

boolean.py documentation

	User Guide
	Introduction

	Installation

	Creating boolean expressions

	Evaluation of expressions

	Equality of expressions

	Analyzing a boolean expression

	Using boolean.py to define your own boolean algebra

	Concepts and Definitions
	Basic Definitions

	Laws

	Development Guide
	Testing

	Classes Hierarchy

	Class creation

	Class initialization

	Ordering

	Parsing

	Acknowledgments

User Guide

This document provides an introduction on boolean.py usage. It
requires that you are already familiar with Python and know a little bit
about boolean algebra. All definitions and laws are stated in Concepts and Definitions.

Contents

	User Guide

	Introduction

	Installation

	Creating boolean expressions

	Evaluation of expressions

	Equality of expressions

	Analyzing a boolean expression

	Using boolean.py to define your own boolean algebra

Introduction

boolean.py implements a boolean algebra. It
defines two base elements, TRUE and FALSE, and a class Symbol for variables.
Expressions are built by composing symbols and elements with AND, OR and NOT.
Other compositions like XOR and NAND are not implemented.

Installation

pip install boolean.py

Creating boolean expressions

There are three ways to create a boolean expression. They all start by creating
an algebra, then use algebra attributes and methods to build expressions.

You can build an expression from a string:

>>> import boolean
>>> algebra = boolean.BooleanAlgebra()
>>> algebra.parse('x & y')
AND(Symbol('x'), Symbol('y'))

>>> parse('(apple or banana and (orange or pineapple and (lemon or cherry)))')
OR(Symbol('apple'), AND(Symbol('banana'), OR(Symbol('orange'), AND(Symbol('pineapple'), OR(Symbol('lemon'), Symbol('cherry'))))))

You can build an expression from a Python expression:

>>> import boolean
>>> algebra = boolean.BooleanAlgebra()
>>> x, y = algebra.symbols('x', 'y')
>>> x & y
AND(Symbol('x'), Symbol('y'))

You can build an expression by using the algebra functions:

>>> import boolean
>>> algebra = boolean.BooleanAlgebra()
>>> x, y = algebra.symbols('x', 'y')
>>> TRUE, FALSE, NOT, AND, OR, symbol = algebra.definition()
>>> expr = AND(x, y, NOT(OR(symbol('a'), symbol('b'))))
>>> expr
AND(Symbol('x'), Symbol('y'))
>>> print(expr.pretty())

>>> print(expr)

Evaluation of expressions

By default, an expression is not evaluated. You need to call the simplify()
method explicitly an expression to perform some minimal
simplification to evaluate an expression:

>>> import boolean
>>> algebra = boolean.BooleanAlgebra()
>>> x, y = algebra.symbols('x', 'y')
>>> print(x&~x)
0
>>> print(x|~x)
1
>>> print(x|x)
x
>>> print(x&x)
x
>>> print(x&(x|y))
x
>>> print((x&y) | (x&~y))
x

When simplify() is called, the following boolean logic laws are used recursively on every sub-term of the expression:

	Associativity

	Annihilator

	Idempotence

	Identity

	Complementation

	Elimination

	Absorption

	Negative absorption

	Commutativity (for sorting)

Also double negations are canceled out (Double negation).

A simplified expression is return and may not be fully evaluated nor minimal:

>>> import boolean
>>> algebra = boolean.BooleanAlgebra()
>>> x, y, z = algebra.symbols('x', 'y', 'z')
>>> print((((x|y)&z)|x&y).simplify())
(x&y)|(z&(x|y))

Equality of expressions

The expressions equality is tested by the __eq__() method and therefore
the output of \(expr_1 == expr_2\) is not the same as mathematical equality.

Two expressions are equal if their structure and symbols are equal.

Equality of Symbols

Symbols are equal if they are the same or their associated objects are equal.

>>> import boolean
>>> algebra = boolean.BooleanAlgebra()
>>> x, y, z = algebra.symbols('x', 'y', 'z')
>>> x == y
False
>>> x1, x2 = algebra.symbols("x", "x")
>>> x1 == x2
True
>>> x1, x2 = algebra.symbols(10, 10)
>>> x1 == x2
True

Equality of structure

Here are some examples of equal and unequal structures:

>>> import boolean
>>> algebra = boolean.BooleanAlgebra()
>>> expr1 = algebra.parse("x|y")
>>> expr2 = algebra.parse("y|x")
>>> expr1 == expr2
True
>>> expr = algebra.parse("x|~x")
>>> expr == TRUE
False
>>> expr1 = algebra.parse("x&(~x|y)")
>>> expr2 = algebra.parse("x&y")
>>> expr1 == expr2
False

Analyzing a boolean expression

Getting sub-terms

All expressions have a property args which is a tuple of its terms.
For symbols and base elements this tuple is empty, for boolean functions it
contains one or more symbols, elements or sub-expressions.

>>> import boolean
>>> algebra = boolean.BooleanAlgebra()
>>> algebra.parse("x|y|z").args
(Symbol('x'), Symbol('y'), Symbol('z'))

Getting all symbols

To get a set() of all unique symbols in an expression, use its symbols attribute

>>> import boolean
>>> algebra = boolean.BooleanAlgebra()
>>> algebra.parse("x|y&(x|z)").symbols
{Symbol('y'), Symbol('x'), Symbol('z')}

To get a list of all symbols in an expression, use its get_symbols method

>>> import boolean
>>> algebra = boolean.BooleanAlgebra()
>>> algebra.parse("x|y&(x|z)").get_symbols()
[Symbol('x'), Symbol('y'), Symbol('x'), Symbol('z')]

Literals

Symbols and negations of symbols are called literals. You can test if an expression is a literal:

>>> import boolean
>>> algebra = boolean.BooleanAlgebra()
>>> x, y, z = algebra.symbols('x', 'y', 'z')
>>> x.isliteral
True
>>> (~x).isliteral
True
>>> (x|y).isliteral
False

Or get a set() or list of all literals contained in an expression:

>>> import boolean
>>> algebra = boolean.BooleanAlgebra()
>>> x, y, z = algebra.symbols('x', 'y', 'z')
>>> x.literals
{Symbol('x')}
>>> (~(x|~y)).get_literals()
[Symbol('x'), NOT(Symbol('y'))]

To remove negations except in literals use literalize():

>>> (~(x|~y)).literalize()
~x&y

Substitutions

To substitute parts of an expression, use the subs() method:

>>> e = x|y&z
>>> e.subs({y&z:y})
x|y

Using boolean.py to define your own boolean algebra

You can customize about everything in boolean.py to create your own custom algebra:
1. You can subclass BooleanAlgebra and override or extend the
tokenize() and parse() methods to parse custom expressions creating
your own mini expression language. See the tests for examples.

2. You can subclass the Symbol, NOT, AND and OR functions to add additional
methods or for custom representations.
When doing so, you configure BooleanAlgebra instances by passing the custom sub-classes as agruments.

Concepts and Definitions

In this document the basic definitions and important laws of Boolean algebra
are stated.

Contents

	Concepts and Definitions

	Basic Definitions

	Laws

Basic Definitions

Boolean Algebra

This is the main entry point. An algebra is define by the actual classes used
for its domain, functions and variables.

Boolean Domain

S := {1, 0}

These base elements are algebra-level singletons classes (only one instance of each per algebra instance),
called TRUE and FALSE.

Boolean Variable

A variable holds an object and its implicit value is TRUE.

Implemented as class or subclasses of class Symbol.

Boolean Function

A function \(f: S^n \rightarrow S\) (where n is called the order).

Implemented as class Function.

Boolean Expression

Either a base element, a boolean variable or a boolean function.

Implemented as class Expression - this is the base class
for BaseElement, Symbol and Function.

NOT

A boolean function of order 1 with following truth table:

	x

	NOT(x)

	0

	1

	1

	0

Instead of \(NOT(x)\) one can write \(\sim x\).

Implemented as class NOT.

AND

A boolean function of order 2 or more with the truth table for two
elements

	x

	y

	AND(x,y)

	0

	0

	0

	0

	1

	0

	1

	0

	0

	1

	1

	1

and the property \(AND(x, y, z) = AND(x, AND(y, z))\) where
\(x, y, z\) are boolean variables.

Instead of \(AND(x, y, z)\) one can write \(x \& y \& z\).

Implemented as class AND.

OR

A boolean function of order 2 or more with the truth table for two
elements

	x

	y

	OR(x,y)

	0

	0

	0

	0

	1

	1

	1

	0

	1

	1

	1

	1

and the property \(OR(x, y, z) = OR(x, OR(y, z))\) where
\(x, y, z\) are boolean expressions.

Instead of \(OR(x, y, z)\) one can write \(x|y|z\).

Implemented as class OR.

Literal

A boolean variable, base element or its negation with NOT.

Implemented indirectly as Expression.isliteral,
Expression.literals and Expression.literalize().

Disjunctive normal form (DNF)

A disjunction of conjunctions of literals where the conjunctions don’t
contain a boolean variable and it’s negation. An example would be
\(x\&y | x\&z\).

Implemented as BooleanAlgebra.dnf.

Full disjunctive normal form (FDNF)

A DNF where all conjunctions have the same count of literals as the
whole DNF has boolean variables. An example would be
\(x\&y\&z | x\&y\&(\sim z) | x\&(\sim y)\&z\).

Conjunctive normal form (CNF)

A conjunction of disjunctions of literals where the disjunctions don’t
contain a boolean variable and it’s negation. An example would be
\((x|y) \& (x|z)\).

Implemented as BooleanAlgebra.cnf.

Full conjunctive normal form (FCNF)

A CNF where all disjunctions have the same count of literals as the
whole CNF has boolean variables. An example would be:
\((x|y|z) \& (x|y|(\sim z)) \& (x|(\sim y)|z)\).

Laws

In this section different laws are listed that are directly derived from the
definitions stated above.

In the following \(x, y, z\) are boolean expressions.

Associativity

	\(x\&(y\&z) = (x\&y)\&z\)

	\(x|(y|z) = (x|y)|z\)

Commutativity

	\(x\&y = y\&x\)

	\(x|y = y|x\)

Distributivity

	\(x\&(y|z) = x\&y | x\&z\)

	\(x|y\&z = (x|y)\&(x|z)\)

Identity

	\(x\&1 = x\)

	\(x|0 = x\)

Annihilator

	\(x\&0 = 0\)

	\(x|1 = 1\)

Idempotence

	\(x\&x = x\)

	\(x|x = x\)

Absorption

	\(x\&(x|y) = x\)

	\(x|(x\&y) = x\)

Negative absorption

	\(x\&((\sim x)|y) = x\&y\)

	\(x|(\sim x)\&y = x|y\)

Complementation

	\(x\&(\sim x) = 0\)

	\(x|(\sim x) = 1\)

Double negation

	\(\sim (\sim x) = x\)

De Morgan

	\(\sim (x\&y) = (\sim x) | (\sim y)\)

	\(\sim (x|y) = (\sim x) \& (\sim y)\)

Elimination

	\(x\&y | x\&(\sim y) = x\)

	\((x|y) \& (x|(\sim y)) = x\)

Development Guide

This document gives an overview of the code in boolean.py, explaining the
layout and design decisions and some difficult algorithms. All used definitions
and laws are stated in Concepts and Definitions.

Contents

	Development Guide

	Testing

	Classes Hierarchy

	Class creation

	Class initialization

	Ordering

	Parsing

Testing

Test boolean.py with your current Python environment:

python setup.py test

Test with all of the supported Python environments using tox:

pip install -r test-requirements.txt
tox

If tox throws InterpreterNotFound, limit it to python interpreters that are actually installed on your machine:

tox -e py27,py36

Classes Hierarchy

Expression

Symbol

Function

NOT

AND

OR

Class creation

Except for BooleanAlgebra and Symbol, no other classes are is designed to be instantiated directly.
Instead you should create a BooleanAlgebra instance, then use BooleanAlgebra.symbol,
BooleanAlgebra.NOT, BooleanAlgebra.AND, BooleanAlgebra.OR BooleanAlgebra.TRUE and BooleanAlgebra.FALSE
to compose your expressions in the context of this algebra.

Class initialization

In this section for all classes is stated which arguments they will accept
and how these arguments are processed before they are used.

Symbol

& obj (Named Symbol)

Ordering

As far as possible every expression should always be printed in exactly the
same way. Therefore a strict ordering between different boolean classes and
between instances of same classes is needed. This is defined primarily by the
sort_order attribute.

Class ordering

BaseElement < Symbol < AND < OR

NOT is an exception in this scheme. It will be sorted based on the sort order of its
argument.

Class ordering is implemented by an attribute sort_order in all
relevant classes. It holds an integer that will be used for comparison
if it is available in both compared objects.
For Symbols, the attached obj object is used instead.

	Class

	sort_order

	BaseElement

	0

	Symbol

	5

	AND

	10

	OR

	25

Instance ordering

	BaseElement

	FALSE < TRUE

Symbol

Symbol.obj o Symbol.obj

	NOT

	if NOT.args[0] == other —> other < NOT

NOT o other —> NOT.args[0] o other

	AND

	AND o AND —> AND.args[0] o AND.args[0]

if undecided: repeat for all args

if undecided: len(AND.args) o len(AND.args)

if undecided: return AND < AND

	OR

	OR o OR —> OR.args[0] o OR.args[0]

if undecided: repeat for all args

if undecided: len(OR.args) o len(OR.args)

if undecided: return OR < OR

Parsing

Parsing is done in two steps:
A tokenizer iterates over string characters assigning a TOKEN_TYPE to each token.
The parser receives this stream of token types and strings and creates
adequate boolean objects from a parse tree.

Acknowledgments

	Nicolaie Popescu-Bodorin: Review of “Concepts and Definitions”

	Silviu Ionut Carp: Review of “Concepts and Definitions”

Index

 nav.xhtml

 Table of Contents

 		
 boolean.py documentation

 		
 User Guide

 		
 Introduction

 		
 Installation

 		
 Creating boolean expressions

 		
 Evaluation of expressions

 		
 Equality of expressions

 		
 Equality of Symbols

 		
 Equality of structure

 		
 Analyzing a boolean expression

 		
 Getting sub-terms

 		
 Getting all symbols

 		
 Literals

 		
 Substitutions

 		
 Using boolean.py to define your own boolean algebra

 		
 Concepts and Definitions

 		
 Basic Definitions

 		
 Boolean Algebra

 		
 Boolean Domain

 		
 Boolean Variable

 		
 Boolean Function

 		
 Boolean Expression

 		
 NOT

 		
 AND

 		
 OR

 		
 Literal

 		
 Disjunctive normal form (DNF)

 		
 Full disjunctive normal form (FDNF)

 		
 Conjunctive normal form (CNF)

 		
 Full conjunctive normal form (FCNF)

 		
 Laws

 		
 Associativity

 		
 Commutativity

 		
 Distributivity

 		
 Identity

 		
 Annihilator

 		
 Idempotence

 		
 Absorption

 		
 Negative absorption

 		
 Complementation

 		
 Double negation

 		
 De Morgan

 		
 Elimination

 		
 Development Guide

 		
 Testing

 		
 Classes Hierarchy

 		
 Expression

 		
 Symbol

 		
 Function

 		
 NOT

 		
 AND

 		
 OR

 		
 Class creation

 		
 Class initialization

 		
 Symbol

 		
 Ordering

 		
 Class ordering

 		
 Instance ordering

 		
 Parsing

 		
 Acknowledgments

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/comment-close.png

