

    
      
          
            
  
brainconn: Brain connectivity analysis in Python

brainconn is a Python package for graph theoretic analysis of neuroimaging
data.
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What is graph theory?

Graph theory refers to methods for measures graphs.





          

      

      

    

  

    
      
          
            
  
What is brainconn?

brainconn is a Python package for the calculation of graph theoretic metrics
from neuroimaging data.





          

      

      

    

  

    
      
          
            
  
API Reference


brainconn.centrality: Centrality

Metrics which identify the most important nodes in graphs.







	brainconn.centrality

	Metrics which identify the most important nodes in graphs.



	brainconn.centrality.betweenness_bin(G)

	Node betweenness centrality is the fraction of all shortest paths in the network that contain a given node.



	brainconn.centrality.betweenness_wei(G)

	Node betweenness centrality is the fraction of all shortest paths in the network that contain a given node.



	brainconn.centrality.diversity_coef_sign(W, ci)

	The Shannon entropy-based diversity coefficient measures the diversity of intermodular connections of individual nodes and ranges from 0 to 1.



	brainconn.centrality.edge_betweenness_bin(G)

	Edge betweenness centrality is the fraction of all shortest paths in the network that contain a given edge.



	brainconn.centrality.edge_betweenness_wei(G)

	Edge betweenness centrality is the fraction of all shortest paths in the network that contain a given edge.



	brainconn.centrality.eigenvector_centrality_und(CIJ)

	Eigenector centrality is a self-referential measure of centrality: nodes have high eigenvector centrality if they connect to other nodes that have high eigenvector centrality.



	brainconn.centrality.erange(CIJ)

	Shortcuts are central edges which significantly reduce the characteristic path length in the network.



	brainconn.centrality.flow_coef_bd(CIJ)

	Computes the flow coefficient for each node and averaged over the network, as described in Honey et al.



	brainconn.centrality.gateway_coef_sign(W, ci)

	The gateway coefficient is a variant of participation coefficient.



	brainconn.centrality.kcoreness_centrality_bd(CIJ)

	The k-core is the largest subgraph comprising nodes of degree at least k.



	brainconn.centrality.kcoreness_centrality_bu(CIJ)

	The k-core is the largest subgraph comprising nodes of degree at least k.



	brainconn.centrality.module_degree_zscore(W, ci)

	The within-module degree z-score is a within-module version of degree centrality.



	brainconn.centrality.pagerank_centrality(A, d)

	The PageRank centrality is a variant of eigenvector centrality.



	brainconn.centrality.participation_coef(W, ci)

	Participation coefficient is a measure of diversity of intermodular connections of individual nodes.



	brainconn.centrality.participation_coef_sign(W, ci)

	Participation coefficient is a measure of diversity of intermodular connections of individual nodes.



	brainconn.centrality.subgraph_centrality(CIJ)

	The subgraph centrality of a node is a weighted sum of closed walks of different lengths in the network starting and ending at the node.









brainconn.clustering: Clustering

Metrics which group nodes within graphs into clusters.







	brainconn.clustering

	Metrics which group nodes within graphs into clusters.



	brainconn.clustering.agreement(ci[, buffsz])

	Takes as input a set of vertex partitions CI of dimensions [vertex x partition].



	brainconn.clustering.agreement_weighted(ci, wts)

	D = AGREEMENT_WEIGHTED(CI,WTS) is identical to AGREEMENT, with the exception that each partitions contribution is weighted according to the corresponding scalar value stored in the vector WTS.



	brainconn.clustering.clustering_coef_bd(A)

	The clustering coefficient is the fraction of triangles around a node (equiv.



	brainconn.clustering.clustering_coef_bu(G)

	The clustering coefficient is the fraction of triangles around a node (equiv.



	brainconn.clustering.clustering_coef_wd(W)

	The weighted clustering coefficient is the average “intensity” of triangles around a node.



	brainconn.clustering.clustering_coef_wu(W)

	The weighted clustering coefficient is the average “intensity” of triangles around a node.



	brainconn.clustering.clustering_coef_wu_sign(W)

	Returns the weighted clustering coefficient generalized or separated for positive and negative weights.



	brainconn.clustering.consensus_und(D, tau[, …])

	This algorithm seeks a consensus partition of the agreement matrix D.



	brainconn.clustering.get_components(A[, …])

	Returns the components of an undirected graph specified by the binary and undirected adjacency matrix adj.



	brainconn.clustering.get_components_old(A[, …])

	Returns the components of an undirected graph specified by the binary and undirected adjacency matrix adj.



	brainconn.clustering.number_of_components(A)

	



	brainconn.clustering.transitivity_bd(A)

	Transitivity is the ratio of ‘triangles to triplets’ in the network.



	brainconn.clustering.transitivity_bu(A)

	Transitivity is the ratio of ‘triangles to triplets’ in the network.



	brainconn.clustering.transitivity_wd(W)

	Transitivity is the ratio of ‘triangles to triplets’ in the network.



	brainconn.clustering.transitivity_wu(W)

	Transitivity is the ratio of ‘triangles to triplets’ in the network.









brainconn.core: Core

Metrics which identify the most important nodes in graphs.







	brainconn.core

	Metrics which identify the most important nodes in graphs.



	brainconn.core.assortativity_bin(CIJ[, flag])

	The assortativity coefficient is a correlation coefficient between the degrees of all nodes on two opposite ends of a link.



	brainconn.core.assortativity_wei(CIJ[, flag])

	The assortativity coefficient is a correlation coefficient between the strengths (weighted degrees) of all nodes on two opposite ends of a link.



	brainconn.core.core_periphery_dir(W[, gamma, C0])

	The optimal core/periphery subdivision is a partition of the network into two nonoverlapping groups of nodes, a core group and a periphery group.



	brainconn.core.kcore_bd(CIJ, k[, peel])

	The k-core is the largest subnetwork comprising nodes of degree at least k.



	brainconn.core.kcore_bu(CIJ, k[, peel])

	The k-core is the largest subnetwork comprising nodes of degree at least k.



	brainconn.core.local_assortativity_wu_sign(W)

	Local assortativity measures the extent to which nodes are connected to nodes of similar strength.



	brainconn.core.rich_club_bd(CIJ[, klevel])

	The rich club coefficient, R, at level k is the fraction of edges that connect nodes of degree k or higher out of the maximum number of edges that such nodes might share.



	brainconn.core.rich_club_bu(CIJ[, klevel])

	The rich club coefficient, R, at level k is the fraction of edges that connect nodes of degree k or higher out of the maximum number of edges that such nodes might share.



	brainconn.core.rich_club_wd(CIJ[, klevel])

	
	param CIJ

	weighted directed connection matrix









	brainconn.core.rich_club_wu(CIJ[, klevel])

	
	param CIJ

	weighted undirected connection matrix









	brainconn.core.score_wu(CIJ, s)

	The s-core is the largest subnetwork comprising nodes of strength at least s.









brainconn.degree: Degree

Metrics which identify the most important nodes in graphs.







	brainconn.degree

	Metrics which identify the most important nodes in graphs.



	brainconn.degree.degrees_dir(CIJ)

	Node degree is the number of links connected to the node.



	brainconn.degree.degrees_und(CIJ)

	Node degree is the number of links connected to the node.



	brainconn.degree.jdegree(CIJ)

	This function returns a matrix in which the value of each element (u,v) corresponds to the number of nodes that have u outgoing connections and v incoming connections.



	brainconn.degree.strengths_dir(CIJ)

	Node strength is the sum of weights of links connected to the node.



	brainconn.degree.strengths_und(CIJ)

	Node strength is the sum of weights of links connected to the node.



	brainconn.degree.strengths_und_sign(W)

	Node strength is the sum of weights of links connected to the node.









brainconn.distance: Distance

Metrics which identify the most important nodes in graphs.







	brainconn.distance

	Metrics which identify the most important nodes in graphs.



	brainconn.distance.breadthdist(CIJ)

	The binary reachability matrix describes reachability between all pairs of nodes.



	brainconn.distance.breadth(CIJ, source)

	Implementation of breadth-first search.



	brainconn.distance.charpath(D[, …])

	The characteristic path length is the average shortest path length in the network.



	brainconn.distance.cycprob(Pq)

	Cycles are paths which begin and end at the same node.



	brainconn.distance.distance_bin(G)

	The distance matrix contains lengths of shortest paths between all pairs of nodes.



	brainconn.distance.distance_wei(G)

	The distance matrix contains lengths of shortest paths between all pairs of nodes.



	brainconn.distance.distance_wei_floyd(adjacency)

	Computes the topological length of the shortest possible path connecting every pair of nodes in the network.



	brainconn.distance.retrieve_shortest_path(s, …)

	Returns nodes comprising shortest path between s and t



	brainconn.distance.efficiency_bin(G[, local])

	The global efficiency is the average of inverse shortest path length, and is inversely related to the characteristic path length.



	brainconn.distance.efficiency_wei(Gw[, local])

	The global efficiency is the average of inverse shortest path length, and is inversely related to the characteristic path length.



	brainconn.distance.findpaths(CIJ, qmax, sources)

	Paths are sequences of linked nodes, that never visit a single node more than once.



	brainconn.distance.findwalks(CIJ)

	Walks are sequences of linked nodes, that may visit a single node more than once.



	brainconn.distance.mean_first_passage_time(…)

	Calculates mean first passage time of adjacency



	brainconn.distance.reachdist(CIJ[, …])

	The binary reachability matrix describes reachability between all pairs of nodes.



	brainconn.distance.search_information(adjacency)

	Calculates search information of adjacency.









brainconn.generative: Generative

Metrics which identify the most important nodes in graphs.







	brainconn.generative

	Metrics which identify the most important nodes in graphs.



	brainconn.generative.generative_model(A, D, …)

	Generates synthetic networks using the models described in Betzel et al.



	brainconn.generative.evaluate_generative_model(A, …)

	Generates synthetic networks with parameters provided and evaluates their energy function.









brainconn.modularity: Modularity

Metrics which identify the most important nodes in graphs.







	brainconn.modularity

	Metrics which identify the most important nodes in graphs.



	brainconn.modularity.ci2ls(ci)

	Convert from a community index vector to a 2D python list of modules The list is a pure python list, not requiring numpy.



	brainconn.modularity.ls2ci(ls[, zeroindexed])

	Convert from a 2D python list of modules to a community index vector.



	brainconn.modularity.community_louvain(W[, …])

	The optimal community structure is a subdivision of the network into nonoverlapping groups of nodes which maximizes the number of within-group edges and minimizes the number of between-group edges.



	brainconn.modularity.link_communities(W[, …])

	The optimal community structure is a subdivision of the network into nonoverlapping groups of nodes which maximizes the number of within-group edges and minimizes the number of between-group edges.



	brainconn.modularity.modularity_dir(A[, …])

	The optimal community structure is a subdivision of the network into nonoverlapping groups of nodes in a way that maximizes the number of within-group edges, and minimizes the number of between-group edges.



	brainconn.modularity.modularity_finetune_dir(W)

	The optimal community structure is a subdivision of the network into nonoverlapping groups of nodes in a way that maximizes the number of within-group edges, and minimizes the number of between-group edges.



	brainconn.modularity.modularity_finetune_und(W)

	The optimal community structure is a subdivision of the network into nonoverlapping groups of nodes in a way that maximizes the number of within-group edges, and minimizes the number of between-group edges.



	brainconn.modularity.modularity_finetune_und_sign(W)

	The optimal community structure is a subdivision of the network into nonoverlapping groups of nodes in a way that maximizes the number of within-group edges, and minimizes the number of between-group edges.



	brainconn.modularity.modularity_louvain_dir(W)

	The optimal community structure is a subdivision of the network into nonoverlapping groups of nodes in a way that maximizes the number of within-group edges, and minimizes the number of between-group edges.



	brainconn.modularity.modularity_louvain_und(W)

	The optimal community structure is a subdivision of the network into nonoverlapping groups of nodes in a way that maximizes the number of within-group edges, and minimizes the number of between-group edges.



	brainconn.modularity.modularity_louvain_und_sign(W)

	The optimal community structure is a subdivision of the network into nonoverlapping groups of nodes in a way that maximizes the number of within-group edges, and minimizes the number of between-group edges.



	brainconn.modularity.modularity_probtune_und_sign(W)

	The optimal community structure is a subdivision of the network into nonoverlapping groups of nodes in a way that maximizes the number of within-group edges, and minimizes the number of between-group edges.



	brainconn.modularity.modularity_und(A[, …])

	The optimal community structure is a subdivision of the network into nonoverlapping groups of nodes in a way that maximizes the number of within-group edges, and minimizes the number of between-group edges.



	brainconn.modularity.modularity_und_sign(W, ci)

	This function simply calculates the signed modularity for a given partition.



	brainconn.modularity.partition_distance(cx, cy)

	This function quantifies the distance between pairs of community partitions with information theoretic measures.









brainconn.motifs: Motifs

Metrics which identify the most important nodes in graphs.







	brainconn.motifs

	Metrics which identify the most important nodes in graphs.



	brainconn.motifs.find_motif34(m[, n])

	This function returns all motif isomorphs for a given motif id and class (3 or 4).



	brainconn.motifs.make_motif34lib()

	This function generates the motif34lib.mat library required for all other motif computations.



	brainconn.motifs.motif3funct_bin(A)

	Functional motifs are subsets of connection patterns embedded within anatomical motifs.



	brainconn.motifs.motif3funct_wei(W)

	Functional motifs are subsets of connection patterns embedded within anatomical motifs.



	brainconn.motifs.motif3struct_bin(A)

	Structural motifs are patterns of local connectivity.



	brainconn.motifs.motif3struct_wei(W)

	Structural motifs are patterns of local connectivity.



	brainconn.motifs.motif4funct_bin(A)

	Functional motifs are subsets of connection patterns embedded within anatomical motifs.



	brainconn.motifs.motif4funct_wei(W)

	Functional motifs are subsets of connection patterns embedded within anatomical motifs.



	brainconn.motifs.motif4struct_bin(A)

	Structural motifs are patterns of local connectivity.



	brainconn.motifs.motif4struct_wei(W)

	Structural motifs are patterns of local connectivity.









brainconn.physical_connectivity: Physical connectivity

Metrics which identify the most important nodes in graphs.







	brainconn.physical_connectivity

	Metrics which identify the most important nodes in graphs.



	brainconn.physical_connectivity.density_dir(CIJ)

	Density is the fraction of present connections to possible connections.



	brainconn.physical_connectivity.density_und(CIJ)

	Density is the fraction of present connections to possible connections.



	brainconn.physical_connectivity.rentian_scaling(A, …)

	Physical Rentian scaling (or more simply Rentian scaling) is a property of systems that are cost-efficiently embedded into physical space.









brainconn.reference: Reference

Metrics which identify the most important nodes in graphs.







	brainconn.reference

	Metrics which identify the most important nodes in graphs.



	brainconn.reference.latmio_dir_connected(R, itr)

	This function “latticizes” a directed network, while preserving the in- and out-degree distributions.



	brainconn.reference.latmio_dir(R, itr[, D])

	This function “latticizes” a directed network, while preserving the in- and out-degree distributions.



	brainconn.reference.latmio_und_connected(R, itr)

	This function “latticizes” an undirected network, while preserving the degree distribution.



	brainconn.reference.latmio_und(R, itr[, D])

	This function “latticizes” an undirected network, while preserving the degree distribution.



	brainconn.reference.makeevenCIJ(n, k, sz_cl)

	This function generates a random, directed network with a specified number of fully connected modules linked together by evenly distributed remaining random connections.



	brainconn.reference.makefractalCIJ(mx_lvl, …)

	This function generates a directed network with a hierarchical modular organization.



	brainconn.reference.makerandCIJdegreesfixed(…)

	This function generates a directed random network with a specified in-degree and out-degree sequence.



	brainconn.reference.makerandCIJ_dir(n, k)

	This function generates a directed random network



	brainconn.reference.makerandCIJ_und(n, k)

	This function generates an undirected random network



	brainconn.reference.makeringlatticeCIJ(n, k)

	This function generates a directed lattice network with toroidal boundary counditions (i.e.



	brainconn.reference.maketoeplitzCIJ(n, k, s)

	This function generates a directed network with a Gaussian drop-off in edge density with increasing distance from the main diagonal.



	brainconn.reference.null_model_dir_sign(W[, …])

	This function randomizes an directed network with positive and negative weights, while preserving the degree and strength distributions.



	brainconn.reference.null_model_und_sign(W[, …])

	This function randomizes an undirected network with positive and negative weights, while preserving the degree and strength distributions.



	brainconn.reference.randmio_dir(R, itr)

	This function randomizes a directed network, while preserving the in- and out-degree distributions.



	brainconn.reference.randmio_dir_connected(R, itr)

	This function randomizes a directed network, while preserving the in- and out-degree distributions.



	brainconn.reference.randmio_dir_signed(R, itr)

	This function randomizes a directed weighted network with positively and negatively signed connections, while preserving the positive and negative degree distributions.



	brainconn.reference.randmio_und(R, itr)

	This function randomizes an undirected network, while preserving the degree distribution.



	brainconn.reference.randmio_und_connected(R, itr)

	This function randomizes an undirected network, while preserving the degree distribution.



	brainconn.reference.randmio_und_signed(R, itr)

	This function randomizes an undirected weighted network with positive and negative weights, while simultaneously preserving the degree distribution of positive and negative weights.



	brainconn.reference.randomize_graph_partial_und(A, …)

	A = RANDOMIZE_GRAPH_PARTIAL_UND(A,B,MAXSWAP) takes adjacency matrices A and B and attempts to randomize matrix A by performing MAXSWAP rewirings.



	brainconn.reference.randomizer_bin_und(R, alpha)

	This function randomizes a binary undirected network, while preserving the degree distribution.









brainconn.similarity: Similarity

Metrics which identify the most important nodes in graphs.







	brainconn.similarity

	Metrics which identify the most important nodes in graphs.



	brainconn.similarity.corr_flat_dir(a1, a2)

	Returns the correlation coefficient between two flattened adjacency matrices.



	brainconn.similarity.corr_flat_und(a1, a2)

	Returns the correlation coefficient between two flattened adjacency matrices.



	brainconn.similarity.dice_pairwise_und(a1, a2)

	Calculates pairwise dice similarity for each vertex between two matrices.



	brainconn.similarity.edge_nei_overlap_bd(CIJ)

	This function determines the neighbors of two nodes that are linked by an edge, and then computes their overlap.



	brainconn.similarity.edge_nei_overlap_bu(CIJ)

	This function determines the neighbors of two nodes that are linked by an edge, and then computes their overlap.



	brainconn.similarity.gtom(adj, nr_steps)

	The m-th step generalized topological overlap measure (GTOM) quantifies the extent to which a pair of nodes have similar m-th step neighbors.



	brainconn.similarity.matching_ind(CIJ)

	For any two nodes u and v, the matching index computes the amount of overlap in the connection patterns of u and v.



	brainconn.similarity.matching_ind_und(CIJ0)

	M0 = MATCHING_IND_UND(CIJ) computes matching index for undirected graph specified by adjacency matrix CIJ.









brainconn.nbs: Network-based statistic

Network-based statistic calculation.







	brainconn.nbs

	Network-based statistic calculation.



	brainconn.nbs.nbs_bct(x, y, thresh[, k, …])

	Performs the NBS for populations X and Y for a t-statistic threshold of alpha.









brainconn.utils: Utility functions

Utility functions.







	brainconn.utils

	Utility functions.



	brainconn.utils.matrix

	Other utility functions.



	brainconn.utils.visualization

	Tools for visualizing graphs.



	brainconn.utils.misc

	Miscellaneous utility functions.












          

      

      

    

  

    
      
          
            
  
brainconn.centrality.betweenness_bin


	
betweenness_bin(G)[source] [https://github.com/FIU-Neuro/brainconn/blob/c24bd15/brainconn/centrality/centrality.py#L12]

	Node betweenness centrality is the fraction of all shortest paths in
the network that contain a given node. Nodes with high values of
betweenness centrality participate in a large number of shortest paths.


	Parameters

	
	A (NxN numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – binary directed/undirected connection matrix


	BC (Nx1 numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – node betweenness centrality vector








Notes

Betweenness centrality may be normalised to the range [0,1] as
BC/[(N-1)(N-2)], where N is the number of nodes in the network.






Examples using brainconn.centrality.betweenness_bin


[image: ../_images/sphx_glr_plot_centrality_thumb.png]
Calculate centrality measures











          

      

      

    

  

    
      
          
            
  
brainconn.centrality.betweenness_wei


	
betweenness_wei(G)[source] [https://github.com/FIU-Neuro/brainconn/blob/c24bd15/brainconn/centrality/centrality.py#L71]

	Node betweenness centrality is the fraction of all shortest paths in
the network that contain a given node. Nodes with high values of
betweenness centrality participate in a large number of shortest paths.


	Parameters

	L (NxN numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – directed/undirected weighted connection matrix



	Returns

	BC – node betweenness centrality vector



	Return type

	Nx1 numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]





Notes

The input matrix must be a connection-length matrix, typically
obtained via a mapping from weight to length. For instance, in a
weighted correlation network higher correlations are more naturally
interpreted as shorter distances and the input matrix should
consequently be some inverse of the connectivity matrix.

Betweenness centrality may be normalised to the range [0,1] as
BC/[(N-1)(N-2)], where N is the number of nodes in the network.






Examples using brainconn.centrality.betweenness_wei


[image: ../_images/sphx_glr_plot_centrality_thumb.png]
Calculate centrality measures











          

      

      

    

  

    
      
          
            
  
brainconn.centrality.diversity_coef_sign


	
diversity_coef_sign(W, ci)[source] [https://github.com/FIU-Neuro/brainconn/blob/c24bd15/brainconn/centrality/centrality.py#L147]

	The Shannon entropy-based diversity coefficient measures the diversity
of intermodular connections of individual nodes and ranges from 0 to 1.


	Parameters

	
	W (NxN numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – undirected connection matrix with positive and negative weights


	ci (Nx1 numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – community affiliation vector






	Returns

	
	Hpos (Nx1 numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – diversity coefficient based on positive connections


	Hneg (Nx1 numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – diversity coefficient based on negative connections



















          

      

      

    

  

    
      
          
            
  
brainconn.centrality.edge_betweenness_bin


	
edge_betweenness_bin(G)[source] [https://github.com/FIU-Neuro/brainconn/blob/c24bd15/brainconn/centrality/centrality.py#L199]

	Edge betweenness centrality is the fraction of all shortest paths in
the network that contain a given edge. Edges with high values of
betweenness centrality participate in a large number of shortest paths.


	Parameters

	A (NxN numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – binary directed/undirected connection matrix



	Returns

	
	EBC (NxN numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – edge betweenness centrality matrix


	BC (Nx1 numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – node betweenness centrality vector










Notes

Betweenness centrality may be normalised to the range [0,1] as
BC/[(N-1)(N-2)], where N is the number of nodes in the network.






Examples using brainconn.centrality.edge_betweenness_bin


[image: ../_images/sphx_glr_plot_centrality_thumb.png]
Calculate centrality measures











          

      

      

    

  

    
      
          
            
  
brainconn.centrality.edge_betweenness_wei


	
edge_betweenness_wei(G)[source] [https://github.com/FIU-Neuro/brainconn/blob/c24bd15/brainconn/centrality/centrality.py#L267]

	Edge betweenness centrality is the fraction of all shortest paths in
the network that contain a given edge. Edges with high values of
betweenness centrality participate in a large number of shortest paths.


	Parameters

	L (NxN numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – directed/undirected weighted connection matrix



	Returns

	
	EBC (NxN numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – edge betweenness centrality matrix


	BC (Nx1 numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – nodal betweenness centrality vector










Notes


	The input matrix must be a connection-length matrix, typically

	obtained via a mapping from weight to length. For instance, in a
weighted correlation network higher correlations are more naturally
interpreted as shorter distances and the input matrix should
consequently be some inverse of the connectivity matrix.



	Betweenness centrality may be normalised to the range [0,1] as

	BC/[(N-1)(N-2)], where N is the number of nodes in the network.










Examples using brainconn.centrality.edge_betweenness_wei


[image: ../_images/sphx_glr_plot_centrality_thumb.png]
Calculate centrality measures











          

      

      

    

  

    
      
          
            
  
brainconn.centrality.eigenvector_centrality_und


	
eigenvector_centrality_und(CIJ)[source] [https://github.com/FIU-Neuro/brainconn/blob/c24bd15/brainconn/centrality/centrality.py#L347]

	Eigenector centrality is a self-referential measure of centrality:
nodes have high eigenvector centrality if they connect to other nodes
that have high eigenvector centrality. The eigenvector centrality of
node i is equivalent to the ith element in the eigenvector
corresponding to the largest eigenvalue of the adjacency matrix.


	Parameters

	
	CIJ (NxN numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – binary/weighted undirected adjacency matrix


	v (Nx1 numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – eigenvector associated with the largest eigenvalue of the matrix

















          

      

      

    

  

    
      
          
            
  
brainconn.centrality.erange


	
erange(CIJ)[source] [https://github.com/FIU-Neuro/brainconn/blob/c24bd15/brainconn/centrality/centrality.py#L373]

	Shortcuts are central edges which significantly reduce the
characteristic path length in the network.


	Parameters

	CIJ (NxN numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – binary directed connection matrix



	Returns

	
	Erange (NxN numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – range for each edge, i.e. the length of the shortest path from i to j
for edge c(i,j) after the edge has been removed from the graph


	eta (float) – average range for the entire graph


	Eshort (NxN numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – entries are ones for shortcut edges


	fs (float) – fractions of shortcuts in the graph










Notes

Follows the treatment of ‘shortcuts’ by Duncan Watts










          

      

      

    

  

    
      
          
            
  
brainconn.centrality.flow_coef_bd


	
flow_coef_bd(CIJ)[source] [https://github.com/FIU-Neuro/brainconn/blob/c24bd15/brainconn/centrality/centrality.py#L425]

	Computes the flow coefficient for each node and averaged over the
network, as described in Honey et al. (2007) PNAS. The flow coefficient
is similar to betweenness centrality, but works on a local
neighborhood. It is mathematically related to the clustering
coefficient  (cc) at each node as, fc+cc <= 1.


	Parameters

	CIJ (NxN numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – binary directed connection matrix



	Returns

	
	fc (Nx1 numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – flow coefficient for each node


	FC (float) – average flow coefficient over the network


	total_flo (int) – number of paths that “flow” across the central node



















          

      

      

    

  

    
      
          
            
  
brainconn.centrality.gateway_coef_sign


	
gateway_coef_sign(W, ci, centrality_type='degree')[source] [https://github.com/FIU-Neuro/brainconn/blob/c24bd15/brainconn/centrality/centrality.py#L477]

	The gateway coefficient is a variant of participation coefficient.
It is weighted by how critical the connections are to intermodular
connectivity (e.g. if a node is the only connection between its
module and another module, it will have a higher gateway coefficient,
unlike participation coefficient).


	Parameters

	
	W (NxN numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – undirected signed connection matrix


	ci (Nx1 numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – community affiliation vector


	centrality_type (enum) – ‘degree’ - uses the weighted degree (i.e, node strength)
‘betweenness’ - uses the betweenness centrality






	Returns

	
	Gpos (Nx1 numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – gateway coefficient for positive weights


	Gneg (Nx1 numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – gateway coefficient for negative weights










References


	1

	Vargas ER, Wahl LM, Eur Phys J B (2014) 87:1-10














          

      

      

    

  

    
      
          
            
  
brainconn.centrality.kcoreness_centrality_bd


	
kcoreness_centrality_bd(CIJ)[source] [https://github.com/FIU-Neuro/brainconn/blob/c24bd15/brainconn/centrality/centrality.py#L562]

	The k-core is the largest subgraph comprising nodes of degree at least
k. The coreness of a node is k if the node belongs to the k-core but
not to the (k+1)-core. This function computes k-coreness of all nodes
for a given binary directed connection matrix.


	Parameters

	CIJ (NxN numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – binary directed connection matrix



	Returns

	
	coreness ((N,) numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – node coreness


	kn ((N,) numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – size of k-core



















          

      

      

    

  

    
      
          
            
  
brainconn.centrality.kcoreness_centrality_bu


	
kcoreness_centrality_bu(CIJ)[source] [https://github.com/FIU-Neuro/brainconn/blob/c24bd15/brainconn/centrality/centrality.py#L594]

	The k-core is the largest subgraph comprising nodes of degree at least
k. The coreness of a node is k if the node belongs to the k-core but
not to the (k+1)-core. This function computes the coreness of all nodes
for a given binary undirected connection matrix.


	Parameters

	CIJ (NxN numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – binary undirected connection matrix



	Returns

	
	coreness ((N,) numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – node coreness


	kn ((N,) numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – size of k-core



















          

      

      

    

  

    
      
          
            
  
brainconn.centrality.module_degree_zscore


	
module_degree_zscore(W, ci, flag=0)[source] [https://github.com/FIU-Neuro/brainconn/blob/c24bd15/brainconn/centrality/centrality.py#L631]

	The within-module degree z-score is a within-module version of degree
centrality.


	Parameters

	
	W (NxN numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – binary/weighted directed/undirected connection matrix


	ci (Nx1 np.array_like) – community affiliation vector


	flag (int [https://docs.python.org/3.5/library/functions.html#int]) – 
	Graph type. 0: undirected graph (default)

	1: directed graph in degree
2: directed graph out degree
3: directed graph in and out degree












	Returns

	Z – within-module degree Z-score



	Return type

	Nx1 numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]














          

      

      

    

  

    
      
          
            
  
brainconn.centrality.pagerank_centrality


	
pagerank_centrality(A, d, falff=None)[source] [https://github.com/FIU-Neuro/brainconn/blob/c24bd15/brainconn/centrality/centrality.py#L673]

	The PageRank centrality is a variant of eigenvector centrality. This
function computes the PageRank centrality of each vertex in a graph.

Formally, PageRank is defined as the stationary distribution achieved
by instantiating a Markov chain on a graph. The PageRank centrality of
a given vertex, then, is proportional to the number of steps (or amount
of time) spent at that vertex as a result of such a process.

The PageRank index gets modified by the addition of a damping factor,
d. In terms of a Markov chain, the damping factor specifies the
fraction of the time that a random walker will transition to one of its
current state’s neighbors. The remaining fraction of the time the
walker is restarted at a random vertex. A common value for the damping
factor is d = 0.85.


	Parameters

	
	A (NxN numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – adjacency matrix


	d (float [https://docs.python.org/3.5/library/functions.html#float]) – damping factor (see description)


	falff (Nx1 numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] or None) – Initial page rank probability, non-negative values. Default value is
None. If not specified, a naive bayesian prior is used.






	Returns

	r – vectors of page rankings



	Return type

	Nx1 numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]





Notes

The algorithm will work well for smaller matrices (number of
nodes around 1000 or less)










          

      

      

    

  

    
      
          
            
  
brainconn.centrality.participation_coef


	
participation_coef(W, ci, degree='undirected')[source] [https://github.com/FIU-Neuro/brainconn/blob/c24bd15/brainconn/centrality/centrality.py#L730]

	Participation coefficient is a measure of diversity of intermodular
connections of individual nodes.


	Parameters

	
	W (NxN numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – binary/weighted directed/undirected connection matrix


	ci (Nx1 numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – community affiliation vector


	degree ({'undirected', 'in', 'out'}, optional) – Flag to describe nature of graph. ‘undirected’: For undirected graphs,
‘in’: Uses the in-degree, ‘out’: Uses the out-degree






	Returns

	P – participation coefficient



	Return type

	Nx1 numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]














          

      

      

    

  

    
      
          
            
  
brainconn.centrality.participation_coef_sign


	
participation_coef_sign(W, ci)[source] [https://github.com/FIU-Neuro/brainconn/blob/c24bd15/brainconn/centrality/centrality.py#L771]

	Participation coefficient is a measure of diversity of intermodular
connections of individual nodes.


	Parameters

	
	W (NxN numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – undirected connection matrix with positive and negative weights


	ci (Nx1 numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – community affiliation vector






	Returns

	
	Ppos (Nx1 numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – participation coefficient from positive weights


	Pneg (Nx1 numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – participation coefficient from negative weights



















          

      

      

    

  

    
      
          
            
  
brainconn.centrality.subgraph_centrality


	
subgraph_centrality(CIJ)[source] [https://github.com/FIU-Neuro/brainconn/blob/c24bd15/brainconn/centrality/centrality.py#L817]

	The subgraph centrality of a node is a weighted sum of closed walks of
different lengths in the network starting and ending at the node. This
function returns a vector of subgraph centralities for each node of the
network.


	Parameters

	
	CIJ (NxN numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – binary adjacency matrix


	Cs (Nx1 numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – subgraph centrality

















          

      

      

    

  

    
      
          
            
  
brainconn.clustering.agreement


	
agreement(ci, buffsz=1000)[source] [https://github.com/FIU-Neuro/brainconn/blob/c24bd15/brainconn/clustering/clustering.py#L12]

	Takes as input a set of vertex partitions CI of
dimensions [vertex x partition]. Each column in CI contains the
assignments of each vertex to a class/community/module. This function
aggregates the partitions in CI into a square [vertex x vertex]
agreement matrix D, whose elements indicate the number of times any two
vertices were assigned to the same class.

In the case that the number of nodes and partitions in CI is large
(greater than ~1000 nodes or greater than ~1000 partitions), the script
can be made faster by computing D in pieces. The optional input BUFFSZ
determines the size of each piece. Trial and error has found that
BUFFSZ ~ 150 works well.


	Parameters

	
	ci (NxM numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – set of M (possibly degenerate) partitions of N nodes


	buffsz (int | None) – sets buffer size. If not specified, defaults to 1000






	Returns

	D – agreement matrix



	Return type

	NxN numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]














          

      

      

    

  

    
      
          
            
  
brainconn.clustering.agreement_weighted


	
agreement_weighted(ci, wts)[source] [https://github.com/FIU-Neuro/brainconn/blob/c24bd15/brainconn/clustering/clustering.py#L60]

	D = AGREEMENT_WEIGHTED(CI,WTS) is identical to AGREEMENT, with the
exception that each partitions contribution is weighted according to
the corresponding scalar value stored in the vector WTS. As an example,
suppose CI contained partitions obtained using some heuristic for
maximizing modularity. A possible choice for WTS might be the Q metric
(Newman’s modularity score). Such a choice would add more weight to
higher modularity partitions.

NOTE: Unlike AGREEMENT, this script does not have the input argument
BUFFSZ.


	Parameters

	
	ci (MxN numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – set of M (possibly degenerate) partitions of N nodes


	wts (Mx1 numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – relative weight of each partition






	Returns

	D – weighted agreement matrix



	Return type

	NxN numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]














          

      

      

    

  

    
      
          
            
  
brainconn.clustering.clustering_coef_bd


	
clustering_coef_bd(A)[source] [https://github.com/FIU-Neuro/brainconn/blob/c24bd15/brainconn/clustering/clustering.py#L96]

	The clustering coefficient is the fraction of triangles around a node
(equiv. the fraction of nodes neighbors that are neighbors of each other).


	Parameters

	A (NxN numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – binary directed connection matrix



	Returns

	C – clustering coefficient vector



	Return type

	Nx1 numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]





Notes

Methodological note: In directed graphs, 3 nodes generate up to 8
triangles (2*2*2 edges). The number of existing triangles is the main
diagonal of S^3/2. The number of all (in or out) neighbour pairs is
K(K-1)/2. Each neighbour pair may generate two triangles. “False pairs”
are i<->j edge pairs (these do not generate triangles). The number of
false pairs is the main diagonal of A^2.
Thus the maximum possible number of triangles =


= (2 edges)*([ALL PAIRS] - [FALSE PAIRS])
= 2 * (K(K-1)/2 - diag(A^2))
= K(K-1) - 2(diag(A^2))













          

      

      

    

  

    
      
          
            
  
brainconn.clustering.clustering_coef_bu


	
clustering_coef_bu(G)[source] [https://github.com/FIU-Neuro/brainconn/blob/c24bd15/brainconn/clustering/clustering.py#L134]

	The clustering coefficient is the fraction of triangles around a node
(equiv. the fraction of nodes neighbors that are neighbors of each other).


	Parameters

	A (NxN numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – binary undirected connection matrix



	Returns

	C – clustering coefficient vector



	Return type

	Nx1 numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]














          

      

      

    

  

    
      
          
            
  
brainconn.clustering.clustering_coef_wd


	
clustering_coef_wd(W)[source] [https://github.com/FIU-Neuro/brainconn/blob/c24bd15/brainconn/clustering/clustering.py#L162]

	The weighted clustering coefficient is the average “intensity” of
triangles around a node.


	Parameters

	W (NxN numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – weighted directed connection matrix



	Returns

	C – clustering coefficient vector



	Return type

	Nx1 numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]





Notes

Methodological note (also see clustering_coef_bd)
The weighted modification is as follows:
- The numerator: adjacency matrix is replaced with weights matrix ^ 1/3
- The denominator: no changes from the binary version

The above reduces to symmetric and/or binary versions of the clustering
coefficient for respective graphs.










          

      

      

    

  

    
      
          
            
  
brainconn.clustering.clustering_coef_wu


	
clustering_coef_wu(W)[source] [https://github.com/FIU-Neuro/brainconn/blob/c24bd15/brainconn/clustering/clustering.py#L198]

	The weighted clustering coefficient is the average “intensity” of
triangles around a node.


	Parameters

	W (NxN numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – weighted undirected connection matrix



	Returns

	C – clustering coefficient vector



	Return type

	Nx1 numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]














          

      

      

    

  

    
      
          
            
  
brainconn.clustering.clustering_coef_wu_sign


	
clustering_coef_wu_sign(W, coef_type='default')[source] [https://github.com/FIU-Neuro/brainconn/blob/c24bd15/brainconn/clustering/clustering.py#L221]

	Returns the weighted clustering coefficient generalized or separated
for positive and negative weights.

Three Algorithms are supported; herefore referred to as default, zhang,
and constantini.


	Default (Onnela et al.), as in the traditional clustering coefficient
computation. Computed separately for positive and negative weights.


	Zhang & Horvath. Similar to Onnela formula except weight information
incorporated in denominator. Reduces sensitivity of the measure to
weights directly connected to the node of interest. Computed
separately for positive and negative weights.


	Constantini & Perugini generalization of Zhang & Horvath formula.
Takes both positive and negative weights into account simultaneously.
Particularly sensitive to non-redundancy in path information based on
sign. Returns only one value.





	Parameters

	
	W (NxN numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – weighted undirected connection matrix


	corr_type ({'default', 'zhang', 'constantini'}) – Allowed values are ‘default’, ‘zhang’, ‘constantini’






	Returns

	
	Cpos (Nx1 numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – Clustering coefficient vector for positive weights


	Cneg (Nx1 numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – Clustering coefficient vector for negative weights, unless
coef_type == ‘constantini’.


	References – Onnela et al. (2005) Phys Rev E 71:065103
Zhang & Horvath (2005) Stat Appl Genet Mol Biol 41:1544-6115
Costantini & Perugini (2014) PLOS ONE 9:e88669



















          

      

      

    

  

    
      
          
            
  
brainconn.clustering.consensus_und


	
consensus_und(D, tau, reps=1000)[source] [https://github.com/FIU-Neuro/brainconn/blob/c24bd15/brainconn/clustering/clustering.py#L324]

	This algorithm seeks a consensus partition of the
agreement matrix D. The algorithm used here is almost identical to the
one introduced in Lancichinetti & Fortunato (2012): The agreement
matrix D is thresholded at a level TAU to remove an weak elements. The
resulting matrix is then partitions REPS number of times using the
Louvain algorithm (in principle, any clustering algorithm that can
handle weighted matrixes is a suitable alternative to the Louvain
algorithm and can be substituted in its place). This clustering
produces a set of partitions from which a new agreement is built. If
the partitions have not converged to a single representative partition,
the above process repeats itself, starting with the newly built
agreement matrix.

NOTE: In this implementation, the elements of the agreement matrix must
be converted into probabilities.

NOTE: This implementation is slightly different from the original
algorithm proposed by Lanchichinetti & Fortunato. In its original
version, if the thresholding produces singleton communities, those
nodes are reconnected to the network. Here, we leave any singleton
communities disconnected.


	Parameters

	
	D (NxN numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – agreement matrix with entries between 0 and 1 denoting the probability
of finding node i in the same cluster as node j


	tau (float [https://docs.python.org/3.5/library/functions.html#float]) – threshold which controls the resolution of the reclustering


	reps (int [https://docs.python.org/3.5/library/functions.html#int]) – number of times the clustering algorithm is reapplied. default value
is 1000.






	Returns

	ciu – consensus partition



	Return type

	Nx1 numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]














          

      

      

    

  

    
      
          
            
  
brainconn.clustering.get_components


	
get_components(A, no_depend=False)[source] [https://github.com/FIU-Neuro/brainconn/blob/c24bd15/brainconn/clustering/clustering.py#L414]

	Returns the components of an undirected graph specified by the binary and
undirected adjacency matrix adj. Components and their constitutent nodes
are assigned the same index and stored in the vector, comps. The vector,
comp_sizes, contains the number of nodes beloning to each component.


	Parameters

	
	A (NxN numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – binary undirected adjacency matrix


	no_depend (Any) – Does nothing, included for backwards compatibility






	Returns

	
	comps (Nx1 numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – vector of component assignments for each node


	comp_sizes (Mx1 numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – vector of component sizes










Notes

Note: disconnected nodes will appear as components with a component
size of 1

Note: The identity of each component (i.e. its numerical value in the
result) is not guaranteed to be identical the value returned in BCT,
matlab code, although the component topology is.

Many thanks to Nick Cullen for providing this implementation










          

      

      

    

  

    
      
          
            
  
brainconn.clustering.get_components_old


	
get_components_old(A, no_depend=False)[source] [https://github.com/FIU-Neuro/brainconn/blob/c24bd15/brainconn/clustering/clustering.py#L474]

	Returns the components of an undirected graph specified by the binary and
undirected adjacency matrix adj. Components and their constitutent nodes
are assigned the same index and stored in the vector, comps. The vector,
comp_sizes, contains the number of nodes beloning to each component.


	Parameters

	
	adj (NxN numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – binary undirected adjacency matrix


	no_depend (bool [https://docs.python.org/3.5/library/functions.html#bool]) – If true, doesn’t import networkx to do the calculation. Default value
is false.






	Returns

	
	comps (Nx1 numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – vector of component assignments for each node


	comp_sizes (Mx1 numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – vector of component sizes










Notes

Note: disconnected nodes will appear as components with a component
size of 1

Note: The identity of each component (i.e. its numerical value in the
result) is not guaranteed to be identical the value returned in BCT,
although the component topology is.

Note: networkx is used to do the computation efficiently. If networkx is
not available a breadth-first search that does not depend on networkx is
used instead, but this is less efficient. The corresponding BCT function
does the computation by computing the Dulmage-Mendelsohn decomposition. I
don’t know what a Dulmage-Mendelsohn decomposition is and there doesn’t
appear to be a python equivalent. If you think of a way to implement this
better, let me know.










          

      

      

    

  

    
      
          
            
  
brainconn.clustering.number_of_components


	
number_of_components(A)[source] [https://github.com/FIU-Neuro/brainconn/blob/c24bd15/brainconn/clustering/clustering.py#L554]

	








          

      

      

    

  

    
      
          
            
  
brainconn.clustering.transitivity_bd


	
transitivity_bd(A)[source] [https://github.com/FIU-Neuro/brainconn/blob/c24bd15/brainconn/clustering/clustering.py#L559]

	Transitivity is the ratio of ‘triangles to triplets’ in the network.
(A classical version of the clustering coefficient).


	Parameters

	A (NxN numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – binary directed connection matrix



	Returns

	T – transitivity scalar



	Return type

	float [https://docs.python.org/3.5/library/functions.html#float]





Notes

Methodological note: In directed graphs, 3 nodes generate up to 8
triangles (2*2*2 edges). The number of existing triangles is the main

diagonal of S^3/2. The number of all (in or out) neighbour pairs is
K(K-1)/2. Each neighbour pair may generate two triangles. “False pairs”
are i<->j edge pairs (these do not generate triangles). The number of
false pairs is the main diagonal of A^2. Thus the maximum possible
number of triangles = (2 edges)*([ALL PAIRS] - [FALSE PAIRS])


= 2 * (K(K-1)/2 - diag(A^2))
= K(K-1) - 2(diag(A^2))













          

      

      

    

  

    
      
          
            
  
brainconn.clustering.transitivity_bu


	
transitivity_bu(A)[source] [https://github.com/FIU-Neuro/brainconn/blob/c24bd15/brainconn/clustering/clustering.py#L605]

	Transitivity is the ratio of ‘triangles to triplets’ in the network.
(A classical version of the clustering coefficient).


	Parameters

	A (NxN numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – binary undirected connection matrix



	Returns

	T – transitivity scalar



	Return type

	float [https://docs.python.org/3.5/library/functions.html#float]














          

      

      

    

  

    
      
          
            
  
brainconn.clustering.transitivity_wd


	
transitivity_wd(W)[source] [https://github.com/FIU-Neuro/brainconn/blob/c24bd15/brainconn/clustering/clustering.py#L625]

	Transitivity is the ratio of ‘triangles to triplets’ in the network.
(A classical version of the clustering coefficient).


	Parameters

	W (NxN numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – weighted directed connection matrix



	Returns

	
	T (int) – transitivity scalar


	Methodological note (also see note for clustering_coef_bd)


	The weighted modification is as follows


	- The numerator (adjacency matrix is replaced with weights matrix ^ 1/3)


	- The denominator (no changes from the binary version)


	The above reduces to symmetric and/or binary versions of the clustering


	coefficient for respective graphs.



















          

      

      

    

  

    
      
          
            
  
brainconn.clustering.transitivity_wu


	
transitivity_wu(W)[source] [https://github.com/FIU-Neuro/brainconn/blob/c24bd15/brainconn/clustering/clustering.py#L658]

	Transitivity is the ratio of ‘triangles to triplets’ in the network.
(A classical version of the clustering coefficient).


	Parameters

	W (NxN numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – weighted undirected connection matrix



	Returns

	T – transitivity scalar



	Return type

	int [https://docs.python.org/3.5/library/functions.html#int]














          

      

      

    

  

    
      
          
            
  
brainconn.core.assortativity_bin


	
assortativity_bin(CIJ, flag=0)[source] [https://github.com/FIU-Neuro/brainconn/blob/c24bd15/brainconn/core/core.py#L10]

	The assortativity coefficient is a correlation coefficient between the
degrees of all nodes on two opposite ends of a link. A positive
assortativity coefficient indicates that nodes tend to link to other
nodes with the same or similar degree.


	Parameters

	
	CIJ (NxN numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – binary directed/undirected connection matrix


	flag (int [https://docs.python.org/3.5/library/functions.html#int]) – 0 : undirected graph; degree/degree correlation
1 : directed graph; out-degree/in-degree correlation
2 : directed graph; in-degree/out-degree correlation
3 : directed graph; out-degree/out-degree correlation
4 : directed graph; in-degree/in-degreen correlation






	Returns

	r – assortativity coefficient



	Return type

	float [https://docs.python.org/3.5/library/functions.html#float]





Notes

The function accepts weighted networks, but all connection
weights are ignored. The main diagonal should be empty. For flag 1
the function computes the directed assortativity described in Rubinov
and Sporns (2010) NeuroImage.










          

      

      

    

  

    
      
          
            
  
brainconn.core.assortativity_wei


	
assortativity_wei(CIJ, flag=0)[source] [https://github.com/FIU-Neuro/brainconn/blob/c24bd15/brainconn/core/core.py#L74]

	The assortativity coefficient is a correlation coefficient between the
strengths (weighted degrees) of all nodes on two opposite ends of a link.
A positive assortativity coefficient indicates that nodes tend to link to
other nodes with the same or similar strength.


	Parameters

	
	CIJ (NxN numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – weighted directed/undirected connection matrix


	flag (int [https://docs.python.org/3.5/library/functions.html#int]) – 0 : undirected graph; strength/strength correlation
1 : directed graph; out-strength/in-strength correlation
2 : directed graph; in-strength/out-strength correlation
3 : directed graph; out-strength/out-strength correlation
4 : directed graph; in-strength/in-strengthn correlation






	Returns

	r – assortativity coefficient



	Return type

	float [https://docs.python.org/3.5/library/functions.html#float]





Notes


	The main diagonal should be empty. For flag 1

	the function computes the directed assortativity described in Rubinov
and Sporns (2010) NeuroImage.














          

      

      

    

  

    
      
          
            
  
brainconn.core.core_periphery_dir


	
core_periphery_dir(W, gamma=1, C0=None)[source] [https://github.com/FIU-Neuro/brainconn/blob/c24bd15/brainconn/core/core.py#L137]

	The optimal core/periphery subdivision is a partition of the network
into two nonoverlapping groups of nodes, a core group and a periphery
group. The number of core-group edges is maximized, and the number of
within periphery edges is minimized.

The core-ness is a statistic which quantifies the goodness of the
optimal core/periphery subdivision (with arbitrary relative value).

The algorithm uses a variation of the Kernighan-Lin graph partitioning
algorithm to optimize a core-structure objective described in
Borgatti & Everett (2000) Soc Networks 21:375-395

See Rubinov, Ypma et al. (2015) PNAS 112:10032-7


	Parameters

	
	W (NxN numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – directed connection matrix


	gamma (core-ness resolution parameter) – Default value = 1
gamma > 1 detects small core, large periphery
0 < gamma < 1 detects large core, small periphery


	C0 (NxN numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – Initial core structure

















          

      

      

    

  

    
      
          
            
  
brainconn.core.kcore_bd


	
kcore_bd(CIJ, k, peel=False)[source] [https://github.com/FIU-Neuro/brainconn/blob/c24bd15/brainconn/core/core.py#L238]

	The k-core is the largest subnetwork comprising nodes of degree at
least k. This function computes the k-core for a given binary directed
connection matrix by recursively peeling off nodes with degree lower
than k, until no such nodes remain.


	Parameters

	
	CIJ (NxN numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – binary directed adjacency matrix


	k (int [https://docs.python.org/3.5/library/functions.html#int]) – level of k-core


	peel (bool [https://docs.python.org/3.5/library/functions.html#bool]) – If True, additionally calculates peelorder and peellevel. Defaults to
False.






	Returns

	
	CIJkcore (NxN numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – connection matrix of the k-core. This matrix only contains nodes of
degree at least k.


	kn (int) – size of k-core


	peelorder (Nx1 numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – indices in the order in which they were peeled away during k-core
decomposition. only returned if peel is specified.


	peellevel (Nx1 numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – corresponding level - nodes in at the same level have been peeled
away at the same time. only return if peel is specified










Notes

‘peelorder’ and ‘peellevel’ are similar the the k-core sub-shells
described in Modha and Singh (2010).










          

      

      

    

  

    
      
          
            
  
brainconn.core.kcore_bu


	
kcore_bu(CIJ, k, peel=False)[source] [https://github.com/FIU-Neuro/brainconn/blob/c24bd15/brainconn/core/core.py#L306]

	The k-core is the largest subnetwork comprising nodes of degree at
least k. This function computes the k-core for a given binary
undirected connection matrix by recursively peeling off nodes with
degree lower than k, until no such nodes remain.


	Parameters

	
	CIJ (NxN numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – binary undirected connection matrix


	k (int [https://docs.python.org/3.5/library/functions.html#int]) – level of k-core


	peel (bool [https://docs.python.org/3.5/library/functions.html#bool]) – If True, additionally calculates peelorder and peellevel. Defaults to
False.






	Returns

	
	CIJkcore (NxN numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – connection matrix of the k-core. This matrix only contains nodes of
degree at least k.


	kn (int) – size of k-core


	peelorder (Nx1 numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – indices in the order in which they were peeled away during k-core
decomposition. only returned if peel is specified.


	peellevel (Nx1 numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – corresponding level - nodes in at the same level have been peeled
away at the same time. only return if peel is specified










Notes

‘peelorder’ and ‘peellevel’ are similar the the k-core sub-shells
described in Modha and Singh (2010).










          

      

      

    

  

    
      
          
            
  
brainconn.core.local_assortativity_wu_sign


	
local_assortativity_wu_sign(W)[source] [https://github.com/FIU-Neuro/brainconn/blob/c24bd15/brainconn/core/core.py#L374]

	Local assortativity measures the extent to which nodes are connected to
nodes of similar strength. Adapted from Thedchanamoorthy et al. 2014
formula to allowed weighted/signed networks.


	Parameters

	W (NxN numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – undirected connection matrix with positive and negative weights



	Returns

	
	loc_assort_pos (Nx1 numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – local assortativity from positive weights


	loc_assort_neg (Nx1 numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – local assortativity from negative weights



















          

      

      

    

  

    
      
          
            
  
brainconn.core.rich_club_bd


	
rich_club_bd(CIJ, klevel=None)[source] [https://github.com/FIU-Neuro/brainconn/blob/c24bd15/brainconn/core/core.py#L421]

	The rich club coefficient, R, at level k is the fraction of edges that
connect nodes of degree k or higher out of the maximum number of edges
that such nodes might share.


	Parameters

	
	CIJ (NxN numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – binary directed connection matrix


	klevel (int | None) – sets the maximum level at which the rich club coefficient will be
calculated. If None (default), the maximum level is set to the
maximum degree of the adjacency matrix






	Returns

	
	R (Kx1 numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – vector of rich-club coefficients for levels 1 to klevel


	Nk (int) – number of nodes with degree > k


	Ek (int) – number of edges remaining in subgraph with degree > k



















          

      

      

    

  

    
      
          
            
  
brainconn.core.rich_club_bu


	
rich_club_bu(CIJ, klevel=None)[source] [https://github.com/FIU-Neuro/brainconn/blob/c24bd15/brainconn/core/core.py#L467]

	The rich club coefficient, R, at level k is the fraction of edges that
connect nodes of degree k or higher out of the maximum number of edges
that such nodes might share.


	Parameters

	
	CIJ (NxN numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – binary undirected connection matrix


	klevel (int | None) – sets the maximum level at which the rich club coefficient will be
calculated. If None (default), the maximum level is set to the
maximum degree of the adjacency matrix






	Returns

	
	R (Kx1 numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – vector of rich-club coefficients for levels 1 to klevel


	Nk (int) – number of nodes with degree > k


	Ek (int) – number of edges remaining in subgraph with degree > k



















          

      

      

    

  

    
      
          
            
  
brainconn.core.rich_club_wd


	
rich_club_wd(CIJ, klevel=None)[source] [https://github.com/FIU-Neuro/brainconn/blob/c24bd15/brainconn/core/core.py#L511]

	
	Parameters

	
	CIJ (NxN numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – weighted directed connection matrix


	klevel (int | None) – sets the maximum level at which the rich club coefficient will be
calculated. If None (default), the maximum level is set to the
maximum degree of the adjacency matrix






	Returns

	Rw – vector of rich-club coefficients for levels 1 to klevel



	Return type

	Kx1 numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]














          

      

      

    

  

    
      
          
            
  
brainconn.core.rich_club_wu


	
rich_club_wu(CIJ, klevel=None)[source] [https://github.com/FIU-Neuro/brainconn/blob/c24bd15/brainconn/core/core.py#L558]

	
	Parameters

	
	CIJ (NxN numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – weighted undirected connection matrix


	klevel (int | None) – sets the maximum level at which the rich club coefficient will be
calculated. If None (default), the maximum level is set to the
maximum degree of the adjacency matrix






	Returns

	Rw – vector of rich-club coefficients for levels 1 to klevel



	Return type

	Kx1 numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]














          

      

      

    

  

    
      
          
            
  
brainconn.core.score_wu


	
score_wu(CIJ, s)[source] [https://github.com/FIU-Neuro/brainconn/blob/c24bd15/brainconn/core/core.py#L604]

	The s-core is the largest subnetwork comprising nodes of strength at
least s. This function computes the s-core for a given weighted
undirected connection matrix. Computation is analogous to the more
widely used k-core, but is based on node strengths instead of node
degrees.


	Parameters

	
	CIJ (NxN numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – weighted undirected connection matrix


	s (float [https://docs.python.org/3.5/library/functions.html#float]) – level of s-core. Note that can take on any fractional value.






	Returns

	
	CIJscore (NxN numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – connection matrix of the s-core. This matrix contains only nodes with
a strength of at least s.


	sn (int) – size of s-core



















          

      

      

    

  

    
      
          
            
  
brainconn.degree.degrees_dir


	
degrees_dir(CIJ)[source] [https://github.com/FIU-Neuro/brainconn/blob/c24bd15/brainconn/degree/degree.py#L9]

	Node degree is the number of links connected to the node. The indegree
is the number of inward links and the outdegree is the number of
outward links.


	Parameters

	CIJ (NxN numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – directed binary/weighted connection matrix



	Returns

	
	in_degree (Nx1 numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – node in-degree


	out_degree (Nx1 numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – node out-degree


	deg (Nx1 numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – node degree (in-degree + out-degree)










Notes


	Inputs are assumed to be on the columns of the CIJ matrix.

	Weight information is discarded.










Examples using brainconn.degree.degrees_dir


[image: ../_images/sphx_glr_plot_degree_thumb.png]
Calculate degree measures











          

      

      

    

  

    
      
          
            
  
brainconn.degree.degrees_und


	
degrees_und(CIJ)[source] [https://github.com/FIU-Neuro/brainconn/blob/c24bd15/brainconn/degree/degree.py#L41]

	Node degree is the number of links connected to the node.


	Parameters

	CIJ (NxN numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – undirected binary/weighted connection matrix



	Returns

	deg – node degree



	Return type

	Nx1 numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]





Notes

Weight information is discarded.






Examples using brainconn.degree.degrees_und


[image: ../_images/sphx_glr_plot_degree_thumb.png]
Calculate degree measures











          

      

      

    

  

    
      
          
            
  
brainconn.degree.jdegree


	
jdegree(CIJ)[source] [https://github.com/FIU-Neuro/brainconn/blob/c24bd15/brainconn/degree/degree.py#L63]

	This function returns a matrix in which the value of each element (u,v)
corresponds to the number of nodes that have u outgoing connections
and v incoming connections.


	Parameters

	CIJ (NxN numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – directed binary/weighted connnection matrix



	Returns

	
	J (ZxZ numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – joint degree distribution matrix
(shifted by one, replicates matlab one-based-indexing)


	J_od (int) – number of vertices with out_degree>in_degree


	J_id (int) – number of vertices with in_degree>out_degree


	J_bl (int) – number of vertices with in_degree==out_degree










Notes

Weights are discarded.






Examples using brainconn.degree.jdegree


[image: ../_images/sphx_glr_plot_degree_thumb.png]
Calculate degree measures











          

      

      

    

  

    
      
          
            
  
brainconn.degree.strengths_dir


	
strengths_dir(CIJ)[source] [https://github.com/FIU-Neuro/brainconn/blob/c24bd15/brainconn/degree/degree.py#L115]

	Node strength is the sum of weights of links connected to the node. The
instrength is the sum of inward link weights and the outstrength is the
sum of outward link weights.


	Parameters

	CIJ (NxN numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – directed weighted connection matrix



	Returns

	
	is (Nx1 numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – node in-strength


	os (Nx1 numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – node out-strength


	str (Nx1 numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – node strength (in-strength + out-strength)










Notes

Inputs are assumed to be on the columns of the CIJ matrix.






Examples using brainconn.degree.strengths_dir


[image: ../_images/sphx_glr_plot_degree_thumb.png]
Calculate degree measures











          

      

      

    

  

    
      
          
            
  
brainconn.degree.strengths_und


	
strengths_und(CIJ)[source] [https://github.com/FIU-Neuro/brainconn/blob/c24bd15/brainconn/degree/degree.py#L144]

	Node strength is the sum of weights of links connected to the node.


	Parameters

	CIJ (NxN numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – undirected weighted connection matrix



	Returns

	str – node strengths



	Return type

	Nx1 numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]










Examples using brainconn.degree.strengths_und


[image: ../_images/sphx_glr_plot_degree_thumb.png]
Calculate degree measures











          

      

      

    

  

    
      
          
            
  
brainconn.degree.strengths_und_sign


	
strengths_und_sign(W)[source] [https://github.com/FIU-Neuro/brainconn/blob/c24bd15/brainconn/degree/degree.py#L161]

	Node strength is the sum of weights of links connected to the node.


	Parameters

	W (NxN numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – undirected connection matrix with positive and negative weights



	Returns

	
	Spos (Nx1 numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – nodal strength of positive weights


	Sneg (Nx1 numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – nodal strength of positive weights


	vpos (float) – total positive weight


	vneg (float) – total negative weight















Examples using brainconn.degree.strengths_und_sign


[image: ../_images/sphx_glr_plot_degree_thumb.png]
Calculate degree measures











          

      

      

    

  

    
      
          
            
  
brainconn.distance.breadthdist


	
breadthdist(CIJ)[source] [https://github.com/FIU-Neuro/brainconn/blob/c24bd15/brainconn/distance/distance.py#L9]

	The binary reachability matrix describes reachability between all pairs
of nodes. An entry (u,v)=1 means that there exists a path from node u
to node v; alternatively (u,v)=0.

The distance matrix contains lengths of shortest paths between all
pairs of nodes. An entry (u,v) represents the length of shortest path
from node u to  node v. The average shortest path length is the
characteristic path length of the network.


	Parameters

	CIJ (NxN numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – binary directed/undirected connection matrix



	Returns

	
	R (NxN numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – binary reachability matrix


	D (NxN numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – distance matrix










Notes

slower but less memory intensive than “reachdist.m”.










          

      

      

    

  

    
      
          
            
  
brainconn.distance.breadth


	
breadth(CIJ, source)[source] [https://github.com/FIU-Neuro/brainconn/blob/c24bd15/brainconn/distance/distance.py#L47]

	Implementation of breadth-first search.


	Parameters

	
	CIJ (NxN numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – binary directed/undirected connection matrix


	source (int [https://docs.python.org/3.5/library/functions.html#int]) – source vertex






	Returns

	
	distance (Nx1 numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – vector of distances between source and ith vertex (0 for source)


	branch (Nx1 numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – vertex that precedes i in the breadth-first search (-1 for source)










Notes

Breadth-first search tree does not contain all paths (or all
shortest paths), but allows the determination of at least one path with
minimum distance. The entire graph is explored, starting from source
vertex ‘source’.










          

      

      

    

  

    
      
          
            
  
brainconn.distance.charpath


	
charpath(D, include_diagonal=False, include_infinite=True)[source] [https://github.com/FIU-Neuro/brainconn/blob/c24bd15/brainconn/distance/distance.py#L108]

	The characteristic path length is the average shortest path length in
the network. The global efficiency is the average inverse shortest path
length in the network.


	Parameters

	
	D (NxN numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – distance matrix


	include_diagonal (bool [https://docs.python.org/3.5/library/functions.html#bool]) – If True, include the weights on the diagonal. Default value is False.


	include_infinite (bool [https://docs.python.org/3.5/library/functions.html#bool]) – If True, include infinite distances in calculation






	Returns

	
	lambda (float) – characteristic path length


	efficiency (float) – global efficiency


	ecc (Nx1 numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – eccentricity at each vertex


	radius (float) – radius of graph


	diameter (float) – diameter of graph










Notes

The input distance matrix may be obtained with any of the distance
functions, e.g. distance_bin, distance_wei.
Characteristic path length is calculated as the global mean of
the distance matrix D, excludings any ‘Infs’ but including distances on
the main diagonal.










          

      

      

    

  

    
      
          
            
  
brainconn.distance.cycprob


	
cycprob(Pq)[source] [https://github.com/FIU-Neuro/brainconn/blob/c24bd15/brainconn/distance/distance.py#L172]

	Cycles are paths which begin and end at the same node. Cycle
probability for path length d, is the fraction of all paths of length
d-1 that may be extended to form cycles of length d.


	Parameters

	Pq (NxNxQ numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – Path matrix with Pq[i,j,q] = number of paths from i to j of length q.
Produced by findpaths()



	Returns

	
	fcyc (Qx1 numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – fraction of all paths that are cycles for each path length q


	pcyc (Qx1 numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – probability that a non-cyclic path of length q-1 can be extended to
form a cycle of length q for each path length q



















          

      

      

    

  

    
      
          
            
  
brainconn.distance.distance_bin


	
distance_bin(G)[source] [https://github.com/FIU-Neuro/brainconn/blob/c24bd15/brainconn/distance/distance.py#L216]

	The distance matrix contains lengths of shortest paths between all
pairs of nodes. An entry (u,v) represents the length of shortest path
from node u to node v. The average shortest path length is the
characteristic path length of the network.


	Parameters

	A (NxN numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – binary directed/undirected connection matrix



	Returns

	D – distance matrix



	Return type

	NxN





Notes

Lengths between disconnected nodes are set to Inf.
Lengths on the main diagonal are set to 0.
Algorithm: Algebraic shortest paths.










          

      

      

    

  

    
      
          
            
  
brainconn.distance.distance_wei


	
distance_wei(G)[source] [https://github.com/FIU-Neuro/brainconn/blob/c24bd15/brainconn/distance/distance.py#L256]

	The distance matrix contains lengths of shortest paths between all
pairs of nodes. An entry (u,v) represents the length of shortest path
from node u to node v. The average shortest path length is the
characteristic path length of the network.


	Parameters

	L (NxN numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – Directed/undirected connection-length matrix.
NB L is not the adjacency matrix. See below.



	Returns

	
	D (NxN numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – distance (shortest weighted path) matrix


	B (NxN numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – matrix of number of edges in shortest weighted path










Notes

The input matrix must be a connection-length matrix, typically

obtained via a mapping from weight to length. For instance, in a
weighted correlation network higher correlations are more naturally
interpreted as shorter distances and the input matrix should
consequently be some inverse of the connectivity matrix.


The number of edges in shortest weighted paths may in general




exceed the number of edges in shortest binary paths (i.e. shortest
paths computed on the binarized connectivity matrix), because shortest
weighted paths have the minimal weighted distance, but not necessarily
the minimal number of edges.


Lengths between disconnected nodes are set to Inf.
Lengths on the main diagonal are set to 0.




Algorithm: Dijkstra’s algorithm.










          

      

      

    

  

    
      
          
            
  
brainconn.distance.distance_wei_floyd


	
distance_wei_floyd(adjacency, transform=None)[source] [https://github.com/FIU-Neuro/brainconn/blob/c24bd15/brainconn/distance/distance.py#L330]

	Computes the topological length of the shortest possible path connecting
every pair of nodes in the network.


	Parameters

	
	D ((N x N) array_like) – Weighted/unweighted, direct/undirected connection weight/length array


	transform (str [https://docs.python.org/3.5/library/stdtypes.html#str], optional) – If adjacency is a connection weight array, specify a transform to map
input connection weights to connection lengths. Options include [‘log’,
‘inv’], where ‘log’ is -np.log(adjacency) and ‘inv’ is 1/adjacency.
Default: None






	Returns

	
	SPL ((N x N) ndarray) – Weighted/unweighted shortest path-length array. If D is a directed
graph, then SPL is not symmetric


	hops ((N x N) ndarray) – Number of edges in the shortest path array. If D is unweighted, SPL
and hops are identical.


	Pmat ((N x N) ndarray) – Element [i,j] of this array indicates the next node in the shortest
path between i and j. This array is used as an input argument for
function retrieve_shortest_path(), which returns as output the
sequence of nodes comprising the shortest path between a given pair of
nodes.










Notes

There may be more than one shortest path between any pair of nodes in the
network. Non-unique shortest paths are termed shortest path degeneracies
and are most likely to occur in unweighted networks. When the shortest-path
is degenerate, the elements of Pmat correspond to the first shortest path
discovered by the algorithm.

The input array may be either a connection weight or length array. The
connection length array is typically obtained with a mapping from weight to
length, such that higher weights are mapped to shorter lengths (see
argument transform, above).

Originally written in Matlab by Andrea Avena-Koenigsberger (IU, 2012)
[1] [2] [3] [4].

References


	1

	Floyd, R. W. (1962). Algorithm 97: shortest path. Communications of
the ACM, 5(6), 345.



	2

	Roy, B. (1959). Transitivite et connexite. Comptes Rendus
Hebdomadaires Des Seances De L Academie Des Sciences, 249(2),
216-218.



	3

	Warshall, S. (1962). A theorem on boolean matrices. Journal of the
ACM (JACM), 9(1), 11-12.



	4

	https://en.wikipedia.org/wiki/Floyd%E2%80%93Warshall_algorithm














          

      

      

    

  

    
      
          
            
  
brainconn.distance.retrieve_shortest_path


	
retrieve_shortest_path(s, t, hops, Pmat)[source] [https://github.com/FIU-Neuro/brainconn/blob/c24bd15/brainconn/distance/distance.py#L430]

	Returns nodes comprising shortest path between s and t

This function finds the sequence of nodes that comprise the shortest path
between a given source and target node.


	Parameters

	
	s (int [https://docs.python.org/3.5/library/functions.html#int]) – Source node, i.e. node where the shortest path begins


	t (int [https://docs.python.org/3.5/library/functions.html#int]) – Target node, i.e. node where the shortest path ends


	hops ((N x N) array_like) – Number of edges in the path. This array may be obtained as the
second output argument of the function distance_wei_floyd.


	Pmat ((N x N) array_like) – Array whose elements Pmat[k,t] indicate the next node in the shortest
path between nodes k and t. This array may be obtained as the third
output of the function distance_wei_floyd.






	Returns

	path – Nodes (indices) comprising the shortest path between s and t



	Return type

	ndarray





Notes

Originally written in Matlab by Andrea Avena-Koenigsberger and Joaquin Goni
(IU, 2012)










          

      

      

    

  

    
      
          
            
  
brainconn.distance.efficiency_bin


	
efficiency_bin(G, local=False)[source] [https://github.com/FIU-Neuro/brainconn/blob/c24bd15/brainconn/distance/distance.py#L475]

	The global efficiency is the average of inverse shortest path length,
and is inversely related to the characteristic path length.

The local efficiency is the global efficiency computed on the
neighborhood of the node, and is related to the clustering coefficient.


	Parameters

	
	A (NxN numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – binary undirected connection matrix


	local (bool [https://docs.python.org/3.5/library/functions.html#bool]) – If True, computes local efficiency instead of global efficiency.
Default value = False.






	Returns

	
	Eglob (float) – global efficiency, only if local=False


	Eloc (Nx1 numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – local efficiency, only if local=True



















          

      

      

    

  

    
      
          
            
  
brainconn.distance.efficiency_wei


	
efficiency_wei(Gw, local=False)[source] [https://github.com/FIU-Neuro/brainconn/blob/c24bd15/brainconn/distance/distance.py#L540]

	The global efficiency is the average of inverse shortest path length,
and is inversely related to the characteristic path length.

The local efficiency is the global efficiency computed on the
neighborhood of the node, and is related to the clustering coefficient.


	Parameters

	
	W (NxN numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – undirected weighted connection matrix
(all weights in W must be between 0 and 1)


	local (bool [https://docs.python.org/3.5/library/functions.html#bool]) – If True, computes local efficiency instead of global efficiency.
Default value = False.






	Returns

	
	Eglob (float) – global efficiency, only if local=False


	Eloc (Nx1 numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – local efficiency, only if local=True










Notes

The  efficiency is computed using an auxiliary connection-length

matrix L, defined as L_ij = 1/W_ij for all nonzero L_ij; This has an
intuitive interpretation, as higher connection weights intuitively
correspond to shorter lengths.


The weighted local efficiency broadly parallels the weighted




clustering coefficient of Onnela et al. (2005) and distinguishes the
influence of different paths based on connection weights of the
corresponding neighbors to the node in question. In other words, a path
between two neighbors with strong connections to the node in question
contributes more to the local efficiency than a path between two weakly
connected neighbors. Note that this weighted variant of the local
efficiency is hence not a strict generalization of the binary variant.

Algorithm:  Dijkstra’s algorithm










          

      

      

    

  

    
      
          
            
  
brainconn.distance.findpaths


	
findpaths(CIJ, qmax, sources, savepths=False)[source] [https://github.com/FIU-Neuro/brainconn/blob/c24bd15/brainconn/distance/distance.py#L641]

	Paths are sequences of linked nodes, that never visit a single node
more than once. This function finds all paths that start at a set of
source nodes, up to a specified length. Warning: very memory-intensive.


	Parameters

	
	CIJ (NxN numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – binary directed/undirected connection matrix


	qmax (int [https://docs.python.org/3.5/library/functions.html#int]) – maximal path length


	sources (Nx1 numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – source units from which paths are grown


	savepths (bool [https://docs.python.org/3.5/library/functions.html#bool]) – True if all paths are to be collected and returned. This functionality
is currently not enabled.






	Returns

	
	Pq (NxNxQ numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – Path matrix with P[i,j,jq] = number of paths from i to j with length q


	tpath (int) – total number of paths found


	plq (Qx1 numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – path length distribution as a function of q


	qstop (int) – path length at which findpaths is stopped


	allpths (None) – a matrix containing all paths up to qmax. This function is extremely
complicated and reimplementing it in bctpy is not straightforward.


	util (NxQ numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – node use index










Notes

Note that Pq(:,:,N) can only carry entries on the diagonal, as all
“legal” paths of length N-1 must terminate.  Cycles of length N are
possible, with all vertices visited exactly once (except for source and
target). ‘qmax = N’ can wreak havoc (due to memory problems).

Note: Weights are discarded.
Note: I am certain that this algorithm is rather inefficient -
suggestions for improvements are welcome.










          

      

      

    

  

    
      
          
            
  
brainconn.distance.findwalks


	
findwalks(CIJ)[source] [https://github.com/FIU-Neuro/brainconn/blob/c24bd15/brainconn/distance/distance.py#L791]

	Walks are sequences of linked nodes, that may visit a single node more
than once. This function finds the number of walks of a given length,
between any two nodes.


	Parameters

	CIJ (NxN numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – binary directed/undirected connection matrix



	Returns

	
	Wq (NxNxQ numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – Wq[i,j,q] is the number of walks from i to j of length q


	twalk (int) – total number of walks found


	wlq (Qx1 numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – walk length distribution as a function of q










Notes

Wq grows very quickly for larger N,K,q. Weights are discarded.










          

      

      

    

  

    
      
          
            
  
brainconn.distance.mean_first_passage_time


	
mean_first_passage_time(adjacency)[source] [https://github.com/FIU-Neuro/brainconn/blob/c24bd15/brainconn/distance/distance.py#L829]

	Calculates mean first passage time of adjacency

The first passage time from i to j is the expected number of steps it takes
a random walker starting at node i to arrive for the first time at node j.
The mean first passage time is not a symmetric measure: mfpt(i,j) may be
different from mfpt(j,i).


	Parameters

	adjacency ((N x N) array_like) – Weighted/unweighted, direct/undirected connection weight/length array



	Returns

	MFPT – Pairwise mean first passage time array



	Return type

	(N x N) ndarray





References


	1

	Goni, J., Avena-Koenigsberger, A., de Mendizabal, N. V., van den
Heuvel, M. P., Betzel, R. F., & Sporns, O. (2013). Exploring the
morphospace of communication efficiency in complex networks. PLoS One,
8(3), e58070.














          

      

      

    

  

    
      
          
            
  
brainconn.distance.reachdist


	
reachdist(CIJ, ensure_binary=True)[source] [https://github.com/FIU-Neuro/brainconn/blob/c24bd15/brainconn/distance/distance.py#L882]

	The binary reachability matrix describes reachability between all pairs
of nodes. An entry (u,v)=1 means that there exists a path from node u
to node v; alternatively (u,v)=0.

The distance matrix contains lengths of shortest paths between all
pairs of nodes. An entry (u,v) represents the length of shortest path
from node u to  node v. The average shortest path length is the
characteristic path length of the network.


	Parameters

	
	CIJ (NxN numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – binary directed/undirected connection matrix


	ensure_binary (bool [https://docs.python.org/3.5/library/functions.html#bool]) – Binarizes input. Defaults to true. No user who is not testing
something will ever want to not use this, use distance_wei instead for
unweighted matrices.






	Returns

	
	R (NxN numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – binary reachability matrix


	D (NxN numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – distance matrix










Notes

faster but more memory intensive than “breadthdist.m”.










          

      

      

    

  

    
      
          
            
  
brainconn.distance.search_information


	
search_information(adjacency, transform=None, has_memory=False)[source] [https://github.com/FIU-Neuro/brainconn/blob/c24bd15/brainconn/distance/distance.py#L958]

	Calculates search information of adjacency.

Computes the amount of information (measured in bits) that a random walker
needs to follow the shortest path between a given pair of nodes [1] [2].


	Parameters

	
	adjacency ((N x N) array_like) – Weighted/unweighted, direct/undirected connection weight/length array


	transform (str [https://docs.python.org/3.5/library/stdtypes.html#str], optional) – If adjacency is a connection weight array, specify a transform to map
input connection weights to connection lengths. Options include [‘log’,
‘inv’], where ‘log’ is -np.log(adjacency) and ‘inv’ is 1/adjacency.
Default: None


	has_memory (bool [https://docs.python.org/3.5/library/functions.html#bool], optional) – This flag defines whether or not the random walker “remembers” its
previous step, which has the effect of reducing the amount of
information needed to find the next state. Default: False






	Returns

	SI – Pair-wise search information array. Note that SI[i,j] may be
different from SI[j,i]`; hence, SI is not a symmetric matrix even
when adjacency is symmetric.



	Return type

	(N x N) ndarray





References


	1

	Goni, J., van den Heuvel, M. P., Avena-Koenigsberger, A., de
Mendizabal, N. V., Betzel, R. F., Griffa, A., Hagmann, P.,
Corominas-Murtra, B., Thiran, J-P., & Sporns, O. (2014). Resting-brain
functional connectivity predicted by analytic measures of network
communication. Proceedings of the National Academy of Sciences, 111(2),
833-838.



	2

	Rosvall, M., Trusina, A., Minnhagen, P., & Sneppen, K. (2005).
Networks and cities: An information perspective. Physical Review
Letters, 94(2), 028701.














          

      

      

    

  

    
      
          
            
  
brainconn.generative.generative_model


	
generative_model(A, D, m, eta, gamma=None, model_type='matching', model_var='powerlaw', epsilon=1e-06, copy=True)[source] [https://github.com/FIU-Neuro/brainconn/blob/c24bd15/brainconn/generative/generative.py#L12]

	Generates synthetic networks using the models described in
Betzel et al. (2016) Neuroimage. See this paper for more details.

Succinctly, the probability of forming a connection between nodes u and v
is
P(u,v) = E(u,v)**eta * K(u,v)**gamma
where eta and gamma are hyperparameters, E(u,v) is the euclidean or similar
distance measure, and K(u,v) is the algorithm that defines the model.

This describes the power law formulation, an alternative formulation uses
the exponential function
P(u,v) = exp(E(u,v)*eta) * exp(K(u,v)*gamma)


	Parameters

	
	A (numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – Binary network of seed connections


	D (numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – Matrix of euclidean distances or other distances between nodes


	m (int [https://docs.python.org/3.5/library/functions.html#int]) – Number of connections that should be present in the final synthetic
network


	eta (numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – A vector describing a range of values to estimate for eta, the
hyperparameter describing exponential weighting of the euclidean
distance.


	gamma (numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – A vector describing a range of values to estimate for theta, the
hyperparameter describing exponential weighting of the basis
algorithm. If model_type=’euclidean’ or another distance metric,
this can be None.


	model_type (Enum(str [https://docs.python.org/3.5/library/stdtypes.html#str])) – 
	euclideanUses only euclidean distances to generate connection

	probabilities





neighbors : count of common neighbors
matching : matching index, the normalized overlap in neighborhoods
clu-avg : Average clustering coefficient
clu-min : Minimum clustering coefficient
clu-max : Maximum clustering coefficient
clu-diff : Difference in clustering coefficient
clu-prod : Product of clustering coefficient
deg-avg : Average degree
deg-min : Minimum degree
deg-max : Maximum degree
deg-diff : Difference in degree
deg-prod : Product of degrees




	model_var (Enum(str [https://docs.python.org/3.5/library/stdtypes.html#str])) – Default value is powerlaw. If so, uses formulation of P(u,v) as
described above. Alternate value is exponential. If so, uses
P(u,v) = exp(E(u,v)*eta) * exp(K(u,v)*gamma)


	epsilon (float [https://docs.python.org/3.5/library/functions.html#float]) – A small positive value added to all P(u,v). The default value is 1e-6


	copy (bool [https://docs.python.org/3.5/library/functions.html#bool]) – Some algorithms add edges directly to the input matrix. Set this flag
to make a copy of the input matrix instead. Defaults to True.

















          

      

      

    

  

    
      
          
            
  
brainconn.generative.evaluate_generative_model


	
evaluate_generative_model(A, Atgt, D, eta, gamma=None, model_type='matching', model_var='powerlaw', epsilon=1e-06)[source] [https://github.com/FIU-Neuro/brainconn/blob/c24bd15/brainconn/generative/generative.py#L497]

	Generates synthetic networks with parameters provided and evaluates their
energy function. The energy function is defined as in Betzel et al. 2016.
Basically it takes the Kolmogorov-Smirnov statistics of 4 network
measures; comparing the degree distributions, clustering coefficients,
betweenness centrality, and Euclidean distances between connected regions.

The energy is globally low if the synthetic network matches the target.
Energy is defined as the maximum difference across the four statistics.










          

      

      

    

  

    
      
          
            
  
brainconn.modularity.ci2ls


	
ci2ls(ci)[source] [https://github.com/FIU-Neuro/brainconn/blob/c24bd15/brainconn/modularity/modularity.py#L9]

	Convert from a community index vector to a 2D python list of modules
The list is a pure python list, not requiring numpy.


	Parameters

	
	ci (Nx1 numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – the community index vector


	zeroindexed (bool [https://docs.python.org/3.5/library/functions.html#bool]) – If True, ci uses zero-indexing (lowest value is 0). Defaults to False.






	Returns

	ls – pure python list with lowest value zero-indexed
(regardless of zero-indexing parameter)



	Return type

	listof(list [https://docs.python.org/3.5/library/stdtypes.html#list])














          

      

      

    

  

    
      
          
            
  
brainconn.modularity.ls2ci


	
ls2ci(ls, zeroindexed=False)[source] [https://github.com/FIU-Neuro/brainconn/blob/c24bd15/brainconn/modularity/modularity.py#L40]

	Convert from a 2D python list of modules to a community index vector.
The list is a pure python list, not requiring numpy.


	Parameters

	
	ls (listof(list [https://docs.python.org/3.5/library/stdtypes.html#list])) – pure python list with lowest value zero-indexed
(regardless of value of zeroindexed parameter)


	zeroindexed (bool [https://docs.python.org/3.5/library/functions.html#bool]) – If True, ci uses zero-indexing (lowest value is 0). Defaults to False.






	Returns

	ci – community index vector



	Return type

	Nx1 numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]














          

      

      

    

  

    
      
          
            
  
brainconn.modularity.community_louvain


	
community_louvain(W, gamma=1, ci=None, B='modularity', seed=None)[source] [https://github.com/FIU-Neuro/brainconn/blob/c24bd15/brainconn/modularity/modularity.py#L69]

	The optimal community structure is a subdivision of the network into
nonoverlapping groups of nodes which maximizes the number of within-group
edges and minimizes the number of between-group edges.

This function is a fast an accurate multi-iterative generalization of the
louvain community detection algorithm. This function subsumes and improves
upon modularity_[louvain,finetune]_[und,dir]() and additionally allows to
optimize other objective functions (includes built-in Potts Model i
Hamiltonian, allows for custom objective-function matrices).


	Parameters

	
	W (NxN np.array) – directed/undirected weighted/binary adjacency matrix


	gamma (float [https://docs.python.org/3.5/library/functions.html#float]) – resolution parameter. default value=1. Values 0 <= gamma < 1 detect
larger modules while gamma > 1 detects smaller modules.
ignored if an objective function matrix is specified.


	ci (Nx1 np.arraylike) – initial community affiliation vector. default value=None


	B (str | NxN np.arraylike) – string describing objective function type, or provides a custom
NxN objective-function matrix. builtin values


’modularity’ uses Q-metric as objective function
‘potts’ uses Potts model Hamiltonian.
‘negative_sym’ symmetric treatment of negative weights
‘negative_asym’ asymmetric treatment of negative weights







	seed (int | None) – random seed. default value=None. if None, seeds from /dev/urandom.






	Returns

	
	ci (Nx1 np.array) – final community structure


	q (float) – optimized q-statistic (modularity only)



















          

      

      

    

  

    
      
          
            
  
brainconn.modularity.link_communities


	
link_communities(W, type_clustering='single')[source] [https://github.com/FIU-Neuro/brainconn/blob/c24bd15/brainconn/modularity/modularity.py#L239]

	The optimal community structure is a subdivision of the network into
nonoverlapping groups of nodes which maximizes the number of within-group
edges and minimizes the number of between-group edges.

This algorithm uncovers overlapping community structure via hierarchical
clustering of network links. This algorithm is generalized for
weighted/directed/fully-connected networks


	Parameters

	
	W (NxN np.array) – directed weighted/binary adjacency matrix


	type_clustering (str [https://docs.python.org/3.5/library/stdtypes.html#str]) – type of hierarchical clustering. ‘single’ for single-linkage,
‘complete’ for complete-linkage. Default value=’single’






	Returns

	M – nodal community affiliation matrix.



	Return type

	CxN numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]














          

      

      

    

  

    
      
          
            
  
brainconn.modularity.modularity_dir


	
modularity_dir(A, gamma=1, kci=None)[source] [https://github.com/FIU-Neuro/brainconn/blob/c24bd15/brainconn/modularity/modularity.py#L455]

	The optimal community structure is a subdivision of the network into
nonoverlapping groups of nodes in a way that maximizes the number of
within-group edges, and minimizes the number of between-group edges.
The modularity is a statistic that quantifies the degree to which the
network may be subdivided into such clearly delineated groups.


	Parameters

	
	W (NxN numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – directed weighted/binary connection matrix


	gamma (float [https://docs.python.org/3.5/library/functions.html#float]) – resolution parameter. default value=1. Values 0 <= gamma < 1 detect
larger modules while gamma > 1 detects smaller modules.


	kci (Nx1 numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] | None) – starting community structure. If specified, calculates the Q-metric
on the community structure giving, without doing any optimzation.
Otherwise, if not specified, uses a spectral modularity maximization
algorithm.






	Returns

	
	ci (Nx1 numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – optimized community structure


	Q (float) – maximized modularity metric










Notes

This algorithm is deterministic. The matlab function bearing this
name incorrectly disclaims that the outcome depends on heuristics
involving a random seed. The louvain method does depend on a random seed,
but this function uses a deterministic modularity maximization algorithm.










          

      

      

    

  

    
      
          
            
  
brainconn.modularity.modularity_finetune_dir


	
modularity_finetune_dir(W, ci=None, gamma=1, seed=None)[source] [https://github.com/FIU-Neuro/brainconn/blob/c24bd15/brainconn/modularity/modularity.py#L557]

	The optimal community structure is a subdivision of the network into
nonoverlapping groups of nodes in a way that maximizes the number of
within-group edges, and minimizes the number of between-group edges.
The modularity is a statistic that quantifies the degree to which the
network may be subdivided into such clearly delineated groups.

This algorithm is inspired by the Kernighan-Lin fine-tuning algorithm
and is designed to refine a previously detected community structure.


	Parameters

	
	W (NxN numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – directed weighted/binary connection matrix


	ci (Nx1 numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] | None) – initial community affiliation vector


	gamma (float [https://docs.python.org/3.5/library/functions.html#float]) – resolution parameter. default value=1. Values 0 <= gamma < 1 detect
larger modules while gamma > 1 detects smaller modules.


	seed (int | None) – random seed. default value=None. if None, seeds from /dev/urandom.






	Returns

	
	ci (Nx1 numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – refined community affiliation vector


	Q (float) – optimized modularity metric










Notes

Ci and Q may vary from run to run, due to heuristics in the
algorithm. Consequently, it may be worth to compare multiple runs.










          

      

      

    

  

    
      
          
            
  
brainconn.modularity.modularity_finetune_und


	
modularity_finetune_und(W, ci=None, gamma=1, seed=None)[source] [https://github.com/FIU-Neuro/brainconn/blob/c24bd15/brainconn/modularity/modularity.py#L658]

	The optimal community structure is a subdivision of the network into
nonoverlapping groups of nodes in a way that maximizes the number of
within-group edges, and minimizes the number of between-group edges.
The modularity is a statistic that quantifies the degree to which the
network may be subdivided into such clearly delineated groups.

This algorithm is inspired by the Kernighan-Lin fine-tuning algorithm
and is designed to refine a previously detected community structure.


	Parameters

	
	W (NxN numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – undirected weighted/binary connection matrix


	ci (Nx1 numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] | None) – initial community affiliation vector


	gamma (float [https://docs.python.org/3.5/library/functions.html#float]) – resolution parameter. default value=1. Values 0 <= gamma < 1 detect
larger modules while gamma > 1 detects smaller modules.


	seed (int | None) – random seed. default value=None. if None, seeds from /dev/urandom.






	Returns

	
	ci (Nx1 numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – refined community affiliation vector


	Q (float) – optimized modularity metric










Notes

Ci and Q may vary from run to run, due to heuristics in the
algorithm. Consequently, it may be worth to compare multiple runs.










          

      

      

    

  

    
      
          
            
  
brainconn.modularity.modularity_finetune_und_sign


	
modularity_finetune_und_sign(W, qtype='sta', gamma=1, ci=None, seed=None)[source] [https://github.com/FIU-Neuro/brainconn/blob/c24bd15/brainconn/modularity/modularity.py#L755]

	The optimal community structure is a subdivision of the network into
nonoverlapping groups of nodes in a way that maximizes the number of
within-group edges, and minimizes the number of between-group edges.
The modularity is a statistic that quantifies the degree to which the
network may be subdivided into such clearly delineated groups.

This algorithm is inspired by the Kernighan-Lin fine-tuning algorithm
and is designed to refine a previously detected community structure.


	Parameters

	
	W (NxN numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – undirected weighted/binary connection matrix with positive and
negative weights.


	qtype (str [https://docs.python.org/3.5/library/stdtypes.html#str]) – modularity type. Can be ‘sta’ (default), ‘pos’, ‘smp’, ‘gja’, ‘neg’.
See Rubinov and Sporns (2011) for a description.


	gamma (float [https://docs.python.org/3.5/library/functions.html#float]) – resolution parameter. default value=1. Values 0 <= gamma < 1 detect
larger modules while gamma > 1 detects smaller modules.


	ci (Nx1 numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] | None) – initial community affiliation vector


	seed (int | None) – random seed. default value=None. if None, seeds from /dev/urandom.






	Returns

	
	ci (Nx1 numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – refined community affiliation vector


	Q (float) – optimized modularity metric










Notes

Ci and Q may vary from run to run, due to heuristics in the
algorithm. Consequently, it may be worth to compare multiple runs.










          

      

      

    

  

    
      
          
            
  
brainconn.modularity.modularity_louvain_dir


	
modularity_louvain_dir(W, gamma=1, hierarchy=False, seed=None)[source] [https://github.com/FIU-Neuro/brainconn/blob/c24bd15/brainconn/modularity/modularity.py#L888]

	The optimal community structure is a subdivision of the network into
nonoverlapping groups of nodes in a way that maximizes the number of
within-group edges, and minimizes the number of between-group edges.
The modularity is a statistic that quantifies the degree to which the
network may be subdivided into such clearly delineated groups.

The Louvain algorithm is a fast and accurate community detection
algorithm (as of writing). The algorithm may also be used to detect
hierarchical community structure.


	Parameters

	
	W (NxN numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – directed weighted/binary connection matrix


	gamma (float [https://docs.python.org/3.5/library/functions.html#float]) – resolution parameter. default value=1. Values 0 <= gamma < 1 detect
larger modules while gamma > 1 detects smaller modules.


	hierarchy (bool [https://docs.python.org/3.5/library/functions.html#bool]) – Enables hierarchical output. Defalut value=False


	seed (int | None) – random seed. default value=None. if None, seeds from /dev/urandom.






	Returns

	
	ci (Nx1 numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – refined community affiliation vector. If hierarchical output enabled,
it is an NxH numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] instead with multiple iterations


	Q (float) – optimized modularity metric. If hierarchical output enabled, becomes
an Hx1 array of floats instead.










Notes

Ci and Q may vary from run to run, due to heuristics in the
algorithm. Consequently, it may be worth to compare multiple runs.










          

      

      

    

  

    
      
          
            
  
brainconn.modularity.modularity_louvain_und


	
modularity_louvain_und(W, gamma=1, hierarchy=False, seed=None)[source] [https://github.com/FIU-Neuro/brainconn/blob/c24bd15/brainconn/modularity/modularity.py#L1016]

	The optimal community structure is a subdivision of the network into
nonoverlapping groups of nodes in a way that maximizes the number of
within-group edges, and minimizes the number of between-group edges.
The modularity is a statistic that quantifies the degree to which the
network may be subdivided into such clearly delineated groups.

The Louvain algorithm is a fast and accurate community detection
algorithm (as of writing). The algorithm may also be used to detect
hierarchical community structure.


	Parameters

	
	W (NxN numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – undirected weighted/binary connection matrix


	gamma (float [https://docs.python.org/3.5/library/functions.html#float]) – resolution parameter. default value=1. Values 0 <= gamma < 1 detect
larger modules while gamma > 1 detects smaller modules.


	hierarchy (bool [https://docs.python.org/3.5/library/functions.html#bool]) – Enables hierarchical output. Defalut value=False


	seed (int | None) – random seed. default value=None. if None, seeds from /dev/urandom.






	Returns

	
	ci (Nx1 numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – refined community affiliation vector. If hierarchical output enabled,
it is an NxH numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] instead with multiple iterations


	Q (float) – optimized modularity metric. If hierarchical output enabled, becomes
an Hx1 array of floats instead.










Notes

Ci and Q may vary from run to run, due to heuristics in the
algorithm. Consequently, it may be worth to compare multiple runs.










          

      

      

    

  

    
      
          
            
  
brainconn.modularity.modularity_louvain_und_sign


	
modularity_louvain_und_sign(W, gamma=1, qtype='sta', seed=None)[source] [https://github.com/FIU-Neuro/brainconn/blob/c24bd15/brainconn/modularity/modularity.py#L1146]

	The optimal community structure is a subdivision of the network into
nonoverlapping groups of nodes in a way that maximizes the number of
within-group edges, and minimizes the number of between-group edges.
The modularity is a statistic that quantifies the degree to which the
network may be subdivided into such clearly delineated groups.

The Louvain algorithm is a fast and accurate community detection
algorithm (at the time of writing).

Use this function as opposed to modularity_louvain_und() only if the
network contains a mix of positive and negative weights.  If the network
contains all positive weights, the output will be equivalent to that of
modularity_louvain_und().


	Parameters

	
	W (NxN numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – undirected weighted/binary connection matrix with positive and
negative weights


	qtype (str [https://docs.python.org/3.5/library/stdtypes.html#str]) – modularity type. Can be ‘sta’ (default), ‘pos’, ‘smp’, ‘gja’, ‘neg’.
See Rubinov and Sporns (2011) for a description.


	gamma (float [https://docs.python.org/3.5/library/functions.html#float]) – resolution parameter. default value=1. Values 0 <= gamma < 1 detect
larger modules while gamma > 1 detects smaller modules.


	seed (int | None) – random seed. default value=None. if None, seeds from /dev/urandom.






	Returns

	
	ci (Nx1 numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – refined community affiliation vector


	Q (float) – optimized modularity metric










Notes

Ci and Q may vary from run to run, due to heuristics in the
algorithm. Consequently, it may be worth to compare multiple runs.










          

      

      

    

  

    
      
          
            
  
brainconn.modularity.modularity_probtune_und_sign


	
modularity_probtune_und_sign(W, qtype='sta', gamma=1, ci=None, p=0.45, seed=None)[source] [https://github.com/FIU-Neuro/brainconn/blob/c24bd15/brainconn/modularity/modularity.py#L1311]

	The optimal community structure is a subdivision of the network into
nonoverlapping groups of nodes in a way that maximizes the number of
within-group edges, and minimizes the number of between-group edges.
The modularity is a statistic that quantifies the degree to which the
network may be subdivided into such clearly delineated groups.
High-modularity degeneracy is the presence of many topologically
distinct high-modularity partitions of the network.

This algorithm is inspired by the Kernighan-Lin fine-tuning algorithm
and is designed to probabilistically refine a previously detected
community by incorporating random node moves into a finetuning
algorithm.


	Parameters

	
	W (NxN numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – undirected weighted/binary connection matrix with positive and
negative weights


	qtype (str [https://docs.python.org/3.5/library/stdtypes.html#str]) – modularity type. Can be ‘sta’ (default), ‘pos’, ‘smp’, ‘gja’, ‘neg’.
See Rubinov and Sporns (2011) for a description.


	gamma (float [https://docs.python.org/3.5/library/functions.html#float]) – resolution parameter. default value=1. Values 0 <= gamma < 1 detect
larger modules while gamma > 1 detects smaller modules.


	ci (Nx1 numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] | None) – initial community affiliation vector


	p (float [https://docs.python.org/3.5/library/functions.html#float]) – probability of random node moves. Default value = 0.45


	seed (int | None) – random seed. default value=None. if None, seeds from /dev/urandom.






	Returns

	
	ci (Nx1 numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – refined community affiliation vector


	Q (float) – optimized modularity metric










Notes

Ci and Q may vary from run to run, due to heuristics in the
algorithm. Consequently, it may be worth to compare multiple runs.










          

      

      

    

  

    
      
          
            
  
brainconn.modularity.modularity_und


	
modularity_und(A, gamma=1, kci=None)[source] [https://github.com/FIU-Neuro/brainconn/blob/c24bd15/brainconn/modularity/modularity.py#L1445]

	The optimal community structure is a subdivision of the network into
nonoverlapping groups of nodes in a way that maximizes the number of
within-group edges, and minimizes the number of between-group edges.
The modularity is a statistic that quantifies the degree to which the
network may be subdivided into such clearly delineated groups.


	Parameters

	
	W (NxN numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – undirected weighted/binary connection matrix


	gamma (float [https://docs.python.org/3.5/library/functions.html#float]) – resolution parameter. default value=1. Values 0 <= gamma < 1 detect
larger modules while gamma > 1 detects smaller modules.


	kci (Nx1 numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] | None) – starting community structure. If specified, calculates the Q-metric
on the community structure giving, without doing any optimzation.
Otherwise, if not specified, uses a spectral modularity maximization
algorithm.






	Returns

	
	ci (Nx1 numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – optimized community structure


	Q (float) – maximized modularity metric










Notes

This algorithm is deterministic. The matlab function bearing this
name incorrectly disclaims that the outcome depends on heuristics
involving a random seed. The louvain method does depend on a random seed,
but this function uses a deterministic modularity maximization algorithm.










          

      

      

    

  

    
      
          
            
  
brainconn.modularity.modularity_und_sign


	
modularity_und_sign(W, ci, qtype='sta')[source] [https://github.com/FIU-Neuro/brainconn/blob/c24bd15/brainconn/modularity/modularity.py#L1547]

	This function simply calculates the signed modularity for a given
partition. It does not do automatic partition generation right now.


	Parameters

	
	W (NxN numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – undirected weighted/binary connection matrix with positive and
negative weights


	ci (Nx1 numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – community partition


	qtype (str [https://docs.python.org/3.5/library/stdtypes.html#str]) – modularity type. Can be ‘sta’ (default), ‘pos’, ‘smp’, ‘gja’, ‘neg’.
See Rubinov and Sporns (2011) for a description.






	Returns

	
	ci (Nx1 numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – the partition which was input (for consistency of the API)


	Q (float) – maximized modularity metric










Notes

uses a deterministic algorithm










          

      

      

    

  

    
      
          
            
  
brainconn.modularity.partition_distance


	
partition_distance(cx, cy)[source] [https://github.com/FIU-Neuro/brainconn/blob/c24bd15/brainconn/modularity/modularity.py#L1628]

	This function quantifies the distance between pairs of community
partitions with information theoretic measures.


	Parameters

	
	cx (Nx1 numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – community affiliation vector X


	cy (Nx1 numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – community affiliation vector Y






	Returns

	
	VIn (Nx1 numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – normalized variation of information


	MIn (Nx1 numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – normalized mutual information










Notes


	(Definitions:

	VIn = [H(X) + H(Y) - 2MI(X,Y)]/log(n)
MIn = 2MI(X,Y)/[H(X)+H(Y)]





where H is entropy, MI is mutual information and n is number of nodes)










          

      

      

    

  

    
      
          
            
  
brainconn.motifs.find_motif34


	
find_motif34(m, n=None)[source] [https://github.com/FIU-Neuro/brainconn/blob/c24bd15/brainconn/motifs/motifs.py#L13]

	This function returns all motif isomorphs for a given motif id and
class (3 or 4). The function also returns the motif id for a given
motif matrix


	
	Input:       Motif_id,           e.g. 1 to 13, if class is 3

	Motif_class,        number of nodes, 3 or 4.









Output:      Motif_matrices,     all isomorphs for the given motif

2. Input:       Motif_matrix        e.g. [0 1 0; 0 0 1; 1 0 0]
Output       Motif_id            e.g. 1 to 13, if class is 3


	Parameters

	
	m (int | matrix) – In use case 1, a motif_id which is an integer.
In use case 2, the entire matrix of the motif
(e.g. [0 1 0; 0 0 1; 1 0 0])


	n (int | None) – In use case 1, the motif class, which is the number of nodes. This is
either 3 or 4.
In use case 2, None.






	Returns

	M – In use case 1, returns all isomorphs for the given motif
In use case 2, returns the motif_id for the specified motif matrix



	Return type

	numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] | int














          

      

      

    

  

    
      
          
            
  
brainconn.motifs.make_motif34lib


	
make_motif34lib()[source] [https://github.com/FIU-Neuro/brainconn/blob/c24bd15/brainconn/motifs/motifs.py#L83]

	This function generates the motif34lib.mat library required for all
other motif computations. Not to be called externally.










          

      

      

    

  

    
      
          
            
  
brainconn.motifs.motif3funct_bin


	
motif3funct_bin(A)[source] [https://github.com/FIU-Neuro/brainconn/blob/c24bd15/brainconn/motifs/motifs.py#L188]

	Functional motifs are subsets of connection patterns embedded within
anatomical motifs. Motif frequency is the frequency of occurrence of
motifs around a node.


	Parameters

	A (NxN numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – binary directed connection matrix



	Returns

	
	F (13xN numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – motif frequency matrix


	f (13x1 numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – motif frequency vector (averaged over all nodes)



















          

      

      

    

  

    
      
          
            
  
brainconn.motifs.motif3funct_wei


	
motif3funct_wei(W)[source] [https://github.com/FIU-Neuro/brainconn/blob/c24bd15/brainconn/motifs/motifs.py#L257]

	Functional motifs are subsets of connection patterns embedded within
anatomical motifs. Motif frequency is the frequency of occurrence of
motifs around a node. Motif intensity and coherence are weighted
generalizations of motif frequency.


	Parameters

	W (NxN numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – weighted directed connection matrix (all weights between 0 and 1)



	Returns

	
	I (13xN numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – motif intensity matrix


	Q (13xN numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – motif coherence matrix


	F (13xN numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – motif frequency matrix










Notes

Average intensity and coherence are given by I./F and Q./F.










          

      

      

    

  

    
      
          
            
  
brainconn.motifs.motif3struct_bin


	
motif3struct_bin(A)[source] [https://github.com/FIU-Neuro/brainconn/blob/c24bd15/brainconn/motifs/motifs.py#L351]

	Structural motifs are patterns of local connectivity. Motif frequency
is the frequency of occurrence of motifs around a node.


	Parameters

	A (NxN numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – binary directed connection matrix



	Returns

	
	F (13xN numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – motif frequency matrix


	f (13x1 numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – motif frequency vector (averaged over all nodes)



















          

      

      

    

  

    
      
          
            
  
brainconn.motifs.motif3struct_wei


	
motif3struct_wei(W)[source] [https://github.com/FIU-Neuro/brainconn/blob/c24bd15/brainconn/motifs/motifs.py#L405]

	Structural motifs are patterns of local connectivity. Motif frequency
is the frequency of occurrence of motifs around a node. Motif intensity
and coherence are weighted generalizations of motif frequency.


	Parameters

	W (NxN numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – weighted directed connection matrix (all weights between 0 and 1)



	Returns

	
	I (13xN numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – motif intensity matrix


	Q (13xN numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – motif coherence matrix


	F (13xN numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – motif frequency matrix










Notes

Average intensity and coherence are given by I./F and Q./F.










          

      

      

    

  

    
      
          
            
  
brainconn.motifs.motif4funct_bin


	
motif4funct_bin(A)[source] [https://github.com/FIU-Neuro/brainconn/blob/c24bd15/brainconn/motifs/motifs.py#L487]

	Functional motifs are subsets of connection patterns embedded within
anatomical motifs. Motif frequency is the frequency of occurrence of
motifs around a node.


	Parameters

	A (NxN numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – binary directed connection matrix



	Returns

	
	F (199xN numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – motif frequency matrix


	f (199x1 numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – motif frequency vector (averaged over all nodes)



















          

      

      

    

  

    
      
          
            
  
brainconn.motifs.motif4funct_wei


	
motif4funct_wei(W)[source] [https://github.com/FIU-Neuro/brainconn/blob/c24bd15/brainconn/motifs/motifs.py#L567]

	Functional motifs are subsets of connection patterns embedded within
anatomical motifs. Motif frequency is the frequency of occurrence of
motifs around a node. Motif intensity and coherence are weighted
generalizations of motif frequency.


	Parameters

	W (NxN numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – weighted directed connection matrix (all weights between 0 and 1)



	Returns

	
	I (199xN numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – motif intensity matrix


	Q (199xN numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – motif coherence matrix


	F (199xN numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – motif frequency matrix










Notes

Average intensity and coherence are given by I./F and Q./F.










          

      

      

    

  

    
      
          
            
  
brainconn.motifs.motif4struct_bin


	
motif4struct_bin(A)[source] [https://github.com/FIU-Neuro/brainconn/blob/c24bd15/brainconn/motifs/motifs.py#L677]

	Structural motifs are patterns of local connectivity. Motif frequency
is the frequency of occurrence of motifs around a node.


	Parameters

	A (NxN numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – binary directed connection matrix



	Returns

	
	F (199xN numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – motif frequency matrix


	f (199x1 numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – motif frequency vector (averaged over all nodes)



















          

      

      

    

  

    
      
          
            
  
brainconn.motifs.motif4struct_wei


	
motif4struct_wei(W)[source] [https://github.com/FIU-Neuro/brainconn/blob/c24bd15/brainconn/motifs/motifs.py#L747]

	Structural motifs are patterns of local connectivity. Motif frequency
is the frequency of occurrence of motifs around a node. Motif intensity
and coherence are weighted generalizations of motif frequency.


	Parameters

	W (NxN numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – weighted directed connection matrix (all weights between 0 and 1)



	Returns

	
	I (199xN numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – motif intensity matrix


	Q (199xN numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – motif coherence matrix


	F (199xN numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – motif frequency matrix










Notes

Average intensity and coherence are given by I./F and Q./F.










          

      

      

    

  

    
      
          
            
  
brainconn.physical_connectivity.density_dir


	
density_dir(CIJ)[source] [https://github.com/FIU-Neuro/brainconn/blob/c24bd15/brainconn/physical_connectivity/physical_connectivity.py#L8]

	Density is the fraction of present connections to possible connections.


	Parameters

	CIJ (NxN numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – directed weighted/binary connection matrix



	Returns

	
	kden (float) – density


	N (int) – number of vertices


	k (int) – number of edges










Notes

Assumes CIJ is directed and has no self-connections.
Weight information is discarded.










          

      

      

    

  

    
      
          
            
  
brainconn.physical_connectivity.density_und


	
density_und(CIJ)[source] [https://github.com/FIU-Neuro/brainconn/blob/c24bd15/brainconn/physical_connectivity/physical_connectivity.py#L37]

	Density is the fraction of present connections to possible connections.


	Parameters

	CIJ (NxN numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – undirected (weighted/binary) connection matrix



	Returns

	
	kden (float) – density


	N (int) – number of vertices


	k (int) – number of edges










Notes


	Assumes CIJ is undirected and has no self-connections.

	Weight information is discarded.














          

      

      

    

  

    
      
          
            
  
brainconn.physical_connectivity.rentian_scaling


	
rentian_scaling(A, xyz, n)[source] [https://github.com/FIU-Neuro/brainconn/blob/c24bd15/brainconn/physical_connectivity/physical_connectivity.py#L66]

	Physical Rentian scaling (or more simply Rentian scaling) is a property
of systems that are cost-efficiently embedded into physical space. It is
what is called a “topo-physical” property because it combines information
regarding the topological organization of the graph with information
about the physical placement of connections. Rentian scaling is present
in very large scale integrated circuits, the C. elegans neuronal network,
and morphometric and diffusion-based graphs of human anatomical networks.
Rentian scaling is determined by partitioning the system into cubes,
counting the number of nodes inside of each cube (N), and the number of
edges traversing the boundary of each cube (E). If the system displays
Rentian scaling, these two variables N and E will scale with one another
in loglog space. The Rent’s exponent is given by the slope of log10(E)
vs. log10(N), and can be reported alone or can be compared to the
theoretical minimum Rent’s exponent to determine how cost efficiently the
network has been embedded into physical space. Note: if a system displays
Rentian scaling, it does not automatically mean that the system is
cost-efficiently embedded (although it does suggest that). Validation
occurs when comparing to the theoretical minimum Rent’s exponent for that
system.


	Parameters

	
	A (NxN numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – unweighted, binary, symmetric adjacency matrix


	xyz (Nx3 numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – vector of node placement coordinates


	n (int [https://docs.python.org/3.5/library/functions.html#int]) – Number of partitions to compute. Each partition is a data point; you
want a large enough number to adequately compute Rent’s exponent.






	Returns

	
	N (Mx1 numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – Number of nodes in each of the M partitions


	E (Mx1 numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray])










Notes

Subsequent Analysis:
Rentian scaling plots are then created by: figure; loglog(E,N,’*’);
To determine the Rent’s exponent, p, it is important not to use
partitions which may
be affected by boundary conditions. In Bassett et al. 2010 PLoS CB, only
partitions with N<M/2 were used in the estimation of the Rent’s exponent.
Thus, we can define N_prime = N(find(N<M/2)) and
E_prime = E(find(N<M/2)).
Next we need to determine the slope of Eprime vs. Nprime in loglog space,
which is the Rent’s
exponent. There are many ways of doing this with more or less statistical
rigor. Robustfit in MATLAB is one such option:


[b,stats] = robustfit(log10(N_prime),log10(E_prime))




Then the Rent’s exponent is b(1,2) and the standard error of the
estimation is given by stats.se(1,2).

Note: n=5000 was used in Bassett et al. 2010 in PLoS CB.










          

      

      

    

  

    
      
          
            
  
brainconn.reference.latmio_dir_connected


	
latmio_dir_connected(R, itr, D=None)[source] [https://github.com/FIU-Neuro/brainconn/blob/c24bd15/brainconn/reference/reference.py#L11]

	This function “latticizes” a directed network, while preserving the in-
and out-degree distributions. In weighted networks, the function
preserves the out-strength but not the in-strength distributions. The
function also ensures that the randomized network maintains
connectedness, the ability for every node to reach every other node in
the network. The input network for this function must be connected.


	Parameters

	
	R (NxN numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – directed binary/weighted connection matrix


	itr (int [https://docs.python.org/3.5/library/functions.html#int]) – rewiring parameter. Each edge is rewired approximately itr times.


	D (numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] | None) – distance-to-diagonal matrix. Defaults to the actual distance matrix
if not specified.






	Returns

	
	Rlatt (NxN numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – latticized network in original node ordering


	Rrp (NxN numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – latticized network in node ordering used for latticization


	ind_rp (Nx1 numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – node ordering used for latticization


	eff (int) – number of actual rewirings carried out



















          

      

      

    

  

    
      
          
            
  
brainconn.reference.latmio_dir


	
latmio_dir(R, itr, D=None)[source] [https://github.com/FIU-Neuro/brainconn/blob/c24bd15/brainconn/reference/reference.py#L132]

	This function “latticizes” a directed network, while preserving the in-
and out-degree distributions. In weighted networks, the function
preserves the out-strength but not the in-strength distributions.


	Parameters

	
	R (NxN numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – directed binary/weighted connection matrix


	itr (int [https://docs.python.org/3.5/library/functions.html#int]) – rewiring parameter. Each edge is rewired approximately itr times.


	D (numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] | None) – distance-to-diagonal matrix. Defaults to the actual distance matrix
if not specified.






	Returns

	
	Rlatt (NxN numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – latticized network in original node ordering


	Rrp (NxN numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – latticized network in node ordering used for latticization


	ind_rp (Nx1 numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – node ordering used for latticization


	eff (int) – number of actual rewirings carried out



















          

      

      

    

  

    
      
          
            
  
brainconn.reference.latmio_und_connected


	
latmio_und_connected(R, itr, D=None)[source] [https://github.com/FIU-Neuro/brainconn/blob/c24bd15/brainconn/reference/reference.py#L224]

	This function “latticizes” an undirected network, while preserving the
degree distribution. The function does not preserve the strength
distribution in weighted networks. The function also ensures that the
randomized network maintains connectedness, the ability for every node
to reach every other node in the network. The input network for this
function must be connected.


	Parameters

	
	R (NxN numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – undirected binary/weighted connection matrix


	itr (int [https://docs.python.org/3.5/library/functions.html#int]) – rewiring parameter. Each edge is rewired approximately itr times.


	D (numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] | None) – distance-to-diagonal matrix. Defaults to the actual distance matrix
if not specified.






	Returns

	
	Rlatt (NxN numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – latticized network in original node ordering


	Rrp (NxN numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – latticized network in node ordering used for latticization


	ind_rp (Nx1 numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – node ordering used for latticization


	eff (int) – number of actual rewirings carried out



















          

      

      

    

  

    
      
          
            
  
brainconn.reference.latmio_und


	
latmio_und(R, itr, D=None)[source] [https://github.com/FIU-Neuro/brainconn/blob/c24bd15/brainconn/reference/reference.py#L357]

	This function “latticizes” an undirected network, while preserving the
degree distribution. The function does not preserve the strength
distribution in weighted networks.


	Parameters

	
	R (NxN numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – undirected binary/weighted connection matrix


	itr (int [https://docs.python.org/3.5/library/functions.html#int]) – rewiring parameter. Each edge is rewired approximately itr times.


	D (numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] | None) – distance-to-diagonal matrix. Defaults to the actual distance matrix
if not specified.






	Returns

	
	Rlatt (NxN numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – latticized network in original node ordering


	Rrp (NxN numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – latticized network in node ordering used for latticization


	ind_rp (Nx1 numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – node ordering used for latticization


	eff (int) – number of actual rewirings carried out



















          

      

      

    

  

    
      
          
            
  
brainconn.reference.makeevenCIJ


	
makeevenCIJ(n, k, sz_cl)[source] [https://github.com/FIU-Neuro/brainconn/blob/c24bd15/brainconn/reference/reference.py#L459]

	This function generates a random, directed network with a specified
number of fully connected modules linked together by evenly distributed
remaining random connections.


	Parameters

	
	N (int [https://docs.python.org/3.5/library/functions.html#int]) – number of vertices (must be power of 2)


	K (int [https://docs.python.org/3.5/library/functions.html#int]) – number of edges


	sz_cl (int [https://docs.python.org/3.5/library/functions.html#int]) – size of clusters (must be power of 2)






	Returns

	CIJ – connection matrix



	Return type

	NxN numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]





Notes


	N must be a power of 2.

	A warning is generated if all modules contain more edges than K.
Cluster size is 2^sz_cl;














          

      

      

    

  

    
      
          
            
  
brainconn.reference.makefractalCIJ


	
makefractalCIJ(mx_lvl, E, sz_cl)[source] [https://github.com/FIU-Neuro/brainconn/blob/c24bd15/brainconn/reference/reference.py#L533]

	This function generates a directed network with a hierarchical modular
organization. All modules are fully connected and connection density
decays as 1/(E^n), with n = index of hierarchical level.


	Parameters

	
	mx_lvl (int [https://docs.python.org/3.5/library/functions.html#int]) – number of hierarchical levels, N = 2^mx_lvl


	E (int [https://docs.python.org/3.5/library/functions.html#int]) – connection density fall off per level


	sz_cl (int [https://docs.python.org/3.5/library/functions.html#int]) – size of clusters (must be power of 2)






	Returns

	
	CIJ (NxN numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – connection matrix


	K (int) – number of connections present in output CIJ



















          

      

      

    

  

    
      
          
            
  
brainconn.reference.makerandCIJdegreesfixed


	
makerandCIJdegreesfixed(inv, outv)[source] [https://github.com/FIU-Neuro/brainconn/blob/c24bd15/brainconn/reference/reference.py#L588]

	This function generates a directed random network with a specified
in-degree and out-degree sequence.


	Parameters

	
	inv (Nx1 numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – in-degree vector


	outv (Nx1 numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – out-degree vector






	Returns

	CIJ



	Return type

	NxN numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]





Notes


	Necessary conditions include:

	
length(in) = length(out) = n
sum(in) = sum(out) = k
in(i), out(i) < n-1
in(i) + out(j) < n+2
in(i) + out(i) < n




No connections are placed on the main diagonal

The algorithm used in this function is not, technically, guaranteed to
terminate. If a valid distribution of in and out degrees is provided,
this function will find it in bounded time with probability
1-(1/(2*(k^2))). This turns out to be a serious problem when
computing infinite degree matrices, but offers good performance
otherwise.














          

      

      

    

  

    
      
          
            
  
brainconn.reference.makerandCIJ_dir


	
makerandCIJ_dir(n, k)[source] [https://github.com/FIU-Neuro/brainconn/blob/c24bd15/brainconn/reference/reference.py#L668]

	This function generates a directed random network


	Parameters

	
	N (int [https://docs.python.org/3.5/library/functions.html#int]) – number of vertices


	K (int [https://docs.python.org/3.5/library/functions.html#int]) – number of edges






	Returns

	CIJ – directed random connection matrix



	Return type

	NxN numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]





Notes

no connections are placed on the main diagonal.










          

      

      

    

  

    
      
          
            
  
brainconn.reference.makerandCIJ_und


	
makerandCIJ_und(n, k)[source] [https://github.com/FIU-Neuro/brainconn/blob/c24bd15/brainconn/reference/reference.py#L696]

	This function generates an undirected random network


	Parameters

	
	N (int [https://docs.python.org/3.5/library/functions.html#int]) – number of vertices


	K (int [https://docs.python.org/3.5/library/functions.html#int]) – number of edges






	Returns

	CIJ – undirected random connection matrix



	Return type

	NxN numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]





Notes

no connections are placed on the main diagonal.










          

      

      

    

  

    
      
          
            
  
brainconn.reference.makeringlatticeCIJ


	
makeringlatticeCIJ(n, k)[source] [https://github.com/FIU-Neuro/brainconn/blob/c24bd15/brainconn/reference/reference.py#L724]

	This function generates a directed lattice network with toroidal
boundary counditions (i.e. with ring-like “wrapping around”).


	Parameters

	
	N (int [https://docs.python.org/3.5/library/functions.html#int]) – number of vertices


	K (int [https://docs.python.org/3.5/library/functions.html#int]) – number of edges






	Returns

	CIJ – connection matrix



	Return type

	NxN numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]





Notes

The lattice is made by placing connections as close as possible
to the main diagonal, with wrapping around. No connections are made
on the main diagonal. In/Outdegree is kept approx. constant at K/N.










          

      

      

    

  

    
      
          
            
  
brainconn.reference.maketoeplitzCIJ


	
maketoeplitzCIJ(n, k, s)[source] [https://github.com/FIU-Neuro/brainconn/blob/c24bd15/brainconn/reference/reference.py#L775]

	This function generates a directed network with a Gaussian drop-off in
edge density with increasing distance from the main diagonal. There are
toroidal boundary counditions (i.e. no ring-like “wrapping around”).


	Parameters

	
	N (int [https://docs.python.org/3.5/library/functions.html#int]) – number of vertices


	K (int [https://docs.python.org/3.5/library/functions.html#int]) – number of edges


	s (float [https://docs.python.org/3.5/library/functions.html#float]) – standard deviation of toeplitz






	Returns

	CIJ – connection matrix



	Return type

	NxN numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]





Notes

no connections are placed on the main diagonal.










          

      

      

    

  

    
      
          
            
  
brainconn.reference.null_model_dir_sign


	
null_model_dir_sign(W, bin_swaps=5, wei_freq=0.1)[source] [https://github.com/FIU-Neuro/brainconn/blob/c24bd15/brainconn/reference/reference.py#L817]

	This function randomizes an directed network with positive and
negative weights, while preserving the degree and strength
distributions. This function calls randmio_dir.m


	Parameters

	
	W (NxN numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – directed weighted connection matrix


	bin_swaps (int [https://docs.python.org/3.5/library/functions.html#int]) – average number of swaps in each edge binary randomization. Default
value is 5. 0 swaps implies no binary randomization.


	wei_freq (float [https://docs.python.org/3.5/library/functions.html#float]) – frequency of weight sorting in weighted randomization. 0<=wei_freq<1.
wei_freq == 1 implies that weights are sorted at each step.
wei_freq == 0.1 implies that weights sorted each 10th step (faster,


default value)




wei_freq == 0 implies no sorting of weights (not recommended)








	Returns

	
	W0 (NxN numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – randomized weighted connection matrix


	R (4-tuple of floats) – Correlation coefficients between strength sequences of input and
output connection matrices, rpos_in, rpos_out, rneg_in, rneg_out










Notes


	The value of bin_swaps is ignored when binary topology is fully

	connected (e.g. when the network has no negative weights).



	Randomization may be better (and execution time will be slower) for

	higher values of bin_swaps and wei_freq. Higher values of bin_swaps may
enable a more random binary organization, and higher values of wei_freq
may enable a more accurate conservation of strength sequences.



	R are the correlation coefficients between positive and negative

	in-strength and out-strength sequences of input and output connection
matrices and are used to evaluate the accuracy with which strengths
were preserved. Note that correlation coefficients may be a rough
measure of strength-sequence accuracy and one could implement more
formal tests (such as the Kolmogorov-Smirnov test) if desired.














          

      

      

    

  

    
      
          
            
  
brainconn.reference.null_model_und_sign


	
null_model_und_sign(W, bin_swaps=5, wei_freq=0.1)[source] [https://github.com/FIU-Neuro/brainconn/blob/c24bd15/brainconn/reference/reference.py#L935]

	This function randomizes an undirected network with positive and
negative weights, while preserving the degree and strength
distributions. This function calls randmio_und.m


	Parameters

	
	W (NxN numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – undirected weighted connection matrix


	bin_swaps (int [https://docs.python.org/3.5/library/functions.html#int]) – average number of swaps in each edge binary randomization. Default
value is 5. 0 swaps implies no binary randomization.


	wei_freq (float [https://docs.python.org/3.5/library/functions.html#float]) – frequency of weight sorting in weighted randomization. 0<=wei_freq<1.
wei_freq == 1 implies that weights are sorted at each step.
wei_freq == 0.1 implies that weights sorted each 10th step (faster,


default value)




wei_freq == 0 implies no sorting of weights (not recommended)








	Returns

	
	W0 (NxN numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – randomized weighted connection matrix


	R (4-tuple of floats) – Correlation coefficients between strength sequences of input and
output connection matrices, rpos_in, rpos_out, rneg_in, rneg_out










Notes


	The value of bin_swaps is ignored when binary topology is fully

	connected (e.g. when the network has no negative weights).



	Randomization may be better (and execution time will be slower) for

	higher values of bin_swaps and wei_freq. Higher values of bin_swaps
may enable a more random binary organization, and higher values of
wei_freq may enable a more accurate conservation of strength
sequences.



	R are the correlation coefficients between positive and negative

	strength sequences of input and output connection matrices and are
used to evaluate the accuracy with which strengths were preserved.
Note that correlation coefficients may be a rough measure of
strength-sequence accuracy and one could implement more formal tests
(such as the Kolmogorov-Smirnov test) if desired.














          

      

      

    

  

    
      
          
            
  
brainconn.reference.randmio_dir


	
randmio_dir(R, itr)[source] [https://github.com/FIU-Neuro/brainconn/blob/c24bd15/brainconn/reference/reference.py#L1150]

	This function randomizes a directed network, while preserving the in-
and out-degree distributions. In weighted networks, the function
preserves the out-strength but not the in-strength distributions.


	Parameters

	
	W (NxN numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – directed binary/weighted connection matrix


	itr (int [https://docs.python.org/3.5/library/functions.html#int]) – rewiring parameter. Each edge is rewired approximately itr times.






	Returns

	
	R (NxN numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – randomized network


	eff (int) – number of actual rewirings carried out



















          

      

      

    

  

    
      
          
            
  
brainconn.reference.randmio_dir_connected


	
randmio_dir_connected(R, itr)[source] [https://github.com/FIU-Neuro/brainconn/blob/c24bd15/brainconn/reference/reference.py#L1060]

	This function randomizes a directed network, while preserving the in-
and out-degree distributions. In weighted networks, the function
preserves the out-strength but not the in-strength distributions. The
function also ensures that the randomized network maintains
connectedness, the ability for every node to reach every other node in
the network. The input network for this function must be connected.


	Parameters

	
	W (NxN numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – directed binary/weighted connection matrix


	itr (int [https://docs.python.org/3.5/library/functions.html#int]) – rewiring parameter. Each edge is rewired approximately itr times.






	Returns

	
	R (NxN numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – randomized network


	eff (int) – number of actual rewirings carried out



















          

      

      

    

  

    
      
          
            
  
brainconn.reference.randmio_dir_signed


	
randmio_dir_signed(R, itr)[source] [https://github.com/FIU-Neuro/brainconn/blob/c24bd15/brainconn/reference/reference.py#L1327]

	This function randomizes a directed weighted network with positively
and negatively signed connections, while preserving the positive and
negative degree distributions. In weighted networks by default the
function preserves the out-degree strength but not the in-strength
distributions


	Parameters

	
	W (NxN numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – directed binary/weighted connection matrix


	itr (int [https://docs.python.org/3.5/library/functions.html#int]) – rewiring parameter. Each edge is rewired approximately itr times.






	Returns

	
	R (NxN numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – randomized network


	eff (int) – number of actual rewirings carried out



















          

      

      

    

  

    
      
          
            
  
brainconn.reference.randmio_und


	
randmio_und(R, itr)[source] [https://github.com/FIU-Neuro/brainconn/blob/c24bd15/brainconn/reference/reference.py#L1390]

	This function randomizes an undirected network, while preserving the
degree distribution. The function does not preserve the strength
distribution in weighted networks.


	Parameters

	
	W (NxN numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – undirected binary/weighted connection matrix


	itr (int [https://docs.python.org/3.5/library/functions.html#int]) – rewiring parameter. Each edge is rewired approximately itr times.






	Returns

	
	R (NxN numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – randomized network


	eff (int) – number of actual rewirings carried out



















          

      

      

    

  

    
      
          
            
  
brainconn.reference.randmio_und_connected


	
randmio_und_connected(R, itr)[source] [https://github.com/FIU-Neuro/brainconn/blob/c24bd15/brainconn/reference/reference.py#L1213]

	This function randomizes an undirected network, while preserving the
degree distribution. The function does not preserve the strength
distribution in weighted networks. The function also ensures that the
randomized network maintains connectedness, the ability for every node
to reach every other node in the network. The input network for this
function must be connected.

NOTE the changes to the BCT matlab function of the same name
made in the Jan 2016 release
have not been propagated to this function because of substantially
decreased time efficiency in the implementation. Expect these changes
to be merged eventually.


	Parameters

	
	W (NxN numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – undirected binary/weighted connection matrix


	itr (int [https://docs.python.org/3.5/library/functions.html#int]) – rewiring parameter. Each edge is rewired approximately itr times.






	Returns

	
	R (NxN numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – randomized network


	eff (int) – number of actual rewirings carried out



















          

      

      

    

  

    
      
          
            
  
brainconn.reference.randmio_und_signed


	
randmio_und_signed(R, itr)[source] [https://github.com/FIU-Neuro/brainconn/blob/c24bd15/brainconn/reference/reference.py#L1467]

	This function randomizes an undirected weighted network with positive
and negative weights, while simultaneously preserving the degree
distribution of positive and negative weights. The function does not
preserve the strength distribution in weighted networks.


	Parameters

	
	W (NxN numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – undirected binary/weighted connection matrix


	itr (int [https://docs.python.org/3.5/library/functions.html#int]) – rewiring parameter. Each edge is rewired approximately itr times.






	Returns

	R – randomized network



	Return type

	NxN numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]














          

      

      

    

  

    
      
          
            
  
brainconn.reference.randomize_graph_partial_und


	
randomize_graph_partial_und(A, B, maxswap)[source] [https://github.com/FIU-Neuro/brainconn/blob/c24bd15/brainconn/reference/reference.py#L1524]

	A = RANDOMIZE_GRAPH_PARTIAL_UND(A,B,MAXSWAP) takes adjacency matrices A
and B and attempts to randomize matrix A by performing MAXSWAP
rewirings. The rewirings will avoid any spots where matrix B is
nonzero.


	Parameters

	
	A (NxN numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – undirected adjacency matrix to randomize


	B (NxN numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – mask; edges to avoid


	maxswap (int [https://docs.python.org/3.5/library/functions.html#int]) – number of rewirings






	Returns

	A – randomized matrix



	Return type

	NxN numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]





Notes


	Graph may become disconnected as a result of rewiring. Always





important to check.





	A can be weighted, though the weighted degree sequence will not be





preserved.





	A must be undirected.













          

      

      

    

  

    
      
          
            
  
brainconn.reference.randomizer_bin_und


	
randomizer_bin_und(R, alpha)[source] [https://github.com/FIU-Neuro/brainconn/blob/c24bd15/brainconn/reference/reference.py#L1597]

	This function randomizes a binary undirected network, while preserving
the degree distribution. The function directly searches for rewirable
edge pairs (rather than trying to rewire edge pairs at random), and
hence avoids long loops and works especially well in dense matrices.


	Parameters

	
	A (NxN numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – binary undirected connection matrix


	alpha (float [https://docs.python.org/3.5/library/functions.html#float]) – fraction of edges to rewire






	Returns

	R – randomized network



	Return type

	NxN numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]














          

      

      

    

  

    
      
          
            
  
brainconn.similarity.corr_flat_dir


	
corr_flat_dir(a1, a2)[source] [https://github.com/FIU-Neuro/brainconn/blob/c24bd15/brainconn/similarity/similarity.py#L358]

	Returns the correlation coefficient between two flattened adjacency
matrices.  Similarity metric for weighted matrices.


	Parameters

	
	A1 (NxN numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – directed matrix 1


	A2 (NxN numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – directed matrix 2






	Returns

	r – Correlation coefficient describing edgewise similarity of a1 and a2



	Return type

	float [https://docs.python.org/3.5/library/functions.html#float]














          

      

      

    

  

    
      
          
            
  
brainconn.similarity.corr_flat_und


	
corr_flat_und(a1, a2)[source] [https://github.com/FIU-Neuro/brainconn/blob/c24bd15/brainconn/similarity/similarity.py#L332]

	Returns the correlation coefficient between two flattened adjacency
matrices.  Only the upper triangular part is used to avoid double counting
undirected matrices.  Similarity metric for weighted matrices.


	Parameters

	
	A1 (NxN numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – undirected matrix 1


	A2 (NxN numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – undirected matrix 2






	Returns

	r – Correlation coefficient describing edgewise similarity of a1 and a2



	Return type

	float [https://docs.python.org/3.5/library/functions.html#float]














          

      

      

    

  

    
      
          
            
  
brainconn.similarity.dice_pairwise_und


	
dice_pairwise_und(a1, a2)[source] [https://github.com/FIU-Neuro/brainconn/blob/c24bd15/brainconn/similarity/similarity.py#L298]

	Calculates pairwise dice similarity for each vertex between two
matrices. Treats the matrices as binary and undirected.


	Parameters

	
	A1 (NxN numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – Matrix 1


	A2 (NxN numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – Matrix 2






	Returns

	D – dice similarity vector



	Return type

	Nx1 numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]














          

      

      

    

  

    
      
          
            
  
brainconn.similarity.edge_nei_overlap_bd


	
edge_nei_overlap_bd(CIJ)[source] [https://github.com/FIU-Neuro/brainconn/blob/c24bd15/brainconn/similarity/similarity.py#L10]

	This function determines the neighbors of two nodes that are linked by
an edge, and then computes their overlap.  Connection matrix must be
binary and directed.  Entries of ‘EC’ that are ‘inf’ indicate that no
edge is present.  Entries of ‘EC’ that are 0 denote “local bridges”,
i.e. edges that link completely non-overlapping neighborhoods.  Low
values of EC indicate edges that are “weak ties”.

If CIJ is weighted, the weights are ignored. Neighbors of a node can be
linked by incoming, outgoing, or reciprocal connections.


	Parameters

	CIJ (NxN numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – directed binary/weighted connection matrix



	Returns

	
	EC (NxN numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – edge neighborhood overlap matrix


	ec (Kx1 numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – edge neighborhood overlap per edge vector


	degij (NxN numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – degrees of node pairs connected by each edge



















          

      

      

    

  

    
      
          
            
  
brainconn.similarity.edge_nei_overlap_bu


	
edge_nei_overlap_bu(CIJ)[source] [https://github.com/FIU-Neuro/brainconn/blob/c24bd15/brainconn/similarity/similarity.py#L59]

	This function determines the neighbors of two nodes that are linked by
an edge, and then computes their overlap.  Connection matrix must be
binary and directed.  Entries of ‘EC’ that are ‘inf’ indicate that no
edge is present.  Entries of ‘EC’ that are 0 denote “local bridges”, i.e.
edges that link completely non-overlapping neighborhoods.  Low values
of EC indicate edges that are “weak ties”.

If CIJ is weighted, the weights are ignored.


	Parameters

	CIJ (NxN numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – undirected binary/weighted connection matrix



	Returns

	
	EC (NxN numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – edge neighborhood overlap matrix


	ec (Kx1 numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – edge neighborhood overlap per edge vector


	degij (NxN numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – degrees of node pairs connected by each edge



















          

      

      

    

  

    
      
          
            
  
brainconn.similarity.gtom


	
gtom(adj, nr_steps)[source] [https://github.com/FIU-Neuro/brainconn/blob/c24bd15/brainconn/similarity/similarity.py#L106]

	The m-th step generalized topological overlap measure (GTOM) quantifies
the extent to which a pair of nodes have similar m-th step neighbors.
Mth-step neighbors are nodes that are reachable by a path of at most
length m.

This function computes the the M x M generalized topological overlap
measure (GTOM) matrix for number of steps, numSteps.


	Parameters

	
	adj (NxN numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – connection matrix


	nr_steps (int [https://docs.python.org/3.5/library/functions.html#int]) – number of steps






	Returns

	gt – GTOM matrix



	Return type

	NxN numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]





Notes

When numSteps is equal to 1, GTOM is identical to the topological
overlap measure (TOM) from reference [2]. In that case the ‘gt’ matrix
records, for each pair of nodes, the fraction of neighbors the two
nodes share in common, where “neighbors” are one step removed. As
‘numSteps’ is increased, neighbors that are furter out are considered.
Elements of ‘gt’ are bounded between 0 and 1.  The ‘gt’ matrix can be
converted from a similarity to a distance matrix by taking 1-gt.










          

      

      

    

  

    
      
          
            
  
brainconn.similarity.matching_ind


	
matching_ind(CIJ)[source] [https://github.com/FIU-Neuro/brainconn/blob/c24bd15/brainconn/similarity/similarity.py#L170]

	For any two nodes u and v, the matching index computes the amount of
overlap in the connection patterns of u and v. Self-connections and
u-v connections are ignored. The matching index is a symmetric
quantity, similar to a correlation or a dot product.


	Parameters

	CIJ (NxN numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – adjacency matrix



	Returns

	
	Min (NxN numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – matching index for incoming connections


	Mout (NxN numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – matching index for outgoing connections


	Mall (NxN numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – matching index for all connections










Notes

Does not use self- or cross connections for comparison.
Does not use connections that are not present in BOTH u and v.
All output matrices are calculated for upper triangular only.










          

      

      

    

  

    
      
          
            
  
brainconn.similarity.matching_ind_und


	
matching_ind_und(CIJ0)[source] [https://github.com/FIU-Neuro/brainconn/blob/c24bd15/brainconn/similarity/similarity.py#L251]

	M0 = MATCHING_IND_UND(CIJ) computes matching index for undirected
graph specified by adjacency matrix CIJ. Matching index is a measure of
similarity between two nodes’ connectivity profiles (excluding their
mutual connection, should it exist).


	Parameters

	CIJ (NxN numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – undirected adjacency matrix



	Returns

	M0 – matching index matrix



	Return type

	NxN numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]














          

      

      

    

  

    
      
          
            
  
brainconn.nbs.nbs_bct


	
nbs_bct(x, y, thresh, k=1000, tail='both', paired=False, verbose=False)[source] [https://github.com/FIU-Neuro/brainconn/blob/c24bd15/brainconn/nbs.py#L14]

	Performs the NBS for populations X and Y for a t-statistic threshold of
alpha.


	Parameters

	
	x (NxNxP numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – matrix representing the first population with P subjects. must be
symmetric.


	y (NxNxQ numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – matrix representing the second population with Q subjects. Q need not
equal P. must be symmetric.


	thresh (float [https://docs.python.org/3.5/library/functions.html#float]) – minimum t-value used as threshold


	k (int [https://docs.python.org/3.5/library/functions.html#int], optional) – number of permutations used to estimate the empirical null
distribution


	tail ({'both', 'left', 'right'}, optional) – enables specification of particular alternative hypothesis
‘left’ : mean population of X < mean population of Y
‘right’ : mean population of Y < mean population of X
‘both’ : means are unequal (default)


	paired (bool [https://docs.python.org/3.5/library/functions.html#bool], optional) – use paired sample t-test instead of population t-test. requires both
subject populations to have equal N. default value = False


	verbose (bool [https://docs.python.org/3.5/library/functions.html#bool], optional) – print some extra information each iteration. defaults value = False






	Returns

	
	pval (Cx1 numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – A vector of corrected p-values for each component of the networks
identified. If at least one p-value is less than alpha, the omnibus
null hypothesis can be rejected at alpha significance. The null
hypothesis is that the value of the connectivity from each edge has
equal mean across the two populations.


	adj (IxIxC numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – an adjacency matrix identifying the edges comprising each component.
edges are assigned indexed values.


	null (Kx1 numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – A vector of K sampled from the null distribution of maximal component
size.










Notes

The NBS[R5426218f292b-1]_ is a nonparametric statistical test used to isolate the
components of an N x N undirected connectivity matrix that differ
significantly between two distinct populations. Each element of the
connectivity matrix stores a connectivity value and each member of
the two populations possesses a distinct connectivity matrix. A
component of a connectivity matrix is defined as a set of
interconnected edges.

The NBS is essentially a procedure to control the family-wise error
rate, in the weak sense, when the null hypothesis is tested
independently at each of the N(N-1)/2 edges comprising the undirected
connectivity matrix. The NBS can provide greater statistical power
than conventional procedures for controlling the family-wise error
rate, such as the false discovery rate, if the set of edges at which
the null hypothesis is rejected constitues a large component or
components.

The NBS comprises fours steps:


	Perform a two-sample T-test at each edge indepedently to test the
hypothesis that the value of connectivity between the two
populations come from distributions with equal means.


	Threshold the T-statistic available at each edge to form a set of
suprathreshold edges.


	Identify any components in the adjacency matrix defined by the set
of suprathreshold edges. These are referred to as observed
components. Compute the size of each observed component
identified; that is, the number of edges it comprises.


	Repeat K times steps 1-3, each time randomly permuting members of
the two populations and storing the size of the largest component
identified for each permuation. This yields an empirical estimate
of the null distribution of maximal component size. A corrected
p-value for each observed component is then calculated using this
null distribution.




References


	1

	Zalesky A, Fornito A, Bullmore ET (2010) Network-based statistic:
Identifying differences in brain networks. NeuroImage.
10.1016/j.neuroimage.2010.06.041














          

      

      

    

  

    
      
          
            
  
brainconn.utils.matrix

Other utility functions.

Functions







	autofix(W[, copy])

	Fix a bunch of common problems.



	binarize(W[, copy])

	Binarizes an input weighted connection matrix.



	invert(W[, copy])

	Inverts elementwise the weights in an input connection matrix.



	normalize(W[, copy])

	Normalizes an input weighted connection matrix.



	threshold_absolute(W, thr[, copy])

	This function thresholds the connectivity matrix by absolute weight magnitude.



	threshold_proportional(W, p[, copy])

	This function “thresholds” the connectivity matrix by preserving a proportion p (0<p<1) of the strongest weights.



	weight_conversion(W, wcm[, copy])

	W_bin = weight_conversion(W, ‘binarize’); W_nrm = weight_conversion(W, ‘normalize’); L = weight_conversion(W, ‘lengths’);










          

      

      

    

  

    
      
          
            
  
brainconn.utils.matrix.autofix


	
autofix(W, copy=True)[source] [https://github.com/FIU-Neuro/brainconn/blob/c24bd15/brainconn/utils/matrix.py#L248]

	Fix a bunch of common problems. More specifically, remove Inf and NaN,
ensure exact binariness and symmetry (i.e. remove floating point
instability), and zero diagonal.


	Parameters

	
	W (numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – weighted connectivity matrix


	copy (bool [https://docs.python.org/3.5/library/functions.html#bool]) – if True, returns a copy of the matrix. Otherwise, modifies the matrix
in place. Default value=True.






	Returns

	W – connectivity matrix with fixes applied



	Return type

	numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]













          

      

      

    

  

    
      
          
            
  
brainconn.utils.matrix.binarize


	
binarize(W, copy=True)[source] [https://github.com/FIU-Neuro/brainconn/blob/c24bd15/brainconn/utils/matrix.py#L171]

	Binarizes an input weighted connection matrix.  If copy is not set, this
function will modify W in place.


	Parameters

	
	W (NxN numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – weighted connectivity matrix


	copy (bool [https://docs.python.org/3.5/library/functions.html#bool]) – if True, returns a copy of the matrix. Otherwise, modifies the matrix
in place. Default value=True.






	Returns

	W – binary connectivity matrix



	Return type

	NxN numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]













          

      

      

    

  

    
      
          
            
  
brainconn.utils.matrix.invert


	
invert(W, copy=True)[source] [https://github.com/FIU-Neuro/brainconn/blob/c24bd15/brainconn/utils/matrix.py#L220]

	Inverts elementwise the weights in an input connection matrix.
In other words, change the from the matrix of internode strengths to the
matrix of internode distances.

If copy is not set, this function will modify W in place.


	Parameters

	
	W (numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – weighted connectivity matrix


	copy (bool [https://docs.python.org/3.5/library/functions.html#bool]) – if True, returns a copy of the matrix. Otherwise, modifies the matrix
in place. Default value=True.






	Returns

	W – inverted connectivity matrix



	Return type

	numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]













          

      

      

    

  

    
      
          
            
  
brainconn.utils.matrix.normalize


	
normalize(W, copy=True)[source] [https://github.com/FIU-Neuro/brainconn/blob/c24bd15/brainconn/utils/matrix.py#L196]

	Normalizes an input weighted connection matrix.  If copy is not set, this
function will modify W in place.


	Parameters

	
	W (numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – weighted connectivity matrix


	copy (bool [https://docs.python.org/3.5/library/functions.html#bool]) – if True, returns a copy of the matrix. Otherwise, modifies the matrix
in place. Default value=True.






	Returns

	W – normalized connectivity matrix



	Return type

	numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]













          

      

      

    

  

    
      
          
            
  
brainconn.utils.matrix.threshold_absolute


	
threshold_absolute(W, thr, copy=True)[source] [https://github.com/FIU-Neuro/brainconn/blob/c24bd15/brainconn/utils/matrix.py#L9]

	This function thresholds the connectivity matrix by absolute weight
magnitude. All weights below the given threshold, and all weights
on the main diagonal (self-self connections) are set to 0.

If copy is not set, this function will modify W in place.


	Parameters

	
	W (numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – weighted connectivity matrix


	thr (float [https://docs.python.org/3.5/library/functions.html#float]) – absolute weight threshold


	copy (bool [https://docs.python.org/3.5/library/functions.html#bool]) – if True, returns a copy of the matrix. Otherwise, modifies the matrix
in place. Default value=True.






	Returns

	W – thresholded connectivity matrix



	Return type

	numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]













          

      

      

    

  

    
      
          
            
  
brainconn.utils.matrix.threshold_proportional


	
threshold_proportional(W, p, copy=True)[source] [https://github.com/FIU-Neuro/brainconn/blob/c24bd15/brainconn/utils/matrix.py#L39]

	This function “thresholds” the connectivity matrix by preserving a
proportion p (0<p<1) of the strongest weights. All other weights, and
all weights on the main diagonal (self-self connections) are set to 0.

If copy is not set, this function will modify W in place.


	Parameters

	
	W (numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – weighted connectivity matrix


	p (float [https://docs.python.org/3.5/library/functions.html#float]) – proportional weight threshold (0<p<1)


	copy (bool [https://docs.python.org/3.5/library/functions.html#bool]) – if True, returns a copy of the matrix. Otherwise, modifies the matrix
in place. Default value=True.






	Returns

	W – thresholded connectivity matrix



	Return type

	numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]





Notes

The proportion of elements set to 0 is a fraction of all elements
in the matrix, whether or not they are already 0. That is, this function
has the following behavior:

>> x = np.random.random((10,10))
>> x_25 = threshold_proportional(x, .25)
>> np.size(np.where(x_25)) #note this double counts each nonzero element
46
>> x_125 = threshold_proportional(x, .125)
>> np.size(np.where(x_125))
22
>> x_test = threshold_proportional(x_25, .5)
>> np.size(np.where(x_test))
46

That is, the 50% thresholding of x_25 does nothing because >=50% of the
elements in x_25 are aleady <=0. This behavior is the same as in BCT. Be
careful with matrices that are both signed and sparse.









          

      

      

    

  

    
      
          
            
  
brainconn.utils.matrix.weight_conversion


	
weight_conversion(W, wcm, copy=True)[source] [https://github.com/FIU-Neuro/brainconn/blob/c24bd15/brainconn/utils/matrix.py#L112]

	W_bin = weight_conversion(W, ‘binarize’);
W_nrm = weight_conversion(W, ‘normalize’);
L = weight_conversion(W, ‘lengths’);

This function may either binarize an input weighted connection matrix,
normalize an input weighted connection matrix or convert an input
weighted connection matrix to a weighted connection-length matrix.

Binarization converts all present connection weights to 1.

Normalization scales all weight magnitudes to the range [0,1] and
should be done prior to computing some weighted measures, such as the
weighted clustering coefficient.

Conversion of connection weights to connection lengths is needed
prior to computation of weighted distance-based measures, such as
distance and betweenness centrality. In a weighted connection network,
higher weights are naturally interpreted as shorter lengths. The
connection-lengths matrix here is defined as the inverse of the
connection-weights matrix.

If copy is not set, this function will modify W in place.


	Parameters

	
	W (NxN numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – weighted connectivity matrix


	wcm (str [https://docs.python.org/3.5/library/stdtypes.html#str]) – weight conversion command.
‘binarize’ : binarize weights
‘normalize’ : normalize weights
‘lengths’ : convert weights to lengths (invert matrix)


	copy (bool [https://docs.python.org/3.5/library/functions.html#bool]) – if True, returns a copy of the matrix. Otherwise, modifies the matrix
in place. Default value=True.






	Returns

	W – connectivity matrix with specified changes



	Return type

	NxN numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]





Notes

This function is included for compatibility with BCT. But there are
other functions binarize(), normalize() and invert() which are simpler to
call directly.









          

      

      

    

  

    
      
          
            
  
brainconn.utils.visualization

Tools for visualizing graphs.

Functions







	adjacency_plot_und(A, coor[, tube])

	This function in matlab is a visualization helper which translates an adjacency matrix and an Nx3 matrix of spatial coordinates, and plots a 3D isometric network connecting the undirected unweighted nodes using a specific plotting format.



	align_matrices(m1, m2[, dfun, verbose, H, …])

	This function aligns two matrices relative to one another by reordering the nodes in M2.



	backbone_wu(CIJ, avgdeg)

	The network backbone contains the dominant connections in the network and may be used to aid network visualization.



	grid_communities(c)

	(X,Y,INDSORT) = GRID_COMMUNITIES(C) takes a vector of community assignments C and returns three output arguments for visualizing the communities.



	reorderMAT(m[, H, cost])

	This function reorders the connectivity matrix in order to place more edges closer to the diagonal.



	reorder_matrix(m1[, cost, verbose, H, Texp, …])

	This function rearranges the nodes in matrix M1 such that the matrix elements are squeezed along the main diagonal.



	reorder_mod(A, ci)

	This function reorders the connectivity matrix by modular structure and may hence be useful in visualization of modular structure.



	writetoPAJ(CIJ, fname, directed)

	This function writes a Pajek .net file from a numpy matrix










          

      

      

    

  

    
      
          
            
  
brainconn.utils.visualization.adjacency_plot_und


	
adjacency_plot_und(A, coor, tube=False)[source] [https://github.com/FIU-Neuro/brainconn/blob/c24bd15/brainconn/utils/visualization.py#L8]

	This function in matlab is a visualization helper which translates an
adjacency matrix and an Nx3 matrix of spatial coordinates, and plots a
3D isometric network connecting the undirected unweighted nodes using a
specific plotting format. Including the formatted output is not useful at
all for bctpy since matplotlib will not be able to plot it in quite the
same way.

Instead of doing this, I have included code that will plot the adjacency
matrix onto nodes at the given spatial coordinates in mayavi

This routine is basically a less featureful version of the 3D brain in
cvu, the connectome visualization utility which I also maintain. cvu uses
freesurfer surfaces and annotations to get the node coordinates (rather
than leaving them up to the user) and has many other interactive
visualization features not included here for the sake of brevity.

There are other similar visualizations in the ConnectomeViewer and the
UCLA multimodal connectivity database.

Note that unlike other bctpy functions, this function depends on mayavi.









          

      

      

    

  

    
      
          
            
  
brainconn.utils.visualization.align_matrices


	
align_matrices(m1, m2, dfun='sqrdiff', verbose=False, H=1000000.0, Texp=1, T0=0.001, Hbrk=10)[source] [https://github.com/FIU-Neuro/brainconn/blob/c24bd15/brainconn/utils/visualization.py#L109]

	This function aligns two matrices relative to one another by reordering
the nodes in M2.  The function uses a version of simulated annealing.


	Parameters

	
	M1 (NxN numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – first connection matrix


	M2 (NxN numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – second connection matrix


	dfun (str [https://docs.python.org/3.5/library/stdtypes.html#str]) – 
	distance metric to use for matching

	’absdiff’ : absolute difference
‘sqrdiff’ : squared difference (default)
‘cosang’ : cosine of vector angle








	verbose (bool [https://docs.python.org/3.5/library/functions.html#bool]) – print out cost at each iteration. Default False.


	H (int [https://docs.python.org/3.5/library/functions.html#int]) – annealing parameter, default value 1e6


	Texp (int [https://docs.python.org/3.5/library/functions.html#int]) – annealing parameter, default value 1. Coefficient of H s.t.
Texp0=1-Texp/H


	T0 (float [https://docs.python.org/3.5/library/functions.html#float]) – annealing parameter, default value 1e-3


	Hbrk (int [https://docs.python.org/3.5/library/functions.html#int]) – annealing parameter, default value = 10. Coefficient of H s.t.
Hbrk0 = H/Hkbr






	Returns

	
	Mreordered (NxN numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – reordered connection matrix M2


	Mindices (Nx1 numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – reordered indices


	cost (float) – objective function distance between M1 and Mreordered










Notes

Connection matrices can be weighted or binary, directed or undirected.
They must have the same number of nodes.  M1 can be entered in any
node ordering.

Note that in general, the outcome will depend on the initial condition
(the setting of the random number seed).  Also, there is no good way to
determine optimal annealing parameters in advance - these parameters
will need to be adjusted “by hand” (particularly H, Texp, T0, and Hbrk).
For large and/or dense matrices, it is highly recommended to perform
exploratory runs varying the settings of ‘H’ and ‘Texp’ and then select
the best values.

Based on extensive testing, it appears that T0 and Hbrk can remain
unchanged in most cases.  Texp may be varied from 1-1/H to 1-10/H, for
example.  H is the most important parameter - set to larger values as
the problem size increases.  Good solutions can be obtained for
matrices up to about 100 nodes.  It is advisable to run this function
multiple times and select the solution(s) with the lowest ‘cost’.

If the two matrices are related it may be very helpful to pre-align them
by reordering along their largest eigenvectors:


[v,~] = eig(M1); v1 = abs(v(:,end)); [a1,b1] = sort(v1);
[v,~] = eig(M2); v2 = abs(v(:,end)); [a2,b2] = sort(v2);
[a,b,c] = overlapMAT2(M1(b1,b1),M2(b2,b2),’dfun’,1);




Setting ‘Texp’ to zero cancels annealing and uses a greedy algorithm
instead.









          

      

      

    

  

    
      
          
            
  
brainconn.utils.visualization.backbone_wu


	
backbone_wu(CIJ, avgdeg)[source] [https://github.com/FIU-Neuro/brainconn/blob/c24bd15/brainconn/utils/visualization.py#L263]

	The network backbone contains the dominant connections in the network
and may be used to aid network visualization. This function computes
the backbone of a given weighted and undirected connection matrix CIJ,
using a minimum-spanning-tree based algorithm.


	Parameters

	
	CIJ (NxN numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – weighted undirected connection matrix


	avgdeg (int [https://docs.python.org/3.5/library/functions.html#int]) – desired average degree of backbone






	Returns

	
	CIJtree (NxN numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – connection matrix of the minimum spanning tree of CIJ


	CIJclus (NxN numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – connection matrix of the minimum spanning tree plus strongest
connections up to some average degree ‘avgdeg’. Identical to CIJtree
if the degree requirement is already met.










Notes

NOTE: nodes with zero strength are discarded.
NOTE: CIJclus will have a total average degree exactly equal to


(or very close to) ‘avgdeg’.





	NOTE: ‘avgdeg’ backfill is handled slightly differently than in Hagmann

	et al 2008.













          

      

      

    

  

    
      
          
            
  
brainconn.utils.visualization.grid_communities


	
grid_communities(c)[source] [https://github.com/FIU-Neuro/brainconn/blob/c24bd15/brainconn/utils/visualization.py#L342]

	(X,Y,INDSORT) = GRID_COMMUNITIES(C) takes a vector of community
assignments C and returns three output arguments for visualizing the
communities. The third is INDSORT, which is an ordering of the vertices
so that nodes with the same community assignment are next to one
another. The first two arguments are vectors that, when overlaid on the
adjacency matrix using the PLOT function, highlight the communities.


	Parameters

	c (Nx1 numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – community assignments



	Returns

	
	bounds (list) – list containing the communities


	indsort (numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – indices










Notes

Note: This function returns considerably different values than in
matlab due to differences between matplotlib and matlab.  This function
has been designed to work with matplotlib, as in the following example:

ci,_=modularity_und(adj)
bounds,ixes=grid_communities(ci)
pylab.imshow(adj[np.ix_(ixes,ixes)],interpolation=’none’,cmap=’BuGn’)
for b in bounds:


pylab.axvline(x=b,color=’red’)
pylab.axhline(y=b,color=’red’)




Note that I adapted the idea from the matlab function of the same name,
and have not tested the functionality extensively.









          

      

      

    

  

    
      
          
            
  
brainconn.utils.visualization.reorderMAT


	
reorderMAT(m, H=5000, cost='line')[source] [https://github.com/FIU-Neuro/brainconn/blob/c24bd15/brainconn/utils/visualization.py#L397]

	This function reorders the connectivity matrix in order to place more
edges closer to the diagonal. This often helps in displaying community
structure, clusters, etc.


	Parameters

	
	MAT (NxN numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – connection matrix


	H (int [https://docs.python.org/3.5/library/functions.html#int]) – number of reordering attempts


	cost (str [https://docs.python.org/3.5/library/stdtypes.html#str]) – ‘line’ or ‘circ’ for shape of lattice (linear or ring lattice).
Default is linear lattice.






	Returns

	
	MATreordered (NxN numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – reordered connection matrix


	MATindices (Nx1 numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – reordered indices


	MATcost (float) – objective function cost of reordered matrix










Notes

I’m not 100% sure how the algorithms between this and reorder_matrix
differ, but this code looks a ton sketchier and might have had some minor
bugs in it.  Considering reorder_matrix() does the same thing using a well
vetted simulated annealing algorithm, just use that. ~rlaplant









          

      

      

    

  

    
      
          
            
  
brainconn.utils.visualization.reorder_matrix


	
reorder_matrix(m1, cost='line', verbose=False, H=10000.0, Texp=10, T0=0.001, Hbrk=10)[source] [https://github.com/FIU-Neuro/brainconn/blob/c24bd15/brainconn/utils/visualization.py#L471]

	This function rearranges the nodes in matrix M1 such that the matrix
elements are squeezed along the main diagonal.  The function uses a
version of simulated annealing.


	Parameters

	
	M1 (NxN numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – connection matrix weighted/binary directed/undirected


	cost (str [https://docs.python.org/3.5/library/stdtypes.html#str]) – ‘line’ or ‘circ’ for shape of lattice (linear or ring lattice).
Default is linear lattice.


	verbose (bool [https://docs.python.org/3.5/library/functions.html#bool]) – print out cost at each iteration. Default False.


	H (int [https://docs.python.org/3.5/library/functions.html#int]) – annealing parameter, default value 1e6


	Texp (int [https://docs.python.org/3.5/library/functions.html#int]) – annealing parameter, default value 1. Coefficient of H s.t.
Texp0=1-Texp/H


	T0 (float [https://docs.python.org/3.5/library/functions.html#float]) – annealing parameter, default value 1e-3


	Hbrk (int [https://docs.python.org/3.5/library/functions.html#int]) – annealing parameter, default value = 10. Coefficient of H s.t.
Hbrk0 = H/Hkbr






	Returns

	
	Mreordered (NxN numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – reordered connection matrix


	Mindices (Nx1 numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – reordered indices


	Mcost (float) – objective function cost of reordered matrix










Notes

Note that in general, the outcome will depend on the initial condition
(the setting of the random number seed).  Also, there is no good way to
determine optimal annealing parameters in advance - these paramters
will need to be adjusted “by hand” (particularly H, Texp, and T0).
For large and/or dense matrices, it is highly recommended to perform
exploratory runs varying the settings of ‘H’ and ‘Texp’ and then select
the best values.

Based on extensive testing, it appears that T0 and Hbrk can remain
unchanged in most cases.  Texp may be varied from 1-1/H to 1-10/H, for
example.  H is the most important parameter - set to larger values as
the problem size increases.  It is advisable to run this function
multiple times and select the solution(s) with the lowest ‘cost’.

Setting ‘Texp’ to zero cancels annealing and uses a greedy algorithm
instead.









          

      

      

    

  

    
      
          
            
  
brainconn.utils.visualization.reorder_mod


	
reorder_mod(A, ci)[source] [https://github.com/FIU-Neuro/brainconn/blob/c24bd15/brainconn/utils/visualization.py#L601]

	This function reorders the connectivity matrix by modular structure and
may hence be useful in visualization of modular structure.


	Parameters

	
	A (NxN numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – binary/weighted connectivity matrix


	ci (Nx1 numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – module affiliation vector






	Returns

	
	On (Nx1 numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – new node order


	Ar (NxN numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – reordered connectivity matrix


















          

      

      

    

  

    
      
          
            
  
brainconn.utils.visualization.writetoPAJ


	
writetoPAJ(CIJ, fname, directed)[source] [https://github.com/FIU-Neuro/brainconn/blob/c24bd15/brainconn/utils/visualization.py#L735]

	This function writes a Pajek .net file from a numpy matrix


	Parameters

	
	CIJ (NxN numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – adjacency matrix


	fname (str [https://docs.python.org/3.5/library/stdtypes.html#str]) – filename


	directed (bool [https://docs.python.org/3.5/library/functions.html#bool]) – True if the network is directed and False otherwise. The data format
may be required to know this for some reason so I am afraid to just
use directed as the default value.
















          

      

      

    

  

    
      
          
            
  
brainconn.utils.misc

Miscellaneous utility functions.

Functions







	cuberoot(x)

	Correctly handle the cube root for negative weights, instead of uselessly crashing as in python or returning the wrong root as in matlab



	dummyvar(cis[, return_sparse])

	This is an efficient implementation of matlab’s “dummyvar” command using sparse matrices.



	get_resource_path()

	Returns the path to general resources, terminated with separator.



	pick_four_unique_nodes_quickly(n)

	This is equivalent to np.random.choice(n, 4, replace=False)



	teachers_round(x)

	Do rounding such that .5 always rounds to 1, and not bankers rounding.






Exceptions







	BCTParamError

	










          

      

      

    

  

    
      
          
            
  
brainconn.utils.misc.cuberoot


	
cuberoot(x)[source] [https://github.com/FIU-Neuro/brainconn/blob/c24bd15/brainconn/utils/misc.py#L54]

	Correctly handle the cube root for negative weights, instead of uselessly
crashing as in python or returning the wrong root as in matlab









          

      

      

    

  

    
      
          
            
  
brainconn.utils.misc.dummyvar


	
dummyvar(cis, return_sparse=False)[source] [https://github.com/FIU-Neuro/brainconn/blob/c24bd15/brainconn/utils/misc.py#L62]

	This is an efficient implementation of matlab’s “dummyvar” command
using sparse matrices.


	input: partitions, NxM array-like containing M partitions of N nodes

	into <=N distinct communities



	output: dummyvar, an NxR matrix containing R column variables (indicator

	variables) with N entries, where R is the total number of communities
summed across each of the M partitions.

i.e.
r = sum((max(len(unique(partitions[i]))) for i in range(m)))













          

      

      

    

  

    
      
          
            
  
brainconn.utils.misc.get_resource_path


	
get_resource_path()[source] [https://github.com/FIU-Neuro/brainconn/blob/c24bd15/brainconn/utils/misc.py#L9]

	Returns the path to general resources, terminated with separator. Resources
are kept outside package folder in “datasets”.
Based on function by Yaroslav Halchenko used in Neurosynth Python package.









          

      

      

    

  

    
      
          
            
  
brainconn.utils.misc.pick_four_unique_nodes_quickly


	
pick_four_unique_nodes_quickly(n)[source] [https://github.com/FIU-Neuro/brainconn/blob/c24bd15/brainconn/utils/misc.py#L30]

	This is equivalent to np.random.choice(n, 4, replace=False)

Another fellow suggested np.random.random(n).argpartition(4) which is
clever but still substantially slower.









          

      

      

    

  

    
      
          
            
  
brainconn.utils.misc.teachers_round


	
teachers_round(x)[source] [https://github.com/FIU-Neuro/brainconn/blob/c24bd15/brainconn/utils/misc.py#L19]

	Do rounding such that .5 always rounds to 1, and not bankers rounding.
This is for compatibility with matlab functions, and ease of testing.









          

      

      

    

  

    
      
          
            
  
Example gallery



Degree


[image: ../_images/sphx_glr_plot_centrality_thumb.png]
Calculate centrality measures











Centrality


[image: ../_images/sphx_glr_plot_degree_thumb.png]
Calculate degree measures










Download all examples in Python source code: auto_examples_python.zip




Download all examples in Jupyter notebooks: auto_examples_jupyter.zip





Gallery generated by Sphinx-Gallery [https://sphinx-gallery.readthedocs.io]







          

      

      

    

  

    
      
          
            
  
Calculate centrality measures

Centrality is a thing with stuff and things.

# sphinx_gallery_thumbnail_number = 3






Start with the necessary imports

import os.path as op

import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt

import brainconn








Get some data

corr = np.loadtxt(op.join(brainconn.utils.get_resource_path(), 'example_corr.txt'))

# Zero diagonal
adj_wei = corr - np.eye(corr.shape[0])
adj_bin = brainconn.utils.binarize(brainconn.utils.threshold_proportional(adj_wei, 0.2))








Look at weighted adjacency matrix

fig, ax = plt.subplots(figsize=(7, 7))
ax.imshow(adj_wei)
fig.show()





[image: ../../_images/sphx_glr_plot_centrality_001.png]



Look at binary adjacency matrix

fig, ax = plt.subplots(figsize=(7, 7))
ax.imshow(adj_bin)
fig.show()





[image: ../../_images/sphx_glr_plot_centrality_002.png]



Compute stuff

betw_wei = brainconn.centrality.betweenness_wei(adj_wei)
betw_bin = brainconn.centrality.betweenness_bin(adj_bin)
edg_betw_wei = brainconn.centrality.edge_betweenness_wei(adj_wei)[0]
idx = np.triu_indices(edg_betw_wei.shape[0], k=1)
edg_betw_wei = edg_betw_wei[idx]
edg_betw_wei = edg_betw_wei[edg_betw_wei > 0]
edg_betw_bin = brainconn.centrality.edge_betweenness_bin(adj_bin)[0]
idx = np.triu_indices(edg_betw_bin.shape[0], k=1)
edg_betw_bin = edg_betw_bin[idx]
edg_betw_bin = edg_betw_bin[edg_betw_bin > 0]

vals = [betw_wei, betw_bin, edg_betw_wei, edg_betw_bin]
names = ['Weighted Node Betweenness Centrality',
         'Binary Node Betweenness Centrality',
         'Weighted Edge Betweenness Centrality',
         'Binary Edge Betweenness Centrality']
fig, axes = plt.subplots(nrows=4, figsize=(12, 7))
for i in range(4):
    sns.distplot(vals[i], ax=axes[i])
    axes[i].set_title(names[i])
fig.tight_layout()
fig.show()





[image: ../../_images/sphx_glr_plot_centrality_003.png]
Total running time of the script: ( 1 minutes  1.232 seconds)



Download Python source code: plot_centrality.py




Download Jupyter notebook: plot_centrality.ipynb





Gallery generated by Sphinx-Gallery [https://sphinx-gallery.readthedocs.io]







          

      

      

    

  

    
      
          
            
  
Calculate degree measures

Degree is another thing with stuff and things.

# sphinx_gallery_thumbnail_number = 5






Start with the necessary imports

import os.path as op

import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt

from brainconn import degree, utils








Get some data

corr = np.loadtxt(op.join(utils.get_resource_path(), 'example_corr.txt'))

# Zero diagonal
adj_wei = corr - np.eye(corr.shape[0])
adj_wei_dir = adj_wei + (np.triu(adj_wei) / 2)
adj_bin = utils.binarize(utils.threshold_proportional(adj_wei, 0.2))
adj_bin_dir = utils.binarize(utils.threshold_proportional(adj_wei_dir, 0.2))








Look at weighted undirected adjacency matrix

fig, ax = plt.subplots(figsize=(7, 7))
ax.imshow(adj_wei)
fig.show()
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Look at binary undirected adjacency matrix

fig, ax = plt.subplots(figsize=(7, 7))
ax.imshow(adj_bin)
fig.show()
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Look at weighted directed adjacency matrix

fig, ax = plt.subplots(figsize=(7, 7))
ax.imshow(adj_wei_dir)
fig.show()





[image: ../../_images/sphx_glr_plot_degree_003.png]



Look at binary directed adjacency matrix

fig, ax = plt.subplots(figsize=(7, 7))
ax.imshow(adj_bin_dir)
fig.show()
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Compute stuff

degr_und = degree.degrees_und(adj_bin)
_, _, degr_dir = degree.degrees_dir(adj_bin_dir)
jdeg_bin, _, _, _ = degree.jdegree(adj_bin_dir)
stre_und = degree.strengths_und(adj_wei)
_, stre_und_neg, _, _ = degree.strengths_und_sign(adj_wei)
stre_dir = degree.strengths_dir(adj_wei_dir)
jdeg_wei, _, _, _ = degree.jdegree(adj_wei_dir)
jdeg_bin = jdeg_bin[jdeg_bin > 0]
jdeg_wei = jdeg_wei[jdeg_wei > 0]

vals = [degr_und, degr_dir, jdeg_bin, stre_und, stre_und_neg, stre_dir,
        jdeg_wei]
names = ['Undirected Degree',
         'Directed Degree',
         'Joint Binary Degree',
         'Undirected Unsigned Strength',
         'Undirected Signed Strength',
         'Directed Unsigned Strength',
         'Joint Weighted Degree']
fig, axes = plt.subplots(nrows=len(names), figsize=(12, 2*len(names)))
for i in range(len(names)):
    sns.distplot(vals[i], ax=axes[i])
    axes[i].set_title(names[i])
fig.tight_layout()
fig.show()
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Total running time of the script: ( 0 minutes  0.602 seconds)



Download Python source code: plot_degree.py




Download Jupyter notebook: plot_degree.ipynb





Gallery generated by Sphinx-Gallery [https://sphinx-gallery.readthedocs.io]







          

      

      

    

  

    
      
          
            
  
History of changes


brainconn 0.0.2 (current)


	Change structure from single algorithms submodule to separated submodules:
centrality, clustering, core, degree, distance, generative,
modularity, motifs, physical_connectivity, reference, and similarity.







brainconn 0.0.1


	Rename fork of BCT to brainconn for further independent development







BCT 0.4.1


	Refactor code into multiple files


	Fix bug in efficiency_bin


	Fix bugs in modularity_louvain_und


	Fix bugs in participation_coef_b*


	Add some test cases







BCT 0.4.0


	Add various new functions from Jan 2015 release of BCT


	Fix various bugs documented in github issues







BCT 0.3.3


	Fix small bug in latmio_und_connected causing failure for sparse matrices


	Add non-networkx dependent algorithm to get_components (but less efficient)


	Add an implementation of consensus clustering and fix bug in agreement


	Fix bug causing clustering_coef_bu to always return 0


	Remembered to update changelog


	Fix some bugs in modularity_louvain_dir and related


	Fix bug in NBS and add optional paired-sample test statistic (sviter)







BCT 0.3.2


	Change several functions including threshold_proportional and binarize have copy=True as default argument


	Fix bug in threshold_proportional where copying behavior did not work symmetric matrices.


	Fix minor quirk in threshold_proportional where np.round rounds to nearest even number (optimizes floating point) which is discrepant with BCT


	Add a test suite with some functions


	Fix typo in rich_club_bu


	Refactor x[range(n),range(n)] to np.fill_diagonal


	Fix off-by-one bug in moduality_[prob/fine]tune_und_sign







BCT 0.3.1


	Fix bug in NBS


	Fix series of bugs in null_models







BCT 0.3


	Added NBS


	Added in all of the new functions from the Dec 2013 release of BCT


	Fixed numerous bugs having to do with indexing errors in modularity


	Fixed several odd bugs with clustering_coef, efficiency, distance


	For the next release, I clearly need a real test suite.
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