

Welcome to BotBot’s documentation!

Contents:

	Installation
	Pre-requisites

	Install

	Running Tests

	Building Documentation

	Getting Started
	Create a Bot and Connect to a Freenode Channel

	Managing Bots
	Multiple Bots

	Public, Private, and Featured Channels

	Freenode

	Developing with BotBot
	Architecture

	Plugin API Documentation
	Plugin Capabilities

	Parsing and responding to messages

	Configuration Metadata

	Storage / Persisting Data

	Testing Your Plugins

	IRC Resources
	Freenode

	Troubleshooting
	Log messages

Indices and tables

	Index

	Module Index

	Search Page

Installation

Pre-requisites

Some of the suggested commands that follow may require root privileges on your system.

Python

	Python 2.7

Postgresql with hStore extension

	OS X:

	Homebrew: installed by default

	Postgres.app: installed by default

	Ubuntu: apt-get install postgresql-contrib-9.1 postgresql-server-dev-9.1 python-dev virtualenv

Go

Version 1.2 or higher required

	OS X: brew install go

	Ubuntu: apt-get install golang-go

Redis

	OS X: brew install redis

	Ubuntu: apt-get install redis-server

Install

Run in a terminal:

virtualenv botbot && source botbot/bin/activate
pip install -e git+https://github.com/BotBotMe/botbot-web.git#egg=botbot
cd $VIRTUAL_ENV/src/botbot

This builds the project environment and will run for at least several minutes
make dependencies

Adjust ``.env`` file if necessary. Defaults are chosen for local debug environments.
If your Postgres server requires a password, you'll need to override STORAGE_URL
The default database name is 'botbot'
$EDITOR .env

Make the variables available to subprocesses
export $(cat .env | grep -v ^# | xargs)

createdb botbot
echo "create extension hstore" | psql botbot
manage.py migrate

You'll need a staff account for creating a bot and registering channels
manage.py createsuperuser

Redis needs to be running prior to starting the BotBot services. For example:

redis-server

Then, to run all the services defined in Procfile:

honcho start

Note

foreman [http://ddollar.github.com/foreman/] will also work if you have the gem or Heroku toolbelt installed.

You should now be able to access the site at http://localhost:8000. Log in with the username you created.

See Getting Started for instructions on configuring a bot.

If you plan make code changes, please read through the Developing with BotBot doc.

If you plan to run BotBot in a production environment please read the Serving BotBot In a Production Environment doc.

Running Tests

The tests can currently be run with the following command:

manage.py test accounts bots logs plugins

Building Documentation

Documentation is available in docs and can be built into a number of
formats using Sphinx [http://pypi.python.org/pypi/Sphinx]:

pip install Sphinx
cd docs
make html

This creates the documentation in HTML format at docs/_build/html.

Getting Started

Create a Bot and Connect to a Freenode Channel

Add a new Bot

A bot acts as an IRC client. It connects to one or more IRC servers and joins one or more channels per server.

	Go to http://localhost:8000/admin/bots/chatbot/add/

	Log in with your username. If you didn’t create a superuser during installation, you can create one via:

manage.py createsuperuser

	Select ‘Is active’

	Server: chat.freenode.net:6667

	Nick: You’ll need to create a unique nick for your bot.

Note

Freenode registration guidelines [http://freenode.net/faq.shtml#userregistration] suggest creating a separate nick if you plan to run a bot.

It isn’t necessary to register your bot’s nick right away if you’re just trying things out. However, you’ll want to choose a nick that isn’t already in use. Also, be aware that many channels will require registered nick to join (the +r flag). See IRC Resources for information about valid Freenode nicks. If you’re planning on running a bot for real-world or regular use, definitely register your nick. You can check if a nick is registered in your IRC client via:

/msg NickServ info <desired_nick>

	Real Name: This should be a readable identifier related to your bot: a URL, project name, etc. The spec leaves a lot of room for interpretation about what this value should be. It could probably be any random value but other members of the Freenode community would likely appreciate if you use a sensible name. See 4.1.3 User message in the IRC protocol spec [http://www.ietf.org/rfc/rfc1459.txt] for more info.

	Save the Bot. Check the output in the console you started honcho in. You should see a number of messages indicating the bot has connected to Freenode and identified itself.

Add a Channel

Now that your bot is connected to a network or server, you can start having it join channels:

	Go to http://localhost:8000/admin/bots/channel/add/

	Select your bot from the dropdown

	Channel: #botbot-warmup. This is a channel where we test channel bots.

	If you’d like the channel to be listed on the site home page, Select ‘Is public’

	Several useful plugins will already be configured. At a minimum, ping and logger will be helpful for testing the bot.

	Save your channel. You should be directed back to the Channel list view.

	On the Channel list view, select your channel. From the Actions dropdown select “Reload botbot-bot configuration” and press “Go”. You should see something similar in the honcho console output (edited for brevity):

14:15:07 bot.1 | I0711 14:15:07.557470 61493 botbot.go:67] Command: REFRESH
14:15:07 bot.1 | I0711 14:15:07.557546 61493 botbot.go:124] HandleCommand: REFRESH
14:15:07 bot.1 | I0711 14:15:07.557557 61493 botbot.go:153] Reloading configuration from database
14:15:07 bot.1 | I0711 14:15:07.557564 61493 network.go:49] Entering in NetworkManager.RefreshChatbots
14:15:07 bot.1 | I0711 14:15:07.558013 61493 storage.go:121] config.Id: 1
14:15:07 bot.1 | I0711 14:15:07.558753 61493 storage.go:145] config.Channel: [#botbot-warmup]
...
14:15:07 bot.1 | I0711 14:15:07.559072 61493 irc.go:460] [Info] The channels the bot is connected to need to be updated
14:15:07 bot.1 | I0711 14:15:07.559083 61493 irc.go:473] [Info] Joining new channel: #botbot-warmup
14:15:07 bot.1 | I0711 14:15:07.559096 61493 network.go:98] Exiting NetworkManager.RefreshChatbots
14:15:07 bot.1 | I0711 14:15:07.559111 61493 irc.go:228] [RAW thahslkd334558 on chat.freenode.net:6667 (0xc208028750)] --> JOIN #botbot-warmup

	In your IRC client, join #botbot-warmup. Try issuing a ping command (using your bot’s nick in place of “mybot”). The bot should respond with a friendly message.

	Go back to the home page http://localhost:8000, you should see the channel listed as a public channel.

	Add another Active Plugin and this time select Logger.

	Save and “Reload botbot-bot configuration” as before. Your honcho console should once again show a refresh

	In your IRC client, go to #botbot-warmup and post a message. You should now have a log available at http://localhost:8000/freenode/botbot-warmup. Each message you post in the channel shows up in the honcho console.

You’re ready to configure your own channels and utilize other plugins.

Managing Bots

Multiple Bots

Bots can be connected to multiple networks. For example you can have a bot that connects to Freenode, and another that connects to Mozilla’s IRC network.

Multiple bots for the same network / server is not supported at this time.

Public, Private, and Featured Channels

These are primarily distinctions for the Django site and the display of logs.

	Public

	Logs for public channels will be available on a public URL like http://example.com/freenode/django

	Featured

	Featured channels are public channels. Used by botbot.me [https://botbot.me] for highlighting some public channels. May be deprecated in the future.

	Private

	Logs for private channels are only availale to authenticated users of the site. They will have URLs that are not easy to guess.

Freenode

Policy

Before logging any public channels, take a couple simple steps to ensure no misunderstandings occur.

	Have the consent of a channel operator.

	Ask the operator to make it clear in the channel topic that it is being logged.

Freenode’s channel guidelines [http://freenode.net/channel_guidelines.shtml] don’t seem to address non-operator users who want to run bots. (see final bullet point) Our preference is to favor honesty and transparency.

Developing with BotBot

Architecture

Several loosely coupled pieces make up the whole of BotBot:

	botbot-bot: An IRC client capable of connecting to multiple IRC networks, and connecting multiple channels and nicks per network. (Go)

	botbot-plugins: A plugin framework - plugins receive messages from IRC channels and can respond within the channel. (Python)

	botbot-web: A web site for managing bots/channels as well as a beautiful public interface for channel logs. (Python/Django)

	nginx + push-stream-module: An SSE provider that the web site can connect to for real-time logs.

[image: _images/botbot-architecture.png]

Configuration / Environment Variables

At Lincoln Loop we’ve found the 12-factor style to be helpful and use those guidelines. As recommended, we rely on environment variables whenever possible for determining site-specific configuration values.

The .env file

We’ve adopted a convention used by Heroku and others of creating a .env file in the project root that can be used as a base for managing environment variables. Tools like Honcho and Foreman will use the .env file to bootstrap the environment for each process it starts up. If you prefer to use these tools, all you have to worry about is editing the .env file as needed. The .env file can also be used as a template for other methods of populating environment variables.

We don’t want make assumptions about how developers prefer to configure their environments. There are some handy open source libs out there that we could use to easily make each service utilize the .env file, but this won’t work well for everyone or every environment. If you need to run a service individually, you’ll need to make sure the proper environment variables are configured. The next section describes some easy ways to handle this.

Running Services

Run All Services

Honcho is great for getting everything started quickly. Running this command will load all services defined in the Procfile:

honcho start

Run Services Individually

When working on code changes or debugging, it is often desirable to manage one or more of the services (bot, plugin runner, runserver, nginx) independently.

If you’d like to make use of the .env file, you can still start services individually using Honcho:

honcho start web # Starts Django site
honcho start bot # Starts IRC client
honcho start plugins # Starts plugin runner

If you would prefer not to use Honcho, you’ll need to manage the environment variables. Many developers use the virtualenv postactivate feature to set required environment variables whenever a virtualenv is activated. An alternative approach could be to attempt to set variables directly from the .env file. As an example, you could put the following into a set_env.sh file:

export $(cat .env | grep -v ^# | xargs)

Then you could invoke commands and individual services like:

source set_env.sh && manage.py runserver
source set_env.sh && botbot-bot -v=2 -logtostderr=true
nginx -c `pwd`/nginx.conf.example
source set_env.sh && manage.py run_plugins

If you’ve explicitly set the environment through your own methods, services can be invoked like usual:

manage.py runserver
botbot-bot
botbot-eventsource
manage.py run_plugins

Go IRC Client (bot)

Execution starts in main.go, in function “main”. That starts the chatbots (via NetworkManager), the goroutine which listens for commands from Redis, and the mainLoop goroutine, then waits for a Ctrl-C or kill to quit.

The core of the bot is in mainLoop (main.go). That listens to two Go channels, fromServer and fromBus. fromServer receives everything coming in from IRC. fromBus receives commands from the plugins, sent via a Redis list.

A typical incoming request to a plugin would take this path:

IRC -> TCP socket -> ChatBot.listen (irc.go) -> fromServer channel -> mainLoop (main.go) -> Dispatcher (dispatch.go) -> redis PUBLISH -> plugin

A reply from the plugin takes this path:

plugin -> redis LPUSH -> listenCmd (main.go) -> fromBus channel -> mainLoop (main.go) -> NetworkManager.Send (network.go) -> ChatBot.Send (irc.go) -> TCP socket -> IRC

And now, in ASCII art:

plugins <--> REDIS -BLPOP-> listenCmd (main.go) --> fromBus --> mainLoop (main.go) <-- fromServer <-- n ChatBots (irc.go) <--> IRC
 ^ | | ^
 | PUBLISH | | |
 ------------ Dispatcher (dispatch.go) <---------- ----> NetworkManager (network.go) ----

Django Site

You can run commands within the Honcho environment using the run command:

honcho run manage.py dbshell
honcho run manage.py syncdb

If you’re using the set_env method:

source set_env.sh && manage.py dbshell
source set_env.sh && manage.py syncdb

If you’ve explicitly set the environment variables, run commands like usual:

manage.py dbshell
manage.py syncdb

Working with LESS

LESS requires Node.js. There are shortcuts in the Makefile for installing everything necessary:

make less-install

From this point forward, if you need to compile LESS run:

make less-compile

To automatically compile whenever you save a change:

make less-watch

Plugins

You can optionally run the plugins under gevent (pip install gevent) which will parallelize them when running the plugins under load:

manage.py run_plugins --with-gevent

Plugin API Documentation

You can write your own Botbot plugin by extending the core plugin class and providing one or more message handlers. A
message handler is a method on the plugin class that receives an object representing a user message that has been
posted to the IRC channel the plugin is associated with. The existing plugins in botbotme_plugins/plugins serve as good examples to follow. ping and brain are good ones to start with due to their simplicity.

Plugin Capabilities

Plugins provide three basic capabilities:

	Parse messages and optionally respond with an output message.

	Associate configuration variables. Useful if your plugin needs to connect to external services.

	Store and retrieve key/value pairs.

All plugins extend the BasePlugin class, providing them with the ability to utilize these capabilities.

Parsing and responding to messages

In the simplest case, a plugin will receive a message from an IRC channel and parse it based on a rule. When the parsed input
matches a rule, the plugin may return a response.

Additional methods should be defined on your Plugin class that will listen and optionally respond to incoming messages. They are registered with the app using one of the following decorators from botbotme_plugins.decorators:

	listens_to_mentions(regex): A method that should be called only when the bot’s nick prefixes the message and that message matches the regex pattern. For example, [o__o]: What time is it in Napier, New Zealand?. The nick will be stripped prior to regex matching.

	listens_to_all(regex): A method that should be called on any line that matches the regex pattern.

The method should accept a line object as its first argument and any named matches from the regex as keyword args. Any text returned by the method will be echoed back to the channel.

The line object has the following attributes:

	user: The nick of the user who wrote the message

	text: The text of the message (stripped of nick if addressed to the bot)

	full_text: The text of the message

Configuration Metadata

Metadata can be associated with your plugin that can be referenced as needed in the message handlers. A common use case for
this is storing authentication credentials and/or API endpoint locations for external services. The github plugin is an example that uses configuration for the ability to query a Github repository.

To add configuration to your plugin, define a config class that inherits from config.BaseConfig. Configuration values are
declared by adding instances of config.Field as attributes of the class.

Once your config class is defined, you associate it with the plugin via the config_class attribute:

class MyConfig(BaseConfig):
 unwarranted_comments = Field(
 required=False,
 help_text="Responds to every message with sarcastic comment",
 default=True)

class Plugin(BasePlugin):
 config_class = MyConfig

 @listens_to_all
 def peanut_gallery(self, line):
 if self.config.unwarranted_comments:
 return "Good one!"

Storage / Persisting Data

BasePlugin provides a wrapper around the Redis API that Plugins should use for storage. Since multiple channels can be using the same plugin, keys need to unique per plugin instance. BasePlugin takes care of this for you.

Testing Your Plugins

In order to simulate the plugin running in its normal environment, an app instance must be instantiated. See the current
tests for examples. This may change with subsequent releases.

IRC Resources

Internet Relay Chat Protocol

Freenode

	Registering Channels [http://blog.freenode.net/2008/04/registering-a-channel-on-freenode/]

	FAQ [http://freenode.net/faq.shtml]

Being a Good Citizen

	Channel Guidelines [http://freenode.net/channel_guidelines.shtml]

	Being a Catalyst [http://freenode.net/catalysts.shtml]

	Policy [http://freenode.net/policy.shtml]

Nicks

It was surprisingly difficult to find a desciption of what constitutes a valid nick on Freenode. Asked the friendly folks on #freenode and had the answer a few minutes later.

nickname = (letter / special) *8(letter / digit / special / “-”)
and special is “[“, “]”, “”, “`”, “_”, “^”, “{“, “|”, “}”

Nicks can be from 2 - 16 ASCII characters long. These characters are allowed:

RFC 1459 - Internet Relay Chat Protocol http://www.ietf.org/rfc/rfc1459.txt

Troubleshooting

Log messages

plugins.1 | DoesNotExist: Channel matching query does not exist.

If you edit or add channels this condition can occur. It is due to a bug where
stale config data is in Redis. This bug will be resolved in a future release.

Index

Serving BotBot In a Production Environment

When you deploy botbot to production, we recommend that you do not use the Procfile. Instead, serve three pieces individually:

	botbot-web: should be served as a wsgi application, from the wsgi.py file located at src/botbot/botbot/wsgi.py from uwsgi [https://uwsgi-docs.readthedocs.org/en/latest/], gunicorn [http://gunicorn.org/], mod_wsgi [https://code.google.com/p/modwsgi/], or any other wsgi server.

	botbot-plugins: should be run as an application from botbot’s manage.py file. Use upstart [http://upstart.ubuntu.com/], systemd [http://freedesktop.org/wiki/Software/systemd/], init [http://www.sensi.org/~alec/unix/redhat/sysvinit.html], or whatever your system uses for managing long-running tasks. An example upstart script is provided below.

	botbot-bot: should also be run as an application from your system’s task management system. An example upstart script is provided below.

Example upstart scripts

botbot-plugins.conf:

BotBot Plugins
logs to /var/log/upstart/botbot_plugins.log

description "BotBot Plugins"
start on startup
stop on shutdown

respawn
env LANG=en_US.UTF-8
exec /srv/botbot/bin/manage.py run_plugins
setuid www-data

botbot-bot.conf:

BotBot-bot
logs to /var/log/upstart/botbot.log

description "BotBot"
start on startup
stop on shutdown

respawn
env LANG=en_US.UTF-8
env STORAGE_URL=postgres://yourdburl
env REDIS_PLUGIN_QUEUE_URL=redis://localhost:6379/0

exec /srv/botbot/bin/botbot-bot
setuid www-data

Running In A Subdirectory

If you intend to run botbot in a subdirectory of your website, for example at http://example.com/botbot you’ll need to add two options to your settings.py:

FORCE_SCRIPT_NAME = '/botbot'
USE_X_FORWARDED_HOST = True

 _static/comment-bright.png

_images/botbot-architecture.png
Browser

SSE_ENDPOINT_URL

Eventsource

Binds on SSE_HOST

is

& reoss pLuan storace UL

7

Plugins which need to
store data (lke Brain)

/

Plugins

—@

? REDIS_PLUGIN_QUEUE URL
is

read config

Posigesal

W

STORAGE_URL

Saved additionaly to

REDIS_SSEQUEUE_URL

onrestart Ta,

the database (via signa)

_static/ajax-loader.gif

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/file.png

_static/minus.png

nav.xhtml

 Table of Contents

 		
 Welcome to BotBot’s documentation!

 		
 Installation

 		
 Pre-requisites

 		
 Python

 		
 Postgresql with hStore extension

 		
 Go

 		
 Redis

 		
 Install

 		
 Running Tests

 		
 Building Documentation

 		
 Getting Started

 		
 Create a Bot and Connect to a Freenode Channel

 		
 Add a new Bot

 		
 Add a Channel

 		
 Managing Bots

 		
 Multiple Bots

 		
 Public, Private, and Featured Channels

 		
 Freenode

 		
 Policy

 		
 Developing with BotBot

 		
 Architecture

 		
 Configuration / Environment Variables

 		
 Running Services

 		
 Plugins

 		
 Plugin API Documentation

 		
 Plugin Capabilities

 		
 Parsing and responding to messages

 		
 Configuration Metadata

 		
 Storage / Persisting Data

 		
 Testing Your Plugins

 		
 IRC Resources

 		
 Freenode

 		
 Being a Good Citizen

 		
 Nicks

 		
 Troubleshooting

 		
 Log messages

_static/up-pressed.png

_static/up.png

_static/plus.png

