

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	breadpool 0.0.5 documentation

Welcome to breadpool’s documentation!

Contents:

	breadpool package
	Subpackages

	Submodules

	breadpool.pool module

	Module contents

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2015, Chamila de Alwis.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	breadpool 0.0.5 documentation

breadpool package

Subpackages

Submodules

breadpool.pool module

BreadPool intends to simply provide implementations for a thread pool and a scheduled executor, with
easy to use interfaces and thread safety. Yes, it is a simple code to write your own implementations
for these, however it can be a lot easier if they come in a pip install.

	
class breadpool.pool.AbstractRunnable[source]

	Bases: object

The tasks that should be executed using the ThreadPool or the ScheduledJobExecutor should be of a sub class of
AbstractRunnable. Extend AbstractRunnable and write the task implementation inside the execute() method.

Take a look at the EasyTask implementation of AbstractRunnable for an example.

	
execute()[source]

	

	
class breadpool.pool.EasyTask(function, *args, **kwargs)[source]

	Bases: breadpool.pool.AbstractRunnable

This is an implementation of the AbstractRunnable class which accepts a function to be executed.

EasyTask allows to easily submit functions as runnable tasks to the ThreadPool or the ScheduledJobExecutor.

	
execute()[source]

	Executes the given function passing the given arguments and keyword arguments to the function
:return:

	
class breadpool.pool.ScheduledJobExecutor(task, thread_pool, delay, name)[source]

	Bases: threading.Thread

A Scheduled executor which periodically executes a given task. This should be given a thread pool to work on.
When a task is submitted to the scheduled task, it will repeatedly, periodically execute that task using the
provided thread pool.

	
run()[source]

	

	
terminate()[source]

	Sets the terminate event on the scheduled executor
:return:

	
class breadpool.pool.ThreadPool(size, name, daemon=False, polling_timeout=60)[source]

	Bases: object

The ThreadPool class offers a simple Thread pool implementation for Python. It uses Python’s Queues to coordinate
tasks among a set of worker threads. The specified number of threads are created when the thread pool is created,
and is maintained so that they do not increase more than that number.

	
enqueue(task)[source]

	Adds the specified task to the task queue for a worker thread to start working on it. If any free worker
threads are waiting on the task queue, it will immediately pick up this task.

	Parameters:	task – The task to be added to the task queue.

	Returns:	

	
get_pool_size()[source]

	Returns the size of the thread pool.

	Returns:	The size of the thread pool

	Return type:	int

	
terminate()[source]

	Waits for the task queue to finish and sends the terminate event for all the worker threads.
:return:

Module contents

 Copyright 2015, Chamila de Alwis.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	breadpool 0.0.5 documentation

 Python Module Index

 b

 			

 		
 b	

 	[image: -]
 	
 breadpool	

 	
 	
 breadpool.pool	

 Copyright 2015, Chamila de Alwis.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	breadpool 0.0.5 documentation

Index

 A
 | B
 | E
 | G
 | R
 | S
 | T

A

 	

 	AbstractRunnable (class in breadpool.pool)

B

 	

 	breadpool (module)

 	

 	breadpool.pool (module)

E

 	

 	EasyTask (class in breadpool.pool)

 	enqueue() (breadpool.pool.ThreadPool method)

 	

 	execute() (breadpool.pool.AbstractRunnable method)

 	

 	(breadpool.pool.EasyTask method)

G

 	

 	get_pool_size() (breadpool.pool.ThreadPool method)

R

 	

 	run() (breadpool.pool.ScheduledJobExecutor method)

S

 	

 	ScheduledJobExecutor (class in breadpool.pool)

T

 	

 	terminate() (breadpool.pool.ScheduledJobExecutor method)

 	

 	(breadpool.pool.ThreadPool method)

 	

 	ThreadPool (class in breadpool.pool)

 Copyright 2015, Chamila de Alwis.
 Created using Sphinx 1.3.1.

 _static/comment-bright.png

_modules/index.html

 Navigation

 		
 index

 		
 modules |

 		breadpool 0.0.5 documentation »

 All modules for which code is available

		breadpool.pool

 © Copyright 2015, Chamila de Alwis.
 Created using Sphinx 1.3.1.

_static/down.png

_static/up.png

_static/minus.png

_static/comment-close.png

_static/plus.png

_static/file.png

_static/ajax-loader.gif

_static/up-pressed.png

_modules/breadpool/pool.html

 Navigation

 		
 index

 		
 modules |

 		breadpool 0.0.5 documentation »

 		Module code »

 Source code for breadpool.pool

Copyright 2015 Chamila de Alwis
#
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

"""
BreadPool intends to simply provide implementations for a thread pool and a scheduled executor, with
easy to use interfaces and thread safety. Yes, it is a simple code to write your own implementations
for these, however it can be a lot easier if they come in a `pip install`.
"""

from Queue import Queue, Empty
from threading import Thread, RLock as rLock
import traceback
import logging
import time

log = logging.getLogger(__name__)
log.addHandler(logging.NullHandler())

class _WorkerThread(Thread):
 def __init__(self, task_queue, thread_name, polling_timeout):
 super(_WorkerThread, self).__init__(name=thread_name)
 self.__task_queue = task_queue
 """ :type : Queue """
 self.__terminated = False
 """ :type : bool """
 self.__thread_name = thread_name
 """ :type : str """
 self.__polling_timeout = polling_timeout
 """ :type : int """

 def run(self):
 while not self.__terminated:
 # locking implemented by the Queue class
 # blocks until a task is queued
 task = None
 try:
 task = self.__task_queue.get(timeout=self.__polling_timeout)
 except Empty:
 pass

 if task is not None:
 if isinstance(task, AbstractRunnable):
 try:
 task.execute()
 except BaseException as ex:
 log.info("Caught exception while executing task : %s: %s" % (ex.__class__.__name__, ex))
 # traceback.print_exc()

 # notify the queue that the task is done
 self.__task_queue.task_done()
 else:
 # this should not happen!
 log.error("Invalid object enqueued to task list.")

 log.debug("Terminating worker thread %s" % self.__thread_name)

 def terminate(self):
 self.__terminated = True

[docs]class ThreadPool(object):
 """
 The ThreadPool class offers a simple Thread pool implementation for Python. It uses Python's Queues to coordinate
 tasks among a set of worker threads. The specified number of threads are created when the thread pool is created,
 and is maintained so that they do not increase more than that number.
 """

 def __init__(self, size, name, daemon=False, polling_timeout=60):
 """
 Creates a ThreadPool object.

 :param int size: The size of the Thread Pool. This should be a value larger than zero. If a value less than
 1 is passed, a ValueError will be raised.
 :param str name: An identifying name for the ThreadPool. All the worker threads will share this name as a part
 of their thread names.
 :param bool daemon: Set this to True if the worker threads should immediately terminate when the main thread
 terminates.
 :param int polling_timeout: The polling timeout for the worker threads when waiting for tasks. This should be
 a value larger than zero. The Polling timeout determines the timeout value when waiting on a get() request on
 the task queue. This value directly affects the time it takes for the worker threads to terminate when
 terminate() is called on the Thread Pool.
 :return:
 """
 if size < 1:
 raise ValueError("Thread pool size should be more than 0")

 if polling_timeout < 1:
 raise ValueError("Polling timeout should be more than 0")

 self.__task_queue = Queue()
 """ :type : Queue """
 self.__pool_size = size
 """ :type : int """
 self.__pool_name = name
 """ :type : str """
 self.__worker_threads = []
 """ :type : list """
 self.__polling_timeout = polling_timeout
 """ :type : int """
 self.__daemon = daemon
 """ :type : bool """""

 self._create_worker_threads()

[docs] def enqueue(self, task):
 """
 Adds the specified task to the task queue for a worker thread to start working on it. If any free worker
 threads are waiting on the task queue, it will immediately pick up this task.

 :param task: The task to be added to the task queue.
 :type task: :class: `breadpool.pool.AbstractRunnable` instance
 :return:
 """
 if not isinstance(task, AbstractRunnable):
 raise ValueError("The task must be of AbstractRunnable or a subclass of it.")

 # thread safety comes from Queue class
 self.__task_queue.put(task)

[docs] def get_pool_size(self):
 """
 Returns the size of the thread pool.

 :return: The size of the thread pool
 :rtype: int
 """
 with rLock():
 return self.__pool_size

[docs] def terminate(self):
 """
 Waits for the task queue to finish and sends the terminate event for all the worker threads.
 :return:
 """
 with rLock():
 log.debug("Waiting until all the tasks are done")
 self.__task_queue.join()
 log.debug("Sending termination signal for the worker threads")
 for worker_thread in self.__worker_threads:
 worker_thread.terminate()

 def _create_worker_threads(self):
 with rLock():
 while len(self.__worker_threads) < self.__pool_size:
 thread_name = "%s-%s" % (self.__pool_name, (len(self.__worker_threads) + 1))
 worker_thread = _WorkerThread(self.__task_queue, thread_name, self.__polling_timeout)
 worker_thread.setDaemon(self.__daemon)
 worker_thread.start()
 self.__worker_threads.append(worker_thread)

[docs]class ScheduledJobExecutor(Thread):
 """
 A Scheduled executor which periodically executes a given task. This should be given a thread pool to work on.
 When a task is submitted to the scheduled task, it will repeatedly, periodically execute that task using the
 provided thread pool.
 """
 def __init__(self, task, thread_pool, delay, name):
 """
 Creates a ScheduledJobExecutor instance.

 :param task: The task to be repeatedly executed.
 :type task: :class: `breadpool.pool.AbstractRunnable` instance
 :param thread_pool: The pool of worker threads to work on
 :type thread_pool: :class: `breadpool.pool.ThreadPool` instance
 :param int delay: The interval in seconds.
 :param str name: The name for the scheduled executor
 :return:
 """
 super(ScheduledJobExecutor, self).__init__()

 if not isinstance(task, AbstractRunnable):
 raise ValueError("The task must be of AbstractRunnable or a subclass of it.")

 if not isinstance(thread_pool, ThreadPool):
 raise ValueError("The thread_pool must be type of breadpool.pool.ThreadPool")

 if delay < 1:
 raise ValueError("The delay should be more than zero.")

 self.__task = task
 """ :type : AbstractRunnable """
 self.__thread_pool = thread_pool
 """ :type : ThreadPool """
 self.__delay = delay
 """ :type : int """
 self.__terminated = False
 """ :type : bool """
 self.__name = name
 """ :type : str """

 self.setName(name)

[docs] def run(self):
 # start job
 while not self.__terminated:
 start_time = time.time()
 with rLock():
 # sleep for the required duration if lock acquisition took time
 if not self.__terminated:
 lock_end_time = time.time()
 remaining_wait_time = self.__delay - (lock_end_time - start_time)
 if remaining_wait_time > 0.0:
 time.sleep(remaining_wait_time)

 if not self.__terminated:
 self.__thread_pool.enqueue(self.__task)

[docs] def terminate(self):
 """
 Sets the terminate event on the scheduled executor
 :return:
 """
 with rLock():
 self.__terminated = True
 self.__thread_pool.terminate()

[docs]class AbstractRunnable(object):
 """
 The tasks that should be executed using the ThreadPool or the ScheduledJobExecutor should be of a sub class of
 AbstractRunnable. Extend AbstractRunnable and write the task implementation inside the execute() method.

 Take a look at the EasyTask implementation of AbstractRunnable for an example.
 """

 def __init__(self):
 raise NotImplementedError

[docs] def execute(self):
 raise NotImplementedError

[docs]class EasyTask(AbstractRunnable):
 """
 This is an implementation of the AbstractRunnable class which accepts a function to be executed.

 EasyTask allows to easily submit functions as runnable tasks to the ThreadPool or the ScheduledJobExecutor.
 """
[docs] def execute(self):
 """
 Executes the given function passing the given arguments and keyword arguments to the function
 :return:
 """
 log.debug("Executing [function] %s" % self.function.__name__)
 self.function(*self.args, **self.kwargs)

 def __init__(self, function, *args, **kwargs):
 """
 Creates an EasyTask instance wrapping the given function. If the function isn't callable a ValueError will be
 thrown.

 :param function: The function to be executed.
 :param args:
 :param kwargs:
 :return:
 """
 if not hasattr(function, '__call__'):
 raise ValueError("The task is not a valid function")

 self.function = function
 self.args = args
 self.kwargs = kwargs

 © Copyright 2015, Chamila de Alwis.
 Created using Sphinx 1.3.1.

_static/comment.png

_static/down-pressed.png

