
blur Documentation
Release 0.4

Andrew Yoon

Oct 24, 2016

Contents

1 Introduction 3

2 Installation 5

3 API documentation 7
3.1 rand . 7
3.2 soft . 11
3.3 markov . 16
3.4 iching . 25

4 Indices and tables 29

Python Module Index 31

i

ii

blur Documentation, Release 0.4

a simple python toolkit for chance operations in art.

Contents:

Contents 1

blur Documentation, Release 0.4

2 Contents

CHAPTER 1

Introduction

blur is a suite of tools for Python to help make using chance operations in algorithmic art easier.

>>> from blur.markov.graph import Graph
>>> word_distance_weights = {-5: 1, -1: 2, 1: 8, 3: 3}
>>> graph = Graph.from_string('blur is a suite of tools to help make using '
... 'chance operations in algorithmic art easier', word_distance_weights)
>>> print(' '.join(graph.pick().value for i in range(10)))
using chance algorithmic in algorithmic art easier blur easier blur

blur allows you to easily implement complex chance generated elements in your works without getting bogged down
in the boilerplate and the nitty-gritty math.

>>> from blur import soft, rand
>>> frequency_profile = rand.normal_distribution(mean=440, variance=50)
>>> for i in range(100):
... add_oscillator(frequency=weighted_rand(frequency_profile))

>>> color = soft.SoftColor(red=([(255, 10), (100, 0)],),
... green=([(200, 10), (100, 0)],),
... blue=([(0, 20), (80, 1)],))
>>> apple.fill_color_rgb = color.get()

>>> words = soft.SoftOptions([('nothing', 10),
... ('something', 3),
... ('everything', 1)])
>>> print('I have {0} to say and I am saying it and that is poetry.'.format(
... words.get())

At the heart of blur is the rand module, which contains a series of functions for finding non-uniform random numbers
based on customizable weights. blur also comes with a model markov graph, a tool for deriving markov graphs from
text, a collection of soft objects whose values vary according to customizable weights and rules, and a model I Ching.

Besides Python (version 2.7 or 3.3), blur has no dependencies, making it easy to incorporate into your project.

To install blur use pip from the command line:

$ pip install blur

3

https://www.python.org/
https://www.python.org/

blur Documentation, Release 0.4

4 Chapter 1. Introduction

CHAPTER 2

Installation

Stable

blur has no external dependencies and the latest stable version can be easily installed with pip from the command
line

$ pip install blur

Latest

To install the latest development version clone the upstream repository, ensure you are on the dev branch, and run the
setup.py script

$ git clone git@github.com:ajyoon/blur.git
$ cd blur
blur$ git status
On branch dev
Your branch is up-to-date with 'origin/dev'.
nothing to commit, working tree clean
blur$ python setup.py install

5

blur Documentation, Release 0.4

6 Chapter 2. Installation

CHAPTER 3

API documentation

Contents:

3.1 rand

A collection of functions for performing non-uniform random operations.

Many functions rely of weight 2-tuples of the form (outcome,strength) where strength is a number and
outcome is either a number or any type depending on the function.

exception blur.rand.ProbabilityUndefinedError
Exception raised when the probability of a system is undefined.

blur.rand.bound_weights(weights, minimum=None, maximum=None)
Bound a weight list so that all outcomes fit within specified bounds.

The probability distribution within the minimum and maximum values remains the same. Weights in the list
with outcomes outside of minimum and maximum are removed. If weights are removed from either end, attach
weights at the modified edges at the same weight (y-axis) position they had interpolated in the original list.

If neither minimum nor maximum are set, weights will be returned unmodified. If both are set, minimum
must be less than maximum.

Parameters

• weights (list) – the list of weights where each weight is a tuple of form
(float,float) corresponding to (outcome,weight). Must be sorted in increas-
ing order of outcomes

• minimum (float) – Lowest allowed outcome for the weight list

• maximum (float) – Highest allowed outcome for the weight list

Returns list – A list of 2-tuples of form (float,float), the bounded weight list.

Raises ValueError – if maximum < minimum

Example

>>> weights = [(0, 0), (2, 2), (4, 0)]
>>> bound_weights(weights, 1, 3)
[(1, 1), (2, 2), (3, 1)]

7

blur Documentation, Release 0.4

blur.rand.normal_distribution(mean, variance, minimum=None, maximum=None,
weight_count=23)

Return a list of weights approximating a normal distribution.

Parameters

• mean (float) – The mean of the distribution

• variance (float) – The variance of the distribution

• minimum (float) – The minimum outcome possible to bound the output distribution to

• maximum (float) – The maximum outcome possible to bound the output distribution to

• weight_count (int) – The number of weights that will be used to approximate the
distribution

Returns list – a list of (float,float) weight tuples approximating a normal distribution.

Raises

• ValueError – if maximum < minimum

• TypeError – if both minimum and maximum are None

Example

>>> weights = normal_distribution(10, 3,
... minimum=0, maximum=20,
... weight_count=5)
>>> rounded_weights = [(round(value, 2), round(strength, 2))
... for value, strength in weights]
>>> rounded_weights
[(1.34, 0.0), (4.8, 0.0), (8.27, 0.14), (11.73, 0.14), (15.2, 0.0)]

blur.rand.prob_bool(probability)
Return True or False depending on probability.

Parameters probability (float) – Probability between 0 and 1 to return True where 0 is
guaranteed to return False and 1 is guaranteed to return True.

Returns bool – True or False depending on probability.

Example

>>> prob_bool(0.9)
Usually will be...
True
>>> prob_bool(0.1)
Usually will be...
False

blur.rand.percent_possible(percent)
Return True percent / 100 times.

Parameters percent (int or float) – percent possibility to return True

Returns bool – Either True or False depending on percent

8 Chapter 3. API documentation

blur Documentation, Release 0.4

Example

>>> percent_possible(90)
Usually will be...
True
>>> percent_possible(10)
Usually will be...
False

blur.rand.pos_or_neg(value, prob_pos=0.5)
Return either positive or negative value based on prob_pos.

This is equivalent to abs(value) * pos_or_neg_1(prob_pos).

Parameters

• value (int or float) – the value to operate on

• prob_pos (float) – The probability to return positive. where prob_pos = 0 is guar-
anteed to return negative and prob_pos = 1 is guaranteed to return positive. Default
value is 0.5.

Returns int or float – value either positive or negative

Example

>>> pos_or_neg(42, 0.9)
Usually will be...
42
>>> pos_or_neg(42, 0.1)
Usually will be...
-42

blur.rand.pos_or_neg_1(prob_pos=0.5)
Return either 1 with probability of prob_pos, otherwise -1.

Parameters prob_pos (float) – The probability to return positive 1 where prob_pos = 0
is guaranteed to return negative and prob_pos = 1 is guaranteed to return positive. Default
value is 0.5.

Returns int – either 1 or -1

Example

>>> pos_or_neg_1(0.9)
Usually will be...
1
>>> pos_or_neg_1(0.1)
Usually will be...
-1

blur.rand.weighted_rand(weights, round_result=False)
Generate a non-uniform random value based on a list of weight tuples.

3.1. rand 9

blur Documentation, Release 0.4

Treats weights as coordinates for a probability distribution curve and rolls accordingly. Constructs a piece-wise
linear curve according to coordinates given in weights and rolls random values in the curve’s bounding box
until a value is found under the curve

Weight tuples should be of the form: (outcome, strength).

Parameters

• weights – (list): the list of weights where each weight is a tuple of form
(float,float) corresponding to (outcome,strength). Weights with strength 0
or less will have no chance to be rolled. The list must be sorted in increasing order of
outcomes.

• round_result (bool) – Whether or not to round the resulting value to the nearest inte-
ger.

Returns

float – A weighted random number

int: A weighted random number rounded to the nearest int

Example

>>> weighted_rand([(-3, 4), (0, 10), (5, 1)])
-0.650612268193731
>>> weighted_rand([(-3, 4), (0, 10), (5, 1)])
-2

blur.rand.weighted_choice(weights, as_index_and_value_tuple=False)
Generate a non-uniform random choice based on a list of option tuples.

Treats each outcome as a discreet unit with a chance to occur.

Parameters

• weights (list) – a list of options where each option is a tuple of form (Any,float)
corresponding to (outcome,strength). Outcome values may be of any type. Options
with strength 0 or less will have no chance to be chosen.

• as_index_and_value_tuple (bool) – Option to return an (index,value) tuple
instead of just a single value. This is useful when multiple outcomes in weights are the
same and you need to know exactly which one was picked.

Returns

Any – If as_index_and_value_tuple is False, any one of the items in the outcomes
of weights

tuple (int, Any): If as_index_and_value_tuple is True, a 2-tuple of form
(int,Any) corresponding to (index,value). the index as well as value of the item that
was picked.

Example

>>> choices = [('choice one', 10), ('choice two', 3)]
>>> weighted_choice(choices)
Often will be...
'choice one'

10 Chapter 3. API documentation

blur Documentation, Release 0.4

>>> weighted_choice(choices,
... as_index_and_value_tuple=True)
Often will be...
(0, 'choice one')

blur.rand.weighted_order(weights)
Non-uniformally order a list according to weighted priorities.

weights is a list of tuples of form (Any,float or int) corresponding to (item,strength). The
output list is constructed by repeatedly calling weighted_choice() on the weights, adding items to the end
of the list as they are picked.

Higher strength weights will have a higher chance of appearing near the beginning of the output list.

A list weights with uniform strengths is equivalent to calling random.shuffle() on the list of items.

If any weight strengths are <= 0, a ProbabilityUndefinedError is be raised.

Passing an empty list will return an empty list.

Parameters weights (list) – a list of tuples of form (Any,float or int) corre-
sponding to (item,strength). The output list is constructed by repeatedly calling
weighted_choice() on the weights, appending items to the output list as they are picked.

Returns list – the newly ordered list

Raises ProbabilityUndefinedError – if any weight’s strength is below 0.

Example

>>> weights = [('Probably Earlier', 100),
... ('Probably Middle', 20),
... ('Probably Last', 1)]
>>> weighted_order(weights)
['Probably Earlier', 'Probably Middle', 'Probably Last']

3.2 soft

A collection of soft objects.

Every soft object has a value that changes every time it is retrieved according to defined chance profiles. This value
can be retrieved with the SoftObject ‘s get() method.

>>> blurry_float = SoftFloat([(-1, 2), (3, 5)])
>>> blurry_float.get()
1.925674784815838
>>> blurry_float.get()
1.120389067727415
>>> blurry_float.get()
1.30418962132812

class blur.soft.SoftObject
An abstract base class for SoftObject ‘s.

Direct instances of SoftObject should not be created; instead, the appropriate subclass should be used.

Every SoftObject represents a stochastic blurry object whose value is determined with the get() method.

3.2. soft 11

blur Documentation, Release 0.4

This is an abstract method and should not be called. Subclasses of SoftObject must override and implement
this.

Direct instances of SoftObject should not be created; instead, the appropriate subclass should be used.

get()
Retrieve a value of this SoftObject.

This is an abstract method and should not be called. Subclasses of SoftObject must override and
implement this.

class blur.soft.SoftOptions(options)
One of many objects with corresponding weights.

Parameters options (list) – a list of options where each option is a tuple of form
(Any,float) corresponding to (outcome,weight). Outcome values may be of any type.
Weights 0 or less will have no chance to be retrieved by get()

Example

>>> options = SoftOptions([('option one', 2),
... ('option two', 5),
... ('option three', 8)])
>>> options.get()
'option three'

classmethod with_uniform_weights(options, weight=1)
Initialize from a list of options, assigning uniform weights.

Parameters

• options (list) – The list of options of any type this object can return with the get()
method.

• weight (float or int) – The weight to be assigned to every option. Regardless of
what this is, the probability of each option will be the same. In almost all cases this can be
ignored. The only case for explicitly setting this is if you need to modify the weights after
creation with specific requirements.

Returns SoftOptions – A newly constructed instance

Example

>>> blurry_object = SoftOptions.with_uniform_weights(
... ['option one', 'option two', 'option three'])
>>> blurry_object.options
[('option one', 1), ('option two', 1), ('option three', 1)]

classmethod with_random_weights(options)
Initialize from a list of options with random weights.

The weights assigned to each object are uniformally random integers between 1 and len(options)

Parameters options (list) – The list of options of any type this object can return with the
get() method.

Returns SoftOptions – A newly constructed instance

12 Chapter 3. API documentation

blur Documentation, Release 0.4

options
list – a list of options where each option is a tuple of form (Any,float or int) corresponding to
(outcome,weight). Outcome values may be of any type. Weights 0 or less will have no chance to be
retrieved by get()

get()
Get one of the options within the probability space of the object.

Returns Any – An item from self.options.

class blur.soft.SoftBool(prob_true)
A stochastic bool defined by a probability to be True.

Parameters prob_true (float) – The probability that get() returns True where
prob_true <= 0 is always False and prob_true >= 1 is always True.

prob_true
float or int – The probability that get() returns True where prob_true <= 0 is always False and
prob_true >= 1 is always True.

get()
Get either True or False depending on self.prob_true.

Returns bool – True or False depending on self.prob_true.

class blur.soft.SoftFloat(weights)
A stochastic float value defined by a list of weights.

Parameters weights (list) – the list of weights where each weight is a tuple of form (int
or float,int or float) corresponding to (outcome,strength). These weights
represent the stochastic value of this SoftFloat.

classmethod bounded_uniform(lowest, highest, weight_interval=None)
Initialize with a uniform distribution between two values.

If no weight_interval is passed, this weight distribution will just consist of
[(lowest,1),(highest,1)]. If specified, weights (still with uniform weight distribution)
will be added every weight_interval. Use this if you intend to modify the weights in any complex
way after initialization.

Parameters

• lowest (float or int) –

• highest (float or int) –

• weight_interval (int) –

Returns SoftFloat – A newly constructed instance.

weights
list – the list of weights where each weight is a tuple of form (int or float,int or float) cor-
responding to (outcome,strength). These weights represent the stochastic value of this SoftFloat.

get()
Get a float value in the probability space of the object.

Returns float – A value between the lowest and highest outcomes in self.weights

class blur.soft.SoftInt(weights)
A stochastic int value defined by a list of weights.

Has the exact same functionality as SoftFloat, except that get() returns int values

3.2. soft 13

blur Documentation, Release 0.4

Parameters weights (list) – the list of weights where each weight is a tuple of form (int
or float,int or float) corresponding to (outcome,strength). These weights
represent the stochastic value of this SoftFloat.

get()
Get an int value in the probability space of the object.

Returns: int

bounded_uniform(lowest, highest, weight_interval=None)
Initialize with a uniform distribution between two values.

If no weight_interval is passed, this weight distribution will just consist of
[(lowest,1),(highest,1)]. If specified, weights (still with uniform weight distribution)
will be added every weight_interval. Use this if you intend to modify the weights in any complex
way after initialization.

Parameters

• lowest (float or int) –

• highest (float or int) –

• weight_interval (int) –

Returns SoftFloat – A newly constructed instance.

weights
list – the list of weights where each weight is a tuple of form (int or float,int or float) cor-
responding to (outcome,strength). These weights represent the stochastic value of this SoftFloat.

class blur.soft.SoftColor(red, green, blue)
An RGB color whose individual channels can be SoftInt objects.

SoftColor.get() returns an (r,g,b) tuple o integers. To get a hexadecimal color value, use
get_as_hex().

>>> color = SoftColor(234, # static red
... 124, # static green
... SoftInt([(0, 10), (40, 20)])) # soft blue
>>> rgb = color.get()
>>> rgb
(234, 124, 32)
Conveniently convert the value to hex
>>> SoftColor.rgb_to_hex(rgb)
'#EA7C20'
Generate a new value directly as hex
>>> some_soft_color.get_as_hex()
'#EA7C20'

Parameters

• red (int or SoftInt or tuple(args for SoftInt) –

• green (int or SoftInt or tuple(args for SoftInt) –

• blue (int or SoftInt or tuple(args for SoftInt) –

Raises TypeError – if invalid types are passed in args

14 Chapter 3. API documentation

blur Documentation, Release 0.4

Notes

When initializing the soft color channels using the convenience option to pass a tuple of args for for
SoftInt.__init__(), keep in mind that when creating 1-length tuples in Python you need to add a comma
after the first element, or Python will ignore the parentheses.

color = SoftColor(([(0, 1), (255, 10)],),
([(0, 1), (255, 10)],),
([(0, 1), (255, 10)],))

red
SoftInt or int – The red channel of the RGB color

green
SoftInt or int – The green channel of the RGB color

blue
SoftInt or int – The blue channel of the RGB color

classmethod rgb_to_hex(color)
Convert an (r,g,b) color tuple to a hexadecimal string.

Alphabetical characters in the output will be capitalized.

Parameters color (tuple) – An rgb color tuple of form: (int, int, int)

Returns: string

Example

>>> SoftColor.rgb_to_hex((0, 0, 0))
'#000000'
>>> SoftColor.rgb_to_hex((255, 255, 255))
'#FFFFFF'

get()
Get an rgb color tuple according to the probability distribution.

Returns tuple (int, int, int) – A (red,green,blue) tuple.

Example

>>> color = SoftColor(([(0, 1), (255, 10)],),
... ([(0, 1), (255, 10)],),
... ([(0, 1), (255, 10)],))
>>> color.get()
(234, 201, 243)

get_as_hex()
Get a hexademical color according to the probability distribution.

Equivalent to SoftColor.rgb_to_hex(self.get())

Returns str – A hexademical color string

3.2. soft 15

blur Documentation, Release 0.4

Example

>>> color = SoftColor(([(0, 1), (255, 10)],),
... ([(0, 1), (255, 10)],),
... ([(0, 1), (255, 10)],))
>>> color.get_as_hex()
'#C8EABB'

3.3 markov

A subpackage containing utilities for building Markov graphs.

Contents:

3.3.1 graph

A module containing a model Markov graph.

>>> from blur.markov.node import Node
>>> node_1 = Node('One')
>>> node_2 = Node('Two')
>>> node_1.add_link(node_1, 5)
>>> node_1.add_link(node_2, 2)
>>> node_2.add_link(node_1, 1)
>>> graph = Graph([node_1, node_2])
>>> [graph.pick().get_value() for i in range(10)]
['One', 'One', 'One', 'One', 'One', 'One', 'Two', 'One', 'One', 'One']

class blur.markov.graph.Graph(node_list=None)
A Markov graph with a number of handy utilities.

The graph consists of a list of Node ‘s and keeps track of which node was picked last.

Several utilities offer conveniences for managing the network.

Parameters node_list (list) – An optional list of nodes to populate the network with. To
populate the network after initialization, use the Graph.add_nodes() method.

Warning: Nodes are not copied when placed into the graph: the passed nodes are used in the ob-
ject. Side effects may occur if node-altering methods are called, such as Graph.apply_noise() or
Graph.feather_links(). Handle with care if using the same Node in multiple contexts.

merge_nodes(keep_node, kill_node)
Merge two nodes in the graph.

Takes two nodes and merges them together, merging their links by combining the two link lists and sum-
ming the weights of links which point to the same node.

All links in the graph pointing to kill_node will be merged into keep_node.

Links belonging to kill_node which point to targets not in self.node_list will not be merged
into keep_node

Parameters

16 Chapter 3. API documentation

blur Documentation, Release 0.4

• keep_node (Node) – node to be kept

• kill_node (Node) – node to be deleted

Returns: None

Example

>>> from blur.markov.node import Node
>>> node_1 = Node('One')
>>> node_2 = Node('Two')
>>> node_3 = Node('Three')
>>> node_1.add_link(node_3, 7)
>>> node_2.add_link(node_1, 1)
>>> node_2.add_link(node_2, 3)
>>> node_3.add_link(node_2, 5)
>>> graph = Graph([node_1, node_2, node_3])
>>> print([node.value for node in graph.node_list])
['One', 'Two', 'Three']
>>> graph.merge_nodes(node_2, node_3)
>>> print([node.value for node in graph.node_list])
['One', 'Two']
>>> for link in graph.node_list[1].link_list:
... print('{} {}'.format(link.target.value, link.weight))
One 1
Two 8

add_nodes(nodes)
Add a given node or list of nodes to self.node_list.

Parameters node (Node or list[Node]) – the node or list of nodes to add to the graph

Returns: None

Examples:

Adding one node:

>>> from blur.markov.node import Node
>>> graph = Graph()
>>> node_1 = Node('One')
>>> graph.add_nodes(node_1)
>>> print([node.value for node in graph.node_list])
['One']

Adding multiple nodes at a time in a list:

>>> from blur.markov.node import Node
>>> graph = Graph()
>>> node_1 = Node('One')
>>> node_2 = Node('Two')
>>> graph.add_nodes([node_1, node_2])
>>> print([node.value for node in graph.node_list])
['One', 'Two']

feather_links(factor=0.01, include_self=False)
Feather the links of connected nodes.

3.3. markov 17

blur Documentation, Release 0.4

Go through every node in the network and make it inherit the links of the other nodes it is connected
to. Because the link weight sum for any given node can be very different within a graph, the weights of
inherited links are made proportional to the sum weight of the parent nodes.

Parameters

• factor (float) – multiplier of neighbor links

• include_self (bool) – whether nodes can inherit links pointing to themselves

Returns: None

Example

>>> from blur.markov.node import Node
>>> node_1 = Node('One')
>>> node_2 = Node('Two')
>>> node_1.add_link(node_2, 1)
>>> node_2.add_link(node_1, 1)
>>> graph = Graph([node_1, node_2])
>>> for link in graph.node_list[0].link_list:
... print('{} {}'.format(link.target.value, link.weight))
Two 1
>>> graph.feather_links(include_self=True)
>>> for link in graph.node_list[0].link_list:
... print('{} {}'.format(link.target.value, link.weight))
Two 1
One 0.01

apply_noise(noise_weights=None, uniform_amount=0.1)
Add noise to every link in the network.

Can use either a uniform_amount or a noise_weight weight profile. If noise_weight is set,
uniform_amount will be ignored.

Parameters

• noise_weights (list) – a list of weight tuples of form (float,float) corre-
sponding to (amount,weight) describing the noise to be added to each link in the
graph

• uniform_amount (float) – the maximum amount of uniform noise to be applied if
noise_weights is not set

Returns: None

Example

>>> from blur.markov.node import Node
>>> node_1 = Node('One')
>>> node_2 = Node('Two')
>>> node_1.add_link(node_1, 3)
>>> node_1.add_link(node_2, 5)
>>> node_2.add_link(node_1, 1)
>>> graph = Graph([node_1, node_2])
>>> for link in graph.node_list[0].link_list:
... print('{} {}'.format(link.target.value, link.weight))
One 3

18 Chapter 3. API documentation

blur Documentation, Release 0.4

Two 5
>>> graph.apply_noise()
>>> for link in graph.node_list[0].link_list:
... print('{} {}'.format(
... link.target.value, link.weight))
One 3.154
Two 5.321

find_node_by_value(value)
Find and return a node in self.node_list with the value value.

If multiple nodes exist with the value value, return the first one found.

If no such node exists, this returns None.

Parameters value (Any) – The value of the node to find

Returns

Node – A node with value value if it was found

None: If no node exists with value value

Example

>>> from blur.markov.node import Node
>>> node_1 = Node('One')
>>> graph = Graph([node_1])
>>> found_node = graph.find_node_by_value('One')
>>> found_node == node_1
True

remove_node(node)
Remove a node from self.node_list and links pointing to it.

If node is not in the graph, do nothing.

Parameters node (Node) – The node to be removed

Returns: None

Example

>>> from blur.markov.node import Node
>>> node_1 = Node('One')
>>> graph = Graph([node_1])
>>> graph.remove_node(node_1)
>>> len(graph.node_list)
0

remove_node_by_value(value)
Delete all nodes in self.node_list with the value value.

Parameters value (Any) – The value to find and delete owners of.

Returns: None

3.3. markov 19

blur Documentation, Release 0.4

Example

>>> from blur.markov.node import Node
>>> node_1 = Node('One')
>>> graph = Graph([node_1])
>>> graph.remove_node_by_value('One')
>>> len(graph.node_list)
0

has_node_with_value(value)
Whether any node in self.node_list has the value value.

Parameters value (Any) – The value to find in self.node_list

Returns: bool

Example

>>> from blur.markov.node import Node
>>> node_1 = Node('One')
>>> graph = Graph([node_1])
>>> graph.has_node_with_value('One')
True
>>> graph.has_node_with_value('Foo')
False

pick(starting_node=None)
Pick a node on the graph based on the links in a starting node.

Additionally, set self.current_node to the newly picked node.

•if starting_node is specified, start from there

•if starting_node is None, start from self.current_node

•if starting_node is None and self.current_node is None, pick a uniformally random
node in self.node_list

Parameters starting_node (Node) – Node to pick from.

Returns: Node

Example

>>> from blur.markov.node import Node
>>> node_1 = Node('One')
>>> node_2 = Node('Two')
>>> node_1.add_link(node_1, 5)
>>> node_1.add_link(node_2, 2)
>>> node_2.add_link(node_1, 1)
>>> graph = Graph([node_1, node_2])
>>> [graph.pick().get_value() for i in range(5)]
['One', 'One', 'Two', 'One', 'One']

20 Chapter 3. API documentation

blur Documentation, Release 0.4

classmethod from_string(source, distance_weights=None, merge_same_words=False,
group_marker_opening=’<<’, group_marker_closing=’>>’)

Read a string and derive of Graph from it.

Words and punctuation marks are made into nodes.

Punctuation marks are split into separate nodes unless they fall between other non-punctuation marks.
'hello,world' is split into 'hello', ',', and 'world', while 'who's there?' is split into
"who's", 'there', and '?'.

To group arbitrary characters together into a single node (e.g. to make 'hello,world!'), surround the
text in question with group_marker_opening and group_marker_closing. With the default
value, this would look like '<<hello,world!>>'. It is recommended that the group markers not
appear anywhere in the source text where they aren’t meant to act as such to prevent unexpected behavior.

The exact regex for extracting nodes is defined by:

expression = r'{0}(.+){1}|([^\w\s]+)\B|([\S]+)'.format(
''.join('\' + c for c in group_marker_opening),
''.join('\' + c for c in group_marker_closing)

)

Parameters

• source (str) – the string to derive the graph from

• distance_weights (dict) – dict of relative indices corresponding with word
weights. For example, if a dict entry is 1: 1000 this means that every word is linked
to the word which follows it with a weight of 1000. -4: 350 would mean that every
word is linked to the 4th word behind it with a weight of 350. A key of 0 refers to the
weight words get pointing to themselves. Keys pointing beyond the edge of the word list
will wrap around the list.

The default value for distance_weights is {1: 1}. This means that each word
gets equal weight to whatever word follows it. Consequently, if this default value is used
and merge_same_words is False, the resulting graph behavior will simply move
linearly through the source, wrapping at the end to the beginning.

• merge_same_words (bool) – if nodes which have the same value should be merged
or not.

• group_marker_opening (str) – The string used to mark the beginning of word
groups.

• group_marker_closing (str) – The string used to mark the end of word groups.
It is strongly recommended that this be different than group_marker_opening to
prevent unexpected behavior with the regex pattern.

Returns: Graph

Example

>>> graph = Graph.from_string('i have nothing to say and '
... 'i am saying it and that is poetry.')
>>> ' '.join(graph.pick().value for i in range(8))
'using chance algorithmic in algorithmic art easier blur'

3.3. markov 21

blur Documentation, Release 0.4

classmethod from_file(source, distance_weights=None, merge_same_words=False,
group_marker_opening=’<<’, group_marker_closing=’>>’)

Read a string from a file and derive a Graph from it.

This is a convenience function for opening a file and passing its contents to Graph.from_string()
(see that for more detail)

Parameters

• source (str) – the file to read and derive the graph from

• distance_weights (dict) – dict of relative indices corresponding with word
weights. See Graph.from_string for more detail.

• merge_same_words (bool) – whether nodes which have the same value should be
merged or not.

• group_marker_opening (str) – The string used to mark the beginning of word
groups.

• group_marker_closing (str) – The string used to mark the end of word groups.

Returns: Graph

Example

>>> graph = Graph.from_file('cage.txt')
>>> ' '.join(graph.pick().value for i in range(8))
'poetry i have nothing to say and i'

3.3.2 node

Node and Link classes for use in markov graphs

Besides initializing Node ‘s, you will rarely need to directly interact with these objects, as Graph provides much
easier and more powerful interactions.

class blur.markov.node.Link(target, weight)
A one-way link pointing to a Node with a weight.

For use in conjunction with the Node and Graph classes. You will rarely need to deal with
Link ‘s directly. The best way to create a Link from one Node to another is by calling
some_node.add_link(another_node,5) instead.

Parameters

• target (Node) – The Node this Link will point to

• weight (float or int) – The numerical weight for this Link

class blur.markov.node.Node(value=None, self_destruct=False)
A node to be used in a Markov graph.

Parameters

• value (Any) – Value of the node

• self_destruct (bool) – whether this note deletes itself after being picked by a Graph

22 Chapter 3. API documentation

blur Documentation, Release 0.4

merge_links_from(other_node, merge_same_value_targets=False)
Merge links from another node with self.link_list.

Copy links from another node, merging when copied links point to a node which this already links to.

Parameters

• other_node (Node) – The node to merge links from

• merge_same_value_targets (bool) – Whether or not to merge links whose tar-
gets have the same value (but are not necessarily the same Node). If False, links will
only be merged when link_in_other.target == link_in_self.target.
If True, links will be merged when link_in_other.target.value ==
link_in_self.target.value

Returns: None

Example

>>> node_1 = Node('One')
>>> node_2 = Node('Two')
>>> node_1.add_link(node_1, 1)
>>> node_1.add_link(node_2, 3)
>>> node_2.add_link(node_1, 4)
>>> node_1.merge_links_from(node_2)
>>> print(node_1)
node.Node instance with value One with 2 links:

0: 5 --> One
1: 3 --> Two

find_link(target_node)
Find the link that points to target_node if it exists.

If no link in self points to target_node, return None

Parameters target_node (Node) – The node to look for in self.link_list

Returns

Link – An existing link pointing to target_node if found

None: If no such link exists

Example

>>> node_1 = Node('One')
>>> node_2 = Node('Two')
>>> node_1.add_link(node_2, 1)
>>> link_1 = node_1.link_list[0]
>>> found_link = node_1.find_link(node_2)
>>> found_link == link_1
True

add_link(targets, weight)
Add link(s) pointing to targets.

If a link already exists pointing to a target, just add weight to that link’s weight

Parameters

3.3. markov 23

blur Documentation, Release 0.4

• targets (Node or list[Node]) – node or nodes to link to

• weight (int or float) – weight for the new link(s)

Returns: None

Example

>>> node_1 = Node('One')
>>> node_2 = Node('Two')
>>> node_1.add_link(node_2, 1)
>>> new_link = node_1.link_list[0]
>>> print(new_link)
node.Link instance pointing to node with value "Two" with weight 1

add_link_to_self(source, weight)
Create and add a Link from a source node to self.

Parameters

• source (Node) – The node that will own the new Link pointing to self

• weight (int or float) – The weight of the newly created Link

Returns: None

Example

>>> node_1 = Node('One')
>>> node_2 = Node('Two')
>>> node_1.add_link_to_self(node_2, 5)
>>> new_link = node_2.link_list[0]
>>> print('{} {}'.format(new_link.target.value, new_link.weight))
One 5
>>> print(new_link)
node.Link instance pointing to node with value "One" with weight 5

add_reciprocal_link(target, weight)
Add links pointing in either direction between self and target.

This creates a Link from self to target and a Link from target to self of equal weight. If
target is a list of Node ‘s, repeat this for each one.

Parameters

• target (Node or list[Node]) –

• weight (int or float) –

Returns: None

Example

>>> node_1 = Node('One')
>>> node_2 = Node('Two')
>>> node_1.add_reciprocal_link(node_2, 5)
>>> new_link_1 = node_1.link_list[0]

24 Chapter 3. API documentation

blur Documentation, Release 0.4

>>> new_link_2 = node_2.link_list[0]
>>> print(new_link_1)
node.Link instance pointing to node with value "Two" with weight 5
>>> print(new_link_2)
node.Link instance pointing to node with value "One" with weight 5

remove_links_to_self()
Remove any link in self.link_list whose target is self.

Returns: None

Example

>>> node_1 = Node('One')
>>> node_1.add_link(node_1, 5)
>>> node_1.remove_links_to_self()
>>> len(node_1.link_list)
0

get_value()
Get the value of this Node.

For this class, this simply returns self.value, but for subclasses with more complex behavior, this
could be more powerful. For example, a Node might have a value which is a SoftColor, in which case
this method could return a SoftColor.get() value.

Returns: Any

Example

>>> node_1 = Node('One')
>>> node_1.get_value()
'One'

3.4 iching

A simple model I Ching.

All data and probabilities taken from Wikipedia at:

• https://en.wikipedia.org/wiki/I_Ching_divination and

• https://en.wikipedia.org/wiki/List_of_hexagrams_of_the_I_Ching

blur.iching.get_hexagram(method=’THREE COIN’)
Return one or two hexagrams using any of a variety of divination methods.

The NAIVE method simply returns a uniformally random int between 1 and 64.

All other methods return a 2-tuple where the first value represents the starting hexagram and the second repre-
sents the ‘moving to’ hexagram.

To find the name and unicode glyph for a found hexagram, look it up in the module-level hexagrams dict.

3.4. iching 25

https://en.wikipedia.org/wiki/I_Ching_divination
https://en.wikipedia.org/wiki/List_of_hexagrams_of_the_I_Ching

blur Documentation, Release 0.4

Parameters method (str) – 'THREE COIN', 'YARROW', or 'NAIVE', the divination method
model to use. Note that the three coin and yarrow methods are not actually literally simulated,
but rather statistical models reflecting the methods are passed to blur.rand functions to accurately
approximate them.

Returns

int – If method == 'NAIVE', the int key of the found hexagram. Otherwise a tuple will
be returned.

tuple: A 2-tuple of form (int,int) where the first value is key of the starting hexagram and
the second is that of the ‘moving-to’ hexagram.

Raises: ValueError if method is invalid

Examples:

The function being used alone:

>>> get_hexagram(method='THREE COIN')
Might be...
(55, 2)
>>> get_hexagram(method='YARROW')
Might be...
(41, 27)
>>> get_hexagram(method='NAIVE')
Might be...
26

Usage in combination with hexagram lookup:

>>> grams = get_hexagram()
>>> grams
(47, 42)
unpack hexagrams for convenient reference
>>> initial, moving_to = grams
>>> hexagrams[initial]
('', '', 'Confining')
>>> hexagrams[moving_to]
('', '', 'Augmenting')
>>> print('{} moving to {}'.format(
... hexagrams[initial][2],
... hexagrams[moving_to][2])
...)
Confining moving to Augmenting

blur.iching.hexagrams(dict)
A dict of the brief information on the 64 hexagrams in the form

{number: (hexagram_symbol, chinese_character, english_translation)}

For example,

hexagrams = {
1: ('', '', 'Force'),
2: ('', '', 'Field'),
3: ('', '', 'Sprouting'),
4: ('', '', 'Enveloping'),
.
.

26 Chapter 3. API documentation

blur Documentation, Release 0.4

.
64: ('', '', 'Not Yet Fording')

}

3.4. iching 27

blur Documentation, Release 0.4

28 Chapter 3. API documentation

CHAPTER 4

Indices and tables

• genindex

• modindex

• search

29

blur Documentation, Release 0.4

30 Chapter 4. Indices and tables

Python Module Index

b
blur.iching, 25
blur.markov.graph, 16
blur.markov.node, 22
blur.rand, 7
blur.soft, 11

31

blur Documentation, Release 0.4

32 Python Module Index

Index

A
add_link() (blur.markov.node.Node method), 23
add_link_to_self() (blur.markov.node.Node method), 24
add_nodes() (blur.markov.graph.Graph method), 17
add_reciprocal_link() (blur.markov.node.Node method),

24
apply_noise() (blur.markov.graph.Graph method), 18

B
blue (blur.soft.SoftColor attribute), 15
blur.iching (module), 25
blur.markov.graph (module), 16
blur.markov.node (module), 22
blur.rand (module), 7
blur.soft (module), 11
bound_weights() (in module blur.rand), 7
bounded_uniform() (blur.soft.SoftFloat class method), 13
bounded_uniform() (blur.soft.SoftInt method), 14

F
feather_links() (blur.markov.graph.Graph method), 17
find_link() (blur.markov.node.Node method), 23
find_node_by_value() (blur.markov.graph.Graph

method), 19
from_file() (blur.markov.graph.Graph class method), 21
from_string() (blur.markov.graph.Graph class method),

20

G
get() (blur.soft.SoftBool method), 13
get() (blur.soft.SoftColor method), 15
get() (blur.soft.SoftFloat method), 13
get() (blur.soft.SoftInt method), 14
get() (blur.soft.SoftObject method), 12
get() (blur.soft.SoftOptions method), 13
get_as_hex() (blur.soft.SoftColor method), 15
get_hexagram() (in module blur.iching), 25
get_value() (blur.markov.node.Node method), 25
Graph (class in blur.markov.graph), 16
green (blur.soft.SoftColor attribute), 15

H
has_node_with_value() (blur.markov.graph.Graph

method), 20
hexagrams (in module blur.iching), 26

L
Link (class in blur.markov.node), 22

M
merge_links_from() (blur.markov.node.Node method), 22
merge_nodes() (blur.markov.graph.Graph method), 16

N
Node (class in blur.markov.node), 22
normal_distribution() (in module blur.rand), 7

O
options (blur.soft.SoftOptions attribute), 12

P
percent_possible() (in module blur.rand), 8
pick() (blur.markov.graph.Graph method), 20
pos_or_neg() (in module blur.rand), 9
pos_or_neg_1() (in module blur.rand), 9
prob_bool() (in module blur.rand), 8
prob_true (blur.soft.SoftBool attribute), 13
ProbabilityUndefinedError, 7

R
red (blur.soft.SoftColor attribute), 15
remove_links_to_self() (blur.markov.node.Node method),

25
remove_node() (blur.markov.graph.Graph method), 19
remove_node_by_value() (blur.markov.graph.Graph

method), 19
rgb_to_hex() (blur.soft.SoftColor class method), 15

S
SoftBool (class in blur.soft), 13

33

blur Documentation, Release 0.4

SoftColor (class in blur.soft), 14
SoftFloat (class in blur.soft), 13
SoftInt (class in blur.soft), 13
SoftObject (class in blur.soft), 11
SoftOptions (class in blur.soft), 12

W
weighted_choice() (in module blur.rand), 10
weighted_order() (in module blur.rand), 11
weighted_rand() (in module blur.rand), 9
weights (blur.soft.SoftFloat attribute), 13
weights (blur.soft.SoftInt attribute), 14
with_random_weights() (blur.soft.SoftOptions class

method), 12
with_uniform_weights() (blur.soft.SoftOptions class

method), 12

34 Index

	Introduction
	Installation
	API documentation
	rand
	soft
	markov
	iching

	Indices and tables
	Python Module Index

