

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

Cross Device Communication

for the 2017-2018 Boat System

Introduction

The 2017-2018 boat introduces the use of a Raspberry Pi 3 B ("RPi") for increased processing capability for more complex navigation control. However, the onboard Arduino Mega ("Mega") board has been retained for its many IO pins and flexibility.
In the current setup, the Mega controls access to all the sensors, servos, the RC and the XBee module. The RPi taps into the Mega's sensors to perform calculations required for autonomy and provides instruction back to the Mega. The XBee module behaves as a wireless serial line, allowing land-based monitoring and control of the system. The Mega is thus required to choreograph the transmission of messages between the RPi and XBee in addition to executing and responding to requests by both parties.
This document will describe the physical wiring configuration of the three systems (Mega, RPi and XBee) and the common communication format for sending and requesting data and status and controlling devices.

Wiring Configuration

Mega to RPi

The RPi GPIO 14 is connected to the Mega RX2. RPi GPIO 15 is connected to Mega TX2. The connection uses 9600 baud, 8 data bits, no parity, and 1 stop bit. Because the RPi GPIO pins operate at 3.3V (not 5V tolerant) and the Mega pins at 5.0V, a voltage divider is placed between GPIO 15 and TX2. The Mega registers 3.3V as HIGH so no level conversion is needed.

Mega to XBee

The Mega TX1/RX1 are connected to the XBee over serial TTL at 115200 baud.

Transmission Format

Example: XXMESSAGE;
The devices share a common communication format for simplicity. Each message consists of a string terminated by a semicolon. Do not use line break characters or message contents may be invalidated.
The first two characters of the string represent the subject of the message. A full list of subjects and their corresponding meanings/sensor can be found below, along with the expected response. The remainder of the string up to the semicolon is the message block.

Subjects and Messages

The following section describes the meaning of different message subjects and how the device should respond if it receives that kind of string. Where XBee is indicated, it is assumed that a land-based control device will receive and respond as expected.

Sensors

By default, the Mega will transmit the message 00X; every 3 seconds to the RPi and XBee (described below), along with all sensor data. To receive data faster or slower than this from a specific sensor, the RPi or XBee can send the message XX?x;, where XX is the subject code for the sensor and x is the time between each transmission in milliseconds. If x is 0, data from that sensor will not be transmitted to the requesting device.

GP - GPS (Adafruit Ultimate GPS Breakout)

The Mega will send GP1; if the module is online and searching for a GPS fix and GP0; if the module is unresponsive. The Mega will send coordinates in decimal format. For example, GP44.225279,-76.497329; corresponding to 44°13'31.0"N 76°29'50.4"W. Six decimal points will be reported (%.6f).

CP - Compass (CMPS11)

The Mega will send CPX; with X being a degree (0-359) representing the boat's bow relative to magnetic north.

TM - Temperature (CMPS11)

The Mega will send TMX; with X the box temperature in degrees Celsius.

WV - Wind Vane (Model Unknown)

The Mega will send WVX; with X being a degree (0-359) representing the current wind direction relative to the boat's bow.

PX - Pixy Camera (CMUcam5)

The Mega will send PX0 if no object is detected. The Mega will send PXX; with X being a section (1-5) representing the objects location in the Pixy's view with 1 being the far left section and 5 being the far right section. Not yet implemented.

LD - LIDAR (Model Unknown)

Not yet implemented, specification unknown.

0x Series – Diagnostics and Basic Features

00 - Device Online/Mode

00?; is used to check if the RPi/Xbee is online. Once received, the device should respond with 001;.
The Mega sends 00X; with X indicating the device state (0 = Error/Disabled, 1 = Remote Control (Default), 2 = Autopiloted by RPi). By default the Mega will send 00X; to the RPi and XBee every 3 seconds while on and send 00?; every 5 seconds to check RPi/Xbee response.

Received by	Action/Response
Mega | Saves the last response time of the RPi/XBee. If RPi does not respond in 20 seconds, the RPi is assumed to be offline and the Mega will send 091; to the XBee. The Mega ignores 00?; messages.
RPi | Responds to the Mega's 00?; with 001;
XBee | Responds to the Mega's 00?; with 001;

01 - Device Powered On

011; is sent by the Mega to the RPi/XBee as it is powering on. 011; is sent by the RPi to the Mega as it is powering on.

Received by	Action/Response
Mega | No action/response (May change in the future)
RPi | Pauses, resubscribes to data and resumes navigation if Mega lost power while in autopilot (brownout).
XBee | Updates GUI

02 - Blink LED Strip

When 02X; is received by the Mega it will blink the LED strip in a pattern corresponding to X. Currently only 021; is implemented.

Received by	Action/Response
Mega | Blink LEDs

03 - Enable/Disable Remote Control

031; to enable and 030; to disable RC control of rudders and sails.

Received by	Action/Response
Mega | Enable/disable remote control

05 - General Log Message

Sent by the RPi to the Mega and relayed or by the Mega directly to the XBee to be displayed in the console and saved in the log.

Received by	Action/Response
Mega | Relay message from the RPi to the XBee.
XBee | Update GUI, show error notification

07 - General Error Message

Sent by the RPi to the Mega and relayed or by the Mega directly to the XBee to display a error message to the land-based operator.

Received by	Action/Response
Mega | Relay message from the RPi to the XBee.
XBee | Update GUI, show error notification

08 - Mega Error

081; is sent by the Mega to the RPi/XBee if there is a critical failure that does not allow it to continue. Not currently implemented.

Received by	Action/Response
RPi | Stops autopilot
XBee | Updates GUI, show error notification

09 - RPi Offline

091; is sent by the Mega to the XBee if the RPi is not responding to 00?; (device online) pings. The Mega will also simultaneously disable autopilot and enable RC control.

Received by	Action/Response
XBee | Updates GUI, show error notification

Ax Series – Autopilot Features

Many of these messages are sent via the XBee to the Mega and then relayed to the RPi. For all of the following subjects, the XBee can query the current state/stored variable for a subject by sending AX?; or something similar, as described below. It is therefore important that the RPi also responds to these requests by responding appropriately with an answer or 0 if empty.

A0 - Enable/Disable Autopilot

A01; to enable and A00; to disable autopilot.

Warning: Enabling autopilot by sending A01; to the Mega via XBee does not guarantee the system will switch into autopilot. If it does, however, RC control will be disabled.

If the XBee sends A01; to enter autopilot, the Mega will send A01; to the RPi. If the RPi has all the information needed to enter autopilot, it send A01; back and take over control. However, if the RPi is missing information (waypoints, GPS, compass data), no actions will occur.

Received by	Action/Response
Mega | If sent by the RPi, the Mega will change it's internal variables relating to it's current mode, enable/disable remote control and relay A0X; back to the XBee. If sent by the XBee, it will relay the request to the RPi.
RPi | Assess readiness for autopilot and responds with A01; if ready, then takes over control.
XBee | Update GUI.

A1 - Autopilot Mode

The XBee will send a message in the format A1X; with X corresponding to the autopilot mode.

Mode (X)	Description
0 | Basic navigation. Navigate to each waypoint and disable autopilot when the last waypoint is reached.
1 | Looping navigation. Navigate to each waypoint, going to the first when the last waypoint is reached.
2 | Stationkeeping. Follow the challenge description for the Sailbot Competition.
2 | Search. Follow the challenge description for the Sailbot Competition.

Received by	Action/Response
Mega | Relay the request to the RPi if received from XBee. Relay the mode to the XBee if received from the RPi.
RPi | Appropriately adjust autopilot mode. Respond with current mode in format A1X; if A1?; is received.
XBee | Update GUI.

A2 - Waypoint

The XBee will send a message in the format A2XX,LAT,LONG; with X corresponding to the waypoint to overwrite (01-10) or A2?XX; with X corresponding to the waypoint to read (01-10).

Received by	Action/Response
Mega | Relay the request to the RPi if received from XBee. Relay fulfilled read requests from the RPi to the XBee.
RPi | Read/write waypoint as appropriate. If it is a read request, respond with waypoint in format A2XX,LAT,LONG;.
XBee | Update GUI.

A3 - Active Waypoint Range

In certain navigation challenges, not all the defined waypoints are to be navigated to. For example, maybe navigation should stop after navigating through waypoints 01-03.
The XBee will send a message in the format A3SSFF; with SS corresponding to the waypoint to start on and FF to the waypoint to end on (01-10). The XBee can also send or A3?; to request the active waypoint range.

Received by	Action/Response
Mega | Relay the request to the RPi if received from XBee. Relay fulfilled read requests from the RPi to the XBee.
RPi | Read/write waypoint range as appropriate. If it is a read request, respond with waypoint range in format A3SSFF;.
XBee | Update GUI.

A8 - Current Waypoint

Sent by the RPi to the Mega to the XBee in the format A8XX; where XX is the index of the current waypoint being navigated to.

Received by	Action/Response
Mega | Relay message from the RPi to the XBee.
XBee | Update GUI.

A9 - General Autopilot Status

Sent by the RPi to the Mega to the XBee to display as a status message.

Received by	Action/Response
Mega | Relay message from the RPi to the XBee.
XBee | Update GUI.

Boat Control

WIP code for MAST

usb-serial-for-android

This is a driver library for communication with Arduinos and other USB serial hardware on
Android, using the
Android USB Host API [http://developer.android.com/guide/topics/connectivity/usb/host.html]
available on Android 3.1+.

No root access, ADK, or special kernel drivers are required; all drivers are implemented in
Java. You get a raw serial port with read(), write(), and other basic
functions for use with your own protocols.

	Homepage: https://github.com/mik3y/usb-serial-for-android

	Google group: http://groups.google.com/group/usb-serial-for-android

	Latest release: v0.1.0 [https://github.com/mik3y/usb-serial-for-android/releases]

Quick Start

1. Link your project [https://github.com/mik3y/usb-serial-for-android/wiki/Building-From-Source] to the library.

2. Copy device_filter.xml [https://github.com/mik3y/usb-serial-for-android/blob/master/usbSerialExamples/src/main/res/xml/device_filter.xml] to your project's res/xml/ directory.

3. Configure your AndroidManifest.xml to notify your app when a device is attached (see Android USB Host documentation [http://developer.android.com/guide/topics/connectivity/usb/host.html#discovering-d] for help).

<activity
 android:name="..."
 ...>
 <intent-filter>
 <action android:name="android.hardware.usb.action.USB_DEVICE_ATTACHED" />
 </intent-filter>
 <meta-data
 android:name="android.hardware.usb.action.USB_DEVICE_ATTACHED"
 android:resource="@xml/device_filter" />
</activity>

4. Use it! Example code snippet:

// Find all available drivers from attached devices.
UsbManager manager = (UsbManager) getSystemService(Context.USB_SERVICE);
List<UsbSerialDriver> availableDrivers = UsbSerialProber.getDefaultProber().findAllDrivers(manager);
if (availableDrivers.isEmpty()) {
 return;
}

// Open a connection to the first available driver.
UsbSerialDriver driver = availableDrivers.get(0);
UsbDeviceConnection connection = manager.openDevice(driver.getDevice());
if (connection == null) {
 // You probably need to call UsbManager.requestPermission(driver.getDevice(), ..)
 return;
}

// Read some data! Most have just one port (port 0).
UsbSerialPort port = driver.getPorts().get(0);
try {
 port.open(connection);
 port.setParameters(115200, 8, UsbSerialPort.STOPBITS_1, UsbSerialPort.PARITY_NONE);

 byte buffer[] = new byte[16];
 int numBytesRead = port.read(buffer, 1000);
 Log.d(TAG, "Read " + numBytesRead + " bytes.");
} catch (IOException e) {
 // Deal with error.
} finally {
 port.close();
}

For a more complete example, see the
UsbSerialExamples project [https://github.com/mik3y/usb-serial-for-android/blob/master/usbSerialExamples]
in git, which is a simple application for reading and showing serial data.

A simple Arduino application [https://github.com/mik3y/usb-serial-for-android/blob/master/arduino]
is also available which can be used for testing.

Probing for Unrecognized Devices

Sometimes you may need to do a little extra work to support devices which
usb-serial-for-android doesn't [yet] know about -- but which you know to be
compatible with one of the built-in drivers. This may be the case for a brand
new device or for one using a custom VID/PID pair.

UsbSerialProber is a class to help you find and instantiate compatible
UsbSerialDrivers from the tree of connected UsbDevices. Normally, you will use
the default prober returned by UsbSerialProber.getDefaultProber(), which
uses the built-in list of well-known VIDs and PIDs that are supported by our
drivers.

To use your own set of rules, create and use a custom prober:

// Probe for our custom CDC devices, which use VID 0x1234
// and PIDS 0x0001 and 0x0002.
ProbeTable customTable = new ProbeTable();
customTable.addProduct(0x1234, 0x0001, CdcAcmSerialDriver.class);
customTable.addProduct(0x1234, 0x0002, CdcAcmSerialDriver.class);

UsbSerialProber prober = new UsbSerialProber(customTable);
List<UsbSerialDriver> drivers = prober.findAllDrivers(usbManager);
// ...

Of course, nothing requires you to use UsbSerialProber at all: you can
instantiate driver classes directly if you know what you're doing; just supply
a compatible UsbDevice.

Compatible Devices

	Serial chips: FT232R, CDC/ACM (eg Arduino Uno) and possibly others.
See CompatibleSerialDevices [https://github.com/mik3y/usb-serial-for-android/wiki/Compatible-Serial-Devices].

	Android phones and tablets: Nexus 7, Motorola Xoom, and many others.
See CompatibleAndroidDevices [https://github.com/mik3y/usb-serial-for-android/wiki/Compatible-Android-Devices].

Author, License, and Copyright

usb-serial-for-android is written and maintained by mike wakerly.

This library is licensed under LGPL Version 2.1. Please see LICENSE.txt for the
complete license.

Copyright 2011-2012, Google Inc. All Rights Reserved.

Portions of this library are based on libftdi
(http://www.intra2net.com/en/developer/libftdi). Please see
FtdiSerialDriver.java for more information.

Help & Discussion

For common problems, see the
Troubleshooting [https://github.com/mik3y/usb-serial-for-android/wiki/Troubleshooting]
wiki page.

For other help and discussion, please join our Google Group,
usb-serial-for-android [https://groups.google.com/forum/?fromgroups#!forum/usb-serial-for-android].

Are you using the library? Let us know on the group and we'll add your project to
ProjectsUsingUsbSerialForAndroid [https://github.com/mik3y/usb-serial-for-android/wiki/Projects-Using-usb-serial-for-android].

 nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/file.png

_static/down-pressed.png

_static/down.png

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/comment.png

