

Welcome to Bors Service Integrator’s documentation!

Contents:

	Bors

	Usage
	Object Model

	Middleware Strategies

	API Integration

	Architecture
	Ingesting Data

	Outgoing Data

	Preprocessing

	Middlewares

	Installation

	Usage

	Contributing
	Types of Contributions

	Get Started!

	Pull Request Guidelines

	Tips

	Credits
	Development Lead

	Contributors

	History

	0.3.5 (2018-06-26)

	0.3.4 (2018-06-26)

	0.3.3 (2018-06-26)

	0.3.2 (2018-06-26)

	0.3.1 (2018-06-26)

	0.3.0 (2018-06-25)

	0.2.0 (2018-05-17)

Indices and tables

	Index

	Module Index

	Search Page

 [image: _images/bors.svg]
 [https://travis-ci.org/RobotStudio/bors][image: Documentation Status]
 [https://bors.readthedocs.io/en/latest/?badge=latest][image: Updates]
 [https://pyup.io/repos/github/RobotStudio/bors/][image: Python 3]
 [https://pyup.io/repos/github/RobotStudio/bors/]
Bors

A highly flexible and extensible service integration framework for
scraping the web or consuming APIs.

Usage

	Create your model based on the data you expect to incorporate.

	Decide on what you want to do with your data, and add it.

	Create or use an existing API integration library.

	Create your root application to tie it all together.

Object Model

We use marshmallow [https://marshmallow.readthedocs.io/en/latest/]
for the underlying object schema definitions. Here’s an example model:

from marshmallow import Schema, fields

class NewsItemSchema(Schema):
 """News item"""
 id = f.Str(required=True)
 url = f.Str(required=True)
 title = f.Str(required=True)
 pubDate = f.Str(required=True)
 timestamp = f.Str(required=True)
 feed_id = f.Int(required=True)
 published_date = f.Str(required=True)
 feed_name = f.Str(required=True)
 feed_url = f.Str(required=True)
 feed_enabled = f.Int(required=True)
 feed_description = f.Str(required=True)
 url_field = f.Str(required=True)
 title_field = f.Str(required=True)
 date_field = f.Str(required=True)
 feed_image = f.Str(required=True)

See the marshmallow docs for more information.

Middleware Strategies

Middleware API is implemented in the form of strategies and follows this
basic layout:

"""
Simple context display strategy
"""

from bors.app.strategy import IStrategy

class Print(IStrategy):
 """Print Strategy implementation"""
 def bind(self, context):
 """
 Bind the strategy to the middleware pipeline,
 returning the context
 """
 print(f"""PrintStrategy: {context}""")

 # just a pass-through
 return context

The important things to note here: * We’re inheriting from
IStrategy. * We’re implementing a bind method. * The bind
method receives, potentially augments, and then returns the context.

API Integration

Request Schema

Because our API is simple, we’re going to use this as-is.

from bors.generics.request import RequestSchema

Response Schema

Our API sends us data in the following format:

{
 "data": ...,
 "status": "OK"
}

For this, we’ll need to supplement a bit, removing the root fields and
returning the data value:

from marshmallow import fields
from bors.generics.request import ResponseSchema

class MyAPIResponseSchema(ResponseSchema):
 """Schema defining how the API will respond"""
 status = fields.Str()
 def get_result(self, data):
 """Return the actual result data"""
 return data.get("data", "")

 class Meta:
 """Add 'data' field"""
 strict = True
 additional = ("data",)

API Class

from bors.api.requestor import Req

class MyAPI(LoggerMixin):
 name = "my_api"
 def __init__(self, context):
 self.create_logger()

 self.request_schema = RequestSchema
 self.result_schema = MyAPIResponseSchema
 self.context = context

 self.req = Req("http://some.api.endpoint/v1", payload, self.log)

 # We don't need to deal directly with requests, so we pass them through
 self.call = self.req.call

 def shutdown(self):
 """Perform last-minute stuff"""
 pass

Here we use the built-in Req class to issue requests to the API, we
assign the request_schema and result_schema to classes in our
object, and we set the name, context, and call attributes.
The results passed through on the API are referencable from within the
middleware context under the key my_api.

Pulling it all together

from bors.app.builder import AppBuilder
from bors.app.strategy import Strategy

def main():
 strat = Strategy(Print())
 app = AppBuilder([MyAPI], strat)
 app.run()

if __name__ == "__main__":
 main()

Here, we set as many strategies and API’s as we want, then create and
run the app.

Architecture

 +------------+
+-+ MIDDLEWARE +------> out
| +------------+
| API/WEB
| +------------+
+-+ PREPROCESS +<------ in
 +------------+

At its most basic level, a bors integrator engages with an
integration library (API) passing incoming data through a prepocessor to
generate and validate incoming objects, then passes that data through
middlewares. Outgoing interactions are initiated from within a
middleware and passed directly to an API, allowing easily for
request/response type behavior in addition to observe and react.

Ingesting Data

 ^
 |
+-----+------+
| MIDDLEWARE |
+-----+------+
 ^
+-----+------+
| PREPROCESS |
+-----+------+
 ^
 |
 +
 API/
 WEB

Ingested data provokes calls along the pipeline.

Outgoing Data

 API/
 WEB
 ^
 |
+-----+------+
| MIDDLEWARE |
+------------+

Enacted events stimulate API or web actions.

Preprocessing

Preprocessing is nothing more than an object-ization of the incoming
data. This provides two benefits: 1. Data can be generalized across API
interfaces. 2. Data structure can be validated and enforced.

Middlewares

Middlewares allow for a data processing pipeline to pass data through.

 +-+ +-+ +-+
M		M		M
I		I		I
D		D		D
D		D		D
->+L+->+L+->+L+->				
E		E		E
W		W		W
A		A		A
R		R		R
E		E		E
 +-+ +-+ +-+

With this model, we gain a lot of flexibility in the behavior of our
integration. Middleware is up to the developer to create, and can be any
of the following:

	Data post-processing, filtering, aggregation, or augmentation

	External integrations and interfaces

	Stimulate an API/web transaction from external actors or time-based
criteria

	Hooks and callbacks

Installation

At the command line:

$ easy_install bors

Or, if you have virtualenvwrapper installed:

$ mkvirtualenv bors
$ pip install bors

Usage

To use Bors Service Integrator in a project:

import bors

Contributing

Contributions are welcome, and they are greatly appreciated! Every
little bit helps, and credit will always be given.

You can contribute in many ways:

Types of Contributions

Report Bugs

Report bugs at https://github.com/karma0/bors/issues.

If you are reporting a bug, please include:

	Your operating system name and version.

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the bug.

Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug”
is open to whoever wants to implement it.

Implement Features

Look through the GitHub issues for features. Anything tagged with “feature”
is open to whoever wants to implement it.

Write Documentation

Bors Service Integrator could always use more documentation, whether as part of the
official Bors Service Integrator docs, in docstrings, or even on the web in blog posts,
articles, and such.

Submit Feedback

The best way to send feedback is to file an issue at https://github.com/karma0/bors/issues.

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a volunteer-driven project, and that contributions
are welcome :)

Get Started!

Ready to contribute? Here’s how to set up bors for local development.

	Fork the bors repo on GitHub.

	Clone your fork locally:

$ git clone git@github.com:your_name_here/bors.git

	Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up your fork for local development:

$ mkvirtualenv bors
$ cd bors/
$ python setup.py develop

	Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

	When you’re done making changes, check that your changes pass flake8 and the tests, including testing other Python versions with tox:

$ flake8 bors tests
$ python setup.py test
$ tox

To get flake8 and tox, just pip install them into your virtualenv.

	Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

	Submit a pull request through the GitHub website.

Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

	The pull request should include tests.

	If the pull request adds functionality, the docs should be updated. Put
your new functionality into a function with a docstring, and add the
feature to the list in README.rst.

	The pull request should work for Python 2.6, 2.7, 3.3, and 3.4, and for PyPy. Check
https://travis-ci.org/karma0/bors/pull_requests
and make sure that the tests pass for all supported Python versions.

Tips

To run a subset of tests:

$ python -m unittest tests.test_bors

Credits

Development Lead

	Bobby <karma0@gmail.com>

Contributors

None yet. Why not be the first?

History

0.3.5 (2018-06-26)

	Added badges.

	Cleaned up deps.

0.3.4 (2018-06-26)

	Pruned and upgraded all dependencies.

0.3.3 (2018-06-26)

	Cleaned up tox.ini

0.3.2 (2018-06-26)

	Setup example.py script for others to use.

0.3.1 (2018-06-26)

	Added several unit tests, building out some of the framework.

0.3.0 (2018-06-25)

	Reboot packaging using cookiecutter-pypackage.

0.2.0 (2018-05-17)

	Initialize the repository, breaking it out from nombot.

Index

 _static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/file.png

_static/minus.png

_static/plus.png

nav.xhtml

 Table of Contents

 		
 Welcome to Bors Service Integrator’s documentation!

 		
 Bors

 		
 Usage

 		
 Object Model

 		
 Middleware Strategies

 		
 API Integration

 		
 Request Schema

 		
 Response Schema

 		
 API Class

 		
 Pulling it all together

 		
 Architecture

 		
 Ingesting Data

 		
 Outgoing Data

 		
 Preprocessing

 		
 Middlewares

 		
 Installation

 		
 Usage

 		
 Contributing

 		
 Types of Contributions

 		
 Report Bugs

 		
 Fix Bugs

 		
 Implement Features

 		
 Write Documentation

 		
 Submit Feedback

 		
 Get Started!

 		
 Pull Request Guidelines

 		
 Tips

 		
 Credits

 		
 Development Lead

 		
 Contributors

 		
 History

 		
 0.3.5 (2018-06-26)

 		
 0.3.4 (2018-06-26)

 		
 0.3.3 (2018-06-26)

 		
 0.3.2 (2018-06-26)

 		
 0.3.1 (2018-06-26)

 		
 0.3.0 (2018-06-25)

 		
 0.2.0 (2018-05-17)

_static/up.png

_static/up-pressed.png

