

Blue Dot

[image: Latest Version] [image: Docs]

 Getting Started

Getting Started

In order to use Blue Dot you will need:

	A Raspberry Pi

	with built-in Bluetooth (such as the Raspberry Pi 3, 4 or Zero W)

	or a USB Bluetooth dongle

	An Android phone or 2nd Raspberry Pi for the remote

	An Internet connection (for the install)

Installation

These instructions assume your Raspberry Pi is running the latest version of
Raspbian.

Android App

If you’re using an Android phone, the Blue Dot app can be installed from the
Google Play Store.

Python Library

Open a terminal (click Menu ‣ Accessories ‣ Terminal),
then enter:

sudo pip3 install bluedot

To upgrade to the latest version:

sudo pip3 install bluedot --upgrade

Pairing

In order to use Blue Dot you will need to pair the Raspberry Pi to the remote
Android phone or 2nd Raspberry Pi.

Code

	Start up Python 3 (e.g. Menu ‣ Programming ‣ Thonny Python
IDE)

	Create a new program

	Enter the following code:

from bluedot import BlueDot
bd = BlueDot()
bd.wait_for_press()
print("You pressed the blue dot!")

	Save your program as mydot.py

	Run the program:

Server started ##:##:##:##:##:##
Waiting for connection

Warning

Do not save your program as bluedot.py as Python will try and
import your program rather than the bluedot module and you will get the
error ImportError: cannot import name BlueDot.

Connecting

Start-up the Blue Dot app on your Android phone or run the
Blue Dot Python App on your 2nd Raspberry Pi:

	Select your Raspberry Pi from the list

Note

Your python program will need to be running and Waiting for connection
before the BlueDot app will be able to connect to your Raspberry Pi.

	Press the Blue Dot

Where next

Check out the Recipes and the Blue Dot API documentation for more ideas
on using Blue Dot.

 Pair a Raspberry Pi and Android phone

Pair a Raspberry Pi and Android phone

Using the Desktop

On your Android phone:

	Open Settings

	Select Bluetooth and make your phone “discoverable”

On your Raspberry Pi:

	Click Bluetooth ‣ Turn On Bluetooth (if it’s off)

	Click Bluetooth ‣ Make Discoverable

	Click Bluetooth ‣ Add Device

	Your phone will appear in the list, select it and click Pair

On your Android phone and Raspberry Pi.

	Confirm the pairing code matches

	Click OK

Note

You may receive errors relating to services not being able available or being unable to connect: these can be ignored, your phone and Raspberry Pi are now paired.

Using the Command Line

On your Android phone:

	Open Settings

	Select Bluetooth and make your phone “discoverable”

On your Raspberry Pi:

	Type bluetoothctl and press Enter to open Bluetooth control

	At the [bluetooth]# prompt enter the following commands:

discoverable on
pairable on
agent on
default-agent
scan on

	Wait for a message to appear showing the Android phone has been found:

[NEW] Device 12:23:34:45:56:67 devicename

	Type pair with the mac address of your Android phone:

pair 12:23:34:45:56:67

On your Android phone and Raspberry Pi.

	Confirm the passcode.

	Type quit and press Enter to return to the command line

 Pair 2 Raspberry Pis

Pair 2 Raspberry Pis

The instructions below describe pairing a couple of Raspberry Pis which either
have built-in Bluetooth (the Pi 3B or the Pi Zero W) or a USB Bluetooth dongle.

Using the Desktop

On the first Raspberry Pi:

	Click Bluetooth ‣ Turn On Bluetooth (if it’s off)

	Click Bluetooth ‣ Make Discoverable

On the second Raspberry Pi:

	Click Bluetooth ‣ Turn On Bluetooth (if it’s off)

	Click Bluetooth ‣ Make Discoverable

	Click Bluetooth ‣ Add Device

	The first Pi will appear in the list: select it and click the Pair button

On the first Raspberry Pi again:

	Accept the pairing request

Note

You may receive errors relating to services not being able available or being unable to connect: these can be ignored.

Using the Command Line

On the first Raspberry Pi:

	Enter bluetoothctl to open Bluetooth control

	At the [bluetooth]# prompt enter the following commands:

discoverable on
pairable on
agent on
default-agent

On the second Raspberry Pi:

	Enter bluetoothctl to open Bluetooth control

	At the [bluetooth]# prompt enter the following commands:

discoverable on
pairable on
agent on
default-agent
scan on

	Wait for a message to appear showing the first Pi has been found:

[NEW] Device 12:23:34:45:56:67 devicename

	Type pair with the mac address of the first Pi:

pair 12:23:34:45:56:67

On both Raspberry Pi’s:

	Confirm the passcode.

	Type quit and press Enter to return to the command line

 Recipes

Recipes

The recipes provide examples of how you can use Blue Dot. Don’t be restricted
by these ideas and be sure to have a look at the Blue Dot API as there is more
to be discovered.

Button

The simplest way to use the Blue Dot is as a wireless button.

Hello World

Let’s say “Hello World” by creating the BlueDot object then waiting
for the Blue Dot app to connect and the button be pressed:

from bluedot import BlueDot
bd = BlueDot()
bd.wait_for_press()
print("Hello World")

Alternatively you can also use when_pressed to call a
function:

from bluedot import BlueDot
from signal import pause

def say_hello():
 print("Hello World")

bd = BlueDot()
bd.when_pressed = say_hello

pause()

wait_for_release and when_released also allow
you to interact when the button is released:

from bluedot import BlueDot
from signal import pause

def say_hello():
 print("Hello World")

def say_goodbye():
 print("goodbye")

bd = BlueDot()
bd.when_pressed = say_hello
bd.when_released = say_goodbye

pause()

Double presses can also be used with wait_for_double_press and
when_double_pressed:

from bluedot import BlueDot
from signal import pause

def shout_hello():
 print("HELLO")

bd = BlueDot()
bd.when_double_pressed = shout_hello

pause()

Flash an LED

Using Blue Dot in combination with gpiozero you can interact with
electronic components, such as LEDs, connected to your Raspberry Pi.

When a button is pressed, the LED connected to GPIO 27 will turn on; when
released it will turn off:

import os
from bluedot import BlueDot
from gpiozero import LED

bd = BlueDot()
led = LED(27)

bd.wait_for_press()
led.on()

bd.wait_for_release()
led.off()

You could also use when_pressed and
when_released:

from bluedot import BlueDot
from gpiozero import LED
from signal import pause

bd = BlueDot()
led = LED(27)

bd.when_pressed = led.on
bd.when_released = led.off

pause()

Alternatively use source and
values:

from bluedot import BlueDot
from gpiozero import LED
from signal import pause

bd = BlueDot()
led = LED(27)

led.source = bd.values

pause()

Remote Camera

Using a Raspberry Pi camera module, picamera.PiCamera and
BlueDot, you can really easily create a remote camera:

from bluedot import BlueDot
from picamera import PiCamera
from signal import pause

bd = BlueDot()
cam = PiCamera()

def take_picture():
 cam.capture("pic.jpg")

bd.when_pressed = take_picture

pause()

Joystick

The Blue Dot can also be used as a joystick when the middle, top, bottom, left
or right areas of the dot are touched.

D-pad

Using the position the Blue Dot was pressed you can work out whether it was
pressed to go up, down, left, right like the D-pad on a joystick:

from bluedot import BlueDot
from signal import pause

def dpad(pos):
 if pos.top:
 print("up")
 elif pos.bottom:
 print("down")
 elif pos.left:
 print("left")
 elif pos.right:
 print("right")
 elif pos.middle:
 print("fire")

bd = BlueDot()
bd.when_pressed = dpad

pause()

At the moment the D-pad only registers when it is pressed. To get it work
when the position is moved you should add the following line above
pause():

bd.when_moved = dpad

Robot

These recipes assume your robot is constructed with a pair of H-bridges. The
forward and backward pins for the H-bridge of the left wheel are 17 and 18
respectively, and the forward and backward pins for H-bridge of the right wheel
are 22 and 23 respectively.

Using the Blue Dot and gpiozero.Robot, you can create a bluetooth
controlled robot which moves when the dot is pressed and stops when it is
released:

from bluedot import BlueDot
from gpiozero import Robot
from signal import pause

bd = BlueDot()
robot = Robot(left=(17, 18), right=(22, 23))

def move(pos):
 if pos.top:
 robot.forward()
 elif pos.bottom:
 robot.backward()
 elif pos.left:
 robot.left()
 elif pos.right:
 robot.right()

def stop():
 robot.stop()

bd.when_pressed = move
bd.when_moved = move
bd.when_released = stop

pause()

Variable Speed Robot

You can change the robot to use variable speeds, so the further towards the
edge you press the Blue Dot, the faster the robot will go.

The distance attribute returns how far from the centre
the Blue Dot was pressed, which can be passed to the robot’s functions to
change its speed:

from bluedot import BlueDot
from gpiozero import Robot
from signal import pause

bd = BlueDot()
robot = Robot(left=(lfpin, lbpin), right=(rfpin, rbpin))

def move(pos):
 if pos.top:
 robot.forward(pos.distance)
 elif pos.bottom:
 robot.backward(pos.distance)
 elif pos.left:
 robot.left(pos.distance)
 elif pos.right:
 robot.right(pos.distance)

def stop():
 robot.stop()

bd.when_pressed = move
bd.when_moved = move
bd.when_released = stop

pause()

Alternatively you can use a generator and yield (x, y) values to the
gpiozero.Robot.source property (courtesy of Ben Nuttall):

from gpiozero import Robot
from bluedot import BlueDot
from signal import pause

def pos_to_values(x, y):
 left = y if x > 0 else y + x
 right = y if x < 0 else y - x
 return (clamped(left), clamped(right))

def clamped(v):
 return max(-1, min(1, v))

def drive():
 while True:
 if bd.is_pressed:
 x, y = bd.position.x, bd.position.y
 yield pos_to_values(x, y)
 else:
 yield (0, 0)

robot = Robot(left=(lfpin, lbpin), right=(rfpin, rbpin))
bd = BlueDot()

robot.source = drive()

pause()

Appearance

The button doesn’t have to be blue or a dot, you can change how it looks, or make it completely invisible.

[image: Animation of blue dot app cycling through colors and changing to a square]

Colo(u)r

To change the color of the button use the color: property:

from bluedot import BlueDot
bd = BlueDot()
bd.color = "red"

A dictionary of available colors can be obtained from bluedot.COLORS.

The color can also be set using a hex value of #rrggbb or #rrggbbaa value:

bd.color = "#00ff00"

Or a tuple of 3 or 4 integers between 0 and 255 either (red, gree, blue) or (red, green, blue, alpha):

bd.color = (0, 255, 0)

Square

The button can also be made square using the square: property:

from bluedot import BlueDot
bd = BlueDot()
bd.square = True

Border

A border can also been added to the button by setting the border: property to True:

from bluedot import BlueDot
bd = BlueDot()
bd.border = True

(In)visible

The button can be hidden and shown using the visible: property:

from bluedot import BlueDot
bd = BlueDot()
bd.visible = False

Layout

You can have as many buttons as you want.

The Buttons need to be in a grid of columns and rows.

[image: Android blue dot app showing 10 buttons in a 2x5 grid]
By hiding specific buttons and being creative with the button’s appearance you can create very sophisticated layouts for your controllers using Blue Dot.

[image: Android blue dot app showing buttons layed out like a classic joypad]
The Blue Dot android app supports multi touch allowing you to use multiple buttons simultaneously

Note

Currently only the Android client app supports multi buttons.

Two Buttons

Create 2 buttons side by side, by setting the number of cols to 2:

[image: Android blue dot app showing 2 buttons side by side]
from bluedot import BlueDot
from signal import pause

def pressed(pos):
 print("button {}.{} pressed".format(pos.col, pos.row))

bd = BlueDot(cols=2)
bd.when_pressed = pressed

pause()

The buttons could be made verticle by setting the rows attribute:

bd = BlueDot(rows=2)

Each button can be set to call its own function by using the grid position:

from bluedot import BlueDot
from signal import pause

def pressed_1(pos):
 print("button 1 pressed")

def pressed_2(pos):
 print("button 2 pressed")

bd = BlueDot(cols=2, rows=1)

bd[0,0].when_pressed = pressed_1
bd[1,0].when_pressed = pressed_2

pause()

To create a gap in between the buttons you could create a row of 3 buttons and hide the middle button:

[image: Android blue dot app showing 2 buttons side by side with a gap in the middle]
from bluedot import BlueDot
from signal import pause

def pressed(pos):
 print("button {}.{} pressed".format(pos.col, pos.row))

bd = BlueDot(cols=3, rows=1)
bd[1,0].visible = False
bd.when_pressed = pressed

pause()

Many Buttons

Create a grid of buttons by setting the cols and rows e.g. 10 buttons in a 2x5 grid:

[image: Android blue dot app showing 10 buttons in a 2x5 grid]
from bluedot import BlueDot
from signal import pause

def pressed(pos):
 print("button {}.{} pressed".format(pos.col, pos.row))

bd = BlueDot(cols=2, rows=5)
bd.when_pressed = pressed

pause()

You could assign all the buttons random colors:

from bluedot import BlueDot, COLORS
from random import choice
from signal import pause

def pressed(pos):
 print("button {}.{} pressed".format(pos.col, pos.row))

bd = BlueDot(cols=2, rows=5)
bd.when_pressed = pressed

for button in bd.buttons:
 button.color = choice(list(COLORS.values()))

pause()

D-pad

Create a traditional d-pad layout by using a 3x3 grid and hide the buttons at the corners and in the middle:

[image: Android blue dot app showing 4 buttons arranged in a cross]
from bluedot import BlueDot
from signal import pause

def up():
 print("up")

def down():
 print("down")

def left():
 print("left")

def right():
 print("right")

bd = BlueDot(cols=3, rows=3)
bd.color = "gray"
bd.square = True

bd[0,0].visible = False
bd[2,0].visible = False
bd[0,2].visible = False
bd[2,2].visible = False
bd[1,1].visible = False

bd[1,0].when_pressed = up
bd[1,2].when_pressed = down
bd[0,1].when_pressed = left
bd[2,1].when_pressed = right

pause()

Add 2 buttons on the right to create a joypad:

[image: Android blue dot app showing buttons layed out like a classic joypad]
from bluedot import BlueDot
from signal import pause

def up():
 print("up")

def down():
 print("down")

def left():
 print("left")

def right():
 print("right")

bd = BlueDot(cols=3, rows=3)
bd.color = "gray"
bd.square = True

bd[0,0].visible = False
bd[2,0].visible = False
bd[0,2].visible = False
bd[2,2].visible = False
bd[1,1].visible = False

bd[1,0].when_pressed = up
bd[1,2].when_pressed = down
bd[0,1].when_pressed = left
bd[2,1].when_pressed = right

pause()

Slider

By holding down a button and moving the position you can use it as an
analogue slider.

Centre Out

Using the BlueDotPosition.distance property which is returned when the
position is moved you can create a slider which goes from the centre out in any
direction:

from bluedot import BlueDot
from signal import pause

def show_percentage(pos):
 percentage = round(pos.distance * 100, 2)
 print("{}%".format(percentage))

bd = BlueDot()
bd.when_moved = show_percentage

pause()

Left to Right

The BlueDotPosition.x property returns a value from -1 (far left) to 1
(far right). Using this value you can create a slider which goes horizontally
through the middle:

from bluedot import BlueDot
from signal import pause

def show_percentage(pos):
 horizontal = ((pos.x + 1) / 2)
 percentage = round(horizontal * 100, 2)
 print("{}%".format(percentage))

bd = BlueDot()
bd.when_moved = show_percentage

pause()

To make a vertical slider you could change the code above to use
BlueDotPosition.y instead.

Dimmer Switch

Using the gpiozero.PWMLED class and BlueDot as a vertical
slider you can create a wireless dimmer switch:

from bluedot import BlueDot
from gpiozero import PWMLED
from signal import pause

def set_brightness(pos):
 brightness = (pos.y + 1) / 2
 led.value = brightness

led = PWMLED(27)
bd = BlueDot()
bd.when_moved = set_brightness

pause()

Swiping

You can interact with the Blue Dot by swiping across it, like you would to move
between pages in a mobile app.

Single

Detecting a single swipe is easy using wait_for_swipe:

from bluedot import BlueDot
bd = BlueDot()
bd.wait_for_swipe()
print("Blue Dot swiped")

Alternatively you can also use when_swiped to call a
function:

from bluedot import BlueDot
from signal import pause

def swiped():
 print("Blue Dot swiped")

bd = BlueDot()
bd.when_swiped = swiped

pause()

Direction

You can tell what direction the Blue Dot is swiped by using the
BlueDotSwipe object passed to the function assigned to
when_swiped:

from bluedot import BlueDot
from signal import pause

def swiped(swipe):
 if swipe.up:
 print("up")
 elif swipe.down:
 print("down")
 elif swipe.left:
 print("left")
 elif swipe.right:
 print("right")

bd = BlueDot()
bd.when_swiped = swiped

pause()

Speed, Angle, and Distance

BlueDotSwipe returns more than just the direction. It also includes
the speed of the swipe (in Blue Dot radius per second), the angle, and the
distance between the start and end positions of the swipe:

from bluedot import BlueDot
from signal import pause

def swiped(swipe):
 print("Swiped")
 print("speed={}".format(swipe.speed))
 print("angle={}".format(swipe.angle))
 print("distance={}".format(swipe.distance))

bd = BlueDot()
bd.when_swiped = swiped

pause()

Rotating

You can use Blue Dot like a rotary encoder or “iPod classic click wheel” -
rotating around the outer edge of the Blue Dot will cause it to “tick”. The
Blue Dot is split into a number of virtual segments (the default is 8), when
the position moves from one segment to another, it ticks.

Counter

Using the when_rotated callback you can create a counter which
increments / decrements when the Blue Dot is rotated either clockwise or
anti-clockwise. A BlueDotRotation object is passed to the callback.
Its value property will be -1 if rotated
anti-clockwise and 1 if rotated clockwise:

from bluedot import BlueDot
from signal import pause

count = 0

def rotated(rotation):
 global count
 count += rotation.value

 print("{} {} {}".format(count,
 rotation.clockwise,
 rotation.anti_clockwise))

bd = BlueDot()
bd.when_rotated = rotated

pause()

The rotation speed can be modified using the BlueDot.rotation_segments
property which changes the number of segments the Blue Dot is split into:

bd.rotation_segments = 16

Multiple Blue Dot Apps

You can connect multiple Blue Dot clients (apps) to a single server (python
program) by using different Bluetooth ports for each app.

Create multiple BlueDot servers using specific ports:

from bluedot import BlueDot
from signal import pause

def bd1_pressed():
 print("BlueDot 1 pressed")

def bd2_pressed():
 print("BlueDot 2 pressed")

bd1 = BlueDot(port = 1)
bd2 = BlueDot(port = 2)

bd1.when_pressed = bd1_pressed
bd2.when_pressed = bd2_pressed

pause()

Change the BlueDot app to use the specific port by:

	Opening settings from the menu

	Turning Use default port off

	Selecting the specific Bluetooth port

[image: Android blue dot app showing the settings option on the menu]
[image: Android blue dot app showing the settings page and use default port turned on]
[image: Android blue dot app showing the settings page, use default port turned off and bluetooth port 1 selected]

Bluetooth

You can interact with the Bluetooth adapter using BlueDot.

Pairing

You can put your Raspberry Pi into pairing mode which will allow pairing from
other devices for 60 seconds:

from bluedot import BlueDot
from signal import pause

bd = BlueDot()
bd.allow_pairing()

pause()

Or connect up a physical button up to start the pairing (the button is assumed
to be wired to GPIO 27):

from bluedot import BlueDot
from gpiozero import Button
from signal import pause

bd = BlueDot()
button = Button(27)

button.when_pressed = bd.allow_pairing

pause()

Paired Devices

You can iterate over the devices that your Raspberry Pi is paired too:

from bluedot import BlueDot
bd = BlueDot()

devices = bd.paired_devices
for d in devices:
 device_address = d[0]
 device_name = d[1]

Testing

Blue Dot includes a MockBlueDot class to allow you to test and debug
your program without having to use Bluetooth or a Blue Dot client.

MockBlueDot inherits from BlueDot and is used in the same
way, but you have the option of launching a mock app which you can click with a
mouse or writing scripts to simulate the Blue Dot being used.

[image: Screenshot of the mock Blue Dot app]

Mock App

Launch the mock Blue Dot app to test by clicking the on-screen dot with the
mouse:

from bluedot import MockBlueDot
from signal import pause

def say_hello():
 print("Hello World")

bd = MockBlueDot()
bd.when_pressed = say_hello

bd.launch_mock_app()
pause()

Scripted Tests

Tests can also be scripted using MockBlueDot:

from bluedot import MockBlueDot

def say_hello():
 print("Hello World")

bd = MockBlueDot()
bd.when_pressed = say_hello

bd.mock_client_connected()
bd.mock_blue_dot_pressed(0,0)

 Blue Dot Android App

Blue Dot Android App

The Blue Dot app is available to download from the Google Play store.

Please leave a rating and review if you find Blue Dot useful :)

[image: Screenshot of Blue Dot app] [image: Screenshot of Blue Dot devices list screen]

Start

	Download the Blue Dot app from the Google Play store.

	If you havent already done so, pair your raspberry pi as described in the
Getting Started guide.

	Run the Blue Dot app

[image: Blue Dot icon]

	Select your Raspberry Pi from the paired devices list

[image: Screenshot of Blue Dot devices list screen]

	Press the Dot

[image: Screenshot of Blue Dot app]

 Blue Dot Python App

Blue Dot Python App

Blue Dot Python app allows you to use another Raspberry Pi (or linux based computer) as the Blue Dot remote.

[image: Screenshot of Blue Dot python app] [image: Screenshot of Blue Dot devices list]

Start

The app is included in the bluedot Python library:

	If you havent already done so, pair your raspberry pi and install the Python
library as described in the Getting Started guide

	Run the Blue Dot app:

bluedotapp

	Select your Raspberry Pi from the paired devices list

[image: Screenshot of Blue Dot devices list]

	Press the Dot

[image: Screenshot of Blue Dot python app]

Options

To get help with the Blue Dot app options:

bluedotapp --help

If you have more than 1 bluetooth device you can use --device to use a particular device:

bluedotapp --device hci1

You can specify the server to connect to at startup by using the --server option:

bluedotapp --server myraspberrypi

The screen size of the Blue Dot app can be changed using the width and height options and specifying the number of pixels:

bluedotapp --width 500 --height 500

The app can also be used full screen, if no width or height is given the screen will be sized to the current resolution of the screen:

bluedotapp --fullscreen

 Blue Dot API

Blue Dot API

BlueDot

	
class bluedot.BlueDot(device='hci0', port=1, auto_start_server=True, power_up_device=False, print_messages=True, cols=1, rows=1)

	Interacts with a Blue Dot client application, communicating when and where a
button has been pressed, released or held.

This class starts an instance of btcomm.BluetoothServer
which manages the connection with the Blue Dot client.

This class is intended for use with a Blue Dot client application.

The following example will print a message when the Blue Dot button is pressed:

from bluedot import BlueDot
bd = BlueDot()
bd.wait_for_press()
print("The button was pressed")

Multiple buttons can be created, by changing the number of columns and rows. Each button can be referenced using its [col, row]:

bd = BlueDot(cols=2, rows=2)
bd[0,0].wait_for_press()
print("Top left button pressed")
bd[1,1].wait_for_press()
print("Bottom right button pressed")

	Parameters

	
	device (str) – The Bluetooth device the server should use, the default is “hci0”, if
your device only has 1 Bluetooth adapter this shouldn’t need to be changed.

	port (int) – The Bluetooth port the server should use, the default is 1, and under
normal use this should never need to change.

	auto_start_server (bool) – If True (the default), the Bluetooth server will be automatically
started on initialisation; if False, the method start() will
need to be called before connections will be accepted.

	power_up_device (bool) – If True, the Bluetooth device will be powered up (if required) when the
server starts. The default is False.

Depending on how Bluetooth has been powered down, you may need to use rfkill
to unblock Bluetooth to give permission to bluez to power on Bluetooth:

sudo rfkill unblock bluetooth

	print_messages (bool) – If True (the default), server status messages will be printed stating
when the server has started and when clients connect / disconnect.

	cols (int) – The number of columns in the grid of buttons. Defaults to 1.

	rows (int) – The number of rows in the grid of buttons. Defaults to 1.

	
allow_pairing(timeout=60)

	Allow a Bluetooth device to pair with your Raspberry Pi by putting
the adapter into discoverable and pairable mode.

	Parameters

	timeout (int) – The time in seconds the adapter will remain pairable. If set to None
the device will be discoverable and pairable indefinetly.

	
resize(cols, rows)

	Resizes the grid of buttons.

	Parameters

	
	cols (int) – The number of columns in the grid of buttons.

	rows (int) – The number of rows in the grid of buttons.

Note

Existing buttons will retain their state (color, border, etc) when
resized. New buttons will be created with the default values set
by the BlueDot.

	
set_when_client_connects(callback, background=False)

	Sets the function which is called when a Blue Dot connects.

	Parameters

	
	callback (Callable) – The function to call, setting to None will stop the callback.

	background (bool) – If set to True the function will be run in a separate thread
and it will return immediately. The default is False.

	
set_when_client_disconnects(callback, background=False)

	Sets the function which is called when a Blue Dot disconnects.

	Parameters

	
	callback (Callable) – The function to call, setting to None will stop the callback.

	background (bool) – If set to True the function will be run in a separate thread
and it will return immediately. The default is False.

	
start()

	Start the btcomm.BluetoothServer if it is not already
running. By default the server is started at initialisation.

	
stop()

	Stop the Bluetooth server.

	
wait_for_connection(timeout=None)

	Waits until a Blue Dot client connects.
Returns True if a client connects.

	Parameters

	timeout (float) – Number of seconds to wait for a wait connections, if None (the default),
it will wait indefinetly for a connection from a Blue Dot client.

	
adapter

	The btcomm.BluetoothAdapter instance that is being used.

	
border

	When set to True adds a border to the dot. Default is False.

Note

If there are multiple buttons in the grid, the ‘default’ value
will be returned and when set all buttons will be updated.

	
buttons

	A list of BlueDotButton objects in the “grid”.

	
color

	Sets or returns the color of the button. Defaults to BLUE.

An instance of colors.Color is returned.

Value can be set as a colors.Color object, a hex color value
in the format #rrggbb or #rrggbbaa, a tuple of (red, green, blue)
or (red, green, blue, alpha) values between 0 & 255 or a text
description of the color, e.g. “red”.

A dictionary of available colors can be obtained from bluedot.COLORS.

Note

If there are multiple buttons in the grid, the ‘default’ value
will be returned and when set all buttons will be updated.

	
cols

	Sets or returns the number of columns in the grid of buttons.

	
device

	The Bluetooth device the server is using. This defaults to “hci0”.

	
double_press_time

	Sets or returns the time threshold in seconds for a double press. Defaults to 0.3.

Note

If there are multiple buttons in the grid, the ‘default’ value
will be returned and when set all buttons will be updated.

	
interaction

	Returns an instance of BlueDotInteraction representing the
current or last interaction with the Blue Dot.

Note

If the Blue Dot is released (and inactive), interaction
will return the interaction when it was released, until it is
pressed again. If the Blue Dot has never been pressed
interaction will return None.

If there are multiple buttons, the interaction will only be
returned for button [0,0]

Deprecated since version 2.0.0.

	
is_connected

	Returns True if a Blue Dot client is connected.

	
is_pressed

	Returns True if the button is pressed (or held).

Note

If there are multiple buttons, if any button is pressed, True
will be returned.

	
paired_devices

	Returns a sequence of devices paired with this adapter
[(mac_address, name), (mac_address, name), ...]:

bd = BlueDot()
devices = bd.paired_devices
for d in devices:
 device_address = d[0]
 device_name = d[1]

	
port

	The port the server is using. This defaults to 1.

	
print_messages

	When set to True messages relating to the status of the Bluetooth server
will be printed.

	
rotation_segments

	Sets or returns the number of virtual segments the button is split into for rotating.
Defaults to 8.

Note

If there are multiple buttons in the grid, the ‘default’ value
will be returned and when set all buttons will be updated.

	
rows

	Sets or returns the number of rows in the grid of buttons.

	
running

	Returns a True if the server is running.

	
server

	The btcomm.BluetoothServer instance that is being used to communicate
with clients.

	
square

	When set to True the ‘dot’ is made square. Default is False.

Note

If there are multiple buttons in the grid, the ‘default’ value
will be returned and when set all buttons will be updated.

	
visible

	When set to False the dot will be hidden. Default is True.

Note

Events (press, release, moved) are still sent from the dot
when it is not visible.

If there are multiple buttons in the grid, the ‘default’ value
will be returned and when set all buttons will be updated.

	
when_client_connects

	Sets or returns the function which is called when a Blue Dot
application connects.

The function will be run in the same thread and block, to run in a separate
thread use set_when_client_connects(function, background=True)

	
when_client_disconnects

	Sets or returns the function which is called when a Blue Dot disconnects.

The function will be run in the same thread and block, to run in a separate
thread use set_when_client_disconnects(function, background=True)

BlueDotButton

	
class bluedot.BlueDotButton(bd, col, row, color, square, border, visible)

	Represents a single button on the button client applications. It keeps
tracks of when and where the button has been pressed and processes any
events.

This class is intended for use via BlueDot and should not be
instantiated “manually”.

A button can be interacted with individually via BlueDot by
stating its position in the grid e.g.

from bluedot import BlueDot
bd = BlueDot()

first_button = bd[0,0].wait_for_press

first_button.wait_for_press()
print("The first button was pressed")

	Parameters

	
	bd (BlueDot) – The BlueDot object this button belongs too.

	col (int) – The column position for this button in the grid.

	col – The row position for this button in the grid.

	:param string color

	The color of the button.

Can be set as a colors.Color object, a hex color value
in the format #rrggbb or #rrggbbaa, a tuple of (red, green, blue)
or (red, green, blue, alpha) values between 0 & 255 or a text
description of the color, e.g. “red”.

A dictionary of available colors can be obtained from bluedot.COLORS.

	Parameters

	
	square (bool) – When set to True the button is made square.

	border (bool) – When set to True adds a border to the button.

	visible (bool) – When set to False the button will be hidden.

	
get_rotation()

	Returns an instance of BlueDotRotation if the last interaction
with the button was a rotation. Returns None if the button was not
rotated.

	
get_swipe()

	Returns an instance of BlueDotSwipe if the last interaction
with the button was a swipe. Returns None if the button was not
swiped.

	
is_double_press(position)

	Returns True if the position passed represents a double press.

i.e. The last interaction was the button was to release it, and
the time to press is less than the double_press_time.

	Parameters

	position (BlueDotPosition) – The BlueDotPosition where the Dot was pressed.

	
move(position)

	Processes any “released” events associated with this button.

	Parameters

	position (BlueDotPosition) – The BlueDotPosition where the Dot was pressed.

	
press(position)

	Processes any “pressed” events associated with this button.

	Parameters

	position (BlueDotPosition) – The BlueDotPosition where the dot was pressed.

	
release(position)

	Processes any “released” events associated with this button.

	Parameters

	position (BlueDotPosition) – The BlueDotPosition where the Dot was pressed.

	
border

	When set to True adds a border to the dot. Default is False.

	
color

	Sets or returns the color of the dot. Defaults to BLUE.

An instance of colors.Color is returned.

Value can be set as a colors.Color object, a hex color value
in the format #rrggbb or #rrggbbaa, a tuple of (red, green, blue)
or (red, green, blue, alpha) values between 0 & 255 or a text
description of the color, e.g. “red”.

A dictionary of available colors can be obtained from bluedot.COLORS.

	
interaction

	Returns an instance of BlueDotInteraction representing the
current or last interaction with the button.

Note

If the button is released (and inactive), interaction
will return the interaction when it was released, until it is
pressed again. If the button has never been pressed
interaction will return None.

	
modified

	Returns True if the button’s appearance has been modified [is
different] from the default.

	
square

	When set to True the ‘dot’ is made square. Default is False.

	
visible

	When set to False the dot will be hidden. Default is True.

Note

Events (press, release, moved) are still sent from the dot
when it is not visible.

BlueDotPosition

	
class bluedot.BlueDotPosition(col, row, x, y)

	Represents a position of where the blue dot is pressed, released or held.

	Parameters

	
	x (float) – The x position of the Blue Dot, 0 being centre, -1 being far left
and 1 being far right.

	y (float) – The y position of the Blue Dot, 0 being centre, -1 being at the
bottom and 1 being at the top.

	
angle

	The angle from centre of where the Blue Dot is pressed, held or released.
0 degrees is up, 0..180 degrees clockwise, -180..0 degrees anti-clockwise.

	
bottom

	Returns True if the Blue Dot is pressed, held or released at the bottom.

	
col

	The column.

	
distance

	The distance from centre of where the Blue Dot is pressed, held or released.
The radius of the Blue Dot is 1.

	
left

	Returns True if the Blue Dot is pressed, held or released on the left.

	
middle

	Returns True if the Blue Dot is pressed, held or released in the middle.

	
right

	Returns True if the Blue Dot is pressed, held or released on the right.

	
row

	The row.

	
time

	The time the blue dot was at this position.

Note

This is the time the message was received from the Blue Dot app,
not the time it was sent.

	
top

	Returns True if the Blue Dot is pressed, held or released at the top.

	
x

	The x position of the Blue Dot, 0 being centre, -1 being far
left and 1 being far right.

	
y

	The y position of the Blue Dot, 0 being centre, -1 being at
the bottom and 1 being at the top.

BlueDotInteraction

	
class bluedot.BlueDotInteraction(pressed_position)

	Represents an interaction with the Blue Dot, from when it was pressed to
when it was released.

A BlueDotInteraction can be active or inactive, i.e. it is active
because the Blue Dot has not been released, or inactive because the Blue
Dot was released and the interaction finished.

	Parameters

	pressed_position (BlueDotPosition) – The BlueDotPosition when the Blue Dot was pressed.

	
moved(moved_position)

	Adds an additional position to the interaction, called when the position
the Blue Dot is pressed moves.

	
released(released_position)

	Called when the Blue Dot is released and completes a Blue Dot interaction

	Parameters

	released_position (BlueDotPosition) – The BlueDotPosition when the Blue Dot was released.

	
active

	Returns True if the interaction is still active, i.e. the Blue Dot
hasnt been released.

	
current_position

	Returns the current position for the interaction.

If the interaction is inactive, it will return the position when the
Blue Dot was released.

	
distance

	Returns the total distance of the Blue Dot interaction

	
duration

	Returns the duration in seconds of the interaction, i.e. the amount time
between when the Blue Dot was pressed and now or when it was released.

	
positions

	A sequence of BlueDotPosition instances for all the positions
which make up this interaction.

The first position is where the Blue Dot was pressed, the last is where
the Blue Dot was released, all position in between are where the position
Blue Dot changed (i.e. moved) when it was held down.

	
pressed_position

	Returns the position when the Blue Dot was pressed i.e. where the
interaction started.

	
previous_position

	Returns the previous position for the interaction.

If the interaction contains only 1 position, None will be returned.

	
released_position

	Returns the position when the Blue Dot was released i.e. where the
interaction ended.

If the interaction is still active it returns None.

BlueDotSwipe

	
class bluedot.BlueDotSwipe(interaction)

	Represents a Blue Dot swipe interaction.

A BlueDotSwipe can be valid or invalid based on whether the Blue Dot
interaction was a swipe or not.

	Parameters

	interaction (BlueDotInteraction) – The BlueDotInteraction object to be used to determine whether the interaction
was a swipe.

	
angle

	Returns the angle of the swipe (i.e. the angle between the pressed
and released positions)

	
col

	The column.

	
direction

	Returns the direction (“up”, “down”, “left”, “right”) of the swipe.
If the swipe is not valid None is returned.

	
distance

	Returns the distance of the swipe (i.e. the distance between the pressed
and released positions)

	
down

	Returns True if the Blue Dot was swiped down.

	
interaction

	The BlueDotInteraction object relating to this swipe.

	
left

	Returns True if the Blue Dot was swiped left.

	
right

	Returns True if the Blue Dot was swiped right.

	
row

	The row.

	
speed

	Returns the speed of the swipe in Blue Dot radius / second.

	
up

	Returns True if the Blue Dot was swiped up.

	
valid

	Returns True if the Blue Dot interaction is a swipe.

BlueDotRotation

	
class bluedot.BlueDotRotation(interaction, no_of_segments)

	
	
anti_clockwise

	Returns True if the Blue Dot was rotated anti-clockwise.

	
clockwise

	Returns True if the Blue Dot was rotated clockwise.

	
col

	The column.

	
interaction

	The BlueDotInteraction object relating to this rotation.

	
row

	The row.

	
valid

	Returns True if the Blue Dot was rotated.

	
value

	Returns 0 if the Blue Dot wasn’t rotated, -1 if rotated anti-clockwise and 1 if rotated clockwise.

 Bluetooth Comm API

Bluetooth Comm API

Blue Dot also contains a useful btcomm API for sending and
receiving data over Bluetooth.

For normal use of Blue Dot, this API doesn’t need to be used, but its included
in the documentation for info and for those who might need a simple Bluetooth
communication library.

BluetoothServer

	
class bluedot.btcomm.BluetoothServer(data_received_callback, auto_start=True, device='hci0', port=1, encoding='utf-8', power_up_device=False, when_client_connects=None, when_client_disconnects=None)

	Creates a Bluetooth server which will allow connections and accept incoming
RFCOMM serial data.

When data is received by the server it is passed to a callback function
which must be specified at initiation.

The following example will create a Bluetooth server which will wait for a
connection and print any data it receives and send it back to the client:

from bluedot.btcomm import BluetoothServer
from signal import pause

def data_received(data):
 print(data)
 s.send(data)

s = BluetoothServer(data_received)
pause()

	Parameters

	
	data_received_callback – A function reference should be passed, this function will be called when
data is received by the server. The function should accept a single parameter
which when called will hold the data received. Set to None if received
data is not required.

	auto_start (bool) – If True (the default), the Bluetooth server will be automatically started
on initialisation, if False, the method start will need to be called
before connections will be accepted.

	device (str) – The Bluetooth device the server should use, the default is “hci0”, if
your device only has 1 Bluetooth adapter this shouldn’t need to be changed.

	port (int) – The Bluetooth port the server should use, the default is 1.

	encoding (str) – The encoding standard to be used when sending and receiving byte data. The default is
“utf-8”. If set to None no encoding is done and byte data types should be used.

	power_up_device (bool) – If True, the Bluetooth device will be powered up (if required) when the
server starts. The default is False.

Depending on how Bluetooth has been powered down, you may need to use rfkill
to unblock Bluetooth to give permission to bluez to power on Bluetooth:

sudo rfkill unblock bluetooth

	when_client_connects – A function reference which will be called when a client connects. If None
(the default), no notification will be given when a client connects

	when_client_disconnects – A function reference which will be called when a client disconnects. If None
(the default), no notification will be given when a client disconnects

	
disconnect_client()

	Disconnects the client if connected. Returns True if a client was disconnected.

	
send(data)

	Send data to a connected Bluetooth client

	Parameters

	data (str) – The data to be sent.

	
start()

	Starts the Bluetooth server if its not already running. The server needs to be started before
connections can be made.

	
stop()

	Stops the Bluetooth server if its running.

	
adapter

	A BluetoothAdapter object which represents the Bluetooth device
the server is using.

	
client_address

	The MAC address of the client connected to the server. Returns
None if no client is connected.

	
client_connected

	Returns True if a client is connected.

	
data_received_callback

	Sets or returns the function which is called when data is received by the server.

The function should accept a single parameter which when called will hold
the data received. Set to None if received data is not required.

	
device

	The Bluetooth device the server is using. This defaults to “hci0”.

	
encoding

	The encoding standard the server is using. This defaults to “utf-8”.

	
port

	The port the server is using. This defaults to 1.

	
running

	Returns a True if the server is running.

	
server_address

	The MAC address of the device the server is using.

	
when_client_connects

	Sets or returns the function which is called when a client connects.

	
when_client_disconnects

	Sets or returns the function which is called when a client disconnects.

BluetoothClient

	
class bluedot.btcomm.BluetoothClient(server, data_received_callback, port=1, device='hci0', encoding='utf-8', power_up_device=False, auto_connect=True)

	Creates a Bluetooth client which can send data to a server using RFCOMM Serial Data.

The following example will create a Bluetooth client which will connect to a paired
device called “raspberrypi”, send “helloworld” and print any data is receives:

from bluedot.btcomm import BluetoothClient
from signal import pause

def data_received(data):
 print(data)

c = BluetoothClient("raspberrypi", data_received)
c.send("helloworld")

pause()

	Parameters

	
	server (str) – The server name (“raspberrypi”) or server MAC address
(“11:11:11:11:11:11”) to connect to. The server must be a paired device.

	data_received_callback – A function reference should be passed, this function will be called when
data is received by the client. The function should accept a single parameter
which when called will hold the data received. Set to None if data
received is not required.

	port (int) – The Bluetooth port the client should use, the default is 1.

	device (str) – The Bluetooth device to be used, the default is “hci0”, if your device
only has 1 Bluetooth adapter this shouldn’t need to be changed.

	encoding (str) – The encoding standard to be used when sending and receiving byte data. The default is
“utf-8”. If set to None no encoding is done and byte data types should be used.

	power_up_device (bool) – If True, the Bluetooth device will be powered up (if required) when the
server starts. The default is False.

Depending on how Bluetooth has been powered down, you may need to use rfkill
to unblock Bluetooth to give permission to Bluez to power on Bluetooth:

sudo rfkill unblock bluetooth

	auto_connect (bool) – If True (the default), the Bluetooth client will automatically try
to connect to the server at initialisation, if False, the
connect() method will need to be called.

	
connect()

	Connect to a Bluetooth server.

	
disconnect()

	Disconnect from a Bluetooth server.

	
send(data)

	Send data to a Bluetooth server.

	Parameters

	data (str) – The data to be sent.

	
adapter

	A BluetoothAdapter object which represents the Bluetooth
device the client is using.

	
client_address

	The MAC address of the device being used.

	
connected

	Returns True when connected.

	
data_received_callback

	Sets or returns the function which is called when data is received by the client.

The function should accept a single parameter which when called will hold
the data received. Set to None if data received is not required.

	
device

	The Bluetooth device the client is using. This defaults to “hci0”.

	
encoding

	The encoding standard the client is using. The default is “utf-8”.

	
port

	The port the client is using. This defaults to 1.

	
server

	The server name (“raspberrypi”) or server MAC address
(“11:11:11:11:11:11”) to connect to.

BluetoothAdapter

	
class bluedot.btcomm.BluetoothAdapter(device='hci0')

	Represents and allows interaction with a Bluetooth Adapter.

The following example will get the Bluetooth adapter, print its powered status
and any paired devices:

a = BluetoothAdapter()
print("Powered = {}".format(a.powered))
print(a.paired_devices)

	Parameters

	device (str) – The Bluetooth device to be used, the default is “hci0”, if your device
only has 1 Bluetooth adapter this shouldn’t need to be changed.

	
allow_pairing(timeout=60)

	Put the adapter into discoverable and pairable mode.

	Parameters

	timeout (int) – The time in seconds the adapter will remain pairable. If set to None
the device will be discoverable and pairable indefinetly.

	
address

	The MAC address of the Bluetooth adapter.

	
device

	The Bluetooth device name. This defaults to “hci0”.

	
discoverable

	Set to True to make the Bluetooth adapter discoverable.

	
pairable

	Set to True to make the Bluetooth adapter pairable.

	
paired_devices

	Returns a sequence of devices paired with this adapater
[(mac_address, name), (mac_address, name), ...]:

a = BluetoothAdapter()
devices = a.paired_devices
for d in devices:
 device_address = d[0]
 device_name = d[1]

	
powered

	Set to True to power on the Bluetooth adapter.

Depending on how Bluetooth has been powered down, you may need to use
rfkill to unblock Bluetooth to give permission to bluez to power on Bluetooth:

sudo rfkill unblock bluetooth

 Mock API

Mock API

Blue Dot also contains a useful mock API for simulating Blue Dot and
bluetooth comms. This is useful for testing and allows for prototyping
without having to use a Blue Dot client.

MockBlueDot

	
class bluedot.mock.MockBlueDot(device='hci0', port=1, auto_start_server=True, power_up_device=False, print_messages=True, cols=1, rows=1)

	MockBlueDot inherits from BlueDot but overrides
_create_server(), to create a MockBluetoothServer
which can be used for testing and debugging.

	
launch_mock_app()

	Launches a mock Blue Dot app.

The mock app reacts to mouse clicks and movement and calls the mock blue
dot methods to simulates presses.

This is useful for testing, allowing you to interact with Blue Dot without
having to script mock functions.

The mock app uses pygame which will need to be installed.

	
mock_blue_dot_moved(col, row, x, y)

	Simulates the Blue Dot being moved.

	Parameters

	
	col (int) – The column position of the button

	row (int) – The row position of the button

	x (int) – The x position where the button was moved too

	y (int) – The y position where the button was moved too

	
mock_blue_dot_pressed(col, row, x, y)

	Simulates the Blue Dot being pressed.

	Parameters

	
	col (int) – The column position of the button

	row (int) – The row position of the button

	x (int) – The x position where the button was pressed

	y (int) – The y position where the button was pressed

	
mock_blue_dot_released(col, row, x, y)

	Simulates the Blue Dot being released.

	Parameters

	
	col (int) – The column position of the button

	row (int) – The row position of the button

	x (int) – The x position where the button was released

	y (int) – The y position where the button was released

	
mock_client_connected()

	Simulates a client connecting to the Blue Dot.

	Parameters

	client_address (string) – The mock client mac address, defaults to ‘11:11:11:11:11:11’

	
mock_client_disconnected()

	Simulates a client disconnecting from the Blue Dot.

MockBluetoothServer

	
class bluedot.mock.MockBluetoothServer(data_received_callback, auto_start=True, device='mock0', port=1, encoding='utf-8', power_up_device=False, when_client_connects=None, when_client_disconnects=None)

	MockBluetoothServer inherits from
BluetoothServer but overrides __init__, start()
, stop() and send_raw() to create a MockBluetoothServer which can
be used for testing and debugging.

	
mock_client_connected(mock_client=None)

	Simulates a client connected to the BluetoothServer.

	Parameters

	mock_client (MockBluetoothClient) – The mock client to interact with, defaults to None. If None,
client address is set to ‘99:99:99:99:99:99’

	
mock_client_disconnected()

	Simulates a client disconnecting from the
BluetoothServer.

	
mock_client_sending_data(data)

	Simulates a client sending data to the
BluetoothServer.

	
start()

	Starts the Bluetooth server if its not already running. The server needs to be started before
connections can be made.

	
stop()

	Stops the Bluetooth server if its running.

MockBluetoothClient

	
class bluedot.mock.MockBluetoothClient(server, data_received_callback, port=1, device='mock1', encoding='utf-8', power_up_device=False, auto_connect=True)

	MockBluetoothClient inherits from
BluetoothClient but overrides __init__, connect()
and send_raw() to create a MockBluetoothServer which can
be used for testing and debugging.

Note - the server parameter should be an instance of MockBluetoothServer.

	
connect()

	Connect to a Bluetooth server.

	
disconnect()

	Disconnect from a Bluetooth server.

	
mock_server_sending_data(data)

	Simulates a server sending data to the
BluetoothClient.

 Protocol

Protocol

Blue Dot uses a client/server model. The BlueDot class starts a
Bluetooth server, the Blue Dot application connects as a client.

The detail below can be used to create new applications (clients); if you do
please send a pull request :)

Bluetooth

Communication over Bluetooth is made using a RFCOMM serial port profile using
UUID “00001101-0000-1000-8000-00805f9b34fb”.

Specification

The transmission of data from client to server or server to client is a
simple stream no acknowledgements or data is sent in response to commands.

All messages between conform to the same format:

[operation],[params],[*]\n

Messages are sent as utf-8 encoded strings.

\n represents the new-line character.

The following operations are used to communicate between client and server.

	Operations

	Message format

	Direction

	Button released

	0,[col],[row],[x],[y]\n

	Client > Server

	Button pressed

	1,[col],[row],[x],[y]\n

	Client > Server

	Button moved

	2,[col],[row],[x],[y]\n

	Client > Server

	Protocol check

	3,[protocol version],[client name]\n

	Client > Server

	Set config

	4,[color],[square],[border],[visible],[cols],[rows]\n

	Server > Client

	Set button config

	5,[color],[square],[border],[visible],[col],[row]\n

	Server > Client

Messages are constructed using the following parameters.

	Parameter

	Description

	cols

	The number of columns in the matrix of buttons

	rows

	The number of rows in the matrix of buttons

	col

	The column position of the button (0 is top)

	row

	The row position of the button (0 is left)

	x

	Horizontal position between -1 and +1, with 0 being the centre and +1 being the right radius of the button.

	y

	Vertical position between -1 and +1, with 0 being the centre and +1 being the top radius of the button.

	protocol version

	The version of protocol the client supports.

	client name

	The name of the client e.g. “Android Blue Dot App”

	color

	A hex value in the format #rrggbbaa representing red, green, blue, alpha values.

	square

	0 or 1, 1 if the dot should be a square.

	border

	0 or 1, 1 if the dot should have a border.

	visible

	0 or 1, 1 if the dot should be visible.

Messages are sent when:

	A client connects

	When the setup (or appearance) of a button changes

	A button is released, pressed or moved

[image: Diagram showing the protocol states]

Example

When the Android client connects using protocol version 2:

3,2,Android Blue Dot app\n

The setup of the Blue Dot is sent to the client:

4,#0000ffff,0,0,1,1,2\n

If any buttons are different to the default, the configuration is sent:

5,#00ff0000,0,0,1,0,1\n

If the “first” button at position [0,0] is pressed at the top, the following message will be sent:

1,0,0,0.0,1.0\n

While the button is pressed (held down), the user moves their finger to the
far right causing the following message to be sent:

2,0,0,1.0,0.0\n

The button is then released, resulting in the following message:

0,0,0,1.0,0.0\n

The color of the button is changed to “red” the server sends to the client:

5,#ff0000ff,0,0,1,0,0\n

Versions

	0 - initial version

	1 - introduction of operation 3, 4

	2 - Blue Dot version 2, introduction of col, row for multiple buttons and operation 5

 Build

Build

These are instructions for how to develop, build and deploy Blue Dot.

Develop

Install / upgrade tools:

sudo python3 -m pip install --upgrade pip setuptools wheel twine virtualenv

Create a virtual environment (recommended):

virtualenv --system-site-packages bluedot-dev
cd bluedot-dev
source bin/activate

Clone repo and install for dev:

git clone https://github.com/martinohanlon/BlueDot
cd BlueDot
git checkout dev
python3 setup.py develop

Test

Install pytest:

pip3 install -U pytest

Run tests:

cd BlueDot/tests
pytest -v

Deploy

Build for deployment:

python3 setup.py sdist
python3 setup.py bdist_wheel

Deploy to PyPI:

twine upload dist/* --skip-existing

 Change log

Change log

Bluedot Python library

2.0.0 - 2020-11-01

	implementation of multiple buttons in a matrix

	refactor of significant portions of the code base

	improvement to btcomm to manage large messages

	update to MockBlueDot

	deprecated BlueDot.interaction

	added warnings when invalid data is received

	support for protocol version 2

	removed support for Python 2, 3.3 & 3.4

1.3.2 - 2019-04-22

	change to how callbacks are called

	added set_when_pressed, set_when_released, etc to allow callbacks to be called in their own threads.

1.3.1 - 2019-01-01

	minor bug fix to launch_mock_app

1.3.0 - 2018-12-30

	added ability to change the color, border, shape and visibility of the dot (color, border, square, visible)

	added protocol version checking

	minor threading changes in btcomm

	updates to the Blue Dot Python app

	rewrite of the mock app

	support for protocol version 1

1.2.3 - 2018-02-22

	fix to wait_for_press and wait_for_release

	when_client_connects and when_client_disconnects callbacks are now threaded

	The python blue dot app can now be started with the command bluedotapp

	new tests for wait_for_(events)

1.2.2 - 2017-12-30

	bluetooth comms tests and minor bug fix in BluetoothClient

1.2.1 - 2017-12-18

	massive code and docs tidy up by Dave Jones

1.2.0 - 2017-12-10

	added when_rotated

	threaded swipe callbacks

	exposed new BlueDot properties (adapter, running, paired_devices)

	fixed active bug in interaction

	automated tests

1.1.0 - 2017-11-05

	threaded callbacks

	python app rounded x,y performance improvements

1.0.4 - 2017-09-10

	serial port profile port fix

	launching multiple blue dots fix

1.0.3 - 2017-07-28

	python 2 bug fix

1.0.2 - 2017-07-23

	bug fix

1.0.1 - 2017-06-19

	bug fixes

1.0.0 - 2017-06-04

	production release!

	added double click

	doc updates

	minor changes

0.4.0 - 2017-05-05

	added swipes and interactions

	doc updates

	bug fix in BlueDot.when_moved

0.3.0 - 2017-05-01

	Python Blue Dot app

	minor bug fix in BluetoothClient

0.2.1 - 2017-04-23

	bug fix in MockBlueDot

	doc fixes

0.2.0 - 2017-04-23

	added when_client_connects, when_client_disconnects

	added allow_pairing() functions

	refactored Bluetooth comms

	added BluetoothAdapter

0.1.2 - 2017-04-14

	mock blue dot improvements

	doc fixes

0.1.1 - 2017-04-08

	clamped distance in BlueDotPosition

0.1.0 - 2017-04-07

	Check Bluetooth adapter is powered

	Handle client connection timeouts

	Docs & image updates

0.0.6 - 2017-04-05

	Added MockBlueDot for testing and debugging

	more docs

0.0.4 - 2017-03-31

Updates after alpha feedback

	Python 2 compatibility

	.dot_position to .position

	.values added

	clamped x, y to 1

	loads of doc updates

0.0.2 - 2017-03-29

Alpha - initial testing

Android app

10 (2.2.1) - 2022-01-03

	Android 12+ fixes

9 (2.2) - 2022-12-23

	Android SDK and API version uplift (due to google play store minimum requirements change)

8 (2.1) - 2020-12-28

	removed “auto port discovery” after the introduction of pulseaudio to Raspberry Pi OS broke it

	introduced the “default port” setting as an alternative

7 (2.0) - 2020-11-01

	implementation of multiple buttons in a matrix

	support for protocol version 2

6 (1.3.1) - 2019-12-30

	Minor bug fix

5 (1.3) - 2019-12-29

	Added settings menu so a specific bluetooth port can be selected

	Using specific bluetooth ports, multiple apps can now connect to a single BT devices

	Minor bugs fixes

4 (1.2) - 2018-12-30

	Rewrite of the Button view

	Rewrite of the Bluetooth comms layer

	Support for colours, square and border

	Landscape (and portrait) views

	added protocol version checking

	support for protocol version 1

3 (1.1.1) - 2018-09-21

	Android SDK version uplift (due to google play store minimum requirements change)

2 (1.1) - 2017-11-05

	better responsive layout

	fixed issues with small screen devices

	rounded x,y values increasing performance

	new help icon

	link to https://bluedot.readthedocs.io not http

1 (0.0.2) - 2017-04-05

	icon transparency

	connection monitor

	added info icon to https://bluedot.readthedocs.io

0 (0.0.1) - 2017-03-29

	alpha - initial testing

 Python Module Index

 Python Module Index

 b

 		 	

 		
 b	

 	[image: -]
 	
 bluedot	

 	
 	
 bluedot.btcomm	

 	
 	
 bluedot.mock	

 Index

Index

 A
 | B
 | C
 | D
 | E
 | G
 | I
 | L
 | M
 | P
 | R
 | S
 | T
 | U
 | V
 | W
 | X
 | Y

A

 	
 	active (bluedot.BlueDotInteraction attribute)

 	adapter (bluedot.BlueDot attribute)

 	(bluedot.btcomm.BluetoothClient attribute)

 	(bluedot.btcomm.BluetoothServer attribute)

 	address (bluedot.btcomm.BluetoothAdapter attribute)

 	
 	allow_pairing() (bluedot.BlueDot method)

 	(bluedot.btcomm.BluetoothAdapter method)

 	angle (bluedot.BlueDotPosition attribute)

 	(bluedot.BlueDotSwipe attribute)

 	anti_clockwise (bluedot.BlueDotRotation attribute)

B

 	
 	BlueDot (class in bluedot)

 	bluedot (module)

 	bluedot.btcomm (module)

 	bluedot.mock (module)

 	BlueDotButton (class in bluedot)

 	BlueDotInteraction (class in bluedot)

 	BlueDotPosition (class in bluedot)

 	BlueDotRotation (class in bluedot)

 	
 	BlueDotSwipe (class in bluedot)

 	BluetoothAdapter (class in bluedot.btcomm)

 	BluetoothClient (class in bluedot.btcomm)

 	BluetoothServer (class in bluedot.btcomm)

 	border (bluedot.BlueDot attribute)

 	(bluedot.BlueDotButton attribute)

 	bottom (bluedot.BlueDotPosition attribute)

 	buttons (bluedot.BlueDot attribute)

C

 	
 	client_address (bluedot.btcomm.BluetoothClient attribute)

 	(bluedot.btcomm.BluetoothServer attribute)

 	client_connected (bluedot.btcomm.BluetoothServer attribute)

 	clockwise (bluedot.BlueDotRotation attribute)

 	col (bluedot.BlueDotPosition attribute)

 	(bluedot.BlueDotRotation attribute)

 	(bluedot.BlueDotSwipe attribute)

 	
 	color (bluedot.BlueDot attribute)

 	(bluedot.BlueDotButton attribute)

 	cols (bluedot.BlueDot attribute)

 	connect() (bluedot.btcomm.BluetoothClient method)

 	(bluedot.mock.MockBluetoothClient method)

 	connected (bluedot.btcomm.BluetoothClient attribute)

 	current_position (bluedot.BlueDotInteraction attribute)

D

 	
 	data_received_callback (bluedot.btcomm.BluetoothClient attribute)

 	(bluedot.btcomm.BluetoothServer attribute)

 	device (bluedot.BlueDot attribute)

 	(bluedot.btcomm.BluetoothAdapter attribute)

 	(bluedot.btcomm.BluetoothClient attribute)

 	(bluedot.btcomm.BluetoothServer attribute)

 	direction (bluedot.BlueDotSwipe attribute)

 	disconnect() (bluedot.btcomm.BluetoothClient method)

 	(bluedot.mock.MockBluetoothClient method)

 	
 	disconnect_client() (bluedot.btcomm.BluetoothServer method)

 	discoverable (bluedot.btcomm.BluetoothAdapter attribute)

 	distance (bluedot.BlueDotInteraction attribute)

 	(bluedot.BlueDotPosition attribute)

 	(bluedot.BlueDotSwipe attribute)

 	double_press_time (bluedot.BlueDot attribute)

 	down (bluedot.BlueDotSwipe attribute)

 	duration (bluedot.BlueDotInteraction attribute)

E

 	
 	encoding (bluedot.btcomm.BluetoothClient attribute)

 	(bluedot.btcomm.BluetoothServer attribute)

G

 	
 	get_rotation() (bluedot.BlueDotButton method)

 	
 	get_swipe() (bluedot.BlueDotButton method)

I

 	
 	interaction (bluedot.BlueDot attribute)

 	(bluedot.BlueDotButton attribute)

 	(bluedot.BlueDotRotation attribute)

 	(bluedot.BlueDotSwipe attribute)

 	
 	is_connected (bluedot.BlueDot attribute)

 	is_double_press() (bluedot.BlueDotButton method)

 	is_pressed (bluedot.BlueDot attribute)

L

 	
 	launch_mock_app() (bluedot.mock.MockBlueDot method)

 	
 	left (bluedot.BlueDotPosition attribute)

 	(bluedot.BlueDotSwipe attribute)

M

 	
 	middle (bluedot.BlueDotPosition attribute)

 	mock_blue_dot_moved() (bluedot.mock.MockBlueDot method)

 	mock_blue_dot_pressed() (bluedot.mock.MockBlueDot method)

 	mock_blue_dot_released() (bluedot.mock.MockBlueDot method)

 	mock_client_connected() (bluedot.mock.MockBlueDot method)

 	(bluedot.mock.MockBluetoothServer method)

 	mock_client_disconnected() (bluedot.mock.MockBlueDot method)

 	(bluedot.mock.MockBluetoothServer method)

 	
 	mock_client_sending_data() (bluedot.mock.MockBluetoothServer method)

 	mock_server_sending_data() (bluedot.mock.MockBluetoothClient method)

 	MockBlueDot (class in bluedot.mock)

 	MockBluetoothClient (class in bluedot.mock)

 	MockBluetoothServer (class in bluedot.mock)

 	modified (bluedot.BlueDotButton attribute)

 	move() (bluedot.BlueDotButton method)

 	moved() (bluedot.BlueDotInteraction method)

P

 	
 	pairable (bluedot.btcomm.BluetoothAdapter attribute)

 	paired_devices (bluedot.BlueDot attribute)

 	(bluedot.btcomm.BluetoothAdapter attribute)

 	port (bluedot.BlueDot attribute)

 	(bluedot.btcomm.BluetoothClient attribute)

 	(bluedot.btcomm.BluetoothServer attribute)

 	
 	positions (bluedot.BlueDotInteraction attribute)

 	powered (bluedot.btcomm.BluetoothAdapter attribute)

 	press() (bluedot.BlueDotButton method)

 	pressed_position (bluedot.BlueDotInteraction attribute)

 	previous_position (bluedot.BlueDotInteraction attribute)

 	print_messages (bluedot.BlueDot attribute)

R

 	
 	release() (bluedot.BlueDotButton method)

 	released() (bluedot.BlueDotInteraction method)

 	released_position (bluedot.BlueDotInteraction attribute)

 	resize() (bluedot.BlueDot method)

 	right (bluedot.BlueDotPosition attribute)

 	(bluedot.BlueDotSwipe attribute)

 	
 	rotation_segments (bluedot.BlueDot attribute)

 	row (bluedot.BlueDotPosition attribute)

 	(bluedot.BlueDotRotation attribute)

 	(bluedot.BlueDotSwipe attribute)

 	rows (bluedot.BlueDot attribute)

 	running (bluedot.BlueDot attribute)

 	(bluedot.btcomm.BluetoothServer attribute)

S

 	
 	send() (bluedot.btcomm.BluetoothClient method)

 	(bluedot.btcomm.BluetoothServer method)

 	server (bluedot.BlueDot attribute)

 	(bluedot.btcomm.BluetoothClient attribute)

 	server_address (bluedot.btcomm.BluetoothServer attribute)

 	set_when_client_connects() (bluedot.BlueDot method)

 	set_when_client_disconnects() (bluedot.BlueDot method)

 	speed (bluedot.BlueDotSwipe attribute)

 	
 	square (bluedot.BlueDot attribute)

 	(bluedot.BlueDotButton attribute)

 	start() (bluedot.BlueDot method)

 	(bluedot.btcomm.BluetoothServer method)

 	(bluedot.mock.MockBluetoothServer method)

 	stop() (bluedot.BlueDot method)

 	(bluedot.btcomm.BluetoothServer method)

 	(bluedot.mock.MockBluetoothServer method)

T

 	
 	time (bluedot.BlueDotPosition attribute)

 	
 	top (bluedot.BlueDotPosition attribute)

U

 	
 	up (bluedot.BlueDotSwipe attribute)

V

 	
 	valid (bluedot.BlueDotRotation attribute)

 	(bluedot.BlueDotSwipe attribute)

 	
 	value (bluedot.BlueDotRotation attribute)

 	visible (bluedot.BlueDot attribute)

 	(bluedot.BlueDotButton attribute)

W

 	
 	wait_for_connection() (bluedot.BlueDot method)

 	when_client_connects (bluedot.BlueDot attribute)

 	(bluedot.btcomm.BluetoothServer attribute)

 	
 	when_client_disconnects (bluedot.BlueDot attribute)

 	(bluedot.btcomm.BluetoothServer attribute)

X

 	
 	x (bluedot.BlueDotPosition attribute)

Y

 	
 	y (bluedot.BlueDotPosition attribute)

_static/up-pressed.png

_static/up.png

_images/blue_dot_feature_small.png

_images/bluedot_color_changing_smaller.gif
Connected to pizerow

_images/bluedotandroid_settings.png
Seting

Gomect Hop

TomTom 625 iatch
E4043900858

v Ticusn
WCED9A

e xsET
Chasersirss
ot
Beasazoersee
ey
BIBA986

Hive
FCsarmpic2an

_images/bluedotandroid_settings_defaultport.png
se

ngs
[r——

5 secotat ot

nav.xhtml

 Table of Contents

 		
 Blue Dot

 		
 Getting Started

 		
 Installation

 		
 Android App

 		
 Python Library

 		
 Pairing

 		
 Code

 		
 Connecting

 		
 Where next

 		
 Pair a Raspberry Pi and Android phone

 		
 Using the Desktop

 		
 Using the Command Line

 		
 Pair 2 Raspberry Pis

 		
 Using the Desktop

 		
 Using the Command Line

 		
 Recipes

 		
 Button

 		
 Hello World

 		
 Flash an LED

 		
 Remote Camera

 		
 Joystick

 		
 D-pad

 		
 Robot

 		
 Variable Speed Robot

 		
 Appearance

 		
 Colo(u)r

 		
 Square

 		
 Border

 		
 (In)visible

 		
 Layout

 		
 Two Buttons

 		
 Many Buttons

 		
 D-pad

 		
 Slider

 		
 Centre Out

 		
 Left to Right

 		
 Dimmer Switch

 		
 Swiping

 		
 Single

 		
 Direction

 		
 Speed, Angle, and Distance

 		
 Rotating

 		
 Counter

 		
 Multiple Blue Dot Apps

 		
 Bluetooth

 		
 Pairing

 		
 Paired Devices

 		
 Testing

 		
 Mock App

 		
 Scripted Tests

 		
 Blue Dot Android App

 		
 Start

 		
 Blue Dot Python App

 		
 Start

 		
 Options

 		
 Blue Dot API

 		
 BlueDot

 		
 BlueDotButton

 		
 BlueDotPosition

 		
 BlueDotInteraction

 		
 BlueDotSwipe

 		
 BlueDotRotation

 		
 Bluetooth Comm API

 		
 BluetoothServer

 		
 BluetoothClient

 		
 BluetoothAdapter

 		
 Mock API

 		
 MockBlueDot

 		
 MockBluetoothServer

 		
 MockBluetoothClient

 		
 Protocol

 		
 Bluetooth

 		
 Specification

 		
 Example

 		
 Versions

 		
 Build

 		
 Develop

 		
 Test

 		
 Deploy

 		
 Change log

 		
 Bluedot Python library

 		
 2.0.0 - 2020-11-01

 		
 1.3.2 - 2019-04-22

 		
 1.3.1 - 2019-01-01

 		
 1.3.0 - 2018-12-30

 		
 1.2.3 - 2018-02-22

 		
 1.2.2 - 2017-12-30

 		
 1.2.1 - 2017-12-18

 		
 1.2.0 - 2017-12-10

 		
 1.1.0 - 2017-11-05

 		
 1.0.4 - 2017-09-10

 		
 1.0.3 - 2017-07-28

 		
 1.0.2 - 2017-07-23

 		
 1.0.1 - 2017-06-19

 		
 1.0.0 - 2017-06-04

 		
 0.4.0 - 2017-05-05

 		
 0.3.0 - 2017-05-01

 		
 0.2.1 - 2017-04-23

 		
 0.2.0 - 2017-04-23

 		
 0.1.2 - 2017-04-14

 		
 0.1.1 - 2017-04-08

 		
 0.1.0 - 2017-04-07

 		
 0.0.6 - 2017-04-05

 		
 0.0.4 - 2017-03-31

 		
 0.0.2 - 2017-03-29

 		
 Android app

 		
 10 (2.2.1) - 2022-01-03

 		
 9 (2.2) - 2022-12-23

 		
 8 (2.1) - 2020-12-28

 		
 7 (2.0) - 2020-11-01

 		
 6 (1.3.1) - 2019-12-30

 		
 5 (1.3) - 2019-12-29

 		
 4 (1.2) - 2018-12-30

 		
 3 (1.1.1) - 2018-09-21

 		
 2 (1.1) - 2017-11-05

 		
 1 (0.0.2) - 2017-04-05

 		
 0 (0.0.1) - 2017-03-29

_images/bluedotandroid_small1.png

_images/bluedotandroiddevices_small.png

_images/bluedotandroid_settings_port.png
% Use cefautport »

Bletsoiport

_images/bluedotandroid_small.png

_images/bluedotpython1.png

_images/bluedotpythondevices.png
Connect X

Mart MotoG3
(68:C4:4D:EC:FD: 74)

pizerow (B8:27:EB:CA:CT7:71)

_images/bluedotandroidicon.png
Blue Dot

_images/bluedotpython.png

_images/layout_2_buttons_gap_small.png
Connected to pizerow

_images/layout_2_buttons_small.png
Blue Dot

Connected to pizerow

_images/layout_dpad_small.png
Blue Dot

Connected to pizerow

_images/layout_many_buttons_small.png
Blue Dot

Connected to pizerow

_images/layout_many_buttons_smaller.png

_images/layout_joypad_small.png

_images/layout_joypad_smaller.png

_static/ajax-loader.gif

_images/mockbluedot.png
