

 Navigation

 	
 index

 	
 next |

 	BowerStatic 0.9 documentation

BowerStatic

Introduction

BowerStatic is a WSGI component that can serve static resources from
front-end packages (JavaScript, CSS) that you install through the
Bower [http://bower.io/] package manager.

Features:

	Integrates with any WSGI-based project.

	Easily serve Bower-managed bower_components directories.

	Easily say in Python code you want to include a static resource,
which are then automatically inserted in any HTML page you
generated. It uses the appropriate <script> and <link> tags.

	Support for Bower main end points. End points for dependencies
are automatically included too.

	Declare additional dependencies from one resource to others, either
in the same package or in others.

	Infinite caching of URLs by the browser and/or HTTP caching server for
increased performance.

	Instantly bust the cache when a new version of Bower package is
installed, avoiding force reload.

	Local packages with automatic cache busting as soon as you edit
code.

Contents

	Integrating BowerStatic
	Introduction

	The Bower object

	Integrating BowerStatic with a WSGI app

	Declaring Bower Directories

	Including Static Resources in a HTML page

	Supporting additional types of resources

	Custom renderer

	Rendering inline

	URL structure

	Caching

	Main endpoint

	WSGI Publisher and Injector

	Morepath integration

	Pyramid integration

	Example Flask integration

	Using the Publisher and Injector with WebOb

	Local Components
	Introduction

	Usage

	Versioning

	Versioning deployed applications

	Versioning during development

	Putting it all together

	Dependencies
	Introduction

	Dependencies

	Resource objects

	Component objects

	Developing BowerStatic
	Install BowerStatic for development

	Running the tests

	flake8

	radon

	CHANGES
	0.9 (2015-06-23)

	0.8.1 (2015-01-14)

	0.8 (2015-01-14)

	0.7 (2014-11-15)

	0.6 (2014-11-13)

	0.5 (2014-09-24)

	0.4 (2014-09-08)

	0.3 (2014-08-28)

	0.2 (2014-07-18)

	0.1 (2014-07-07)

	History
	hurry.resource

	Fanstatic

	BowerStatic

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2014, Martijn Faassen.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	BowerStatic 0.9 documentation

Integrating BowerStatic

Introduction

WSGI?

WSGI [http://wsgi.readthedocs.org/en/latest/] is a Python standard for interoperability between web
applications and web servers. It also allows you to plug in
“middleware” that sit between web server and web application that
adds extra functionality. BowerStatic provides such middleware,
which we will see later.

Most Python web frameworks are WSGI based. This means that if you
use such a web framework for your application, your application is a
WSGI application. Where this documentation says “WSGI application”
you can read “your application”.

This tutorial explains how to use BowerStatic with a WSGI
application. BowerStatic doesn’t have a huge API, but your web
framework may provide more integration, in which case
you may only have to know even less.

The Bower object

To get started with BowerStatic you need a Bower
instance. Typically you only have one global Bower instance in
your application.

You create it like this:

import bowerstatic

bower = bowerstatic.Bower()

Integrating BowerStatic with a WSGI app

For BowerStatic to function, we need to wrap your WSGI application
with BowerStatic’s middleware. Here’s to do this for our bower
object:

app = bower.wrap(my_wsgi_app)

Your web framework may have special BowerStatic integration instead
that does this for you.

Later on we will go into more details about what happens here (both an
injector and publisher get installed).

Declaring Bower Directories

Bower manages a directory in which it installs components (jQuery,
React, Ember, etc). This directory is called bower_components by
default. Bower installs components into this directory as
sub-directories. Bower makes sure that the components fit together
according to their dependency requirements.

Each bower_components directory is an “isolated universe” of
components. Components in a bower_components directory can depend
on each other only – they cannot depend on components in another
bower_components directory.

You need to let BowerStatic know where a bower_components
directory is by registering it with the bower object:

components = bower.components('components', '/path/to/bower_components')

Bowerstatic needs an absolute path to the components. With the help of
module_relative_path you can use a path relative to the calling module:

components = bower.components('components',
 bowerstatic.module_relative_path('path/relative/to/calling/module'))

You can register multiple bower_components directories with the
bower object. You need to give each a unique name; in the example
it is components. This name is used in the URL used to serve
components in this directory to the web.

The object returned we assign to a variable components that we use
later.

Including Static Resources in a HTML page

Errors

If you try to include a component that was not installed, you get an
bowerstatic.Error exception. The bower_components directory
is read during startup, so if you just installed that component
using bower install, you need to restart the server.

If you try to refer to a refer to a file in a component that does
not exist you also get an bowerstatic.Error exception. If that
file then gets added (through a bower upgrade or if it’s in a
local component) it will be found without the need for a restart.

Now that we have a components object we can start including static
resources from these components in a HTML page. BowerStatic provides
an easy, automatic way for you to do this from Python.

Using the components object we created earlier for a
bower_components directory, you create a include function:

include = components.includer(environ)

You need to create the include function within your WSGI
application, typically just before you want to use it. You need to
pass in the WSGI environ object, as this is where the inclusions
are stored. You can create the include function as many times as
you like for a WSGI environ; the inclusions are shared.

Now that we have include, we can use it to include resources:

include('jquery/dist/jquery.js')

WSGI environ

BowerStatic’s includer system needs to interact with the WSGI
environ object. If your WSGI-based web framework has a
request object, then a very good bet is to try
request.environ to get it.

Your web framework may also have special integration with
BowerStatic; in that case the integration can offer the include
function directly and takes care of interacting with the environ
for you.

This specifies you want to include the dist/jquery.js resource
from within the installed jquery component. This refers to an
actual file in the jQuery component; in bower_components there is
a directory jquery with the sub-path dist/jquery.js inside. It
is an error to refer to a non-existent file.

If you call include somewhere in code where also a HTML page is
generated, BowerStatic adds the following <script> tag to that
HTML page automatically:

<script
 type="text/javascript"
 src="/bowerstatic/components/jquery/2.1.1/dist/jquery.js">
</script>

Supporting additional types of resources

There are all kinds of resource types out there on the web, and
BowerStatic does not know how to include all of them on a HTML
page. Additional types can be added by making a renderer and
register that renderer to an extension.

Renderers will take a resource and returns a html snippet which will
be injected in the HTML head element. Renderers can be defined as a
callable.

The callable will need to take the resource as the single argument.
Based on the resource, the callable can create a html snippet. The
following attributes of resource are useful for creating the html:

	url

	The url which can be used to load the resource

	content

	The content of the resource, which can used to make
an inline resource. This is mainly useful for small
resources as it reduces the numbers of http requests

An example:

def render_foo(resource):
 return "<foo>%s</foo>" % resource.url()

A renderer can be registered to resources types by:

bower.register_renderer('.foo', render_foo)

If you now include a resource like example.foo, that resource gets
included on the web page as <foo>/path/to/example.foo</foo>.

Because most of the times, like above, the html can be constructed
with a format string, it is also possible to supply a string. Ie:

bower.register_renderer('.foo', "<foo>{url}</foo>")

url and content are available in the string.

You can also use register_renderer() to override existing behavior of how a
resource with a particular extension is to be included.

If you include a resource with an unrecognized extension, a
bowerstatic.Error is raised.

Custom renderer

It’s also possible to specify the renderer which will be used in an
included resource, so the renderer of the resource type will be overriden
just for the given resource. When you specify the renderer, you can
again do that both as callable and format string:

include('static/favicon.ico', '<link rel="shortcut icon" type="image/x-icon" href="{url}"/>')

or:

include('static/favicon.ico', lambda resource: '<link rel="shortcut icon" type="image/x-icon" href="' + resource.url() + '"/>')

Rendering inline

In some cases, you may want to render the content of resource directly
into the web page, instead of referring to it through a URL:

include('static/something.js', bowerstatic.render_inline_js)
include('static/something.css', bowerstatic.render_inline_css)

URL structure

Let’s look at the URLs used by BowerStatic:

/bowerstatic/components/jquery/2.1.1/dist/jquery.js

	bowerstatic

	The BowerStatic signature. You can change the default signature used
by passing a signature argument to the Bower constructor.

	components

	The unique name of the bower_components directory which you registered
with the bower object.

	jquery

	The name of the installed component as given by the name
field in bower.json.

	2.1.1

	The version number of the installed component as given by the version
field in bower.json.

	dist/jquery.js

	A relative path to a file within the component.

Caching

Cache busting

Caches in the browser and caching servers such as Varnish like to
hold on to static resources, so that the static resources does not
to be reloaded all the time.

But when you upgrade an application, or develop an application, you
want the browser to request new resources from the server where
those resources have changed.

Cache busting is a simple technique to make this happen: you serve
changed resources under a new URL. BowerStatic does this
automatically for you by including a version number or timestamp in
the resource URLs.

BowerStatic makes sure that resources are served with caching headers
set to cache them forever [1]. This means that after the first
time a web browser accesses the browser, it does not have to request
them from the server again. This takes load off your web server.

To take more load off your web server, you can install a install a
caching proxy like Varnish or Squid in front of your web server, or
use Apache’s mod_cache. With those installed, the WSGI server only
has to serve the resource once, and then it is served by cache after
that.

Caching forever would not normally be advisable as it would make it
hard to upgrade to newer versions of components. You would have to
teach your users to issue a shift-reload to get the new version of
JavaScript code. But with BowerStatic this is safe, because it busts
the cache automatically for you. When a new version of a component is
installed, the version number is updated, and new URLs are generated
by the include mechanism.

	[1]	Well, for 10 years. But that’s forever in web time.

Main endpoint

Bower has a concept of a main end-point for a component in its
bower.json. You can include the main endpoint by including the
component with its name without any file path after it:

include('jquery')

This includes the file listed in the main field in bower.json.
In the case of jQuery, this is the same file as we already included
in the earlier examples: dist/jquery.js.

A component can also specify an array of files in main. In this case
only the first endpoint listed in this array is included.

The endpoint system is aware of Bower component dependencies.
Suppose you include ‘jquery-ui’:

include('jquery-ui')

The jquery-ui component specifies in the dependencies field in
its bower.json that it depends on the jquery component. When you
include the jquery-ui endpoint, BowerStatic automatically also
include the jquery endpoint for you. You therefore get two
inclusions in your HTML:

<script
 type="text/javascript"
 src="/bowerstatic/static/jquery/2.1.1/dist/jquery.js">
</script>
<script
 type="text/javascript"
 src="/bowerstatic/static/jquery-ui/1.10.4/ui/jquery-ui.js">
</script>

If main lists a resource with an extension that has no renderer
registered for it, that resource is not included.

WSGI Publisher and Injector

Earlier we described bower.wrap to wrap your WSGI application with
the BowerStatic functionality. This is enough for many applications.
Sometimes you may want to be able to use the static resource
publishing and injecting-into-HTML behavior separately from each
other, however.

Publisher

BowerStatic uses the publisher WSGI middleware to wrap a WSGI
application so it can serve static resources automatically:

app = bower.publisher(my_wsgi_app)

app is now a WSGI application that does everything my_wsgi_app
does, as well as serve Bower components under the special URL
/bowerstatic.

Injector

BowerStatic also automates the inclusion of static resources in your
HTML page, by inserting the appropriate <script> and <link>
tags. This is done by another WSGI middleware, the injector.

You need to wrap the injector around your WSGI application as well:

app = bower.injector(my_wsgi_app)

Wrap

Before we saw bower.wrap. This wraps both a publisher and an injector
around a WSGI application. So this:

app = bower.wrap(my_wsgi_app)

is equivalent to this:

app = bower.publisher(bower.injector(my_wsgi_app))

Morepath integration

See static resources with Morepath [http://morepath.readthedocs.org/en/latest/more.static.html] for information on how the
more.static [http://pypi.python.org/pypi/more.static] extension helps you use BowerStatic in the Morepath [http://morepath.readthedocs.org]
web framework.

Pyramid integration

For integration into the Pyramid [http://www.pylonsproject.org/] web framework, there is a pyramid_bowerstatic [https://pypi.python.org/pypi/pyramid_bowerstatic]
extension or you can use djed.static [https://pypi.python.org/pypi/djed.static].

Example Flask integration

The Flask [http://flask.pocoo.org/] web framework does not have a specific extension
integrating BowerStatic yet, but you can use BowerStatic’s WSGI
integration layer to do so. Here is an example of how you integrate
BowerStatic with Flask. This code assumes you have a
bower_components directory next to this module:

from flask import Flask, request
import bowerstatic
import os.path

app = Flask(__name__)

bower = bowerstatic.Bower()

components = bower.components(
 'components',
 os.path.join(os.path.dirname(__file__), 'bower_components'))

@app.route('/')
def home():
 include = components.includer(request.environ)
 include('jquery')
 # it's important to have head and body elements in the
 # HTML so the includer has a point to include into
 return "<html><head></head><body></body></html>'

if __name__ == "__main__":
 # wrap app.wsgi_wrap, not the Flask app.
 app.wsgi_app = bower.wrap(app.wsgi_app)
 app.run(debug=True)

In the example we used a simple text string but you can use Jinja
templates too. No special changes to the templates are necessary; the
only thing required is that they have HTML <head>, </head>,
<body> and </body> tags so that the includer has a point where
it can include the static resources.

Using the Publisher and Injector with WebOb

The Injector and Publisher can also directly be used with
WebOb [http://webob.org] request and response objects. This is useful for integration
with web frameworks that already use WebOb:

from morepath import InjectorTween, PublisherTween

def handle(request):
 ... do application's work, returning response ...

use wrapped_handle instead of handle to handle application
requests with BowerStatic support
wrapped_handle = PublisherTween(bower, InjectorTween(bower, handle))

All that is required is a WebOb request and a response.

The Morepath and Pyramid integrations mentioned above already make use
of this API.

 Copyright 2014, Martijn Faassen.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	BowerStatic 0.9 documentation

Local Components

Introduction

Now we have a way to publish and use Bower components. But you
probably also develop your own front-end code: we call these “local
components”. BowerStatic also helps with that. For this it is
important to understand that locally developed code has special
caching requirements:

	When you release a local component, you want it to be cached
infinitely just like for Bower components.

When later a new release is made, you want that cache to be
invalidated, and not force end-users to do a shift-reload to get
their browser to load the new version of the code.

We can accomplish this behavior by using a version number in the
URL, just like for Bower components.

XXX one way to release a local component would be to release it
as a bower component at this point. But this may be cumbersome
for code maintained as part of Python package.

	When you develop a local component, you want the cache to be
invalidated as soon as you make any changes to the code, so you
aren’t forced to do shift-reload during development. A simple reload
should refresh all static resources.

A way to look at this is that you want the system to make a new
version number for each and every edit to the local component.

Usage

To have local components, you first have to create a special local
components registry:

local = bower.local_components('local', components)

You can have more than one local components registry, but typically
you only need one per project.

The first argument is the name of the local components registry. It is
used in the URL.

The second argument is a components object for a bower_components
directory, created earlier with bower.components(). This makes all
those bower components available in the local component registry, so
that the local components can depend on them.

Note that the local components registry does not point to a
bower_components directory itself. Instead we register directories
for individual local components manually.

Location of the local component

You can organize your code so that the local component lives inside
a Python package that provides a web API for it to use, so that they
can be developed together. You can also organize things differently
– this is up to you.

Here’s how we add a local component:

local.component('/path/to/directory/mycode', version='1.1.0')

The /path/to/directory/mycode directory should have a
bower.json file. BowerStatic uses name and main for local
components like it uses them for third party Bower components. The
name of the component should be unique within the local registry, as
well as not conflict with any component in the Bower components
registry.

As with bower.components, you can use bowerstatic.module_relative_path
to create a path relative to the calling module:

components = local.component(
 bowerstatic.module_relative_path('path/relative/to/calling/module'),
 version='1.1.0')

dependencies is also picked up from bower.json, but unlike for
third party components these dependencies are not automatically
installed.

The version number is not picked up from bower.json. Instead it is
passed through to the local component. This will make it possible to
support the right caching behavior. We go into detail about this
later.

If you have a local component called mycode, and there is a file
app.js in its directory, it is published under this URL:

/bowerstatic/local/mycode/1.1.0/app.js

To be able to include it, we can create an includer for the local
registry:

include = local.includer(environ)

This includer can be used to include local components, but also the
third-party components from the registry that the local components
registry was initialized with.

You can now include app.js in mycode like this:

include('mycode/app.js')

Versioning

Let’s consider versioning in more detail.

The version number is passed in when registering the local component.
We want it to do the right thing with caching:

	When the application is deployed, we want the version number to be
the version number of that application (or sub-package of that
application), so that infinite caching can be used but the cache is
automatically busted with an application upgrade.

	When the application is under development, we want the version
number to change each time you edit the local component’s code, so that
the cache is busted each time.

Versioning deployed applications

You can use the version of a Python application easily, as long as it
is packaged using setuptools (pip, easy_install,
buildout, etc). You can retrieve its version number like this:

import pkg_resources

version = pkg_resources.get_distribution('myproject').version

This picks up the version given in setup.py of myproject.

Using this to obtain the version and passing it into
local.component() is enough to make sure the cache is busted when
you make a release of your application.

Versioning during development

We have to make sure the cache is busted automatically during
development as well. For that we have to turn on BowerStatic’s
development mode. You can do this by passing None as the version
into local.component.

This causes the version to be automatically determined from the code
in the package, and be different each time you edit the code. Since
the version is included in the URL to the package, this allows you to
get the latest version of the code as soon as you reload after editing
a file. No shift-reloads needed to reload the code!

Putting it all together

Development mode is relatively expensive, as BowerStatic has to
monitor the local directory for any changes so it can update the
version number automatically. You should therefore make sure it is
only enabled during development, not during deployment. When your
application is deployed you need to pass in a real version number, for
instance the one you pick up using pkg_resources as described
before.

If your application has a notion of a development mode that you can
somehow inspect during run-time, you can write a version function that
automatically returns None in development mode and otherwise
returns the application’s version number. This ensures optimal caching
behavior during development and deployment both. Here’s what this
function could look like:

def get_version():
 if is_devmode_enabled(): # app specific API
 return None
 return pkg_resources.get_distribution('myproject').version

You can then register the local component like this:

local.component('/path/to/directory/mycode', version=get_version())

 Copyright 2014, Martijn Faassen.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	BowerStatic 0.9 documentation

Dependencies

Introduction

Client-side JavaScript’s “Shared Library” Approach

JavaScript has no standard import statement like Python
does. Instead, there are a many different ways to declare
dependencies between JavaScript modules, each with their own
advantages and drawbacks. One way to declare dependencies for
client-side code is to use RequireJS. NodeJS has its way to
declare dependencies between modules on the server side, and tools
like browserify exist that can help to bring these to the
client. EcmaScript 6 is introducing a module syntax of its own which
will hopefully bring order to this chaos.

The JavaScript strategy commonly used to deliver a set of modules
with dependencies to the client, especially for production use, is
different than Python’s: it’s more like the way shared libraries
work. A shared library (.so on Unix systems, .dll on
Windows) is built from many individual source files.

So, instead of shipping a package with a lot of individual .js
files, a single bundle is built from all the modules in a
package. dist/jquery.js for instance is a bundled version of
individual underlying jQuery modules that are developed in its
src directory.

Bundling is done because client-side JavaScript does not have a
universal module system, and also because it’s more efficient for a
browser to load a single bundle than to load many individual files.

A bundling module system like this has a drawback: you cannot
declare dependencies to individual modules in other
packages. Instead such dependencies are on the package level.

A Bower package may specify in its bower.json a dependency on
other packages. Bower uses this to install the dependent packages
automatically. The jquery-ui package for instance depends on the
jquery package, so when you install jquery-ui, the jquery
package is automatically installed as well.

BowerStatic also uses this information. If you include the endpoint of
a package (by not specifying the file), the endpoints of the
dependencies are also included automatically.

This is different from dependencies between individual static
resources. Bower has no information about these, and in fact there is
no universal system on the client to determine these.

Like Bower, BowerStatic therefore does not mandate a particular module
system. Use whatever system you like, with whatever server-side
bundling tools you like. But to help automate some cases, BowerStatic
does let you declare dependencies between resources if you want to,
either for resources within a single package or between resources in
different packages. This works for static resources of any kind;
JavaScript but also CSS.

Dependencies

In order to use dependencies you need to specify extra information for
resources. This is done using the resource method on the directory
object:

components = bower.components('components', '/path/to/bower_components')

components.resource(
 'jquery-ui/ui/minified/jquery-ui.min.js',
 dependencies=['jquery/dist/jquery.min.js'])

Here we express that the jquery-ui.min.js resource depends on the
jquery.min.js resource.

When you now depend on jquery-ui/ui/minified/jquery-ui.min.js using
the same components object:

include = components.includer(environ)
include('jquery-ui/ui/minified/jquery-ui.min.js')

an inclusion to the minified jQuery is also generated:

<script
 type="text/javascript"
 src="/bowerstatic/static/jquery/2.1.1/dist/jquery.min.js">
</script>
<script
 type="text/javascript"
 src="/bowerstatic/static/jquery-ui/1.10.4/ui/minified/jquery-ui.min.js">
</script>

Resource objects

The .resource method in fact creates a resource object that
you can assign to a variable:

jquery_min = components.resource(
 'jquery/dist/jquery.min.js')

You can use this resource object in an include:

include(jquery_min)

This has the same effect as referring to the resource directory using
a string.

You can also refer to this resource in another resource definition:

jquery_ui_min = components.resource(
 'jquery-ui/ui/minified/jquery-ui.min.js',
 dependencies=[jquery_min])

Dealing with explicit resource objects can be handy as it saves
typing, and Python gives you an error if you refer to a resource
object that does not exist, so you can catch typos early.

Component objects

It is sometimes useful to be able to generate the URL for a component
itself, for instance when client-side code needs to construct URLs to
things inside it, such as templates. To support this case,
you can get the URL of a component by writing this:

components.get_component('jquery').url()

This will generate the appropriate versioned URL to that component.

 Copyright 2014, Martijn Faassen.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	BowerStatic 0.9 documentation

Developing BowerStatic

Install BowerStatic for development

First make sure you have virtualenv [https://pypi.python.org/pypi/virtualenv] installed for Python 2.7.

Now create a new virtualenv somewhere for BowerStatic development:

$ virtualenv /path/to/ve_bowerstatic

You should also be able to recycle an existing virtualenv, but this
guarantees a clean one. Note that we skip activating the environment
here, as this is just needed to initially bootstrap the BowerStatic
buildout.

Clone BowerStatic from github [https://github.com/faassen/bowerstatic] and go to the bowerstatic directory:

$ git clone git@github.com:faassen/bowerstatic.git
$ cd bowerstatic

Now we need to run bootstrap.py to set up buildout, using the
Python from the virtualenv we’ve created before:

$ python /path/to/ve_bowerstatic/bin/python/bootstrap.py

This installs buildout, which can now set up the rest of the development
environment:

$ bin/buildout

This downloads and installs various dependencies and tools. The
commands you run in bin are all restricted to the virtualenv you
set up before. There is therefore no need to refer to the virtualenv
once you have the development environment going.

Running the tests

You can run the tests using py.test [http://pytest.org/latest/]. Buildout has installed it for
you in the bin subdirectory of your project:

$ bin/py.test bowerstatic

To generate test coverage information as HTML do:

$ bin/py.test bowerstatic --cov bowerstatic --cov-report html

You can then point your web browser to the htmlcov/index.html file
in the project directory and click on modules to see detailed coverage
information.

flake8

The buildout also installs flake8 [https://pypi.python.org/pypi/flake8], which is a tool that
can do various checks for common Python mistakes using pyflakes [https://pypi.python.org/pypi/pyflakes] and
checks for PEP8 [http://www.python.org/dev/peps/pep-0008/] style compliance.

To do pyflakes and pep8 checking do:

$ bin/flake8 bowerstatic

radon

The buildout installs radon [https://radon.readthedocs.org/en/latest/commandline.html]. This is a tool that can check various
measures of code complexity.

To check for cyclomatic complexity [https://en.wikipedia.org/wiki/Cyclomatic_complexity] (excluding the tests):

$ bin/radon cc bowerstatic -e "bowerstatic/tests*"

To filter for anything not ranked A:

$ bin/radon cc bowerstatic --min B -e "bowerstatic/tests*"

And to see the maintainability index:

$ bin/radon mi bowerstatic -e "bowerstatic/tests*"

 Copyright 2014, Martijn Faassen.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	BowerStatic 0.9 documentation

CHANGES

0.9 (2015-06-23)

	A few documentation fixes.

	Allow content_type of response to be None, e.g. for HTTP-401.

0.8.1 (2015-01-14)

	Python 3 compatibility fixes: a few things broke with 0.8.

0.8 (2015-01-14)

	Added references to Morepath and Pyramid extensions that integrate
BowerStatic.

	Don’t try to pick up any directories that start with a period (.) as
bower packages.

	Added an example on how to integrate BowerStatic with a Flask
application.

	Fixed documentation describing WebOb integration to new reality as of
0.7.

	Ability to support custom renderers:

http://bowerstatic.readthedocs.org/en/latest/integrating.html#supporting-additional-types-of-resources

	Breaking change: renderers will receive the resource argument
instead of the url. Renderers can be used to render resources
inline.

0.7 (2014-11-15)

	The publisher and injector have been refactored into
PublisherTween and a Publisher, and an InjectorTween and
an Injector. The Tween versions are the ones intended for use by
web frameworks that already use WebOb (such as Morepath and Pyramid)
as an alternative to using WSGI-based integration.

The WSGI-based integration has remained unchanged; you can still use
bower.wrap (or bower.injector and bower.publisher).

0.6 (2014-11-13)

	Added Python 3 compatibility. Fixes issue #25.

	Bower components and local components can be created based on a path
relative to the directory in which the components are created using
bowerstatic.module_relative_path.

	The injector and the publisher can now also be used directly by
providing a WebOb request and response. Third-party frameworks that
already use WebOb (such as Morepath and Pyramid) can make use of
this to integrate with on the level of their own request and
response objects, instead of on the WSGI level.

0.5 (2014-09-24)

	On some platforms and filesystems (such as Linux ext3, Mac OS X)
os.path.getmtime() returns timestamps with the granularity of
seconds instead of subseconds such as Linux ext4. We go for second
granularity now by default for autoversioning as this should be good
enough during development.

The test for autoversioning was assuming sub-second granularity and
this test failed. This test is now skipped on Mac OS X. What didn’t
help was weird code in BowerStatic that cut off the last bit of the
microsecond isoformat – this was removed.

This fixes bug #20. (Thanks to Michael Howitz for the bug report)

	Display a nicer error messages when a component depends on another one
that doesn’t exist. Thanks for Michael Howitz for the improvement.

	Internal toposort module was not imported relative to package,
which could lead to errors in some circumstances. Thanks TylorS for
reporting! Fixes issue #24.

0.4 (2014-09-08)

	There was a bug in the new component(name) method to obtain the
component, because it wouldn’t work for local components. Fixing this
properly took a significant refactoring:
	the ComponentCollection gains its own fallback behavior, much
simpler to implement than in LocalComponentCollection.

	UrlComponent is now gone and Component gains that functionality; it
keeps a reference to the collection itself now.

	add a lot of free-standing functions to the methods.

	an earlier hack passing the component collection through an argument
is now gone.

	The new .component() API to get a component from a collection
explicitly in order to get its URL is gone again as it conflicted
with an earlier API on local component collections. Instead use
collection.get_component(name).

0.3 (2014-08-28)

	BowerStatic failed to initialize if a component was discovered
without a main. These are handled now – if you try to include a
path to such a resource, no extra inclusions are generated. Fixes #5.

	If main was an array, only the first such resource was
loaded. The correct behavior should be to load all these
resources. This required a reworking of how resources get created;
instead of creating a single resource for a path, a list of
resources is created everywhere. Fixes #6 (and was mentioned in #5).

	Introduce a component(name) method on the components
object. Given a component name it will give an object that has a
url() method. This can be used to obtain the URL of a component
directory, which is sometimes useful when client-side code needs to
construct URLs itself, such as for templates. Fixes issue #8.

	You can register a renderer for a particular extension type using,
for example, bower.renderer('.js', render_js), where
render_js takes a URL and should return a string with a HTML
snippet to include on the page.

0.2 (2014-07-18)

	Even if the same resource is included multiple times, it will only
be included once. Thanks Ying Zhong for the bug report and suggested
fix.

0.1 (2014-07-07)

	Initial public release.

 Copyright 2014, Martijn Faassen.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	BowerStatic 0.9 documentation

History

hurry.resource

In 2008 I (Martijn Faassen) built a library called
hurry.resource [https://pypi.python.org/pypi/hurry.resource/0.10]. It could automatically insert the required
<script> and <include> tags into HTML. You could describe
these resources in Python code. It was aware of resource dependencies,
and also had a facility to automatically included minified versions of
particular resources, or bundled versions that included a number of
files.

I used hurry.resource in the context of applications based on the
Grok [http://grok.zope.org] framework. The Grok integration was involved; you had to hook in
at the right place to manipulate the HTML, and hurry.resource did
not serve static resources itself; it left that up to the web
framework too. While I had written hurry.resource to be
web-framework independent, to my knowledge nobody used it outside of
Grok/Zope 3.

hurry.resource in turn was inspired by a library called
zc.resourcelibrary [https://pypi.python.org/pypi/zc.resourcelibrary], which did much the same but had a more limited
way to describe resources. The resource metadata system was inspired
by the system in YUI 2 [https://yui.github.io/yui2/].

Fanstatic

In 2010, I, Jan-Wijbrand Kolman and Jan-Jaap Driessen rewrote
hurry.resource into a more capable library. We had the realization
that by going with WSGI and by making the system serve resources as
well, we could create a true web framework for static resources. We
decided to rebuild hurry.resource into Fanstatic [http://fanstatic.org].

We were also inspired by the capabilities of z3c.hashedresource [https://pypi.python.org/pypi/z3c.hashedresource], a
library for Zope 3 that could generate cache-busting URLs that aid
caching and development (see Caching). Since Fanstatic controlled
both creating inclusions for resources as well as serving them, we
could bring cache busting behavior into Fanstatic.

Another clever hack of Fanstatic was to leverage the Python packaging
infrastructure (PyPI, setuptools, etc) to distribute static resources
and their descriptions. This way we could easily install a variety of
client-side libraries, as long as someone had wrapped them using
Fanstatic. The community wrapped quite a few libraries.

Unlike hurry.resource, Fanstatic is easy to integrate into any
WSGI-based web framework. This helped Fanstatic to become a moderately
successful open source project. It was adopted not only by Grok users,
but also by many others that use WSGI-based web frameworks. We got
quite a few contributions, and a range of advanced features were added
to Fanstatic beyond that hurry.resource already provided.

BowerStatic

A bottleneck of Fanstatic is that someone needs to sit down and write
a Python package for each JavaScript project out there. This takes
time. To upgrade a package to a newer version can be cumbersome.
Fanstatic makes the developer of Python wrapper library the
intermediary, and while this intermediary can add value, they can also
be an obstacle.

By 2014, a lot had changed in the client-side world. Fanstatic’s
reliance on the Python packaging infrastructure was turning from an
advantage into a drawback. Bower [http://bower.io/] has become the de-facto way for many
client-side libraries to be distributed and installed. Faced with the
task to wrap a range of JavaScript libraries using Fanstatic and then
maintain those wrapping libraries, I decided to give Fanstatic a
rethink instead.

Using the Bower package manager, we can install client-side components
without having to go through an intermediary.

Fanstatic has another limitation: just like in Python, you can only
have one version of a library installed per project. I was facing a
use case where this was not desirable: a large platform with multiple
sub-projects that might want to use divergent versions of their
client-side components.

So I started thinking about what a static web framework might look
like that uses Bower as its underlying packaging system, while
retaining some important features of Fanstatic, like automating
insertion of link and script tags, static resource serving, and
caching.

BowerStatic was born.

 Copyright 2014, Martijn Faassen.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	BowerStatic 0.9 documentation

Index

 Copyright 2014, Martijn Faassen.
 Created using Sphinx 1.3.5.

 _static/minus.png

_static/comment-close.png

_static/comment.png

_static/up.png

_static/down.png

_static/file.png

_static/plus.png

_static/down-pressed.png

_static/ajax-loader.gif

_static/comment-bright.png

_static/up-pressed.png

search.html

 Navigation

 		
 index

 		BowerStatic 0.9 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2014, Martijn Faassen.
 Created using Sphinx 1.3.5.

