
BNFC Documentation
Release 2.9.5

BNFC developers

Jul 26, 2023





Contents

1 LBNF reference 3
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 A first example of LBNF grammar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 LBNF in a nutshell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Abstract syntax conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.5 Lexer definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.6 LBNF pragmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.7 LBNF macros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.8 Layout syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.9 An optimization: left-recursive lists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.10 Appendix: LBNF Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.11 The lexical structure of BNF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.12 The syntactic structure of LBNF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2 Backend Guide 21
2.1 Agda Backend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2 Java Backend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3 Haskell Backend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.4 Pygments Backend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3 Other tools 27
3.1 LBNF tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2 Similar tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4 Releasing 29

5 Indices and tables 31

i



ii



BNFC Documentation, Release 2.9.5

Google Group | Github | Hackage

Contents 1

https://groups.google.com/forum/#!forum/bnfc-dev
https://github.com/bnfc/bnfc
http://hackage.haskell.org/package/BNFC


BNFC Documentation, Release 2.9.5

2 Contents



CHAPTER 1

LBNF reference

1.1 Introduction

This document defines the grammar formalism Labelled BNF (LBNF), which is used in the compiler construction
tool BNF Converter. Given a grammar written in LBNF, the BNF Converter produces a partial compiler front end
consisting of a lexer, a parser, and an abstract syntax definition. Moreover, it produces a pretty-printer and a language
specification in LaTeX, as well as a template file for the compiler back end. Since LBNF is purely declarative,
these files can be generated in any programming language that supports appropriate compiler front-end tools. As of
Version 2.8.3, code can be generated in Agda, C, C++, Haskell, Java, and Ocaml. This document describes the LBNF
formalism independently of code generation, and is aimed to serve as a manual for grammar writers.

1.2 A first example of LBNF grammar

As the first example of LBNF, consider the following grammar for expressions limited to addition of ones:

EPlus. Expr ::= Expr "+" Number ;
ENum. Expr ::= Number ;
NOne. Number ::= "1" ;

Apart from the labels EPlus, ENum, and NOne, the rules are ordinary BNF rules, with terminal symbols enclosed in
double quotes and nonterminals written without quotes. The labels serve as constructors for syntax trees.

From an LBNF grammar, the BNF Converter extracts an abstract syntax and a concrete syntax. In Haskell, for instance,
the abstract syntax is implemented as a system of datatype definitions:

data Expr = EPlus Expr Number | ENum Number
data Number = NOne

For other languages, like C, C++, and Java, an equivalent representation is given, following the methodology defined
in Appel’s book series Modern compiler implementation in ML/Java/C1. The concrete syntax is implemented by the
lexer, parser and pretty-printer algorithms, which are defined in other generated program modules.

1 Cambridge University Press, 1998.

3



BNFC Documentation, Release 2.9.5

1.3 LBNF in a nutshell

1.3.1 Basic LBNF

Briefly, an LBNF grammar is a BNF grammar where every rule is given a label. The label is used for constructing
abstract syntax trees whose subtrees are given by the nonterminals of the rule, in the same order.

More formally, an LBNF grammar consists of a collection of rules, which have the following form (expressed by a
regular expression; the Appendix: LBNF Specification gives a complete BNF definition of the notation):

Identifier "." Identifier "::=" (Identifier | String)* ";"

The first identifier is the rule label, followed by the value category. On the right-hand side of the production arrow
(::=) is the list of production items. An item is either a quoted string (terminal) or a category symbol (non-terminal).
A rule whose value category is 𝐶 is also called a production for 𝐶.

Identifiers, that is, rule names and category symbols, can be chosen ad libitum, with the restrictions imposed by the
target language. To satisfy C, Haskell and Java, the following rule is imposed:

An identifier is a nonempty sequence of letters, digits, and underscores, starting with a capital letter, not
ending with an underscore.

1.3.2 Additional features

Basic LBNF as defined above is clearly sufficient for defining any context-free language. However, it is not always
convenient to define a programming language purely with BNF rules. Therefore, some additional features are added
to LBNF: abstract syntax conventions, lexer rules, pragmas, and macros. These features are treated in the subsequent
sections.

Section Abstract syntax conventions explains abstract syntax conventions. Creating an abstract syntax by adding a
node type for every BNF rule may sometimes become too detailed, or cluttered with extra structures. To remedy this,
we have identified the most common problem cases, and added to LBNF some extra conventions to handle them.

Section Lexer definitions explains lexer rules. Some aspects of a language belong to its lexical structure rather than
its grammar, and are more naturally described by regular expressions than by BNF rules. We have therefore added to
LBNF two rule formats to define the lexical structure: tokens and comments.

Section LBNF pragmas explains pragmas. Pragmas are rules instructing the BNFC grammar compiler to treat some
rules of the grammar in certain special ways: to reduce the number of entrypoints or to treat some syntactic forms as
internal only.

Section LBNF macros explains macros. Macros are syntactic sugar for potentially large groups of rules and help to
write grammars concisely. This is both for the writer’s and the reader’s convenience; among other things, macros
naturally force certain groups of rules to go together, which could otherwise be spread arbitrarily in the grammar.

Section Layout syntax explains layout syntax, which is a non-context-free feature present in some programming lan-
guages. LBNF has a set of rule formats for defining a limited form of layout syntax. It works as a preprocessor that
translates layout syntax into explicit structure markers. Note: Only the Haskell backends (includes Agda) implement
the layout feature.

4 Chapter 1. LBNF reference



BNFC Documentation, Release 2.9.5

1.4 Abstract syntax conventions

1.4.1 Predefined basic types

The first convention are predefined basic types. Basic types, such as integer and character, can of course be defined in
LBNF, for example:

Char_a. Char ::= "a" ;
Char_b. Char ::= "b" ;

This is, however, cumbersome and inefficient. Instead, we have decided to extend our formalism with predefined basic
types, and represent their grammar as a part of lexical structure. These types are the following, as defined by LBNF
regular expressions (see Lexer definitions for the regular expression syntax):

• Type Integer of integers, defined digit+

• Type Double of floating point numbers, defined digit+ '.' digit+ ('e' '-'? digit+)?

• Type Char of characters (in single quotes), defined '\'' ((char - ["'\\"]) | ('\\'
["'\\tnrf"])) '\''

• Type String of strings (in double quotes), defined '"' ((char - ["\"\\"]) | ('\\'
["\"\\tnrf"]))* '"'

• Type Ident of (Haskell) identifiers, defined letter (letter | digit | '_' | '\'')*

In the abstract syntax, these types are represented as corresponding types of each language, except Ident, for which
no such type exists. It is treated as a newtype for String in Haskell,

newtype Ident = Ident String

as String in Java, as a typedef to char* in C and vanilla C++, and as typedef to std::string in C++
using the Standard Template Library (STL).

As the names of the types may suggest, the lexer produces high-precision variants for integers and floats. Authors of
applications can truncate these numbers later if they want to have low precision instead.

Note: Terminals appearing in rules take precedence over Ident. E.g., if terminal "where" appears in any rule, the
word where will never be parsed as an Ident.

1.4.2 Semantic dummies

Sometimes the concrete syntax of a language includes rules that make no semantic difference. An example is a BNF
rule making the parser accept extra semicolons after statements:

Stm ::= Stm ";" ;

As this rule is a semantic no-ops, we do not want to represent it by a constructors in the abstract syntax. Instead, we
introduce the following convention:

A rule label can be an underscore _, which does not add anything to the syntax tree.

Thus, we can write the following rule in LBNF:

_ . Stm ::= Stm ";" ;

1.4. Abstract syntax conventions 5



BNFC Documentation, Release 2.9.5

Underscores are of course only meaningful as replacements of one-argument constructors where the value type is the
same as the argument type. Semantic dummies leave no trace in the pretty-printer. Thus, for instance, the pretty-printer
“normalizes away” extra semicolons.

1.4.3 Precedence levels

A common idiom in (ordinary) BNF is to use indexed variants of categories to express precedence levels:

Exp2 ::= Integer ;
Exp1 ::= Exp1 "*" Exp2 ;
Exp ::= Exp "+" Exp1 ;

Exp2 ::= "(" Exp ")" ;
Exp1 ::= Exp2 ;
Exp ::= Exp1 ;

The precedence level regulates the order of parsing, including associativity. Parentheses lift an expression of any level
to the highest level.

A straightforward labelling of the above rules creates a grammar that does have the desired recognition behavior, as
the abstract syntax is cluttered with type distinctions (between Exp, Exp1, and Exp2) and constructors (from the last
three rules) with no semantic content. The BNF Converter solution is to distinguish among category symbols those
that are just indexed variants of each other:

A category symbol can end with an integer index (i.e. a sequence of digits), and is then treated as a type
synonym of the corresponding non-indexed symbol.

Thus, Exp1 and Exp2 are indexed variants of Exp.

Transitions between indexed variants are semantic no-ops, and we do not want to represent them by constructors in the
abstract syntax. To achieve this, we extend the use of underscores to indexed variants. The example grammar above
can now be labelled as follows:

EInt. Exp2 ::= Integer ;
ETimes. Exp1 ::= Exp1 "*" Exp2 ;
EPlus. Exp ::= Exp "+" Exp1 ;

_. Exp2 ::= "(" Exp ")" ;
_. Exp1 ::= Exp2 ;
_. Exp ::= Exp1 ;

In Haskell, for instance, the datatype of expressions becomes simply

data Exp = EInt Integer | ETimes Exp Exp | EPlus Exp Exp

and the syntax tree for 2 * ( 3 + 1 ) is

ETimes (EInt 2) (EPlus (EInt 3) (EInt 1))

Indexed categories can be used for other purposes than precedence, since the only thing we can formally check is the
type skeleton (see the section The type-correctness of LBNF rules). The parser does not need to know that the indices
mean precedence, but only that indexed variants have values of the same type. The pretty-printer, however, assumes
that indexed categories are used for precedence, and may produce strange results if they are used in some other way.

Hint: See Section Coercions for a concise way of defining dummy coercion rules.

6 Chapter 1. LBNF reference



BNFC Documentation, Release 2.9.5

1.4.4 Polymorphic lists

It is easy to define monomorphic list types in LBNF:

NilDef. ListDef ::= ;
ConsDef. ListDef ::= Def ";" ListDef ;

However, compiler writers in languages like Haskell may want to use predefined polymorphic lists, because of the
language support for these constructs. LBNF permits the use of Haskell’s list constructors as labels, and list brackets
in category names:

[]. [Def] ::= ;
(:). [Def] ::= Def ";" [Def] ;

As the general rule, we have

[C], the category of lists of type C,

[] and (:), the Nil and Cons rule labels,

(:[]), the rule label for one-element lists.

The third rule label is used to place an at-least-one restriction, but also to permit special treatment of one-element lists
in the concrete syntax.

In the LaTeX document (for stylistic reasons) and in the Happy file (for syntactic reasons), the category name [C] is
replaced by ListC. To prevent clashes, ListC may not be at the same time used explicitly in the grammar.

The list notation can also be seen as a variant of the Kleene star and plus, and hence as an ingredient from Extended
BNF.

Some programming languages (such as C) have no parametric polymorphism. The respective backends then generate
monomorphic variants of lists.

Hint: See Section Terminators and separators for concise ways of defining lists by just giving their terminators or
separators.

1.4.5 The type-correctness of LBNF rules

It is customary in parser generators to delegate the checking of certain errors to the target language. For instance, a
Happy source file that Happy processes without complaints can still produce a Haskell file that is rejected by Haskell.
In the same way, the BNF converter delegates some checking to the generated language (for instance, the parser
conflict check). However, since it is always the easiest for the programmer to understand error messages related to the
source, the BNF Converter performs some checks, which are mostly connected with the sanity of the abstract syntax.

The type checker uses a notion of the category skeleton or type of a rule, which is of the form

𝐴1 . . . 𝐴𝑛 → 𝐶

where 𝐶 is the unindexed left-hand-side non-terminal and 𝐴1 . . . 𝐴𝑛 is the (possibly empty) sequence of unindexed
right-hand-side non-terminals of the rule. In other words, the category skeleton of a rule expresses the abstract-syntax
type of the semantic action associated to that rule.

We also need the notions of a regular category and a regular rule label. Briefly, regular labels and categories are
the user-defined ones. More formally, a regular category is none of [C], Integer, Double, Char, String and
Ident, or the types defined by token rules (Section The token rule). A regular rule label is none of _, [], (:), and
(:[]).

1.4. Abstract syntax conventions 7



BNFC Documentation, Release 2.9.5

The type checking rules are now the following:

A rule labelled by _ must have a category skeleton of form 𝐶 → 𝐶.

A rule labelled by [] must have a category skeleton of form → [𝐶].

A rule labelled by (:) must have a category skeleton of form 𝐶 [𝐶] → [𝐶].

A rule labelled by (:[]) must have a category skeleton of form 𝐶 → [𝐶].

Only regular categories may have productions with regular rule labels.

Every regular category occurring in the grammar must have at least one production with a regular rule
label.

All rules with the same regular rule label must have the same category skeleton.

The second-last rule corresponds to the absence of empty data types in Haskell. The last rule could be strengthened so
as to require that all regular rule labels be unique: this is needed to guarantee error-free pretty-printing. Violating this
strengthened rule currently generates only a warning, not a type error.

1.4.6 Defined labels

LBNF gives support for syntax tree constructors that are eliminated during parsing, by following semantic definitions.
Here is an example: a core statement language:

Assign. Stm ::= Ident "=" Exp ;
Block. Stm ::= "{" [Stm] "}" ;
While. Stm ::= "while" "(" Exp ")" Stm ;
If. Stm ::= "if" "(" Exp ")" Stm "else" Stm ;

We now want to have some syntactic sugar. Note that the labels for these rules all start with a lowercase letter,
indicating that they correspond to defined functions rather than nodes in the abstract syntax tree.

if. Stm ::= "if" "(" Exp ")" Stm "endif" ;
for. Stm ::= "for" "(" Stm ";" Exp ";" Stm ")" Stm ;
inc. Stm ::= Ident "++" ;

Functions are defined using the define keyword. Definitions have the form:

define f x1 .. xn = e

where e is an expression in applicative form using rule labels, other defined functions, lists and literals.

define if e s = If e s (Block []) ;
define for i c s b = Block [i, While c (Block [b, s])] ;
define inc x = Assign x (EOp (EVar x) Plus (EInt 1)) ;
terminator Stm ";" ;

Another use of defined functions is to simplify the abstract syntax for binary operators. Instead of one node for each
operator we want to have a general node (EOp) for all binary operator applications.

_. Op ::= Op1 ;
_. Op ::= Op2 ;

Less. Op1 ::= "<" ;
Equal. Op1 ::= "==" ;
Plus. Op2 ::= "+" ;
Minus. Op2 ::= "-" ;

(continues on next page)

8 Chapter 1. LBNF reference



BNFC Documentation, Release 2.9.5

(continued from previous page)

op. Exp ::= Exp1 Op1 Exp1 ;
op. Exp1 ::= Exp1 Op2 Exp2 ;
EInt. Exp2 ::= Integer ;
EVar. Exp2 ::= Ident ;

coercions Exp 2;

Care has to be taken to make sure that the pretty printer outputs enough parentheses.

internal EOp. Exp ::= Exp1 Op Exp1 ;

define op e1 o e2 = EOp e1 o e2 ;

Note: Implementing syntactic sugar via define maybe be good for rapid prototyping, but has some drawbacks for
more serious programming language implementation: Since the parser already expands the syntactic sugar, subsequent
parts of the front end, like scope or type checkers, do not report errors in sugar in terms of what the user may have
written, but what arrives at the checker. For instance, xs++ for an array variable xs will not report a problem in
xs++, but rather in its expansion x = x + 1.

1.5 Lexer definitions

1.5.1 The token rule

The token rule enables the LBNF programmer to define new lexical types using a simple regular expression notation.
For instance, the following rule defines the type of identifiers beginning with upper-case letters.

token UIdent (upper (letter | digit | '_')*) ;

The type UIdent becomes usable as an LBNF nonterminal and as a type in the abstract syntax. Each token type is
implemented by a newtype in Haskell, as a String in Java, and as a typedef to char* in C etc.

The regular expression syntax of LBNF is specified in the Appendix. The abbreviations with strings in brackets need
a word of explanation:

["abc7%"] denotes the union of the characters ‘a ‘b’ ‘c’ ‘7’ ‘%’

{"abc7%"} denotes the sequence of the characters ‘a’ ‘b’ ‘c’ ‘7’ ‘%’

The atomic expressions upper, lower, letter, and digit denote the isolatin1 character classes corresponding
to their names. The expression char matches any unicode character, and the “epsilon” expression eps matches the
empty string. Thus eps is equivalent to {""}, whereas the empty language is expressed by [""].

Note: Terminals appearing in rules take precedence over any token. E.g., if terminal "Fun" appears in any rule,
the word Fun will never be parsed as a UIdent.

Note: As of October 2020, the empty language is only handled by the Java backend.

1.5. Lexer definitions 9



BNFC Documentation, Release 2.9.5

1.5.2 The position token rule

Any token rule can be modified by the word position, which has the effect that the datatype defined will carry
position information. For instance,

position token PIdent (letter (letter|digit|'_'|'\'')*) ;

creates in Haskell the datatype definition

newtype PIdent = PIdent ((Int,Int),String)

where the pair of integers indicates the line and column of the first character of the token. The pretty-printer omits the
position component.

(As of October 2020, the cpp-nostl backend (C++ without using the STL) does not implement position tokens.)

1.5.3 The comment rule

Comments are segments of source code that include free text and are not passed to the parser. The natural place to deal
with them is in the lexer. The comment rule instructs the lexer generator to treat certain pieces of text as comments.

The comment rule takes one (for line comments) or two string arguments (for block comments). The first string defines
how a comment begins. The second, optional string marks the end of a comment; if it is not given then the comment
is ended by a newline. For instance, the Java comment convention is defined as follows:

comment "//" ;
comment "/*" "*/" ;

Note: The generated lexer does not recognize nested block comments, nor does it respect quotation, as in strings. In
the following snippet

/* Commenting out...
printf("*/");

*/

the lexer will consider the block comment to be closed before ");.

1.6 LBNF pragmas

1.6.1 Internal pragmas

Sometimes we want to include in the abstract syntax structures that are not part of the concrete syntax, and hence not
parsable. They can be, for instance, syntax trees that are produced by a type-annotating type checker. Even though
they are not parsable, we may want to pretty-print them, for instance, in the type checker’s error messages. To define
such an internal constructor, we use a pragma

"internal" Rule ";"

where Rule is a normal LBNF rule. For instance,

internal EVarT. Exp ::= "(" Identifier ":" Type ")";

introduces a type-annotated variant of a variable expression.

10 Chapter 1. LBNF reference



BNFC Documentation, Release 2.9.5

1.6.2 Entry point pragmas

The BNF Converter generates, by default, a parser for every category in the grammar. This is unnecessarily rich in
most cases, and makes the parser larger than needed. If the size of the parser becomes critical, the entry points pragma
enables the user to define which of the parsers are actually exported.

For instance, the following pragma defines Stm, Exp2 and lists of identifiers [Ident] to be the only entry points:

entrypoints Stm, Exp2, [Ident];

1.7 LBNF macros

1.7.1 Terminators and separators

The terminator macro defines a pair of list rules by what token terminates each element in the list. For instance,

terminator Stm ";" ;

tells that each statement (Stm) is terminated with a semicolon (;). It is a shorthand for the pair of rules

[]. [Stm] ::= ;
(:). [Stm] ::= Stm ";" [Stm] ;

The qualifier nonempty in the macro makes one-element list to be the base case. Thus

terminator nonempty Stm ";" ;

is shorthand for

(:[]). [Stm] ::= Stm ";" ;
(:). [Stm] ::= Stm ";" [Stm] ;

The terminator can be specified as empty "". No token is introduced then, but e.g.

terminator Stm "" ;

is translated to

[]. [Stm] ::= ;
(:). [Stm] ::= Stm [Stm] ;

The separator macro is similar to terminator, except that the separating token is not attached to the last
element. Thus

separator Stm ";" ;

means

[]. [Stm] ::= ;
(:[]). [Stm] ::= Stm ;
(:). [Stm] ::= Stm ";" [Stm] ;

whereas

1.7. LBNF macros 11



BNFC Documentation, Release 2.9.5

separator nonempty Stm ";" ;

means

(:[]). [Stm] ::= Stm ;
(:). [Stm] ::= Stm ";" [Stm] ;

Notice that, if the empty token "" is used, there is no difference between terminator and separator.

Problem. The grammar generated from a separatorwithout nonemptywill actually also accept a list terminating
with a semicolon, whereas the pretty-printer “normalizes” it away. This might be considered a bug, but a set of rules
forbidding the terminating semicolon would be more complicated:

[]. [Stm] ::= ;
_. [Stm] ::= [Stm]1 ;
(:[]). [Stm]1 ::= Stm ;
(:). [Stm]1 ::= Stm ";" [Stm]1 ;

This is unfortunately not legal LBNF, since precedence levels for lists are not supported.

1.7.2 Coercions

The coercions macro is a shorthand for a group of rules translating between precedence levels. For instance,

coercions Exp 3 ;

is shorthand for

_. Exp ::= Exp1 ;
_. Exp1 ::= Exp2 ;
_. Exp2 ::= Exp3 ;
_. Exp3 ::= "(" Exp ")" ;

Because of the total coverage of these coercions, it does not matter whether the integer indicating the highest level (here
3) is bigger than the highest level actually occurring, or whether there are some other levels without productions in the
grammar. However, unused levels may bloat the generated parser definition file (e.g., the Happy file in case of Haskell)
unless the backend implements some sort of dead-code removal. (As of October 2020, no backend implements such
clever analysis.)

Hint: Coerced categories (e.g. Exp2) can also be used in other rules. For instance, given the following grammar:

EInt. Exp2 ::= Integer;
EAdd. Exp1 ::= Exp1 "+" Exp2;

you might want to use Exp2 instead of simply Exp to force the usage of parenthesis around non-trivial expressions.
For instance, Foo. F ::= "foo" Exp2 ; will accept foo 42 or foo (1 + 1) but not foo 1 + 1.

You can even use coerced categories in lists and give them different separators/terminators:

separator Exp "," ;
separator Exp2 ";" ;

12 Chapter 1. LBNF reference



BNFC Documentation, Release 2.9.5

1.7.3 Rules

The rules macro is a shorthand for a set of rules from which labels are generated automatically. For instance,

rules Type ::= Type "[" Integer "]" | "float" | "double" | Type "*" | Ident ;

is shorthand for

Type1. Type ::= Type "[" Integer "]" ;
Type_float. Type ::= "float" ;
Type_double. Type ::= "double" ;
Type2. Type ::= Type "*" ;
TypeIdent. Type ::= Ident ;

The labels are created automatically. A label starts with the value category name. If the production has just one item,
which is moreover possible as a part of an identifier, that item is used as a suffix. In other cases, an integer suffix is
used. No global checks are performed when generating these labels. Label name clashes leading to type errors are
captured by BNFC type checking on the generated rules.

1.8 Layout syntax

Layout syntax is a means of using indentation to group program elements. It is used in some languages, e.g. Agda,
Haskell, and Python. Layout syntax is a rather experimental feature of BNFC and only supported by the Haskell-family
backends, so the reader might want to skip this section on the first reading.

The pragmas layout, layout stop, and layout toplevel define a layout syntax for a language. From these
pragmas, a Haskell module named Layout, the layout resolver, is created to be plugged in between lexer and parser.
This module inserts extra tokens (braces and semicolons) into the token stream coming from the lexer, according to
the rules explained below.

Hint: To get layout resolution in other backends, the generated Haskell layout resolver could to be hand-ported to the
desired programming language. Alternatively, the generated Haskell lexer and layout resolver could be turned into a
stand-alone preprocessor that lexes a file into tokens, inserts the extra tokens according to the layout rules, and prints
the tokens back into a character stream that can be further processed by the lexer and parser written in the desired
programming language.

The layout pragmas of BNFC are not powerful enough to handle the full layout rule of Haskell 98, but they suffice for
the “regular” cases.

For a feature overview, a first simple example: a grammar for trees. A Tree be a number (the payload) followed by
br plus a (possibly empty) list of subtrees:

Node. Tree ::= Integer "br" "{" [Tree] "}" ;
separator Tree ";" ;

layout "br" ;

The lists are enclosed in braces and separated by semicolons. This is the only syntax supported by the layout mecha-
nism for the moment.

The generated parser can process this example:

1.8. Layout syntax 13



BNFC Documentation, Release 2.9.5

0 br
1 br
2 br
3 br

4 br
5 br

6 br
7 br

Thanks to the layout resolution, this is treated in the same way as the following input would be treated without layout
support:

0 br
{ 1 br

{ 2 br {}
; 3 br {}
}

; 4 br
{ 5 br
{ 6 br {}
}

}
; 7 br {}
}

The layout resolver produces, more precisely, the following equivalent intermediate text (in form of a token stream):

0 br{
1 br{
2 br{

}; 3 br{
}

}; 4 br{
5 br{

6 br{
}

}
}; 7 br{
}}

Now to a more realistic example, found in the the grammar of the logical framework Alfa. (Caveat: This example is a
bit dated. . . )

layout "of", "let", "where", "sig", "struct" ;

The first line says that "of", "let", "where", "sig", "struct" are layout words, i.e. start a layout list. A
layout list is a list of expressions normally enclosed in curly brackets and separated by semicolons, as shown by the
Alfa example:

ECase. Exp ::= "case" Exp "of" "{" [Branch] "}" ;

separator Branch ";" ;

When the layout resolver finds the token of in the code (i.e. in the sequence of its lexical tokens), it checks if the next
token is an opening curly bracket. If it is, nothing special is done until a layout word is encountered again. The parser
will expect the semicolons and the closing bracket to appear as usual.

But, if the token 𝑡 following of is not an opening curly bracket, a bracket is inserted, and the start column of 𝑡 (or the

14 Chapter 1. LBNF reference



BNFC Documentation, Release 2.9.5

column after the current layout column, whichever is bigger) is remembered as the position at which the elements of
the layout list must begin. Semicolons are inserted at those positions. When a token is eventually encountered left of
the position of 𝑡 (or an end-of-file), a closing bracket is inserted at that point.

Nested layout blocks are allowed, which means that the layout resolver maintains a stack of positions. Pushing a
position on the stack corresponds to inserting a left bracket, and popping from the stack corresponds to inserting a
right bracket.

Here is an example of an Alfa source file using layout:

c :: Nat = case x of
True -> b
False -> case y of
False -> b

Neither -> d

d = case x of True -> case y of False -> g
x -> b

y -> h

Here is what it looks like after layout resolution:

c :: Nat = case x of {
True -> b
;False -> case y of {
False -> b

};Neither -> d

};d = case x of {True -> case y of {False -> g
;x -> b

};y -> h} ;

There are two more layout-related pragmas. The layout stop pragma, as in

layout stop "in" ;

tells the resolver that the layout list can be exited with some stop words, like in, which exits a let list. It is no error
in the resolver to exit some other kind of layout list with in, but an error will show up in the parser.

The layout toplevel pragma tells that the whole source file is a layout list, even though no layout word indicates
this. The position is the first column, and the resolver adds a semicolon after every paragraph whose first token is at
this position. No curly brackets are added. The Alfa file above is an example of this, with two such semicolons added.

1.8.1 Stacking layout keywords

Since version 2.9.2, the layout processor supports stacking of layout keywords on the same line. Consider the following
fragment of an Agda-ish grammar:

Module. Decl ::= "module" Ident "where" "{" [Decl] "}" ;
Private. Decl ::= "private" "{" [Decl] "}" ;
TypeSig. Decl ::= Ident ":" Ident ;

separator Decl ";" ;

layout "where", "private" ;

1.8. Layout syntax 15



BNFC Documentation, Release 2.9.5

This grammar allows us to define simple Agda modules that contain a list of declarations, each of which can be a
module, a private block or a type signature. Lists of declarations are enclosed in braces and separated by semicolons,
and introduced by the layout keywords where and private.

We may want to define a private module, and instead of two subsequent indentations:

private
module M where
A : Set

we wish to stack the two layout introductions on a single line:

private module M where
A : Set

This is not supported by the layout logic up to BNFC 2.9.1, as we would fix the layout column for the private block
to column 8, the column of token module. The token A following the next layout keyword where lives at column
2 which is below 8, thus, the private block would be closed here. But with private closing, the inner block
module M where also needs to close, and then the declaration A : Set is simply misindented. Thus, this gives
a parse error with BNFC 2.9.1.

The layout processor produced by BNFC 2.9.2 instead marks the layout column 8 of the private block as tentative
since the token module following the layout keyword private is on the same line. On the contrary, the layout
column 2 of the module block is definitive since the token A following the layout keyword where is at a later line.
When checking whether a new layout column is valid, tentative layout columns get ignored, thus it is only checked that
2 > 0, not that 2 > 8. When at some point the module block will be closed because we encounter a token indented less
than 2, the private block will be closed as well since its indentation column 8 is also greated than the indentation
of the encountered token.

In general, when encountering a new line, we switch the top layout columns to definitive if they are still tentative. For
instance, consider the following situation:

private module M where A : Set
module N where

Bad : Set

At the end of the first line, we have two tentative layout columns, 8 (column of module) and 23 (column of A). Since
now we have no pending layout keyword left in this line, we switch the layout columns to definitive when we see the
next token module on a new line. The first module closes here, leaving us with definitive layout column 8. This
prevents that we assign to the subsequent block module N with layout keyword where the column 2 (token Bad).
Instead, this block gets a default column, 8+1. When processing token Bad both blocks get closed since 2 < 8 and 2
< 8+1. But then Bad is misindented, yielding the expected parse error.

The changes introduced for stacking layout keywords are backwards compatible in the following sense: A layout-
aware parser generated by BNFC 2.9.2 accepts all texts that were soundly accepted by the respective parser generated
by BNFC 2.9.1 and before. Further, the same syntax trees are generated for these accepted texts.

1.9 An optimization: left-recursive lists

The BNF representation of lists is right-recursive, following the list constructor in Haskell and most other languages.
Right-recursive lists, however, require linear stack space in a shift-reduce parser (such as the LR parser family). This
can be a problem when the size of the stack is limited (e.g. in bison generated parsers).

A right-recursive list definition

16 Chapter 1. LBNF reference



BNFC Documentation, Release 2.9.5

[]. [Stm] ::= ;
(:). [Stm] ::= Stm ";" [Stm] ;

becomes left recursive under the left-recursion transformation:

[]. [Stm] ::= ;
(flip (:)). [Stm] ::= [Stm] Stm ";" ;

However, the thus parsed lists need to be reversed when used as part of another rule.

For backends that target stack-restricted parsers (C, C++, Java), the BNF Converter automatically performs the left-
recursion transformation for pairs of rules of the form

[]. [C] ::= ;
(:). [C] ::= C x [C] ;

where C is any category and x is any sequence of terminals (possibly empty). These rules can, of course, be generated
from the terminator macro (Section Terminators and separators).

Notice. The transformation is currently not performed if the one-element list is the base case. It is also not performed
in the Haskell backend that generates parsers with a heap-allocated stack via happy.

1.10 Appendix: LBNF Specification

This document was originally automatically generated by the BNF-Converter. It was generated together with the
lexer, the parser, and the abstract syntax module, to guarantee that the document matches the implementation of the
language. In the present form, the document has gone through some manual editing.

1.11 The lexical structure of BNF

1.11.1 Identifiers

Identifiers are unquoted strings beginning with a letter, followed by any combination of letters, digits, and the character
_, reserved words excluded.

1.11.2 Literals

String literals String have the form " 𝑥 ", where 𝑥 is any sequence of any characters except " unless preceded by \.

Integer literals Integer are nonempty sequences of digits.

Character literals Char have the form ' 𝑐 ' , where 𝑐 is any single character.

1.11.3 Reserved words and symbols

The set of reserved words is the set of terminals appearing in the grammar. Those reserved words that consist of non-
letter characters are called symbols, and they are treated in a different way from those that are similar to identifiers. The
lexer follows rules familiar from languages like Haskell, C, and Java, including longest match and spacing conventions.

The reserved words used in BNF are the following:

1.10. Appendix: LBNF Specification 17



BNFC Documentation, Release 2.9.5

char coercions comment
digit
entrypoints eps
internal
layout letter lower
nonempty
position
rules
separator stop
terminator token toplevel
upper

The symbols used in BNF are the following:

; . ::=
[ ] _
( : )
, | -

* + ?
{ }

1.11.4 Comments

Single-line comments begin with --.
Multiple-line comments (aka block comments) are enclosed between {- and -}.

1.12 The syntactic structure of LBNF

Non-terminals are enclosed between < and >. The symbols ::= (production), | (union) and 𝜖 (empty rule) belong to
the BNF notation. All other symbols are terminals (as well as sometimes even ::= and |).

<Grammar> ::= <ListDef>

<ListDef>
::= 𝜖
| <Def>
| <Def> ; <ListDef>
| ; <ListDef>

<Def>
::= entrypoints <ListCat>

| <Label> . <Cat> ::= <ListItem>
| internal <Label> . <Cat> ::= <ListItem>

| separator <MinimumSize> <Cat> <String>
| terminator <MinimumSize> <Cat> <String>

| coercions <Identifier> <Integer>

| rules <Identifier> ::= <ListRHS>

| comment <String>
(continues on next page)

18 Chapter 1. LBNF reference



BNFC Documentation, Release 2.9.5

(continued from previous page)

| comment <String> <String>

| token <Identifier> <Reg>
| position token <Identifier> <Reg>

| layout <ListString>
| layout stop <ListString>
| layout toplevel

<ListCat>
::= <Cat>
| <Cat> , <ListCat>

<ListItem>
::= 𝜖
| <Item> <ListItem>

<Item>
::= <String>
| <Cat>

<Cat>
::= [ <Cat> ]
| <Identifier>

<Label>
::= <Identifier>
| _
| [ ]
| ( : )
| ( : [ ] )

<ListString>
::= <String>
| <String> , <ListString>

<ListRHS>
::= <RHS>
| <RHS> | <ListRHS>

<RHS> ::= <ListItem>

<MinimumSize>
::= 𝜖
| nonempty

<Reg>
::= <Reg> | <Reg1>
| <Reg1>

<Reg1>
::= <Reg1> <Reg2>
| <Reg2>

<Reg2>
::= <Reg2> <Reg3>
| <Reg3>

(continues on next page)

1.12. The syntactic structure of LBNF 19



BNFC Documentation, Release 2.9.5

(continued from previous page)

<Reg3>
::= <Reg3> *
| <Reg3> +
| <Reg3> ?
| eps
| <Char>
| [ <String> ]
| { <String> }
| digit
| letter
| upper
| lower
| char
| ( <Reg> )

20 Chapter 1. LBNF reference



CHAPTER 2

Backend Guide

2.1 Agda Backend

The Agda Backend (option --agda, since 2.8.3) invokes the Haskell backend and adds Agda-bindings for the gen-
erated parser, printer, and abstract syntax. The bindings target the GHC backend of Agda, in version 2.6.0 or higher.
Example run:

bnfc --agda -m -d Calc.cf
make

The following files are created by the Agda backend, in addition to the files created by the Haskell backend:

1. AST.agda:

• Agda data types bound to the corresponding types for abstract syntax trees in Abs.hs.

• Agda bindings for the pretty-printing functions in Print.hs.

Uses pragmas in mutual blocks, which is supported by Agda 2.6.0.

2. Parser.agda: Agda bindings for the parser functions generated by Par.y.

3. IOLib.agda: Agda bindings for the Haskell IO monad and basic input/output functions.

4. Main.agda: A test program invoking the parser, akin to Test.hs. Uses do notation, which is supported by
Agda 2.5.4.

The Agda backend targets plain Agda with just the built-in types and functions; no extra libraries required (also not
the standard library).

Since 2.9.4: Option --functor puts position information into the Agda syntax trees (affects generated AST.agda).
Relies on the primitive module Agda.Builtin.Maybe which is available from Agda 2.6.2.

2.2 Java Backend

Generates abstract syntax, parser and printer as Java code. Main option: --java.

21



BNFC Documentation, Release 2.9.5

2.2.1 CUP

By default --java generates input for the CUP parser generator, since 2.8.2 CUP version v11b.

Note: CUP can only generate parsers with a single entry point. If multiple entry points are given using the
entrypoint directive, only the first one will be used. Otherwise, the first category defined in the grammar file
will be used as the entry point for the grammar. If you need multiple entrypoints, use ANTLRv4.

2.2.2 ANTLRv4

ANTLRv4 is a parser generator for Java.

With the --antlr option (since 2.8.2) BNFC generates an ANTLRv4 parser and lexer.

All categories can be entrypoints with ANTLR: the entrypoints directive is thus ignored.

Make sure that your system’s Java classpath variable points to an ANTLRv4 jar (download here). Since 2.9.5 BNFC
generates code for String parsing that needs Java 15 or higher.

You can use the ANTLR parser generator as follows:

bnfc --java --antlr -m Calc.cf
make

ANTLRv4 returns by default a parse tree, which enables you to make use of the analysis facilities that ANTLR offers.
You can of course still get the usual AST built with the abstract syntax classes generated by BNFC.

From the Calc/Test.java, generated as a result of the previous commands:

public Calc.Absyn.Exp parse() throws Exception
{

/* The default parser is the first-defined entry point. */
CalcParser.ExpContext pc = p.exp();
Calc.Absyn.Exp ast = pc.result;
/* ... */
return ast;

}

The pc object is a ParserRuleContext object returned by ANTLR. It can be used for further analysis through
the ANTLR API.

The usual abstract syntax tree returned by BNFC is in the result field of any ParserRuleContext returned by
the available parse functions (here exp()).

2.3 Haskell Backend

The Haskell backend is the default backend. It targets the Alex lexer generator and the Happy parser generator.

Option -d is strongly recommended. It places the generated files, except for the Makefile into a subdirectory whose
name is derived from the grammar file. Example:

bnfc -d -m Calc.cf
make

This will leave the following files (and some more) in directory Calc:

22 Chapter 2. Backend Guide

http://www.antlr.org/
http://www.antlr.org/download.html


BNFC Documentation, Release 2.9.5

1. Abs.hs

The generated data types that describe the abstract syntax of the Calc language. Import e.g. via:

import Calc.Abs

Since 2.9.1: If some types of generated abstract syntax contain position information, which is the case with
option --functor or in the presence of position token s, then an overloaded method is provided for
these types that returns the start position (line, column) of its argument:

class HasPosition a where
hasPosition :: a -> Maybe (Int, Int)

2. Print.hs

The generated pretty printer in form of an overloaded function printTree. Import e.g. as:

import Calc.Print ( printTree )

3. Lex.x

The input file for the Alex lexer generator. The generated lexer Lex.hs also contains the Token definition.
Usually the lexer is just imported by the parser, but if you want to handle tokens for some purpose you can for
instance state:

import Calc.Lex ( Token(..) )

4. Par.y

The input file for the Happy parser generator. The generated parser Par.hs also contains the lexing function
by the name myLexer. Import lexer and parser (for the Exp category) via:

import Calc.Par ( myLexer, pExp )

5. Test.hs

This is a sample command line program that just runs the parser on the given input file. You can invoke its
compiled form e.g. via Calc/Test sample.txt. You can use it as model how to piece lexer, parser, and
printer together.

6. ErrM.hs

This module is for backwards compatibility only. From BNFC 2.8.4, the generated parser returns Either
String Exp where the Left alternative is an error message of type String in case the parsing failed and
the Right alternative is a regular result (Exp in case of Calc) when parsing succeeded.

Until BNFC 2.8.3, the parser returned Err Exp which was essentially Either String Exp under a new
name, with constructors Bad instead of Left and Ok instead of Right. In ErrM.hs, type constructor Err is
defined as a type synoym for Either String and Bad and Ok as pattern synonyms for Left and Right.

Old code developed with the Haskell backend of BNFC 2.8.3 should still continue to work, thanks to the ErrM.
hs compatibility module. There is one exception: An import statement like

import Calc.ErrM ( Err (Ok, Bad) )

or

import Calc.ErrM ( Err (..) )

does not work anymore, since Ok and Bad are not constructors anymore. A robust statement that works both
for constructors and pattern synonyms is:

2.3. Haskell Backend 23



BNFC Documentation, Release 2.9.5

{-# LANGUAGE PatternSynonyms #-}
import Calc.ErrM ( Err, pattern Ok, pattern Bad )

and this is the recommended minimal migration of Haskell code written with BNFC 2.8.3.

2.3.1 Position Information

Since 2.8: With the --functor option, the generated abstract syntax will consist of data types with one parameter.
The first field of each constructor holds a value typed by this parameter. Since 2.9.1: E.g. for Calc the generated type
is Exp' a with e.g. constructor ETimes a (Exp' a) (Exp' a). Each parameterized type is a Foldable
Traversable Functor. Further, non-parameterized types, e.g.:

type Exp = Exp' (Maybe (Int, Int))

are generated to characterize the syntax trees returned by the generated parser. The extra values then hold line and
column number of the starting position of the syntax tree node in the parsed file. If no position is available, e.g., for
an empty list, the value is Nothing.

In general, however, the extra values can be made to hold any kind of extra information attached to the abstract syntax.
E.g. one could store type information reconstructed during a type-checking phase there.

2.4 Pygments Backend

Pygments is not really a compiler front-end tool, like lex and yacc, but a widely used syntax highlighter (used for
syntax highlighting on github among others).

With the --pygments option, BNFC generates a new python lexer to be used with pygments.

2.4.1 Usage

There is two ways to add a lexer to pygments:

• Fork the pygments codebase and add your lexer in pygments/lexers/

• Install your lexer as a pygments plugin using setuptools

In addition to the lexer itself, BNFC will generate an minimal installation script setup.py for the second option so
you can start using the highlighter right away without fiddling with pygments code.

Here is an example (assuming you’ve put the Calc grammar in the current directory):

bnfc --pygments Calc.cf
python3 -m venv myenv # If you don't use virtualenv, skip this step...
myenv/bin/python3 setup.py install # ... and use the global python3 and pygmentize
echo "1 + 2 - 3 * 4" | myenv/bin/pygmentize -l calc

You should see something like:

Here is the LBNF grammar highlighted with the pygments lexer generated from it:

24 Chapter 2. Backend Guide



BNFC Documentation, Release 2.9.5

2.4. Pygments Backend 25



BNFC Documentation, Release 2.9.5

2.4.2 Caveats

The generated lexer has very few highlighting categories. In particular, all keywords are highlighted the same way,
all symbols are highlighted the same way and it doesn’t use context (so, for instance, it cannot differentiate the same
identifier used as a function definition and a local variable. . . )

Pygments makes it possible to register file extensions associated with a lexer. BNFC adds the grammar name as a file
extension. So if the grammar file is named Calc.cf, the lexer will be associated to the file extension .calc. To
associate other file extensions to a generated lexer, you need to modify (or subclass) the lexer.

26 Chapter 2. Backend Guide



CHAPTER 3

Other tools

3.1 LBNF tools

LBNF for Sublime Text Provides syntax highlighting for LBNF in Sublime Text.

lbnf.vim Vim syntax highlighting for Labeled BNF.

language-lbnf LBNF support in the Atom editor.

tree-sitter-lbnf A tree-sitter grammar for LBNF.

vscode-lbnf An extension for VS Code which provides support for the LBNF language.

3.2 Similar tools

bnfc-meta Like BNFC for haskell but allows you to define your grammar in a .hs file using a quasi-quoter.

ANTLR From a grammar, ANTLR generates a Java parser that can build and walk parse trees.

BNF Parser Generator Generates a C parser from a BNF like syntax.

BNF for Java Java implementation of Extended BNF.

GF Powerful grammar formalism for natural language processing.

Syntax Syntactic analysis toolkit, language-agnostic parser generator. Backends: C# Java JavaScript Python PHP
Ruby Rust

tree-sitter Incremental parser generation (C) from grammar written in a JavaScript DSL or JSON. Bindings exist for
many programming languages.

27

https://github.com/Centril/sublime-lbnf-syntax
https://www.vim.org/scripts/script.php?script_id=1470
https://github.com/MortenSchou/language-lbnf
https://github.com/MortenSchou/tree-sitter-lbnf
https://marketplace.visualstudio.com/items?itemName=agurodriguez.vscode-lbnf
http://hackage.haskell.org/package/BNFC-meta
http://www.antlr.org/
http://www.nongnu.org/bnf/
http://bnf-for-java.sourceforge.net/
http://www.grammaticalframework.org/
https://github.com/DmitrySoshnikov/syntax
https://tree-sitter.github.io/tree-sitter/


BNFC Documentation, Release 2.9.5

28 Chapter 3. Other tools



CHAPTER 4

Releasing

This document concerns the developers and contributors of BNFC only.

Write changes In source/CHANGELOG.md. Write an overview of the important changes: features added, depre-
cated and removed.

The format of the first line is:

2.8 Grégoire Détrez <gregoire@fripost.org> March 2042

version number Releaser name and email Date

Bump version The version increment should be based on the changes listed in the changelog, according to semantic
versioning.

Run the tests Run all the tests suites (or let the CI server do it).

Build binaries Build binaries for mac, windows and linux (or use the ones build by the CI server).

Create a new release on github A github release includes:

• the commit hash of the code revision

• the version number

• the list of changes from the changelog

• the source package

• the binary packages

Upload the source package on hackage https://hackage.haskell.org/upload

Activate readthedocs for the new version This is done at https://readthedocs.org/projects/bnfc/versions/

29

http://semver.org/
http://semver.org/
https://hackage.haskell.org/upload
https://readthedocs.org/projects/bnfc/versions/


BNFC Documentation, Release 2.9.5

30 Chapter 4. Releasing



CHAPTER 5

Indices and tables

• genindex

• modindex

• search

31


	LBNF reference
	Introduction
	A first example of LBNF grammar
	LBNF in a nutshell
	Abstract syntax conventions
	Lexer definitions
	LBNF pragmas
	LBNF macros
	Layout syntax
	An optimization: left-recursive lists
	Appendix: LBNF Specification
	The lexical structure of BNF
	The syntactic structure of LBNF

	Backend Guide
	Agda Backend
	Java Backend
	Haskell Backend
	Pygments Backend

	Other tools
	LBNF tools
	Similar tools

	Releasing
	Indices and tables

