear = 1 * ms

sigma_ear = .1

egs_ear = '''

dx/dt=(sound-x) /tau_ear+sigma_ear* (2./tau_ear) *x.5xx1i : 1

sound=5«+sin (2xpixfrequency*t)+«x3 : 1 # nonlinear distorsion

#sound=5« (sin (dxpixfrequency*t)+.5xsin (6xpirxfrequency*t)) : 1 # missing fundamental

frequency=(200+200+t«Hz) xHz : Hz # increasing pitch
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receptors = NeuronGroup (2, model=eqgs_ear, threshold=1, reset=0, refractory=2 x ms)
traces = StateMonitor (receptors, 'x', record=True)
sound = StateMonitor (receptors, 'sound', record=0)

# Coincidence detectors
min_freqg = 50 % Hz
max_freq = 1000 = Hz

N = 300

tau = 1 * ms

sigma = .1

egs_neurons = '"'
dv/dt=-v/tau+sigmax* (2./tau) *x.5xxi : 1

neurons = NeuronGroup (N, model=eqgs_neurons, threshold=1, reset=0)

synapses = Connection (receptors, neurons, 'v', structure='dense', max_delay=1.1 * max_
—delay, delay=True)

synapses.connect_full (receptors, neurons, weight=.5)

synapses.delay[l, :] = 1. / exp(linspace(log(min_freq / Hz), log(max_freq / Hz), N))
spikes = SpikeMonitor (neurons)

run (500 * ms)

raster_plot (spikes)

ylabel ('Frequency')

yticks ([0, 99, 199, 299], array(l. / synapses.delay.todense()[1l, [0, 99, 199, 29911,
—dtype=int))

show ()

Example: filterbank (audition)

An auditory filterbank implemented with Poisson neurons

The input sound has a missing fundamental (only harmonics 2 and 3)

from brian import =

defaultclock.dt = .01 * ms

N = 1500

tau = 1 » ms # Decay time constant of filters = 2xtau

freq = linspace (100 = Hz, 2000 = Hz, N) # characteristic frequencies
f_stimulus = 500 » Hz # stimulus frequency

gain = 500 = Hz

T

egs =

dv/dt=(-a*w-v+I)/tau : Hz

dw/dt=(v-w) /tau : Hz # e.g. linearized potassium channel with conductance a
a 1

I = gainx (sin(4*pixf_stimulus*t)+sin(6*pixf_stimulus*t)) : Hz

v

neurones = NeuronGroup (N, model=eqgs, threshold=PoissonThreshold())
neurones.a = (2 * pi » freqg * tau) *x* 2

spikes = SpikeMonitor (neurones)
counter = SpikeCounter (neurones)
run (100 = ms)
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subplot (121)

CF = array([freq[i] for i, _ in spikes.spikes])
timings = array ([t for _, t in spikes.spikes])
plot (timings / ms, CF, '.')

xlabel ('Time (ms) ')

ylabel ('Characteristic frequency (Hz)"')
subplot (122)

plot (counter.count / (300 = ms), freq)
xlabel ('Firing rate (Hz)'")

show ()

Example: jeffress (audition)

Jeffress model, adapted with spiking neuron models. A sound source (white noise) is moving around the head. Delay
differences between the two ears are used to determine the azimuth of the source. Delays are mapped to a neural place
code using delay lines (each neuron receives input from both ears, with different delays).

Romain Brette

from brian import =«

defaultclock.dt = .02 * ms
dt = defaultclock.dt

# Sound
sound = TimedArray (10 % randn(50000)) # white noise

# Ears and sound motion around the head (constant angular speed)
sound_speed = 300 * metre / second

interaural_distance = 20 » cm # big head!

max_delay = interaural_distance / sound_speed

print "Maximum interaural delay:", max_delay

angular_speed = 2 * pi % radian / second # 1 turn/second

tau_ear = 1 * ms

sigma_ear = .1

eqgs_ears = '''

dx/dt=(sound (t-delay) -x) /tau_ear+sigma_ear= (2./tau_ear) »x.5+xi : 1
delay=distancexsin (theta) : second

distance : second # distance to the centre of the head in time units

dtheta/dt=angular_speed : radian

ears = NeuronGroup (2, model=eqgs_ears, threshold=1, reset=0, refractory=2.5 % ms)
ears.distance = [-.5 * max_delay, .5 » max_delay]

traces = StateMonitor (ears, 'x', record=True)

# Coincidence detectors
N = 300

tau = 1 * ms

sigma = .1

egs_neurons = '"'
dv/dt=-v/tau+sigmax* (2./tau) *x.5xxi : 1

neurons = NeuronGroup (N, model=eqgs_neurons, threshold=1, reset=0)

synapses = Connection (ears, neurons, 'v', structure='dense', delay=True, max_delay=1.
—1 x max_delay)

synapses.connect_full (ears, neurons, weight=.5)
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synapses.delay[0, :] = linspace(0 = ms, 1.1 » max_delay, N)
synapses.delay[l, :] = linspace(0 = ms, 1.1 x max_delay, N)[::-1]
spikes = SpikeMonitor (neurons)

run (1000 * ms)
raster_plot (spikes)
show ()

3.2.4 synapses
Example: licklider (synapses)

Spike-based adaptation of Licklider’s model of pitch processing (autocorrelation with delay lines) with phase locking.

Romain Brette

from brian import =
defaultclock.dt = .02 * ms

# Ear and sound
max_delay = 20 x ms # 50 Hz

tau_ear = 1 * ms

sigma_ear = .1

egs_ear = '''

dx/dt=(sound-x) /tau_ear+sigma_ear= (2./tau_ear) xx.5+xi : 1

sound=5«+sin (2xpixfrequencyx*t)*«*x3 : 1 # nonlinear distorsion

#sound=5+* (sin (4xpi*rfrequency*t)+.5xsin (6*xpixfrequencyx*t)) : 1 # missing fundamental

frequency=(200+200+t«Hz) xHz : Hz # increasing pitch

receptors = NeuronGroup (2, model=eqgs_ear, threshold=1, reset=0, refractory=2 x ms)

# Coincidence detectors
min_freqg = 50 % Hz

max_freq = 1000 = Hz
N = 300

tau = 1 % ms

sigma = .1

v

egs_neurons =
dv/dt=-v/tau+sigmax* (2./tau) *x.5xxi : 1

neurons = NeuronGroup (N, model=eqgs_neurons, threshold=1, reset=0)

synapses = Synapses (receptors, neurons, model='w : 1', pre='v+=w')
synapses|[:, : ]=True

synapses.w=0.5

synapses.delay[l, :] = 1. / exp(linspace(log(min_freq / Hz), log(max_freq / Hz), N))
spikes = SpikeMonitor (neurons)

run (500 * ms)

raster_plot (spikes)

ylabel ('Frequency')

yticks ([0, 99, 199, 299], array(l. / synapses.delay[l, [0, 99, 199, 299]], dtype=int))
show ()
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Example: two_synapses (synapses)

One synapse within several possibilities. Synapse from 0->2,3.

from brian import =

P=NeuronGroup (2, model="dv/dt=1/(10+ms) : 1',threshold=1, reset=0)
Q=NeuronGroup (4, model="v:1")

S=Synapses (P,Q,model="w:1",pre="v+t=w')
M=StateMonitor (Q, 'v', record=True)

S[0,2]=True

S[0, 3]=True
S.w[0,:]1=[1.,.7]
S.delay[0, :]=[.5*ms, . 7+ms]

run (40+ms)
for i in range (4):

plot (M.times/ms,M[1]+1%2,'k")
show ()

Example: transient_sync (synapses)

Transient synchronisation in a population of noisy IF neurons with distance-dependent synaptic weights (organised as
aring)

from brian import =
import time

tau = 10 * ms

N = 100

vl = 5 % mV

sigma = 4 * mV

group = NeuronGroup (N, model='dv/dt=(v0-v)/tau + sigmasxi/tauxx.5 : volt', \
threshold=10 * mV, reset=0 % mV)

C = Synapses (group,model="w:1",pre="v+=w')

Cl[:, :]=True

C.w='.4 » mV * cos(2. = pi * (1 — J) = 1. / N)'

S = SpikeMonitor (group)

R = PopulationRateMonitor (group)

group.v = rand(N) * 10 x mV

run (5000 * ms, report="text')

subplot (211)

raster_plot (S)

subplot (223)

imshow (C.w[:].reshape ((N,N)), interpolation='nearest')
title('Synaptic connections')

subplot (224)

plot (R.times / ms, R.smooth_rate(2 * ms, filter='flat'))
title('Firing rate')

show ()
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Example: synapse_construction (synapses)

An example of constructing synapses.

from brian import =
import time

N=10
P=NeuronGroup (N, model="dv/dt=1/(10+ms) :1',threshold=1, reset=0)
Q=NeuronGroup (N, model="v:1")

S=Synapses (P,Q,model="w:1",pre="v+t=w')

S[:,:]="1i==7"
S.w="2%1"

M=StateMonitor (Q, 'v', record=True)
run (40+ms)
for i in range(N):

plot (M.times/ms,M[i]+1ix2, "'k")
show ()

Example: CUBA (synapses)

CUBA example with delays.

Connection (no delay): 3.5 s DelayConnection: 5.7 s Synapses (with precomputed offsets): 6.6 s # 6.9 s Synapses
with weave: 6.4 s Synapses with zero delays: 5.2 s

from brian import =
import time

start_time = time.time ()
taum = 20 * ms

taue = 5 * ms

taui = 10 * ms

vVt = -50 * mV

Vr = -60 * mV

El = 49 » mV

egs = Equations('''

dv/dt = (ge+gi-(v-El))/taum : volt
dge/dt = —-ge/taue : volt

dgi/dt = -gi/taui : volt

)

P = NeuronGroup (4000, model=eqgs, threshold=Vt, reset=Vr, refractory=5 * ms)
P.v = Vr

P.ge = 0 » mV

P.gi = 0 » mV

P.subgroup (3200)

Pi = P.subgroup (800)
(60 » 0.27 / 10) * mV # excitatory synaptic weight (voltage)
(=20 = 4.5 / 10) * mV # inhibitory synaptic weight
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Se = Synapses(Pe, P, model = 'w : 1', pre = 'ge += we')
Si = Synapses(Pi, P, model = 'w : 1', pre = 'gi += wi')
Sel[:,:]=0.02

Sif[:,:]=0.02

Se.delay="'rand () *xms'

Si.delay="'rand () *ms'

P.v = Vr + rand(len(P)) * (Vt - Vr)

# Record the number of spikes
Me = PopulationSpikeCounter (Pe)
Mi = PopulationSpikeCounter (Pi)
# A population rate monitor

M

= PopulationRateMonitor (P)

print "Network construction time:", time.time() - start_time, "seconds"
print len(P), "neurons in the network"

print "Simulation running..."
run (1l » msecond)
start_time = time.time ()

run (1l = second)

duration = time.time () - start_time
print "Simulation time:", duration, "seconds"

print Me.nspikes, "excitatory spikes"

print Mi.nspikes, "inhibitory spikes"

plot (M.times / ms, M.smooth_rate(2 *» ms, 'gaussian'))
show ()

Example: poisson_synapses (synapses)

This example shows how to efficiently simulate neurons with a large number of Poisson inputs targetting arbi-
trarily complex synapses. The approach is very similiar to what the PoissonInput class does internally, but
PoissonInput cannot be combined with the Synapses class. You could also just use many PoissonGroup
objects as inputs, but this is very slow and memory consuming.

from brian import =«

#
M

Poisson inputs
= 1000 # number of Poisson inputs

max_rate = 100

#
N

Neurons
= 50 # number of neurons

tau = 10 » ms
E_exc = 0 » mV
E_L = -70 » mV

G
G

el

= NeuronGroup (N, model='dvm/dt = —(vm - E_L)/tau : mV")
.rest ()

Dummy neuron group
= NeuronGroup(l, 'v : 1', threshold= -1, reset=0) # spikes every timestep

time varying rate
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def varying_rate(t):
return defaultclock.dt » max_rate = (0.5 + 0.5 * sin(2 = pi » 5 % t))

# Synaptic connections: binomial (cellM, varying_ rate(t)) gives the number of
# events per timestep. The synapse model is a conductance-based instanteneous
# jump in postsynaptic membrane potential

S = Synapses (P, G, model="'""

J 1
cellM : 1
Tra
’
pre='vm += binomial (cellM, varying_ rate(t)) * J x* (E_exc — vm)")

S[:, :] True
S.cellM = M #we need one value for M per cell, so that binomial is vectorized
S.J = 0.0005

mon = StateMonitor (G, 'vm', record=True)
run(l * second, report='text')

mon.plot ()
show ()

Example: noisy_ring (synapses)

Integrate-and-fire neurons with noise

from brian import =«

tau = 10 » ms
sigma = .5

N = 100

J = -1

nun

egs =
dv/dt=mu/taut+sigma/taux*.5xxi : 1

nwn

group = NeuronGroup (N, model=eqgs, threshold=1l, reset=0)

C = Synapses (group, model='w:1', pre='v+=w')
Cl:,:]="J==((1i+1)%N)"'
C.w=J

S = SpikeMonitor (group)
trace = StateMonitor (group, 'v', record=True)

run (500 * ms)
i, t = S.spikes[-1]

subplot (211)

raster_plot (9)

subplot (212)

plot (trace.times / ms, trace[0])
show ()
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Example: barrelcortex (synapses)
Late Emergence of the Whisker Direction Selectivity Map in the Rat Barrel Cortex Kremer Y, Leger JF, Goodman DF,
Brette R, Bourdieu L (2011). J Neurosci 31(29):10689-700.

Development of direction maps with pinwheels in the barrel cortex. Whiskers are deflected with random moving bars.
N.B.: network construction can be long.

In this version, STDP is faster than in the paper so that the script runs in just a few minutes.

Original time: 4m13 s (without construction) With Synapses: 4m36 s

from brian import =
import time

# Uncomment if you have a C compiler
# set_global_ preferences (useweave=True, usecodegen=True, usecodegenweave=True,
—usenewpropagate=True, usecstdp=True)

tl=time.time ()

# PARAMETERS

# Neuron numbers

M4,M23exc,M23inh=22,25,12 # side of each barrel (in neurons)
N4,N23exc,N23inh=M4«%2,M23exc+*2,M231inh**2 # neurons per barrel
barrelarraysize=5 # Choose 3 or 4 if memory error
Nbarrels=barrelarraysizex**2

# Stimulation

stim_change_time = 5xms

Fmax=.5/stim_change_time # maximum firing rate in layer 4 (.5 spike / stimulation)
# Neuron parameters

taum, taue, taui=10+ms, 2+ms, 25+ms

El=-70*mV

Vt,vt_inc, tauvt=-55+mV, 2+mV, 50+ms # adaptive threshold

# STDP

taup, taud=5+ms, 25+ms

Ap,Ad=.05,-.04

# EPSPs/IPSPs

EPSP, IPSP = 1xmV, —1*mV

EPSC = EPSP * (taue/taum) *+* (taum/ (taue—taum))

IPSC IPSP * (taui/taum)*x (taum/ (taui-taum))

Ap, Ad=Ap+*EPSC, Ad+EPSC

# Model: IF with adaptive threshold

eqgs="""

dv/dt=(ge+gi+El-v) /taum : volt

dge/dt=-ge/taue : volt

dgi/dt=-gi/taui : volt

dvt/dt=(Vt-vt) /tauvt : volt # adaptation

x 1

y 1

[

# Tuning curve
tuning=lambda theta:clip (cos (theta), 0, Inf) »Fmax

# Layer 4

layer4=PoissonGroup (N4+xNbarrels)

barrelsd4 = dict (((i, J), layer4d.subgroup(N4)) for i in xrange (barrelarraysize) for 7j_
—in xrange (barrelarraysize))

barrelsdactive = dict ((ij, False) for ij in barrelsd)

barrelindices = dict((ij, slice(b._origin, b._origin+len(b))) for ij, b in barrelsé.

—iteritems ())
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layerd.selectivity = zeros(len(layerd))
for (i, j), inds in barrelindices.iteritems() :
layerd.selectivity[inds]=1linspace (0, 2*xpi,N4)

# Layer 2/3

layer23=NeuronGroup (Nbarrels* (N23exc+N23inh) ,model=eqgs, threshold="'v>vt', reset="'v=E1;
—vt+=vt_inc',refractory=2+ms)

layer23.v=El

layer23.vt=Vt

# Layer 2/3 excitatory
layer23exc=layer23.subgroup (Nbarrels*N23exc)
x,y=meshgrid (arange (M23exc) 1. /M23exc, arange (M23exc) 1. /M23exc)
x,y=x.flatten(),y.flatten()
barrels23 = dict (((i, Jj), layer23exc.subgroup(N23exc)) for i in_
—xrange (barrelarraysize) for j in xrange (barrelarraysize))
for i in range (barrelarraysize):
for j in range (barrelarraysize):
barrels23[i, j] .x=x+1i
barrels23[i, j].y=y+]

# Layer 2/3 inhibitory
layer23inh=layer23.subgroup (Nbarrels+«N23inh)
x,y=meshgrid (arange (M23inh) «1./M23inh, arange (M23inh) 1. /M231inh)
x,y=x.flatten(),y.flatten()
barrels23inh = dict (((i, 3j), layer23inh.subgroup (N23inh)) for i in
—xrange (barrelarraysize) for J in xrange (barrelarraysize))
for i in range (barrelarraysize):
for j in range (barrelarraysize):
barrels23inh[i, j] .x=x+1
barrels23inh[i, j].y=y+]

print "Building synapses, please wait..."
# Feedforward connections
feedforward=Synapses (layer4, layer23exc,

model="""'w:volt
A_pre:l
A_post:1''',
pre="'"''get=w

A_pre=A_pre*exp ( (lastupdate-t) /taup) +Ap
A_post=A_postxexp ((lastupdate-t) /taud)
w=clip(w+A_post,0,EPSC)'"'",
post="'""
A_pre=A_prex*exp ((lastupdate—-t) /taup)
A_post=A_post*exp ((lastupdate-t) /taud)+Ad
w=clip (w+A_pre,0,EPSC)"'"'")
for i in range (barrelarraysize):
for j in range (barrelarraysize):
feedforward([barrels4[i, j],barrels23[i,3j]l]1=.5
feedforward.w[barrels4d[i, j],barrels23[1i, j]1]1=EPSC«*.5

# Excitatory lateral connections
recurrent_exc=Synapses (layer23exc, layer23,model="w:volt',pre="get+=w")
recurrent_exc[layer23exc, layer23exc]=".15+exp (—.5% (((layer23exc.x[1]-layer23exc.x[7])/
—.4)**%2+ ((layer23exc.y[1]-layer23exc.y[]J])/.4)*xx2))"

recurrent_exc.w[layer23exc, layer23exc]=EPSCx.3
recurrent_exc[layer23exc, layer23inh]=".15+exp (—.5% (((layer23exc.x[1]-layer23inh.x[7])/
—.4) **%2+ ((layer23exc.y[1]-layer23inh.y[J])/.4)*xx2))"
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recurrent_exc.w([layer23exc,layer23inh]=EPSC

# Inhibitory lateral connections
recurrent_inh=Synapses (layer23inh, layer23exc,model="w:volt',pre="git+=w")
recurrent_inh[:, :]="exp (-.5* (((layer23inh.x[i]-layer23exc.x[]J])/.2)**2+ ((layer23inh.
—y[i]l-layer23exc.y[J])/.2)*xx2))"

recurrent_inh.w=IPSC

# Stimulation

stimspeed = 1./stim_change_time # speed at which the bar of stimulation moves
direction = 0.0

stimzonecentre = ones(2)*barrelarraysize/2.

stimcentre, stimnorm = zeros(2), zeros (2)

stimradius = (llxstim_change_timexstimspeed+1l) .5

stimradius2 = stimradiusx*=*2

def new_direction():
global direction
direction = rand()*2+pi
stimnorm[:] = (cos(direction), sin(direction))
stimcentre[:] = stimzonecentre-stimnorm*stimradius

@network_operation
def stimulation():
global direction, stimcentre
stimcentre += stimspeedsstimnormxdefaultclock.dt
if sum((stimcentre-stimzonecentre) «*2)>stimradius2:
new_direction ()
for (i, j), b in barrels4d.iteritems() :
whiskerpos = array([i,J], dtype=float)+0.5

isactive = abs (dot (whiskerpos-stimcentre, stimnorm))<.5
if barrelsdactive[i, j]!=isactive:
barrelsdactive[i, j] = isactive
b.rate = float (isactive)*tuning(layer4d.selectivity([barrelindices[i, Jjl]1-
—direction)

new_direction ()

t2=time.time ()
print "Construction time:",t2-tl,"s"

run (5x*second, report="text")

figure ()

# Preferred direction

# perhaps we need to add presynaptic and postsynaptic with 2D/3D access
selectivity=array ([mean (array (feedforward.w[feedforward.synapses_

—post[i][:]]) rexp(layerd.selectivity[feedforward.presynaptic[feedforward.synapses_
—post[i][:]1]1]1*13)) for 1 in range(len(layer23exc))])

selectivity=(arctan2 (selectivity.imag,selectivity.real) % (2xpi))~*180./pi

I=zeros ((barrelarraysize«M23exc,barrelarraysizexM23exc))
ix=array (around(layer23exc.xxM23exc) ,dtype=int)

iy=array (around(layer23exc.y*M23exc),dtype=int)
I[iy,ix]=selectivity

imshow (I)

hsv ()

colorbar ()
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for i in range(l,barrelarraysize+l):
plot ([i*max (ix) /barrelarraysize, i*max (ix) /barrelarraysize], [0,max (iy)], 'k")
plot ([0, max (ix) ], [i*max (iy) /barrelarraysize, i max (iy) /barrelarraysize], 'k"')

figure ()
hist (selectivity)

show ()

Example: short_term_plasticity2 (synapses)

Example with short term plasticity, with event-driven updates defined by differential equations.

from brian import =

tau_e = 3 * ms
taum = 10 * ms
A_SE = 250 % pA
Rm = 100 * Mohm

N = 10

eqgs = ]
dx/dt=rate : 1
rate : Hz

input = NeuronGroup (N, model=eqgs, threshold=1., reset=0)
input.rate = linspace(5 % Hz, 30 %= Hz, N)

egs_neuron = '''

dv/dt=(Rm*i-v) /taum:volt
di/dt=-i/tau_e:amp

neuron = NeuronGroup (N, model=eqgs_neuron)

taud=1+ms
tauf=100+ms
U=.1
#taud=100+ms
#tauf=10+ms

#U=.6
S=Synapses (input, neuron,
model="""w : 1
dx/dt=(1-x) /taud 1 (event-driven)
du/dt=(U-u) /tauf 1 (event-driven)
'V"
pre="'"'"'it+=wiuxx
x*x=(1l-u)
u+=Ux (1-u)''")
S[:,:]1="1i==3' # one to one connection
S.w=A_SE
# Initialization of STP variables
S.x = 1
S.u =U
trace = StateMonitor (neuron, 'v', record=[0, N - 1])

76 Chapter 3. Getting started



Brian Documentation, Release 1.4.4

run (1000 % ms)

subplot (211)

plot (trace.times / ms, tracel[0] / mV)
title('vm'")

subplot (212)

plot (trace.times / ms, trace[N - 1] / mV)
title('Vm'")

show ()

Example: one_synapse (synapses)

One synapse

from brian import =«

P=NeuronGroup (1,model="dv/dt=1/(10+ms) :1"',threshold=1, reset=0)
Q=NeuronGroup (1, model="v:1")

S=Synapses (P,Q,model="w:1",pre="v+t=w')
M=StateMonitor (Q, 'v', record=True)

S[0,0]=True
S.w[0,0]=1.
S.delay[0,0]=.5xms

run (40+ms)

plot (M.times/ms,M[0])
show ()

Example: one_synapse_bis (synapses)

One synapse within several possibilities. Synapse from 2->3.

from brian import =

P=NeuronGroup (5, model="dv/dt=1/(10+ms) : 1',threshold=1, reset=0)
Q=NeuronGroup (4,model="v:1")

S=Synapses (P,Q,model="w:1",pre="v+=w')
M=StateMonitor (Q, 'v', record=True)

S[2,3]=True
S.w(2,3]1=1.
S.delay[2,3]=.5xms

run (40+ms)
for i in range(4):

plot (M.times/ms,M[i]+ix2, k")
show ()

Example: STDP1_bis (synapses)

Spike-timing dependent plasticity Adapted from Song, Miller and Abbott (2000) and Song and Abbott (2001)
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This simulation takes a long time!

Original time: 278 s with DelayConnection: 478 s New time: 416 s

from brian import =
from time import time

N = 1000

taum = 10 * ms
taupre = 20 x ms
taupost = taupre
Ee = 0 » mV

vt = =54 x mV

vr = —-60 x mV

El = =74 % mV
taue = 5 x ms

F = 15 %« Hz
gmax = .01

dApre = .01
dApost = —-dApre * taupre / taupost * 1.05
dApost *= gmax
dApre %= gmax

egs_neurons = ''"'
dv/dt=(ge* (Ee-vr)+El-v) /taum : volt # the synaptic current is linearized
dge/dt=-ge/taue : 1

input = PoissonGroup (N, rates=F)
neurons = NeuronGroup(l, model=egs_neurons, threshold=vt, reset=vr)
S = Synapses (input, neurons,
model="""w:1
dApre/dt=-Apre/taupre : 1 (event-driven)
dApost/dt=-Apost/taupost : 1 (event-driven)''"',
pre="'"''ge+=w
Apre+=dApre
w=clip (wt+Apost,O,gmax)"'"'",
post="'"'"Apost+=dApost
w=clip (w+Apre, 0,gmax)"'"'")
neurons.v = Vvr
S[:, :]=True

S.w='rand () xgmax'

rate = PopulationRateMonitor (neurons)

start_time = time ()
run (100 % second, report='text')
print "Simulation time:", time() - start_time

subplot (311)
plot (rate.times / second, rate.smooth_rate (100 * ms))
subplot (312)

plot(S.wl[:] / gmax, '.'")
subplot (313)

hist(S.w[:] / gmax, 20)
show ()
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Example: delayed_stdp (synapses)

Delayed STDP

from brian import =
import time

N =1

taum = 10 % ms
taupre = 20 x ms
taupost = taupre
Ee = 0 » mV

vt = -54 x mV
vr = =74 x mV

El = =74 x mV
taue = 5 x ms

F = 20 * Hz
dApre = .1
dApost = -dApre * taupre / taupost * 2.

[

egs_neurons =
dv/dt=(gex* (Ee-vr)+El-v) /taum : volt # the synaptic current is linearized
dge/dt=-ge/taue : 1

[

input = PoissonGroup (N, rates=F)
neurons = NeuronGroup (l, model=eqgs_neurons, threshold=vt, reset=vr)
S = Synapses (input, neurons,
model="""w:1
dApre/dt=-Apre/taupre : 1 # (event-driven)
dApost/dt=-Apost/taupost : 1 # (event-driven)''"',
pre=('get+=w',
"!"'w=clip (w+Apost,0,inf)

Apre+=dApre''"),
post="'""Apost+=dApost
w=clip (w+Apre,O,inf)'"'")
neurons.v = Vvr
S[:, :]=True
S.w=10

S.delay[1]1[0,0]1=3*ms # delayed trace (try 0 ms to see the difference)

M=StateMonitor (S, 'w', record=0)
Mpre=StateMonitor (S, 'Apre',record=0)
Mpost=StateMonitor (S, "Apost', record=0)
Mv=StateMonitor (neurons, 'v', record=0)

run (10xsecond, report="text")

subplot (211)

plot (M.times/ms,M[0])

plot (M.times/ms,Mpre[0], 'r")
plot (M.times/ms,Mpost [0], "'k")
subplot (212)

plot (Mv.times/ms,Mv[0])
show ()
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Example: nonlinear_synapses (synapses)

NMDA synapses

from brian import =
import time

a=1/(10*ms)
b=1/(10+ms)
c=1/(10*ms)

input=NeuronGroup (2, model="dv/dt=1/(10+ms) :1"', threshold=1, reset=0)
neurons = NeuronGroup (l, model="""dv/dt=(gtot-v)/ (10+ms) : 1
gtot : 1""M)
S=Synapses (input, neurons,
model="""dg/dt=—axg+bxx* (1-g) : 1
dx/dt=-c*x : 1
w : 1 # synaptic weight

v
’

pre='x+=w') # NMDA synapses
neurons.gtot=S.g
S[:, :]=True
S.w=[1.,10.]
input.v=[0.,0.5]

M=StateMonitor (S, 'g', record=True)
Mn=StateMonitor (neurons, 'v', record=0)

run (100+ms)

subplot (211)

plot (M.times/ms,M[0])
plot (M.times/ms,M[1])
subplot (212)

plot (Mn.times/ms,Mn[0])

show ()

Example: STDP1 (synapses)

Spike-timing dependent plasticity Adapted from Song, Miller and Abbott (2000) and Song and Abbott (2001)

This simulation takes a long time!

from brian import =
from time import time

N = 1000

taum = 10 * ms
taupre = 20 x ms
taupost = taupre
Ee = 0 » mV

vt = -54 x mV
vr = —60 x» mV

El = -74 » mV
taue = 5 * ms

F = 15 « Hz
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gmax = .01
dApre = .01
dApost = —-dApre * taupre / taupost * 1.05

dApost *= gmax
dApre *= gmax

egs_neurons = "''
dv/dt=(ge* (Ee-vr)+El-v) /taum : volt # the synaptic current is linearized
dge/dt=-ge/taue : 1

v

input = PoissonGroup (N, rates=F)
neurons = NeuronGroup (l, model=egs_neurons, threshold=vt, reset=vr)
S = Synapses (input, neurons,

model="""w:1

Apre:l

Apost:1''"',

pre="'"'"'ge+=w

Apre=Apre*exp ( (lastupdate-t) /taupre) +dApre
Apost=Apost+*exp ( (lastupdate-t) /taupost)
w=clip (wt+Apost,O,gmax)"'"'",
post="""
Apre=Aprexexp ( (lastupdate-t) /taupre)
Apost=Apost+*exp ((lastupdate-t) /taupost) +dApost
w=clip (w+Apre, 0,gmax)'"'")

neurons.v = VvVr

S[:, :]=True

S.w='rand () rgmax'

rate = PopulationRateMonitor (neurons)

start_time = time ()
run (100 % second, report='text'")
print "Simulation time:", time() - start_time

subplot (311)
plot (rate.times / second, rate.smooth_rate (100 * ms))
subplot (312)

plot (S.w([:] / gmax, '.")
subplot (313)

hist(S.w[:] / gmax, 20)
show ()

Example: short_term_plasticity (synapses)

Example with short term plasticity.

from brian import =

tau_e = 3 * ms
taum = 10 * ms
A_SE = 250 * pA
Rm = 100 * Mohm
N = 10

egs = T
dx/dt=rate : 1
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rate : Hz

[

input = NeuronGroup (N, model=eqgs, threshold=1., reset=0)
input.rate = linspace (5 « Hz, 30 % Hz, N)

egs_neuron = '''

dv/dt=(Rm*i-v) /taum:volt
di/dt=-i/tau_e:amp

v

neuron = NeuronGroup (N, model=eqgs_neuron)

taud=1+ms
tauf=100+ms
U=.1
#taud=100+*ms
#tauf=10+ms

#U=.6
S=Synapses (input, neuron,
model="""x : 1
u 1
w : 1'"'",
pre="'"'"'u=U+ (u-U) xexp (- (t-lastupdate) /tauf)
x=1+(x—-1) rexp (- (t—lastupdate) /taud)
i1+=wru*x
xx=(1-u)
ut+=Ux (1-u)''")
S[:,:]1="1i==3' # one to one connection
S.w=A_SE
# Initialization of STP variables
S.x = 1
S.u =U
trace = StateMonitor (neuron, 'v', record=[0, N - 1])

run (1000 % ms)

subplot (211)

plot (trace.times / ms, trace[0] / mV)
title('Vm')

subplot (212)

plot (trace.times / ms, trace[N - 1] / mV)
title('Vm'")

show ()

Example: gapjunctions (synapses)

Neurons with gap junctions

from brian import =

N = 10
v0=1.05
tau=10+ms
egs = T
dv/dt=(v0-v+Igap)/tau : 1

Igap : 1 # gap junction current
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neurons = NeuronGroup (N, model=eqgs, threshold=1l, reset=0)
neurons.v=linspace (0, 1,N)

trace = StateMonitor (neurons, 'v', record=[0, 5])

S=Synapses (neurons,model=""'w:1 # gap Jjunction conductance
Igap=wx (v_pre-v_post): 1''")

S[:, :]=True

neurons. Igap=S.Igap

S.w=.02

run (500+ms)

plot (trace.times / ms, trace[0])
plot (trace.times / ms, trace[5])
show ()

Example: jeffress (synapses)

Jeffress model, adapted with spiking neuron models. A sound source (white noise) is moving around the head. Delay
differences between the two ears are used to determine the azimuth of the source. Delays are mapped to a neural place
code using delay lines (each neuron receives input from both ears, with different delays).

Romain Brette

from brian import =«
from time import time

defaultclock.dt = .02 % ms
dt = defaultclock.dt

# Sound
sound = TimedArray (10 % randn(50000)) # white noise

# Ears and sound motion around the head (constant angular speed)
sound_speed = 300 * metre / second

interaural_distance = 20 x cm # big head!

max_delay = interaural_distance / sound_speed

print "Maximum interaural delay:", max_delay

angular_speed = 2 * pi % radian / second # 1 turn/second

tau_ear = 1 + ms

sigma_ear = .1

egs_ears = "''

dx/dt=(sound (t-delay) -x) /tau_ear+sigma_earx (2./tau_ear) *.5+xi : 1
delay=distancexsin (theta) : second

distance : second # distance to the centre of the head in time units

dtheta/dt=angular_speed : radian

Tra

ears = NeuronGroup (2, model=eqgs_ears, threshold=1, reset=0, refractory=2.5 x ms)
ears.distance = [-.5 x max_delay, .5 » max_delay]

traces = StateMonitor (ears, 'x', record=True)

# Coincidence detectors
N = 300

tau = 1 * ms

sigma = .1
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egs_neurons = "'"'

dv/dt=-v/tau+sigma* (2./tau) *x.5xxi : 1

neurons = NeuronGroup (N, model=eqgs_neurons, threshold=1, reset=0)
synapses = Synapses (ears,neurons,model="w:1"',pre="v+=w')
synapses|[:, : ]=True

synapses.w=.5

synapses.delay[0, :] = linspace(0 * ms, 1.1 x max_delay, N)
synapses.delay[l, :] = linspace(0 » ms, 1.1 * max_delay, N)[::-1]
spikes = SpikeMonitor (neurons)

run (1+ms)

tl=time ()

run (1000 % ms)

t2=time ()

print "It took",t2-tl,"s"
raster_plot (spikes)
show ()

Example: probabilistic_synapses2 (synapses)

Probabilistic synapses - Katz model

from brian import =«
from numpy.random import binomial

Nin=1000

Nout=25

input=PoissonGroup (Nin, rates=2+Hz)

tau=10+*ms

neurons=NeuronGroup (Nout, model="dv/dt=-v/tau:1",threshold=35+«50./5, reset=0)

S=Synapses (input, neurons,model=""'w:1 # PSP size for one quantum
nvesicles:1 # Number of vesicles (n 1s reserved)
p:1 # Release probability''',

pre ='''v+=binomial (nvesicles,p)xw'"'")

S[:,:]1=True # all-to-all

S.w='rand ()"

S.nvesicles=50

S.p='rand ()"

S=SpikeMonitor (neurons)
run (1000+ms)

raster_plot (S)
show ()

Example: Diesmann_et_al_1999 (synapses)

Synfire chains

M. Diesmann et al. (1999). Stable propagation of synchronous spiking in cortical neural networks. Nature 402,
529-533.
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from brian import =

# Neuron model parameters
Vr = =70 * mV

Vt = =55 « mV

taum = 10 * ms

taupsp = 0.325 % ms
weight = 4.86 % mV

# Neuron model

egs = v
dv/dt= (- (V-Vr)+x) * (1./taum) : volt
dx/dt=(-x+y) * (1./taupsp) : volt

dy/dt=-y=* (1./taupsp)+25.27+mV/ms+\
(39.24+mV/ms*%0.5) xxi : volt
Tr
# Neuron groups
P = NeuronGroup (N=1000, model=egs,
threshold=Vt, reset=Vr, refractory=1 % ms)
Pinput = PulsePacket (t=50 % ms, n=85, sigma=1 % ms)
# The network structure
Pgp = [ P.subgroup(100) for i in range (10)]
C = Synapses (P, P, model='w:volt', pre='y+=w')
for i in range(9):
C[Pgp[i], Pgpl[i + 1]]=True
C.w[Pgp[i], Pgp[i + 1]]=weight
Cinput = Synapses (Pinput, Pgp[0], model='w:volt', pre='y+=w')
Cinput[:, : ]=True
Cinput.w[:, :]=weight
# Record the spikes
Mgp = [SpikeMonitor (p) for p in Pgp]
Minput = SpikeMonitor (Pinput)
monitors = [Minput] + Mgp
# Setup the network, and run it
P.V = Vr + rand(len(P)) =~ (Vt - Vr)
run (100 = ms)
# Plot result
raster_plot (showgrouplines=True, *monitors)
show ()

Example: multiple_delays (synapses)

Multiple delays

from brian import =

P=NeuronGroup (1,model="dv/dt=1/(20+ms) : 1',threshold=1, reset=0)
Q=NeuronGroup (1l,model="v:1")

S=Synapses (P,Q,model="w:1",pre="v+t=w')
M=StateMonitor (Q, 'v', record=True)

[0,0]=2
.w[0,0,0]=1.
.w[0,0,1]=.5
.delay[0,0,0]=.5+ms
.delay[0,0,1]=1xms

0N n nn n n

run (60+ms)
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plot (M.times/ms,M[0])
show ()

Example: probabilistic_synapses (synapses)

Probabilistic synapses

Seems to work.

from brian import =

N=20
tau=5+ms
input=PoissonGroup (2, rates=20+Hz)

neurons=NeuronGroup (N, model="dv/dt=-v/tau : 1")
S=Synapses (input, neurons, model="""w : 1
p : 1 # transmission probability""",

pre="v+=wx (rand()<p) ")
# Transmission probabilities

S[:, :]=True

S.w=0.5

S.pl0, :]1=1linspace(0,1,N) # transmission probability between 0 and 1
S.pll,:]1=linspace(0,1,N) [::-1] # reverse order for the second input

M=StateMonitor (neurons, 'v', record=True)
run (500+ms)
for i in range(N) :

plot (M.times/ms,M[1]+1, 'k")
show ()

Example: weightmonitor (synapses)

Monitoring synaptic variables. STDP example.

from brian import =
from time import time

N = 1000
taum = 10 * ms
tau_pre = 20 % ms

tau_post = tau_pre
Ee = 0 » mV

vt = =54 x mV

vr = -60 * mV

El = -74 % mV

taue = 5 * ms

F = 15 %« Hz

gmax = .01

dA_pre = .01

dA_post = -dA_pre * tau_pre / tau_post x 1.05

dA_post *= gmax
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dA_pre *= gmax

egs_neurons = '"'
dv/dt=(gex* (Ee-vr)+El-v) /taum : volt # the synaptic current is linearized
dge/dt=-ge/taue : 1

T

input = PoissonGroup (N, rates=F)
neurons = NeuronGroup (l, model=eqgs_neurons, threshold=vt, reset=vr)
S = Synapses (input, neurons,
model="""w:1
A_pre:l
A_post:1''",
pre="'"''ge+=w
A_pre=A_prex*exp ((lastupdate-t) /tau_pre)+dA_pre
A_post=A_post*exp ((lastupdate-t) /tau_post)
w=clip (w+A_post,0,gmax)"'"'",
post="""
A_pre=A_prex*exp ((lastupdate-t) /tau_pre)
A_post=A_postx*exp ((lastupdate-t) /tau_post)+dA_post
w=clip (w+A_pre,O0,gmax)"'"'")
neurons.v = VvVr
S[:, :]1=True
S.w='rand () xgmax'

rate = PopulationRateMonitor (neurons)
M = StateMonitor (S, 'w',record=[0,1]) # monitors synapses number 0 and 1

start_time = time ()
run (10 % second, report='text')
print "Simulation time:", time() - start_time

figure ()

subplot (311)

plot (rate.times / second, rate.smooth_rate (100 * ms))
subplot (312)

plot (S.w[:] / gmax, '.")
subplot (313)

hist(S.w[:] / gmax, 20)
figure ()

plot (M.times,M[0]/gmax)
plot (M.times,M[1]/gmax)
show ()

3.2.5 plasticity
Example: STDP2 (plasticity)

Spike-timing dependent plasticity Adapted from Song, Miller and Abbott (2000), Song and Abbott (2001) and van
Rossum et al (2000).

This simulation takes a long time!

from brian import =
from time import time
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N = 1000

taum = 10 * ms
tau_pre = 20 % ms
tau_post = tau_pre
Ee = 0 » mV

vt = -54 » mV

vr = —60 x» mV

El = =74 « mV

taue = 5 x ms

gmax = 0.01

F = 15 x Hz

dA_pre = .01

dA_post = —-dA_pre x tau_pre / tau_post x 2.5
egs_neurons = '"'

dv/dt=(gex (Ee-vr)+El-v) /taum : volt # the synaptic current is linearized
dge/dt=-ge/taue : 1

input = PoissonGroup (N, rates=F)

neurons = NeuronGroup (l, model=eqgs_neurons, threshold=vt, reset=vr)

synapses = Connection (input, neurons, 'ge', weight=rand(len (input), len(neurons)) =*_
—gmax,

structure="dense')
neurons.v = Vr

stdp = ExponentialSTDP (synapses, tau_pre, tau_post, dA_pre, dA_post, wmax=gmax,,
—update="mixed")

rate = PopulationRateMonitor (neurons)

start_time = time ()
run (100 % second, report='text'")
print "Simulation time:", time() - start_time

subplot (311)

plot (rate.times / second, rate.smooth_rate (100 * ms))
subplot (312)

plot (synapses.W.todense () / gmax, '.'")

subplot (313)

hist (synapses.W.todense () / gmax, 20)

show ()

Example: short_term_plasticity2 (plasticity)

Network (CUBA) with short-term synaptic plasticity for excitatory synapses (Depressing at long timescales, facilitat-
ing at short timescales)

from brian import =
from time import time

T

eqgs =

dv/dt = (ge+gi-(v+49xmV))/ (20+«ms) : volt
dge/dt = -ge/ (5*ms) : volt

dgi/dt = —-gi/ (10*ms) : volt
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P = NeuronGroup (4000, model=eqgs, threshold= -50 » mV, reset= -60 % mV)
P.v. = —-60 » mV + rand(4000) * 10 * mV

Pe = P.subgroup(3200)

Pi = P.subgroup(800)

Ce = Connection(Pe, P, 'ge', weight=1.62 % mV, sparseness=.02)
Ci = Connection(Pi, P, 'gi', weight= -9 » mV, sparseness=.02)
stp = STP (Ce, taud=200 % ms, tauf=20 * ms, U=.2)

M = SpikeMonitor (P)

rate = PopulationRateMonitor (P)

tl = time ()

run (1l * second)

t2 = time ()

print "Simulation time:", t2 - t1, "s"

print M.nspikes, "spikes"

subplot (211)

raster_plot (M)

subplot (212)

plot (rate.times / ms, rate.smooth_rate(5 » ms))

show ()

Example: STDP1 (plasticity)

Spike-timing dependent plasticity Adapted from Song, Miller and Abbott (2000) and Song and Abbott (2001)

This simulation takes a long time!

from brian import =«
from time import time

N = 1000
taum = 10 * ms
tau_pre = 20 % ms

tau_post = tau_pre
Ee = 0 » mV

vt = =54 x mV

vr = —60 x» mV

El = -74 » mV

taue = 5 x ms

F = 15 « Hz

gmax = .01

dA_pre = .01

dA_post = —-dA_pre x tau_pre / tau_post % 1.05

T

egs_neurons =
dv/dt=(ge* (Ee-vr)+El-v) /taum : volt # the synaptic current is linearized
dge/dt=-ge/taue : 1

input = PoissonGroup (N, rates=F)

neurons = NeuronGroup(l, model=egs_neurons, threshold=vt, reset=vr)

synapses = Connection (input, neurons, 'ge', weight=rand(len (input), len(neurons)) =*_
—gmax)

neurons.v = VvVr

#stdp=ExponentialSTDP (synapses, tau_pre,tau_post,dA_pre,dA _post, wmax=gmax)
## Explicit STDP rule
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egs_stdp = """

dA_pre/dt=-A_pre/tau_pre : 1

dA_post/dt=-A_post/tau_post : 1

L )

dA_post *= gmax

dA_pre %= gmax

stdp = STDP (synapses, eqgs=eqs_stdp, pre='A_pre+=dA_pre;wt+=A_post',
post='A_post+=dA_post;wt+=A_pre', wmax=gmax)

rate = PopulationRateMonitor (neurons)

start_time = time ()
run (100 % second, report='text'")
print "Simulation time:", time() - start_time

subplot (311)
plot (rate.times / second, rate.smooth_rate (100 * ms))
subplot (312)

plot (synapses.W.todense () / gmax, '.'")
subplot (313)

hist (synapses.W.todense () / gmax, 20)
show ()

Example: short_term_plasticity (plasticity)

Example with short term plasticity model Neurons with regular inputs and depressing synapses

from brian import =

tau_e = 3 * ms
taum = 10 * ms
A_SE = 250 % pA
Rm = 100 * Mohm

N = 10

eqgs = T
dx/dt=rate : 1
rate : Hz

input = NeuronGroup (N, model=eqgs, threshold=1., reset=0)
input.rate = linspace(5 % Hz, 30 = Hz, N)

egs_neuron = "'’
dv/dt=(Rm*xi-v) /taum:volt
di/dt=-1i/tau_e:amp

L]

neuron = NeuronGroup (N, model=eqgs_neuron)

C = Connection (input, neuron, 'i'")

C.connect_one_to_one (weight=A_SE)

stp = STP(C, taud=1 % ms, tauf=100 » ms, U=.1) # facilitation
#stp=STP (C, taud=100+ms, tauf=10+ms, U=.6) # depression

trace = StateMonitor (neuron, 'v', record=[0, N - 1])

run (1000 * ms)
subplot (211)
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plot (trace.times / ms, trace[0] / mV)
title('vm'")

subplot (212)

plot (trace.times / ms, trace[N - 1] / mV)
title('vm'")

show ()

3.2.6 interface

Example: interface (interface)

Interface example Install cherrypy for this example Then run the script and go to http://localhost:8080 on your web
browser You can use cherrypy to write html interfaces to your code.

from brian import =
import cherrypy
import os.path

# The server 1is defined here
class MyInterface (object):
@cherrypy.expose
def index(self): # redirect to the html page we wrote
return '<meta HTTP-EQUIV="Refresh" content="0;URL=index.html">"

@cherrypy.expose

def runscript(self, we="1.62", wi="-9", xxkwd): # 'runscript' is the script name
# we and wi are the names of form fields
we = float (we)
wi = float (wi)

# From minimalexample
reinit_default_clock ()

T

eqgs =
dv/dt = (ge+gi-(v+49xmV))/ (20+ms) : volt
dge/dt = -ge/ (5*ms) : volt

dgi/dt = -gi/ (10*ms) : volt

T

P = NeuronGroup (4000, model=eqgs, threshold= -50 x* mV, reset= -60 % mV)
P.v = -60 » mV + 10 » mV » rand(len(P))
Pe = P.subgroup (3200)

Pi = P.subgroup (800)
Ce = Connection(Pe, P, 'ge')
Ci = Connection(Pi, P, 'gi')

Ce.connect_random(Pe, P, 0.02, weight=we * mV)
Ci.connect_random(Pi, P, 0.02, weight=wi * mV)

M = SpikeMonitor (P)

run(.5 * second)

clf ()

raster_plot (M)

savefig('image.png')

# Redirect to the html page we wrote

return '<meta HTTP-EQUIV="Refresh" content="0;URL=results.html">'

# Set the directory for static files

current_dir = os.path.dirname (os.path.abspath( file ))

conf = {'/': {'tools.staticdir.on':True,
'tools.staticdir.dir':current_dir}}
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# Start the server
cherrypy.quickstart (MyInterface (), config=conf)

3.2.7 twister
Example: PeterDiehl (twister)

Peter Diehl’s entry for the 2012 Brian twister.

from brian import =

egqs = '''

dv/dt = ((-60.*mV-v)+ (I_synE+I_synI+I_b)/(10.xnS))/ (20+ms) : volt
I_synE = 3.xnSxgex( 0.xmV-v) T amp
I_synI = 30.*nSxgix* (-80.+xmV-v) :oamp
I_Db :amp
dge/dt = —-ge/( 5.xms) 1
dgi/dt = -gi/ (10.xms) 1

[

P = NeuronGroup (10000, egs, threshold=-50.*mV, refractory=5.xms, reset=-60.xmV)

Pe = P.subgroup(8000)

Pi = P.subgroup (2000)

Ce = Connection (Pe, P, 'ge', weight=1., sparseness=0.02)
Cie = Connection(Pi, Pe, 'gi', weight=1., sparseness=0.02)
Cii = Connection(Pi, Pi, 'gi', weight=1., sparseness=0.02)
egs_stdp = """’

dpre/dt = -pre/ (20.*ms) 1.0

dpost/dt = —-post/ (20.*ms) 1.0

Tr

nu = 0.1 # learning rate

alpha = 0.12 # controls the firing rate

stdp = STDP (Cie, egs=eqgs_stdp, pre='pre+= 1.; wt+= nux (post-alpha)’,
post='post+= 1.; wt+= nuxpre', wmin=0., wmax= 10.)
M = PopulationRateMonitor (Pe, bin = 1.)

P.I_b = 200.*pA #set the input current
run (10+*second)
P.I_b = 600.xpA #increase the input and see how the rate adapts

run (10+second)
plot (M.times[0:-1]/second, M.rate[0:-1])
show ()

Example: FriedemannZenke (twister)

Friedemann Zenke’s winning entry for the 2012 Brian twister.

FHEAAFHAFHHAFFHAFFAAFHAAFFAAFRAAFEAAFRAFFHA

Inhibitory synaptic plasticity in a recurrent network model
(F. Zenke, 2011)

Adapted from:
Vogels, T. P., H. Sprekeler, F. Zenke, C. Clopath, and W. Gerstner.
"Inhibitory Plasticity Balances Excitation and Inhibition in Sensory

#
#
#
#
#
#
#
#
# Pathways and Memory Networks.' Science (November 10, 2011).
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#
# FHHRRAAAAAFARAARAAFFFRAAAAAFFRRAAAAAFFFRAAS

from brian import =

# #EAFEAEAF AR A EAA A EAA AR AR F AR A A
# Defining network model parameters

# FHHRAAAAAAFAAAAAAFFFRAAAAAFFHRAAAAAFFFRAAS

NE = 8000 # Number of excitatory cells

NI = NE/4 # Number of inhibitory cells

w = 1.%nS # Basic weight unit

tau_ampa = 5.0~*ms # Glutamatergic synaptic time constant
tau_gaba = 10.0xms # GABAergic synaptic time constant
epsilon = 0.02 # Sparseness of synaptic connections

eta = le-2 # Learning rate
tau_stdp = 20+ms # STDP time constant
simtime = 10xsecond # Simulation time

AR iazddazasdadatdadasaadadaddadasdadaddadaid
# Neuron model

# FEAFEAAAFEARAFHARAFAAEAFAFEAAAFEAFAFHAHAAHA
gl = 10.0%nsiemens # Leak conductance

el = -60*mV # Resting potential

er = -80xmV # Inhibitory reversal potential
vt = -50.*mV # Spiking threshold

memc = 200.0+pfarad #

bgcurrent = 200*pA #

Membrane capacitance
External current

egs_neurons="'""

dv/dt=(-glx (v-el) - (g_ampaxw*v+g_gabax (v—er) xw) +bgcurrent) /memc : volt
dg_ampa/dt = -g_ampa/tau_ampa : 1
dg_gaba/dt = —-g_gaba/tau_gaba : 1

# #EAFAAFAA AR RAA A RAA AR AR A AR A A HAF A
# Initialize neuron group

# HAFFEAFFRAFFHAAFRAFFRAFFHAFFAAFFHAFFHA SRS

neurons=NeuronGroup (NE+NI, model=eqgs_neurons, threshold=vt, reset=el, refractory=5+ms)
Pe=neurons. subgroup (NE)
Pi=neurons.subgroup (NI)

# HEAFEAEAFHARAA A RAA A EAA AR H AR F AR A
# Connecting the network
# FEAFEAFAFAARAF AR F AR A AR H AR H A AR A A

con_e = Connection (Pe,neurons, 'g_ampa',weight=0.3, sparseness=epsilon)
con_ie = Connection (Pi,Pe, 'g _gaba',weight=1e-10, sparseness=epsilon)
con_ii = Connection(Pi,Pi, 'g _gaba',weight=3, sparseness=epsilon)

# HAFFRAAFRAFFRAAFRAAFRAAFRAAFRAA SRS A SRR FAAS
# Setting up monitors

# FHHRAAAAAFFFRAARAAFFFRAAAAAFFRRAAAAFFFHRAAA
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sm = SpikeMonitor (Pe)

# #RAEAAAAAAFARAAAAFA AR A RA AR AR AAFAHA A AFAAA
# Run without plasticity
# #A#AAAAAAAARAAAAAARA A AAARA A AAARAAA AR

run (1l +second)

# FEAFHAHAFHAHAFHAEAF AR FAFEAAAFEAHAF A HAFHA
# Inhibitory Plasticity
# #EAFEAEAFAAEAF A EAF A EAAAF A AR A A AR A AR A

alpha = 3+xHz*tau_stdp*2 # Target rate parameter
gmax = 100 # Maximum inhibitory weight

egs_stdp_inhib = """
dA_pre/dt=-A_pre/tau_stdp : 1
dA_post/dt=-A_post/tau_stdp : 1

[

stdp_ie = STDP (con_ie, egs=eqgs_stdp_inhib, pre='A pre+=1.;
post='A_post+=1.; wt=A_prexeta;', wmax=gmax)

# #EAFRARAAAARAA A RAA A EAF AR AR A A FAA A HAFSA
# Run with plasticity
# HEAFEAFAFHARAA AR A AR A AR H AR H A H A4

run (simtime-1l+second, report="text")

# #EAFHAFAAAARAA A RAA A RAA AR AR A A FAA A HAFHA
# Make plots
# #EAFEAEAFHARAA A RAA A EAF AR AR AR H AR A A

subplot (211)

raster_plot (sm,ms=1.)

title ("Before")

xlabel ("")

xlim(float (0.8+«second/ms), float (lxsecond/ms))

subplot (212)

raster_plot (sm,ms=1.)

title ("After™)

xlim(float ((simtime-0.2+second)/ms), float (simtime/ms))
show ()

w+= (A_post—-alpha) xeta; ',

Example: QuentinPauluis (twister)

Quentin Pauluis’s entry for the 2012 Brian twister.

from brian import =

taum = 20 * ms # membrane time constant

taue = 5 x ms # excitatory synaptic time constant

taui = 10 * ms # inhibitory synaptic time constant

vVt = =50 * mV # spike threshold

Vr = -60 * mV # reset value

El = 49 %« mV # resting potential
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we = (60 » 0.27 / 10) % mV # excitatory synaptic weight
wi (20 = 4.5 / 10) » mV # inhibitory synaptic weight
egs = Equations('''

dv/dt = (ge-gi-(V-El))/taum : volt
dge/dt = -ge/taue : volt
dgi/dt = -gi/taui : volt

)
G = NeuronGroup (4000, model=egs, threshold=Vt, reset=Vr)
Ge = G.subgroup (3200) # Excitatory neurons
(
(

Gi G.subgroup (800) # Inhibitory neurons
Ce = Connection(Ge, G, 'ge', sparseness=0.2, weight=we)
Ci = Connection(Gi, G, 'gi', sparseness=0.2, weight=wix10)

Cii=Connection (Gi,Gi, 'gi', sparseness=0.2, weight=wi)

M = SpikeMonitor (G)

E=SpikeMonitor (Ge, '+")

I=SpikeMonitor (Gi, 'o")

MV = StateMonitor (G, 'V', record=0)

Mge = StateMonitor (G, 'ge', record=0)

Mgi = StateMonitor (G, 'gi', record=0)

G.V = Vr + (Vt - Vr) = rand(len(G))

run (2500 % ms)

subplot (211)

raster_plot (M, title='The CUBA network', newfigure=False)
raster_plot (E)

raster_plot (I)

subplot (223)

plot (MV.times / ms, MV[0] / mV)

xlabel ('Time (ms)")

ylabel ('V (mV) ")

subplot (224)

plot (Mge.times / ms, Mge[0] / mV)
plot (Mgi.times / ms, Mgi[0] / mV)
xlabel ("Time (ms) ")

ylabel ('ge and gi (mV)"')
legend(('ge', 'gi'), 'upper right')
show ()

#new.Figure

Example: anonymous (twister)

Anonymous entry for the 2012 Brian twister.

rro

My contribution to the brian twister!

I meant to give it more thought, but I forgot about the deadline!
rrr

from brian import =

from brian.hears import =«

import pygame

_mixer_status = [-1,-1]
class SoundMonitor (SpikeMonitor) :

mmn

Listen to you networks!
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Plays pure tones whenever a neuron spikes, frequency 1is set according to the
—neuron number.

mmn

def _ init__ (self, source, record=False, delay=0,
frange = (100.xHz, 5000.«Hz),
duration = 50*ms,
samplerate = 44100xHz) :
super (SoundMonitor, self).__init__ (source, record = record, delay = delay)
self.samplerate = samplerate
self.nsamples = np.rint (duration » samplerate)
p = linspace (0, 1, len(source)) .reshape((l, len(source)))

p = np.tile(p, (self.nsamples, 1))
fregs = frange[0] = p + (1-p) = frange[l]

del p

times = linspace (0Oxms, duration, self.nsamples).reshape((self.nsamples, 1))
times = np.tile(times, (1, len(source)))

self.sounds = np.sin(2 * np.pi % fregs =* times)

self. init_mixer ()

def propagate(self, spikes):
if len(spikes):

data = np.sum(self.sounds[:,spikes], axis = 1)
x = array((2 «+ 15 - 1) % clip(data/amax(data), -1, 1), dtype=intlé6)
x.shape = x.size

# Make sure pygame receives an array in C-order
x = pygame.sndarray.make_sound(np.ascontiguousarray (x))
x.play ()

def _init_mixer (self):
global _mixer_status
if mixer_status==[-1,-1] or _mixer_status[0]!=1 or _mixer_status != self.
—samplerate:
pygame.mixer.quit ()
pygame.mixer.init (int (self.samplerate), -16, 1)
_mixer_status=[1l,self.samplerate]

def test_cubal():
# The CUBA example with sound!

taum = 20 x ms

taue = 5 x ms

taui = 10 x ms

vVt = =50 * mV

Vr = -60 * mV

El = 49 » mV

egs = Equations('''

dv/dt = (ge+gi-(v-El))/taum : volt
dge/dt = -ge/taue : volt

dgi/dt = —-gi/taui : volt

lll)

P = NeuronGroup (4000, model=eqs, threshold=Vt, reset=Vr, refractory=5 » ms)
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P.v = Vr
P.ge = 0 » mV
P.gi = 0 » mV

Pe = P.subgroup (3200)

Pi = P.subgroup(800)

we = (60 » 0.27 / 10) % mV #

wi = (=20 = 4.5 / 10) » mV #

Ce = Connection(Pe, P, 'ge',

Ci = Connection(Pi, P, 'gi',

P.v = Vr + rand(len(P)) = (Vt - Vr)

# Record the number of spikes
M = SoundMonitor (P)
run (10 * second)

def test_synfire():

from brian import =«

# Neuron model parameters

Vr = =70 * mV

vVt = =55 % mV

taum = 10 x ms

taupsp = 0.325 % ms

weight = 4.86 % mV

# Neuron model

egs = Equations('''

dv/dt= (- (V-Vr)+x) * (1./taum) volt
dx/dt=(-x+y)* (1./taupsp) volt

dy/dt=-y* (1./taupsp)+25.27+mV/ms+\
(39.24xmV/ms*x0.5) *x1i volt

Y'V)

# Neuron groups

P = NeuronGroup (N=1000, model=egs,
threshold=Vt, reset=Vr,
Pinput = PulsePacket (t=50 * ms, n=85,

# The network structure
Pgp = [ P.subgroup(100)
C = Connection(P, P, 'v')
for i in range(9):
C.connect_full (Pgpl[i],
Cinput = Connection (Pinput, Pgpl[0],
Cinput.connect_full (weight=weight)
monitor = SoundMonitor (P)
# Setup the network, and run it
P.V = Vr + rand(len(P)) = (Vt - Vr)
run (lxsecond)
# Plot result

show ()

if name == '__main__':

test_synfire ()

Pgp[i + 11,

excitatory
inhibitory
weight=we,
weight=wi,

lyl)

synaptic weight
synaptic weight
sparseness=0.5)
sparseness=0.5)

(voltage)

refractory=1 * ms)
sigma=1 * ms)

for i in range(10)]

weight)
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Example: PierreYger (twister)

Pierre Yger’s winning entry for the 2012 Brian twister.

from brian import »*
import numpy, os, pylab

mmn

An implementation of a simple topographical network, like those used in Mehring 2005_,
—or Yger 2011.

Cells are aranged randomly on a 2D plane and connected according to a gaussian profile
P(r) = exp(-d*+2/(2+sigma++2)), with delays depending linearly on the distances.

Note that the exact number of synapses per neuron 1is not fixed here.

To avoid any border conditions, the plane is considered to be toroidal.
Script will generate an Synchronous Irregular (SI) slow regime with propagating
waves that will spread in various directions, wandering over the network.

In addition, an external layer of Poisson sources will stimulates some cells on the,
—network, with

a wiring scheme such that the word BRIAN will pop up. External rates can be turned_
—off to observed the

spontaneous activity of the 2D layer. One can observe that despite the inputs 1is_
—constant, the network

is not always responding to it.

The script will display, while running, the spikes and Vm of the excitatory cells.
Varying sigma will show the various activity structures from a random network (s_lat >

-~ 1), to a very
locally connected one (s_lat < 0.1)

mmwn

### We are setting the global timestep of the simulation
Clock (0.1 * ms)

### Cell parameters ###

tau_m = 20. * ms # Membrane time constant

c_m = 0.2 = nF # Capacitance

tau_exc = 3. x ms # Synaptic time constant (excitatory)
tau_inh = 7. x ms # Synaptic time constant (inhibitory)
tau_ref = 5. x ms # Refractory period

El = -80 * mV # Leak potential

Ee = 0. * mV # Reversal potential (excitation)

Ei = -70.% mV # Reversal potential (inhibition)

vt = =50 « mV # Spike Threhold

Vr = -60 * mV # Spike Reset

### Equation for a Conductance-based IAF ####
egs = Equations('''

dv/dt = (El-v)/tau_m + (gex (Ee-v)+gi* (Ei-v))/c_m : volt

dge/dt = —-gex* (1l./tau_exc) : uS

dgi/dt = -gi* (1l./tau_inh) : uS

)

n_cells = 12500 # Total number of cells
n_exc = int (0.8 = n_cells) # 4:1 ratio for exc/inh
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size = 1. # Size of the network

simtime = 1000 = ms # Simulation time

sim_step =1 % ms # Display snapshots every sim_step ms
epsilon = 0.02 # Probability density

s_lat = 0.2 # Spread of the lateral connections
g_exc = 4. % nS # Excitatory conductance

g_inh = 64. * nS # Inhibitory conductance

g_ext = 200 * nS # External drive

velocity = 0.3 * mm/ms # velocity

ext_rate = 100 % Hz # Rate of the external source
max_distance = size *» mm/numpy.sqrt(2) # Since this is a torus

max_delay = max_distance/velocity # Needed for the connectors

### Generate the images with the letters B, R, I, A, N

### To do that, we create a png image and read it as a matrix
pylab.figure ()

pylab.text (0.125, 0.4, "B R I A N", size=80)
pylab.setp(gca(), xticks=[], yticks=[])

pylab.savefig ("BRIAN.png")

brian_letters = imread("BRIAN.png")

os.remove ("BRIAN.png")

brian_letters = numpy.flipud(mean (brian_letters,2)).T
pylab.close ()

### We create the cells and generate random positons in [0, size]x[0, size]

all_cells = NeuronGroup (n_cells, model=eqgs, threshold=Vt, reset=Vr,
—refractory=tau_ref)
all_cells.position = sizexnumpy.random.rand(n_cells, 2)

all_cells[0:n_exc]
all_cells[n_exc:n_cells]

exc_cells
inh_cells

### We initialize v values slightly above Vt, to have initial spikes
all_cells.v = E1 + 1.lxnumpy.random.rand(n_cells) = (Vt - EI1)

### Now we create the source that will write the word BRIAN
sources = PoissonGroup(l, ext_rate)
sources.position = array ([[0.5, 0.511)

### Function to get the distance between one position and an array of positions
### This is needed to used the vectorized form of the connections in the brian.
—Connection objects
### Note that the plane is wrapped, to avoid any border effects.
def get_distance(x, y):

dl = abs(x - vy)

min_d = numpy.minimum(dl, size - dl)

return numpy.sgrt (numpy.sum (min_d*=*2, 1))

### Function returning the probabilities of connections as a functions of distances
def probas (i, j, x, y):

distance = get_distance(x[i], yI[3J])

return epsilon * numpy.exp (-distancex*2/(2+s_lat+*2))

### Function returning linear delays as function of distances
def delays (i, j, x, y):

distance = get_distance(x[i], vI[3J])

return 0.lxms + (distance » mm )/ velocity

### Function assessing if a cell is located in a particular letter of the word BRIAN

3.2
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### Return 0 if not, and 1 if yes.

def is_in_brian(i, Jj, x, y):
a, b = brian_letters.shape
tmp_x, tmp_y = (y[jl[:, O]=*a).astype(int), (y[jll[:, 1]1xb).astype(int)
return 1 - brian_letters[tmp_x, tmp_y]

print "Building network with wrapped 2D gaussian profiles..."

Ce = Connection(exc_cells, all_cells, 'ge', weight=g_exc, max_delay=max_delay,
sparseness=lambda i, j : probas (i, j, exc_cells.position, all_cells.

—position),

delay =lambda i, j : delays(i, Jj, exc_cells.position, all_cells.
—position))
Ci = Connection(inh_cells, all_cells, 'gi', weight=g_inh, max_delay=max_delay,
sparseness=lambda i, j : probas(i, Jj, inh_cells.position, all_cells.
—position),
delay =lambda i, j : delays(i, j, inh_cells.position, all_cells.
—position))
Cext = Connection (sources, all _cells, 'ge', weight=g_ext, max_delay=max_delay,
sparseness=lambda i, j : is_in_brian(i, j, sources.position, all_cells.
—position))
print "--> mean probability from excitatory synapses:", Ce.W.getnnz () /float (n_exc*n_
—cells) * 100, "s"
print "--> mean probability from inhibitory synapses:", Ci.W.getnnz()/float ((n_cells -

« n_exc)*n_cells) = 100, "%"

print "Setting the recorders..."

V_exc = RecentStateMonitor (exc_cells, 'v', record=True)

s_exc = SpikeCounter (exc_cells)

ion() # To enter the interactive mode

print "Initializing the plots..."

figl = pylab.subplot (211)

im = figl.scatter(all_cells.position[:n_exc, 0], all_cells.position[:n_exc, 1],

—c=[0]*n_exc)

im.set_clim(0, 1)

figl.set_ylabel ("spikes")

pylab.colorbar (im)

fig2 = pylab.subplot (212)

im = fig2.scatter(all_cells.position[:n_exc, 0], all _cells.position[:n_exc, 1],
—c=[0]*n_exc)

im.set_clim(E1l, Vt)

fig2.set_ylabel ("v"

pylab.colorbar (im)

[

manager = pylab.get_current_fig _manager ()

print "Running network .

for time in xrange (int ((simtime/sim_step) /ms)) :
run (sim_step)

figl.cla()
figl.set_title("t = %g s" % ((sim_step * time) /ms))
idx = s_exc.count > 0

if numpy.sum(idx) > O:
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im = figl.scatter(all_cells.position[:n_exc, 0][idx], all_cells.position[:n

—exc, 1][idx], c=[0]*n_exc)

s_exc.count = numpy.zeros (n_exc) ## We reset the spike counter

figl.set_x1lim (0, size)

figl.set_ylim(0, size)

figl.set_ylabel ("spikes")

im.set_clim(0, 1)

setp(figl, xticks=[], yticks=[])

fig2.cla()

im = fig2.scatter(all_cells.position[:n_exc, 0], all_cells.position[:n_exc, 1],
—c=v_exc.values[-11])

fig2.set_x1lim (0, size)

fig2.set_ylim (0, size)

fig2.set_ylabel ("v")

im.set_clim(El, Vt)

setp(fig2, xticks=[], yticks=[])

manager.canvas.draw ()
manager.canvas.flush_events ()
ioff () # To leave the interactive mode

Example: MicheleGiugliano (twister)

Michele Giugliano’s entry for the 2012 Brian twister.

Figure5B - from Giugliano et al., 2004
Journal of Neurophysiology 92(2):977-96

implemented by Eleni Vasilaki <e.vasilaki@sheffield.ac.uk> and
Michele Giugliano <michele.giugliano@Qua.ac.be>

A sparsely connected network of excitatory neurons, interacting
via current-based synaptic interactions, and incorporating
spike-frequency adaptation, is simulated.

Its overall emerging firing rate activity replicates some of the features of
spontaneous patterned electrical activity, observed experimentally in cultured
networks of neurons dissociated from the neocortex.

S oH O H W W HH W R H KR R R R %

from brian import =

# Parameters of the simulation

T = 30000 =ms # life time of the simulation

N = 100 # total number of (excitatory) integrate—-and-fire model neurons,_
—1in the network

# Parameters of each model neuron, voltage dynamics

C = 67.95 xpF # Membrane capacitance of single model neurons

tau = 22.25 »*ms # Membrane time-constant of single model neurons

H = 2.39 *mV # Reset voltage, mimicking hyperpolarization potential
—following a spike

theta= 20 *mV # Threshold voltage for spike initiation

tauarp=7.76 *ms # Absolute refractory period

# Parameters of each model neuron, spike-frequency adaptation dynamics
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taua = 2100 »ms # Adaptation time constant
a = 0.75 *pA # Adaptation scaling factor — NO ADAPTATION
D = lxms # Unit consistency factor
temp = 1. xms*x*(-.5) # Unit consistency factor

# Parameters of network connectivity

Cee = 0.38 # Sparseness of all-to-all random connectivity
taue = 5 *ms # Decay time constant of excitatory EPSPs
delta= 1.5 * ms # Conduction+synaptic propagation delay

J = 14.5% pA # Strenght of synaptic coupling, up to 18 xpA

# Parameters of background synaptic activity, modelled as a identical and independent,
—noisy extra-input to each model neuron

m0 = 25.1 *pA # Mean background input current

s0 92 *pA # Std dev of the (noisy) background input current

# Each model neuron is described as a leaky integrate-—-and-fire with adaptation and_,
—current—-driven synapses

eqs = nun
dv/dt = - v / tau - a/C » x + Ie/C + (m0 + sO » xi / temp)/C : mV
dx/dt = -x/taua : 1

dIe/dt = -Ie/taue : pA

nwn

# Custom refractory mechanisms are employed here, to allow the membrane potential to_,
—be clamped to the reset value H
def myresetfunc (P, spikes):

P.v[spikes] = H #reset voltage

P.x[spikes] += 1 #low pass filter of spikes (adaptation mechanism)

SCR = SimpleCustomRefractoriness (myresetfunc, tauarp, state='v')

# The population of identical N model neuon is defined now
P = NeuronGroup (N, model=eqgs, threshold=theta, reset=SCR)

# The interneuronal connectivity is defined now
Ce = Connection(P, P, 'Ie', weight=J, sparseness=Cee, delay=delta)

# Initialization of the state variables, for each model neuron

P.v = rand(len(P)) * 20 » mV #membrane potential
P.x = rand(len(P)) * 2 #low pass filter of spikes
P.Ie = 0 *pA #excitatory synaptic input

# Definition of tools for plotting and visualization of single neuron and population_,

—quantities

R = PopulationRateMonitor (P)

M = SpikeMonitor (P)

trace = StateMonitor (P, 'v', record=0)

tracex = StateMonitor (P, 'x', record=0)

print "Simulation running... (long-lasting simulation: be patient)"
run (T)

print "Simulation completed! If you did not see any firing rate population burst,
— (lower panel), then slightly increase J!"

# Plot nice spikes — adapted from Brette's code
vm = tracel[0]
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spikesO0 = [t for i,t in M.spikes if i==0]
for i in range (0, len(spikes0)):
k = int (spikes0[i] / defaultclock.dt)
vm[k] = 80 * mV

subplot (311) #membrane potential of neuron 0
plot (trace.times / ms, vm / mV — 60)

subplot (312) #raster plot
raster_plot (M)

subplot (313) #smoothed population rate
plot (R.times / ms, R.smooth_rate(5xms) / Hz, tracex.times / ms, tracex[0] » 10)

y1lim(0, 120)

show ()

3.2.8 multiprocessing

Example: taskfarm (multiprocessing)

Uses the run_tasks () function to run a task on multiple CPUs and save the results to a DataManager object.

from brian import =
from brian.tools.datamanager import =
from brian.tools.taskfarm import =«

def find_rate(k, report):
egqs = '"!'

dv/dt = (k-V)/(10*ms) : 1

G = NeuronGroup (1000, egs, reset=0, threshold=l)
M SpikeCounter (G)

run (30xsecond, report=report)

return (k, mean (M.count) /30)

if name__=='_ _main

N = 20
dataman = DataManager ('taskfarmexample')
if dataman.itemcount () <N:
M = N-dataman.itemcount ()
run_tasks (dataman, find_rate, rand(M)«19+1)
X, Y = zip(xdataman.values())
plot (X, Y, ".")
xlabel ('k")
ylabel ('Firing rate (Hz)"')
show ()

Example: multiple_runs_simple (multiprocessing)

Example of using Python multiprocessing module to distribute simulations over multiple processors.

The general procedure for using multiprocessing is to define and run a network inside a function, and then use multi-
processing.Pool.map to call the function with multiple parameter values. Note that on Windows, any code that should
only run once should be placed inside an if __name__=="__main__’ block.
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from brian import =
import multiprocessing

# This 1is the function that we want to compute for various different parameters
def how_many_spikes (excitatory_weight) :
# These two lines reset the clock to 0 and clear any remaining data so that
# memory use doesn't build up over multiple runs.
reinit_default_clock ()
clear (True)

egs = [N
dv/dt = (get+gi-(v+49+mV))/ (20*ms) : volt
dge/dt = -ge/ (5xms) : volt

dgi/dt = —-gi/(10*ms) : volt

P = NeuronGroup (4000, egs, threshold= -50 * mV, reset= -60 x mV)
P.v = -60 » mV + 10 # mV » rand(len(P))

= P.subgroup (3200)

P.subgroup (800)

Ce = Connection(Pe, P, 'ge')

Connection(Pi, P, 'gi'")

Ce.connect_random(Pe, P, 0.02, weight=excitatory_weight)
Ci.connect_random(Pi, P, 0.02, weight= -9 % mV)

M = SpikeMonitor (P)

run (100 + ms)

return M.nspikes

g o
(R0
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if name_ == '_ _main__ ':
# Note that on Windows platforms, all code that is executed rather than
# just defining functions and classes has to be in the if __name_ _=='__main__'
# block, otherwise it will be executed by each process that starts. This
# isn't a problem on Linux.
pool = multiprocessing.Pool () # uses num _cpu processes by default
weights = linspace (0, 3.5, 100) * mV
args = [w » volt for w in weights]

results = pool.map (how_many_spikes, args) # launches multiple processes
plot (weights, results, '.')
show ()

Example: multiple_runs_with_gui (multiprocessing)
A complicated example of using multiprocessing for multiple runs of a simulation with different parameters, using a
GUI to monitor and control the runs.
This example features:
¢ An indefinite number of runs, with a set of parameters for each run generated at random for each run.
* A plot of the output of all the runs updated as soon as each run is completed.

* A GUI showing how long each process has been running for and how long until it completes, and with a button
allowing you to terminate the runs.

A simpler example is in examples/multiprocessing/multiple_runs_simple.py.

# We use Tk as the backend for the GUI and matplotlib so as to avoid any
# threading conflicts

import matplotlib

matplotlib.use ('TkAgg")
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from brian import =

import Tkinter, time, multiprocessing, os

from brian.utils.progressreporting import make_text_report
from Queue import Empty as QueueEmpty

class SimulationController (Tkinter.Tk) :
rr
GUI, uses Tkinter and features a progress bar for each process, and a callback
function for when the terminate button is clicked.
rr
def _ _init__ (self, processes, terminator, width=600) :
Tkinter.Tk._ _init_ (self, None)
self.parent = None
self.grid()
button = Tkinter.Button(self, text='Terminate simulation',
command=terminator)
button.grid(column=0, row=0)
self.pb_width = width
self.progressbars = []
for i in xrange (processes):
can = Tkinter.Canvas (self, width=width, height=30)
can.grid(column=0, row=1l + 1)
can.create_rectangle (0, 0, width, 30, fill='#aaaaaa')
r = can.create_rectangle (0, 0, 0, 30, fill='#ffaaaa', width=0)
t = can.create_text (width / 2, 15, text='")
self.progressbars.append((can, r, t))
self.results_text = Tkinter.Label (self, text='Computed 0 results, time taken:
—0s")
self.results_text.grid(column=0, row=processes + 1)
self.title('Simulation control')

def update_results(self, elapsed, complete):
Method to update the total number of results computed and the amount of time,,
—taken.
self.results_text.config(text='Computed ' + str(complete) + ', time taken: '
—+ str(int (elapsed)) + 's')
self.update ()

[

def update_process(self, i, elapsed, complete, msg):

rro

Method to update the status of a given process.

rro

can, r, t = self.progressbars([i]
can.itemconfigure (t, text='Process ' + str(i) + ': ' + make_text_
—report (elapsed, complete) + ': ' + msq)

can.coords(r, 0, 0, int(self.pb_width » complete), 30)
self.update ()

def sim_mainloop (pool, results, message_dgueue) :
rr

Monitors results of a simulation as they arrive

pool 1is the multiprocessing.Pool that the processes are running in,
results is the AsyncResult object returned by Pool.imap_unordered which
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def

returns simulation results asynchronously as and when they are ready,

and message_queue 1is a multiprocessing.Queue used to communicate between

child processes and the server process. In this case, we use this Queue to
send messages about the percent complete and time elapsed for each run.

P

# We use this to enumerate the processes, mapping their process IDs to an int
# in the range 0O:num_processes.

pid_to_id = dict ((pid, i) for i, pid in enumerate([p.pid for p in pool._pool]))

num_processes = len(pid_to_id)
start = time.time ()
stoprunningsim = [False]

# This function terminates all the pool's child processes, it is used as
# the callback function called when the terminate button on the GUI is clicked.
def terminate_sim() :
pool.terminate ()
stoprunningsim[0] = True
controller = SimulationController (num_processes, terminate_sim)
for i in range (num_processes) :
controller.update_process (i, 0, 0, 'no info yet')

i=20
while True:
try:

# If there 1is a new result (the 0.1 means wait 0.1 seconds for a
# result before giving up) then this try clause will execute, otherwise
# a TimeoutError will occur and the except clause afterwards will
# execute.
weight, numspikes = results.next (0.1)
# if we reach here, we have a result to plot, so we plot it and
# update the GUI
plot_result (weight, numspikes)
i=1i+1
controller.update_results(time.time () - start, i)
except multiprocessing.TimeoutError:
# if we're still waiting for a new result, we can process events 1in
# the message_queue and update the GUI if there are any.
while not message_queue.empty () :
try:
messages here are of the form: (pid, elapsed, complete)
where pid is the process ID of the child process, elapsed
is the amount of time elapsed, and complete is the
fraction of the run completed. See function how_many_spikes
to see where these messages come from.
pid, elapsed, complete = message_gueue.get_nowait ()
controller.update_process (pid_to_id[pid], elapsed, complete, '')
except QueueEmpty:
break
controller.update ()
if stoprunningsim([0]:
print 'Terminated simulation processes'
break
controller.destroy ()

H o W W H

plot_result (weight, numspikes):

plot ([weight], [numspikes], '.', color=(0, 0, 0.5))
axis('tight!")

draw() # this forces matplotlib to redraw

# Note that how_many_spikes only takes one argument, which is a tuple of
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# its actual arguments. The reason for this is that Pool.imap_unordered can only
# pass a single argument to the function its applied to, but that argument can
# be a tuple...
def how_many_spikes ((excitatory_weight, message_queue)) :
reinit_default_clock ()
clear (True)

[

eqgs =

dv/dt = (get+gi-(v+49+mV))/ (20xms) : volt
dge/dt = -ge/ (5xms) : volt

dgi/dt = —-gi/ (10*ms) : volt

T

P = NeuronGroup (4000, egs, threshold= -50 * mV, reset= —-60 x mV)
P.v. = -60 * mV + 10 » mV » rand(len(P))

Pe = P.subgroup(3200)

Pi = P.subgroup(800)

Ce = Connection(Pe, P, 'ge')

Ci = Connection(Pi, P, 'gi')
Ce.connect_random(Pe, P, 0.02, weight=excitatory_weight)
Ci.connect_random(Pi, P, 0.02, weight= -9 % mV)

M = SpikeMonitor (P)
# This reporter function is called every second, and it sends a message to
# the server process updating the status of the current run.
def reporter (elapsed, complete):
message_queue.put ((os.getpid(), elapsed, complete))

run (4000 * ms, report=reporter, report_period=1l * second)

return (excitatory_weight, M.nspikes)

if name == '__main__':

numprocesses = None # number of processes to use, set to None to have one per CPU

# We have to use a Queue from the Manager to send messages from client
# processes to the server process
manager = multiprocessing.Manager ()
message_dgueue = manager.Queue ()
pool = multiprocessing.Pool (processes=numprocesses)
# This generator function repeatedly generates random sets of parameters
# to pass to the how_many_spikes function
def args():
while True:
weight = rand()*3.5 » mV
yield (weight, message_queue)
imap_unordered returns an AsyncResult object which returns results as
and when they are ready, we pass this results object which is returned
immediately to the sim mainloop function which monitors this, updates the
GUI and plots the results as they come in.
results = pool.imap_unordered (how_many_spikes, args())
ion() # this puts matplotlib into interactive mode to plot as we go
sim_mainloop (pool, results, message_gueue)

#
#
#
#
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3.2.9 hears

Example: online_computation (hears)

Example of online computation using process (). Plots the RMS value of each channel output by a gammatone
filterbank.

from brian import =
from brian.hears import =«

soundl = tone(lxkHz, .l*second)
sound2 = whitenoise(.l*second)

sound = soundl-+sound2
sound = sound.ramp ()

sound.level = 60xdB

cf = erbspace(20xHz, 20xkHz, 3000)
fb = Gammatone (sound, cf)

def sum_of_squares (input, running):
return running+sum(input**2, axis=0)

rms = sqrt (fb.process (sum_of_squares) /sound.nsamples)
sound_rms = sqgrt (mean (sound*=*2))

axhline (sound_rms, ls='—--")
plot (cf, rms)

xlabel ('Frequency (Hz)")
ylabel ("RMS")

show ()

Example: sound_localisation_model (hears)
Example demonstrating the use of many features of Brian hears, including HRTFs, restructuring filters and integration
with Brian. Implements a simplified version of the “ideal” sound localisation model from Goodman and Brette (2010).

The sound is played at a particular spatial location (indicated on the final plot by a red +). Each location has a
corresponding assembly of neurons, whose summed firing rates give the sizes of the blue circles in the plot. The most
strongly responding assembly is indicated by the green x, which is the estimate of the location by the model.

Reference:

Goodman DFM, Brette R (2010). Spike-timing-based computation in sound localization. PLoS Comput. Biol. 6(11).

from brian import =
from brian.hears import =«

# Download the IRCAM database, and replace this filename with the location
# you downloaded it to

hrtfdb = IRCAM_LISTEN (r'F:\HRTF\IRCAM')

subject = 1002

hrtfset = hrtfdb.load_subject (subject)

# This gives the number of spatial locations in the set of HRTFs
num_indices = hrtfset.num_indices
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# Choose a random location for the sound to come from
index = randint (hrtfset.num_indices)
# A sound to test the model with
sound = Sound.whitenoise (500+ms)
# This is the specific HRTF for the chosen location
hrtf = hrtfset.hrtf[index]
# We apply the chosen HRTF to the sound, the output has 2 channels
hrtf_fb = hrtf.filterbank (sound)
# We swap these channels (equivalent to swapping the channels in the
# subsequent filters, but simpler to do it with the inputs)
swapped_channels = RestructureFilterbank (hrtf_fb, indexmapping=[1, 0])
# Now we apply all of the possible pairs of HRTFs in the set to these
# swapped channels, which means repeating them num_indices times first
hrtfset_fb = hrtfset.filterbank (Repeat (swapped_channels, num_indices))
# Now we apply cochlear filtering (logically, this comes before the HRTF
# filtering, but since convolution is commutative it is more efficient to
# do the cochlear filtering afterwards
cfmin, cfmax, cfN = 150%Hz, 5«kHz, 40
cf = erbspace(cfmin, cfmax, cfN)
# We repeat each of the HRTFSet filterbank channels cfN times, so that
# for each location we will apply each possible cochlear frequency
gfb = Gammatone (Repeat (hrtfset_fb, cfN),
tile(cf, hrtfset_fb.nchannels))

# Half wave rectification and compression
cochlea = FunctionFilterbank (gfb, lambda x:15+clip(x, 0, Inf)x*(1.0/3.0))
# Leaky integrate and fire neuron model
egqs = ''"
dv/dt = (I-V)/(l*ms)+0.1%xxi/(0.5*ms)*x.5 : 1
I :1
Tr
G = FilterbankGroup (cochlea, 'I', egs, reset=0, threshold=1l, refractory=5+ms)
# The coincidence detector (cd) neurons
cd = NeuronGroup (num_indices*cfN, eqgs, reset=0, threshold=1, clock=G.clock)
# Each CD neuron receives precisely two inputs, one from the left ear and
# one from the right, for each location and each cochlear frequency
C = Connection (G, cd, 'V'")
for i in xrange (num_indices*cfN) :

cli, 1] = 0.5 # from right ear

Cli+num_indices*cfN, 1] = 0.5 # from left ear
# We want to just count the number of CD spikes
counter = SpikeCounter (cd)
# Run the simulation, giving a report on how long it will take as we run
run (sound.duration, report='stderr')
# We take the array of counts, and reshape them into a 2D array which we sum
# across frequencies to get the spike count of each location-specific assembly

count = counter.count

count.shape = (num_indices, cfN)

count = sum(count, axis=1)

count = array (count, dtype=float)/amax (count)

# Our guess of the location is the index of the strongest firing assembly
index_guess = argmax (count)

# Now we plot the output, using the coordinates of the HRTFSet

coords = hrtfset.coordinates

azim, elev = coords|['azim'], coords['elev']

scatter (azim, elev, 100*count)

plot ([azim[index]], [elev([index]], '+r', ms=15, mew=2)

plot ([azim[index_guess]], [elev[index_guess]], 'xg', ms=15, mew=2)

xlabel ("Azimuth (deg)"')
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ylabel ('Elevation (deg) ')
xlim (-5, 350)

ylim (=50, 95)

show ()

Example: dcgc (hears)

Implementation example of the compressive gammachirp auditory filter as described in Irino, T. and Patterson R., “A
compressive gammachirp auditory filter for both physiological and psychophysical data”, JASA 2001.

A class called DCGC implementing this model is available in the library.

Technical implementation details and notation can be found in Irino, T. and Patterson R., “A Dynamic Compressive
Gammachirp Auditory Filterbank”, IEEE Trans Audio Speech Lang Processing.

from brian import =
from brian.hears import x

simulation_duration = 50+*ms

samplerate = 50xkHz

level = 50«dB # level of the input sound in rms dB SPL
sound = whitenoise(simulation_duration, samplerate) .ramp ()
sound = sound.atlevel (level)

nbr_cf = 50 # number of centre frequencies
# center frequencies with a spacing following an ERB scale
cf = erbspace(100xHz, 1000«Hz, nbr_cf)

cl = -2.96 #glide slope of the first filterbank

bl = 1.81 #factor determining the time constant of the first filterbank
c2 = 2.2 #glide slope of the second filterbank

b2 = 2.17 #factor determining the time constant of the second filterbank

order_ERB = 4

ERBrate = 21.4x10gl0(4.37+xcf£/1000+1)
ERBwidth = 24.7%(4.37+xcf£/1000 + 1)
ERBspace = mean (diff (ERBrate))

# the filter coefficients are updated every update_interval (here in samples)
update_interval = 1

#bank of passive gammachirp filters. As the control path uses the same passive
#filterbank than the signal path (but shifted in frequency)

#this filterbank is used by both pathway.

pGc = LogGammachirp (sound, cf, b=bl, c=cl)

fpl = cf + cl+ERBwidth+bl/order_ERB #centre frequency of the signal path
#### Control Path ####

#the first filterbank in the control path consists of gammachirp filters

#value of the shift in ERB frequencies of the control path with respect to the signal,,
—path

lct_ERB = 1.5

n_ch_shift = round(lct_ERB/ERBspace) #value of the shift in channels
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#index of the channel of the control path taken from pGc

indchl_control = minimum(maximum(l, arange(l, nbr_cf+1)+n_ch_shift), nbr_cf).
—astype (int) -1

fpl_control = fpl[indchl_control]

#the control path bank pass filter uses the channels of pGc indexed by indchl_control
pGc_control = RestructureFilterbank (pGc, indexmapping=indchl_control)

#the second filterbank in the control path consists of fixed asymmetric compensation,,
—~filters

frat_control = 1.08

fr2_control = frat_control«fpl_control

asym_comp_control = AsymmetricCompensation (pGc_control, fr2_control, b=b2, c=c2)

#definition of the pole of the asymmetric comensation filters
p0 = 2

pl = 1.7818%(1-0.0791%b2)*(1-0.1655+abs (c2))

p2 = 0.5689% (1-0.1620xb2) % (1-0.0857xabs (c2))

p3 = 0.2523%(1-0.0244%b2) * (1+0.0574*abs (c2))

pd = 1.0724

#definition of the parameters used in the control path output levels computation
#(see IEEE paper for details)

decay_tcst = .5+ms
order = 1.
lev_weight = .5

level_ref = 50.

level_pwrl = 1.5

level_pwr2 = .5

RMStoSPL = 30.

frat0 = .2330

fratl = .005

exp_deca_val = exp(-1/(decay_tcst+samplerate)~log(2))
level_min = 10xx (-RMStoSPL/20)

#definition of the controller class. What is does it take the outputs of the
#first and second fitlerbanks of the control filter as input, compute an overall
#intensity level for each frequency channel. It then uses those level to update
#the filter coefficient of its target, the asymmetric compensation filterbank of
#the signal path.
class CompensensationFilterUpdater (object) :
def _ _init__ (self, target):

self.target = target

self.levell_prev = -100

self.level2_prev = -100

def _ _call__ (self, *input):
valuel = input[0][-1,:]
value2 = input[1][-1,:]
#the current level value is chosen as the max between the current
#output and the previous one decreased by a decay
levell = maximum (maximum(valuel, 0), self.levell_prevxexp_deca_val)
level2 = maximum (maximum(value2, 0), self.level2_prevxexp_deca_val)

self.levell prev levell #the value is stored for the next iteration

self.level2_prev = level2

#the overall intensity 1is computed between the two filterbank outputs

level_total = lev_weightxlevel_refx (levell/level_ref)xxlevel_ pwrl+\
(1-lev_weight) xlevel_refx (level2/level_ref) «xlevel_pwr2
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#then it 1is converted in dB

level _dB = 20%1ogl0 (maximum(level_total, level_min))+RMStoSPL

#the frequency factor is calculated

frat = frat0 + fratlxlevel_dB

#the centre frequency of the asymmetric compensation filters are updated

fr2 = fpl«frat

coeffs = asymmetric_compensation_coeffs (samplerate, fr2,
self.target.filt_b, self.target.filt_a, b2, c2,
p0, pl, p2, p3, p4)

self.target.filt_b, self.target.filt_a = coeffs

#### Signal Path ####
#the signal path consists of the passive gammachirp filterbank pGc previously
#defined followed by a asymmetric compensation filterbank
frl = fplxfratl
varyingfilter_signal_path = AsymmetricCompensation (pGc, frl, b=b2, c=c2)
updater = CompensensationFilterUpdater (varyingfilter_signal_path)
#the controler which takes the two filterbanks of the control path as inputs
#and the varying filter of the signal path as target 1is instantiated
control = ControlFilterbank (varyingfilter_signal_path,
[pGc_control, asym_comp_control],
varyingfilter_signal_path, updater, update_interval)

#run the simulation
#Remember that the controler are at the end of the chain and the output of the
#whole path comes from them

signal = control.process|()

figure ()

imshow (flipud(signal.T), aspect='auto')
show ()

Example: butterworth (hears)

Example of the use of the class Butterworth available in the library. In this example, a white noise is filtered
by a bank of butterworth bandpass filters and lowpass filters which are different for every channels. The centre or
cutoff frequency of the filters are linearly taken between 100kHz and 1000kHz and its bandwidth frequency increases
linearly with frequency.

from brian import =
from brian.hears import =«

level = 50«dB # level of the input sound in rms dB SPL
sound = whitenoise (100xms) .ramp ()

sound = sound.atlevel (level)

order = 2 #order of the filters

#### example of a bank of bandpass filter ################

nchannels = 50

center_frequencies = linspace(100+xHz, 1000xHz, nchannels)

bw = linspace (50+«Hz, 300+Hz, nchannels) # bandwidth of the filters
#arrays of shape (2 x nchannels) defining the passband frequencies (Hz)
fc = vstack ((center_frequencies-bw/2, center_frequencies+bw/2))

filterbank = Butterworth (sound, nchannels, order, fc, 'bandpass')
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filterbank_mon = filterbank.process|()

figure ()
subplot (211)
imshow (flipud(filterbank_mon.T), aspect='auto')

### example of a bank of lowpass filter ################
nchannels = 50
cutoff_frequencies = linspace (200+«Hz, 1000xHz, nchannels)

filterbank = Butterworth (sound, nchannels, order, cutoff_frequencies, 'low')
filterbank_mon = filterbank.process|()
subplot (212)

imshow (flipud(filterbank_mon.T), aspect='auto')
show ()

Example: time_varying_filter2 (hears)

This example implements a band pass filter whose center frequency is modulated by a sinusoid function. This modula-
tor is implemented as a FunctionFilterbank. One state variable (here time) must be kept; it is therefore imple-
mented with a class. The bandpass filter coefficients update is an example of how to use a ControlFilterbank.
The bandpass filter is a basic biquadratic filter for which the Q factor and the center frequency must be given. The
input is a white noise.

from brian import =«
from brian.hears import =«

samplerate = 20xkHz
SoundDuration = 300+ms
sound = whitenoise (SoundDuration, samplerate) .ramp ()

#number of frequency channel (here it must be one as a spectrogram of the
#output is plotted)

nchannels = 1

fc_init = 5000xHz #initial center frequency of the band pass filter

Q =5 #quality factor of the band pass filter

update_interval = 1 # the filter coefficients are updated every sample
mean_center_freq = 4+xkHz #mean frequency around which the CF will oscillate
amplitude = 1500xHz #amplitude of the oscillation

frequency = 10xHz #frequency of the oscillation

#this class is used in a FunctionFilterbank (via its __call__). It outputs the

#center frequency of the band pass filter. Its output is thus later passed as
#input to the controler.
class CenterFrequencyGenerator (object) :
def _ init__ (self):
self.t=0+second

def _ _call_(self, input):
#update of the center frequency
fc = mean_center_fregtamplitudexsin(2+«pixfrequencyx*self.t)
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#update of the state variable
self.t = self.t+1l./samplerate
return fc

center_frequency = CenterFrequencyGenerator ()
fc_generator = FunctionFilterbank (sound, center_frequency)

#the updater of the controller generates new filter coefficient of the band pass
#filter based on the center frequency it receives from the fc_generator
#(its input)
class CoeffController (object) :
def _ init__ (self, target):
self.BW = 2+arcsinh(1./2/Q)*1.44269
self.target=target

def _ _call__(self, input):
fc = input[-1,:] #the control variables are taken as the last of the buffer
w0 = 2+pixfc/array (samplerate)
alpha = sin(w0)*sinh (log(2)/2*self.BW+w0/sin (w0))

self.target.filt_b[:, 0, 0] = sin(w0) /2
self.target.filt_b[:, 1, 0] =0
self.target.filt_b[:, 2, 0] = —-sin(w0) /2
self.target.filt_al:, 0, 0] = l+alpha
self.target.filt_afl:, 1, 0] = -2%cos(w0)
self.target.filt_al:, 2, 0] = l-alpha

# In the present example the time varying filter is a LinearFilterbank therefore
#we must initialise the filter coefficients; the one used for the first buffer,
—computation

w0 = 2+pixfc_init/samplerate

BW = 2xarcsinh(1./2/Q)*1.44269

alpha = sin(w0) *sinh (log(2) /2+BW+w0/sin (w0))

filt_b = zeros((nchannels, 3, 1))
filt_a = zeros((nchannels, 3, 1))
filt_bf[:, 0, 0] = sin(w0Q) /2
filt_bf[:, 1, 0] =0

filt_bf:, 2, 0] = -sin(w0)/2
filt_al[:, 0, 0] = l+alpha
filt_afl:, 1, 0] = —2xcos(w0)
filt_al:, 2, 0] = l-alpha

#the filter which will have time varying coefficients
bandpass_filter = LinearFilterbank (sound, filt_b, filt_a)
#the updater

updater = CoeffController (bandpass_filter)

#the controller. Remember it must be the last of the chain
control = ControlFilterbank (bandpass_filter, fc_generator, bandpass_filter,

updater, update_interval)

time_varying_filter_mon = control.process ()
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figure (1)

pxx, freqgs, bins, im = specgram(squeeze (time_varying_ filter_mon),
NFFT=256, Fs=samplerate, noverlap=240)

imshow (flipud (pxx), aspect='auto')

show ()

Example: log_gammachirp (hears)

Example of the use of the class LogGammachirp available in the library. It implements a filterbank of IIR gam-
machirp filters as Unoki et al. 2001, “Improvement of an IIR asymmetric compensation gammachirp filter”. In this
example, a white noise is filtered by a linear gammachirp filterbank and the resulting cochleogram is plotted. The
different impulse responses are also plotted.

from brian import =«
from brian.hears import =«

sound = whitenoise (100xms) .ramp ()
sound.level = 50+dB

nbr_center_frequencies = 50 #number of frequency channels in the filterbank

cl = -2.96 #glide slope
bl = 1.81 #factor determining the time constant of the filters

#center frequencies with a spacing following an ERB scale
cf = erbspace(100xHz, 1000xHz, nbr_center_frequencies)

gamma_chirp = LogGammachirp (sound, cf, c=cl, b=bl)
gamma_chirp_mon = gamma_chirp.process ()
figure ()

imshow (flipud (gamma_chirp_mon.T), aspect='auto')
show ()

Example: drnl (hears)

Implementation example of the dual resonance nonlinear (DRNL) filter with parameters fitted for human as described
in Lopez-Paveda, E. and Meddis, R., A human nonlinear cochlear filterbank, JASA 2001.

A class called DRNL implementing this model is available in the library.

The entire pathway consists of the sum of a linear and a nonlinear pathway.

The linear path consists of a bank of bandpass filters (second order gammatone), a low pass function, and a
gain/attenuation factor, g, in a cascade.

The nonlinear path is a cascade consisting of a bank of gammatone filters, a compression function, a second bank of
gammatone filters, and a low pass function, in that order.

The parameters are given in the form 10+ % (pO+mlogl0 (cf) ).

from brian import =«
from brian.hears import =«
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simulation_duration = 50*ms

samplerate = 50xkHz

level = 50xdB # level of the input sound in rms dB SPL
sound = whitenoise (simulation_duration, samplerate) .ramp ()

sound. level = level

nbr_cf = 50 #number of centre frequencies

#center frequencies with a spacing following an ERB scale
center_frequencies = erbspace(100«Hz,1000+«Hz, nbr_cf)

#conversion to stape velocity (which are the units needed by the following centres)
sound = soundx0.00014

#### Linear Pathway ####

#bandpass filter (second order gammatone filter)

center_frequencies_linear = 10x%(-0.067+1.016%x10gl0 (center_frequencies))

bandwidth_linear = 10+ (0.037+0.785%10ogl0 (center_frequencies))

order_linear = 3

gammatone = ApproximateGammatone (sound, center_frequencies_linear,
bandwidth_linear, order=order_linear)

#linear gain

g = 10%%x(4.2-0.48%10gl0 (center_frequencies))
func_gain = lambda x:g*x

gain = FunctionFilterbank (gammatone, func_gain)

#low pass filter (cascade of 4 second order lowpass butterworth filters)

cutoff_frequencies_linear = center_frequencies_linear
order_lowpass_linear = 2
lp_1 = LowPass (gain, cutoff_frequencies_linear)

lowpass_linear = Cascade(gain, 1lp_1, 4)
#### Nonlinear Pathway ####

#bandpass filter (third order gammatone filters)

center_frequencies_nonlinear = center_frequencies
bandwidth_nonlinear = 10%%(-0.031+0.774%x10ogl0 (center_frequencies))
order_nonlinear = 3

bandpass_nonlinearl = ApproximateGammatone (sound, center_frequencies_nonlinear,
bandwidth_nonlinear,
order=order_nonlinear)

#compression (linear at low level, compress at high level)

a = 10x%(1.402+0.819x10gl0 (center_frequencies)) #linear gain

b = 10%%(1.619-0.818%10gl0 (center_frequencies))

v = .2 #compression exponent

func_compression = lambda x: sign (x)*minimum(axabs (x), bxabs(x)**V)

compression = FunctionFilterbank (bandpass_nonlinearl, func_compression)

#bandpass filter (third order gammatone filters)

bandpass_nonlinear2 = ApproximateGammatone (compression,
center_frequencies_nonlinear,
bandwidth_nonlinear,
order=order_nonlinear)

#low pass filter
cutoff_frequencies_nonlinear = center_frequencies_nonlinear
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order_lowpass_nonlinear = 2
lp_nl = LowPass (bandpass_nonlinear2, cutoff_frequencies_nonlinear)
lowpass_nonlinear = Cascade (bandpass_nonlinear2, lp_nl, 3)

#adding the two pathways

dnrl_filter = lowpass_linear+lowpass_nonlinear
dnrl = dnrl_filter.process|()

figure ()

imshow (flipud(dnrl.T), aspect='auto')

show ()

Example: simple_anf (hears)

Example of a simple auditory nerve fibre model with Brian hears.

from brian import =
from brian.hears import =«

soundl = tone(lxkHz, .l*second)
sound2 = whitenoise(.l*second)

sound = soundl+sound2
sound = sound.ramp ()

cf = erbspace(20xHz, 20xkHz, 3000)
cochlea = Gammatone (sound, cf)

# Half-wave rectification and compression [x]"(1/3)
ihc = FunctionFilterbank (cochlea, lambda x: 3xclip(x, 0, Inf)*+(1.0/3.0))

# Leaky integrate-—-and-fire model with noise and refractoriness

T

egs =

dv/dt = (I-v)/(l*ms)+0.2%xi*x (2/(l*ms))**.5 : 1

I :1

anf = FilterbankGroup (ihc, 'I', egs, reset=0, threshold=1, refractory=5+ms)

M = SpikeMonitor (anf)
run (sound.duration)
raster_plot (M)

show ()

Example: time_varying_filter1 (hears)

This example implements a band pass filter whose center frequency is modulated by an Ornstein-Uhlenbeck. The
white noise term used for this process is output by a FunctionFilterbank. The bandpass filter coefficients update is an
example of how to use a ControlFilterbank. The bandpass filter is a basic biquadratic filter for which the Q
factor and the center frequency must be given. The input is a white noise.

from brian import =
from brian.hears import =«

samplerate = 20xkHz
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SoundDuration = 300+ms
sound = whitenoise (SoundDuration, samplerate) .ramp ()

#number of frequency channel (here it must be one as a spectrogram of the
#output is plotted)
nchannels = 1

fc_init = 5000+Hz #initial center frequency of the band pass filter
Q =5 #quality factor of the band pass filter
update_interval = 4 # the filter coefficients are updated every 4 samples

#parameters of the Ornstein-Uhlenbeck process
s_1 = 1200%Hz

tau_i = 100+ms
mu_i = fc_init/tau_i
sigma_1i = sqgrt(2)*s_1i/sqrt (tau_1i)

deltaT = defaultclock.dt

#this function 1is used in a FunctionFilterbank. It outputs a noise term that
#will be later used by the controler to update the center frequency

noise = lambda x: mu_ixdeltaT+sigma_i*randn (1) «sqgrt (deltaT)

noise_generator = FunctionFilterbank (sound, noise)

#this class will take as input the output of the noise generator and as target
#the bandpass filter center frequency
class CoeffController (object) :
def _ _init__ (self, target):
self.target = target
self.deltaT = 1./samplerate
self.BW = 2+arcsinh(1./2/Q)*1.44269
self.fc = fc_init

def call__ (self, input):

#the control variables are taken as the last of the buffer

noise_term = input[-1,:]

#update the center frequency by updateing the OU process
self.fc = self.fc-self.fc/tau_ixrself.deltaT+noise_term
w0 = 2«pixself.fc/samplerate

#update the coefficient of the biquadratic filterbank
alpha = sin(w0)*sinh (log(2)/2*self.BW+w0/sin (w0))

)
self.target.filt_b[:, 0, 0] sin(w0) /2
self.target.filt_bf[:, 1, 0] = 0
self.target.filt_b[:, 2, 0] = -sin(w0)/2
self.target.filt_al:, 0, 0] = l+alpha
self.target.filt_al:, 1, 0] = —-2xcos(w0)
self.target.filt_al:, 2, 0] = l-alpha

# In the present example the time varying filter is a LinearFilterbank therefore
#we must initialise the filter coefficients; the one used for the first buffer,
—computation

w0 2xpixfc_init/samplerate

BW = 2%arcsinh(1./2/Q)*1.44269

alpha = sin(w0) *sinh (log(2) /2+BW+w0/sin (w0))

filt_b zeros ( (nchannels, 3, 1))
filt_a = zeros((nchannels, 3, 1))
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filt_b[:, 0, 0] = sin(w0)/2
filt_b([:, 1, 0] = 0
filt_bl:, 2, 0] = —-sin(w0)/2
filt_al:, 0, 0] = l+alpha
filt_al:, 1, 0] = —2xcos(w0)
filt_al:, 2, 0] = l-alpha

#the filter which will have time varying coefficients
bandpass_filter = LinearFilterbank (sound, filt_b, filt_a)
#the updater

updater = CoeffController (bandpass_filter)

#the controller. Remember it must be the last of the chain
control = ControlFilterbank (bandpass_filter, noise_generator, bandpass_filter,
updater, update_interval)

time_varying_filter_mon = control.process()
figure (1)
pxx, freqgs, bins, im = specgram(squeeze (time_varying_ filter_mon),

NFFT=256, Fs=samplerate, noverlap=240)
imshow (flipud (pxx), aspect='auto')

show ()

Example: gammatone (hears)

Example of the use of the class Gammatone available in the library. It implements a fitlerbank of IIR gammatone
filters as described in Slaney, M., 1993, “An Efficient Implementation of the Patterson-Holdsworth Auditory Filter
Bank”. Apple Computer Technical Report #35. In this example, a white noise is filtered by a gammatone filterbank
and the resulting cochleogram is plotted.

from brian import =
from brian.hears import =«
from matplotlib import pyplot

sound = whitenoise (100*ms) .ramp ()
sound.level = 50+dB

nbr_center_frequencies = 50

bl = 1.019 #factor determining the time constant of the filters
#center frequencies with a spacing following an ERB scale
center_frequencies = erbspace(100«Hz, 1000+«Hz, nbr_center_frequencies)
gammatone = Gammatone (sound, center_frequencies, b=bl)

gt_mon = gammatone.process ()

figure ()
imshow (gt_mon.T, aspect='auto', origin='lower left',
extent= (0, sound.duration/ms,
center_frequencies[0], center_frequencies[-1]))
pyplot.yscale('log")
title('Cochleogram')
ylabel ('Frequency (Hz)"')
xlabel ("Time (ms) ")
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show ()

Example: cochlear_models (hears)

Example of the use of the cochlear models (DRNL, DCGC and TanCarney) available in the library.

from brian import =
from brian.hears import x

simulation_duration = 50+*ms

set_default_samplerate (50+kHz)

sound = whitenoise (simulation_duration)

sound = sound.atlevel (50+«dB) # level in rms dB SPL

cf = erbspace (100+xHz, 1000«Hz, 50) # centre frequencies
interval = 16 #update interval of the time varying filters
## DNRL

#param _drnl = {}

#param drnl['lp nl_cutoff m'] = 1.1

#drnl_filter=DRNL (sound, cf, type='human', param=param_drnl)

#out = drnl_filter.process ()
## DCGC

#param_dcgc = {}

#param _dcgc['cl'] = -2.96

#dcgc_filter = DCGC (sound, cf, interval, param=param_dcgc)
#out = dcgc_filter.process/()

## Tan and Carney 2003
tan_filter = TanCarney (sound, cf, interval)

out = tan_filter.process()

figure ()

imshow (flipud(out.T), aspect='auto')
show ()

Example: approximate_gammatone (hears)

Example of the use of the class ApproximateGammatone available in the library. It implements a filterbank
of approximate gammatone filters as described in Hohmann, V., 2002, “Frequency analysis and synthesis using a
Gammatone filterbank”, Acta Acustica United with Acustica. In this example, a white noise is filtered by a gammatone
filterbank and the resulting cochleogram is plotted.

from brian import =«
from brian.hears import =«

level=50«dB # level of the input sound in rms dB SPL
sound = whitenoise (100*ms) .ramp () # generation of a white noise
sound = sound.atlevel (level) # set the sound to a certain dB level

nbr_center_frequencies = 50 # number of frequency channels in the filterbank
# center frequencies with a spacing following an ERB scale

center_frequencies = erbspace(100+«Hz, 1000+Hz, nbr_center_frequencies)

# bandwidth of the filters (different in each channel)

bw = 10x%x(0.037+0.785%x10g10 (center_frequencies))
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gammatone ApproximateGammatone (sound, center_frequencies, bw, order=3)
gt_mon = gammatone.process ()
figure ()

imshow (flipud(gt_mon.T), aspect='auto')
show ()

Example: artificial_vowels (hears)

This example implements the artificial vowels from Culling, J. F. and Summerfield, Q. (1995a). “Perceptual segrega-

tion of concurrent speech sounds: absence of across-frequency grouping by common interaural delay” J. Acoust. Soc.
Am. 98, 785-797.

from brian import =
from brian.hears import =«

duration = 409.6*ms
width = 150xHz/2
samplerate = 10xkHz

set_default_samplerate (samplerate)

centres = [225%«Hz, 625+«Hz, 975%xHz, 1925+Hz]
vowels = {

'ee':[centres[0], centres[3]],
'ar':[centres[1l], centres[2]],
'oo':[centres[0], centres[2]]
er':[centres[1l], centres[3]]

’

}

def generate_vowel (vowel) :

vowel = vowels[vowel]
X = whitenoise (duration)
y = fft(asarray(x).flatten())
f = fftfreg(len(x), 1/samplerate)
I = zeros(len(f), dtype=bool)
for cf in vowel:
I I| ((abs(f)<cf+width)é& (abs(f)>cf-width))
I =-1I
y[I] =0
x = ifft (y)
return Sound (x.real)

vl = generate_vowel ('ee') .ramp ()
v2 = generate_vowel ('ar') .ramp ()
v3 = generate_vowel ('oo'") .ramp ()
v4 = generate_vowel('er') .ramp ()

for s in [vl1l, v2, v3, v4]:
s.play (normalise=True, sleep=True)

sl = Sound((vl, v2))
#sl.play (normalise=True, sleep=True)
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s2 = Sound((v3, v4))
#s2.play (normalise=True, sleep=True)

vl.save ('mono_sound.wav')
sl.save ('stereo_sound.wav')

subplot (211)

plot (vl.times, vl)
subplot (212)
v1.spectrogram/()
show ()

Example: linear_gammachirp (hears)

Example of the use of the class LinearGammachirp available in the library. It implements a filterbank of FIR
gammatone filters with linear frequency sweeps as described in Wagner et al. 2009, “Auditory responses in the barn
owl’s nucleus laminaris to clicks: impulse response and signal analysis of neurophonic potential”, J. Neurophysiol.
In this example, a white noise is filtered by a gammachirp filterbank and the resulting cochleogram is plotted. The
different impulse responses are also plotted.

from brian import =
from brian.hears import =«

sound = whitenoise (100xms) .ramp ()
sound.level = 50+dB

nbr_center_frequencies = 10 #number of frequency channels in the filterbank
#center frequencies with a spacing following an ERB scale
center_frequencies = erbspace(100+xHz, 1000xHz, nbr_center_frequencies)

c = 0.0 #glide slope

time_constant = linspace (3, 0.3, nbr_center_frequencies) «ms

gamma_chirp = LinearGammachirp (sound, center_frequencies, time_constant, c)
gamma_chirp_mon = gamma_chirp.process()

figure ()

imshow (gamma_chirp_mon.T, aspect='auto')
figure ()

plot (gamma_chirp.impulse_response.T)
show ()

Example: lIRfilterbank (hears)

Example of the use of the class TTRF'i 1 terbank available in the library. In this example, a white noise is filtered by
a bank of chebyshev bandpass filters and lowpass filters which are different for every channels. The centre frequencies
of the filters are linearly taken between 100kHz and 1000kHz and its bandwidth or cutoff frequency increases linearly
with frequency.

from brian import =
from brian.hears import =«
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sound = whitenoise (100+*ms) .ramp ()
sound.level = 50+dB

### example of a bank of bandpass filter #############H###

nchannels = 50

center_frequencies = linspace(200«Hz, 1000+«Hz, nchannels) #center frequencies
bw = linspace(50+«Hz, 300+Hz, nchannels) #bandwidth of the filters

# The maximum loss 1in the passband in dB. Can be a scalar or an array of length
# nchannels

gpass = 1.xdB

# The minimum attenuation in the stopband in dB. Can be a scalar or an array

# of length nchannels

gstop = 10.xdB

#arrays of shape (2 x nchannels) defining the passband frequencies (Hz)
passband = vstack ((center_frequencies-bw/2, center_frequencies+tbw/2))

#arrays of shape (2 x nchannels) defining the stopband frequencies (Hz)
stopband = vstack ((center_frequencies-1.1xbw, center_frequencies+l.1lxbw))

filterbank = IIRFilterbank (sound, nchannels, passband, stopband, gpass, gstop,
'bandstop', 'chebyl'")
filterbank_mon = filterbank.process|()

figure ()
subplot (211)
imshow (flipud(filterbank_mon.T), aspect='auto')

#### example of a bank of lowpass filter ################

nchannels = 50

cutoff_frequencies = linspace(100+xHz, 1000xHz, nchannels)

#bandwidth of the transition region between the en of the pass band and the
#begin of the stop band

width_transition = linspace (50xHz, 300%Hz, nchannels)

# The maximum loss in the passband in dB. Can be a scalar or an array of length
# nchannels

gpass = 1xdB

# The minimum attenuation in the stopband in dB. Can be a scalar or an array of
# length nchannels

gstop = 10xdB

passband = cutoff_frequencies-width_transition/2

stopband = cutoff_frequencies+width_transition/2

filterbank = IIRFilterbank (sound, nchannels, passband, stopband, gpass, gstop,
'low', "chebyl'")
filterbank_mon=filterbank.process()

subplot (212)
imshow (flipud(filterbank_mon.T), aspect='auto')
show ()

Example: ircam_hrtf (hears)

Example showing the use of HRTFs in Brian hears. Note that you will need to download the IRCAM LISTEN
database.

from brian import =
from brian.hears import =«
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# Load database

hrtfdb = IRCAM_LISTEN (r'F:\HRTF\IRCAM')

hrtfset = hrtfdb.load_subject (1002)

# Select only the horizontal plane

hrtfset = hrtfset.subset (lambda elev: elev==0)

# Set up a filterbank

sound = whitenoise (10+ms)

fb = hrtfset.filterbank (sound)

# Extract the filtered response and plot

img = fb.process().T

img_left = img[:img.shape[0]/2, :]

img_right = img[img.shape[0]/2:, :]

subplot (121)

imshow (img_left, origin='lower left', aspect='auto',
extent=(0, sound.duration/ms, 0, 360))

xlabel ("Time (ms) ")

ylabel ("Azimuth")

title('Left ear')

subplot (122)

imshow (img_right, origin='lower left', aspect='auto',
extent= (0, sound.duration/ms, 0, 360))

xlabel ("Time (ms) ")

ylabel ("Azimuth")

title('Right ear'")

show ()

Example: cochleagram (hears)

Example of basic filtering of a sound with Brian hears. This example implements a cochleagram based on a gammatone
filterbank followed by halfwave rectification, cube root compression and 10 Hz low pass filtering.

from brian import =
from brian.hears import =«

soundl = tone(lxkHz, .l*second)
sound?2 = whitenoise (.lxsecond)

sound = soundl+sound?2
sound = sound.ramp ()

cf = erbspace(20xHz, 20+kHz, 3000)

gammatone = Gammatone (sound, cf)

cochlea = FunctionFilterbank (gammatone, lambda x: clip(x, 0, Inf)xx(1.0/3.0))
lowpass = LowPass (cochlea, 10xHz)

output = lowpass.process()

imshow (output.T, origin='lower left', aspect='auto', vmin=0)
show ()

Example: sounds (hears)

Example of basic use and manipulation of sounds with Brian hears.

from brian import =
from brian.hears import =«

124 Chapter 3. Getting started




Brian Documentation, Release 1.4.4

soundl = tone(lxkHz, 1lxsecond)
sound?2 = whitenoise (l+*second)

sound = soundl+sound?2
sound = sound.ramp ()

# Comment this line out if you don't have pygame installed
sound.play ()

# The first 20ms of the sound
startsound = sound[:20+ms]

subplot (121)

plot (startsound.times, startsound)
subplot (122)

sound.spectrogram ()

show ()

3.2.10 hears/tan_carney_2003
Example: tan_carney_Fig7 (hears/tan_carney_2003)

CF-dependence of compressive nonlinearity in the Tan&Carney model. Reproduces Fig. 7 from:

Tan, Q., and L. H. Carney. “A Phenomenological Model for the Responses of Auditory-nerve Fibers. II. Nonlinear
Tuning with a Frequency Glide”. The Journal of the Acoustical Society of America 114 (2003): 2007.

import numpy as np
import matplotlib.pyplot as plt
from scipy.interpolate import interpld

from brian import =

#set_global_ preferences (useweave=True)

from brian.hears import =«

from brian.hears.filtering.tan_carney import TanCarneySignal, MiddleEar

samplerate = 50xkHz
set_default_samplerate (samplerate)
duration = 50x*ms

def product (rargs) :
# Simple (and inefficient) variant of itertools.product that works for
# Python 2.5 (directly returns a list instead of yielding one item at a

# time)
pools = map(tuple, args)
result = [[]]
for pool in pools:
result = [x+[y] for x in result for y in pool]

return result

def gen_tone(freq, level):
Little helper function to generate a pure tone at frequency 'freq' with
the given “level’'. The tone has a duration of 50ms and is ramped with
two ramps of 2.5ms.
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rrr

freq = float (freq) * Hz

level = float (level) * dB

return tone(freq, duration) .ramp (when='both',
duration=2.5+ms,
inplace=False) .atlevel (level)

freqs = [500, 1100, 2000, 4000]
levels = np.arange(-10, 100.1, 5)
cf_level = product (fregs, levels)

# steady-state
start = l0xms*samplerate
end = 45+ ms+samplerate

# For Figure 7 we have manually adjusts the gain for different CFs —-- otherwise
# the RMS values wouldn't be identical for low CFs. Therefore, try to estimate
# suitable gain values first using the lowest CF as a reference

ref_tone = gen_tone(fregs[0], levels[0])
F_out_reference = TanCarneySignal (MiddleEar (ref_tone, gain=1), fregsl[0],
update_interval=1) .process () .flatten()
ref_rms = np.sqgrt (np.mean ((F_out_reference[start:end] -
np.mean (F_out_reference[start:end])) *xx2))
gains = np.linspace(0.1, 1, 50) # for higher CFs we need lower gains

cf_gains = product (fregs[l:], gains)

tones = Sound([gen_tone(freq, levels[0]) for freq, _ in cf_gains])

F_out_test = TanCarneySignal (MiddleEar (tones, gain=np.array([g for _, g in cf_
—gains])),

[cf for cf,_ in cf_gains], update_interval=1l) .process|()
reshaped_Fout = F_out_test.T.reshape((len(fregs[l:]), len(gains), -1))
rms = np.sqrt (np.mean((reshaped_Fout[:, :, start:end].T -
np.mean (reshaped_Fout[:, :, start:end], axis=2).T).Txx2,

axis=2))

# get the best gain for each CF using simple linear interpolation

gain_dict = {fregs([0]: 1.} # reference gain
for idx, freq in enumerate (freqgs[l:]):
gain_dict[freq] = interpld(rms[idx, :], gains) (ref_rms)

# now do the real test: tones at different levels for different CFs

tones = Sound([gen_tone (freq, level) for freq, level in cf_level])
F_out = TanCarneySignal (MiddleEar (tones,
gain=np.array([gain_dict[cf] for cf, _ in cf_
—levell])),
[cf for cf, _ in cf_level],

update_interval=1) .process ()

reshaped_Fout = F_out.T.reshape((len(fregs), len(levels), -1))

rms = np.sqrt (np.mean((reshaped_Fout[:, :, start:end].T -
np.mean (reshaped_Fout[:, :, start:end], axis=2).T).T**2,
axis=2))

# This should more or less reproduce Fig. 7
plt.plot (levels, rms.T)
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plt.legend(['%.0f Hz' % cf for cf in fregs], loc='best')
plt.xlim (=20, 100)

plt.ylim(le-6, 1)

plt.yscale('log'")

plt.xlabel ("input signal SPL (dB) ")

plt.ylabel ('rms of AC component of Fout')

plt.show ()

Example: tan_carney_simple_test (hears/tan_carney_2003)

Fig. 1 and 3 (spking output without spiking/refractory period) should reproduce the output of the AN3_test_tone.m
and AN3_test_click.m scripts, available in the code accompanying the paper Tan & Carney (2003). This matlab code
is available from http://www.urmc.rochester.edu/labs/Carney-Lab/publications/auditory-models.cfm

Tan, Q., and L. H. Carney. “A Phenomenological Model for the Responses of Auditory-nerve Fibers. II. Nonlinear
Tuning with a Frequency Glide”. The Journal of the Acoustical Society of America 114 (2003): 2007.

import numpy as np
import matplotlib.pyplot as plt

from brian.stdunits import kHz, Hz, ms

from brian.network import Network

from brian.monitor import StateMonitor, SpikeMonitor
from brian.globalprefs import set_global_preferences

#set_global_preferences (useweave=True)

from brian.hears import (Sound, get_samplerate, set_default_samplerate, tone,
click, silence, dB, TanCarney, MiddleEar, ZhangSynapse)

from brian.clock import reinit_default_clock

set_default_samplerate (50xkHz)
sample_length = 1 / get_samplerate (None)
cf = 1000 % Hz

print 'Testing click response'

duration = 25xms

levels = [40, 60, 80, 100, 120]

# a click of two samples

tones = Sound([Sound.sequence([click (sample_length+2, peak=levelxdB),

silence (duration=duration - sample_length)])

for level in levels])

ihc = TanCarney (MiddleEar (tones), [cf] % len(levels), update_interval=1)

syn = ZhangSynapse (ihc, cf)

s_mon = StateMonitor(syn, 's', record=True, clock=syn.clock)

R_mon = StateMonitor(syn, 'R', record=True, clock=syn.clock)

spike_mon = SpikeMonitor (syn)

net = Network(syn, s_mon, R_mon, spike_mon)

net.run (duration * 1.5)
for idx, level in enumerate (levels) :
plt.figure (1)
plt.subplot (len(levels), 1, idx + 1)
plt.plot(s_mon.times / ms, s_mon[idx])
plt.x1lim (0, 25)
plt.xlabel ('Time (msec) ")
plt.ylabel ('Sp/sec')
plt.text (15, np.nanmax (s_mon[idx]) /2., 'Peak SPL=%s SPL' % str(levelxdB));
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ymin, ymax = plt.ylim()
if idx == O0:
plt.title('Click responses')

plt.figure (2)

plt.subplot (len(levels), 1, idx + 1)
plt.plot (R_mon.times / ms, R_mon[idx])
plt.xlabel ('Time (msec) ')

plt.xlabel ('Time (msec) ")

plt.text (15, np.nanmax(s_mon[idx]) /2., 'Peak SPL=%s SPL' % str(levelxdB));
plt.ylim(ymin, ymax)
if idx ==

plt.title('Click responses (with spikes and refractoriness)')
plt.plot (spike_mon.spiketimes[idx] / ms,

np.ones (len(spike_mon.spiketimes[idx])) % np.nanmax (R_mon[idx]), 'rx'")
print 'Testing tone response'
reinit_default_clock ()
duration = 60x*ms
levels = [0, 20, 40, 60, 80]
tones = Sound([Sound.sequence ([tone(cf, duration).atlevel (levelxdB) .ramp (when="both',
—duration=10xms,
—~inplace=False),
silence (duration=duration/2) 1)
for level in levels])

ihc = TanCarney (MiddleEar (tones), [cf] * len(levels), update_interval=1)
syn = ZhangSynapse (ihc, cf)
s_mon = StateMonitor (syn, 's', record=True, clock=syn.clock)
R_mon = StateMonitor(syn, 'R', record=True, clock=syn.clock)
spike_mon = SpikeMonitor (syn)
net = Network (syn, s_mon, R_mon, spike_mon)
net.run (duration * 1.5)
for idx, level in enumerate (levels) :

plt.figure (3)

plt.subplot (len(levels), 1, idx + 1)

plt.plot(s_mon.times / ms, s_mon[idx])

plt.x1im (0, 120)

plt.xlabel ('Time (msec) ')

plt.ylabel ('Sp/sec')

plt.text (1.25 % duration/ms, np.nanmax(s_mon[idx]) /2., '%s SPL' % str(levelxdB));

ymin, ymax = plt.ylim()

if idx ==

plt.title('CF=%.0f Hz - Response to Tone at CF' % cf)

plt.figure (4)

plt.subplot (len(levels), 1, idx + 1)

plt.plot (R_mon.times / ms, R_mon[idx])

plt.xlabel ('Time (msec) ')

plt.xlabel ('Time (msec) ")

plt.text (1.25 % duration/ms, np.nanmax (R_mon[idx]) /2., '%s SPL' % str(level*dB));

plt.ylim(ymin, ymax)

if idx ==

plt.title('CF=%.0f Hz - Response to Tone at CF (with spikes and_

—refractoriness)' % cf)

plt.plot (spike_mon.spiketimes[idx] / ms,

np.ones (len(spike_mon.spiketimes[idx])) * np.nanmax (R_mon[idx]), 'rx")
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plt.show ()

Example: tan_carney_Fig11 (hears/tan_carney 2003)
Response area and phase response of a model fiber with CF=2200Hz in the Tan&Carney model. Reproduces Fig. 11
from:

Tan, Q., and L. H. Carney. “A Phenomenological Model for the Responses of Auditory-nerve Fibers. II. Nonlinear
Tuning with a Frequency Glide”. The Journal of the Acoustical Society of America 114 (2003): 2007.

import matplotlib.pyplot as plt
import numpy as np

from brian import =«
# set_global_preferences (useweave=True)
from brian.hears import =«

def product (xargs) :
# Simple (and inefficient) variant of itertools.product that works for
# Python 2.5 (directly returns a list instead of yielding one item at a

# time)
pools = map(tuple, args)
result = [[]]
for pool in pools:
result = [x+[y] for x in result for y in pool]

return result

duration = 50xms
samplerate = 50xkHz
set_default_samplerate (samplerate)

CF = 2200

fregs = np.arange(250.0, 3501., 50.)

levels = [10, 30, 50, 70, 90]

cf_level = product (fregs, levels)

tones = Sound([Sound.sequence ([tone(freq * Hz, duration) .atlevel (levelxdB) .ramp (when=
<—>'b0th',

—duration=2.5xms,

—inplace=False)])
for freq, level in cf_level])

ihc = TanCarney (MiddleEar (tones), [CF] x len(cf_level), update_interval=2)
syn = ZhangSynapse (ihc, CF)

s_mon = StateMonitor(syn, 's', record=True, clock=syn.clock)

net = Network (syn, s_mon)

net.run (duration)

reshaped = s_mon.values.reshape((len(fregs), len(levels), -1))

# calculate the phase with respect to the stimulus

pi = np.pi

min_freq, max_freqg = 1100, 2900

freq subset = fregs| (fregs>=min_freq) & (fregs<=max_freq)]
reshaped_subset = reshaped|[ (fregs>=min_freq) & (fregs<=max_freq), :, :]
phases = np.zeros((reshaped_subset.shape[0], len(levels)))
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for f_idx, freq in enumerate (freqg_subset):
period 1.0 / freq
for 1_idx in xrange(len(levels)):
phase_angles
—period x 2*pi
temp_phases

[}

np.arange (reshaped_subset.shape[2]) /samplerate %

period /

= (np.exp(lj * phase_angles) =
reshaped_subset [f_idx, 1_idx, :])

1 _idx] np.angle (np.sum(temp_phases))

phases[f_idx, =
plt.subplot (2, 1, 1)

rate reshaped.mean (axis=2)
plt.plot (fregs, rate)
plt.ylabel ('Spikes/sec')
plt. dB' %
plt.
plt.

legend (['?.0fF
x1im (0, 4000)
ylim (0, 250)

level for level in levels], loc='best')

plt.subplot (2, 2)
relative_phases (phases.T - phases]|:,
relative_phases|[relative_phases > pi]

1,

-1]1).T
relative_phases[relative_phases > pi]

- 2xpi

relative_phases[relative_phases < —pi]

relative_phases[relative_phases < -pi] + 2xpi

plt.plot (freq_subset, relative_phases / pi)

plt.ylabel ("Phase Re:90dB (pi radians)")

plt.xlabel ('Frequency (Hz)")

plt.legend ([ 0f dB' % level for level in levels], loc='best')
plt.x1lim (0, 4000)

plt.ylim(-0.5, 0.75)

plt.show ()

3.2.11 modelfitting

Example: modelfitting (modelfitting)

Model fitting example. Fit an integrate-and-fire model to an in-vitro electrophysiological recording during one second.

from brian import loadtxt, ms, Equations
from brian.library.modelfitting import =«

if name == '__main__ ':
equations = Equations('"''
dv/dt=(R*I-V) /tau 1
I 1
R 1
tau second
)
input = loadtxt ('current.txt')
spikes = loadtxt ('spikes.txt')
results = modelfitting( model = equations,
reset = 0,
threshold = 1,
data = spikes,
input = input,
dt = .l+*ms,
popsize = 1000,
maxiter = 3,
delta = 4+ms,
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R = [1.0e9, 9.0e9],
tau = [10+ms, 40+ms],
refractory = [Oxms, 10xms])

print_table (results)

Example: modelfitting_groups (modelfitting)

Example showing how to fit a single model with different target spike trains (several groups).

from brian import loadtxt, ms, Equations, second
from brian.library.modelfitting import =

if _ name_ == '_ main_ '
model = Equations('''
dv/dt=(R*I-V)/tau : 1
I :1
R : 1
tau : second
)
input = loadtxt ('current.txt')
spikes0 = loadtxt ('spikes.txt')
spikes = []

for i in xrange(2):
spikes.extend ([ (i, spikexsecond + 5xixms) for spike in spikesO0])

results = modelfitting( model = model,
reset 0,
threshold = 1,
data = spikes,
input = input,
dt = .l#*ms,
popsize = 1000,
maxiter = 3,
cpu = 1,
delta = 4+*ms,
R = [1.0e9, 9.0e9],
tau = [10+xms, 40+ms],
delays = [-10xms, 10*ms])

print_table (results)

Example: modelfitting_machines (modelfitting)

Model fitting example using several machines. Before running this example, you must start the Playdoh server on the
remote machines.

from brian import loadtxt, ms, Equations
from brian.library.modelfitting import =«

if name == '_ _main '
# List of machines IP addresses
machines = ['bobs-machine.university.com',

'jims-machine.university.com']
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equations = Equations('''
dv/dt=(R*I-V)/tau : 1
I :1
R : 1
tau second
)
input = loadtxt ('current.txt')
spikes = loadtxt ('spikes.txt')
results = modelfitting( model = equations,
reset = 0,
threshold = 1,
data = spikes,
input = input,
dt = .ls*ms,
popsize = 1000,
maxiter = 3,
delta = 4+*ms,
unit_type = 'CPU',
machines = machines,
R = [1.0e9, 9.0e9],
tau = [10xms, 40*ms]
refractory = [Oxms,

print_table (results)

’

10+ms])

3.2.12 frompapers
Example: Touboul_Brette 2008 (frompapers)

Chaos in the AAEx model

Fig. 8B from: Touboul, J. and Brette, R. (2008). Dynamics and bifurcations of the adaptive exponential integrate-and-

fire model. Biological Cybernetics 99(4-5):319-34.

This shows the bifurcation structure when the reset value is varied (vertical axis shows the values of w at spike times

for a given a reset value Vr).

from brian import =

defaultclock.dt=0.01*ms

C=281+pF
gL=30%nS
EL=-70.6+mV
VT=-50.4+mV
DeltaT=2+mV
tauw=40+*ms
a=4+nSs
b=0.08+*nA
I=.8%nA

Vcut=VT+5+«DeltaT # practical threshold condition

N=500

eqs:"""

dvm/dt= (gL (EL-vm) +gLxDeltaTxexp ( (vin—VT) /DeltaT) +I-w) /C

dw/dt=(ax (vim—EL) —-w) /tauw
Vr:volt

amp

volt
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nwn

neuron=NeuronGroup (N, model=eqgs, threshold=Vcut, reset="vm=Vr;w+=b")
neuron.vm=EL

neuron.w=a+ (neuron.vm-EL)

neuron.Vr=linspace (-48.3*mV,-47.7+mV,N) # bifurcation parameter

run (3xsecond, report="text"') # we discard the first spikes

M=StateSpikeMonitor (neuron, ("Vr","w")) # record Vr and w at spike times
run (2+second, report="text")

Vr,w=M.values ("Vr"),M.values ("w")

figure ()

plot (Vr/mV,w/na, '.k")
xlabel ('Vr (mV)")
ylabel ('w (nA)")
show ()

Example: Platkiewicz_Brette_2011 (frompapers)

Slope-threshold relationship with noisy inputs, in the adaptive threshold model

Fig. 5EF from: Platkiewicz J and R Brette (2011). Impact of Fast Sodium Channel Inactivation on Spike Threshold
Dynamics and Synaptic Integration. PLoS Comp Biol 7(5): €1001129. doi:10.1371/journal.pcbi.1001129

from brian import =
from scipy import stats,optimize
from scipy.stats import linregress

rectify=lambda x:clip(x/volt,0,Inf)*volt
N=200 # 200 neurons to get more statistics, only one is shown

duration=1xsecond
#-—-Biophysical parameters

ENa=60+mV
EL=-70+mV
vI=-55+xmV
Vi=-63+mV
tauh=5+ms
tau=5+ms
ka=5+mv
ki=6+mV
a=ka/ki

tauIl=5+ms
mu=15+mV
sigma=6+mV/sqrt (taul/ (taul+tau))

#-—Theoretical prediction for the slope-threshold relationship (approximation:_,
—a=1l+epsilon)

thresh=lambda slope,a: Vi-slopextauhxlog(l+(Vi-vT/a)/ (slopextauh))

#o——— Exact calculation of the slope-threshold relationship

thresh_ex=lambda s: optimize.fsolve (lambda th: axs*tauhxexp((Vi-th)/ (s+tauh))-th* (1-
—a)—ax* (s+tauh+Vi) +vT, thresh (s, a)) xvolt
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eqgs="""

dv/dt=(EL-v+mu+sigma*I) /tau : volt
dtheta/dt=(vT+a*rectify (v-Vi)-theta) /tauh : volt
dI/dt=-I/taul+(2/taul)**.5xxi : 1 # Ornstein-Uhlenbeck
neurons=NeuronGroup (N, egs, threshold="v>theta", reset="v=EL', refractory=5+ms)
neurons.v=EL

neurons.theta=vT

neurons.I=0

S=SpikeMonitor (neurons)
M=StateMonitor (neurons, 'v', record=True)
Mt=StateMonitor (neurons, 'theta', record=0)

run (duration, report="text")

# Linear regression gives depolarization slope before spikes
tx=M.times[ (M.times>0) & (M.times<l.5+tauh)]
slope, threshold=[], []
v=array (M._values)
for (i,t) in S.spikes:
ind=(M.times<t) & (M.times>t-tauh)
mx=v[:,1] [ind]
S, _,_,_,_=linregress(tx[:len(mx)],mx)
slope.append(s)
threshold.append (mx[-11])

# Figure

M.insert_spikes(S) # displays spikes on the trace
subplot (221)

ind=M.times<500*ms

plot (M.times[ind]/ms,M[0] [ind] /mV, 'k")

plot (Mt.times[ind]/ms,Mt[0] [ind]/mV, ' ")

xlabel ('Time (ms) ")

ylabel ('Voltage (mV) ")

subplot (222)

plot (slope, array (threshold) /mv, 'r.")
sx=linspace (0.5+volt/second, 4«volt/second, 100)
t=array ([thresh_ex (s+«volt/second) for s in sx])
plot (sx,t/mV, 'k")

x1im (0.5, 4)

xlabel ('Depolarization slope (ms)')

ylabel ('Threshold (mV/ms) ')

show ()

Example: Brette_2004 (frompapers)

Phase locking in leaky integrate-and-fire model

Fig. 2A from: Brette R (2004). Dynamics of one-dimensional spiking neuron models. J Math Biol 48(1): 38-56.

This shows the phase-locking structure of a LIF driven by a sinusoidal current. When the current crosses the threshold
(a<3), the model almost always phase locks (in a measure-theoretical sense).
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from brian import =

#defaultclock.dt=0.01*ms # for a more precise picture

N=2000

tau=100~+ms

freg=1/tau

eqS:' [

dv/dt=(-v+a+2xsin (2+«pi*t/tau))/tau : 1
a 1

neurons=NeuronGroup (N, egs, threshold=1, reset=0)
neurons.a=linspace (2, 4,N)

run (5*xsecond, report="text') # discard the first spikes (wait for convergence)
S=SpikeMonitor (neurons)
run (5x*second, report="text")

i,t=zip (*S.spikes)

plot ((t % tau)/tau,i,'.")
xlabel ('Spike phase')
ylabel ('Parameter a')
yticks ([0,N/2,N], [2,3,4])
show ()

Example: Plakiewicz_Brette_2010 (frompapers)

Spike threshold variability in single compartment model

Figure 7 from: Platkiewicz J, Brette R (2010). A Threshold Equation for Action Potential Initiation. PLoS Comput
Biol 6(7): e1000850. doi:10.1371/journal.pcbi.1000850

The original HH model is from Traub and Miles 1991, modified by Destexhe et al. 2001, and we shift Na inactivation
to -62 mV. This shift produces threshold variability, but also spikes with variable shapes (unavoidable in a single-
compartment model).

The script demonstrates that the spike threshold is proportional to the logarithm of h.

from brian import =
from scipy import stats
from brian.library.electrophysiology import x

defaultclock.dt=0.05+ms
duration=500+ms
N=1000 # we simulate 1000 neurons to have more threshold statistics

rectify=lambda x:clip(x,0,inf) *siemens

# Biophysical parameters
#-—Passive parameters
area=pix (105xumetre) x*2
C=1«*uF

GL=0.0452+*msiemens
EL=-80+mV

#-—-Active fixed parameters
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celsius=36

temp=23

ql0=2.3

#-——-Sodium channel parameters

ENa=50~+mV

GNa=51.6+msiemens

vTraub_Na=-63+mV #Traub convention
vshift=-20+mv #Inactivation shift (—-62 mV instead of —-42 mV)
Fo————— activation

A_alpham=0.32/ (ms*mV) #open (V)
A_betam=0.28/ (ms*mV) #close (V)
v12_alpham=13+mV #vl/2 for act
v12_betam=40*mV #v1/2 for act
k_alpham=4+mV #act slope
k_betam=5+mV #act slope
#o———— inactivation

A_alphah=0.128/ms #inact recov (V)
A_betah=4/ms #inact (V)
v12_alphah=17+mV #v1/2 for inact
v12_betah=40+mV #v1/2 for inact
k_alphah=18+mV #inact tau slope
k_betah=5+mV #inact tau slope
#-———-Potassium channel parameters

EK=-90+mV

Fo—m "delay-rectifier"

GK=10+msiemens
vIraub_K=-63+mV

A_alphan=0.032/ (ms+mV) #open (V)
A_betan=0.5/ms #close (V)
v12_alphan=15xmV #v1/2 for act
v12_betan=10+mV #v1/2 for act
k_alphan=5+mV #act slope
k_betan=40+mVv #act slope
#m——— muscarinic

GK_m=0.5+msiemens
A_alphan_m=le-4/ (ms+mV)

A _betan_m=le-4/ (ms+mV)
v12_alphan_m=-30+mV
v12_betan_m=-30+mV
k_alphan_m=9xmV
k_betan_m=9+*mV

# Input parameters

Ee=0+mV

Ei=-75+mV

taue=2.728+ms

taui=10.49+ms
Ge0=0.0121+xusiemens*cm**2
Gi0=0.0573xusiemens+cm**2
Sigmae=0.012+usiemens*cmx*2
Sigmai=0.0264xusiemens*cm**2
tadj=qlO0*~* ( (celsius-temp) /10)
ge0=Ge0/area

gi0=Gi0/area
sigmae=Sigmae/area
sigmai=Sigmai/area

Traubm=lambda v:v-vTraub_Na
alpham=lambda v:A_alphamx (Traubm(v)-v12_alpham)/ (l-exp((v12_alpham-Traubm(v)) /k_

1l NRY
arpan)y
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betam=lambda v:-A_betamx (Traubm(v)-v12_betam)/ (l-exp (- (v1l2_betam-Traubm(v)) /k_betam))
minf=lambda v:alpham(v)/ (alpham(v)+betam(v))

taum=lambda v:1/ (alpham(v) +betam(v))

Shift=lambda v:Traubm(v)-vshift

alphah=lambda v:A_alphah+exp ((v12_alphah-Shift (v))/k_alphah)

betah=lambda v:A_betah/ (l+exp ((v12_betah-Shift (v)) /k_betah))

hinf=lambda v:alphah (v)/ (alphah (v)+betah(v))

tauh=lambda v:1/ (alphah (v)+betah (v))

TraubK=lambda v:v-vTraub_K

alphan= lambda v:A_alphan* (TraubK (v)-v12_alphan)/ (l-exp ((vl2_alphan-TraubK (v)) /k_
—alphan))

betan= lambda v:A_betanxexp ((v12_betan-TraubK (v)) /k_betan)

ninf= lambda v:alphan (v)/ (alphan (v)+betan(v))

taun= lambda v:1/ (alphan (v)+betan (v))/tadj

eqs:" nn
dv/dt=(3+*GNaxh*m**3* (ENa-v) + (GK*n**4+GK_m*n_m) » (EK-v) +GL* (EL-v)+I)/C : volt

# Sodium activation
m_inf=minf(v) : 1 #minf (v)
tau_m=taum(v) : second
dm/dt=(m_inf-m) /tau_m : 1

# Sodium inactivation
h_inf=hinf(v) : 1
tau_h=tauh (v) : second
dh/dt=(h_inf-h) /tau_h : 1

# Potassium : delay-rectifier
n_inf=ninf(v) : 1
tau_n=taun (v) : second
dn/dt=(n_inf-n)/tau_n : 1
gK=GK#*n**4 : siemens

# Potassium : muscarinic

alphan_m=A_alphan_mx (v-v12_alphan_m)/ (l-exp ((v1l2_alphan_m-v)/k_alphan_m)) : hertz
betan_m=-A_alphan_mx (v-v12_alphan_m)/ (l-exp (- (v12_alphan_m-v)/k_alphan_m)) : hertz
n_minf=alphan_m/ (alphan_m+betan_m) : 1

taun_m=1/ (alphan_m+betan_m) /tadj : second

dn_m/dt=(n_minf-n_m) /taun_m : 1

gK_m=GK_m*n_m : siemens

# Fluctuating synaptic conductances

I=rectify(ge) * (Ee-v)+rectify(gi)* (Ei-v) : amp

dge/dt=(1.5xgel0-ge) /taue+l.5+«sigmaex (2./taue) *.5+xi : siemens

dgi/dt=(gil0-gi) /taui+2+sigmaix (2./taui)+x.5+xi : siemens

gtot=GL+rectify (ge)+rectify (gi)+gK+gK_m : siemens

nwn

neurons=NeuronGroup (N, model=eqgs, implicit=True)
neurons.v=EL

neurons.m=minf (EL)

neurons.h=hinf (EL)

neurons.n=ninf (EL)

neurons.n_m=0
M=StateMonitor (neurons, 'v', record=True)
Mh=StateMonitor (neurons, 'h', record=True)
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run (duration, report="text")

# Collect spike thresholds and values of h
threshold, logh=[], []
valuesv,valuesh=array (M._values),array (Mh._values)
criterion=10+«mV/ms # criterion for spike threshold
for i in range (N):

v=valuesv/[:,1i]

h=valuesh[:, 1]

onsets=spike_onsets (v, criterion=defaultclock.dt*criterion,vc=-35+mV)

threshold.extend (v[onsets])

logh.extend (-log (h[onsets])) #+1log(g[onsets]))
threshold=array (threshold) /mV
logh=array (logh) /log(10.) # for display

# Voltage trace with spike onsets

subplot (311)

v=valuesv/[:, 0]
onsets=spike_onsets (v, criterion=defaultclock.dt*criterion, vc=-35xmV)
t=M.times[onsets]/ms

plot (M.times/ms,M[0]/mV, 'k")

plot (t,v[onsets]/mV,'.xr")

xlabel ('t (ms)')

ylabel ('V (mV) ")

# Distribution of Vm and spike onsets

subplot (312)

hist (threshold, 30, normed=1, histtype="stepfilled',alpha=0.6,facecolor="r")

hist (valuesv.flatten()/mV, 100, normed=1,histtype="'stepfilled',alpha=0.6,facecolor="k")
xlabel ('V (mV) ")

x1im(-80,-40)

# Relationship between h and spike threshold

subplot (313)

slope,intercept=3.1,-54. # linear regression for the prediction of threshold
pl,p2=min (logh),max (logh)

plot (logh[:1len(logh)/10],threshold[:1len(logh)/10],"'.k")
plot ([pl,p2],intercept+slope*array ([pl,p2])+log(l0.), 'r'
xlabel ('h'")

ylabel ('Threshold (mV) ')

ylim(-55,-40)

xticks ([0, -log(5e-1)/log(10),1,-log(5e-2)/log(10)],[1,5e-1,1le-1,5e-2])
x1im (0, 1.5)

# don't show everything
)

show ()

Example: Guetig_Sompolinsky 2009 (frompapers)

Implementation of the basic model (no speech recognition, no learning) described in: Gutig and Sompolinsky (2009):
“Time-Warp-Invariant Neuronal Processing” PLoS Biology, Vol. 7 (7), 1000141

from brian import =

class TimeWarpModel (object) :

rrr

A simple neuron model for testing the "time-warp invariance" with
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conductance based or current based synapses. The neuron receives balanced
excitatory and inhibitory input from a random spike train. The same spike
train can be fed into the model with different time warps.

rro

def _ init_ (self, conductance_based=True) :
rr

Create a new model with conductance based or current based synapses

rro

# Model parameters

E. e =5

E_ i = -1

EL =0

g_L = 1/(100.0+msecond)
tau_syn = lxms

N_ex = 250

N_inh = 250
self.N = N_ex + N_inh

# Equations
if conductance_based:

eqgs = v
dv/dt = -(V - E_L) * g L - I_syn : 1
I_syn = I_ge + I_gi : second*x—1
I_ge = (V - E_e) = g_e : secondxx-1
I_gi = (V- E_i) * g_i : secondxx-1
dg_e/dt = -g_e/tau_syn : secondxx-1
dg_i/dt = —g_i/tau_syn : secondxx-1
rra

else:

eqgs = v

dv/dt = -(V - E_L) * g_.L — I_syn : 1
I_syn = =5 % g_e + g_i : secondxx-1
dg_e/dt = —g_e/tau_syn : secondxx-1
dg_i/dt = —-g_i/tau_syn : secondx*—1

T

# for simpler voltage traces: no spiking
neuron = NeuronGroup (l, model=eqs, threshold=None)

# every input neuron fires once in a random interval
self.unwarped_spiketimes = [(i, t % 250 » ms) for i, t in
zip(range (0, self.N), rand(self.N))]

# final spiketimes will be set in the run function
self.input = SpikeGeneratorGroup (self.N, [])

e_input = self.input.subgroup (N_ex)
i_input = self.input.subgroup (N_inh)
e_conn = Connection(e_input, neuron, 'g e',
weight=6 / (N_ex * tau_syn))
i_conn = Connection(i_input, neuron, 'g_i',
weight=5 » 6 / (N_ex »* tau_syn))

# record membrane potential
self.monitor = StateMonitor (neuron, varname='V', record=True)

# putting everything together
self.net = Network (neuron, self.input, e_conn, i_conn, self.monitor)
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def run(self, beta=1.0):
Run the network with the original spike train warped by a certain factor
beta. Beta > 1 corresponds to an extended and beta < 1 to a shrinked
input spike train.

rro

self.net.reinit ()

#warp spike train in time
self.input.spiketimes = [ (i, betaxt)

for i, t in self.unwarped_spiketimes]
self.net.run (beta * 250+ms)

#Return the voltage trace
return (self.monitor.times, self.monitor[0])

if name == '__main__':

cond_model = TimeWarpModel (True)
curr_model = TimeWarpModel (False)
N = cond_model.N

ARzt s e s eI EE LS TS ST ST T TS EE LTS L L L
# Reproduce Fig. 2 from Glitig and Sompolinsky (2009)

[z s s s dsrdEsdsdedEe eSS S IS EE TSRS EESE S EEE S
beta = 2.0

timesl, vl = cond_model.run (beta=1.0)

times2, v2 = cond_model.run (beta=beta)

maxtime = 250 x beta

subplot (4, 1, 1)

(neurons, times) = zip(xcond_model.unwarped_spiketimes)

plot (array (times) / ms, neurons, 'g.'")

axis ([0, maxtime, 0, NJ)

xticks ([])

yticks ([1])

title('Time-warp—-invariant voltage traces (conductance-based)"')

subplot (4, 1, 2)

plot (timesl / ms, vl1, 'g')
axis ([0, maxtime, -1.5, 1.5])
xticks ([])

yticks ([1])

subplot (4, 1, 3)

plot (array (times) + beta / ms, neurons, 'b.'")
axis ([0, maxtime, 0, NJ)

xticks ([]1)

yticks ([1, 5001])

subplot (4, 1, 4)

plot (times2 / ms, v2, 'b')

plot (timesl / ms * beta, vl, 'g')
axis ([0, maxtime, -1.5, 1.5])
xlabel ('Time (ms) ")

xticks ([0, 250, 5007])

yticks ([-1, 1])

show ()
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# HAFAFHAFAARAFAFEAFAFEAFAFEAFAFHAHAFAAEAFAFEAFAFHAFAFEAHAF A HAF AR A A HA A
# Reproduce Fig. 3(C) from Gilitig and Sompolinsky (2009), but for random
# spike trains and not in a speech recognition task

# HARFHAAFRAAFHAAFRAFFAARFAAFFHAFFAAFFAAFHAAFFAAFRAAFHAAFRAAFRAAFEAAFRAAFHS

betas = arange (0.2, 3.1, 0.1)
#betas = array([1.0, 2.0])

cond_results = []
curr_results = []
for beta in betas:
print 'Testing warp factor $.1f' % beta

cond_results.append (cond_model.run (beta))
curr_results.append(curr_model.run (beta))

figure ()
colors = mpl.cm.gist_earth((betas - betas[0]) / (betas[-1] — betas[0]))
lookup = dict (zip(betas, colors))
for beta, cond_result, curr_result in zip(betas, cond_results,
curr_results) :
times_cond, v_cond = cond_result
times_curr, v_curr = curr_result
subplot (1,2,1)
plot (times_cond / ms / beta, v_cond, color=lookup[beta])
axis ([0, 250, -1.5, 1.5])
subplot (1,2,2)
plot (times_curr / ms / beta, v_curr, color=lookup[betal)
axis ([0, 250, -1.5, 1.5])
subplot (1,2,1)
title ('conductance based')
subplot (1,2,2)
title('current based')
show ()

Example: Diesmann_et_al_1999 longer (frompapers)

Implementation of synfire chain from Diesmann et al. 1999

Dan Goodman - Dec. 2007

#import brian _no_units
from brian import =
import time

from brian.library.IF import =«
from brian.library.synapses import =x

def minimal_example() :
# Neuron model parameters

Vr = =70 * mV
vVt = -55 x mV
taum = 10 x ms

taupsp = 0.325 * ms

weight = 4.86 * mV

# Neuron model

equations = Equations('''
dv/dt = (- (V-Vr)+x) =« (1./taum) . volt
dx/dt = (-x+y)=*(1l./taupsp) : volt
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dy/dt = -y (1l./taupsp)+25.27+«mV/ms+ (39.24+~mV/ms+*0.5) xx1i : volt
l")

# Neuron groups
P = NeuronGroup (N=1000, model=equations,
threshold=Vt, reset=Vr, refractory=1 % ms)

# P = NeuronGroup (N=1000, model=(dV,dx,dy),init=(0xvolt, 0*volt, O+volt),
# threshold=Vt, reset=Vr, refractory=1+ms)

Pinput = PulsePacket (£t=50 « ms, n=85, sigma=1 % ms)

# The network structure

Pgp = [ P.subgroup(100) for i in range (10)]

C = Connection(P, P, 'v'")

for i in range(9):

C.connect_full (Pgp[i], Pgpli + 1], weight)
Cinput = Connection(Pinput, P, 'v')
Cinput.connect_full (Pinput, Pgpl[0], weight)

# Record the spikes

Mgp = [SpikeMonitor (p, record=True) for p in Pgp]
Minput = SpikeMonitor (Pinput, record=True)
monitors = [Minput] + Mgp

# Setup the network, and run it

P.V = Vr + rand(len(P)) = (Vt - Vr)

run (100 = ms)

# Plot result

raster_plot (showgrouplines=True, *monitors)
show ()

# DEFAULT PARAMATERS FOR SYNFIRE CHAIN
# Approximates those in Diesman et al. 1999
model_params = Parameters (
# Simulation parameters
dt=0.1 * ms,
duration=100 * ms,
# Neuron model parameters
taum=10 % ms,
taupsp=0.325 % ms,
Vt= -55 x mvV,
Vr= -70 » mv,
abs_refrac=1 * ms,
we=34.7143,
wi= -34.7143,
psp_peak=0.14 x mV,
# Noise parameters
noise_neurons=20000,
noise_exc=0.88,
noise_inh=0.12,
noise_exc_rate=2 * Hz,
noise_inh_rate=12.5 * Hz,
computed_model_parameters="""

noise_mu = noise_neurons * (noise_exc * noise_exc_rate - noise_inh % noise_inh_
—rate ) * psp_peak * we

noise_sigma = (noise_neurons x (noise_exc % noise_exc_rate + noise_inh % noise_
—inh_rate ))x%x.5 % psp_peak * we

nnun

)
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# MODEL FOR SYNFIRE CHAIN
# Excitatory PSPs only
def Model (p) :
equations = Equations('''

dv/dt = (= (V-p.Vr)+x)*(1l./p.taum) : volt
dx/dt = (-x+y)*(1l./p.taupsp) : volt
dy/dt = -yx(1l./p.taupsp)+25.27+mV/ms+ (39.24xmV/ms*x0.5) xxi : volt

T )
return Parameters (model=equations, threshold=p.Vt, reset=p.Vr, refractory=p.abs_
—refrac)

default_params = Parameters (
# Network parameters
num_layers=10,
neurons_per_layer=100,
neurons_in_input_layer=100,
# Initiating burst parameters
initial_burst_t=50 * ms,
initial_burst_a=85,
initial_ burst_sigma=1 % ms,
# these values are recomputed whenever another value changes
computed_network_parameters="""
total_neurons = neurons_per_layer x num_layers
" "I
# plus we also use the default model parameters
*+ model_params

)

# DEFAULT NETWORK STRUCTURE
# Single input layer, multiple chained layers
class DefaultNetwork (Network) :
def _ _init__ (self, p):
# define groups
chaingroup = NeuronGroup (N=p.total_neurons, =*=*Model (p))
inputgroup = PulsePacket (p.initial_burst_t, p.neurons_in_input_layer, p.
—~initial_ burst_sigma)

layer = [ chaingroup.subgroup (p.neurons_per_layer) for i in range (p.num_
—~layers) ]
# connections
chainconnect = Connection (chaingroup, chaingroup, 2)
for i in range(p.num_layers - 1):
chainconnect.connect_full (layer[i], layer[i + 1], p.psp_peak * p.we)
inputconnect = Connection (inputgroup, chaingroup, 2)

inputconnect.connect_full (inputgroup, layer[0], p.psp_peak x p.we)
# monitors

chainmon = [SpikeMonitor (g, True) for g in layer]

inputmon = SpikeMonitor (inputgroup, True)

mon = [inputmon] + chainmon

# network

Network.__init__ (self, chaingroup, inputgroup, chainconnect, inputconnect,

—mon)
# add additional attributes to self

self.mon = mon
self.inputgroup = inputgroup
self.chaingroup = chaingroup
self.layer = layer

self.params = p

3.2. Examples 143




Brian Documentation, Release 1.4.4

def prepare(self):
Network.prepare (self)
self.reinit ()

def reinit (self, p=None):
Network.reinit (self)
g = self.params
if p is None: p = g
self.inputgroup.generate (p.initial_burst_t, p.initial_burst_a, p.initial__
—burst_sigma)
self.chaingroup.V = g.Vr + rand(len(self.chaingroup)) * (g.Vt - g.Vr)

def run(self):
Network.run (self, self.params.duration)

def plot (self):
raster_plot (ylabel="Layer", title="Synfire chain raster plot",
color=(1, 0, 0), markersize=3,
showgrouplines=True, spacebetweengroups=0.2, grouplinecol=(0.5, 0.
-5, 0.5),
*self.mon)

def estimate_params (mon, time_est):
# Quick and dirty algorithm for the moment, for a more decent algorithm
# use leastsq algorithm from scipy.optimize.minpack to fit const+Gaussian
# http://www.scipy.org/doc/api_docs/SciPy.optimize.minpack.html#leastsqg
i, times = zip (*mon.spikes)
times = array(times)
times = times[abs(times - time_est) < 15 x ms]
if len(times) == 0:
return (0, 0 * ms)
better_time_est = times.mean ()
times = times[abs(times - time_est) < 5 % ms]
if len(times) == 0:
return (0, 0 * ms)
return (len(times), times.std() *second)

def single_sfc():
net = DefaultNetwork (default_params)
net.run ()
net.plot ()

def state_space(grid, neuron_multiply, verbose=True):

amin = 0

amax = 100

sigmamin = 0. % ms

sigmamax = 3. % ms

params = default_params ()

params.num_layers = 1

params.neurons_per_layer = params.neurons_per_layer * neuron_multiply
net = DefaultNetwork (params)

i=0

# uncomment these 2 lines for TeX labels
#import pylab
#pylab.rc_params.update ({'text.usetex': True})
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if verbose:
print "Completed:"
start_time = time.time ()
figure ()
for ai in range(grid + 1):
for sigmai in range(grid + 1):

a = int (amin + (ai * (amax - amin)) / grid)

if a > amax: a = amax

sigma = sigmamin + sigmai * (sigmamax - sigmamin) / grid
params.initial_burst_a, params.initial_burst_sigma = a, sigma
net.reinit (params)

net.run ()

(newa, newsigma) = estimate_params (net.mon[-1], params.initial_ burst_t)
newa = float (newa) / float (neuron_multiply)

col = (float(ai) / float(grid), float(sigmai) / float (grid), 0.5)

plot ([sigma / ms, newsigma / ms], [a, newa], color=col)
plot ([sigma / ms], [a]l, marker='.', color=col, markersize=15)
i +=1
if verbose:
print str(int (100. » float (i) / float ((grid + 1) »*=% 2))) + "&",
if verbose:
print
if verbose:
print "Evaluation time:", time.time() - start_time, "seconds"

xlabel (r'S\sigma$ (ms) ')

ylabel('a'")

title('Synfire chain state space')
axis([sigmamin / ms, sigmamax / ms, amin, amax])

minimal_example ()

#print 'Computing SFC with multiple layers'
#single_sfc()

#print 'Plotting SFC state space’
#state_space (3,1)

#state_space (8,10)

#state_space (10, 50)

#state_space (10,150)

#show ()

Example: Kremer_et_al_2011 (frompapers)
Late Emergence of the Whisker Direction Selectivity Map in the Rat Barrel Cortex Kremer Y, Leger JF, Goodman DF,
Brette R, Bourdieu L (2011). J Neurosci 31(29):10689-700.

Development of direction maps with pinwheels in the barrel cortex. Whiskers are deflected with random moving bars.
N.B.: network construction can be long.

In this version, STDP is faster than in the paper so that the script runs in just a few minutes.

from brian import =
# Uncomment if you have a C compiler
# set_global_preferences (useweave=True, usecodegen=True, usecodegenweave=True,

—usenewpropagate=True, usecstdp=True)

# PARAMETERS

3.2. Examples 145




Brian Documentation, Release 1.4.4

# Neuron numbers

M4,M23exc,M23inh=22,25,12 # side of each barrel (in neurons)
N4,N23exc,N23inh=M4«%2,M23exc+*2,M231inh**2 # neurons per barrel
barrelarraysize=5 # Choose 3 or 4 if memory error
Nbarrels=barrelarraysizex=*2

# Stimulation

stim_change_time = 5xms

Fmax=.5/stim_change_time # maximum firing rate in layer 4 (.5 spike / stimulation)
# Neuron parameters

taum, taue, taui=10+ms, 2+ms, 25+ms

El=-70+mV

Vt,vt_inc,tauvt=-55+mV, 2+mV, 50+ms # adaptive threshold

# STDP

taup, taud=5+ms, 25+ms

Ap,Ad=.05, .04

# EPSPs/IPSPs

EPSP, IPSP = 1+mV,-1+mV

EPSC EPSP * (taue/taum) ** (taum/ (taue—-taum))

IPSC = IPSP * (taui/taum) *=* (taum/ (taui-taum))

# Model: IF with adaptive threshold

eqgs="""

dv/dt=(ge+gi+El-v) /taum : volt
dge/dt=-ge/taue : volt
dgi/dt=-gi/taui : volt
dvt/dt=(Vt-vt) /tauvt : volt # adaptation
x 1

y 1

v

# Tuning curve
tuning=lambda theta:clip (cos (theta), 0, Inf) *Fmax

# Layer 4
layer4=PoissonGroup (N4+Nbarrels)
barrelsd4 = dict(((i, Jj), layerd.subgroup(N4)) for i in xrange (barrelarraysize) for j_,

—in xrange (barrelarraysize))
barrelsdactive = dict ((ij, False) for ij in barrelsd)

barrelindices = dict((ij, slice(b._origin, b._origin+len(b))) for ij, b in barrels4.
—iteritems ())
layerd.selectivity = zeros(len(layerd))

for (i, Jj), inds in barrelindices.iteritems/():
layerd.selectivity[inds]=1linspace (0, 2*xpi,N4)

# Layer 2/3

layer23=NeuronGroup (Nbarrelsx (N23exc+N23inh),model=eqgs, threshold="'v>vt', reset="'v=E]l;
—vt+=vt_inc',refractory=2x+ms)

layer23.v=E1l

layer23.vt=Vt

# Layer 2/3 excitatory
layer23exc=layer23.subgroup (Nbarrels+N23exc)
x, y=meshgrid (arange (M23exc) »1./M23exc, arange (M23exc) »1./M23exc)
x,y=x.flatten(),y.flatten()
barrels23 = dict (((i, J), layerz23exc.subgroup(N23exc)) for i in
—xrange (barrelarraysize) for j in xrange (barrelarraysize))
for i in range (barrelarraysize):
for j in range (barrelarraysize):
barrels23[i, j] .x=x+1i
barrels23[i, j].y=y+]
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# Layer 2/3 inhibitory
layer23inh=layer23.subgroup (Nbarrels+«N231inh)
x,y=meshgrid (arange (M23inh) «1./M23inh, arange (M23inh) 1. /M231inh)
x,y=x.flatten(),y.flatten()
barrels23inh = dict (((i, Jj), layer23inh.subgroup (N23inh)) for i in_
—xrange (barrelarraysize) for j in xrange (barrelarraysize))
for i in range (barrelarraysize):
for j in range (barrelarraysize):
barrels23inh[i, j] .x=x+1
barrels23inh[i, j].y=y+]

print "Building synapses, please wait..."
# Feedforward connections
feedforward=Connection(layer4, layer23exc, 'ge')
for i in range (barrelarraysize):
for j in range (barrelarraysize):
feedforward.connect_random(barrels4d[i, j],barrels23[1i, j],sparseness=.5,
—welght=EPSC~*.5)
stdp=Exponential STDP (feedforward, taup, taud, Ap, Ad, wnax=EPSC)

# Excitatory lateral connections
recurrent_exc=Connection (layer23exc, layer23, 'ge'")
recurrent_exc.connect_random(layer23exc, layer23exc,weight=EPSC«.3,
sparseness=lambda i, j:.15xexp(-.5% (((layer23exc.x[i]—
layer23exc.x[3])/.4) »«2+ ((layer23exc.y[i]l-layer23exc.y[3])/.4) *%2)))
recurrent_exc.connect_random(layer23exc,layer23inh,weight=EPSC,
sparseness=lambda i, j:.15xexp(-.5% (((layer23exc.x[i]—-
—layer23inh.x[Jj])/.4) 2+ ((layer23exc.y[i]-layer23inh.y[]J])/.4)*%2)))

# Inhibitory lateral connections
recurrent_inh=Connection (layer23inh, layer23exc, 'gi")
recurrent_inh.connect_random(layer23inh, layer23exc,weight=IPSC,

sparseness=lambda i, j:exp(-.5* (((layer23inh.x[i]-layer23exc.

—x[31)/.2)*+2+ ((layer23inh.y[i]-layer23exc.y[]])/.2)xx2)))

# Stimulation

stimspeed = 1./stim_change_time # speed at which the bar of stimulation moves
direction 0.0

stimzonecentre = ones |(2)+barrelarraysize/2.

stimcentre, stimnorm = zeros(2), zeros (2)

stimradius = (llxstim_change_timexstimspeed+l) .5

stimradius2 = stimradius*=*2

def new_direction():
global direction
direction = rand() *2*pi
stimnorm[:] = (cos(direction), sin(direction))
stimcentre[:] = stimzonecentre-stimnormsstimradius

@network_operation
def stimulation():
global direction, stimcentre
stimcentre += stimspeedsstimnormxdefaultclock.dt
if sum((stimcentre-stimzonecentre) «+2)>stimradius2:
new_direction ()
for (i, j), b in barrelsd.iteritems{():
whiskerpos = array([i, j], dtype=float)+0.5
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isactive = abs (dot (whiskerpos-stimcentre, stimnorm))<.5
if barrelsdactive[i, j]!=isactive:
barrelsdactive[i, J] = isactive
b.rate = float (isactive)*tuning(layer4d.selectivity([barrelindices[i, Jjl]1-
—direction)

new_direction ()
run (5x*second, report="text")

figure ()

# Preferred direction

selectivity=array ([mean (array (feedforward([:,i].todense()) rexp(layerd.selectivity*17]))
—for i in range(len(layer23exc))])

selectivity=(arctan2 (selectivity.imag,selectivity.real) % (2xpi))~*180./pi

I=zeros ((barrelarraysize«M23exc,barrelarraysizexM23exc))

ix=array (around(layer23exc.x*M23exc),dtype=int)

iy=array (around(layer23exc.y*M23exc),dtype=int)

I[iy,ix]=selectivity

imshow (I)

hsv ()

colorbar ()

for i in range(l,barrelarraysize+l):
plot ([i*max (ix) /barrelarraysize, ixmax (ix) /barrelarraysize], [0, max (iy)]1,'k")
plot ([0, max (ix) ], [1*max (iy) /barrelarraysize,i*max (iy) /barrelarraysize], 'k")

figure ()
hist (selectivity)

show ()

Example: Rossant_et_al _2011bis (frompapers)
Distributed synchrony example

Fig. 14 from:

Rossant C, Leijon S, Magnusson AK, Brette R (2011). “Sensitivity of noisy neurons to coincident inputs”.
Journal of Neuroscience, 31(47).

5000 independent E/I Poisson inputs are injected into a leaky integrate-and-fire neuron. Synchronous events, following
an independent Poisson process at 40 Hz, are considered, where 15 E Poisson spikes are randomly shifted to be
synchronous at those events. The output firing rate is then significantly higher, showing that the spike timing of less
than 1% of the excitatory synapses have an important impact on the postsynaptic firing.

from brian import =

# neuron parameters

theta = -55xmV

El = —65+mV

vmean = —-65*mV
taum = 5xms

taue = 3+*ms

taui = 10xms

egs = Equations ("""

dv/dt = (ge+gi-(v-El))/taum : volt
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dge/dt = -ge/taue : volt
dgi/dt = —-gi/taui : volt

wn n)

# input parameters

p = 15
ne = 4000
ni = 1000

lambdac = 40xHz
lambdae = lambdai = 1xHz

# synapse parameters
we = .5xmV/ (taum/taue) ** (taum/ (taue—taum))
wi = (vmean-El-lambdae*ne*wextaue)/ (lambdae*ni*taui)

# NeuronGroup definition

group = NeuronGroup (N=2, model=eqs, reset=El, threshold=theta, refractory=5xms)
group.v = El

group.ge = group.gi = 0

# independent E/I Poisson inputs

pl = PoissonInput (group[0], N=ne, rate=lambdae, weight=we, state='ge')

p2 = PoissonInput (group[0], N=ni, rate=lambdai, weight=wi, state='gi')

# independent E/I Poisson inputs + synchronous E events

p3 = PoissonInput (group[l], N=ne, rate=lambdae-(p*1.0/ne)~*lambdac, weight=we, state=
—'ge')
p4 = PoissonInput (group[l], N=ni, rate=lambdai, weight=wi, state='gi')

p5 = PoissonInput (group[l], N=1, rate=lambdac, weight=p*we, state='ge')

# run the simulation
reinit_default_clock ()

M = SpikeMonitor (group)

SM = StateMonitor (group, 'v', record=True)
run (1l +«second)

# plot trace and spikes
for i in [0,1]:

spikes = M.spiketimes[i]-.0001

val = SM.values[i]

subplot (2,1,1+1)

plot (SM.times, val)

plot (tile (spikes, (2,1)),

vstack ((val[array (spikesx10000, dtype=int)],
zeros (len (spikes)))), 'b'")
title("%s: ¢d spikes/second" % (["uncorrelated inputs", "correlated inputs"][i],
len (M.spiketimes[i])))

show ()

Example: Rossant_et_al 2011 (frompapers)
Coincidence detection example

Fig. 4 from:

Rossant C, Leijon S, Magnusson AK, Brette R (2011). “Sensitivity of noisy neurons to coincident inputs”.
Journal of Neuroscience, 31(47).

3.2. Examples 149




Brian Documentation, Release 1.4.4

Two distant or coincident spikes are injected into a noisy balanced leaky integrate-and-fire neuron. The PSTH of the
neuron in response to these inputs is calculated along with the extra number of spikes in the two cases. This number
is higher for the coincident spikes, showing the sensitivity of a noisy neuron to coincident inputs.

from brian import =
import matplotlib.patches as patches
import matplotlib.path as path

def histo(bins, cc, ax):
# get the corners of the rectangles for the histogram
left = array(bins[:-1])
right = array(bins[1:])
bottom = zeros(len(left))
top = bottom + cc

# we need a (numrects x numsides x 2) numpy array for the path helper
# function to build a compound path
XY = array([[left,left,right,right], [bottom,top,top,bottom]]).T

# get the Path object
barpath = path.Path.make_compound_path_from polys (XY)

# make a patch out of it
patch = patches.PathPatch (barpath, facecolor='blue', edgecolor='gray', alpha=0.8)
ax.add_patch (patch)

# update the view limits
ax.set_xlim(left[0], right[-1])

ax.set_ylim(bottom.min (), top.max())

# neuron parameters

theta = -55xmV
vmean = —-65+mV
taum = 5+*ms
taue = 3xms
taun = 15*ms
sigma = 4+mV

# Input times
tl = 100+ms
t2 = 120*ms

# simulation duration
dur = 200+ms

# number of neuron
N = 10000
bin = 2+ms

# EPSP size

int_EPSP=taue
int_EPSP2=tauex*taue/ (2 (taum+taue))
max_EPSP= (taum/taue) =+ (taum/ (taue—taum))
we = 3.0+xmV/max_EPSP

# model equations

egs =
V=V0+noise : volt
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dv0/dt=(-V0+psp) /taum : volt
dpsp/dt=-psp/taue : volt

dnoise/dt=(vmean—-noise) /taunt+sigmax (2./taun) «*.5+«xi : volt
Tra

threshold = 'V>theta'

reset = vmean

# initialization of the NeuronGroup

reinit_default_clock ()

group = NeuronGroup (2+xN, model=eqgs, reset=reset, threshold=threshold)
group.V0 = group.psp = 0xvolt

group.noise = vmean + sigma * randn (2xN)

# input spikes
input_spikes = [(0, tl), (0, t2), (1, tl1)]
input = SpikeGeneratorGroup (2, array (input_spikes))

# connections

C = Connection (input, group, 'psp')
C.connect_full (input[0], groupl[:N], weight=we)
C.connect_full (input[1l], group[N:], weight=2xwe)

# monitors
prM1l = PopulationRateMonitor (group[:N], bin=bin)
prM2 = PopulationRateMonitor (group[N:], bin=bin)

# launch simulation
run (dur)

# PSTH plot
figure (figsize=(10,10))
prMs = [prMl, prM2]
for i in [0,1]:
prM = prMs[i]
r = prM.rate[:-1]xbin
m = mean(r[:len(r)/2])

ax = subplot (211+1i)

histo(prM.times, r, ax)

plot ([0,dur], [m,m], "——xr")

title (" extra spikes" % sum(r[tl/bin: (t2+20*ms) /bin]-m))
x1lim (.05, .2)

ylim (0, .125)

show ()

Example: Brunel_Hakim_1999 (frompapers)

Dynamics of a network of sparsely connected inhibitory current-based integrate-and-fire neurons. Individual neu-
rons fire irregularly at low rate but the network is in an oscillatory global activity regime where neurons are weakly
synchronized.

Reference: “Fast Global Oscillations in Networks of Integrate-and-Fire Neurons with Low Firing Rates” Nicolas
Brunel & Vincent Hakim Neural Computation 11, 1621-1671 (1999)

from brian import =
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N = 5000

Vr = 10 * mV
theta = 20 * mV
tau = 20 * ms
delta = 2 * ms
taurefr = 2 % ms

duration = .1 % second

C = 1000

sparseness = float (C) /N

J = .1 » mV

muext = 25 x mV

sigmaext = 1 *« mV

egs = """

dv/dt = (-V+muext + sigmaext * sqrt(tau) = xi)/tau : volt

nwn

group = NeuronGroup (N, egs, threshold=theta,
reset=Vr, refractory=taurefr)
group.V = Vr
conn = Connection(group, group, state='V', delay=delta,
weight = -J,
sparseness=sparseness)
M = SpikeMonitor (group)
LFP = PopulationRateMonitor (group, bin=0.4 * ms)

run (duration)

subplot (211)

raster_plot (M)

x1im (0, duration/ms)

subplot (212)

plot (LFP.times_/ms, LFP.rate)

x1im (0, duration/ms)

show ()

Example: Vogels_et_al_2011 (frompapers)

Inhibitory synaptic plasticity in a recurrent network model

(F. Zenke, 2011) (from the 2012 Brian twister)

Adapted from: Vogels, T. P, H. Sprekeler, F. Zenke, C. Clopath, and W. Gerstner. Inhibitory Plasticity Balances
Excitation and Inhibition in Sensory Pathways and Memory Networks. Science (November 10, 2011).

from brian import =«

AR iazdsdazasdadatdadasdadadasdadasdadaddadai
# Defining network model parameters

# #EAFEAAAFAAAAFAA A AR A FAAEAAAFEAAAFEAAAAAA

NE = 8000 # Number of excitatory cells
NI = NE/4 # Number of inhibitory cells
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w = 1.%nS # Basic weight unit

tau_ampa = 5.0*ms # Glutamatergic synaptic time constant
tau_gaba = 10.0+ms # GABAergic synaptic time constant
epsilon = 0.02 # Sparseness of synaptic connections
eta = le-2 # Learning rate

tau_stdp = 20+ms # STDP time constant

simtime = 10xsecond # Simulation time

(AR adzazdsasdssddsaadasadasddasddaasddadddsdidd

# Neuron model

# HAFFAAAFRAFFAAFFAAFFRAFFAAAFAAAHAAFFAA SIS

gl = 10.0%nsiemens # Leak conductance

el = -60+mV # Resting potential

er = -80+mV # Inhibitory reversal potential
vt = -50.*mV # Spiking threshold

memc = 200.0xpfarad # Membrane capacitance
bgcurrent = 200+pA # External current

egs_neurons="'""

dv/dt=(-glx (v—-el) - (g_ampaxw*v+g_gabax (v—er) xw) +bgcurrent) /memc : volt
dg_ampa/dt = -g_ampa/tau_ampa : 1
dg_gaba/dt = —-g_gaba/tau_gaba : 1

# ##AFAARAAAARAA A RAA A EAA AR AR A A FAA A HAFHA
# Initialize neuron group

# HAFFEAFFRAFFHAFFRAFFRAFFHAFFAAFFHAFFAAFFHAS

neurons=NeuronGroup (NE+NI, model=eqgs_neurons, threshold=vt, reset=el, refractory=5+ms)
Pe=neurons. subgroup (NE)
Pi=neurons.subgroup (NI)

# HEAFHAEAFHARAA A EAA A EAF AR A H A H RS
# Connecting the network
# FEAFEAFAFAAEAF A EAF A A F AR F AR H A H A A

con_e = Connection (Pe,neurons, 'g_ampa',weight=0.3, sparseness=epsilon)
con_ie = Connection (Pi,Pe, 'g _gaba',weight=1e-10, sparseness=epsilon)
con_ii = Connection(Pi,Pi, 'g _gaba',weight=3, sparseness=epsilon)

# HAFFRAAFRAFFRAAFRAAFRAAFEAAFRAAFAA A SRR A SRS
# Setting up monitors

# FEHRRAAAAFFFRAARAAFFFRAAAAAFFREAAAAFFFHRAAA

sm = SpikeMonitor (Pe)

# #AFFRAAFRARFRAAFRAAFRAAFEAAFAAAFRAAFAA A SRS
# Run without plasticity
([ zdzazdaszdsasddadsdasadasdaaaaasddaddaadid

run (1lxsecond)
[z S RS TR EEE LSS LS EEE LSS E S

# Inhibitory Plasticity
[ izdzazdasadssddsdadasadasdsaaaasddaddaadid
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alpha = 3+xHzxtau_stdp*2 # Target rate parameter
gmax = 100 # Maximum inhibitory weight

egs_stdp_inhib = """
dA_pre/dt=-A_pre/tau_stdp : 1
dA_post/dt=-A_post/tau_stdp : 1

[

stdp_ie = STDP (con_ie, egs=eqgs_stdp_inhib, pre='A pre+=1.; w+=(A_post—-alpha)*eta;"',
post="A_post+=1.; wt=A_prexeta;', wmax=gmax)

# #EAFHAFAAAARAA A RAA A RAA A RAF AR FA A A HAAHA
# Run with plasticity
# HEAFEARAAHARAA A RAA AR AA AR H AR H AR A4

run (simtime-1+second, report="text")

# #EAFHARAAAARAA A RAA AR A AR A A A FAA A HAAHA
# Make plots
# HEAFEAEAFHARAA A RAA A EAF AR AR AR A4

subplot (211)

raster_plot (sm,ms=1.)

title ("Before")

xlabel ("")

xlim(float (0.8+«second/ms), float (l+xsecond/ms))

subplot (212)

raster_plot (sm,ms=1.)

title ("After")

xlim(float ((simtime-0.2+second)/ms), float (simtime/ms))
show ()

Example: Rothman_Manis_2003 (frompapers)

Cochlear neuron model of Rothman & Manis

Rothman JS, Manis PB (2003) The roles potassium currents play in regulating the electrical activity of ventral cochlear
nucleus neurons. J Neurophysiol 89:3097-113.

All model types differ only by the maximal conductances.

Adapted from their Neuron implementation by Romain Brette

from brian import =

#defaultclock.dt=0.025+ms # for better precision

rro

Simulation parameters: choose current amplitude and neuron type
(from typelc, typelt, typel2, type 21, type2, typelo)

rri

neuron_type = 'typelc'

Ipulse = 250 = pA

C = 12 % pF
Eh = -43 » mvV
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EK = =70 « mV # —-77+«mV in mod file

El = -65 » mV

ENa = 50 x* mV

nf = 0.85 # proportion of n vs p kinetics
zss = 0.5 # steady state inactivation of glt
celsius = 22. # temperature

ql0 = 3. %% ((celsius - 22) / 10.)
# hcno current (octopus cell)

frac = 0.0

gt = 4.5 %% ((celsius - 33.) / 10.)

# Maximal conductances of different cell types in nS
maximal_ conductances = dict (

typelc=(1000, 150, 0, O, 0.5, 0, 2),

typelt=(1000, 80, 0, 65, 0.5, 0, 2),

typel2=(1000, 150, 20, O, 2, 0, 2),

type21=(1000, 150, 35, 0, 3.5, 0, 2),

type2=(1000, 150, 200, O, 20, 0, 2),

type20=(1000, 150, 600, 0O, 0, 40, 2) # octopus cell
)
gnabar, gkhtbar, gkltbar, gkabar, ghbar, gbarno, gl = [x * nS for x in maximal__
—conductances [neuron_type] ]

# Classical Na channel

egs_na = nnn

ina = gnabar*mx*3xh* (ENa-v) : amp
dm/dt=gl0* (minf-m) /mtau : 1
dh/dt=gl0«% (hinf-h) /htau : 1

minf = 1./ (l+exp(—(vu + 38.) / 7.)) : 1

hinf = 1./ (l+exp((vu + 65.) / 6.)) 1

mtau = ((10. / (5%exp((vu+60.) / 18.) + 36.xexp(—(vu+60.) / 25.))) + 0.04)*ms : ms
htau = ((100. / (7*xexp((vu+60.) / 11.) + 10.*exp(—(vu+60.) / 25.))) + 0.6)+*ms : ms

nwn

# KHT channel (delayed-rectifier K+)
eqs kht P mmw

ikht = gkhtbarx (nfxn*+2 + (
dn/dt=ql0+* (ninf-n) /ntau : 1
dp/dt=gl0* (pinf-p) /ptau : 1

1-nf) *p) » (EK-v) : amp

ninf = (1 + exp(=(vu + 15) / 5.))x*x-0.5 : 1

pinf = 1. / (1 + exp(—(vu + 23) / 6.)) : 1

ntau = ((100. / (ll*exp((vu+60) / 24.) + 2lxexp(-(vu+60) / 23.))) + 0.7)*ms : ms
ptau = ((100. / (4xexp((vu+60) / 32.) + S5xexp(-(vu+60) / 22.))) + 5)+ms : ms

nmwn

# Ih channel (subthreshold adaptive, non-inactivating)

egs_ih = """

ih = ghbar+r+ (Eh-v) : amp

dr/dt=gl0«* (rinf-r)/rtau : 1

rinf = 1. / (l4+exp((vu + 76.) / 7.)) : 1

rtau = ((100000. / (237.xexp((vu+60.) / 12.) + 17.xexp(-(vu+60.) / 14.))) + 25.)*ms :
—mMS

nwn

# KLT channel (low threshold K+)
eqs klt - nmmow

iklt = gkltbarxwx*4+zx (EK-v) : amp
dw/dt=ql0* (winf-w) /wtau : 1
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dz/dt=gl0« (zinf-z) /wtau : 1

winf = (1. / (1 + exp(—(vu + 48.) / 6.)))**0.25 : 1

zinf = zss + ((l.-zss) / (1 + exp((vu + 71.) / 10.))) : 1

wtau = ((100. / (6.xexp((vu+60.) / 6.) + 1l6.xexp(—(vu+60.) / 45.))) + 1.5)xms : ms
ztau = ((1000. / (exp((vu+60.) / 20.) + exp(—(vu+60.) / 8.))) + 50)*ms : ms

nwn

# Ka channel (transient K+)
egs_ka = """

ika = gkabarxaxx4dxb*cx (EK-v): amp
da/dt=gl0«* (ainf-a)/atau : 1
db/dt=gl0* (binf-b) /btau : 1
dc/dt=gl0« (cinf-c)/ctau : 1

ainf = (1. / (1 + exp(=(vu + 31) / 6.)))**0.25 : 1

binf = 1. / (1 + exp((vu + 66) / 7.))*x0.5 : 1

cinf = 1. / (1 + exp((vu + 66) / 7.))*x0.5 : 1

atau = ((100. / (7+exp((vu+60) / 14.) + 29*xexp(—(vu+60) / 24.))) + 0.1)*ms : ms
btau = ((1000. / (ldxexp((vu+60) / 27.) + 29xexp(—(vu+60) / 24.))) + 1)+*ms : ms
ctau = ((90. / (1 + exp((-66-vu) / 17.))) + 10)*ms : ms

# Leak

egs_leak = """

ileak = glx(El-v) : amp

# h current for octopus cells

eqgs_hcno = """

ihcno = gbarnox (hlxfrac + h2x(l-frac))*(Eh-v) : amp

dhl/dt=(hinfno-hl)/taul : 1
dh2/dt=(hinfno-h2) /tau2 : 1

hinfno = 1./ (l+exp((vu+66.)/7.)) : 1
taul = betl/ (gt+x0.008x (1+alpl))*ms : ms
tau2 = bet2/(gqtx0.0029% (1+alp2))+ms : ms

alpl = exp(le-3%3x (vu+50)*9.648e4/(8.315% (273.16+celsius))) 1
betl = exp(le-3x3%0.3% (vu+50)%9.648e4/(8.315x(273.16+celsius))) 1
alp2 = exp(le-3%3x (vu+84)*9.648e4/(8.315%(273.16+celsius))) : 1
bet2 = exp(le-3x3%0.6% (vu+84)%9.648e4/(8.315x(273.16+celsius))) 1

nwn

egs = nun
dv/dt=(ileak+ina+ikht+iklt+ika+ih+ihcno+I)/C : volt
vu = v/mV : 1 # unitless v

I : amp

nwn

egs += egs_leak + egs_ka + egs_na + egs_ih + eqgs_klt + egs_kht + egs_hcno

neuron NeuronGroup (1, egs, implicit=True)
neuron.v = E1

run (50 * ms) # Go to rest

M = StateMonitor (neuron, 'v', record=0)
neuron.I = Ipulse

run (100 * ms, report='text')

plot (M.times / ms, M[0] / mV)
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show ()

Example: Brette_Guigon_2003 (frompapers)
Reliability of spike timing
Adapted from Fig. 10D,E of Brette R and E Guigon (2003). Reliability of Spike Timing Is a General Property of

Spiking Model Neurons. Neural Computation 15, 279-308.

This shows that reliability of spike timing is a generic property of spiking neurons, even those that are not leaky. This
is a non-physiological model which can be leaky or anti-leaky depending on the sign of the input I.

All neurons receive the same fluctuating input, scaled by a parameter p that varies across neurons. This shows:
1. reproducibility of spike timing
2. robustness with respect to deterministic changes (parameter)

3. increased reproducibility in the fluctuation-driven regime (input crosses the threshold)

from brian import =

N=500
tau=33+ms
taux=20~+ms
sigma=0.02

egs_input="""
B=2./(l+exp(-2*x))-1 : 1
dx/dt=-x/taux+ (2/taux) **.5xxi : 1

eqs:' [}
dv/dt=(vxI+1)/tau + sigmax (2/tau)**.5xx1 : 1
I=0.543%p*B : 1

B : 1

p 1

input=NeuronGroup (1, egs_input)
neurons=NeuronGroup (N, egs, threshold=1, reset=0)
neurons.p=linspace (0, 1,N)

neurons.v=rand (N)
neurons.B=linked_var (input, 'B'")

M=StateMonitor (input, 'B', record=0)
S=SpikeMonitor (neurons)

run (1000+ms)

subplot (211) # The input
plot (M.times/ms,M[0])
subplot (212)

raster_plot (S)

plot ([0,10001,[250,250],"'r")
show ()
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Example: Sturzl_et_al_2000 (frompapers)

Adapted from Theory of Arachnid Prey Localization W. Sturzl, R. Kempter, and J. L. van Hemmen PRL 2000
Poisson inputs are replaced by integrate-and-fire neurons

Romain Brette

from brian import =

# Parameters
degree = 2 % pi / 360.

duration = 500 * ms
R = 2.5 cm # radius of scorpion
vr = 50 « meter / second # Rayleigh wave speed

phi = 144 « degree # angle of prey
A = 250 % Hz

deltal = .7 » ms # inhibitory delay
gamma = (22.5 + 45 % arange(8)) * degree # leg angle
delay = R / vr = (1 - cos(phi - gamma)) # wave delay

# Wave (vector w)
t = arange (int (duration / defaultclock.dt) + 1) * defaultclock.dt
Dtot = 0.
w = 0.
for £ in range (150, 451):
D = exp(—(f — 300) x+ 2 / (2 %= (50 %% 2)))

xi = 2 % pi * rand()
w += 100 = D % cos(2 » pi = £ » t + xi)
Dtot += D

w = .01 » w / Dtot

# Rates from the wave
def rates(t):
return wlarray(t / defaultclock.dt, dtype=int) ]

# Leg mechanical receptors

tau_legs = 1 % ms

sigma = .01

egs_legs = """

dv/dt=(l+rates (t—-d)-v) /tau_legs+sigma=* (2./tau_legs) *.5+xi:1

d : second

legs = NeuronGroup (8, model=eqgs_legs, threshold=1, reset=0, refractory=1 % ms)
legs.d = delay

spikes_legs = SpikeCounter (legs)

# Command neurons

tau = 1 % ms
taus = 1 « ms
wex = 7/

winh = -2

T

egs_neuron =
dv/dt=(x-v)/tau : 1

dx/dt=(y-x)/taus : 1 # alpha currents

dy/dt=-y/taus : 1

Tra

neurons = NeuronGroup (8, model=eqgs_neuron, threshold=1, reset=0)
v', weight=wex)

synapses_ex = IdentityConnection(legs, neurons,
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synapses_inh = Connection(legs, neurons, 'y', delay=deltal)
for i in range(8):
synapses_inh[i, (4 + 1 - 1)
synapses_inh([i, (4 + i) % 8] = winh
synapses_inh[i, (4 + i + 1) % 8] = winh
spikes = SpikeCounter (neurons)

% 8] = winh

run (duration)

nspikes = spikes.count

x = sum(nspikes * exp(gamma * 17))

print "Angle (deg):", arctan(imag(x) / real(x)) / degree

polar (concatenate ((gamma, [gamma[0] + 2 % pi])), concatenate ((nspikes, [nspikes([0]1]))
-/ duration)

show ()

[

Example: Wang_Buszaki_1996 (frompapers)

Wang-Buszaki model

J Neurosci. 1996 Oct 15;16(20):6402-13. Gamma oscillation by synaptic inhibition in a hippocampal interneuronal
network model. Wang XJ, Buzsaki G.

Note that implicit integration (exponential Euler) cannot be used, and therefore simulation is rather slow.

from brian import =
defaultclock.dt=0.01l+ms

Cm=1xuF # /cmx*2
Iapp=2*UA
gL=0.l+msiemens
EL=-65+mV
ENa=55+mV
EK=-90+mV
gNa=35+msiemens
gK=9+msiemens

egs="""
dv/dt=(-gNa*mx*3xh* (v-ENa) ~gK+n**4* (v-EK) —gL* (v-EL) +Iapp) /Cm : volt
m=alpham/ (alpham+betam) : 1
alpham=-0.1/mVx (v+35+mV) / (exp (-0.1/mV* (v+35+mV))-1) /ms : Hz
betam=4*exp (- (v+60*mV) / (18xmV) ) /ms : Hz
dh/dt=5% (alphah=* (1-h) -betahxh) : 1
alphah=0.07*exp (- (v+58+mV) / (20*mV) ) /ms : Hz
betah=1./(exp (-0.1/mVx* (v+28+mV))+1)/ms : Hz
dn/dt=5% (alphan=* (1-n) -betan*n) : 1
alphan=-0.01/mV* (v+34+mV) / (exp (-0.1/mVx (v+34+mV))-1) /ms : Hz
betan=0.125%exp (- (v+44+mV) / (80xmV) ) /ms : Hz

v

neuron=NeuronGroup (1, egs)
neuron.v=-70+mV

neuron.h=1
M=StateMonitor (neuron, 'v', record=0)

run (100+ms, report="text")
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plot (M.times/ms,M[0] /mV)
show ()

Example: Goodman_Brette_2010 (frompapers)

Sound localization with HRTFs

Goodman DF and R Brette (2010). Spike-timing-based computation in sound localization. PLoS Comp Biol 6(11):
€1000993. doi:10.1371/journal.pcbi.1000993.

Simplified version of the “ideal” sound localisation model.

The sound is played at a particular spatial location (indicated on the final plot by a red +). Each location has a
corresponding assembly of neurons, whose summed firing rates give the sizes of the blue circles in the plot. The most
strongly responding assembly is indicated by the green x, which is the estimate of the location by the model.

from brian import =
from brian.hears import =«

# Download the IRCAM database
# http://recherche.ircam.fr/equipes/salles/listen/download.html
# and replace this filename with the location you downloaded it to
hrtfdb = IRCAM_LISTEN (r'Z:\HRTF\IRCAM")
subject = 1002
hrtfset = hrtfdb.load_subject (subject)
# This gives the number of spatial locations in the set of HRTFs
num_indices = hrtfset.num_indices
# Choose a random location for the sound to come from
index = randint (num_indices)
# A sound to test the model with
sound = Sound.whitenoise (500+ms)
# This is the specific HRTF for the chosen location
hrtf = hrtfset.hrtf[index]
# We apply the chosen HRTF to the sound, the output has 2 channels
hrtf fb = hrtf.filterbank (sound)
# We swap these channels (equivalent to swapping the channels in the
# subsequent filters, but simpler to do it with the inputs)
swapped_channels = RestructureFilterbank (hrtf_fb, indexmapping=[1l, 0])
# Now we apply all of the possible pairs of HRTFs in the set to these
# swapped channels, which means repeating them num_indices times first
hrtfset_fb hrtfset.filterbank (Repeat (swapped_channels, num_indices))
# Now we apply cochlear filtering (logically, this comes before the HRTF
# filtering, but since convolution is commutative it is more efficient to
# do the cochlear filtering afterwards
cfmin, cfmax, cfN = 150+Hz, 5xkHz, 40
cf = erbspace(cfmin, cfmax, cfN)
# We repeat each of the HRTFSet filterbank channels cfN times, so that
# for each location we will apply each possible cochlear frequency
gfb = Gammatone (Repeat (hrtfset_fb, cfN),
tile(cf, hrtfset_fb.nchannels))
# Half wave rectification and compression
cochlea = FunctionFilterbank (gfb, lambda x:15+clip(x, 0, Inf)x*(1.0/3.0))
# Leaky integrate and fire neuron model
egs =
dv/dt = (I-V)/(l*ms)+0.1%xxi/(0.5+ms)*x.5 : 1

T
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I : 1

G = FilterbankGroup (cochlea, 'I', egs, reset=0, threshold=1l, refractory=5+ms)
# The coincidence detector (cd) neurons

cd = NeuronGroup (num_indicesxcfN, eqgs, reset=0, threshold=1, clock=G.clock)

# Each CD neuron receives precisely two inputs, one from the left ear and

# one from the right, for each location and each cochlear frequency

C = Connection(G, cd, 'V'")

for i in xrange (num_indices*cfN) :

c[i, 1] = 0.5 # from right ear

Cli+num_indices*cfN, i] = 0.5 # from left ear
# We want to just count the number of CD spikes
counter = SpikeCounter (cd)

# Run the simulation, giving a report on how long it will take as we run

run (sound.duration, report='stderr')

# We take the array of counts, and reshape them into a 2D array which we sum

# across frequencies to get the spike count of each location-specific assembly
count = counter.count

count.shape = (num_indices, c£fN)
count = sum(count, axis=1)
count = array (count, dtype=float)/amax (count)

# Our guess of the location is the index of the strongest firing assembly
index_guess = argmax (count)

# Now we plot the output, using the coordinates of the HRTFSet
coords = hrtfset.coordinates

azim, elev = coords['azim'], coords['elev']

scatter (azim, elev, 100*count)

plot ([azim[index]], [elev[index]], '+r', ms=15, mew=2)

plot ([azim[index_guess]], [elev[index_guess]], 'xg', ms=15, mew=2)
xlabel ('Azimuth (deg) ')

ylabel ('Elevation (deg) ')

x1lim (-5, 350)

ylim(-50, 95)

show ()

Example: Muller_et_al_2011 (frompapers)

Interplay of STDP and input oscillations

Figure 4 from: Muller L, Brette R and Gutkin B (2011) Spike-timing dependent plasticity and feed-forward input
oscillations produce precise and invariant spike phase-locking. Front. Comput. Neurosci. 5:45. doi: 10.3389/fn-
com.2011.00045

Description: In this simulation, a group of IF neurons is given a tonic DC input and a tonic AC input. The DC
input is mediated by current injection (neurons.I, line 62), and the AC input is mediated by Poisson processes whose
rate parameters are oscillating in time. Each neuron in the group is given a different DC input, ensuring a unique
initial phase. After two seconds of simulation (to integrate out any initial transients), the STDP rule is turned on
(ExponentialSTDP, line 68), and the population of neurons converges to the theoretically predicted fixed point. As
there is some noise in the phase due to the random inputs, the simulation is averaged over trials (50 in Figure 4, though
10 trials should be fine for testing).

The trials run in parallel on all available processors (10 trials take about 2 minutes on a modern PC).

### IMPORTS
from brian import =
import multiprocessing
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### PARAMETERS
N=5000

M=10

taum=33~+ms
tau_pre=20x+ms
tau_post=tau_pre
Ee=0+mV

vt=-54*mV
vr=—"70+mV
El=-70+mV
taue=5+ms

f=20+Hz
theta_period = 1/f
Rm=200+*Mohm

a = linspace (51, 65, num=M)
weights = .001
ratio=1.50
dA_pre=.01
dA_post=.0lxratio
trials=10

### SIMULATION LOOP

def trial(n): # n is the trial number
reinit_default_clock ()
clear (True)

egs_neurons="'""
dv/dt=((gex (Ee-vr))+Rm*I+ (El-v)) /taum : volt
dge/dt=-ge/taue : 1

I : amp

inputs = PoissonGroup (N, rates=lambda t: ((.5-.5*cos (2+xpixf*t)))+x10+xHz)
neurons=NeuronGroup (M, model=eqgs_neurons, threshold=vt, reset=vr)
neurons.I = a*pA

synapses=Connection (inputs,neurons, 'ge',weight=weights)
neurons.v=vr

S = SpikeMonitor (neurons)

run (2+*second)

stdp=ExponentialSTDP (synapses, tau_pre, tau_post,dA_pre, -dA_post,wmax=10+weights,
—interactions="all',update='additive')

run (5xsecond)

phase=zeros ( (M, 200))
for b in range(0,M) :

tmp_phase=(S[b]%theta_period) * (360/theta_period)
phase[b, range (0, len (tmp_phase) )] = tmp_phase

return phase

if _ _name__=='__main__': # This is very important on Windows, otherwise the machine_,
—crashes!
phase = zeros((M,200,trials))

print "This will take approximately 2 minutes."
pool=multiprocessing.Pool () # uses all available processors b
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results=pool.map(trial, range (trials))
for i in range(trials):
phase[:,:,i]=results[i]

### PLOTTING
for b in range(0,M) :
m = mean (phasel[b, :, :],axis=1)
st = std(phase(b,:,:],axis=1)/sqgrt (trials)
errorbar (range (0,135), m[range(0,135)], yerr=st[range(0,135)], xerr=None,
fmt='-"', ecolor=None, elinewidth=None, capsize=3,
barsabove=False, lolims=False, uplims=False,
xlolims=False, xuplims=False)

title('STDP + Oscillations Simulation')
xlabel ('Spike Number')

ylabel ('Spike Phase (deg) ")

x1im ([0, 135])

ylim([140, 2807])

show ()

Example: Diesmann_et_al_1999 (frompapers)

Synfire chains

M. Diesmann et al. (1999). Stable propagation of synchronous spiking in cortical neural networks. Nature 402,
529-533.

from brian import =

# Neuron model parameters

Vr = =70 = mV

vVt = =55 % mV

taum = 10 * ms

taupsp = 0.325 % ms

weight = 4.86 » mV

# Neuron model

egs = Equations('''

dv/dt= (- (V-Vr)+x) * (1./taum) : volt
dx/dt=(-x+y) * (1./taupsp) : volt
dy/dt=-y* (1./taupsp)+25.27+mV/ms+\

(39.24+mV/ms+*0.5) xxi : volt
)

# Neuron groups
P = NeuronGroup (N=1000, model=egs,

threshold=Vt, reset=Vr, refractory=1 % ms)
Pinput = PulsePacket (t=50 % ms, n=85, sigma=1 % ms)
# The network structure
Pgp = [ P.subgroup(100) for i in range (10)]

C = Connection (P, P, 'v'")
for i in range(9):

C.connect_full (Pgpl[i], Pgpli + 1], weight)
Cinput = Connection(Pinput, Pgpl[0], 'vy')
Cinput.connect_full (weight=weight)

# Record the spikes
Mgp = [SpikeMonitor (p) for p in Pgp]
Minput = SpikeMonitor (Pinput)
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monitors = [Minput] + Mgp

# Setup the network, and run it

P.V = Vr + rand(len(P)) * (Vt - Vr)

run (100 * ms)

# Plot result

raster_plot (showgrouplines=True, *monitors)
show ()

Example: Brette_Gerstner_2005 (frompapers)
Adaptive exponential integrate-and-fire model. http://www.scholarpedia.org/article/Adaptive_exponential_
integrate-and-fire_model

Introduced in Brette R. and Gerstner W. (2005), Adaptive Exponential Integrate-and-Fire Model as an Effective De-
scription of Neuronal Activity, J. Neurophysiol. 94: 3637 - 3642.

from brian import =

# Parameters

C = 281 % pF

gL = 30 % nS

taum = C / gL

EL = -70.6 * mV

VT = -50.4 » mV

DeltaT = 2 % mV

Vcut = VT + 5 * DeltaT

# Pick an electrophysiological behaviour

tauw, a, b, Vr = 144 » ms, 4 = nS, 0.0805 » nA, -70.6 « mV # Regular spiking (as in,,
—~the paper)

#tauw,a, b, Vr=20+ms, 4+nS, 0. 5+nA, VI+5+mV # Bursting

#tauw,a, b, Vr=144+ms, 2+C/ (144+ms),0+nA, -70.6+mV # Fast spiking

eqgs = nun

dvm/dt= (gL (EL-vm) +gLxDeltaT*exp ( (vm—VT) /DeltaT)+I-w) /C : volt
dw/dt=(a* (vm-EL) -w) /tauw : amp

I : amp

mmonw

neuron = NeuronGroup (l, model=eqgs, threshold=Vcut, reset="vm=Vr;w+=b", freeze=True)
neuron.vm = EL

trace = StateMonitor (neuron, 'vm', record=0)

spikes = SpikeMonitor (neuron)

run (20 * ms)

neuron.I = 1 * nA
run (100 * ms)
neuron.I = 0 * nA

run (20 % ms)

# We draw nicer spikes

vm = tracel[0]

for _, t in spikes.spikes:
i = int(t / defaultclock.dt)
vm[i] = 20 * mV
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plot (trace.times / ms, vm / mV)
show ()

3.2.13 frompapers/computing with neural synchrony/coincidence detection and
synchrony

Example: Fig6_shared_variability (frompapers/computing with neural synchrony/coincidence de-
tection and synchrony)

Brette R (2012). Computing with neural synchrony. PL0oS Comp Biol. 8(6): e1002561.
doi:10.1371/journal.pcbi.1002561

Figure 6. Shared variability.

This example shows that synchrony may be reproducible without individual responses being reproducible, because of
shared variability (here due to a common input).

Caption (Fig 6). Neurons A and B receive the same stimulus-driven input, neuron C receives a different one. The
stimuli are identical in all trials but all neurons receive a shared input that varies between trials. Each neuron also has
a private source of noise. Top, Responses of neurons A (black), B (red) and C (blue) in 25 trials, with a signal-to-noise
ratio (SNR) of 10 dB (shared vs. private). Bottom left, The shuffled autocorrelogram of neuron A indicates that spike
trains are not reproducible at a fine timescale. Botto right, Nevertheless, the average cross-correlogram between A and
B shows synchrony at a millisecond timescale, which does not appear between A and C.

from brian import =

# Inputs
N=100 # number of trials
tau=10+ms
sigma=0.7

egs_input="""
dx/dt=-x/tau+ (2/tau) **.5%xi : 1

v

input=NeuronGroup (N+2, egs_input)

shared=input [ :N] # different in all trials, but common to all neurons
stimulusl=input [N:N+1] # identical in all trials
stimulus2=input [N+1:] # identical in all trials

# Neurons
taum=10+ms
#sigma_noise=.05
duration=3000+ms

#sigma=sigma*sqrt (2.)

SNRdAB=10.

SNR = 10.%* (SNRAB/10.)
Z=sigma+*sqrt ( (taum+ttau) / (taux (SNRx+x2+1))) # normalizing factor
#print Z,Z*SNR

#Z=sigma*sqrt (1./(SNRx#2+1))

egs_neurons="'""

dv/dt=(Z* (SNRxI+n)-v) /taum: 1

dn/dt=-n/tau+(2./tau) *»x.5xxi : 1

I :1
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neuron=NeuronGroup (3*N, egs_neurons, threshold=1, reset=0)

neuronA=neuron| :N]

neuronB=neuron[N:2xN]

neuronC=neuron[2*N:]

neuron.n=randn (len (neuron))

@network_operation

def inject():
neuronA.I=shared.x+stimulusl.x
neuronB.I=shared.x+stimulusl.x
neuronC.I=shared.x+stimulus2.x

spikes=SpikeMonitor (neuron)
run (duration, report="text")

# Figure

figure ()

# Raster plot

subplot (211) # Fig. 6B

i,t=zip(*x[(i,t) for i,t in spikes.spikes if (i<25)])

plot (t,array (i) +50,"'.k")

i,t=zip(x[(i,t) for i,t in spikes.spikes if (i>=N) & (i<N+25)1])
plot (t,array (i) -N+25,".r")

i,t=zip(x[(i,t) for i,t in spikes.spikes if (i>=2xN) & (1<2xN+25)])
plot (t,array(i)-2+N,"'.b")

ylim (0, 75)

xlabel ('Time (s) ")

ylabel ('Trials")

# Cross-correlograms (CC)
width=100+*ms
bin=1+ms
spikes=spikes.spiketimes
C_AB=correlogram(spikes[0], spikes[N],width=width, T=duration)
for i in range(1,N):
C_AB+=correlogram(spikes[i], spikes[N+i],width=width, T=duration)
C_AC=correlogram(spikes[0], spikes[2%N],width=width, T=duration)
for i in range(1,N):
C_AC+=correlogram(spikes[i], spikes[2xN+i],width=width, T=duration)

# Shuffled auto-correlogram (SAC)
C=0+C_AB
for i in range(0,N) :
for j in range(0,N):
if il=73:
C+=correlogram(spikes[i],spikes[j],width=width, T=duration)

lag=(arange (len(C))-len(C) /2) xbin

subplot (223) # Fig. 6C

plot (lag/ms, C/ (bin+Nx (N-1)), 'k")
y1lim (0, 1.1l+max (C_AB/ (bin«*N)))
xlabel ('Lag (ms) ")

ylabel ('Coincidences')
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subplot (224) # Fig. 6D

plot (lag/ms,C_AB/ (binxN), 'k"'") # A vs. B
plot (lag/ms,C_AC/ (bin*N), 'r') # A vs. C
y1lim (0, 1.1l+max (C_AB/ (bin*N)))

xlabel ('Lag (ms) ")

ylabel ('Coincidences')

show ()

Example: Fig1F_ROC (frompapers/computing with neural synchrony/coincidence detection and
synchrony)

Brette R (2012). Computing with neural synchrony. PLoS Comp Biol. 8(6): e1002561.
doi:10.1371/journal.pcbi.1002561

Figure 1F. (simulation takes about 10 mins)

Coincidence detection is seen as a signal detection problem, that of detecting a given depolarization in a background
of noise, within one characteristic time constant. The choice of the spike threshold implements a particular trade-off
between false alarms (depolarization was due to noise) and misses (depolarization was not detected).

Caption (Fig 1F). Receiver-operation characteristic (ROC) for one level of noise, obtained by varying the threshold
(black curve). The hit rate is the probability that the neuron fires within one integration time constant t when depo-
larized by Dv, and the false alarm rate is the firing probability without depolarization. The corresponding theoretical
curve, with sensitivity index d’ =Dv/sigma, is shown in red.

from brian import =
from scipy.special import erf

def spike_probability(x): # firing probability for unit variance and zero mean, and_
—threshold = x
return .5+ (l-erf(x/sqrt(2.)))

tau_cd=5+ms # membrane time constant (cd for coincidence detector)

tau_n=tau_cd # input 1is an Ornstein-Uhlenbeck process with the same time constant_
—as the membrane time constant

T=3*tau_n # neurons are depolarized by w at regular intervales, T is the spacing
Nspikes=10000 # number of input spikes

TO=TxNspikes # initial period without inputs, to calculate the false alarm rate
N=500 # number of neurons, each neuron has a different threshold between 0.
—and 3.

w=1 # synaptic weight (depolarization)

sigma=1. # input noise s.d.

sigmav=sigmax*sqrt (tau_n/ (tau_n+tau_cd)) # noise s.d. on the membrane potential

print "d'=",1./sigmav # discriminability index

# Integrate-and-fire neurons

egs="""

dv/dt=(sigma*n-v) /tau_cd : 1

dn/dt=-n/tau_n+(2/tau_n) *x.5xxi : 1

vt : 1 # spike threshold

Tr

neurons=NeuronGroup (N, model=eqgs, threshold="v>vt', reset='v=0", refractory=tau_cd)
neurons.vt=linspace(0.,3,N) # spike threshold varies across neurons
counter=SpikeCounter (neurons)
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# Inputs are regular spikes, starting at TO
input=SpikeGeneratorGroup(l, [ (0, n*xT+T0) for n in range (Nspikes)])
C=Connection (input, neurons, 'v',weight=w)

# Calculate the false alarm rate

run (T0, report="text")
FR=tau_cd+counter.countx1./T0

# Calculate the hit rate

counter.reinit ()

run (Nspikes«*T, report="text"')
HR=counter.count*1./Nspikes-FR* (T-tau_cd) /tau_cd

# Prediction based on Gaussian statistics
FRpred=spike_probability (neurons.vt/sigmav)
HRpred=spike_probability ((neurons.vt-w) /sigmav)

# Figure
plot (FR*100,HR+100, "k") # simulations
plot (FRpredx100, HRpredx100, 'r'") # theoretical predictions

plot ([0,100], [50,50], "k——")
x1im (0, 100)

ylim (0, 100)

xlabel ('False alarm rate (%)")
ylabel ("Hit rate (%)"')

(

plot ([0,100],[0,1001, "k——")
(
(

show ()

Example: Fig5D_reproducibility (frompapers/computing with neural synchrony/coincidence detec-
tion and synchrony)

Brette R (2012). Computing with neural synchrony. PL0oS Comp Biol. 8(6): e1002561.
doi:10.1371/journal.pcbi.1002561

Figure 5D, left.
Caption (Fig 5D). Responses of a noisy integrate-and-fire model in repeated trials.

Protocol: neuron receives input = signal + noise, both O-U processes, signal is identical in all trials (frozen noise).
The total variance is held fixed. Signal-to-noise ratio is 3 in this simulation.

from brian import =

# The common noisy input
tau_noise=5*ms
input=NeuronGroup (1, model="dx/dt=-x/tau_noise+ (2./tau_noise)**.5xxi:1")

# The noisy neurons receiving the same input + independent noise
tau=10+ms

SNR=3. # signal to noise ratio

sigma=.5 # total input amplitude

Z=sigma*sqgrt ( (tau_noise+tau) / (tau_noisex* (SNRxx2+1))) # normalizing factor
egs_neurons="'""

dx/dt=(Z* (SNR*I+u)-x)/tau:l
du/dt=-u/tau_noise+ (2./tau_noise) **.5%«xi:1
I:1
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v

neurons=NeuronGroup (25, model=eqgs_neurons, threshold=1, reset=0, refractory=5+ms)
neurons.x=rand (25) # random initial conditions
neurons.I=linked_var (input, 'x")

spikes=SpikeMonitor (neurons)

run (2+*second)
# Figure

raster_plot (spikes)
show ()

Example: Fig5E_precision_reliability (frompapers/computing with neural synchrony/coincidence
detection and synchrony)

Brette R (2012). Computing with neural synchrony. PLoS Comp Biol. 8(6): e1002561.
doi:10.1371/journal.pcbi.1002561

Figure SE. (very long simulation)
Caption (Fig SE). Precision and reliability of spike timing as a function of SNR.

Simulations are run in parallel on all cores but one.

from brian import =
import multiprocessing

def autocor (PSTH,N=None, T=20+ms, bin=None) :

rrr

Autocorrelogram of PSTH, to calculate a shuffled autocorrelogram

N = number of spike trains

T = temporal window

bin = PSTH bin

The baseline is not subtracted.

Returns times, SAC

rr

if bin is None:
bin=defaultclock.dt

n=1len (PSTH)

p=int (T/bin)

SAC=zeros (p)

if N is None:
SAC[0O]=mean (PSTH+PSTH)

else: # correction to exclude self-coincidences
PSTHnoself=clip (PSTH-1./ (binxN),0,Inf)
SAC[0O]=mean (PSTH+PSTHnoself) «N/ (N-1.)

SAC[1l:]=[mean(PSTH[:-1]+«PSTH[i:]) for i in range(l,p)]

SAC=hstack ((SAC[::-1],SAC[1:1))

return (arange (len(SAC))-len(SAC)/2)+bin,SAC

def halfwidth(x):

rro

Returns half-width of function given by x in bin numbers.
This is used to calculate the precision (left panel).
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rro

M, n=max (x) ,argmax (x)
return find(x[n:]<M/2) [0]+n—-find(x[:n]<M/2) [-1]

def reproducibility (SNR) :
rr
Calculates the precision (timescale) and reliability (strength) for a given
signal-to-noise ratio.
rrr
sys.stdout.write ("SNR:"+str (SNR)+'\n")
sys.stdout.flush() # we use this instead of print because of multiprocessing
reinit_default_clock () # important because we do multiple simulations
# The common noisy input
N=5000 # number of neurons simultaneously simulated
duration=30*second # duration of one simulation, 200 seconds in the paper
tau_noise=5+ms
input=NeuronGroup (1, model="dx/dt=-x/tau_noise+ (2./tau_noise)**.5xxi:1")

# The noisy neurons receiving the same input

tau=10+ms

sigma=.5 # input amplitude

Z=sigmax*sqgrt ( (tau_noise+tau) / (tau_noisex (SNRxx2+1))) # normalizing factor
egs_neurons="""

dx/dt=(Z* (SNRxI+u)-x)/tau:l

du/dt=-u/tau_noise+ (2./tau_noise) **.5xxi:1

I : 1

Tra

neurons=NeuronGroup (N, model=egs_neurons, threshold=1, reset=0, refractory=5+ms)
neurons.x=rand (N) # random initial conditions
neurons.I=linked_var (input, 'x")

rate=PopulationRateMonitor (neurons) # PSTH

run (duration)

t, SAC=autocor (rate.rate,N, T=30+ms)

timescale=float (halfwidth (SAC-mean (rate.rate) +2))+defaultclock.dt # precision

strength=sum (SAC-mean (rate.rate) »+2) xfloat (defaultclock.dt) /mean (rate.rate) #_
—reliability

return timescale, strength

if  name_ =='__main__ ':
pool = multiprocessing.Pool (multiprocessing.cpu_count()-1) # all cores but one
SNRdB= linspace(-10,15,20) # 100 points in the paper
SNR = 10.%* (SNRdB/10.)
results = pool.map (reproducibility, SNR) # launches multiple processes
timescale, strength=zip (xresults)

# Figure

subplot (211)

plot (SNRAB, timescalex1000)
xlabel ("SNR (dB) ")

ylabel ('Precision (ms) ')
subplot (212)

plot (SNRdAB, strength+100)
xlabel ("SNR (dB) ")

ylabel ('"Reliability (%) ")
show ()
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Example: Fig1C (frompapers/computing with neural synchrony/coincidence detection and syn-
chrony)

Timescale and strength

from brian import =

rc('lines', linewidth=2)
rc('font',size=16)
rc('xtick',labelsize=16)
rc('ytick',labelsize=16)

rc('legend', fontsize=16)

rc('axes', labelsize=16,titlesize=106)
w, h=rcParamsDefault['figure.figsize']
fontsize=16

SNR, timescale, strength=loadtxt ('reproducibility.txt")
SNR=10+1og (SNR) /1log(10)

#SNR=SNR[1:]

#timescale=timescale[1:]

#strength=strength[1:]

figure (figsize=(wx1.5,hx.5))
subplot (121)

plot (SNR, timescale/ms, 'k")
#plot (SNR, timescale/ms, 'r.")
plot (SNR, OxSNR+7, "k——")
xlabel ("SNR (dB) ")

ylabel ('Precision (ms)"')
subplot (122)

plot (SNR, strength«100, "k")
ylim (0, 100)

#plot (SNR, strength*100, 'r.")
xlabel ("SNR (dB) ")

ylabel ('Reliability (%) ")
savefig('FigC.eps')

show ()

3.2.14 frompapers/computing with neural synchrony/hearing

Example: Fig12A_Goodman_Brette_2010 (frompapers/computing with neural synchrony/hearing)

Sound localization with HRTFs

Goodman DF and R Brette (2010). Spike-timing-based computation in sound localization. PLoS Comp Biol 6(11):
€1000993. doi:10.1371/journal.pcbi.1000993.

Corresponds to Fig. 12A in: Brette R (2012). Computing with neural synchrony. PLoS Comp Biol. 8(6): e1002561.
doi:10.1371/journal.pcbi. 1002561

Simplified version of the “ideal” sound localisation model.

The sound is played at a particular spatial location (indicated on the final plot by a red +). Each location has a
corresponding assembly of neurons, whose summed firing rates give the sizes of the blue circles in the plot. The most
strongly responding assembly is indicated by the green x, which is the estimate of the location by the model.
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from brian import =
from brian.hears import =«

# Download the IRCAM database
# http://recherche.ircam.fr/equipes/salles/listen/download.html
# and replace this filename with the location you downloaded it to
hrtfdb = IRCAM_LISTEN (r'Z:\HRTF\IRCAM")
subject = 1002
hrtfset = hrtfdb.load_subject (subject)
# This gives the number of spatial locations in the set of HRTFs
num_indices = hrtfset.num_indices
# Choose a random location for the sound to come from
index = randint (num_indices)
# A sound to test the model with
sound = Sound.whitenoise (500+ms)
# This is the specific HRTF for the chosen location
hrtf = hrtfset.hrtf[index]
# We apply the chosen HRTF to the sound, the output has 2 channels
hrtf fb = hrtf.filterbank (sound)
# We swap these channels (equivalent to swapping the channels in the
# subsequent filters, but simpler to do it with the inputs)
swapped_channels = RestructureFilterbank (hrtf_fb, indexmapping=[1l, 0])
# Now we apply all of the possible pairs of HRTFs in the set to these
# swapped channels, which means repeating them num_indices times first
hrtfset_fb = hrtfset.filterbank (Repeat (swapped_channels, num_indices))
# Now we apply cochlear filtering (logically, this comes before the HRTF
# filtering, but since convolution is commutative it is more efficient to
# do the cochlear filtering afterwards
cfmin, cfmax, cfN = 150+Hz, 5xkHz, 40
cf = erbspace(cfmin, cfmax, cfN)
# We repeat each of the HRTFSet filterbank channels cfN times, so that
# for each location we will apply each possible cochlear frequency
gfb = Gammatone (Repeat (hrtfset_fb, cfN),
tile(cf, hrtfset_fb.nchannels))

# Half wave rectification and compression
cochlea = FunctionFilterbank (gfb, lambda x:15+clip(x, 0, Inf)x*(1.0/3.0))
# Leaky integrate and fire neuron model
egs = '"!'
dv/dt = (I-V)/(l*ms)+0.1%xxi/(0.5*ms)*x.5 : 1
I : 1
G = FilterbankGroup (cochlea, 'I', egs, reset=0, threshold=1l, refractory=5+ms)
# The coincidence detector (cd) neurons
cd = NeuronGroup (num_indicesxcfN, eqgs, reset=0, threshold=1, clock=G.clock)
# Each CD neuron receives precisely two inputs, one from the left ear and
# one from the right, for each location and each cochlear frequency
C = Connection(G, cd, 'V'")
for i in xrange (num_indices*cfN) :

C[i, 1] = 0.5 # from right ear

Cli+num_indices*cfN, 1] = 0.5 # from left ear
# We want to just count the number of CD spikes
counter = SpikeCounter (cd)
# Run the simulation, giving a report on how long it will take as we run
run (sound.duration, report='stderr')
# We take the array of counts, and reshape them into a 2D array which we sum
# across frequencies to get the spike count of each location-specific assembly
count = counter.count
count.shape = (num_indices, c£fN)
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count = sum(count, axis=1)

count = array (count, dtype=float)/amax (count)

# Our guess of the location is the index of the strongest firing assembly
index_guess = argmax (count)

# Now we plot the output, using the coordinates of the HRTFSet
coords = hrtfset.coordinates

azim, elev = coords['azim'], coords['elev']

scatter (azim, elev, 100xcount)

plot ([azim[index]], [elev([index]], '+r', ms=15, mew=2)

plot ([azim[index_guess]], [elev[index_guess]], 'xg', ms=15, mew=2)
xlabel ('"Azimuth (deg)"')

ylabel ('Elevation (deg)')

x1lim (-5, 350)

ylim (=50, 95)

show ()

Example: Fig7A_Jeffress (frompapers/computing with neural synchrony/hearing)

Brette R (2012). Computing with neural synchrony. PLoS Comp Biol. 8(6): e1002561.
doi:10.1371/journal.pcbi.1002561

Figure 7A. Jeffress model, adapted with spiking neuron models. A sound source (white noise) is moving around the
head. Delay differences between the two ears are used to determine the azimuth of the source. Delays are mapped to
a neural place code using delay lines (each neuron receives input from both ears, with different delays).

from brian import =«

defaultclock.dt = .02 * ms
dt = defaultclock.dt

# Sound
sound = TimedArray (10 % randn(50000)) # white noise

# Ears and sound motion around the head (constant angular speed)
sound_speed = 300 * metre / second

interaural_distance = 20 % cm # big head!

max_delay = interaural_distance / sound_speed

print "Maximum interaural delay:", max_delay

angular_speed = 2 * pi % radian / second # 1 turn/second

tau_ear = 1 * ms

sigma_ear = .05

eqgs_ears = '''

dx/dt=(sound (t-delay) -x) /tau_ear+sigma_earx (2./tau_ear) »x.5+xi : 1
delay=distancexsin (theta) : second

distance : second # distance to the centre of the head in time units

dtheta/dt=angular_speed : radian

ears = NeuronGroup (2, model=eqgs_ears, threshold=1l, reset=0, refractory=2.5 % ms)
ears.distance = [-.5 x max_delay, .5 » max_delay]
traces = StateMonitor (ears, 'x', record=True)

# Coincidence detectors

N = 300
tau = 1 % ms
sigma = .05

egs_neurons = "'"'
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dv/dt=-v/tau+sigmax* (2./tau) *x.5xxi : 1

neurons = NeuronGroup (N, model=eqgs_neurons, threshold=1, reset=0)

synapses = Connection (ears, neurons, 'v', structure='dense', delay=True, max_delay=1.
—1 x max_delay)

synapses.connect_full (ears, neurons, weight=.5)

synapses.delay[0, :] = linspace(0 » ms, 1.1 » max_delay, N)
synapses.delay[l, :] = linspace(0 = ms, 1.1 x max_delay, N)[::-1]
spikes = SpikeMonitor (neurons)

run (1000 % ms)
raster_plot (spikes)
show ()

Example: Fig7B_Licklider (frompapers/computing with neural synchrony/hearing)

Brette R (2012). Computing with neural synchrony. PL0oS Comp Biol. 8(6): e1002561.
doi:10.1371/journal.pcbi.1002561

Figure 12B. Spike-based adaptation of Licklider’s model of pitch processing (autocorrelation with delay lines).

from brian import =
defaultclock.dt = .02 * ms

# Ear and sound
max_delay = 20 * ms # 50 Hz

tau_ear = 1 * ms

sigma_ear = .1

egs_ear = ''"'

dx/dt=(sound-x) /tau_ear+sigma_ear= (2./tau_ear) xx.5+«x1i : 1

sound=5*sin (2xpixfrequency*t)*«*3 : 1 # nonlinear distorsion

#sound=5+* (sin (4xpi*rfrequency*t)+.5xsin (6*xpixfrequencyxt)) : 1 # missing fundamental

frequency=(200+200+t+Hz) «Hz : Hz # increasing pitch

receptors = NeuronGroup (2, model=eqgs_ear, threshold=1, reset=0, refractory=2 x ms)
traces = StateMonitor (receptors, 'x', record=True)

sound = StateMonitor (receptors, 'sound', record=0)

# Coincidence detectors

min_freqg = 50 % Hz

max_freqg = 1000 = Hz

N = 300

tau = 1 * ms

sigma = .1

egs_neurons = "'"'

dv/dt=-v/tau+sigmax* (2./tau) »*.5+xi : 1

neurons = NeuronGroup (N, model=egs_neurons, threshold=1, reset=0)

synapses = Connection (receptors, neurons, 'v', structure='dense', max_delay=1.1 * max_
—delay, delay=True)

synapses.connect_full (receptors, neurons, weight=.5)

synapses.delay[l, :] = 1. / exp(linspace(log(min_freq / Hz), log(max_freq / Hz), N))
spikes = SpikeMonitor (neurons)

run (500 = ms)
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raster_plot (spikes)

ylabel ('Frequency')

yticks ([0, 99, 199, 299], array(l. / synapses.delay.todense()[1l, [0, 99, 199, 299]]
—dtype=int))

show ()

o

3.2.15 frompapers/computing with neural synchrony/duration selectivity

Example: params (frompapers/computing with neural synchrony/duration selectivity)

Brette R (2012). Computing with neural synchrony. PL0oS Comp Biol. 8(6): e1002561.
doi:10.1371/journal.pcbi.1002561

Duration selectivity, parameters

from brian import =

# Simulation control
Npulses=5000

Ntest=20
record_period=15xsecond
rest_time=200+ms

# Encoding neurons

Vt=-55+mV
Vr=-70*mV
El=-35+mV
EK=-90+*mV
Va=Vr
ka=5+mV
gmax2=2

tauK2=300+ms

N=100 # number of encoding neurons
Nout=30 # number of decoding neurons
ginh_max=5.

tauK_spread=200+*ms
tau_spread=20x*ms

minx=1.7 # range of gmax for K+
maxx=2.5

# Coincidence detectors

sigma=0.1 # noise s.d.
tau_cd=5+ms

tau_n=tau_cd # slow noise
refractory=0+ms

# Connections

Nsynapses=5 # synapses per neuron
wO=lambda i, j:rand()

# STDP

factor=0.05

a_pre=.06xfactor
b_post=-1.xfactor
b_pre=0.1lxfactor

tau_pre=tau_cd
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Example: Fig2C_decoding_synchrony (frompapers/computing with neural synchrony/duration se-
lectivity)

Brette R (2012). Computing with neural synchrony. PL0oS Comp Biol. 8(6): e1002561.
doi:10.1371/journal.pcbi.1002561

Figure 2C. Decoding synchrony patterns.

Caption (Fig. 2C). Activation of the postsynaptic assembly as a function of duration (grey: individual neurons; black:
average).

The script Fig2A_synchrony_partition must be run first (it produces a file).

from brian import =

from numpy.random import seed
from params import =«

from pylab import cm

Ndur=2000%5 # number of stimulus durations (durations are multiplexed)
sigma=0.1 # More/less noise

best_duration=500+*ms

# Read group index for each neuron

f=open ('groups'+str (int (best_duration/ms))+'.txt")
group_number=array ([int (x) for x in f.read().split (' ")1)
nneurons=max (group_number)+1 # one postsynaptic neuron per group
f.close()

# Calculate group size
count=zeros (nneurons) # number of presynaptic neurons for each postsynaptic neuron
for i in range (len(group_number)) :
if group_number[i]!=-1:
count [group_number [i]]+=1

# Presynaptic neurons

ginh_max=5.

Nx=5 # number of neurons per row

N=Nx*Nx # number of neurons

rest_time=lxsecond # initial time

eqgs="""

dv/dt=(El-v+ (gmax*gK+gmax2+gK2+ginh) x (EK-v) ) /tau : volt
dgK/dt=(gKinf-gK) /taukK : 1 # IKLT

dgK2/dt=-gK2/taukK2 : 1 # Delayed rectifier

gKinf=1./ (1l+exp ((Va-v)/ka)) : 1

ginh = ginh_maxx* ((t>rest_time) & (t<(rest_time+duration))) : 1
tauK : ms

tau : ms

gmax : 1

duration : second

[

uniform=lambda N: (rand(N)-.5) 2 #uniform between -1 and 1
seed(31418) # Get the same neurons every time
_tauK=400*ms+uniform(N) ~tauK_spread

alpha=(E1-Vt) / (Vt-EK)
_gmax=alphax* (minx+ (maxx-minx) xrand (N))
_tau=30+*ms+uniform(N) xtau_spread
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neurons=NeuronGroup (NxNdur, model=eqgs, threshold="'v>Vt"', reset="v=Vr;gk2=1")
neurons.v=vVr
neurons.gK=1./ (l+exp ((Va-El) /ka))

# Postsynaptic neurons (noisy coincidence detectors)

eqgs_post="""
dv/dt=(n-v)/tau_cd : 1
dn/dt=-n/tau_n+sigma=* (2/tau_n) +*.5+xi : 1

v

postneurons=NeuronGroup (Ndur~nneurons, model=eqgs_post, threshold=1, reset=0)
C=Connection (neurons, postneurons)

# Divide into subgroups, each group corresponds to one postsynaptic neuron with all_,
—stimulus durations
postgroup=[]
for i in range (nneurons) :
postgroup.append (postneurons. subgroup (Ndur) )

# Connections according to the synchrony partition
group=[]
for i in range (N):
group.append (neurons. subgroup (Ndur) )
group[i].tauK=_tauK[1i]
group[i].gmax=_gmax[i]
group[i].tau=_tauli]
group[i] .duration=linspace (100+ms, 1+*second, Ndur)
if group_number[i]>=0:
C.connect_one_to_one (group[i],postgroup[group_number[i]],weight=1./
—count [group_number[i]])

spikes=SpikeCounter (postneurons)

run (rest_time+1l.1lxsecond, report="text"')
# Figure (2C)

window=100%5 # smoothing window

rate=zeros (Ndur-window)
totrate=zeros (Ndur-window)

for i in range (nneurons): # display tuning curve for each neuron, 1in grey
count=spikes.count [ixNdur: (i+1) *Ndur]
# Smooth

for j in range (0, len(count)-window) :
rate[j]l=mean (count[j:j+window])
totratet+=rate
if i<5: # plot only 5 individual curves
plot ((group([0] .duration[window/2:-window/2]/ms), rate, 'grey',linewidth=1)
# Mean tuning curve
plot ((group[0] .duration[window/2:-window/2]/ms),totrate/nneurons, 'k', linewidth=2)
x1im (100, 600)
y1lim(0,0.5)
xlabel ('"Duration (ms)")
ylabel ('Spiking probability"')
show ()
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Example: Fig1A_rebound_neurons (frompapers/computing with neural synchrony/duration selec-
tivity)

Brette R (2012). Computing with neural synchrony. PL0oS Comp Biol. 8(6): e1002561.
doi:10.1371/journal.pcbi.1002561

Figure 1A, B.

Caption (Fig. 1A,B) A, When neuron A is hyperpolarized by an inhibitory input (top), its low-voltage-activated K
channels slowly close (bottom), which makes the neuron fire when inhibition is released (neuron models are used in
this and other figures). B, Spike latency is negatively correlated with the duration of inhibition (black line).

from brian import =

# Parameters and equations of the rebound neurons
Vt=-55+mV

Vr=-70+mV

El=-35+mV

EK=-90+mV

Va=Vr

ka=5+mVv

gmax=1

gmax2=2

tau=20+*ms

ginh_max=5.

tauK=400+ms

taukK2=100+ms

N=100 # number of neurons (= different durations, for plot 1B)
plotted_neuron=N/4

rest_time=lxsecond # initial time (to start at equilibrium)
tmin=rest_time-20+ms # for plots

tmax=rest_time+600+ms

eqs:' (]
dv/dt=(El-v+ (gmaxxgK+gmax2+gK2+ginh) » (EK-v) ) /tau : volt
dgK/dt=(gKinf-gK) /tauK : 1 # IKLT

dgK2/dt=-gK2/tauK2 : 1 # Delayed rectifier

gKinf=1./(l+exp ((Va-v)/ka)) : 1
duration : second # duration of inhibition, varies across neurons
ginh = ginh_maxx ((t>rest_time) & (t<(rest_time+duration))) : 1

neurons=NeuronGroup (N, model=eqgs, threshold="v>Vt', reset="v=Vr;gKk2=1")
neurons.v=Vr

neurons.gK=1./ (1+exp ((Va-El) /ka))
neurons.duration=linspace (100+ms, 1 +*second, N)
M=StateMonitor (neurons, 'v', record=plotted_neuron)
Mg=StateMonitor (neurons, 'gK', record=plotted_neuron)
spikes=SpikeMonitor (neurons)

run (rest_time+1.1l+second)

M.insert_spikes (spikes) # draw spikes for a nicer display
# Figure

subplot (221) # Fig. 1A, top

plot ((M.times-tmin) /ms,M[plotted_neuron]/mV, 'k")
x1im (0, (tmax—-tmin) /ms)
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ylabel ('V (mV) ")

subplot (223) # Fig. 1A, bottom

plot ((Mg.times-tmin) /ms,Mg[plotted_neuron], 'k"')
x1im (0, (tmax-tmin) /ms)

xlabel ('Time (ms) ')

ylabel ('g/gmax')

subplot (122) # Fig. 1B

times=array ([t-neurons.duration[i]*second-rest_time for i,t in spikes.spikes])
duration=array ([neurons.duration[i] *second for i,_ in spikes.spikes])

plot (duration/ms,times/ms, 'k')

xlabel ('Duration (ms) ")

ylabel ('Latency (ms) ")

show ()

Example: Fig4_duration_stdp (frompapers/computing with neural synchrony/duration selectivity)

Brette R (2012). Computing with neural synchrony. PLoS Comp Biol. 8(6): e1002561.
doi:10.1371/journal.pcbi.1002561

Figure 4D. STDP in the duration model. (very long simulation, default: 5000 stimuli)

Caption (Fig. 4D). Temporal evolution of the synaptic weights of the neuron corresponding to the blue curves in Fig.
4C.

The script runs the simulation with STDP for a long time, then displays the evolution of synaptic weights for one
neuron.

from brian import =

from pylab import cm

from numpy.random import seed

from brian.experimental.connectionmonitor import =
import numpy

from params import =«

# Rebound neurons

egs="""

dv/dt=(El-v+ (gmaxxgK+gmax2+gK2+ginh) » (EK-v) ) /tau : volt
dgK/dt=(gKinf-gK) /taukK : 1 # IKLT

dgK2/dt=-gK2/tauK2 : 1 # Delayed rectifier

gKinf=1./(l+exp((Va-v)/ka)) : 1
taukK : ms

tau : ms

gmax : 1

ginh : 1

[

uniform=lambda N: (rand(N)-.5) 2 #uniform between -1 and 1
seed (31415) # Get the same neurons every time

neurons=NeuronGroup (N, model=eqgs, threshold="v>Vt', reset="v=Vr;gKk2=1")
neurons.v=Vr

neurons.gK=1./ (l+exp ((Va-El) /ka))
neurons.tauK=400+ms+uniform (N) rtauK_spread

alpha=(E1-Vt) / (Vt-EK)

neurons.gmax=alpha* (minx+ (maxx-minx) «rand (N) )
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neurons.tau=30+ms+uniform(N) *tau_spread

# Store the value of state variables at rest
print "Calculate resting state"

run (2+second)

rest=zeros (neurons._S.shape)
rest[:]=neurons._S

# Postsynaptic neurons (noisy coincidence detectors)

eqgs_post="""
dv/dt=(n-v)/tau_cd : 1
dn/dt=-n/tau_n+sigmax* (2/tau_n)+*.5+xi : 1

v

postneurons=NeuronGroup (Nout, model=eqgs_post, threshold=1, reset=0, refractory=refractory)

# Random connections between pre and post-synaptic neurons
C=Connection (neurons,postneurons, 'v', sparseness=Nsynapses+1./N,weight=w0)

# STDP
egs_stdp="""
dApre/dt=-Apre/tau_pre : 1
Apost : 1
pre:lll
Apre+=a_pre

w+=0 #b_prexw
LI )

post="'""
Apost+=0
wt=Apre+b_postx*w

v

stdp=STDP (C, eqs_stdp, pre=pre, post=post, wmax=Inf)

# Record the evolution of synaptic weights
MC=ConnectionMonitor (C, store=True, clock=EventClock (dt=record_period))

print "Learning..."

# Series of inhibitory pulses

for i in range (Npulses) :
print "pulse",i+1l
duration=200+*ms+rand () *300+*ms # random stimulus duration
neurons.ginh=ginh_max
run (duration)
C.W.alldata[:]=C.W.alldata+C.W.alldata*b_pre # homeostasis (synaptic scaling)
neurons.ginh=0
run (rest_time) # let neurons spike
neurons._S[:]=rest # reset (to save time)

# Figure (4D)

neuron=0

wsave=[ (t,M.todense()) for (t,M) in MC.values]
W=array (zip (*wsave) [1])

weights=W[:, :, neuron]

# Evolution of all synaptic weights for this neuron
for i in range (weights.shape[l]):

plot (arange (len (weights[:,1,])) *record_period,weights[:,1,],'k")
x1im (0, weights.shape[0]xfloat (record_period))
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y1lim (0, 1)

show ()

Example: Fig1D_duration_selectivity (frompapers/computing with neural synchrony/duration selec-
tivity)

Brette R (2012). Computing with neural synchrony. PL0oS Comp Biol. 8(6): e1002561.
doi:10.1371/journal.pcbi.1002561

Figure 1C,D. Duration selectivity. (takes about 1 min)

Caption (Fig. 1C,D). A postsynaptic neuron receives inputs from A and B. It is more likely to fire when the stimulus
in the synchrony receptive field of A and B.

from brian import =«

# Parameters and equations of the rebound neurons

Vt=-55+mV
Vr=-70+mV
El=-35+mV
EK=-90+mV
Va=Vr
ka=5+mvV
gmax2=2

tau=20+ms

ginh_max=5.

taukK2=100+ms

N=10000 # number of neurons (= different durations)
rest_time=lxsecond # initial time
tmin=rest_time-20xms #for plots
tmax=rest_time+600+ms

eqs:' (]
dv/dt=(E1l-v+ (gmax*gK+gmax2+gK2+ginh) = (EK-v) ) /tau : volt
dgK/dt=(gKinf-gK) /tauK : 1 # IKLT

dgK2/dt=-gK2/tauk2 : 1 # Delayed rectifier

gKinf=1./ (l+exp((Va-v)/ka)) : 1

duration : second

ginh = ginh_maxx* ((t>rest_time) & (t<(rest_time+duration))) : 1
tauK : ms

gmax : 1

theta : volt # threshold

v

neurons=NeuronGroup (2xN, model=eqgs, threshold="'v>theta', reset="v=Vr;gKk2=1")
neurons.v=Vr

neurons.theta=vt

neurons.gK=1./ (1l+exp ((Va-El) /ka))

# Neuron A, duplicated to simulate multiple input durations simultaneously
neuronsA=neurons [ :N]

neuronsA.tauK=400+*ms

neuronsA.gmax=1

neuronsA.theta=-55+mV

neuronsA.duration=linspace (100*ms, 1+second, N)

# Neuron B, duplicated to simulate multiple input durations simultaneously
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neuronsB=neurons [N:]

neuronsB.tauK=100+ms

neuronsB.gmax=1.5

neuronsB.theta=-54+mV
neuronsB.duration=linspace (100+ms, 1 xsecond, N)

# Noisy coincidence detectors

tau_cd=5+ms

tau_n=tau_cd

sigma=0.2 # noise s.d. in units of the threshold

egs_post="""
dv/dt=(n-v)/tau_cd : 1
dn/dt=-n/tau_n+sigma=* (2/tau_n) **.5xxi : 1

postneurons=NeuronGroup (N, model=eqgs_post, threshold=1, reset=0)
CA=IdentityConnection (neuronsA,postneurons, 'v',weight=0.5)
CB=IdentityConnection (neuronsB, postneurons, 'v',weight=0.5)

spikes=SpikeCounter (postneurons)
M=StateMonitor (postneurons, 'v', record=N/3)

run (rest_time+1l.lxsecond, report="text"')

# Figure

subplot (121) # Fig. 1C, example trace
plot (M.times/ms,M[N/3], 'k")

x1im (1350,1500)

ylim(-.3,1)

xlabel ('Time (ms) ")

ylabel ('V")

subplot (122) # Fig. 1D, duration tuning curve

count=spikes.count

# Smooth the tuning curve

window=200

rate=zeros (len (count) -window)

for i in range (0, len(count)-window) :
rate[i]=mean (count [i:i+window])

plot ( (neuronsA.duration[window/2:-window/2]/ms) [::10],rate[::10], 'k")

x1im (0, 1000)

y1lim(0,0.5)

xlabel ('Duration (ms) ')

ylabel ('Spiking probability")

show ()

Example: Fig2A_synchrony_partition (frompapers/computing with neural synchrony/duration se-
lectivity)

Brette R (2012). Computing with neural synchrony. PL0oS Comp Biol. 8(6): e1002561.
doi:10.1371/journal.pcbi.1002561

Figure 2A. Synchrony partition for duration selective neurons.

Caption (Fig. 2A) Decoding synchrony patterns in a heterogeneous population. Color represents the latency of the
spike produced by each neuron responding to the stimulus (white if the neuron did not spike). Thus, neurons with
the same color are synchronous for that specific stimulus (duration). The population can be divided in groups of
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synchronous neurons (i.e., with the same color), forming the “synchrony partition”. Circled neurons belong to the
same synchronous group.

This script calculates and displays the synchrony partition for one particular duration. It also saves the results in
file, that is required by the script Fig2C_decoding_synchrony. The synchrony partition is calculated empirically,
by simulating the responses of the neurons at the specific inhibitory duration and grouping neurons that respond in
synchrony (+- 2 ms).

from brian import =

from numpy.random import seed
from params import =«

from pylab import cm

# Graphics

radius=.15

selected_neuron=7

# Parameters

ginh_max=5.

Nx=5 # number of neurons per row
N=Nx*Nx number of neurons
rest_time=lxsecond # initial time
duration=500+ms

e

delta_t=2xms # Size of synchronous groups (maximum time difference)

# Duration-selective neurons
eqs:' [}
dv/dt=(El-v+ (gmaxxgK+gmax2+gK2+ginh) x (EK-v) ) /tau : volt
dgK/dt=(gKinf-gK) /taukK : 1 # IKLT

dgK2/dt=-gK2/tauk2 : 1 # Delayed rectifier

gKinf=1./(l+exp((Va-v)/ka)) : 1

ginh = ginh_maxx ((t>rest_time) & (t<(rest_time+duration))) : 1
tauK : ms

tau : ms

gmax : 1

uniform=lambda N: (rand(N)-.5)*2 # uniform between -1 and 1
seed (31418) # Get the same neurons every time

neurons=NeuronGroup (N, model=eqgs, threshold="v>Vt', reset="v=Vr;gk2=1")
neurons.v=vVr

neurons.gK=1./ (1+exp ((Va-El) /ka))

neurons.taukK=400+ms+uniform(N) tauK_spread

alpha=(E1-Vt) / (Vt—-EK)

neurons.gmax=alpha* (minx+ (maxx-minx) ~rrand (N) )
neurons.tau=30+ms+uniform(N) xtau_spread

spikes=SpikeMonitor (neurons)
run (rest_time+1.lxsecond)

# Calculate first spike time of each neuron
times=zeros (N) # First spike time of each neuron
times[:]=Inf # Inf means: no response, or response before the start of the stimulus
blacklist=[] # neurons that fire spontaneously
for i,t in spikes.spikes:
if times[i]==Inf:
times[i]=t-duration-rest_time
if times[1]<0:
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blacklist.append(i)
times[blacklist]=Inf
tmin, tmax=min (times[times!=Inf]),max(times[times!=Inf])
# Color of each neuron between 0 and 1
color=(times—-tmin) / (tmax+le-10-tmin) # (to avoid zero division)

# Assign groups; each responding neuron gets a group number

group_size=delta_t/ (tmax-tmin) # size of a group, as a proportion of the timing range
group_number=array (color/group_size,dtype=int)

group_number [color==Inf]=—

# Get the size of each group
count=zeros (max (group_number) +1) # number of neurons in each group
for i in range (len (group_number)) :
if group_number[i]!=-1:
count [group_number [i]]+=1

selected_group=group_number [selected_neuron]

# Display the synchrony partition (Fig. 2A)
axes (frameon=False)
axis('scaled")
xticks ([])
yticks ([])
1=0
for y in linspace(0,1,Nx):
for x in linspace(0,1,Nx):

if color[i]!=Inf:
if group_number[i]==selected_group:
w=4
ec="k" # edge color
else:
w=1
ec="k'
cir=Circle((x,y),radius, fc=cm. jet (color[i]), linewidth=w, ec=ec)
else:

cir=Circle((x,y),radius, fc="w")
i+=1
gca () .add_patch (cir)
x1im (0-2+radius, 1+2+radius)
ylim(0-2+radius, 1+2+radius)

# Remove groups with fewer than two neurons and recalculate group numbers
for i in range(len (group_number)) :
if group_number[i]>=0:
if count[group_number[i]]>=2:
group_number [i]=sum(count [:group_number [i]]>=2)
else:
group_number [i]=-1

# Save assignment to groups

f=open ('groups'+str (int (duration/ms))+'.txt', 'w'")
f.write(' '".join([str(x) for x in group_number]))
f.close ()

show ()
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3.2.16 frompapers/computing with neural synchrony/olfaction
Example: params (frompapers/computing with neural synchrony/olfaction)

Brette R (2012). Computing with neural synchrony. PLoS Comp Biol. 8(6): e1002561.
doi:10.1371/journal.pcbi.1002561

Parameters for the olfactory model with STDP

from brian import =

N=5000

# Coincidence detectors

sigma=.15

taud=8+*ms

# Connections

Nsynapses=50

w0=150./(0.02%N)

# STDP

factor=0.05

a_pre=0.06«factor

b_post=-1.«xfactor

tau_pre=3+ms

# Intrinsic plasticity: non-specific weight increase
IP_period=10+ms

IP_rate=-b_postx5+Hz # target firing rate = 5 Hz
# Simulation control

record_period=lxsecond

duration=100+second

Example: Fig11B_olfaction_stdp_learning (frompapers/computing with neural synchrony/olfaction)

Brette R (2012). Computing with neural synchrony. PL0oS Comp Biol. 8(6): e1002561.
doi:10.1371/journal.pcbi.1002561

Figure 11B. Learning to recognize odors. (long simulation)

Caption (Fig. 11B). After learning, responses of postsynaptic neurons, ordered by tuning ratio, to odor A (blue) and
odor B (red), with an increasing concentration (0.1 to 10, where 1 is odor concentration in the learning phase).

After this script, run the other file: Figl 1B_olfaction_stdp_testing.py.

from brian import =

from params import =«

from brian.experimental.connectionmonitor import =
import numpy

bmin, bmax=-7, -1

def odor (N) :
# Returns a random vector of binding constants
return 10+* (rand(N) = (bmax—-bmin) +bmin)

def hill_function(c,K=1.,n=3.):

rro

Hill function:

3.2. Examples 185




Brian Documentation, Release 1.4.4

* Cc = concentration

* K = half activation constant (choose K=1 for relative concentrations)
n
I

* = Hill coefficient

r

return (c*+n)/ (c*+n+K*+n)
N=5000 # number of receptors

seed (31415) # Get the same neurons every time
intensity=3000.

# Odor plumes

tau_plume=75xms

eq_plumes="'""

dx/dt=-x/tau_plume+ (2./tau_plume) »*.5+xi : 1
y=clip(x,0,inf) : 1

[

plume=NeuronGroup (1, model=eq_plumes) # 1 odor

# Receptor neurons

Fmax=40+Hz # maximum firing rate

tau=20+ms

Imax=1/(l-exp(-1/ (Fmax*tau))) # maximum input current

eq_receptors="""
dv/dt=(Imaxxhill_function(c)-v)/tau : 1

c : 1 # concentrations (relative to activation constant)
Tra

receptors=NeuronGroup (N, model=eq_receptors,threshold=1, reset=0)

@network_operation

def odor_to_nose():
# Send odor plume to the receptors
receptors.c=Ilxclxclip(plume.x[0],0, Inf)

odors=[odor (N),odor(N)] # two odors
cl=odors[0]
stimuli={[]
# A random odor is presented every 200 ms
@network_operation (clock=EventClock (dt=200+ms) )
def change_odor () :
global cl
nodor=randint (len (odors))
cl=odors [nodor]
stimuli.append((float (defaultclock.t),float (nodor)))

# Decoder neurons

M=30

eq_decoders="""

dv/dt=-v/taud + sigmax (2/taud)**.5%xi : 1

Vi
decoders=NeuronGroup (M, model=eq_decoders, threshold=1, reset=0)
S2=SpikeMonitor (decoders)

# Random synapses
syn=Connection (receptors,decoders, 'v', sparseness=Nsynapses*1./N,weight=w0)
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# STDP

egs_stdp="""

dApre/dt=-Apre/tau_pre : 1

Apost : 1

pre:| T

Apre+=a_pre

#w+=0

post:l T

Apost+=0

w+=Apre+b_post*w

Tra

stdp=STDP (syn, eqs_stdp, pre=pre, post=post, wmax=Inf)
MC=ConnectionMonitor (syn, store=True, clock=EventClock (dt=record_period))

@network_operation (EventClock (dt=IP_period))

def intrinsic_plasticity(): # synaptic scaling
# Increases weights of all synapses
syn.W.alldatat+=syn.W.alldataxIP_ratexIP_period

# Record the evolution of weights
weights=[]
@network_operation (EventClock (dt=record_period))
def recordw() :

Z=syn.W[:,0].copy()

weights.append (Z)

Il=intensity
print "Started"
run (duration, report="text")

# Save data

wsave=[ (t,M.todense()) for (t,M) in MC.values]

numpy.save ("weights.npy",array (zip (swsave) [1])) # 3D array (t,1i,7)
numpy .save ("spikesout.npy",array (S2.spikes))

numpy.save ("stimuli.npy",array (stimuli))

Example: Fig9B_olfaction (frompapers/computing with neural synchrony/olfaction)

Brette R (2012). Computing with neural synchrony. PL0oS Comp Biol. 8(6): e1002561.
doi:10.1371/journal.pcbi.1002561

Figure 9B.

Caption (Fig. 9B). Top, Fluctuating concentration of three odors (A: blue, B: red, C: black). Middle, spiking responses
of olfactory receptors. Bottom, Responses of postsynaptic neurons from the assembly selective to A (blue) and to B
(red). Stimuli are presented is sequence: 1) odor A alone, 2) odor B alone, 3) odor B alone with twice stronger
intensity, 4) odor A with distracting odor C (same intensity), 5) odors A and B (same intensity).

from brian import =
bmin, bmax=-7, -1

def odor (N) :
# Returns a random vector of binding constants
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return 10+* (rand(N) * (bmax—bmin) +bmin)

def hill_ function(c,K=1.,n=3.):

rro

Hill function:

* Cc = concentration

* K = half activation constant (choose K=1 for relative concentrations)
* = Hill coefficient

r

n
rr

return (c**n)/ (c**n+K*+*n)
N=5000 # number of receptors

# Odors

seed (31415) # Get the same neurons every time
intensity=3000.

cl=odor (N)

c2=odor (N)

c0=cl

I1,I2=intensity,intensity

# Odor plumes (fluctuating concentrations)
tau_plume=75+ms

eq_plumes="'""
dx/dt=-x/tau_plume+ (2./tau_plume) **.5xxi : 1
y=clip(x,0,inf) : 1

v

plume=NeuronGroup (2, model=eq_plumes) # 2 odors

# Receptor neurons

Fmax=40+«Hz # maximum firing rate

tau=20+ms

Imax=1/(l-exp(-1/(Fmaxxtau))) # maximum input current

eq_receptors="""
dv/dt=(Imaxxhill_ function(c)-v)/tau : 1
c : 1 # concentrations (relative to activation constant)

[

receptors=NeuronGroup (N, model=eq_receptors, threshold=1, reset=0)
receptors.c=cl

@network_operation

def odor_to_nose():
# Send odor plume to the receptors
receptors.c=Ilxclxclip(plume.x[0],0,Inf)+I2xc2+clip(plume.x[1],0,Inf)

# Decoder neurons

M=200

taud=8+ms

sigma=.15

eq_decoders="""

dv/dt=-v/taud + sigmax (2/taud)**.5+xi : 1

Tra
decoders=NeuronGroup (2+*M, model=eq_decoders, threshold=1, reset=0)
# First M neurons encode odor A, next M neurons encode odor B

# Synapses
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syn=Connection (receptors,decoders, 'v')

# Connectivity according to synchrony partitions
bhalf=.5% (bmin+bmax) # select only those that are well activated
u=2+ (log(cl)/log(10) -bhalf) / (bmax-bmin) # normalized binding constants for odor A
for i in range (M) :
which=((u>=ix1./M) & (u<(i+l)=*1./M)) # we divide in M groups with similar values
if sum(which)>0:
w=1./sum(which) # total synaptic weight for a postsynaptic neuron is 1
syn[:,i]=wxwhich

u=2+ (log(c2)/log(10) -bhalf) / (bmax—-bmin)
for i in range(M): # normalized binding constants for odor B
which=((u>=i*x1./M) & (u<(i+1l)=*1./M))
if sum(which)>0:
w=1./sum(which)
syn[:,2+xM-1-1i]=wxwhich

# Record odor concentration and output spikes
O=StateMonitor (plume, 'y', record=True)
S=SpikeMonitor (receptors)

S2=SpikeMonitor (decoders)

print "Odor A"
Il1,I2=intensity,0

run (2+second)

print "Odor B"
I1,I2=0,1intensity

run (2+second)

print "Odor B x2"
I1,I2=0,2+intensity

run (2+second)

print "Odor A + odor C"
Il,I2=intensity,intensity
old_c2=c2

c2=odor (N) # different odor
run (2+*second)

print "Odor A + odor B"
I1,I2=intensity,intensity
c2=o0ld_c2

run (2+second)

t=0.times/ms
# Figure (9B)

subplot (311) # odor fluctuations
plot (£ [t<2000]1,0[0][t<2000], 'b")

plot (£ [ (£>=2000) & (t<4000)],0[1][(£>=2000) & (t<4000)]1,'r")
plot (£t [ (£>=4000) & (t£t<6000)]1,2+0[1][(t>=4000) & (t<6000)]1,'r")
plot (£ [ (£>=6000) & (£t<8000)],0[0][(t>=6000) & (t<8000)7]1,'b")
plot (£t [ (£>=6000) & (t<8000)],0[1][(t>=6000) & (t<8000)]1,'k")
plot (£t [ (£>=8000) & (£t<10000)]1,0[1]1[(t>=8000) & (t<10000)]1,'r")
plot (£ [ (£>=8000) & (t<10000)],0[0][(£t>=8000) & (t<10000)],'b")
x1im (0, 10000)

xticks ([])

subplot (312)
raster_plot (S)
x1im (0, 10000)
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ylim(2500,2600) # 100 random neurons
xticks ([])

subplot (313)

raster_plot (S2)

y1lim (100, 300)

x1im (0, 10000)

show ()

Example: Fig11B_olfaction_stdp_testing (frompapers/computing with neural synchrony/olfaction)

Brette R (2012). Computing with neural synchrony. PLoS Comp Biol. 8(6): e1002561.
doi:10.1371/journal.pcbi.1002561

Figure 11B. Learning to recognize odors.

Caption (Fig. 11B). After learning, responses of postsynaptic neurons, ordered by tuning ratio, to odor A (blue) and
odor B (red), with an increasing concentration (0.1 to 10, where 1 is odor concentration in the learning phase).

Run the other file first: Figl 1B_olfaction_stdp_learning.py

from brian import =

from params import =x

import numpy

from scipy.sparse import 1il_matrix

bmin, bmax=-7, -1

# Loads information from the STDP simulation
t,odor=numpy.load("stimuli.npy").T
W=numpy.load ("weights.npy")
spikes_out=numpy.load ("spikesout.npy")
weights=W[-1,:,:] # final weights

# Analyze selectivity at the end of the STDP simulation
ispikes=spikes_out[:,0] # indexes of neurons that spiked
tspikes=spikes_out[:,1] # spike timings

# Select only the end of the STDP simulation
end=tspikes>.8xmax (tspikes)

ispikes=ispikes[end]

tspikes=tspikes[end]

odors=odor [digitize (tspikes,t)-1] # odor (0/1) presented at the time of spikes

tuning=zeros (30) # Tuning ratio of the postsynaptic neurons
n0,nl=zeros (30), zeros (30) # number of spikes for odor 0 and for odor 1
for k in range (len(tuning)) :

o=odors[ispikes==k]

n0[k]=sum (0==0)

nll[k]=sum(o==1)

tuning[k]=n0[k]*1./(n0[k]+nl[k])

# Sort the postsynaptic neurons by odor tuning
weights=weights[:,argsort (tuning) ]
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Run the simulation

def odor (N) :
# Returns a random vector of binding constants
return 10+* (rand(N) * (bmax—bmin) +bmin)

def hill_function(c,K=1.,n=3.):
Hill function:
* Cc = concentration
* K

* N
rrr

half activation constant (choose K=1 for relative concentrations)
Hill coefficient

return (cx*n)/ (c**n+K*=*n)

N=5000 # number of receptors
seed (31415) # Get the same neurons every time
intensity=3000.

# Odor plumes

tau_plume=75xms

eq_plumes="""

dx/dt=-x/tau_plume+ (2./tau_plume) x*.5+xi : 1
y=clip(x,0,inf) : 1

v

plume=NeuronGroup (2, model=eq_plumes) # 1 odor

# Receptor neurons

Fmax=40+«Hz # maximum firing rate

tau=20+ms

Imax=1/(l-exp(-1/ (Fmax*tau))) # maximum input current

eg_receptors="'""
dv/dt=(Imaxxhill_ function(c)-v)/tau : 1

c : 1 # concentrations (relative to activation constant)
Tr

receptors=NeuronGroup (N, model=eq_receptors,threshold=1, reset=0)

@network_operation

def odor_to_nose():
# Send odor plume to the receptors
receptors.c=Ilxclxclip(plume.x[0],0,Inf)+I2xc2+xclip(plume.x[0],0,Inf)

odors=[odor (N), odor (N) ]
cl, c2=odors

# Decoder neurons

M=len (tuning)

eq_decoders="'""

dv/dt=-v/taud + sigmax (2/taud)**.5%xi : 1

LI B |
decoders=NeuronGroup (M, model=eq_decoders, threshold=1, reset=0)
S2=SpikeMonitor (decoders)

# Synapses
syn=Connection (receptors,decoders, 'v')
for i in range(len (decoders)) :

3.2. Examples 191




Brian Documentation, Release 1.4.4

for j in weights[:,1i] .nonzero() [0]:
syn[j,i]l=weights[]j, 1]

# Run

I1,I2=intensity,0

print "Started"

# Odor A, increasing concentration

for Il in intensityxexp(linspace(log(.1),log(10),20)):
run (lxsecond, report="text")

I1=0

# Odor B, increasing concentration

for I2 in intensityxexp(linspace(log(.1),log(10),20)):
run (lxsecond, report="text")

# Figure (11B)

spikes=array (S2.spikes) # 1i,t
n,t=spikes[:,0],spikes[:,1]
subplot (211) # Raster plot
plot(t,n, 'k.")

subplot (212) # Odor concentrations

semilogy (linspace(0,20,20),exp(linspace(log(.1),log(10),20)),'b")

semilogy (linspace (20,40,20),exp(linspace(log(.1),log(10),20)),

plot ([0,40], [1,1], "k——")
show ()

II-Y)
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CHAPTER 4

User manual

The SciPy, NumPy and PyLab packages are documented on the following web sites:
* http://www.scipy.org/Getting_Started
* http://www.scipy.org/Documentation
* http://docs.scipy.org/
* http://matplotlib.sourceforge.net/

Brian itself is documented in the following sections:

4.1 Units

4.1.1 Basics

Brian has a system for physical quantities with units built in, and most of the library functions require that variables
have the right units. This restriction is useful in catching hard to find errors based on using incorrect units, and ensures
that simulated models are physically meaningful. For example, running the following code causes an error:

>>> from brian import =«
>>> ¢ = Clock (t=0)

Traceback (most recent call last):
File "<pyshell#1>", line 1, in <module>
c = Clock (t=0)
File "C:\Documents and Settings\goodman\Mes documents\Programming\Python_
—simulator\Brian\units.py", line 1126, in new_f

raise DimensionMismatchError ("Function " + f£. name  + " variable " + k + "
—should have dimensions of " + str(aul[k]), getDimensions (newkeyset[k]))
DimensionMismatchError: Function __init__ variable t should have dimensions of s,

—~dimensions were (1)
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You can see that Brian raises a DimensionMismatchError exception, because the CI1ock object expects t to
have units of time. The correct thing to write is:

>>> from brian import =
>>> ¢ = Clock (t=0+second)

Similarly, attempting to do numerical operations with inconsistent units will raise an error:

>>> from brian import =«
>>> 3+secondt+2+metre

Traceback (most recent call last):
File "<pyshell#38>", line 1, in <module>
3xsecond+t2+metre
File "C:\Documents and Settings\goodman\Mes documents\Programming\Python,_

—simulator\Brian\units.py", line 600, in __add___
if dim==self.dim:
DimensionMismatchError: Addition, dimensions were (s) (m)

4.1.2 Units defined in Brian

The following fundamental SI unit names are defined:
metre, meter (US spelling), kilogram, second, amp, kelvin,mole, candle
These derived SI unit names are also defined:

radian, steradian, hertz, newton, pascal, joule, watt, coulomb, volt, farad, ohm,
siemens,weber, tesla, henry, celsius, lumen, lux, becquerel, gray, sievert, katal

In addition, you can form scaled versions of these units with any of the standard SI prefixes:

Factor | Name | Symbol | Factor | Name | Symbol
10724 | yotta Y 1024 | yocto |y

10721 | zetta z 107-21 | zepto | z

10M8 | exa E 10721 | zepto | z

10r15 | peta P 107-15 | femto | f

10M2 | tera T 107~-12 | pico p

10”9 giga G 10~-9 | nano n

1076 mega | M 107-6 | micro | u (muin SI)
1073 kilo k 107-3 | milli m

1072 hecto | h 1072 | centi c

1071 deka da 107-1 deci d

So for example, you could write fnewton for femto-newtons, Mwatt for megawatt, etc.

There are also units for 2nd and 3rd powers of each of the above units, for example metre3 = metre**3,watt?2
= wattxwatt, etc.

You can optionally use short names for some units derived from volts, amps, farads, siemens, seconds, hertz and me-
tres: mV, mA, uA, nA, pA, mF, uF, nF, mS, uS, ms, Hz, kHz, MHz, cm, cm2, cm3, mm,
mm2, mm3, um, um2, um3. Since these names are so short, there is a danger that they might clash with your
own variables names, so watch out for that.
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4.1.3 Arrays and units

Versions of Brian before 1.0 had a system for allowing arrays to have units, this has been removed for the 1.0 release
because of stability problems - as new releases of NumPy, SciPy and PyLab came out it required changes to the units
code. Now all arrays used by Brian are standard NumPy arrays and have no units.

4.1.4 Checking units

Units are automatically checked when arithmetic operations are performed, and when a neuron group is initialised (the
consistency of the differential equations is checked). They can also be checked explictly when a user-defined function
is called by using the decorator @check_units, which can be used as follows:

@check_units (I=amp, R=ohm, wibble=metre, result=volt)
def getvoltage (I,R, xxk):
return IxR

Remarks:
* not all arguments need to be checked
* keyword arguments may be checked
¢ the result can optionnally be checked

* no error is raised if the values are strings.

4.1.5 Disabling units

Unit checking can slow down the simulations. The units system can be disabled by inserting import
brian_no_units as the first line of the script, e.g.:

import brian_no_units
from brian import =
# etc

Internally, physical quantities are floats with an additional units information. The float value is the value in the SI
system. For example, f1loat (mV) returns 0.001. After importing brian_no_units, all units are converted to
their float values. For example, mV is simply the number 0.001. This may also be a solution when using external
libraries which are not compatible with units (but see next section).

Unit checking can also be turned down locally when initializing a neuron group by passing the argument
check_units=False. In that case, no error is raised if the differential equations are not homogeneous.

A good practice is to develop the script with units on, then switch them off once the script runs correctly.
4.1.6 Converting quantities

In many situations, physical quantities need to be expressed with given units. For example, one might want to plot a
graph of the membrane potential in mV as a function of time in ms. The following code:

plot (t,V)

displays the trace with time in seconds and potential in volts. The simplest solution to have time in ms and potential
in mV is to use units operations:
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plot (t/ms,V/mV)

Here, t/ms is a unitless array containing the values of t in ms. The same trick may be applied to use external functions
which do not work with units (convert the arguments to unitless quantities as above).

4.2 Models and neuron groups

4.2.1 Equations

Equations objects are initialised with a string as follows:

egs=Equations ("""

dx/dt=(y-x)/tau + a : volt # differential equation
y=2*x : volt # equation

z=x # alias

a : volt/second # parameter

lvl)

It is possible to pass a string instead of an Equat i ons object when initialising a neuron group. In that case, the string
is implicitly converted to an Equat ions object. There are 4 different types of equations:

« Differential equations: a differential equation, also defining the variable as a state variable in neuron groups.

* Equations: a non-differential equation, which is useful for defining complicated models. The variables are
also accessible for reading in neuron groups, which is useful for monitoring. The graph of dependencies of all
equations must have no cycle.

e Aliases: the two variables are equivalent. This is implemented as an equation, with write access in neuron
groups.

» Parameters: these are constant variables, but their values can differ from one neuron to the next. They are
implemented internally as differential equations with zero derivative.

Right hand sides must be valid Python expressions, possibly including comments and multiline characters (\).

The units of all variables except aliases must be specified. Note that in first line, the units volt are meant for x, not
dx/dt. The consistency of all units is checked with the method check_units (), which is automatically called when
initialising a neuron group (through the method prepare ()).

When an Equat ions object is finalised (through the method prepare (), automatically called the NeuronGroup
initialiser), the names of variables defined by non-differential equations are replaced by their (string) values, so that
differential equations are self-consistent. In the process, names of external variables are also modified to avoid conflicts
(by adding a prefix).

4.2.2 Neuron groups

The key idea for efficient simulations is to update synchronously the state variables of all identical neuron models. A
neuron group is defined by the model equations, and optionally a threshold condition and a reset. For example for 100
neurons:

egs=Equations ('dv/dt=-v/tau : volt')
group=NeuronGroup (100, model=eqgs, reset=0+mV, threshold=10+mV)

The mode1 keyword also accepts strings (in that case it is converted to an Equat i ons object), e.g.:
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group=NeuronGroup (100, model="dv/dt=-v/tau : volt',reset=0+mV,threshold=10+mV)

The units of both the reset and threshold are checked for consistency with the equations. The code above defines a
group of 100 integrate-and-fire neurons with threshold 10 mV and reset 0 mV. The second line defines an object named
group which contains all the state variables, which can be accessed with the dot notation, i.e. group.v is a vector
with the values of variable v for all of the 100 neurons. It is an array with units as defined in the equations (here, volt).
By default, all state variables are initialised at value 0. It can be initialised by the user as in the following example:

group.v=linspace (0*mV, 10xmV, 100)

Here the values of v for all the neurons are evenly spaced between 0 mV and 10 mV (linspace is a NumPy
function). The method group. rest () may also be used to set the resting point of the equations, but convergence
is not always guaranteed.

Important options

* refractory: arefractory period (default O ms), to be used in combination with the reset value.

e implicit (default False): if True, then an implicit method is used. This is useful for Hodgkin-Huxley
equations, which are stiff.

Subgroups

Subgroups can be created with the slice operator:

subgroupl=group[0:50]
subgroup2=group[50:100]

Then subgroup2.v[i] equals group.v[50+1]. An alternative equivalent method is the following:

subgroupl=group.subgroup (50)
subgroup2=group.subgroup (50)

The parent group keeps track of the allocated subgroups. But note that the two methods are mutually exclusive, e.g.
in the following example:

subgroupl=group[0:50]
subgroup2=group.subgroup (50)

both subgroups are actually identical.

Subgroups are useful when creating connections or monitoring the state variables or spikes. The best practice is to
define groups as large as possible, then divide them in subgroups if necessary. Indeed, the larger the groups are, the
faster the simulation runs. For example, for a network with a feedforward architecture, one should first define one
group holding all the neurons in the network, then define the layers as subgroups of this big group.

Details

For details, see the reference documentation for NeuronGroup.
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4.2.3 Reset

More complex resets can be defined. The value of the reset keyword can be:
* a quantity (0+mV)
* astring
* a function

* a Reset object, which can be used for resetting a specific state variable or for resetting a state variable to the
value of another variable.

Reset as Python code

The simplest way to customise the reset is to define it as a Python statement, e.g.:

eqS:' T
dv/dt=-v/tau : volt
dw/dt=-w/tau : volt

group=NeuronGroup (100, model=eqgs, reset="v=0+mV; w+=3+mV", threshold=10+mV)

The string must be a valid Python statement (possibly a multiline string). It can contain variables from the neuron
group, units and any variable defined in the namespace (e.g. tau), as for equations. Be aware that if a variable in the
namespace has the same name as a neuron group variable, then it masks the neuron variable. The way it works is that
the code is evaluated with each neuron variable v replaced by v [spikes], where spikes is the array of indexes of
the neurons that just spiked.

Functional reset

To define a specific reset, the generic method is define a function as follows:

def myreset (P, spikes):
P.v([spikes]=rand(len (spikes)) *5+mV
group=NeuronGroup (100, model=eqgs, reset=myreset, threshold=10+mV)

or faster:

def myreset (P, spikes) :
P.v_[spikes]=rand(len (spikes) ) *5+mV

Every time step, the user-defined function is called with arguments P, the neuron group, and spikes, the list of
indexes of the neurons that just spiked. The function above resets the neurons that just spiked to a random value.

Resetting another variable

It is possible to specify the reset variable explicitly:

group=NeuronGroup (100, model=eqgs, reset=Reset (0xmV, state="w'),threshold=10+mV)

Here the variable w is reset.
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Resetting to the value of another variable

The value of the reset can be given by another state variable:

group=NeuronGroup (100, model=eqgs, reset=VariableReset (0*xmV, state='v', resetvaluestate="w
—"'),threshold=10+mV)

Here the value of the variable w is used to reset the variable v.

4.2.4 Threshold

As for the reset, the threshold can be customised.

Threshold as Python expression

The simplest way to customise the threshold is to define it as a Python expression, e.g.:

eqS:' (]
dv/dt=-v/tau : volt
dw/dt=(v-w) /tau : volt

group=NeuronGroup (100, model=eqgs, reset=0+xmV, threshold="v>=w")

The string must be an expression which evaluates to a boolean. It can contain variables from the neuron group, units
and any variable defined in the namespace (e.g. tau), as for equations. Be aware that if a variable in the namespace has
the same name as a neuron group variable, then it masks the neuron variable. The way it works is that the expression
is evaluated with the neuron variables replaced by their vector values (values for all neurons), so that the expression
returns a boolean vector.

Functional threshold

The generic method to define a custom threshold condition is to pass a function of the state variables which returns a
boolean (true if the threshold condition is met), for example:

eqS:' (]
dv/dt=-v/tau : volt
dw/dt=(v-w) /tau : volt

group=NeuronGroup (100, model=eqgs, reset=0+mV, threshold=lambda v, w:v>=w)

Here we used an anonymous function (lambda keyword) but of course a named function can also be used. In this
example, spikes are generated when v is greater than w. Note that the arguments of the function must be the state
variables with the same order as in the Equat ions string.

Thresholding another variable

It is possible to specify the threshold variable explicitly:

group=NeuronGroup (100, model=eqgs, reset=0xmV, threshold=Threshold (0x*mV, state="w"))

Here the variable w is checked.
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Using another variable as the threshold value

The same model as in the functional threshold example can be defined as follows:

group=NeuronGroup (100, model=eqgs, reset=0+mV, threshold=\
VariableThreshold(state='v',threshold_state='w'))

Empirical threshold

For Hodgkin-Huxley models, one needs to determine the threshold empirically. Here the threshold should really be
understood rather as the onset of the spikes (used to propagate the spikes to the other neurons), since there is no explicit
reset. There is a Threshold subclass for this purpose:

group=NeuronGroup (100, model=eqgs, threshold=EmpiricalThreshold(threshold=-20+mV,
—refractory=3+ms))

Spikes are triggered when the membrane potential reaches the value -20 mV, but only if it has not spiked in the last 3
ms (otherwise there would be spikes every time step during the action potential). The state keyword may be used
to specify the state variable which should be checked for the threshold condition.

Poisson threshold

It is possible to generate spikes with a given probability rather than when a threshold condition is met, by using the
class PoissonThreshold, as in the following example:

group=NeuronGroup (100, model="x : Hz',threshold=PoissonThreshold(state="'x"))
x=linspace (0xHz, 10xHz,100)

Here spikes are generated as Poisson processes with rates given by the variable x (the state keyword is optional:
default = first variable defined). Note that x can change over time (inhomogeneous Poisson processes). The units of
variable x must be Hertz.

4.3 Connections

Note: Consider using the newer Synapses class instead of Connect ion, in particular when you are modelling
plastic connections.

4.3.1 Building connections

First, one must define which neuron groups are connected and which state variable receives the spikes. The following
instruction:

myconnection=Connection (groupl, group2, 'ge')

defines a connection from group groupl to group2, acting on variable ge. When neurons from group groupl
spike, the variable ge of the target neurons in group group?2 are incremented. When the connection object is ini-
tialised, the list of connections is empty. It can be created in several ways. First, explicitly:
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myconnection[2,5]=3%nS

This instruction connects neuron 2 from groupl to neuron 5 from group?2 with synaptic weight 3 nS. Units should
match the units of the variable defined at initialisation time (ge).

The matrix of synaptic weights can be defined directly with the method Connection.connect ():

W=rand (len (groupl), len (group?2) ) *nS
myconnection.connect (groupl, group2, W)

Here a matrix with random elements is used to define the synaptic weights from groupl to group?2. It is possible
to build the matrix by block by using subgroups, e.g.:

W=rand (20, 30) *nS
myconnection.connect (groupl[0:20],group2[10:40], W=W)

There are several handy functions available to set the synaptic weights: connect_full (), connect_random ()
and connect_one_to_one (). The first one is used to set uniform weights for all pairs of neurons in the
(sub)groups:

’myconnection.connect_full(groupl[O:ZOJ,group2[lO:40],weight=5*nS)

The second one is used to set uniform weights for random pairs of neurons in the (sub)groups:

’myconnection.connect_random(groupl[O:ZO],group2[lO:4O],sparseneSSZO.O2,weight=5*nS)

Here the third argument (0.02) is the probability that a synaptic connection exists between two neurons. The number
of presynaptic neurons can be made constant by setting the keyword fixed=True (probability * number of neurons
in groupl). Finally, the method connect_one_to_one () connects neuron i from the first group to neuron i
from the second group:

’myconnection.connect_one_to_one(groupl,groupz,weight:B*nS)

Both groups must have the same number of neurons.

If you are connecting the whole groups, you can omit the first two arguments, e.g.:

’myconnection.connect_full(weight:5*nS)

connects groupl to group2 with weights 5 nS.

Building connections with connectivity functions

There is a simple and efficient way to build heterogeneous connections, by passing functions instead of constants to
the methods connect_full () and connect_random (). The function must return the synaptic weight for a
given pair of neuron (i,j). For example:

myconnection.connect_full (groupl,group2,weight=lambda i, j: (1+cos (i-3)) *2*nS)

where i (j) indexes neurons in groupl (group?2). This is the same as doing by hand:

for i in range (len(groupl)) :
for j in range (len(group2)):
myconnection([i, j]=(l+cos(i-7)) *2*nS
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but it is much faster because the construction is vectorised, i.e., the function is called for every i with j being the entire
row of target indexes. Thus, the implementation is closer to:

for i in range (len(groupl)) :
myconnection[i, j]=(l+cos (i-arange (len (group2))) *2+ns

The method connect_random () also accepts functional arguments for the weights and connection probability.
For that method, it is possible to pass a function with no argument, as in the following example:

myconnection.connect_random(groupl,group2, 0.1, weight=lambda:rand () *nsS)

Here each synaptic weight is random (between 0 and 1 nS). Alternatively, the connection probability can also be a
function, e.g.:

myconnection.connect_random(groupl,group2,0.1,weight=1%xnS, sparseness=lambda i, j:exp (-
—abs (i-3)x.1))

The weight or the connection probability may both be functions (with O or 2 arguments).

4.3.2 Delays

Transmission delays can be introduced with the keyword delay, passed at initialisation time. There are two types of
delays, homogeneous (all synapses have the same delay) and heterogeneous (all synapses can have different delays).
The former is more computationally efficient than the latter. An example of homogeneous delays:

myconnection=Connection (groupl, group2, 'ge',delay=3+ms)

If you have limited heterogeneity, you can use several Connection objects, e.g.:

myconnection_fast=Connection (groupl,group2, 'ge',delay=1+ms)
myconnection_slow=Connection (groupl,group2, 'ge',delay=5+ms)

For a highly heterogeneous set of delays, initialise the connection with delay=True, set a maximum de-
lay with for example max_delay=5+ms and then use the delay keyword in the connect_random() and
connect_full () methods:

myconnection=Connection (groupl,group2, 'ge',delay=True,max_delay=5+ms)
myconnection.connect_full (groupl, group2,weight=3+nS,delay=(0+ms, 5*ms) )

The code above initialises the delays uniformly randomly between Oms and Sms. You can also set delay to be a
function of no variables, where it will be called once for each synapse, or of two variables i1, j where it will be
called once for each row, as in the case of the weights in the section above.

Alternatively, you can set the delays as follows:

myconnection.delay[i, j] = 3*ms

See the reference documentation for Connection and DelayConnect ion for more details.

4.3.3 Connection structure

The underlying data structure used to store the synaptic connections is by default a sparse matrix. If the connections
are dense, it is more efficient to use a dense matrix, which can be set at initialisation time:
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myconnection=Connection (groupl, group2, 'ge',structure="'dense')

The sparse matrix structure is fixed during a run, new synapses cannot be added or deleted, but there is a dynamic sparse
matrix structure. It is less computationally efficient, but allows runtime adding and deleting of synaptic connections.
Use the structure="dynamic' keyword. For more details see the reference documentation for Connection.

4.3.4 Modulation

The synaptic weights can be modulated by a state variable of the presynaptic neurons with the keyword modulation:

myconnection=Connection (groupl, group2, 'ge',modulation="u")

When a spike is produced by a presynaptic neuron (groupl), the variable ge of each postsynaptic neuron (group?2)
is incremented by the synaptic weight multiplied by the value of the variable u of the presynaptic neuron. This is
useful to implement short-term plasticity.

4.3.5 Direct connection

In some cases, it is useful to connect a group directly to another one, in a one-to-one fashion. The most efficient way
to implement it is with the class TdentityConnection:

myconnection=IdentityConnection (groupl, group2, 'ge',weight=1%nS)

With this structure, the synaptic weights are homogeneous (it is not possible to define them independently). When
neuron i from groupl spikes, the variable ge of neuron i from group? is increased by 1 nS. A typical application is
when defining inputs to a network.

4.3.6 Simple connections

If your connection just connects one group to another in a simple way, you can initialise the weights and delays at
the time you initialise the Connection object by using the weight, sparseness and delay keywords. For
example:

myconnection = Connection (groupl, group2, 'ge', weight=1+nS, sparseness=0.1,
delay=(0*ms, 5xms), max_delay=5*ms)

This would be equivalent to:

myconnection = Connection(groupl, group2, 'ge', delay=True, max_delay=5*ms)
myconnection.connect_random(groupl, group2, weight=1xnS, delay=(0*ms, 5xms))

If the sparseness value is omitted or set to value 1, full connectivity is assumed, otherwise random connectivity.

NOTE: in this case the de1ay keyword used without the weight keyword has no effect.

4.4 Spike-timing-dependent plasticity

Note: The classes below are only working with the Connect ion class. Consider using the newer Synapses class
as a replacement, it allows you to flexibily express plasticity rules in a very similar way to the classes below. A single
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Synapses object can therefore completely replace the combination of Connection + STDP, for example. See
Synapses for more details.

Synaptic weights can be modified by spiking activity. Weight modifications at a given synapse depend on the relative
timing between presynaptic and postsynaptic spikes. Down to the biophysical level, there is a number of synaptic
variables which are continuously evolving according to some differential equations, and those variables can be mod-
ified by presynaptic and postsynaptic spikes. In spike-timing-dependent plasticity (STDP) rules, the synaptic weight
changes at the times of presynaptic and postsynaptic spikes only, as a function of the other synaptic variables. In Brian,
an STDP rule can be specified by defining an STDP object, as in the following example:

egs_stdp="""

dA_pre/dt=-A_pre/tau_pre : 1

dA_post/dt=-A_post/tau_post : 1

stdp=STDP (myconnection, egs=eqs_stdp,pre="'A_pret+=dA_pre;wt+=A_post',
post='A_post+=dA_post;w+=A_pre',wmax=gmax)

The STDP object acts on the Connect ion object myconnect ion. Equations of the synaptic variables are given in
a string (argument eqgs) as for defining neuron models. When a presynaptic (postsynaptic) spike is received, the code
pre (post) is executed, where the special identifier w stands for the synaptic weight (from the specified connection
matrix). Optionally, an upper limit can be specified for the synaptic weights (wmax).

The example above defines an exponential STDP rule with hard bounds and all-to-all pair interactions.

4.4.1 Current limitations

 The differential equations must be linear.

* Presynaptic and postsynaptic variables must not interact, that is, a variable cannot be modified by both presy-
naptic and postsynaptic spikes. However, synaptic weight modifications can depend on all variables.

e STDP currently works only with homogeneous delays, not heterogeneous ones.

Exponential STDP

In many applications, the STDP function is piecewise exponential. In that case, one can use the Exponential STDP
class:

stdp=Exponential STDP (connection, taup, taum, Ap, Am, wmax=gmax, interactions='all',update=
—'additive')

Here the synaptic weight modification function is:

f(s) = Ap*exp(-s/taup) if s >0
Amxexp (s/taum) if s <0

where s is the time of the postsynaptic spike minus the time of the presynaptic spike. The modification is generally
relative to the maximum weight wmax (see below). The interactions keyword determines how pairs of pre/post
synaptic spikes interact: all if contributions from all pairs are added, nearest for only nearest neighbour inter-
actions, nearest_pre if only the nearest presynaptic spike and all postsynaptic spikes are taken into account and
nearest_post for the symmetrical situation. The weight update can be additive, i.e., w=w+wmax*{(s), or
multiplicative: w=w+w*f(s) for depression (usually s<0) and w=w-+(wmax-w)*f(s) for potentiation (usually
$>0). It can also be mixed: multiplicative for depression, additive for potentiation.
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Delays

By default, transmission delays are assumed to be axonal, i.e., synapses are located on the soma: if the delay of the
connection C is d, then presynaptic spikes act after a delay d while postsynaptic spikes act immediately. This behaviour
can be overriden with the keywords delay_pre and delay_post, in both classes STDP and Exponential
STDP.

4.5 Short-term plasticity

Brian implements the short-term plasticity model described in: Markram et al (1998). Differential signaling via the
same axon of neocortical pyramidal neurons, PNAS 95(9):5323-8. Synaptic dynamics is described by two variables x
and u, which follows the following differential equations:

dx/dt=(1-x)/taud (depression)
du/dt=(U-u) /tauf (facilitation)

where taud, tauf are time constants and U is a parameter in 0..1. Each a presynaptic spike triggers modifications of the
variables:

x->x* (1-u)
u->u+Ux (1-u)

Note that the update order is important. Synaptic weights are modulated by the product u*x (in 0..1), which is taken
before updating the variables. This model describes both depression and facilitation.

To introduce short-term plasticity into an existing connection C, use the class STP:

’mystp:STP(C,taudleO*ms,tauf:5*ms,U:.6)

4.6 Synapses

Starting from Brian 1.4, there is a new class, Synapses, in which everything synaptic can be defined. The
Synapses is similar to the Connection class, but it is more general and flexible. In particular, synaptic plas-
ticity can be defined in the same object.

4.6.1 Defining synaptic models

The basic syntax is as follows:

S=Synapses (P,Q,model="w:1",pre="v+=w')

This defines a set of synapses between NeuronGroup P and NeuronGroup Q. If the target group is not specified,
it is identical to the source group by default. The model keyword is similar as in NeuronGroup: it defines synaptic
variables and possibly their dynamics (with differential equations, as in NeuronGroup). Here, synaptic variable w
is created: there is one value for each synapse. The pre keyword defines what happens when a presynaptic spike
arrives at a synapse. In this case, variable w is added to variable v. Because v is not defined as a synaptic variable, it
is assumed by default that it is a postsynaptic variable, defined in the target NeuronGroup Q. Note that this does not
does create synapses (see next section), only the synaptic models.

The more general syntax is:
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S=Synapses (P, Q,model=model_string, pre=pre_code, post=post_code)

Model syntax

The model follows exactly the same syntax as for NeuronGroup. There can be parameters (e.g. synaptic variable w
above), but there can also be static equations and differential equations, describing the dynamics of synaptic variables.
In all cases, synaptic variables are created, one value per synapse. Internally, these are stored as arrays. There are a
few specificities:

e A variable with the _post suffix is looked up in the postsynaptic (target) neuron. That is, v_post means
variable v in the postsynaptic neuron.

A variable with the _pre suffix is looked up in the presynaptic (source) neuron.
* A variable not defined as a synaptic variable is considered to be postsynaptic.
A variable not defined as a synaptic variable and not defined in the postsynaptic neuron is considered external.

For the integration of differential equations, one can use the same keywords as for NeuronGroup.

Event-driven updates

By default, differential equations are integrated in a clock-driven fashion, as for a NeuronGroup. This is po-
tentially very time consuming, because all synapses are updated at every timestep. It is possible to ask Brian to
simulate differential equations in an event-driven fashion, for one-dimensional linear equations, using the keyword
(event—-driven). A typical example is pre and postsynaptic traces in STDP:

model="""w:1
dApre/dt=-Apre/taupre : 1 (event-driven)
dApost/dt=-Apost/taupost : 1 (event-driven)'"''

Here, Brian updates the value of Apre for a given synapse only when this synapse receives a spike, whether it is
presynaptic or postsynaptic. More precisely, the variables are updated every time either the pre or post code is
called for the synapse, so that the values are always up to date when these codes are executed.

Automatic event-driven updates are only possible for one-dimensional linear equations. These equations must also be
independent of the other ones, that is, a differential equation that is not event-driven cannot depend on an event-driven
equation (since the values are not continuously updated). In other cases, the user can write event-driven code explicitly
in the update codes (see below).

Pre and post codes

The pre (post) code is executed at each synapse receiving a presynaptic spike. For example:
pre="v+=w’

adds the value of synaptic variable w to postsynaptic variable v. As for the model equations, the _post (_pre)
suffix indicates a postsynaptic (presynaptic) variable, and variables not found in the synaptic variables are considered
postsynaptic by default. Internally, the execution of the code is vectorized (simultaneously executed) for all synapses
receiving presynaptic spikes during the current timestep. Therefore, the code should be understood as acting on arrays
rather than single values. Any sort of code can be executed. For example, the following code defines stochastic
synapses, with a synaptic weight w and transmission probability p:

S=Synapses (input, neurons,model="""w : 1
p : 1""",
pre="v+=wx (rand () <p)")
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The code means that w is added to v with probability p (note that, internally, rand () is transformed to a instruction
that outputs an array of random numbers). The code may also include multiple lines.

As mentioned above, it is possible to write event-driven update code for the synaptic variables. For this, two special
variables are provided: t is the current time when the code is executed, and lastupdate is the last time when the
synapse was updated (either through pre or post code). An example is short-term plasticity (in fact this could be
done automatically with the use of the (event—-driven) keyword mentioned above):

S=Synapses (input, neuron,

model="""x : 1

u 1

w : 1'"'",
pre="'"'"u=U+ (u-U) xexp (- (t-lastupdate) /tauf)

x=1+ (x—-1) rexp (- (t—lastupdate) /taud)
14+=wrurx

x*=(1-u)

u+=U* (1-u)''")

Lumped variables

In many cases, the postsynaptic neuron has a variable that represents a sum of variables over all its synapses. This is
called a “lumped variable”. An example is nonlinear synapses (e.g. NMDA):

neurons = NeuronGroup (l, model="""dv/dt=(gtot-v)/ (10+ms) : 1
gtot : 1""™M)
S=Synapses (input, neurons,
model="""dg/dt=-arg+b*x* (1-g) : 1
dx/dt=-c*x : 1
w : 1 # synaptic weight

v
’

pre="'x+t=w"')
neurons.gtot=S.g

Here, each synapse has a conductance g with nonlinear dynamics. The neuron’s total conductance is gtot. The
link between the two is specified by the last statement. What happens during the simulation is that at each time step,
presynaptic conductances are summed for each neuron and the result is copied to the variable gt ot. Another example
is gap junctions:

neurons = NeuronGroup (N, model='"'"'dv/dt=(vO-v+Igap)/tau : 1
Igap : 1''")
S=Synapses (neurons,model=""'w:1 # gap Jjunction conductance
Igap=wx (v_pre-v_post): 1'"'")
neurons.Igap=S.Igap

Here, Igap is the total gap junction current received by the postsynaptic neuron.

4.6.2 Creating synapses

Creating a Synapses instance does not create synapses, it only specifies their dynamics. The following command
creates a synapse between neuron i in the source group and j in the target group:

S[i, j]=True
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It is possible to create several synapses for a given pair of neurons:

S[i,31=3

This is useful for example if one wants to have multiple synapses with different delays. Multiple synapses can be
created in a single statement:

S[:, :]=True
S[:,1]=True
S[Pe,Pi]=True

The first statement creates synapses between all pairs of neurons. The second statement creates synapses between all
neurons in the source group and neuron 1 in the target group. The third statement connects all pairs of neurons in the
subgroups Pe and P1.

One can also create synapses using code:

Sl:,:]1="1==]
Sli,:]="3==((1+1)3%N)"

The code is a boolean statement that should return True when a synapse must be created, where i is the presynaptic
neuron index and j is the postsynaptic neuron index (special variables). Here the first statement creates one-to-one
connections, the second statement creates connections with a ring structure (N is the number of neurons, assumed to
defined elsewhere by the user). This way of creating synapses is generally much faster than using loops, because it is
internally vectorised.

Two high level construction methods are implemented:

S.connect_random (groupl, group2, sparseness=0.1)
S.connect_one_to_one (groupl,group?2)

The first one randomly connects pairs of neurons with probability given by the sparseness argument. The second
one is equivalent to the instruction S [groupl, group2]="'i==73"'. The groupl and group?2 arguments are
subgroups of the source and target groups.

4.6.3 Accessing synaptic variables

Synaptic variables can be accessed in a similar way as NeuronGroup variables. They can indexed with two indexes,
corresponding to the indexes of pre and postsynaptic neurons, and optionally with a third index in the case of multiple
synapses. Here are a few examples, which follows essentially the same syntax as for creating synapses:

S.w[2,5]=1%nS

S.w[l,:]=2%nS

S.w=1x*nS # all synapses assigned

w0=S.w[2,3,1] # second synapse for connection 2->3
S.w[2,3]=(1xnS,2*n8S)
S.wlgroupl,group2]="(l+cos (i—7)) *2%nsS"
S.wl:,:]="rand () *nS"'

4.6.4 Delays

There is a special synaptic variable that is automatically created: delay. It is the propagation delay from the presy-
naptic neuron to the synapse, i.e., the presynaptic delay. An alias is delay_pre. When there is a postsynaptic code
(keyword post), the variable delay_post is created. These can be accessed and modified in the same way as other
synaptic variables.
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If delays can change during the simulation, one should specify the maximum allowed delay with the keyword
max_delay:

synapses = Synapses (P,Q,model="w:1"',pre="v+=w',max_delay=1~+ms)

Otherwise, this maximum delay is automatically calculated the first time the model is run.

4.6.5 Multiple pathways

It is possible to have multiple pathways with different update codes from the same presynaptic neuron group. This
may be interesting in cases when different operations must be applied at different times for the same presynaptic spike.
To do this, simply specify a tuple or list of pre codes:

pre=('get=w',
""'"w=clip (w+Apost, 0,inf)
Apre+=dApre''")

This creates two sets of delay variables, one for each pathway. They can be accessed by first indexing with the pathway
number. The following statement, for example, sets the delay of the synapse between the first neurons of the source
and target groups, in the second pathway:

S.delay[1][0,0]=3*ms

4.6.6 Monitoring synaptic variables

A StateMonitor object can be used to monitor synaptic variables. For example, the following statement creates a
monitor for variable w for the synapses 0 and 1:

’M = StateMonitor (S, 'w',record=[0,11])

Note that these are synapse indexes, not neuron indexes. These can be obtained with the synapse index ()
method:

’s:S.synapse_index((i,j))

where i and j may be integers, arrays or slices. A third index can also be given.

The recorded traces can then be accessed in the usual way, for example:

’plot(M.times,M[O])

4.7 Recording

The activity of the network can be recorded by defining monitors.

4.7.1 Recording spikes

To record the spikes from a given group, define a SpikeMonitor object:

M=SpikeMonitor (group)
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At the end of the simulation, the spike times are stored in the variable spikes as a list of pairs (i,t) where neuron i
fired at time t. For example, the following code extracts the list of spike times for neuron 3:

spikes3=[t for i,t in M.spikes if i==3]

but this operation can be done directly as follows:

spikes3=M[3]

The total number of spikes is M. nspikes.

Custom monitoring

To process the spikes in a specific way, one can pass a function at initialisation of the SpikeMonitor object:

def f (spikes):
print spikes

M=SpikeMonitor (group, function=f)

The function £ is called every time step with the argument spikes being the list of indexes of neurons that just
spiked.

4.7.2 Recording state variables

State variables can be recorded continuously by defining a St at eMonitor object, as follows:

M=StateMonitor (group, 'v')

Here the state variables v of the defined group are monitored. By default, only the statistics are recorded. The list of
time averages for all neurons is M.mean; the standard deviations are stored in M. std and the variances in M. var.
Note that these are averages over time, not over the neurons.

To record the values of the state variables over the whole simulation, use the keyword record:

Ml=StateMonitor (group, 'v', record=True)
M2=StateMonitor (group, 'v', record=[3,5,9])

The first monitor records the value of v for all neurons while the second one records v for neurons 3, 5 and 9 only.
The list of times is stored in M1 . t imes and the lists of values are stored in M1 [ 1], where i the index of the neuron.
Means and variances are no longer recorded if you record traces.

By default, the values of the state variables are recorded every timestep, but one may record every n timesteps by
setting the keyword t imestep:

M=StateMonitor (group, 'v', record=True, timestep=n)

Recording spike triggered state values

You can record the value of a state variable at each spike using StateSpikeMonitor:

M = StateSpikeMonitor (group, 'V'")

The spikes attribute of M consists of a series of tuples (i, t, V) where V is the value at the time of the spike.
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Recording multiple state variables

You can either use multiple St ateMonitor objects or use the MultiStateMonitor object:

M = MultiStateMonitor (group, record=True)
run(...)

plot (M['V'].times, M['V'][0])

figure ()
for name, m in M.iteritems () :
plot (m.times, m[0], label=name)
legend ()
show ()

Recording only recent values

You can use the Recent StateMonitor object, e.g.:

G = NeuronGroup(l, 'dv/dt = xi/(10+ms)*%0.5 : 1")
MR = RecentStateMonitor (G, 'V', duration=5+ms)
run (7+ms)

MR.plot ()

show ()

4.7.3 Counting spikes

To count the total number of spikes produced by a group, use a PopulationSpikeCounter object:

’MzPopulationSpikeCounter(group)

Then the number of spikes after the simulation is M.nspikes. If you need to count the spikes separately for each
neuron, use a SpikeCounter object:

’M:SpikeCounter(group)

Then M[1i] is the number of spikes produced by neuron i.

4.7.4 Counting coincidences

To count the number of coincident spikes between the neurons of a group and given target spike trains, use a
CoincidenceCounter object:

’C:CoincidenceCounter(source:group, data=data, delta=delta)

data is a list of pairs (neuron_index, spike time), and delta is the time window in second. To get the number of
coincidences for each neuron of the group, use

’coincidences = C.coincidences

The gamma precision factor can be obtained with
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gamma = C.gamma

4.7.5 Recording population rates

The population rate can be monitored with a PopulationRateMonitor object:

M=PopulationRateMonitor (group)

After the simulation, M. t imes contains the list of recording times and M. rate is the list of rate values (where the
rate is meant in the spatial sense: average rate over the whole group at some given time). The bin size is set with the
bin keyword (in seconds):

’MzPopulationRateMonitor(group,binzl*ms)

Here the averages are calculated over 1 ms time windows. Alternatively, one can use the smooth_rate () method
to smooth the rates:

’rateSZM.smooth_rate(widthzl*ms,filterz'gaussian')

The rates are convolved with a linear filter, which is either a Gaussian function (gaussian, default) or a box function
(‘flat’).

4.7.6 Van Rossum Metric

The Van Rossum metric can be computed by monitoring a group with a VanRossumMet ric object:

M = VanRossumMetric (G, tau=4+*ms)

imshow (M.distance)

4.8 Inputs

Some specific types of neuron groups are available to provide inputs to a network.

4.8.1 Poisson inputs

Poisson spike trains can be generated as follows:

group=PoissonGroup (100, rates=10+Hz)

Here 100 neurons are defined, which emit spikes independently according to Poisson processes with rates 10 Hz. To
have different rates across the group, initialise with an array of rates:

group=PoissonGroup(100,rates=linspace(0*Hz,10¥*Hz,100))

Inhomogeneous Poisson processes can be defined by passing a function of time that returns the rates:

group=PoissonGroup (100, rates=lambda t: (l+cos(t))*10xHz)

or:
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rO=linspace (0*xHz,10xHz, 100)
group=PoissonGroup (100, rates=lambda t: (l+cos(t))r0)

There is another class for Poisson inputs: PoissonInput, which updates the state variable of a NeuronGroup
dynamically without storing in memory all the Poisson events. It can be used like this:

input = PoissonInput (group, N=N, rate=rate, weight=w, state='I1")

In this case, the variable I represents the sum of N independent Poisson spike inputs with rate rate, where each
individual synaptic event increases the variable I by w. Several PoissonInput objects can be created for a given
NeuronGroup, in which case all the independent inputs are linearly superimposed.

Other features of the PoissonInput class include the following (see the reference):
* record the individual Poisson events (record=True keyword),

* having identical Poisson events for all neurons, instead of having independent copies for every neuron
(freeze=True keyword)

» copying every Poisson input a specified number of times (copies=p keyword). This is equivalent of
specifying weight=p+w, except that those copies can be randomly shifted (jitter keyword), or can
be unreliable to model synapse unreliability (reliability keyword). The latter case corresponds to a
Binomial synaptic weight.

4.8.2 Correlated inputs
Generation of correlated spike trains is partially implemented, using algorithms from the the following paper: Brette,

R. (2009) Generation of correlated spike trains, Neural Computation 21(1): 188-215. Currently, only the method with
Cox processes (or doubly stochastic processes, first method in the paper) is fully implemented.

Doubly stochastic processes

To generate correlated spike trains with identical rates and homogeneous exponential correlations, use the class
HomogeneousCorrelatedSpikeTrains:

’qroup:HomogeneousCorrelatedSpikeTrains(100,rle*Hz,czO.l,taucle*ms)

where r is the rate, c is the total correlation strength and t auc is the correlation time constant. The cross-covariance
functions are (c*r/tauc)*exp(-1sl/tauc). To generate correlated spike trains with arbitrary rates r(i) and cross-covariance
functions c(i,j)*exp(-1sl/tauc), use the class CorrelatedSpikeTrains:

group=CorrelatedSpikeTrains (rates,C, tauc)

where rates is the vector of rates r(i), C is the correlation matrix (which must be symmetrical) and tauc is the
correlation time constant. Note that distortions are introduced with strong correlations and short correlation time
constants. For short time constants, the mixture method is more appropriate (see the paper above). The two classes
HomogeneousCorrelatedSpikeTrains and CorrelatedSpikeTrains define neuron groups, which can
be directly used with Connect ion objects.

Mixture method

The mixture method to generate correlated spike trains is only partially implemented and the interface may change in
future releases. Currently, one can use the function mixture_process () to generate spike trains:
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spiketrains=mixture_process (nu,P,tauc,t)

where nu is the vector of rates of the source spike trains, P is the mixture matrix (entries between 0 and 1), tauc is
the correlation time constant, t is the duration. It returns a list of (neuron_number,spike_time), which can be passed
to SpikeGeneratorGroup. This method is appropriate for short time constants and is explained in the paper
mentioned above.

4.8.3 Input spike trains

A set of spike trains can be explicitly defined as list of pairs (i,t) (meaning neuron i fires at time t), which used to
initialise a SpikeGeneratorGroup:

spiketimes=[(0,1*ms), (1,2*ms)]
input=SpikeGeneratorGroup (5, spiketimes)

The neuron O fires at time 1 ms and neuron 1 fires at time 2 ms (there are 5 neurons, but 3 of them never spike). One
may also pass a generator instead of a list (in that case the pairs should be ordered in time).

Gaussian spike packets

There is a subclass of SpikeGeneratorGroup for generating spikes with a Gaussian distribution:

input=PulsePacket (t=10*ms, n=10, sigma=3~+ms)

Here 10 spikes are produced, with spike times distributed according a Gaussian distribution with mean 10 ms and
standard deviation 3 ms.

4.8.4 Direct input

Inputs may also be defined by accessing directly the state variables of a neuron group. The standard way to do this is
to insert parameters in the equations:

T

egs =
dv/dt = (I-v)/tau : volt

I : volt

group = NeuronGroup (100, model=eqs, reset=0+mV, threshold=15xmV)
group.Il = linspace (0xmV, 20xmV, 100)

Here the value of the parameter I for each neuron is provided at initialisation time (evenly distributed between 0 mV
and 20 mV).

Time varying inputs

It is possible to change the value of I every timestep by using a user-defined operation (see next section). Alternatively,
you can use a TimedArray to specify the values the variable will have at each time interval, for example:

egs = T

dv/dt = (I-v)/tau : volt
I : volt
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group = NeuronGroup (l, model=egs, reset=0xmV, threshold=15+mV)
group.Il = TimedArray (linspace (0»mV, 20xmV, 100), dt=10*ms)

Here I will have value 0+mV for t between 0 and 10+ms ", 0.2*mV between 10+ms and 20~+ms, and so on. A

more intuitive syntax is:

I = TimedArray (linspace (0*mV, 20xmV, 100), dt=10xms)

T

egs =
dv/dt = (I(t) * volt - v)/tau : volt
group = NeuronGroup (l, model=egs, reset=0xmV, threshold=15+mV)

Note however that the more efficient exact linear differential equations solver won’t be used in this case because I (t)
could be any function, so the previous mechanism is often preferable. Additionally, be aware that the call to I (t)
does return a value without units (as units cannot be stored in arrays), therefore you have to explicitly multiply it with
the respective unit.

Linked variables

Another option is to link the variable of one group to the variables of another group using Iinked var (), for
example:

G = NeuronGroup(...)
H NeuronGroup (.. .)
G.V = linked_var (H, 'W")

In this scenario, the variable V in group G will always be updated with the values from variable W in group H. The
groups G and H must be the same size (although subgroups can be used if they are not the same size).

4.9 User-defined operations

In addition to neuron models, the user can provide functions that are to be called every timestep during the simulation,
using the decorator network_operation():

@network_operation
def myoperation():
do_something_every_timestep ()

The operation may be called at regular intervals by defining a clock:

myclock=Clock (dt=1+ms)

@network_operation (myclock)
def myoperation () :
do_something_every_ms ()

4.10 Analysis and plotting

Most plotting should be done with the PyLLab commands, all of which are loaded when you import Brian. See:

http://matplotlib.sourceforge.net/matplotlib.pylab.html
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for help on PyLab. The scientific library Scipy is also automatically imported by the instruction from brian
import =*.

The most useful plotting instruction is the Pylab function plot. A typical use with Brian is:

plot (t/ms, vin/mV)

where t is a vector of times with units ms and vm is a vector of voltage values with units mV. To display the figures on
the screen, the function show () must be called once (this should be the last line of your script), except when using
[Python with the Pylab mode (ipython -pylab).

Brian currently defines just two plotting functions of its own, raster _plot () and hist_plot (). In addition,
the StateMonitor objecthasa plot () method.

4.10.1 Raster plots

Spike trains recorded by a SpikeMonitor can be displayed as raster plots:

S=SpikeMonitor (group)

raster_plot (S)

Usual options of the plot command can also be passed to raster_plot (). One may also pass several spike
monitors as arguments.

4.10.2 State variable plots

State values recorded by a StateMonitor can also be plotted as follows:

M = StateMonitor (group, 'V', record=[0,1,2])

M.plot ()

4.10.3 Realtime plotting

Both raster _plot () and StateMonitor.plot () have real-time versions which update as the simulation
runs, for example:

G = NeuronGroup(...)

spikemon = SpikeMonitor (G)

statemon = StateMonitor (G, 'V', record=range(5))
ion ()

subplot (211)

raster_plot (spikemon, refresh=10+ms, showlast=200*ms)
subplot (212)

statemon.plot (refresh=10+ms, showlast=200xms)

run (1 +«second)

ioff ()

show ()

The ion () and ioff () command activate and deactivate Pylab’s interactive plotting mode. The refresh param-
eter specifies how often (in simulation time) to refresh the plot - smaller values will slow down the simulation. The
showlast option only plots the most recent values.
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With some IDEs, you may need to do something like the following at the beginning of your script to make interactive
mode work:

import matplotlib
matplotlib.use ('WXAgg")

This is because the default graphical backend can sometimes interact badly with the IDE. Other options to try are
GTKAgg, QTAgg, TkAgg.

4.10.4 Statistics

Here are a few functions to analyse first and second order statistical properties of spike trains, defined as ordered lists
of spike times:

Firing rate: firing_rate (spikes) where spikes is a spike train (list of spike times).
Coefficient of variation: CV (spikes).

Cross-correlogram: correlogram(T1l,T2,width=20+ms, bin=1+ms, T=None) returns the cross-
correlogram of spike trains T1 and T2 with lag in [-width,width] and given bin size. T is the total duration
(optional) and should be greater than the duration of T1 and T2. The result the rate of coincidences in each bin,
returned as an array.

Autocorrelogram: autocorrelogram(T0,width=20+ms,bin=1xms, T=None) is the same as
correlogram(T0, TO,width=20+ms, bin=1+ms, T=None).

Cross-correlation function: CCF (T1,T2,width=20+ms,bin=1*ms, T=None) returns the cross-
correlation function of T1 and T2, which is the same as the cross-correlogram divided by the bin size (which
makes the result independent of the bin size).

Autocorrelation function: ACF (T0,width=20*ms,bin=1+ms, T=None), same as CCF (TO, TO,
width=20*ms,bin=1+ms, T=None).

Cross-covariance function: CCVF (T1, T2, width=20*ms, bin=1+ms, T=None) is the cross-correlation
function of T1 and T2 minus for the cross-correlation of independent spike trains with the same rates (product
of rates).

Auto-covariance function: ACVF (T0,width=20+ms,bin=1+ms, T=None) is the same as CCVF (TO,
T0,width=20+ms,bin=1%ms, T=None).

Total correlation coefficient: total_correlation (T1,T2,width=20+ms, T=None) is the integral of
the cross-covariance function divided by the rate of T1, typically (but not always) between O and 1.

Vector strength: vector_strength (spikes, period) returns the vector strength of the given spike train
with respect to the period. If each spike time with phase phi is represented by a vector with angle phi, then
the vector strength is the length of the average vector. It equals 1 for spikes with constant phase and O for
homogeneous phase distributions.

Gamma precision factor: gamma_ factor (source, target, delta) returnsthe gamma precision fac-
tor between source and target trains, with precision delta.

These functions return NaN (not a number) when a spike train is empty.

4.11 Realtime control

A running Brian simulation can be controlled, for example using an IPython shell. This can work either on a single
computer, or over IP from another computer. The process running the simulation calls something like:
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server = RemoteControlServer ()

and the IPython shell calls:

’client = RemoteControlClient ()

The shell can now execute and evaluate in the server process via:

spikes = client.evaluate('M.spikes"')
i, t = zip(*xspikes)
plot(t, i, '.")

client.stop()

Parameters can be changed as the simulation runs. For more details, see the reference documentation for
RemoteControlServer and RemoteControlClient.

4.12 Clocks

Brian is a clock-based simulator: operations are done synchronously at each tick of a clock.

Many Brian objects store a clock object, passed in the initialiser with the optional keyword clock. For example, to
simulate a neuron group with time step dt=1 ms:

myclock=Clock (dt=1xms)
group=NeuronGroup (100, model="dx/dt=1+mV/ms : volt',clock=myclock)

If no clock is specified, the program uses the global default clock. When Brian is initially imported, this is the object
defaultclock, and it has a default time step of 0.1 ms. In a simple script, you can override this by writing (for
example):

defaultclock.dt = 1lxms

You may wish to use multiple clocks in your program. In this case, for each object which requires one, you have
to pass a copy of its C1ock object. The network run function automatically handles objects with different clocks,
updating them all at the appropriate time according to their time steps (value of dt).

Multiple clocks can be useful, for example, for defining a simulation that runs with a very small dt, but with some
computationally expensive operation running at a lower frequency. In the following example, the model is simulated
with dt=0.01 ms and the variable x is recorded every ms:

simulation_clock=Clock (dt=0.01+ms)

record_clock=Clock (dt=1+ms)

group=NeuronGroup (100, model="dx/dt=-x/tau : volt',clock=simulation_clock)
M=StateMonitor (group, 'x',record='True', clock=record_clock)

The current time of a clock is stored in the attribute t (simulation_clock.t) and the timestep is stored in the
attribute dt.

When using multiple clocks, it can be important to specify the order in which they evaluated, which you can using the
order keyword of the C1ock object, e.g.:

clock_first = Clock(dt=1l+ms, order=0)
clock_second = Clock (dt=5+ms, order=1)

Every Sms, these two clocks will coincide, and the order attribute means that clock_first will always be evaluated
before clock_second.
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4.12.1 Other clocks

The default clock uses an underlying integer representation. This behaviour was changed in Brian 1.3 from earlier ver-
sions which used a float representation. To recover the earlier behaviour if it is important, you can use F'1oatClock
or NaiveClock.

You may want to have events that happen at regular times, but still want to use the default clock for all other objects,
in which case you can use the EventClock for a network operation () and it will not create any clock
ambiguities, e.g.:

from brian import =

G = NeuronGroup (N, egs, ...)

@network_operation (clock=EventClock (dt=1xsecond))
def do_something() :

4.13 Simulation control

4.13.1 The update schedule

When a simulation is run, the operations are done in the following order by default:

1. Update every NeuronGroup, this typically performs an integration time step for the differential equations
defining the neuron model.

2. Check the threshold condition and propagate the spikes to the target neurons.

3. Update every Synapses, this may include updating the state of targeted NeuronGroup objects
4. Reset all neurons that spiked.

5. Call all user-defined operations and state monitors.

The user-defined operations and state monitors can be placed at other places in this schedule, by using the key-
word when. The values canbe start,before_groups, after_groups,middle,before_connections,
after_connections, before_resets, after_resets or end (default: end). For example, to call a func-
tion f at the beginning of every timestep:

@network_operation (when='start'")
def f():
do_something ()

or to record the value of a state variable just before the resets:

M=StateMonitor (group, 'x', record=True, when="'before_resets')

4.13.2 Basic simulation control

The simulation is run simply as follows:
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run (1000+ms)

where 1000 ms is the duration of the run. It can be stopped during the simulation with the instruction stop (), and the
network can be reinitialised with the instruction reinit (). The run () function also has some options for reporting
the progress of the simulation as it runs, for example this will print out the elapsed time, percentage of the simulation
this is complete, and an estimate of the remaining time every 10s:

run (100+xsecond, report='text')

When the run () function is called, Brian looks for all relevant objects in the namespace (groups, connections,
monitors, user operations), and runs them. In complex scripts, the user might want to run only selected objects. In
that case, there are two options. The first is to create a Net work object (see next section). The second is to use the
forget () function on objects you want to exclude from being used. These can then be later added back using the
recall () function.

Users of ipython may also want to make use of the c1ear () function which removes all Brian objects and deletes
their data. This is useful because ipython keeps persistent references to these objects which stops memory from
being freed.

4.13.3 The Network class

A Network object holds a collection of objets that can be run, i.e., objects with class NeuronGroup,
Connection, SpikeMonitor, StateMonitor (or subclasses) or any user-defined operation with the decorator
network_operation (). Thoses objects can then be simulated. Example:

(0]
|

= NeuronGroup(...)
C = Connection(...)
net = Network (G,C)
net.run (lxsecond)

You can also pass lists of objects. The simulation can be controlled with the methods stop and reinit.

4.13.4 The MagicNetwork object

When run (), reinit () and stop () are called, they act on the “magic network” (the network consisting of all
relevant objects such as groups, connections, monitors and user operations). This “magic network™ can be explicitly
constructed using the MagicNetwork object:

G = NeuronGroup(...)
C = Connection(...)

net = MagicNetwork ()
net.run (l+xsecond)

4.14 More on equations

The Equations class is a central part of Brian, since models are generally specified with an Equat ions object.
Here we explain advanced aspects of this class.
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4.14.1 External variables

Equations may contain external variables. When an Equations object is initialised, a dictionary is built with the
values of all external variables. These values are taken from the namespace where the Equat i ons object was defined.
It is possible to go one or several levels up in the namespaces by specifying the keyword level (default=0). The
value of these parameters can in general be changed during the simulation and the modifications are taken into account,
except in two situations: when the equations are frozen (see below) or when the integration is exact (linear equations).
In those cases, the values of the parameters are the ones at initialisation time.

Alternatively, the string defining the equations can be evaluated within a given namespace by providing keywords at
initialisation time, e.g.:

egs=Equations ('dx/dt=-x/tau : volt',tau=10+ms)

In that case, the values of all external variables are taken from the specified dictionary (given by the keyword argu-
ments), even if variables with the same name exist in the namespace where the string was defined. The two methods for
passing the values of external variables are mutually exclusive, that is, either all external variables are explicitly spec-
ified with keywords (if not, they are left unspecified even if there are variables with the same names in the namespace
where the string was defined), or all values are taken from the calling namespace.

More can be done with keyword arguments. If the value is a string, then the name of the variable is replaced, e.g.:

egs=Equations ('dx/dt=-x/tau : volt',tau=10+ms,x="'Vm')

changes the variable name x to Vm. This is useful for writing functions which return equations where the variable
name is provided by the user.

Finally, if the value is None then the name of the variable is replaced by a unique name, e.g.:

egs=Equations ('dx/dt=-x/tau : volt',tau=10+ms, x=None)

This is useful to avoid conflicts in the names of hidden variables.

Issues

* There can be problems if a variable with the same name as the variable of a differential equation exists in the
namespace where the Equations object was defined.

4.14.2 Combining equations

Equat ions can be combined using the sum operator. For example:

egs=Equations ('dx/dt=(y-x)/tau : volt")
egs+=Equations ('dy/dt=-y/tau: volt")

Note that some variables may be undefined when defining the first equation. No error is raised when variables are
undefined and absent from the calling namespace. When two Equations objects are added, the consistency is
checked. For example it is not possible to add two Equat ions objects which define the same variable.

4.14.3 Which variable is the membrane potential?

Several objects, such as Threshold or Reset objects can be initialised without specifying which variable is the
membrane potential, in which case it is assumed that it is the first variable. Internally, the variables of an Equations
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object are reorderered so that the first one is most likely to be the membrane potential (using Equations.
get_vm () ). The first variable is, with decreasing priority :

° v
eV
* vim

* Vm

the first defined variable.

4.14.4 Numerical integration

The currently available integration methods are:
» Exact integration when the equations are linear.
* Euler integration (explicit, first order).
* Runge-Kutta integration (explicit, second order).
* Exponential Euler integration (implicit, first order).

The method is selected when a NeuronGroup is initialized. If the equations are linear, exact integration is au-
tomatically selected. Otherwise, Euler integration is selected by default, unless the keyword implicit=True is
passed, which selects the exponential Euler method. A second-order method can be selected using the keyword
order=2 (explicit Runge-Kutta method, midpoint estimation). It is possible to override this behaviour with the
method keyword when initialising a NeuronGroup. Possible values are 1inear, nonlinear, Euler, RK,
exponential_FEuler.

Exact integration

If the differential equations are linear, then the update phase X(t)->X(t+dt) can be calculated exactly with a matrix
product. First, the equations are examined to determine whether they are linear with the method islinear () and
the function is_affine () (this is currently done using dynamic typing). Second, the matrix M and the vector B
such that dX/dt=M(X-B) are calculated with the function get_linear_equations () ! Third, the matrix A such
that X(t+dt)=A*(X(t)-B)+B is calculated at initialisation of a specific state updater object, LinearStateUpdater,
as A=expm(M*dt), where expm is the matrix exponential.

Important remark: since the update matrix and vector are precalculated, the values of all external variables in the
equations are frozen at initialisation. If external variables are modified after initialisation, those modifications are not
taken into account during the simulation.

Inexact exact integration: If the equation cannot be put into the form dX/dt=M(X-B), for example if the equation is
dX/dt=MX+A where M is not invertible, then the equations are not integrated exactly, but using a system equivalent
to Euler integration but with dt 100 times smaller than specified. Updates are of the form X(t+dt)=A*X(t)+C where
the matrix A and vector C are computed by applying Euler integration 100 times to the differential equations.

Euler integration

The Euler is a first order explicit integration method. It is the default one for nonlinear equations. It is simply
implemented as X(t+dt)=X(t)+f(X)*dt.

! Note that this approach raises an issue when dX/dt=B. We currently (temporarily) solve this problem by adding a small diagonal matrix to M
to make it invertible.
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Exponential Euler integration

The exponential Euler method is used for Hodgkin-Huxley type equations, are which stiff. Equations of that type are
conditionally linear, that is, the differential equation for each variable is linear in that variable (i.e., linear if all other
variables are considered constant). The idea is thus to solve the differential equation for each variable over one time
step, assuming that all other variables are constant over that time step. The numerical scheme is still first order, but it
is more stable than the forward Euler method. Each equation can be written as dx/dt=a*x+b, where a and b depend on
the other variables and thus change after each time step. The values of a and b are obtained during the update phase
by calculating a*x+b for x=0 and x=1 (note that these values are different for every neuron, thus we calculate vectors
A and B). Then x(t+dt) is calculated in the same way as for the exact integration method above.

4.14.5 Stochastic differential equations

Noise is introduced in differential equations with the keyword x i, which means normalised gaussian noise (the deriva-
tive of the Brownian term). Currently, this is implemented simply by adding a normal random number to the vari-
able at the end of the integration step (independently for each neuron). The unit of white noise is non-trivial, it is
secondx* (—.5). Thus, a typical stochastic equation reads:

dx/dt=-x/taut+sigmaxrxi/tau*«.5

where sigma is in the same units as x. We note the following two facts:

* The noise term is independent between neurons. Thus, one cannot use this method to analyse the response
to frozen noise (where all neurons receive the same input noise). One would need to use an external variable
representing the input, updated by a user-defined operation.

* The noise term is independent between equations. This can however be solved by the following trick:

dx/dt=-x/taut+sigmax*u/tau*+.5 : volt
dy/dt=-y/tautsigmay*u/taux+.5 : volt
u=xi : second** (—.5)

Important notice

It is not possible to modulate the noise term with a variable (e.g. vxxi/tau*«.5). One reason is that, with multi-
plicative noise, there is an ambiguity between the Ito and the Stratonovich interpretation. Unfortunately, this limitation
also applies to parameters, i.e., sigma*xi/taux+*.5 is not possible if sigma is a parameter, as in the following ex-
ample:

egs=Equations ('''dx/dt=-x/tau + sigmaxxi/taux*.5 : volt
sigma : volt''")
group = NeuronGroup(l, eqgs, threshold='x>vt')

However, the problem can usually be solved by some rewriting:

egs=Equations ('''dy/dt=-y/tau + xi/taux+.5 : 1
x=sigmaxy : volt
sigma : volt''")

group = NeuronGroup(l, egs, threshold = 'x>vt')

4.14.6 Non-autonomous equations

The time variable t can be directly inserted into an equation string. It is replaced at run time by the current value of
the time variable for the relevant neuron group, and also appears as a state variable of the neuron group.
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4.14.7 Freezing

External variables can be frozen by passing the keyword freeze=True (default = False) at initialization of a
NeuronGroup object. Then when the string defining the equations are compiled into Python functions (method
compile_functions () ), the external variables are replaced by their float values (units are discarded). This can
result in a significant speed-up.

TODO: more on the implementation.

4.14.8 Compilation

State updates can be compiled into Python code objects by passing the keyword compile=True at initialization
of a a NeuronGroup. Note that this is different from the method compile_functions (), which compiles the
equation for every variable into a Python function (not the whole state update process).

When the compi 1e keyword is set, the method forward_euler_code () orexponential_euler_code ()
is called. It generates a string containing the Python code for the update of all state variables (one time step), then
compiles it into Python code object. That compiled object is then called at every time step. All external variables are
frozen in the process (regardless of the value of the freeze keyword). This results in a significant speed-up (although
the exponential Euler code is not quite optimised yet). Note that only Python code is generated, thus a C compiler is
not required.

4.14.9 Working with equations

Equat ions object can also be used outside simulations. In the following, we suppose that an Equat ions object is
defined as follows:

egs=Equations ("""

dx/dt=(y-x)/(10*ms) : volt
dy/dt=-z/ (5*ms) : volt
z=2+% (x+y) : volt

lvl)

Applying an equation

The value of z can be calculated using the apply () method:

z=eqs.apply ('z',dict (x=3+mV, y=5+mV) )

The second argument is a dictionary containing the values of all dependent variables (here the result is 8 xmV). The
right-hand side of differential equations can also be calculated in the same way:

x=eqgs.apply('x',dict (x=2xmV, y=3+mV) )
y=eqgs.apply ('y',dict (x=2+mV, y=3+mV) )

Note in the second case that only the values of the dynamic variables should be passed.

Calculating a fixed point

A fixed point of the equations can be calculated as follows:

fp=egs.fixedpoint (x=2+mV, y=3+mV)
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where the optional keywords give the initial point (zero if not provided). Internally, the function optimize.fsolve
from the Scipy package is used to find a zero of the set of differential equations (thus, convergence is not guaranteed;
in that case, the initial values are returned). A dictionary with the values of the dynamic variables at the fixed point is
returned.

Issues

* If the equations were previously frozen, then the units disappear from the equations and unit consistency prob-
lems may arise.

e Equations objects need to be “prepared” before use, as follows:

egs.prepare ()

This is automatically called by the NeuronGroup initialiser.

4.15 File management

A few functions are provided to read files with common formats.

The function read_neuron_dat () reads a Neuron .dat text file and returns a vector of times and a vector of values.
This is the format used by the Neuron simulator when saving the time-varying value of a variable from the GUI. For
example:

t, v = read_neuron_dat ('myfile.dat")

The function read atf () reads an Axon .atf text file and returns a vector of times and a vector of values. This is a
format used to store data recorded with Axon amplifiers. Note that metadata stored in the file are not extracted. Binary
.abf files are currently not supported.

See also Input/output.

4.16 Managing simulation runs and data

Often, you want to run a simulation multiple times with different parameters to generate data for a plot. There are
many different ways to manage this, and Brian has a few tools to make it easier.

4.16.1 Saving data by hand

The simplest strategy is to run your simulation, and then save the data with a unique filename using either pickle,
writing text or binary data to a file with Python, or with Numpy and Scipy.

4.16.2 Structured data formats

Another option is to use a more structured file type, for example, you could use the high performance HDFS5 scientific
data file format with PyTables.

Python also includes an object for storing data in a dictionary like database object with the shelve module.

Brian includes a simple modification of Python’s shelves to make it easy to generate data in parallel on a single
machine or across several machines. The problem with Python shelves and HDFS is that they cannot be accessed by
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several processes on a single machine concurrently (if two processes attempt to write to the file at the same time it
gets corrupted). In addition, if you want to run simulations on two computers at once and merge them you have to
write a separate program to merge the databases produced. With the DataManager class, you generate a directory
containing multiple files, and the data can be distributed amongst these files. To merge the results generated on two
different computers just copy the contents of one directory into the other. The way it works is that to write data to a
DataManager, you first generate a “’session” object (which is essentially a Python shelf object) and then write data
to that. However, when you want to read data, it will look in all the files in the directory and return merged data from
them. Typically, a session file will have the form username . computername so that merging directories across
multiple computers/users is straightforward (no name conflicts). You can also create a “’locking session’ ‘. This object
can be used in multiple processes concurrently without danger of losing data.

4.16.3 Multiple runs in parallel

The Python multiprocessing module can be used for relatively simply distributing simulation runs over multiple CPUs.
Alternatively, you could use Playdoh (produced by our group) to distribute work over multiple CPUs and multiple
machines. For other solutions, see the “Parallel and distributed programming” section of the Scipy Topical Software

page.
Brian provides a simple, single machine technique that works with the DataManager object, run_tasks (). With
this, you provide a function and a sequence of arguments to that function, and the function calls will be evaluated
across multiple CPUs, with the results being stored in the data manager. It also features a GUI which gives feedback
on simulations as they run, and can be used to safely stop the processes without risking losing any data. A simple
example of using this technique:

from brian import =
from brian.tools.datamanager import =
from brian.tools.taskfarm import =

def find_rate(k, report):
eqs . T
dv/dt = (k-V)/(10*ms) : 1
G = NeuronGroup (1000, egs, reset=0, threshold=l)
M SpikeCounter (G)
run (30xsecond, report=report)
return (k, mean (M.count) /30)

if  name_ =='_ _main__
N = 20
dataman = DataManager ('taskfarmexample')
if dataman.itemcount () <N:
M = N-dataman.itemcount ()
run_tasks (dataman, find_rate, rand(M)+19+1)

X, Y = zip(xdataman.values())
plot (X, Y, '.")

xlabel ('k")

ylabel ('Firing rate (Hz)")
show ()

Finally, a more sophisticated solution for “managing and tracking projects, based on numerical simulation or analysis,
with the aim of supporting reproducible research” is Sumatra.

For more detailed information, see the reference chapter.
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CHAPTER B

The library

A number of standard models is defined in the library folder. To use library elements, use the following syntax:

’from brian.library.module_name import x

For example, to import electrophysiology models:

’from brian.library.electrophysiology import =

5.1 Library models

5.1.1 Membrane equations

Library models are defined using the MembraneEquation class. This is a subclass of Equat i ons which is defined
by a capacitance C and a sum of currents. The following instruction:

’eqs:MembraneEquation(200*pF)

defines the equation C*dvm/dt=0*amp, with the membrane capacitance C=200 pF. The name of the membrane poten-
tial variable can be changed as follows:

egs=MembraneEquation (200+pF, vm="V")

The main interest of this class is that one can use it to build models by adding currents to a membrane equation.
The Current class is a subclass of Equat ions which defines a current to be added to a membrane equation. For
example:

egs=MembraneEquation (200+pF) +Current (' I=(V0-vm) /R : amp',current_name='T1")

defines the same equation as:
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egs=Equations ('"'
dvm/dt=I/(200*pF) : volt
I=(VO-vm) /R : amp

"l)

The keyword current_name is optional if there is no ambiguity, i.e., if there is only one variable or only one
variable with amp units. As for standard equations, Current objects can be initialised with a multiline string (several
equations). By default, the convention for the current direction is the one for injected current. For the ionic current
convention, use the TonicCurrent class:

egs=MembraneEquation (200«pF) +IonicCurrent ('I=(vm-V0) /R : amp')

5.1.2 Compartmental modelling

Compartmental neuron models can be created by merging several MembraneEquation objects, with the
compartments module. If soma and dendrite are two compartments defined as MembraneEquation ob-
jects, then a neuron with those 2 compartments can be created as follows:

neuron_egs=Compartments ({'soma':soma, 'dendrite':dendrite})
neuron_eqgs.connect ('soma', '"dendrite',Ra)
neuron=NeuronGroup (1, model=neuron_edgs)

The Compartments object is initialised with a dictionary of MembraneEquation objects. The returned object
neuron_eds is also a MembraneEquation object, where the name of each compartment has been appended to
variable names (with a leading underscore). For example, neuron.vm_soma refers to variable vm of the somatic
compartment. The connect method adds a coupling current between the two named compartments, with the given
resistance Ra.

5.1.3 Integrate-and-Fire models

A few standard Integrate-and-Fire models are implemented in the IF library module:

’from brian.library.IF import =«

All these functions return Equat ions objects (more precisely, MembraneEquation objects).

* Leaky integrate-and-fire model (dvm/dt=(E1-vm) /tau : volt):

’eqs:leaky_IF(tauzlo*ms,El:—70*mV)

 Perfect integrator (dvm/dt=Im/tau : volt):

’eqs:perfect_IF(tau:lO*ms)

* Quadratic integrate-and-fire model (Cxdvm/dt=a* (vm-EL) x (vm-VT) : volt):

’eqs:quadratic_IF(C:200*pF,a:lO*nS/mV,EL:—70*mV,VT:—50*mV)

* Exponential integrate-and-fire ~ model (C+dvm/dt=gL+* (EL-vm) +gL*DeltaT+exp ( (vin—VT) /
DeltaT) :volt):

egs=exp_IF (C=200%pF,gl=10xnS, EL=-70+mV, VI=-55+mV,DeltaT=3+mnV)
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In general, it is possible to define a neuron group with different parameter values for each neuron, by passing strings
at initialisation. For example, the following code defines leaky integrate-and-fire models with heterogeneous resting
potential values:

egs=leaky_IF (tau=10*ms,E1="V0"')+Equations ('VO:volt")
group=NeuronGroup (100, model=eqgs, reset=0+mV, threshold=15+mV)

5.1.4 Two-dimensional IF models

Integrate-and-fire models with two variables can display a very rich set of electrophysiological behaviours. In Brian,
two such models have been implemented: Izhikevich model and Brette-Gerstner adaptive exponential integrate-and-
fire model (also included in the IF module). The equations are obtained in the same way as for one-dimensional
models:

egs=Izhikevich(a=0.02/ms,b=0.2/ms)

eqgs=Brette_Gerstner (C=281+pF,gL=30+nS,EL=-70.6*mV,VT=-50.4+mV,DeltaT=2+mV, tauw=144~+ms,
—a=4+n8S)

egs=aEIF (C=281+pF,gL=30%nS,EL=-70.6+mV,VT=-50.4+mV,DeltaT=2+mV, tauw=144+ms, a=4+nS) #_
—equivalent

and two state variables are defined: vm (membrane potential) and w (adaptation variable). The equivalent equations
for Izhikevich model are:

dvm/dt=(0.04/ms/mV) »vm**2+ (5/ms) »vm+140+mV/ms-w : volt
dw/dt=a~* (b*xvm-w) : volt/second

and for Brette-Gerstner model:

Cxdvm/dt=gL* (EL-vm) +gL«DeltaT+exp ( (vin—VT) /DeltaT)-w :volt
dw/dt=(a* (vm-EL) ~w) /tauw : amp

To simulate these models, one needs to specify a threshold value, and a good choice is VT+4+«DeltaT. The reset is
particular in these models since it is bidimensional: vm->Vr and w->w+b. A specific reset class has been implemented
for this purpose: AdaptiveReset, initialised with Vr and b. Thus, a typical construction of a group of such models
is:

egs=Brette_Gerstner (C=281xpF,gL=30xnS,EL=-70.6+*mV,VT=-50.4xmV,DeltaT=2+mV, tauw=144~+ms,
—a=4+n8S)

group=NeuronGroup (100, model=eqgs, threshold=-43+mV, reset=AdaptiveReset (Vr=-70.6xmvolt,
—b=0.0805+nA))

5.1.5 Synapses

A few simple synaptic models are implemented in the module synapses:

’from brian.library.synapses import =«

All the following functions need to be passed the name of the variable upon which the received spikes will act, and the
name of the variable representing the current or conductance. The simplest one is the exponential synapse:

’eqs:exp_synapse(input:'x',tau:IO*ms,unit:amp,output:'x_current')

It is equivalent to:

5.1. Library models 229



Brian Documentation, Release 1.4.4

egs=Equations ('"'
dx/dt=-x/tau : amp
X_out=x

lvl)

Here, x is the variable which receives the spikes and x_current is the variable to be inserted in the membrane
equation (since it is a one-dimensional synaptic model, the variables are the same). If the output variable name is not
defined, then it will be automatically generated by adding the suffix _out to the input name.

Two other types of synapses are implemented. The alpha synapse (x (t)=alpha=* (t/tau) exp (1-t/tau),
where alpha is a normalising factor) is defined with the same syntax by:

’eqSZalpha_synapse(input:'x',tau:lO*ms,unit:amp)

and the bi-exponential synapse is defined by (x (t)=(tau2/ (tau2-taul)) * (exp (-t/taul) -exp (-t/
tau?2) ), up to a normalising factor):

’eqs:biexp_synapse(input:'x',taulle*ms,tauZzB*ms,unit:amp)

For all types of synapses, the normalising factor is such that the maximum of x(t) is 1. These functions can be used as
in the following example:

egs=MembraneEquation (C=200xpF) +Current ('I=gl* (El-vm) +tge* (Ee-vm) :amp"')
egs+t=alpha_synapse (input='ge_in',tau=10*ms,unit=siemens, output="'ge'")

where alpha conductances have been inserted in the membrane equation.

One can directly insert synaptic currents with the functions exp_current, alpha_current and
biexp_current:

egs=MembraneEquation (C=200+pF) +Current ('I=gl* (El-vm) :amp"') +\
alpha_current (input="ge',tau=10+ms)

(the wunits is amp by default), or synaptic conductances with the functions exp_conductance,
alpha_conductance and biexp_conductance:

egs=MembraneEquation (C=200+pF) +Current (' I=gl* (El-vm) :amp"') +\
alpha_conductance (input="ge',E=0+mV, tau=10+ms)

where E is the reversal potential.

5.1.6 lonic currents

A few standard ionic currents have implemented in the module ionic_currents:

from brian.library.ionic_currents import =«

When the current name is not specified, a unique name is generated automatically. Models can be constructed by
adding currents to a MembraneEquation.

e Leak current (gl * (E1-vm) ):

current=leak_current (gl=10+nS,El1=-70+mV, current_name='1")

* Hodgkin-Huxley K+ current:
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’current:K_current_HH(gmax,EK,current_name:‘IK'):

* Hodgkin-Huxley Na+ current:

’current:Na_current_HH(gmax,ENa,current_name:'INa'):

5.2 Random processes

To import the random processes library:

’from brian.library.random processes import =

For the moment, only the Ornstein-Uhlenbeck process has been included. The function OrnsteinUhlenbeck ()
returns an Equations object. The following example defines a membrane equation with an Ornstein-Uhlenbeck
current I (= coloured noise):

egs=Equations ('dv/dt=-v/tau+I/C : volt')
egs+=0rnsteinUhlenbeck ('I',mu=1+nA, sigma=2+nA, tau=10xms)

where mu is the mean of the current, sigma is the standard deviation and t au is autocorrelation time constant.

5.3 Electrophysiology: models

The electrophysiology library contains a number of models of electrodes, amplifiers and recording protocols to simu-
late intracellular electrophysiological recordings. To import the electrophysiology library:

’from brian.library.electrophysiology import =

There is a series of example scripts in the examples/electrophysiology folder.

5.3.1 Electrodes

Electrodes are defined as resistor/capacitor (RC) circuits, or multiple RC circuits in series. Define a simple RC elec-
trode with resistance Re and capacitance Ce (possibly 0 pF) as follows:

el=electrode (Re, Ce)

The electrode function returns an Equat ions object containing the electrode model, where the electrode poten-
tial is v_el (the recording), the membrane potential is vm, the electrode current entering the membrane is i_inj
and command current is i__cmd. These names can be overriden using the corresponding keywords. For example, a
membrane equation with a .5 nA current injected through an electrode is defined as follows:

egs=Equations ('dv/dt=(-glxv+i_inj)/Cm : volt')+electrode (50+Mohm, 10+pF,vm="v"',1i_cmd=.
—5*nA)

Specify 1_cmd=None if the electrode is only used to record (no current injection). More complex electrodes can be
defined by passing lists of resistances and capacitances, e.g.:

el=electrode ([50+«Mohm, 20+xMohm], [5*pF, 3*xpF])
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5.3.2 Amplifiers

Current-clamp amplifier

A current-clamp amplifier injects a current through an intracellular electrode and records the membrane potential.
Two standard circuits are included to compensate for the electrode voltage: bridge compensation and capacitance
neutralization (see e.g. the Axon guide). The following command:

amp=current_clamp (Re=80+Mohm, Ce=10+pF)

defines a current-clamp amplifier with an electrode modelled as a RC circuit. The function returns an Equations
object, where the recording potential is v_rec, the membrane potential is vm, the electrode current entering the mem-
brane is i_inj and command current is 1_cmd. These names can be overriden using the corresponding keywords.
For implementation reasons, the amplifier always includes an electrode. Optionally, bridge compensation, can be used
with the bridge keyword and capacitance neutralization with the capa_ comp keyword. For example, the following
instruction defines a partially compensated recording:

amp=current_clamp (Re=80+Mohm, Ce=10+pF,bridge=78+Mohm, capa_comp=8*pF)

The capacitance neutralization is a feedback circuit, so that it becomes unstable if the feedback capacitance is
larger than the actual capacitance of the electrode. The bridge compensation is an input-dependent voltage offset
(bridge=i_cmd), and thus is always stable (unless an additional feedback, such as dynamic clamp, is provided).
Note that the bridge and capacitance neutralization parameters can be variable names, e.g.:

amp=current_clamp (Re=80+Mohm, Ce=10+pF,bridge="Rbridge', capa_comp=8*pF)

and then the bridge compensation can be changed dynamically during the simulation.

Voltage-clamp amplifier

The library includes a single-electrode voltage-clamp amplifier, which clamps the potential at a given value and records
the current going through the electrode. The following command:

amp=voltage_clamp (Re=20~+Mohm)

defines a voltage-clamp amplifier with an electrode modelled as a pure resistance. The function returns an
Equations object, where the recording current is i_rec, the membrane potential is vm, the electrode current
entering the membrane is i__in7j and command voltage is v_cmd (note that i_rec =- i_1in7j). These names can
be overriden using the corresponding keywords. For implementation reasons, the amplifier always includes an elec-
trode. Electrode capacitance is not included, meaning that the capacitance neutralization circuit is always set at the
maximum value. The quality of the clamp is limited by the electrode or “’series” resistance, which can be compen-
sated in a similar way as bridge compensation in current-clamp recordings. Series resistance compensation consists
in adding a current-dependent voltage offset to the voltage command. Because of the feedback, that compensation
needs to be slightly delayed (with a low-pass circuit). The following example defines a voltage-clamp amplifier with
half-compensated series resistance and compensation delay 1 ms:

amp=voltage_clamp (Re=20+Mohm, Rs=10+Mohm, tau_u=1+*ms)

The tau_u keyword is optional and defaults to 1 ms.

Acquisition board

An acquisition board samples a recording and sends a command (e.g. injected current) at regular times. It is defined
as a NeuronGroup. Use:
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board=AcquisitionBoard (P=neuron,V='V',I="1"',clock)

where P = neuron group (possibly containing amplifier and electrode), V = potential variable name, I = current variable
name, clock = acquisition clock. The recording variable is then stored in board. record and a command is sent
with the instruction board. command=1I.

Discontinuous current clamp

The discontinuous current clamp (DCC) consists in alternatively injecting current and measuring the potential, in order
to measure the potential when the voltage across the electrode has vanished. The sampling clock is mainly determined
by the electrode time constant (the sampling period should be two orders of magnitude larger than the electrode time
constant). It is defined and used in the same way as an acquisition board (above):

board=DCC (P=neuron,V="'V',I="1", frequency=2+kHz)

where frequency is the sampling frequency. The duty cycle is 1/3 (meaning current is injected during 1/3 of each
sampling step).

Discontinuous voltage clamp

The discontinuous voltage clamp or single-electrode voltage clamp (SEVC) is an implementation of the voltage clamp
using a feedback current with a DCC amplifier. It is defined as the DCC:

board=SEVC (P=neuron,V="'V',I="1", frequency=2+kHz,gain=10+nS)

except that a gain parameter is included. The SEVC injects a negative feedback current I=gain*(Vcommand-V). The
quality of the clamp improves with higher gains, but there is a maximum value above which the system is unstable, be-
cause of the finite temporal resolution. The recorded current is stored in board. record and the command voltage is
sent with the instruction board. command=-20+mV. With this implementation of the SEVC, the membrane is never
perfectly clamped. A better clamp is obtained by adding an integral controller with the keyword gain2=10%nS/ms.
The additional current J(t) is governed by the differential equation dJ/dt=gain2*(Vcommand-V), so that it ensures
perfect clamping in the stationary state. However, this controller does not improve the settling time of the clamp, but
only the final voltage value.

Active Electrode Compensation

The electrophysiology library includes the Active Electrode Compensation (AEC) technique described in Brette et
al (2008), High-resolution intracellular recordings using a real-time computational model of the electrode, Neuron
59(3):379-91.

It can be applied offline, or online, using the models of experimental setup described above. (for dynamic-clamp or
voltage-clamp recordings, the electrode compensation must be done online). An AEC board is initialized in the same
way as an acquisition board:

board=AEC (neuron, 'V','I'",clock)

where clock is the acquisition clock. The estimation phase typically looks like:

board.start_injection ()
run (2+*second)
board.start_injection ()
run (100+ms)
board.estimate ()
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where white noise is injected for 2 seconds (default amplitude .5 nA). You can change the default amplitude and DC
current as follows: board.start_injection (amp=.5*nA,DC=1*nA). After estimation, the kernel is stored
in board.Ke. The following options can be passed to the function estimate: ksize (default 150 sampling
steps), ktail (default 50 sampling steps) and dendritic (default False, use True is the recording is a thin
process, i.e., axon or dendrite). Online compensation is then switched on with board. switch_on () and off with
board.switch_off (). For example, to inject a .5 nA current pulse for 200 ms, use the following instructions:

board.switch_on ()
board.command=.5*nA
run (200+ms)
board.command=0+nA
run (150+ms)
board.switch_off ()

During the simulation, the variable board. record stores the compensated potential.

5.4 Electrophysiology: electrode compensation

The electrophysiology library also contains methods to compensate for the electrode voltage in single-electrode current
clamp recordings. To import the electrophysiology library:

’from brian.library.electrophysiology import =

There is a series of example scripts in the examples/electrophysiology folder.

5.4.1 Active Electrode Compensation (AEC)

The electrophysiology library includes the Active Electrode Compensation (AEC) technique described in Brette et
al (2008), High-resolution intracellular recordings using a real-time computational model of the electrode, Neuron
59(3):379-91.

Given a digital current-clamp recording of the (uncompensated) potential v (vector of values) and injected current 1,
the following instructions calculate the full kernel of the system and the electrode kernel:

K=full_kernel (v, i,ksize)
Ke=electrode_kernel_soma (K, start_tail)

ksize is the size of the full kernel (number of sampling steps; typical size is about 15 ms) and start_tail is the
size of the electrode kernel (start point of the “’tail” of the full kernel; typical size if about 4 ms). The electrode should
be compensated for capacitance (capacitance neutralization) but not resistance (bridge compensation). The best choice
for the input current is a series of independent random values, and the last ksize steps of v should be null (i.e., the
injection should stop before the end). Here it was assumed that the recording was done at the soma; if it is done in
a thin process such as a dendrite or axon, the function electrode_kernel_dendrite should be used instead.
The full kernel can also be obtained from a step current injection:

K=full_kernel_ from_step(v,i,ksize)
Ke=electrode_kernel_soma (K, start_tail)

where 1 is a constant value in this case (note that this is not the best choice for real recordings).

Once the electrode kernel has been found, any recording can be compensated as follows:

vcomp=AEC_compensate (v, i, ke)

where v is the raw voltage recording, i is the injected current and ke is the electrode kernel.
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5.4.2 Lp compensation

The Lp compensation is an other electrode compensation method. It is based on linear model fitting of an electrode
and a neuron in response to an injected current. The fitness function is the Lp error between the full model response
and the raw trace, with p<2 to minimize the bias due to the nonlinear voltage excursions of action potentials.

You can use it like this:

Vcomp, params = Lp_compensate (I, Vraw, .lxms)

where I is the injected current, Vraw is the raw voltage trace, and the last parameter is the inverse of the sampling
frequency. I and Vraw must be 1D Numpy arrays with the same length. The Lp_compensate function returns
the compensated trace Vcomp and the best parameters params, which is a 2D Numpy array where each column
contains the parameters R, tau, Vr, Re, taue. Columns correspond to consecutive slices of the current and the voltage,
the compensation is performed independently on each slice. The duration of the slices can be specified with the
slice_duration keyword argument. Also, the p parameter can also be specified as a keyword argument.

5.5 Electrophysiology: trace analysis

The electrophysiology library also contains methods to analyze intracellular recordings. To import the electrophysiol-
ogy library:

’from brian.library.electrophysiology import =

There is a series of example scripts in the examples/electrophysiology folder. Currently, most methods are related to
the analysis of spike shape.

5.5.1 Miscellaneous

You can low-pass filter a trace as follows:

’v_lp:lowpass(v, tau)

where tau is the time constant (cut-off frequency 1/(2*pi*tau)) and v is the trace (a vector of values). By default, tau
is in units of the timestep. Alternatively, one can specify the timestep:

’v_lp:lowpass(v, tau, dt=0.1lxms)

5.5.2 Spike analysis
Detecting spikes

The following function returns the time indexes of spike peaks in a trace v:

peaks=spike_peaks (v, vc=-10+mV)

where vc is the voltage criterion (we consider that there is a spike when v>vc). The algorithm works as follows. First,
we identify positive crossings of the voltage criterion. Then, after each positive crossing, we look for the first local
maximum (that is, when the voltage first starts decreasing). The last spike is treated differently because the peak may
occur after the end of the recording, in which case the last element is considered as the peak.

It is possible to omit the voltage criterion vc. In this case, it is guessed with the following (rather complex) function:
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vc=find_spike_criterion (v)

The idea of this algorithm is to look at the trace in phase space (v,dv/dt). In this space, spikes tend to circle around
some area which contains no trajectory. It appears that, somewhere in the middle of these circles, there is a voltage vc
for which trajectories are either increasing (dv>0, upstroke of a spike) or decreasing (dv<0, downstroke of a spike) but
never still (dv=0). This means that a positive crossing of this voltage always leads to a spike. We identify this voltage
by looking for the largest interval of voltages (v1,v2) for which there is no sign change of dv/dt (over two successive
timesteps), and we set ve=(v1+v2)/2, the middle of this interval.

As this method is rather complex, it is strongly advised to manually check whether it gives reasonable results.
Voltage reset

The average voltage reset after a spike is calculated as the average first minimum after a spike, with the following
function:

reset=reset_potential (v, peaks=None, full=False)

The time indexes of spike peaks can be given (this may save some computation time). With the full=True option,
the standard deviation is also returned.

Spike threshold

There are 3 ways to measure the spike threshold. The first derivative method uses a threshold criterion on the first
derivative dv/dt to identify spike onsets:

onsets=spike_onsets (v, criterion=None, vc=None)

where criterion is the derivative criterion and vc is the voltage criterion to detect spikes. Note that the criterion
is in units of voltage per time step. First, the algorithm detects spike peaks. Then for each spike, we look for the last
local maximum of dv/dt before the spike, which should be the inflexion point of the spike. Then we identify the last
time before the inflexion point when dv/dt is smaller than the criterion. The function returns the time indexes of the
onsets, not their values (which are v [onsets]). The derivative criterion may be automatically determined, using the
following function:

criterion=find_onset_criterion(v, guess=0.1, vc=None)

where guess is an optional initial guess for the optimization method. The algorithm is simple: find the criterion that
minimizes the variability of onsets.

There are two other methods to measure spike thresholds, but they do not always give very good results (perhaps the
trace should be preliminary filtered):

onsets2=spike_onsets_dv2 (v, vc=None)
onsets3=spike_onsets_dv3 (v, vc=None)

The first one finds the maximum of the second derivative d2v/dt2, the second one finds the maximum of d3v/dt3.
These are global maxima in each interspike interval (it could be that looking for the last local maximum gives better
results).

The following function returns the depolarization slope preceding each spike as an array:

slopes=slope_threshold (v, onsets=None, T=None)
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In this function, spike onset indexes are passed through the onset keyword. The depolarization slope is calculated
by linear regression over the T time bins preceding each spike. The result is in units of the time bin.

In a similar way, the following function returns the average membrane potential preceding each spike as an array:

vm_threshold (v, onsets=None, T=None) :

Spike shape

The following function returns the average spike duration, defined as the time from onset to reset (next voltage mini-
mum):

duration=spike_duration (v)

The onsets can be passed to save computation time, with the onsets keyword. With the option full=True, the
function returns: the mean time from onset to peak, the mean time from onset down to same value (note that this may
not be meaningful for some neurons), mean time from onset to next minimum, and standard deviations for these 3
values.

Note: this function may change.

The following function returns the average spike-triggered voltage:

shape=spike_shape (v, onsets=None, before=100, after=100)

If onsets is unspecified, it is calculated with the spike_onsets function. Note that you can align spikes on other
times, for example peaks. The arguments before and after specify the number of time steps before and after the
triger times.

Note: this should not be specific to spikes, it’s a stimulus-triggered average.
Spike mask

It is often useful to discard spikes from the trace to analyse it. The following function returns an array of booleans
which are True in spikes:

spike_mask (v, spikes=None, T=None)

The starting point of each spike (time bin) is given by the spikes variable (default: onsets), and T is the duration of
each spike in time bins. This function can then be used to select the subthreshold trace or the spikes:

v_subthreshold=v[-spike_mask (v, T=100) ]
v_spikes=v[spike_mask (v, T=100) ]

5.6 Model fitting

The modelfitting library is used for fitting a neuron model to data.

The library provides a single function modelfitting (), which accepts the model and the data as arguments and
returns the model parameters that fit best the data. The model is a spiking neuron model, whereas the data consists
of both an input (time-varying signal, for example an injected current) and a set of spike trains. Only spikes are
considered for the fitness. Several target spike trains can be specified in order to fit independently several data sets. In
this case, the modelfitting () function returns as many parameters sets as there are target spike trains.
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The model is defined as any spiking neuron model in Brian, by giving the equations as mathematical equations, and
the reset and threshold values. The free parameters of the model that shall be fitted by the library are also specified.
The data is specified by the input (a vector containing the time-varying injected current), the timestep of the input, and
the data as a list of spike times.

5.6.1 How it works

Fitting a spiking neuron model to electrophysiological data is performed by maximizing a fitness function measuring
the adequacy of the model to the data. This function is defined as the gamma factor, which is based on the number of
coincidences between the model spikes and the experimentally-recorded spikes, defined as the number of spikes in the
experimental train such that there is at least one spike in the model train within plus or minus delta, where delta
is the size of the temporal window (typically a few milliseconds). For more details on the gamma factor, see Jolivet et
al. 2008, “A benchmark test for a quantitative assessment of simple neuron models”, J. Neurosci. Methods (available
in PDF here).

The optimization procedure is performed by an optimization algorithm. The optimization toolbox used by modelfitting
is implemented in the external Python package Playdoh. It also supports distributed and parallel optimization across
CPUs and machines. Different optimization algorithms are supported, the default one is CMAES. All those algorithms
require the evaluation of the fitness function for a large number of parameter sets. Each iteration of the algorithm
involves the simulation of a large number of neurons (one neuron corresponding to one parameter set) as well as the
computation of the gamma factor for each neuron. The quality of the result depends on the number of neurons used,
which is specified in the modelfitting () function.

Playdoh supports the use of graphical processing units (GPUs) in order to accelerate the speed of convergence of the
algorithm. If multiple cores are detected, the library will use all of them by default. Also, if a CUDA-enabled GPU is
present on the system, and if PyCUDA is installed, the library will automatically use the GPU by default. In addition,
several computers can be networked over IP, see Clusters.

5.6.2 Usage example

To import the library, use

from brian.library.modelfitting import =«

To fit the parameters of a neuron model with respect to some data, use the modelfitting () function

results = modelfitting(model = equations, reset = 0, threshold = 1,
data = spikes,
input = input, dt = .l»ms,
popsize = 1000, maxiter = 10,
R = [1.0e9, 1.0el10], tau = [l*ms, 50+ms])

print_table (results)

Warning: Windows users should read the section Important note for Windows users.

The model is defined by equations (an Equations object), reset (a scalar value or a set of equations as a
string) and threshold (a scalar value or a set of equations as a string).

The target spike trains are defined by data (a list of pairs (neuron index, spike time) or a list of spike
times if there is only one target spike train).

The input is specified with input (a vector containing the time-varying signal) and dt (the time step of the signal).
The input variable should be I in the equations, although the input variable name can be specified with input_var.
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The number of particles per target train used in the optimization algorithm is specified with popsize. The total
number of neurons is popsize multiplied by the number of target spike trains. The number of iterations in the
algorithm is specified with maxiter.

Each free parameter of the model that shall be fitted is defined by two values

param_name = [min, max]

param_name should correspond to the parameter name in the model equations. min and max specify the initial
interval from which the parameter values will be uniformly sampled at the beginning of the optimization algorithm. A
boundary interval can also be specified by giving four values

param_name = [bound_min, min, max, bound_max]

The parameter values will be forced to stay inside the interval [bound_min, bound_max] during the optimization.
The complete list of arguments can be found in the reference section of the modelfitting () function.

The best parameters and the corresponding best fitness values found by the optimization procedure are returned in the
OptimizationResult object result.

5.6.3 Important note for Windows users

The model fitting library uses the Python multiprocessing package to distribute fitting across processors in a single
computer or across multiple computers. However, there is a limitation of the Windows version of multiprocessing
which you can read about here. The end result is that a script like this:

from brian.library.modelfitting import =«

results = modelfitting(...)

will crash, going into an endless loop and creating hundreds of Python processes that have to be shut down by hand.
Instead, you have to do this:

from brian.library.modelfitting import =«

if name  =='_ main__ ':
results = modelfitting(...)

5.6.4 Clusters

The model fitting package can be used with a cluster of computers connected over IP. Every computer must have Brian
and Playdoh installed, and they must run the Playdoh server: see the Playdoh documentation. Then, you can launch
the “modelfitting function with the machines keyword, which is the list of the IP addresses of the machines
to use in parallel for the fitting procedure. You must also specify the unit_type keyword, which is CPU or GPU,
to indicate whether you want to use CPUs or GPUs on these computers. You can’t mix CPUs and GPUs for the same
optimization.

IP

To connect several machines via IP, pass a list of host names or IP addresses as strings to the machines keyword of
the modelfitting () function. To specify a specific port, use a tuple (IP, port) instead of a string. You can
also specify a default port in the Playdoh user preferences, see the Playdoh documentation.
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Authentication

You can specify an authentication string on all the computers running the Playdoh server to secure communications.
See the Playdoh documentation.

Example

The following script launches a fitting procedure in parallel on two machines:

from brian import loadtxt, ms, Equations
from brian.library.modelfitting import =«

if name == '_ _main

L
# List of machines IP addresses

machines = ['bobs-machine.university.com',
'jims-machine.university.com']

equations = Equations('"''
dv/dt=(R*I-V) /tau : 1

I :1
R : 1
tau : second
)
input = loadtxt ('current.txt')

spikes = loadtxt ('spikes.txt')
results = modelfitting( model =

reset = 0,

threshold = 1,

data = spikes,

input = input,

dt = .l#*ms,

popsize = 1000,

maxiter = 3,

delta = 4+ms,

unit_type = 'CPU',

machines = machines,

R = [1.0e9, 9.0e9],

tau = [10xms, 40+ms],

refractory = [Oxms, 10xms])

equations,

print_table (results)

The two remote machines would run the Playdoh server.
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5.7 Brian hears

Brian hears is an auditory modelling library for Python. It is part of the neural network simulator package Brian, but
can also be used on its own. To download Brian hears, simply download Brian: Brian hears is included as part of the
package.

Brian hears is primarily designed for generating and manipulating sounds, and applying large banks of filters. We
import the package by writing:

from brian import =
from brian.hears import =«

Then, for example, to generate a tone or a whitenoise we would write:

soundl = tone(lxkHz, .l*second)
sound2 = whitenoise(.l*second)

These sounds can then be manipulated in various ways, for example:

sound = soundl-+sound?2
sound = sound.ramp ()

If you have the pygame package installed, you can also play these sounds:

sound.play ()

We can filter these sounds through a bank of 3000 gammatone filters covering the human auditory range as follows:

cf erbspace (20xHz, 20xkHz, 3000)
fb = Gammatone (sound, cf)
output = fb.process/()

The output of this would look something like this (zoomed into one region):
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Alternatively, if we’re interested in modelling auditory nerve fibres, we could feed the output of this filterbank directly
into a group of neurons defined with Brian:

# Half-wave rectification and compression [x]”"(1/3)

ihc = FunctionFilterbank (fb, lambda x: 3*clip(x, 0, Inf)#*x(1.0/3.0))
# Leaky integrate-—-and-fire model with noise and refractoriness

egqs = ''"

dv/dt = (I-v)/(l*ms)+0.2xxi*(2/(1l*xms))**x.5 : 1

I :1

anf = FilterbankGroup(ihc, 'I', eqgs, reset=0, threshold=1l, refractory=5+ms)

This model would give output something like this:
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The human cochlea applies the equivalent of 3000 auditory filters, which causes a technical problem for modellers
which this package is designed to address. At a typical sample rate, the output of 3000 filters would saturate the
computer’s RAM in a few seconds. To deal with this, we use online computation, that is we only ever keep in memory
the output of the filters for a relatively short duration (say, the most recent 20ms), do our modelling with these values,
and then discard them. Although this requires that some models be rewritten for online rather than offline computation,
it allows us to easily handle models with very large numbers of channels. 3000 or 6000 for human monaural or
binaural processing is straightforward, and even much larger banks of filters can be used (for example, around 30,000
in Goodman DFM, Brette R (2010). Spike-timing-based computation in sound localization. PLoS Comput. Biol.
6(11): e1000993. doi:10.1371/journal.pcbi.1000993). Techniques for online computation are discussed below in the
section Online computation.

Brian hears consists of classes and functions for defining sounds, filter chains, cochlear models, neuron models and
head-related transfer functions. These classes are designed to be modular and easily extendable. Typically, a model
will consist of a chain starting with a sound which is plugged into a chain of filter banks, which are then plugged into
a neuron model.

The two main classes in Brian hears are Sound and F'i 1terbank, which function very similarly. Each consists of
multiple channels (typically just 1 or 2 in the case of sounds, and many in the case of filterbanks, but in principle any
number of channels is possible for either). The difference is that a filterbank has an input source, which can be either
a sound or another filterbank.

All scripts using Brian hears should start by importing the Brian and Brian hears packages as follows:

from brian import =
from brian.hears import =«
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To download Brian hears, simply download Brian: Brian hears is included as part of the package.
See also:

Reference documentation for Brian hears, which covers everything in this overview in detail, and more. List of
examples of using Brian hears.

5.7.1 Sounds

Sounds can be loaded from a WAV or AIFF file with the 7oadsound () function (and saved with the savesound ()
function or Sound. save () method), or by initialising with a filename:

sound = loadsound('test.wav')
sound = Sound('test.aif'")
sound.save ('test.wav')

Various standard types of sounds can also be constructed, e.g. pure tones, white noise, clicks and silence:

sound = tone (lxkHz, l*second)

sound = whitenoise (1+*second)
sound = click (l+ms)
sound = silence (lxsecond)

You can pass a function of time or an array to initialise a sound:

# Equivalent to Sound.tone
sound = Sound(lambda t:sin(50+Hzx2+pi*t), duration=lxsecond)

# Equivalent to Sound.whitenoise
sound = Sound(randn (int (1xsecondx44.1+kHz)), samplerate=44.1xkHz)

Multiple channel sounds can be passed as a list or tuple of filenames, arrays or Sound objects:

sound = Sound(('left.wav', 'right.wav'))
sound = Sound((randn(44100), randn(44100)), samplerate=44.1xkHz)
sound = Sound( (Sound.tone (l+*kHz, l*second),

Sound.tone (2+xkHz, lxsecond)))

A multi-channel sound is also a numpy array of shape (nsamples, nchannels), and can be initialised as this
(or converted to a standard numpy array):

sound = Sound(randn (44100, 2), samplerate=44.1xkHz)
arr = array (sound)

Sounds can be added and multiplied:

sound = Sound.tone (l+kHz, l*second)+0.l+xSound.whitenoise (l+second)

For more details on combining and operating on sounds, including shifting them in time, repeating them, resampling
them, ramping them, finding and setting intensities, plotting spectrograms, etc., see Sound.

Sounds can be played using the pZay () function or Sound.play () method:

play (sound)
sound.play ()

Sequences of sounds can be played as:
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play(soundl, sound2, sound3)

The number of channels in a sound can be found using the nchannels attribute, and individual channels can be
extracted using the Sound.channel () method, or using the 1left and right attributes in the case of stereo
sounds:

print sound.nchannels
print amax (abs (sound.left-sound.channel (0)))

As an example of using this, the following swaps the channels in a stereo sound:

sound = Sound('test_stereo.wav')
swappedsound = Sound( (sound.right, sound.left))
swappedsound.play ()

The level of the sound can be computed and changed with the sound. level attribute. Levels are returned in dB
which is a special unit in Brian hears. For example, 10+dB+10 will raise an error because 10 does not have units of
dB. The multiplicative gain of a value in dB can be computed with the function gain (level). All dB values are
measured as RMS dB SPL assuming that the values of the sound object are measured in Pascals. Some examples:

sound = whitenoise (100+ms)
print sound.level
sound.level = 60+dB
sound.level += 10xdB
sound *= gain (-10xdB)

5.7.2 Filter chains

The standard way to set up a model based on filterbanks is to start with a sound and then construct a chain of filterbanks
that modify it, for example a common model of cochlear filtering is to apply a bank of gammatone filters, and then
half wave rectify and compress it (for example, with a 1/3 power law). This can be achieved in Brian hears as follows
(for 3000 channels in the human hearing range from 20 Hz to 20 kHz):

cfmin, cfmax, cfN = 20+«Hz, 20xkHz, 3000

cf = erbspace(cfmin, cfmax, cfN)

sound = Sound('test.wav')

gfb = GammatoneFilterbank (sound, cf)

ihc = FunctionFilterbank (gfb, lambda x: clip(x, 0, Inf)xx(1.0/3.0))

The erbspace () function constructs an array of centre frequencies on the ERB scale. The
GammatoneFilterbank (source, cf) class creates a bank of gammatone filters with inputs coming
from source and the centre frequencies in the array cf. The FunctionFilterbank (source, func)
creates a bank of filters that applies the given function func to the inputs in source.

Filterbanks can be added and multiplied, for example for creating a linear and nonlinear path, e.g.:

sum_path_fb = 0.lxlinear_path_fb+0.2+«nonlinear_path_fb

A filterbank must have an input with either a single channel or an equal number of channels. In the former case, the
single channel is duplicated for each of the output channels. However, you might want to apply gammatone filters
to a stereo sound, for example, but in this case it’s not clear how to duplicate the channels and you have to specify
it explicitly. You can do this using the Repeat, Tile, Join and Interleave filterbanks. For example, if the
input is a stereo sound with channels LR then you can get an output with channels LLLRRR or LRLRLR by writing
(respectively):
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fb = Repeat (sound, 3)
fb Tile (sound, 3)

To combine multiple filterbanks into one, you can either join them in series or interleave them, as follows:

fb = Join(sourcel, source?2)
fb Interleave (sourcel, source?2)

For a more general (but more complicated) approach, see RestructureFilterbank.

Two of the most important generic filterbanks (upon which many of the others are based) are LinearFilterbank
and FIRFilterbank. The former is a generic digital filter for FIR and IIR filters. The latter is specifically for FIR
filters. These can be implemented with the former, but the implementation is optimised using FFTs with the latter
(which can often be hundreds of times faster, particularly for long impulse responses). IIR filter banks can be designed
using TTRFilterbank which is based on the syntax of the iirdesign scipy function.

You can change the input source to a Filterbank by modifying its source attribute, e.g. to change the input
sound of a filterbank fb you might do:

fb.source = newsound

Note that the new source should have the same number of channels.

You can implement control paths (using the output of one filter chain path to modify the parameters of another filter
chain path) using ControlFilterbank (see reference documentation for more details). For examples of this in
action, see the following:

e Example: time_varying_filterl (hears).
» Example: time_varying_filter2 (hears).

e Example: dcgc (hears).

5.7.3 Connecting with Brian

To create spiking neuron models based on filter chains, you use the F'i1terbankGroup class. This acts exactly
like a standard Brian NeuronGroup except that you give a source filterbank and choose a state variable in the target
equations for the output of the filterbank. A simple auditory nerve fibre model would take the inner hair cell model
from earlier, and feed it into a noisy leaky integrate-and-fire model as follows:

# Inner hair cell model as before

cfmin, cfmax, cfN = 20+«Hz, 20+kHz, 3000

cf = erbspace(cfmin, cfmax, cfN)

sound = Sound.whitenoise (100+ms)

gfb Gammatone (sound, cf)

ihc = FunctionFilterbank (gfb, lambda x: 3+clip(x, 0, Inf)**(1.0/3.0))

# Leaky integrate-and-fire model with noise and refractoriness
egqs = '''

dv/dt = (I-v)/(lxms)+0.2xxix (2/(1lxms))**.5 : 1

I 1

Tra

G = FilterbankGroup(ihc, 'I', egs, reset=0, threshold=1l, refractory=5*ms)
# Run, and raster plot of the spikes

M = SpikeMonitor (G)

run (sound.duration)

raster_plot (M)

show ()
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And here’s the output (after 6 seconds of computation on a 2GHz laptop):
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5.7.4 Plotting

Often, you want to use log-scaled axes for frequency in plots, but the built-in matplotlib axis labelling for log-scaled
axes doesn’t work well for frequencies. We provided two functions (1og_frequency xaxis_labels () and
log_frequency_yaxis_labels ())to automatically set useful axis labels. For example:

cf = erbspace(100xHz, 10xkHz)

semilogx (cf, response)
axis('tight")
log_frequency_xaxis_labels ()

5.7.5 Online computation

Typically in auditory modelling, we precompute the entire output of each channel of the filterbank (“offline compu-
tation”), and then work with that. This is straightforward, but puts a severe limit on the number of channels we can
use or the length of time we can work with (otherwise the RAM would be quickly exhausted). Brian hears allows us
to use a very large number of channels in filterbanks, but at the cost of only storing the output of the filterbanks for a
relatively short period of time (“online computation”). This requires a slight change in the way we use the output of the
filterbanks, but is actually not too difficult. For example, suppose we wanted to compute the vector of RMS values for
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each channel of the output of the filterbank. Traditionally, or if we just use the syntax output = fb.process|()
in Brian hears, we have an array output of shape (nsamples, nchannels). We could compute the vector of
RMS values as:

rms = sqgrt (mean (output**2, axis=0))

To do the same thing with online computation, we simply store a vector of the running sum of squares, and update it
for each buffered segment as it is computed. At the end of the processing, we divide the sum of squares by the number
of samples and take the square root.

The Filterbank.process () method allows us to pass an optional function £ (output, running) of two
arguments. In this case, process () will first call running = f (output, 0) for the first buffered segment
output. It will then call running = f (output, running) for each subsequent segment. In other words, it
will “accumulate” the output of £, passing the output of each call to the subsequent call. To compute the vector of
RMS values then, we simply do:

def sum_of_squares (input, running):
return running+sum(input**2, axis=0)

rms = sqgrt (fb.process (sum_of_squares) /nsamples)

If the computation you wish to perform is more complicated than can be achieved with the process () method, you
can derive a class from F'i I terbank (see that class’ reference documentation for more details on this).

5.7.6 Buffering interface

The Sound, OnlineSound and Filterbank classes (and all classes derived from them) all implement the same
buffering mechanism. The purpose of this is to allow for efficient processing of multiple channels in buffers. Rather
than precomputing the application of filters to all channels (which for large numbers of channels or long sounds would
not fit in memory), we process small chunks at a time. The entire design of these classes is based on the idea of buffer-
ing, as defined by the base class Buf ferable (see section Options). Each class has two methods, buffer_init ()
to initialise the buffer, and buffer_fetch (start, end) to fetch the portion of the buffer from samples with
indices from start to end (not including end as standard for Python). The buffer_ fetch(start, end)
method should return a 2D array of shape (end-start, nchannels) with the buffered values.

From the user point of view, all you need to do, having set up a chain of Sound and Filterbank objects, is
to call buffer_fetch (start, end) repeatedly. If the output of a Filterbank is being plugged into a
FilterbankGroup object, everything is handled automatically. For cases where the number of channels is small
or the length of the input source is short, you can use the Filterbank.fetch (duration) () method to auto-
matically handle the initialisation and repeated application of buf fer_fetch.

To extend Filterbank, it is often sufficient just to implement the buffer_apply (input) method. See the
documentation for 71 1 terbank for more details.

5.7.7 Library

Brian hears comes with a package of predefined filter classes to be used as basic blocks by the user. All of them are
implemented as filterbanks.

First, a series of standard filters widely used in audio processing are available:
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Class Descripition Example
IIRFilterbarkBank of low, high, bandpass or bandstop filter of type Chebyshef, | Example: IIRfilterbank
Elliptic, etc... (hears)
Butterworth | Bank of low, high, bandpass or bandstop Butterworth filters Example: butterworth
(hears)
LowPass Bank of lowpass filters of order 1 Example: cochleagram
(hears)

Second, the library provides linear auditory filters developed to model the middle ear transfer function and the fre-
quency analysis of the cochlea:

Class Description Example

MiddleEar Linear bandpass filter, based on middle-ear Example: tan_carney_simple_test
frequency response properties (hears/tan_carney_2003)

Gammatone Bank of IIR gammatone filters (based on Slaney Example: gammatone (hears)
implementation)

ApproximateGamBankofIIR gammatone filters (based on Hohmann Example: approximate_gammatone
implementation) (hears)

LogGammachirp| Bank of [IR gammachirp filters with logarithmic Example: log_gammachirp (hears)
sweep (based on Irino implementation)

LinearGammachli Bank of FIR chirp filters with linear sweep and Example: linear_gammachirp
gamma envelope (hears)

LinearGaborch|i Bank of FIR chirp filters with linear sweep and
gaussian envelope

Finally, Brian hears comes with a series of complex nonlinear cochlear models developed to model nonlinear effects
such as filter bandwith level dependency, two-tones suppression, peak position level dependency, etc.

Class Description Example

DRNL Dual resonance nonlinear filter as described in Example: drnl (hears)
Lopez-Paveda and Meddis, JASA 2001

DCGC Compressive gammachirp auditory filter as described in Example: dcgc (hears)
Irino and Patterson, JASA 2001

TanCarney Auditory phenomenological model as described in Tan Example: tan_carney_simple_test
and Carney, JASA 2003 (hears/tan_carney_2003)

ZhangSyndprMedel of an inner hair cell — auditory nerve synapse Example: tan_carney_simple_test
(Zhang et al., JASA 2001) (hears/tan_carney_2003)

5.7.8 Head-related transfer functions

You can work with head-related transfer functions (HRTFs) using the three classes ZRTF (a single pair of left/right
ear HRTFs), ARTFSet (a set of HRTFs, typically for a single individual), and HRTFDatabase (for working with
databases of individuals). At the moment, we have included only one HRTF database, the TRCAM _LISTEN public
HRTF database. However, we will add support for the CIPIC and MIT-KEMAR databases in a subsequent release.
There is also one artificial HRTF database, HeadlessDatabase used for generating HRTFs of artifically introduced
ITDs.

An example of loading the IRCAM database, selecting a subject and plotting the pair of impulse responses for a
particular direction:

hrtfdb = IRCAM LISTEN (r'F:\HRTF\IRCAM')
hrtfset = hrtfdb.load_subject (1002)
hrtf = hrtfset (azim=30, elev=15)

plot (hrtf.left)

plot (hrtf.right)

show ()
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HRTFSet has a set of coordinates, which can be accessed via the coordinates attribute, e.g.:

print hrtfset.coordinates['azim']
print hrtfset.coordinates['elev']

You can also generated filterbanks associated either to an HRTF or an entire HRTFSet. Here is an example of doing
this with the IRCAM database, and applying this filterbank to some white noise and plotting the response as an image:

# Load database

hrtfdb = IRCAM_LISTEN (r'D:\HRTF\IRCAM'")

hrtfset = hrtfdb.load_subject (1002)

# Select only the horizontal plane

hrtfset = hrtfset.subset (lambda elev: elev==0)

# Set up a filterbank

sound = whitenoise (10+ms)

fb = hrtfset.filterbank (sound)

# Extract the filtered response and plot

img = fb.process().T

img_left = img[:img.shape[0]/2, :]

img_right = img[img.shapel0]/2:, :]

subplot (121)

imshow (img_left, origin='lower left', aspect='auto',
extent= (0, sound.duration/ms, 0, 360))

xlabel ('"Time (ms)")

ylabel ("Azimuth")

title('Left ear')

subplot (122)

imshow (img_right, origin='lower left', aspect='auto',
extent=(0, sound.duration/ms, 0, 360))

xlabel ('"Time (ms) ")

ylabel ("Azimuth'")

title('Right ear')

show ()

This generates the following output:

Left ear Right ear

4 &
Time {ms) Time {ms)

For more details, see the reference documentation for HRTF, HRTFSet, HRTFDatabase, TRCAM LISTEN and
HeadlessDatabase.
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Advanced concepts

6.1 How to write efficient Brian code

There are a few keys to writing fast and efficient Brian code. The first is to use Brian itself efficiently. The second
is to write good vectorised code, which is using Python and NumPy efficiently. For more performance tips, see also
Compiled code.

6.1.1 Brian specifics

You can switch off Brian’s entire unit checking module by including the line:

import brian no_units

before importing Brian itself. Good practice is to leave unit checking on most of the time when developing and
debugging a model, but switching it off for long runs once the basic model is stable.

Another way to speed up code is to store references to arrays rather than extracting them from Brian objects each time
you need them. For example, if you know the custom reset object in the code above is only ever applied to a group
custom_group say, then you could do something like this:

def myreset (P, spikes):
custom_group_V_ [spikes] = 0xmV
custom_group_Vt_ [spikes] = 2xmV

custom_group = ...
custom_group_V_ = custom_group.V_
custom_group_Vt_ = custom_group.Vt_

In this case, the speed increase will be quite small, and probably not worth doing because it makes it less readable, but
in more complicated examples where you repeatedly refer to custom_group.V_ it could add up.
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6.1.2 Vectorisation

Python is a fast language, but each line of Python code has an associated overhead attached to it. Sometimes you
can get considerable increases in speed by writing a vectorised version of it. A good guide to this in general is the
Performance Python page. Here we will do a single worked example in Brian.

Suppose you wanted to multiplicatively depress the connection strengths every time step by some amount, you might
do something like this:

C = Connection(Gl, G2, 'V', structure='dense')

@network_operation (when='end')
def depress_C{():
for i in range(len(Gl)):
for j in range(len(G2)):
C[i,3J] = C[i,Jj]~*depression_factor

This will work, but it will be very, very slow.

The first thing to note is that the Python expression range (N) actually constructs a list [0, 1,2, ...,N-1] each
time it is called, which is not really necessary if you are only iterating over the list. Instead, use the xrange iterator
which doesn’t construct the list explicitly:

for i in xrange(len(Gl)):
for j in xrange (len(G2)):
C[i,j] = C[i, j]l+depression_factor

The next thing to note is that when you call C[i,j] you are doing an operation on the Connect i on object, not directly
on the underlying matrix. Instead, do something like this:

C = Connection(Gl, G2, 'V', structure='dense')
C_matrix = asarray (C.W)

@network_operation (when='end')
def depress_C{():
for i in xrange(len(Gl)):
for j in xrange(len(G2)):
C_matrix[i, j] *= depression_factor

What’s going on here? First of all, C . W refers to the ConnectionMat rix object, which is a 2D NumPy array with
some extra stuff - we don’t need the extra stuff so we convert it to a straight NumPy array asarray (C.W) . We also
store a copy of this as the variable C_matrix so we don’t need to do this every time step. The other thing we do is to
use the = operator instead of the » operator.

The most important step of all though is to vectorise the entire operation. You don’t need to loop over i and 7j at all,
you can manipulate the array object with a single NumPy expression:

C = Connection(Gl, G2, 'V', structure='dense')
C_matrix = asarray (C.W)

@network_operation (when='end')
def depress_C():
C_matrix = depression_factor

This final version will probably be hundreds if not thousands of times faster than the original. It’s usually possible to
work out a way using NumPy expressions only to do whatever you want in a vectorised way, but in some very rare
instances it might be necessary to have a loop. In this case, if this loop is slowing your code down, you might want
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to try writing that loop in inline C++ using the SciPy Weave package. See the documentation at that link for more
details, but as an example we could rewrite the code above using inline C++ as follows:

from scipy import weave

C = Connection(Gl, G2, 'V', structure='dense')
C_matrix = asarray (C.W)

@network_operation (when='end')
def depress_C{():

n = len(G1l)
m = len(G2)
code = """

for (int 1=0;i<n;i++)

for (int j=0; j<m; j++)

C_matrix (i, j) *= depression_factor
weave.inline (code,

['C_matrix', 'n', 'm', 'depression_factor'],
type_converters=weave.converters.blitz,
compiler='gcc',
extra_compile_args=['-03"])

The first time you run this it will be slower because it compiles the C++ code and stores a copy, but the second time will
be much faster as it just loads the saved copy. The way it works is that Weave converts the listed Python and NumPy
variables (C_matrix, n, m and depression_factor) into C++ compatible data types. n and m are turned into
int s, " “depression_factor is turned into a double, and C_matrix is turned into a Weave Array
class. The only thing you need to know about this is that elements of a Weave array are referenced with parentheses
rather than brackets, i.e. C_matrix (i, j) rather than C_matrix[i, J]. In this example, I have used the gcc
compiler and added the optimisation flag —~03 for maximum optimisations. Again, in this case it’s much simpler to
justuse the C_matrix »= depression_factor NumPy expression, but in some cases using inline C++ might
be necessary, and as you can see above, it’s very easy to do this with Weave, and the C++ code for a snippet like this
is often almost as simple as the Python code would be.

6.2 Compiled code

Compiled C code can be used in several places in Brian to get speed improvements in cases where performance is the
most important factor.

6.2.1 Weave

Weave is a SciPy module that allows the use of inlined C++ code. Brian by default doesn’t use any C++ optimisations
for maximum compatibility across platforms, but you can enable several optimised versions of Brian objects and
functions by enabling weave compilation. See Preferences for more information.

See also Vectorisation for some information on writing your own inlined C++ code using Weave.

6.2.2 C++ objects

For maximum compatibility, Brian works with pure Python only. However, as well as the optional weave opti-
misations, there are also objects can run with a pure C++ version for a considerable speedup. For this to work,
you need a copy of the gcc compiler installed (either on Linux, Mac or through cygwin on Windows) to build
them. During installation (via easy_install, pip or with python setup.py install), two objects

6.2. Compiled code 253



http://www.scipy.org/Weave

Brian Documentation, Release 1.4.4

are compiled automatically: brian.utils.fastexp.fastexp (providing a fast, approximate exponential function) and
brian.utils.ccircular.ccircular (a circular array data structure). If the compilation fails, a warning message will be
displayed and the pure Python versions used instead.

In addition, it is possible to compile a C++ version of a more recent datastructure underlying the Synapses object, the
SpikeQueue. To compile this object, follow these instructions:

In a command prompt or shell window, go to the directory where Brian is installed. On Windows this will prob-
ably be C:\Python27\1ib\site-packages\brian. Now go to the experimental/cspikequeue
folder. If you’re on Linux (and this may also work for Mac) run the command python setup.py build_ext
——inplace. If you’re on Windows you’ll need to have cygwin with gcc installed, and then you run setup.py
build_ext —--inplace —-c mingw32 instead. You should see some compilation, possibly with some warnings
but no errors.

If all works OK, you should see a UserWarning when importing Brian. You can uninstall (and effectively switch
off) the use of the C++ SpikeQueue by removing the . so file in the experimental/cspikequeue/ directory.
Repeating the steps above (i.e. recompiling the object) will re-enable the C SpikeQueue.

The same steps can also be used for compiling the ccircular or fastexp if they were not already compiled automatically
during installation, just navigate to the respective directory.

6.2.3 Automatically generated C code

There is an experimental module for automatic generation of C code, see Code generation.

6.3 Projects with multiple files or functions

Brian works with the minimal hassle if the whole of your code is in a single Python module (. py file). This is fine
when learning Brian or for quick projects, but for larger, more realistic projects with the source code separated into
multiple files, there are some small issues you need to be aware of. These issues essentially revolve around the use of
the ““magic” functions run (), etc. The way these functions work is to look for objects of the required type that have
been instantiated (created) in the same ‘’execution frame” as the run () function. In a small script, that is normally
just any objects that have been defined in that script. However, if you define objects in a different module, or in a
function, then the magic functions won’t be able to find them.

There are three main approaches then to splitting code over multiple files (or functions).

6.3.1 Use the Network object explicitly

The magic run () function works by creating a Net work object automatically, and then running that network.
Instead of doing this automatically, you can create your own Network object. Rather than writing something like:

groupl = ...
group?2 ce
C = Connection (groupl, group2)

run (1xsecond)

You do this:

groupl = ...
group2 = ...
C = Connection (groupl, group2)
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net = Network (groupl, groupz2, C)
net.run (l+second)

In other words, you explicitly say which objects are in your network. Note that any NeuronGroup, Connection,
Monitor or function decorated with network_ operation () should be included in the Network. See the
documentation for Net work for more details.

This is the preferred solution for almost all cases. You may want to use either of the following two solutions if you
think your code may be used by someone else, or if you want to make it into an extension to Brian.

6.3.2 Use the magic_return () decorator or magic_register () function

The magic return () decorator is used as follows:

@magic_return
def f():

return obj

Any object returned by a function decorated by magic return () will be considered to have been instantiated in
the execution frame that called the function. In other words, the magic functions will find that object even though it
was really instantiated in a different execution frame.

In more complicated scenarios, you may want to use the magic_register () function. For example:

def f():

magic_register (objl, obj2)
return (objl, obj2)

This does the same thing as magic_return () but can be used with multiple objects. Also, you can specify a
level (see documentation on magic register () for more details).

6.3.3 Use derived classes

Rather than writing a function which returns an object, you could instead write a derived class of the object type. So,
suppose you wanted to have an object that emitted N equally spaced spikes, with an interval dt between them, you
could use the SpikeGeneratorGroup class as follows:

@magic_return

def equally_spaced_spike_group (N, dt):
spikes = [(0,1ixdt) for i in range (N)]
return SpikeGeneratorGroup (spikes)

Or alternatively, you could derive a class from SpikeGeneratorGroup as follows:

class EquallySpacedSpikeGroup (SpikeGeneratorGroup) :
def _ init_ (self, N, t):
spikes = [(0,ixdt) for i in range (N)]
SpikeGeneratorGroup.__init__ (self, spikes)

You would use these objects in the following ways:

objl = equally_spaced_spike_group (100, 10xms)
obj2 = EquallySpacedSpikeGroup (100, 10xms)
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For simple examples like the one above, there’s no particular benefit to using derived classes, but using derived classes
allows you to add methods to your derived class for example, which might be useful. For more experienced Python
programmers, or those who are thinking about making their code into an extension for Brian, this is probably the
preferred approach.

Finally, it may be useful to note that there is a protocol for one object to ‘contain’ other objects. That is, suppose you
want to have an object that can be treated as a simple NeuronGroup by the person using it, but actually instantiates
several objects (perhaps internal Connect ion objects). These objects need to be added to the Net work object in
order for them to be run with the simulation, but the user shouldn’t need to have to know about them. To this end, for
any object added to a Net work, if it has an attribute contained_objects, then any objects in that container will
also be added to the network.

6.4 Connection matrices

A Connect ion object has an attribute W which is its connection matrix.

Brian’s system for connection matrices can be slightly confusing. The way it works is roughly as follows. There
are two types of connection matrix data structures, ConstructionMatrix and ConnectionMatrix. The
construction matrix types are used for building connectivity, and are optimised for insertion and deletion of elements,
but access is slow. The connection matrix types are used when the simulation is running, and are optimised for fast
access, but not for adding/removing or modifying elements. When a Connect ion object is created, it is given a
construction matrix data type, and when the network is run, this matrix is converted to its corresponding connection
matrix type. As well as this construction/connection matrix type distinction, there is also the distinction between
dense/sparse/dynamic matrices, each of which have their own construction and connection versions.

The dense matrix structure is very simple, both the construction and connection types are basically just 2D numpy
arrays.

The sparse and dynamic matrix structures are very different for construction and connection. Both the sparse and
dynamic construction matrices are essentially just the scipy.1lil_matrix sparse matrix type, however we add
some slight improvements to scipy’s matrix data type to make it more efficient for our case.

The sparse and dynamic connection matrix structures are documented in more detail in the reference pages for
SparseConnectionMatrix and DynamicConnectionMatrix.

For customised run-time modifications to sparse and dense connection matrices you have two options. You can modify
the data structures directly using the information in the reference pages linked to in the paragraph above, or you can use
the methods defined in the ConnectionMat rix class, which work for dense, sparse and dynamic matrix structures,
and do not depend on implementation specific details. These methods provide element, row and column access.
The row and column access methods use either DenseConnectionVector or SparseConnectionVector
objects. The dense connection vector is just a 1D numpy array of length the size of the row/column. The sparse
connection vector is slightly more complicated (but not much), see its documentation for details. The idea is that in
most cases, both dense and sparse connection vectors can be operated on without having to know how they work, so
for example if v is a ConnectionVector then 2+v is of the same type. So for a ConnectionMatrix W, this
should work, whatever the structure of W:

’W.set_row(i, 2xW.get_row (1))

Or equivalently:

’W[i, c] = 2+xW[i, :]

The syntax W[i,:], W[:,1] and W[1i, j] is supported for integers i and j for (respectively) row, column and
element access.
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6.5 Parameters

Brian includes a simple tool for keeping track of parameters. If you only need something simple, then a dict or an
empty class could be used. The point of the parameters class is that allows you to define a cascade of computed
parameters that depend on the values of other parameters, so that changing one will automatically update the others.
See the synfire chain example examples/sfc.py for a demonstration of how it can be used.

class brian.Parameters (*¥kwds)
A storage class for keeping track of parameters

Example usage:

p = Parameters(
a =5,
b = 6,
computed_parameters = '''
c=a+b
)

print p.c

p.a =1

print p.c

The first print statement will give 11, the second gives 7.

Details:

Call as:

p = Parameters(...)

Where the . .. consists of a list of keyword / value pairs (like a dict). Keywords must not start with the

underscore _ character. Any keyword that starts with computed__ should be a string of valid Python state-
ments that compute new values based on the given ones. Whenever a non-computed value is changed, the
computed parameters are recomputed, in alphabetical order of their keyword names (so computed_a is com-
puted before computed_b for example). Non-computed values can be accessed and set via p. x, p.x=1 for
example, whereas computed values can only be accessed and not set. New parameters can be added after the
Parameters object is created, including new computed_ parameters. You can ‘derive’ a new parameters
object from a given one as follows:

pl Parameters (x=1)
p2 = Parameters (y=2, x*pl)
print p2.x

Note that changing the value of x in p2 will not change the value of x in p1 (this is a copy operation).

6.6 Precalculated tables

One way to speed up simulations is to use precalculated tables for complicated functions. The Tabulate class
defines a table of values of the given function at regularly sampled points. The TabulateInterp class defines a
table with linear interpolation, which is much more precise. Both work with scalar and vector arguments.

class brian.Tabulate (f, xmin, xmax, n)
An object to tabulate a numerical function.

Sample use:

6.5. Parameters 257



Brian Documentation, Release 1.4.4

g=Tabulate(f,0.,1.,1000)

y=9(.5)
v=g([.1,.3])
v=g(array([.1,.3]))

Arguments of g must lie in [xmin,xmax). An IndexError is raised is arguments are above xmax, but not always
when they are below xmin (it can give weird results).

class brian.TabulateInterp (f, xmin, xmax, n)
An object to tabulate a numerical function with linear interpolation.

Sample use:

g=TabulateInterp(£,0.,1.,1000)

y=g9(.5)
v=g([.1,.3])
v=g(array([.1,.3]))

Arguments of g must lie in [xmin,xmax). An IndexError is raised is arguments are above xmax, but not always
when they are below xmin (it can give weird results).

6.7 Preferences

6.7.1 Functions

Setting and getting global preferences is done with the following functions:

brian.set_global_preferences (**kwds)
Set global preferences for Brian

Usage:

‘“set_global_preferences(...)

where ... is a list of keyword assignments.

brian.get_global_preference (k)
Get the value of the named global preference

6.7.2 Global configuration file

If you have a module named brian_global_config anywhere on your Python path, Brian will attempt to import
it to define global preferences. For example, to automatically enable weave compilation for all your Brian projects,
create a file brian_global_config.py somewhere in the Python path with the following contents:

from brian.globalprefs import =«
set_global_preferences (useweave=True)

6.7.3 Global preferences for Brian

The following global preferences have been defined:

defaultclock = Clock (dt=0.1l*msecond) The default clock to use if none is provided or defined in any
enclosing scope.
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useweave_linear_ diffeq = False Whether to use weave C++ acceleration for the solution of linear dif-
ferential equations. Note that on some platforms, typically older ones, this is faster and on some platforms,
typically new ones, this is actually slower.

useweave = False Defines whether or not functions should use inlined compiled C code where defined. Re-
quires a compatible C++ compiler. The gcc and g++ compilers are probably the easiest option (use Cygwin on
Windows machines). See also the weavecompiler global preference.

weavecompiler = gcc Defines the compiler to use for weave compilation. On Windows machines, installing
Cygwin is the easiest way to get access to the gcc compiler.

gcc_options = ['-ffast-math'] Defines the compiler switches passed to the gcc compiler. For gcc ver-
sions 4.2+ we recommend using -march=native. By default, the -f fast-math optimisations are turned
on - if you need IEEE guaranteed results, turn this switch off.

openmp = False Whether or not to use OpenMP pragmas in generated C code. If supported on your compiler
(gcc 4.2+4) it will use multiple CPUs and can run substantially faster. However, if you are already running
several simulations in parallel this will not improve the speed and may even slow it down. In addition, for
smaller networks or for simpler neuron models the parallelisation overheads can make it take longer.

usecodegen = False Whether or not to use experimental code generation support.
usecodegenweave = False Whether or not to use C with experimental code generation support.

usecodegenstateupdate = True Whether or not to use experimental code generation support on state up-
daters.

usecodegenreset = False Whether or not to use experimental code generation support on resets. Typically
slower due to weave overheads, so usually leave this off.

usecodegenthreshold = True Whether or not to use experimental code generation support on thresholds.
usenewpropagate = False Whether or not to use experimental new C propagation functions.
usecstdp = False Whether or not to use experimental new C STDP.

brianhears_usegpu = False Whether or not to use the GPU (if available) in Brian.hears. Support is experi-
mental at the moment, and requires the PyCUDA package to be installed.

magic_useframes = True Defines whether or not the magic functions should search for objects defined only in
the calling frame or if they should find all objects defined in any frame. This should be set to False if you are
using Brian from an interactive shell like IDLE or IPython where each command has its own frame, otherwise
setit to True.

6.8 Logging

Brian uses the standard Python 10gging package to generate information and warnings. All messages are sent to the
logger named brian or loggers derived from this one, and you can use the standard logging functions to set options,
write the logs to files, etc. Alternatively, Brian has four simple functions to set the level of the displayed log (see
below). There are four different levels for log messages, in decreasing order of severity they are ERROR, WARN,
INFO and DEBUG. By default, Brian displays only the WARN and ERROR level messages. Some useful information
is at the INFO level, so if you are having problems with your program, setting the level to INFO may help.

brian.log_level_error ()
Shows log messages only of level ERROR or higher.

brian.log _level_warn ()
Shows log messages only of level WARNING or higher (including ERROR level).
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brian.log_level_info()
Shows log messages only of level INFO or higher (including WARNING and ERROR levels).

brian.log_level_debug/()
Shows log messages only of level DEBUG or higher (including INFO, WARNING and ERROR levels).
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Extending Brian

TODO: Description of how to extend Brian, add new model types, and maybe at some point how to upload them to a
database, share with others, etc.

For the moment, see the documentation on Projects with multiple files or functions.
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CHAPTER 8

Reference

For an overview of Brian, see the User manual section.

8.1 SciPy, NumPy and PyLab

See the following web sites:
* http://www.scipy.org/Getting_Started
* http://www.scipy.org/Documentation

* http://matplotlib.sourceforge.net/matplotlib.pylab.html

8.2 Units system

brian.have_ same_dimensions (objl, 0bj2)
Tests if two scalar values have the same dimensions, returns a bool.

Note that the syntax may change in later releases of Brian, with tighter integration of scalar and array valued
quantities.

brian.is_dimensionless (0bj)
Tests if a scalar value is dimensionless or not, returns a bool.

Note that the syntax may change in later releases of Brian, with tighter integration of scalar and array valued
quantities.

exception brian.DimensionMismatchError (description, *dims)
Exception class for attempted operations with inconsistent dimensions

For example, 3xmvolt + 2xamp raises this exception. The purpose of this class is to help catch errors based
on incorrect units. The exception will print a representation of the dimensions of the two inconsistent objects
that were operated on. If you want to check for inconsistent units in your code, do something like:
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try:
your code here
except DimensionMismatchError, inst:

cleanup code here, e.g.
print "Found dimension mismatch, details:", inst

brian.check_units (**aqu)
Don’t bother checking units decorator

Typically, you shouldn’t need to use any details about the following two classes, and their implementations are subject
to change in future releases of Brian.

class brian.Quantity (value)
A number with an associated physical dimension.

In most cases, it is not necessary to create a Quant ity object by hand, instead use the constant unit names
second, kilogram, etc. The details of how Quant ity objects work is subject to change in future releases
of Brian, as we plan to reimplement it in a more efficient manner, more tightly integrated with numpy. The
following can be safely used:

* Quantity, this name will not change, and the usage i sinstance (x, Quantity) should be safe.

* The standard unit objects, second, kilogram, etc. documented in the main documentation will not be
subject to change (as they are based on SI standardisation).

¢ Scalar arithmetic will work with future implementations.
class brian.Unit (value)
A physical unit

Normally, you do not need to worry about the implementation of units. They are derived from the Quantity
object with some additional information (name and string representation). You can define new units which will
be used when generating string representations of quantities simply by doing an arithmetical operation with only
units, for example:

Nm = newton *» metre

Note that operations with units are slower than operations with Quant ity objects, so for efficiency if you do
not need the extra information that a Un i t object carries around, write 1 second in preference to second.

8.3 Clocks

Many Brian objects store a clock object (always passed in the initialiser with the keyword clock=...). If no
clock is specified, the program uses the global default clock. When Brian is initially imported, this is the object
defaultclock, and it has a default time step of 0.1ms. In a simple script, you can override this by writing (for
example):

defaultclock.dt = 1l+*ms

However, there are other ways to access or redefine the default clock (see functions below).

You may wish to use multiple clocks in your program. In this case, for each object which requires one, you have
to pass a copy of its C1ock object. The network run function automatically handles objects with different clocks,
updating them all at the appropriate time according to their time steps (value of dt).
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Multiple clocks can be useful, for example, for defining a simulation that runs with a very small dt, but with some
computationally expensive operation running at a lower frequency.

8.3.1 The Clock class

class brian.Clock (dt=0.1 * msecond, t=0.0 * second, order=0, makedefaultclock=False)
An object that holds the simulation time and the time step.

Initialisation arguments:
dt The time step of the simulation.
t The current time of the clock.

order If two clocks have the same time, the order of the clock is used to resolve which clock is processed
first, lower orders first.

makedefaultclock Setto True to make this clock the default clock.

The times returned by this clock are always off the form nxdt +of fset forinteger n and float dt and of fset.
For example, for a clock with dt=10+ms, setting t=25xms will set n=2 and of fset=5xms. For a clock that
uses true float values for t rather than underlying integers, use F'1oatClock (although see the caveats there).

In order to make sure that certain operations happen in the correct sequence, you can use the order attribute,
clocks with a lower order will be processed first if the time is the same. The condition for two clocks to be
considered as having the same time is abs (t1-t2) <epsilonxabs (t1l), a standard test for equality of
floating point values. For ordinary clocks based on integer times, the value of epsilonis 1e-14, and for float
based clocks itis 1e-8.

The behaviour of clocks was changed in version 1.3 of Brian, if this is causing problems you might try using
FloatClock or if that doesn’t solve the problem, NaiveClock.

Methods

reinit ( [t:O*second] )
Reinitialises the clock time to zero (or to your specified time).

Attributes

t
dt
Current time and time step with units.

Advanced
Attributes

end
The time at which the current simulation will end, set by the Network . run () method.

Methods

tick ()
Advances the clock by one time step.

set_t (7)
set_dt (dt)
set_end (end)