
botbot Documentation
Release 1.0

Lincoln Loop

Sep 13, 2018

Contents

1 Installation 3
1.1 Pre-requisites . 3
1.2 Install . 4
1.3 Running Tests . 4
1.4 Building Documentation . 5

2 Getting Started 7
2.1 Create a Bot and Connect to a Freenode Channel . 7

3 Managing Bots 9
3.1 Multiple Bots . 9
3.2 Public, Private, and Featured Channels . 9
3.3 Freenode . 9

4 Developing with BotBot 11
4.1 Architecture . 11

5 Plugin API Documentation 15
5.1 Plugin Capabilities . 15
5.2 Parsing and responding to messages . 15
5.3 Configuration Metadata . 16
5.4 Storage / Persisting Data . 16
5.5 Testing Your Plugins . 16

6 IRC Resources 17
6.1 Freenode . 17

7 Troubleshooting 19
7.1 Log messages . 19

8 Indices and tables 21

i

ii

botbot Documentation, Release 1.0

Contents:

Contents 1

botbot Documentation, Release 1.0

2 Contents

CHAPTER 1

Installation

1.1 Pre-requisites

Some of the suggested commands that follow may require root privileges on your system.

1.1.1 Python

• Python 2.7

1.1.2 Postgresql with hStore extension

• OS X:

– Homebrew: installed by default

– Postgres.app: installed by default

• Ubuntu: apt-get install postgresql-contrib-9.1 postgresql-server-dev-9.1
python-dev virtualenv

1.1.3 Go

Version 1.2 or higher required

• OS X: brew install go

• Ubuntu: apt-get install golang-go

3

botbot Documentation, Release 1.0

1.1.4 Redis

• OS X: brew install redis

• Ubuntu: apt-get install redis-server

1.2 Install

Run in a terminal:

virtualenv botbot && source botbot/bin/activate
pip install -e git+https://github.com/BotBotMe/botbot-web.git#egg=botbot
cd $VIRTUAL_ENV/src/botbot

This builds the project environment and will run for at least several minutes
make dependencies

Adjust ``.env`` file if necessary. Defaults are chosen for local debug environments.
If your Postgres server requires a password, you'll need to override STORAGE_URL
The default database name is 'botbot'
$EDITOR .env

Make the variables available to subprocesses
export $(cat .env | grep -v ^# | xargs)

createdb botbot
echo "create extension hstore" | psql botbot
manage.py migrate

You'll need a staff account for creating a bot and registering channels
manage.py createsuperuser

Redis needs to be running prior to starting the BotBot services. For example:

redis-server

Then, to run all the services defined in Procfile:

honcho start

Note: foreman will also work if you have the gem or Heroku toolbelt installed.

You should now be able to access the site at http://localhost:8000. Log in with the username you created.

See Getting Started for instructions on configuring a bot.

If you plan make code changes, please read through the Developing with BotBot doc.

If you plan to run BotBot in a production environment please read the production doc.

1.3 Running Tests

The tests can currently be run with the following command:

4 Chapter 1. Installation

http://ddollar.github.com/foreman/

botbot Documentation, Release 1.0

manage.py test accounts bots logs plugins

1.4 Building Documentation

Documentation is available in docs and can be built into a number of formats using Sphinx:

pip install Sphinx
cd docs
make html

This creates the documentation in HTML format at docs/_build/html.

1.4. Building Documentation 5

http://pypi.python.org/pypi/Sphinx

botbot Documentation, Release 1.0

6 Chapter 1. Installation

CHAPTER 2

Getting Started

2.1 Create a Bot and Connect to a Freenode Channel

2.1.1 Add a new Bot

A bot acts as an IRC client. It connects to one or more IRC servers and joins one or more channels per server.

1. Go to http://localhost:8000/admin/bots/chatbot/add/

2. Log in with your username. If you didn’t create a superuser during installation, you can create one via:

manage.py createsuperuser

3. Select ‘Is active’

4. Server: chat.freenode.net:6667

5. Nick: You’ll need to create a unique nick for your bot.

Note: Freenode registration guidelines suggest creating a separate nick if you plan to run a bot.

It isn’t necessary to register your bot’s nick right away if you’re just trying things out. However, you’ll want to choose
a nick that isn’t already in use. Also, be aware that many channels will require registered nick to join (the +r flag).
See IRC Resources for information about valid Freenode nicks. If you’re planning on running a bot for real-world or
regular use, definitely register your nick. You can check if a nick is registered in your IRC client via:

/msg NickServ info <desired_nick>

6. Real Name: This should be a readable identifier related to your bot: a URL, project name, etc. The spec leaves
a lot of room for interpretation about what this value should be. It could probably be any random value but
other members of the Freenode community would likely appreciate if you use a sensible name. See 4.1.3 User
message in the IRC protocol spec for more info.

7

http://freenode.net/faq.shtml#userregistration
http://www.ietf.org/rfc/rfc1459.txt

botbot Documentation, Release 1.0

7. Save the Bot. Check the output in the console you started honcho in. You should see a number of messages
indicating the bot has connected to Freenode and identified itself.

2.1.2 Add a Channel

Now that your bot is connected to a network or server, you can start having it join channels:

1. Go to http://localhost:8000/admin/bots/channel/add/

2. Select your bot from the dropdown

3. Channel: #botbot-warmup. This is a channel where we test channel bots.

4. If you’d like the channel to be listed on the site home page, Select ‘Is public’

5. Several useful plugins will already be configured. At a minimum, ping and logger will be helpful for testing
the bot.

6. Save your channel. You should be directed back to the Channel list view.

7. On the Channel list view, select your channel. From the Actions dropdown select “Reload botbot-bot config-
uration” and press “Go”. You should see something similar in the honcho console output (edited for brevity):

14:15:07 bot.1 | I0711 14:15:07.557470 61493 botbot.go:67] Command: REFRESH
14:15:07 bot.1 | I0711 14:15:07.557546 61493 botbot.go:124] HandleCommand:
→˓REFRESH
14:15:07 bot.1 | I0711 14:15:07.557557 61493 botbot.go:153] Reloading
→˓configuration from database
14:15:07 bot.1 | I0711 14:15:07.557564 61493 network.go:49] Entering in
→˓NetworkManager.RefreshChatbots
14:15:07 bot.1 | I0711 14:15:07.558013 61493 storage.go:121] config.Id: 1
14:15:07 bot.1 | I0711 14:15:07.558753 61493 storage.go:145] config.Channel:
→˓[#botbot-warmup]
...
14:15:07 bot.1 | I0711 14:15:07.559072 61493 irc.go:460] [Info] The channels
→˓the bot is connected to need to be updated
14:15:07 bot.1 | I0711 14:15:07.559083 61493 irc.go:473] [Info] Joining new
→˓channel: #botbot-warmup
14:15:07 bot.1 | I0711 14:15:07.559096 61493 network.go:98] Exiting
→˓NetworkManager.RefreshChatbots
14:15:07 bot.1 | I0711 14:15:07.559111 61493 irc.go:228] [RAW thahslkd334558
→˓on chat.freenode.net:6667 (0xc208028750)] --> JOIN #botbot-warmup

8. In your IRC client, join #botbot-warmup. Try issuing a ping command (using your bot’s nick in place of
“mybot”). The bot should respond with a friendly message.

9. Go back to the home page http://localhost:8000, you should see the channel listed as a public channel.

10. Add another Active Plugin and this time select Logger.

11. Save and “Reload botbot-bot configuration” as before. Your honcho console should once again show a refresh

12. In your IRC client, go to #botbot-warmup and post a message. You should now have a log available at http:/
/localhost:8000/freenode/botbot-warmup. Each message you post in the channel shows up in
the honcho console.

You’re ready to configure your own channels and utilize other plugins.

8 Chapter 2. Getting Started

irc://irc.freenode.net:6667/botbot-warmup
irc:irc.freenode.net:6667/botbot-warmup

CHAPTER 3

Managing Bots

3.1 Multiple Bots

Bots can be connected to multiple networks. For example you can have a bot that connects to Freenode, and another
that connects to Mozilla’s IRC network.

Multiple bots for the same network / server is not supported at this time.

3.2 Public, Private, and Featured Channels

These are primarily distinctions for the Django site and the display of logs.

Public Logs for public channels will be available on a public URL like http://example.com/freenode/django

Featured Featured channels are public channels. Used by botbot.me for highlighting some public channels. May be
deprecated in the future.

Private Logs for private channels are only availale to authenticated users of the site. They will have URLs that are
not easy to guess.

3.3 Freenode

3.3.1 Policy

Before logging any public channels, take a couple simple steps to ensure no misunderstandings occur.

1. Have the consent of a channel operator.

2. Ask the operator to make it clear in the channel topic that it is being logged.

Freenode’s channel guidelines don’t seem to address non-operator users who want to run bots. (see final bullet point)
Our preference is to favor honesty and transparency.

9

https://botbot.me
http://freenode.net/channel_guidelines.shtml

botbot Documentation, Release 1.0

10 Chapter 3. Managing Bots

CHAPTER 4

Developing with BotBot

4.1 Architecture

Several loosely coupled pieces make up the whole of BotBot:

1. botbot-bot: An IRC client capable of connecting to multiple IRC networks, and connecting multiple channels
and nicks per network. (Go)

2. botbot-plugins: A plugin framework - plugins receive messages from IRC channels and can respond within the
channel. (Python)

3. botbot-web: A web site for managing bots/channels as well as a beautiful public interface for channel logs.
(Python/Django)

4. nginx + push-stream-module: An SSE provider that the web site can connect to for real-time logs.

11

botbot Documentation, Release 1.0

4.1.1 Configuration / Environment Variables

At Lincoln Loop we’ve found the 12-factor style to be helpful and use those guidelines. As recommended, we rely on
environment variables whenever possible for determining site-specific configuration values.

The .env file

We’ve adopted a convention used by Heroku and others of creating a .env file in the project root that can be used
as a base for managing environment variables. Tools like Honcho and Foreman will use the .env file to bootstrap
the environment for each process it starts up. If you prefer to use these tools, all you have to worry about is editing
the .env file as needed. The .env file can also be used as a template for other methods of populating environment
variables.

We don’t want make assumptions about how developers prefer to configure their environments. There are some handy
open source libs out there that we could use to easily make each service utilize the .env file, but this won’t work
well for everyone or every environment. If you need to run a service individually, you’ll need to make sure the proper
environment variables are configured. The next section describes some easy ways to handle this.

4.1.2 Running Services

Run All Services

Honcho is great for getting everything started quickly. Running this command will load all services defined in the
Procfile:

honcho start

12 Chapter 4. Developing with BotBot

botbot Documentation, Release 1.0

Run Services Individually

When working on code changes or debugging, it is often desirable to manage one or more of the services (bot, plugin
runner, runserver, nginx) independently.

If you’d like to make use of the .env file, you can still start services individually using Honcho:

honcho start web # Starts Django site
honcho start bot # Starts IRC client
honcho start plugins # Starts plugin runner

If you would prefer not to use Honcho, you’ll need to manage the environment variables. Many developers use the
virtualenv postactivate feature to set required environment variables whenever a virtualenv is activated. An
alternative approach could be to attempt to set variables directly from the .env file. As an example, you could put the
following into a set_env.sh file:

export $(cat .env | grep -v ^# | xargs)

Then you could invoke commands and individual services like:

source set_env.sh && manage.py runserver
source set_env.sh && botbot-bot -v=2 -logtostderr=true
nginx -c `pwd`/nginx.conf.example
source set_env.sh && manage.py run_plugins

If you’ve explicitly set the environment through your own methods, services can be invoked like usual:

manage.py runserver
botbot-bot
botbot-eventsource
manage.py run_plugins

Go IRC Client (bot)

Execution starts in main.go, in function “main”. That starts the chatbots (via NetworkManager), the goroutine which
listens for commands from Redis, and the mainLoop goroutine, then waits for a Ctrl-C or kill to quit.

The core of the bot is in mainLoop (main.go). That listens to two Go channels, fromServer and fromBus. fromServer
receives everything coming in from IRC. fromBus receives commands from the plugins, sent via a Redis list.

A typical incoming request to a plugin would take this path:

IRC -> TCP socket -> ChatBot.listen (irc.go) -> fromServer channel -> mainLoop (main.go) -> Dispatcher
(dispatch.go) -> redis PUBLISH -> plugin

A reply from the plugin takes this path:

plugin -> redis LPUSH -> listenCmd (main.go) -> fromBus channel -> mainLoop (main.go) -> Network-
Manager.Send (network.go) -> ChatBot.Send (irc.go) -> TCP socket -> IRC

And now, in ASCII art:

plugins <--> REDIS -BLPOP-> listenCmd (main.go) --> fromBus --> mainLoop (main.go) <--
→˓ fromServer <-- n ChatBots (irc.go) <--> IRC

^ | |
→˓ ^

(continues on next page)

4.1. Architecture 13

botbot Documentation, Release 1.0

(continued from previous page)

| PUBLISH | |
→˓ |

------------ Dispatcher (dispatch.go) <---------- ---->
→˓NetworkManager (network.go) ----

Django Site

You can run commands within the Honcho environment using the run command:

honcho run manage.py dbshell
honcho run manage.py syncdb

If you’re using the set_env method:

source set_env.sh && manage.py dbshell
source set_env.sh && manage.py syncdb

If you’ve explicitly set the environment variables, run commands like usual:

manage.py dbshell
manage.py syncdb

Working with LESS

LESS requires Node.js. There are shortcuts in the Makefile for installing everything necessary:

make less-install

From this point forward, if you need to compile LESS run:

make less-compile

To automatically compile whenever you save a change:

make less-watch

4.1.3 Plugins

You can optionally run the plugins under gevent (pip install gevent) which will parallelize them when run-
ning the plugins under load:

manage.py run_plugins --with-gevent

14 Chapter 4. Developing with BotBot

CHAPTER 5

Plugin API Documentation

You can write your own Botbot plugin by extending the core plugin class and providing one or more message handlers.
A message handler is a method on the plugin class that receives an object representing a user message that has been
posted to the IRC channel the plugin is associated with. The existing plugins in botbotme_plugins/plugins
serve as good examples to follow. ping and brain are good ones to start with due to their simplicity.

5.1 Plugin Capabilities

Plugins provide three basic capabilities:

1. Parse messages and optionally respond with an output message.

2. Associate configuration variables. Useful if your plugin needs to connect to external services.

3. Store and retrieve key/value pairs.

All plugins extend the BasePlugin class, providing them with the ability to utilize these capabilities.

5.2 Parsing and responding to messages

In the simplest case, a plugin will receive a message from an IRC channel and parse it based on a rule. When the
parsed input matches a rule, the plugin may return a response.

Additional methods should be defined on your Plugin class that will listen and optionally respond to incoming
messages. They are registered with the app using one of the following decorators from botbotme_plugins.
decorators:

• listens_to_mentions(regex): A method that should be called only when the bot’s nick prefixes the
message and that message matches the regex pattern. For example, [o__o]: What time is it in
Napier, New Zealand?. The nick will be stripped prior to regex matching.

• listens_to_all(regex): A method that should be called on any line that matches the regex pattern.

15

botbot Documentation, Release 1.0

The method should accept a line object as its first argument and any named matches from the regex as keyword args.
Any text returned by the method will be echoed back to the channel.

The line object has the following attributes:

• user: The nick of the user who wrote the message

• text: The text of the message (stripped of nick if addressed to the bot)

• full_text: The text of the message

5.3 Configuration Metadata

Metadata can be associated with your plugin that can be referenced as needed in the message handlers. A common use
case for this is storing authentication credentials and/or API endpoint locations for external services. The github
plugin is an example that uses configuration for the ability to query a Github repository.

To add configuration to your plugin, define a config class that inherits from config.BaseConfig. Configuration
values are declared by adding instances of config.Field as attributes of the class.

Once your config class is defined, you associate it with the plugin via the config_class attribute:

class MyConfig(BaseConfig):
unwarranted_comments = Field(

required=False,
help_text="Responds to every message with sarcastic comment",
default=True)

class Plugin(BasePlugin):
config_class = MyConfig

@listens_to_all
def peanut_gallery(self, line):

if self.config.unwarranted_comments:
return "Good one!"

5.4 Storage / Persisting Data

BasePlugin provides a wrapper around the Redis API that Plugins should use for storage. Since multiple channels can
be using the same plugin, keys need to unique per plugin instance. BasePlugin takes care of this for you.

5.5 Testing Your Plugins

In order to simulate the plugin running in its normal environment, an app instance must be instantiated. See the current
tests for examples. This may change with subsequent releases.

16 Chapter 5. Plugin API Documentation

CHAPTER 6

IRC Resources

Internet Relay Chat Protocol

6.1 Freenode

• Registering Channels

• FAQ

6.1.1 Being a Good Citizen

• Channel Guidelines

• Being a Catalyst

• Policy

6.1.2 Nicks

It was surprisingly difficult to find a desciption of what constitutes a valid nick on Freenode. Asked the friendly folks
on #freenode and had the answer a few minutes later.

nickname = (letter / special) *8(letter / digit / special / “-”) and special is “[“, “]”, “”, “‘”, “_”, “^”, “{“,
“|”, “}”

Nicks can be from 2 - 16 ASCII characters long. These characters are allowed:

RFC 1459 - Internet Relay Chat Protocol http://www.ietf.org/rfc/rfc1459.txt

17

http://blog.freenode.net/2008/04/registering-a-channel-on-freenode/
http://freenode.net/faq.shtml
http://freenode.net/channel_guidelines.shtml
http://freenode.net/catalysts.shtml
http://freenode.net/policy.shtml
irc://chat.freenode.net:6667
http://www.ietf.org/rfc/rfc1459.txt

botbot Documentation, Release 1.0

18 Chapter 6. IRC Resources

CHAPTER 7

Troubleshooting

7.1 Log messages

plugins.1 | DoesNotExist: Channel matching query does not exist.

If you edit or add channels this condition can occur. It is due to a bug where stale config data is in Redis. This bug
will be resolved in a future release.

19

botbot Documentation, Release 1.0

20 Chapter 7. Troubleshooting

CHAPTER 8

Indices and tables

• genindex

• modindex

• search

21

	Installation
	Pre-requisites
	Install
	Running Tests
	Building Documentation

	Getting Started
	Create a Bot and Connect to a Freenode Channel

	Managing Bots
	Multiple Bots
	Public, Private, and Featured Channels
	Freenode

	Developing with BotBot
	Architecture

	Plugin API Documentation
	Plugin Capabilities
	Parsing and responding to messages
	Configuration Metadata
	Storage / Persisting Data
	Testing Your Plugins

	IRC Resources
	Freenode

	Troubleshooting
	Log messages

	Indices and tables

