
Blocks Documentation
Release 0.2.0

Université de Montréal

Sep 06, 2018

Contents

1 Tutorials 3

2 In-depth 17

3 Quickstart 149

4 Indices and tables 151

Bibliography 153

Python Module Index 155

i

ii

Blocks Documentation, Release 0.2.0

Blocks is a framework that helps you build and manage neural network models on using Theano.

Want to get try it out? Start by installing Blocks and having a look at the quickstart further down this page. Once
you’re hooked, try your hand at the tutorials and the examples.

Blocks is developed in parallel with Fuel, a dataset processing framework.

Warning: Blocks is a new project which is still under development. As such, certain (all) parts of the framework
are subject to change. The last stable (and thus likely an outdated) version can be found in the stable branch.

Tip: That said, if you are interested in using Blocks and run into any problems, feel free to ask your question on the
mailing list. Also, don’t hesitate to file bug reports and feature requests by making a GitHub issue.

Contents 1

https://github.com/mila-udem/blocks-examples
https://github.com/mila-udem/fuel
https://groups.google.com/forum/#!forum/blocks-users
https://github.com/mila-udem/blocks/issues/new

Blocks Documentation, Release 0.2.0

2 Contents

CHAPTER 1

Tutorials

1.1 Installation

The easiest way to install Blocks is using the Python package manager pip. Blocks isn’t listed yet on the Python
Package Index (PyPI), so you will have to grab it directly from GitHub.

$ pip install git+git://github.com/mila-udem/blocks.git \
-r https://raw.githubusercontent.com/mila-udem/blocks/master/requirements.txt

This will give you the cutting-edge development version. The latest stable release is in the stable branch and can
be installed as follows.

$ pip install git+git://github.com/mila-udem/blocks.git@stable \
-r https://raw.githubusercontent.com/mila-udem/blocks/stable/requirements.txt

Note: Blocks relies on several packages, such as Theano and picklable_itertools, to be installed directly from GitHub.
The only way of doing so reliably is through a requirements.txt file, which is why this installation command
might look slightly different from what you’re used to.

Installing requirements from GitHub requires pip 1.5 or higher; you can update with pip update pip.

If you don’t have administrative rights, add the --user switch to the install commands to install the packages in your
home folder. If you want to update Blocks, simply repeat the first command with the --upgrade switch added to
pull the latest version from GitHub.

Warning: Pip may try to install or update NumPy and SciPy if they are not present or outdated. However, pip’s
versions might not be linked to an optimized BLAS implementation. To prevent this from happening make sure
you update NumPy and SciPy using your system’s package manager (e.g. apt-get or yum), or use a Python
distribution like Anaconda, before installing Blocks. You can also pass the --no-deps switch and install all the
requirements manually.

3

http://deeplearning.net/software/theano/
https://github.com/dwf/picklable_itertools
https://store.continuum.io/cshop/anaconda/

Blocks Documentation, Release 0.2.0

If the installation crashes with ImportError: No module named numpy.distutils.core, install
NumPy and try again again.

1.1.1 Requirements

Blocks’ requirements are

• Theano, for pretty much everything

• PyYAML, to parse the configuration file

• six, to support both Python 2 and 3 with a single codebase

• Toolz, to add a bit of functional programming where it is needed

Bokeh is an optional requirement for if you want to use live plotting of your training progress (part of
blocks-extras_).

nose2 is an optional requirement, used to run the tests.

We develop using the bleeding-edge version of Theano, so be sure to follow the relevant installation instructions to
make sure that your Theano version is up to date if you didn’t install it through Blocks.

1.1.2 Development

If you want to work on Blocks’ development, your first step is to fork Blocks on GitHub. You will now want to install
your fork of Blocks in editable mode. To install in your home directory, use the following command, replacing USER
with your own GitHub user name:

$ pip install -e git+git@github.com:USER/blocks.git#egg=blocks[test,docs] --src=$HOME
→˓\
-r https://raw.githubusercontent.com/mila-udem/blocks/master/requirements.txt

As with the usual installation, you can use --user or --no-deps if you need to. You can now make changes in
the blocks directory created by pip, push to your repository and make a pull request.

If you had already cloned the GitHub repository, you can use the following command from the folder you cloned
Blocks to:

$ pip install -e file:.#egg=blocks[test,docs] -r requirements.txt

Documentation

If you want to build a local copy of the documentation, follow the instructions at the documentation development
guidelines.

1.2 Introduction tutorial

In this tutorial we will perform handwriting recognition by training a multilayer perceptron (MLP) on the MNIST
handwritten digit database.

4 Chapter 1. Tutorials

http://deeplearning.net/software/theano/
http://pyyaml.org/wiki/PyYAML
http://pythonhosted.org/six/
http://toolz.readthedocs.org/
http://bokeh.pydata.org/
https://nose2.readthedocs.org/
http://deeplearning.net/software/theano/install.html#bleeding-edge-install-instructions
https://github.com/mila-udem/blocks/fork
https://en.wikipedia.org/wiki/Multilayer_perceptron
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/

Blocks Documentation, Release 0.2.0

1.2.1 The Task

MNIST is a dataset which consists of 70,000 handwritten digits. Each digit is a grayscale image of 28 by 28 pixels.
Our task is to classify each of the images into one of the 10 categories representing the numbers from 0 to 9.

Fig. 1: Sample MNIST digits

1.2.2 The Model

We will train a simple MLP with a single hidden layer that uses the rectifier activation function. Our output layer will
consist of a softmax function with 10 units; one for each class. Mathematically speaking, our model is parametrized
by 𝜃, defined as the weight matrices W(1) and W(2), and bias vectors b(1) and b(2). The rectifier activation function
is defined as

ReLU(x)𝑖 = max(0,x𝑖)

and our softmax output function is defined as

softmax(x)𝑖 =
𝑒x𝑖∑︀𝑛
𝑗=1 𝑒

x𝑗

Hence, our complete model is

𝑓(x; 𝜃) = softmax(W(2)ReLU(W(1)x+ b(1)) + b(2))

Since the output of a softmax sums to 1, we can interpret it as a categorical probability distribution: 𝑓(x)𝑐 = 𝑝(𝑦 =
𝑐 | x), where x is the 784-dimensional (28 × 28) input and 𝑐 ∈ {0, ..., 9} one of the 10 classes. We can train the
parameters of our model by minimizing the negative log-likelihood i.e. the cross-entropy between our model’s output
and the target distribution. This means we will minimize the sum of

𝑙(f(x), 𝑦) = −
9∑︁

𝑐=0

1(𝑦=𝑐) log 𝑓(x)𝑐 = − log 𝑓(x)𝑦

(where 1 is the indicator function) over all examples. We use stochastic gradient descent (SGD) on mini-batches for
this.

1.2.3 Building the model

Blocks uses “bricks” to build models. Bricks are parametrized Theano operations. You can read more about it in
the building with bricks tutorial.

Constructing the model with Blocks is very simple. We start by defining the input variable using Theano.

Tip: Want to follow along with the Python code? If you are using IPython, enable the doctest mode using the special
%doctest_mode command so that you can copy-paste the examples below (including the >>> prompts) straight
into the IPython interpreter.

1.2. Introduction tutorial 5

https://en.wikipedia.org/wiki/Rectifier_%28neural_networks%29
https://en.wikipedia.org/wiki/Softmax_function
https://en.wikipedia.org/wiki/Stochastic_gradient_descent
http://ipython.org/ipython-doc/dev/interactive/tips.html#run-doctests

Blocks Documentation, Release 0.2.0

>>> from theano import tensor
>>> x = tensor.matrix('features')

Note that we picked the name 'features' for our input. This is important, because the name needs to match the
name of the data source we want to train on. MNIST defines two data sources: 'features' and 'targets'.

For the sake of this tutorial, we will go through building an MLP the long way. For a much quicker way, skip right to
the end of the next section. We begin with applying the linear transformations and activations.

We start by initializing bricks with certain parameters e.g. input_dim. After initialization we can apply our bricks
on Theano variables to build the model we want. We’ll talk more about bricks in the next tutorial, Building with bricks.

>>> from blocks.bricks import Linear, Rectifier, Softmax
>>> input_to_hidden = Linear(name='input_to_hidden', input_dim=784, output_dim=100)
>>> h = Rectifier().apply(input_to_hidden.apply(x))
>>> hidden_to_output = Linear(name='hidden_to_output', input_dim=100, output_dim=10)
>>> y_hat = Softmax().apply(hidden_to_output.apply(h))

1.2.4 Loss function and regularization

Now that we have built our model, let’s define the cost to minimize. For this, we will need the Theano variable
representing the target labels.

>>> y = tensor.lmatrix('targets')
>>> from blocks.bricks.cost import CategoricalCrossEntropy
>>> cost = CategoricalCrossEntropy().apply(y.flatten(), y_hat)

To reduce the risk of overfitting, we can penalize excessive values of the parameters by adding a 𝐿2-regularization
term (also known as weight decay) to the objective function:

𝑙(f(x), 𝑦) = − log 𝑓(x)𝑦 + 𝜆1‖W(1)‖2 + 𝜆2‖W(2)‖2

To get the weights from our model, we will use Blocks’ annotation features (read more about them in the Managing
the computation graph tutorial).

>>> from blocks.roles import WEIGHT
>>> from blocks.graph import ComputationGraph
>>> from blocks.filter import VariableFilter
>>> cg = ComputationGraph(cost)
>>> W1, W2 = VariableFilter(roles=[WEIGHT])(cg.variables)
>>> cost = cost + 0.005 * (W1 ** 2).sum() + 0.005 * (W2 ** 2).sum()
>>> cost.name = 'cost_with_regularization'

Note: Note that we explicitly gave our variable a name. We do this so that when we monitor the performance of our
model, the progress monitor will know what name to report in the logs.

Here we set 𝜆1 = 𝜆2 = 0.005. And that’s it! We now have the final objective function we want to optimize.

But creating a simple MLP this way is rather cumbersome. In practice, we would have used the MLP class instead.

>>> from blocks.bricks import MLP
>>> mlp = MLP(activations=[Rectifier(), Softmax()], dims=[784, 100, 10]).apply(x)

6 Chapter 1. Tutorials

Blocks Documentation, Release 0.2.0

1.2.5 Initializing the parameters

When we constructed the Linear bricks to build our model, they automatically allocated Theano shared variables to
store their parameters in. All of these parameters were initially set to NaN. Before we start training our network, we
will want to initialize these parameters by sampling them from a particular probability distribution. Bricks can do this
for you.

>>> from blocks.initialization import IsotropicGaussian, Constant
>>> input_to_hidden.weights_init = hidden_to_output.weights_init =
→˓IsotropicGaussian(0.01)
>>> input_to_hidden.biases_init = hidden_to_output.biases_init = Constant(0)
>>> input_to_hidden.initialize()
>>> hidden_to_output.initialize()

We have now initialized our weight matrices with entries drawn from a normal distribution with a standard deviation
of 0.01.

>>> W1.get_value()
array([[0.01624345, -0.00611756, -0.00528172, ..., 0.00043597, ...

1.2.6 Training your model

Besides helping you build models, Blocks also provides the main other features needed to train a model. It has a set
of training algorithms (like SGD), an interface to datasets, and a training loop that allows you to monitor and control
the training process.

We want to train our model on the training set of MNIST. We load the data using the Fuel framework. Have a look at
this tutorial to get started.

After having configured Fuel, you can load the dataset.

>>> from fuel.datasets import MNIST
>>> mnist = MNIST(("train",))

Datasets only provide an interface to the data. For actual training, we will need to iterate over the data in minibatches.
This is done by initiating a data stream which makes use of a particular iteration scheme. We will use an iteration
scheme that iterates over our MNIST examples sequentially in batches of size 256.

>>> from fuel.streams import DataStream
>>> from fuel.schemes import SequentialScheme
>>> from fuel.transformers import Flatten
>>> data_stream = Flatten(DataStream.default_stream(
... mnist,
... iteration_scheme=SequentialScheme(mnist.num_examples, batch_size=256)))

The training algorithm we will use is straightforward SGD with a fixed learning rate.

>>> from blocks.algorithms import GradientDescent, Scale
>>> algorithm = GradientDescent(cost=cost, parameters=cg.parameters,
... step_rule=Scale(learning_rate=0.1))

During training we will want to monitor the performance of our model on a separate set of examples. Let’s create a
new data stream for that.

1.2. Introduction tutorial 7

http://fuel.readthedocs.org/en/latest/
https://fuel.readthedocs.org/en/latest/built_in_datasets.html

Blocks Documentation, Release 0.2.0

>>> mnist_test = MNIST(("test",))
>>> data_stream_test = Flatten(DataStream.default_stream(
... mnist_test,
... iteration_scheme=SequentialScheme(
... mnist_test.num_examples, batch_size=1024)))

In order to monitor our performance on this data stream during training, we need to use one of Blocks’ extensions,
namely the DataStreamMonitoring extension.

>>> from blocks.extensions.monitoring import DataStreamMonitoring
>>> monitor = DataStreamMonitoring(
... variables=[cost], data_stream=data_stream_test, prefix="test")

We can now use the MainLoop to combine all the different bits and pieces. We use two more extensions to make our
training stop after a single epoch and to make sure that our progress is printed.

>>> from blocks.main_loop import MainLoop
>>> from blocks.extensions import FinishAfter, Printing
>>> main_loop = MainLoop(data_stream=data_stream, algorithm=algorithm,
... extensions=[monitor, FinishAfter(after_n_epochs=1),
→˓Printing()])
>>> main_loop.run()

BEFORE FIRST EPOCH

Training status:

epochs_done: 0
iterations_done: 0

Log records from the iteration 0:
test_cost_with_regularization: 2.34244632721

AFTER ANOTHER EPOCH

Training status:

epochs_done: 1
iterations_done: 235

Log records from the iteration 235:
test_cost_with_regularization: 0.664899230003
training_finish_requested: True

TRAINING HAS BEEN FINISHED:

Training status:

epochs_done: 1
iterations_done: 235

Log records from the iteration 235:
test_cost_with_regularization: 0.664899230003
training_finish_requested: True
training_finished: True

8 Chapter 1. Tutorials

Blocks Documentation, Release 0.2.0

1.3 Building with bricks

Blocks is a framework that is supposed to make it easier to build complicated neural network models on top of Theano.
In order to do so, we introduce the concept of “bricks”, which you might have already come across in the introduction
tutorial.

1.3.1 Bricks life-cycle

Blocks uses “bricks” to build models. Bricks are parametrized Theano operations. A brick is usually defined by a
set of attributes and a set of parameters, the former specifying the attributes that define the Block (e.g., the number of
input and output units), the latter representing the parameters of the brick object that will vary during learning (e.g.,
the weights and the biases).

The life-cycle of a brick is as follows:

1. Configuration: set (part of) the attributes of the brick. Can take place when the brick object is created, by setting
the arguments of the constructor, or later, by setting the attributes of the brick object. No Theano variable is
created in this phase.

2. Allocation: (optional) allocate the Theano shared variables for the parameters of the Brick. When
allocate() is called, the required Theano variables are allocated and initialized by default to NaN.

3. Application: instantiate a part of the Theano computational graph, linking the inputs and the outputs of the
brick through its parameters and according to the attributes. Cannot be performed (i.e., results in an error) if
the Brick object is not fully configured.

4. Initialization: set the numerical values of the Theano variables that store the parameters of the Brick. The
user-provided value will replace the default initialization value.

Note: If the Theano variables of the brick object have not been allocated when apply() is called, Blocks will
quietly call allocate().

Example

Bricks take Theano variables as inputs, and provide Theano variables as outputs.

>>> import theano
>>> from theano import tensor
>>> from blocks.bricks import Tanh
>>> x = tensor.vector('x')
>>> y = Tanh().apply(x)
>>> print(y)
tanh_apply_output
>>> isinstance(y, theano.Variable)
True

This is clearly an artificial example, as this seems like a complicated way of writing y = tensor.tanh(x). To see
why Blocks is useful, consider a very common task when building neural networks: Applying a linear transformation
(with optional bias) to a vector, and then initializing the weight matrix and bias vector with values drawn from a
particular distribution.

>>> from blocks.bricks import Linear
>>> from blocks.initialization import IsotropicGaussian, Constant

(continues on next page)

1.3. Building with bricks 9

http://www.deeplearning.net/software/theano/

Blocks Documentation, Release 0.2.0

(continued from previous page)

>>> linear = Linear(input_dim=10, output_dim=5,
... weights_init=IsotropicGaussian(),
... biases_init=Constant(0.01))
>>> y = linear.apply(x)

So what happened here? We constructed a brick called Linear with a particular configuration: the input dimension
(10) and output dimension (5). When we called Linear.apply , the brick automatically constructed the shared
Theano variables needed to store its parameters. In the lifecycle of a brick we refer to this as allocation.

>>> linear.parameters
[W, b]
>>> linear.parameters[1].get_value()
array([nan, nan, nan, nan, nan])

By default, all our parameters are set to NaN. To initialize them, simply call the initialize() method. This is the
last step in the brick lifecycle: initialization.

>>> linear.initialize()
>>> linear.parameters[1].get_value()
array([0.01, 0.01, 0.01, 0.01, 0.01])

Keep in mind that at the end of the day, bricks just help you construct a Theano computational graph, so it is possible
to mix in regular Theano statements when building models. (However, you might miss out on some of the niftier
features of Blocks, such as variable annotation.)

>>> z = tensor.max(y + 4)

1.3.2 Lazy initialization

In the example above we configured the Linear brick during initialization. We specified input and output dimensions,
and specified the way in which weight matrices should be initialized. But consider the following case, which is quite
common: We want to take the output of one model, and feed it as an input to another model, but the output and input
dimensions don’t match, so we will need to add a linear transformation in the middle.

To support this use case, bricks allow for lazy initialization, which is turned on by default. This means that you can
create a brick without configuring it fully (or at all):

>>> linear2 = Linear(output_dim=10)
>>> print(linear2.input_dim)
NoneAllocation

Of course, as long as the brick is not configured, we cannot actually apply it!

>>> linear2.apply(x)
Traceback (most recent call last):

...
ValueError: allocation config not set: input_dim

We can now easily configure our brick based on other bricks.

>>> linear2.input_dim = linear.output_dim
>>> linear2.apply(x)
linear_apply_output

10 Chapter 1. Tutorials

http://deeplearning.net/software/theano/tutorial/examples.html#using-shared-variables
http://deeplearning.net/software/theano/tutorial/examples.html#using-shared-variables

Blocks Documentation, Release 0.2.0

In the examples so far, the allocation of the parameters has always happened implicitly when calling the apply
methods, but it can also be called explicitly. Consider the following example:

>>> linear3 = Linear(input_dim=10, output_dim=5)
>>> linear3.parameters
Traceback (most recent call last):

...
AttributeError: 'Linear' object has no attribute 'parameters'
>>> linear3.allocate()
>>> linear3.parameters
[W, b]

1.3.3 Nested bricks

Many neural network models, especially more complex ones, can be considered hierarchical structures. Even a simple
multi-layer perceptron consists of layers, which in turn consist of a linear transformation followed by a non-linear
transformation.

As such, bricks can have children. Parent bricks are able to configure their children, to e.g. make sure their configura-
tions are compatible, or have sensible defaults for a particular use case.

>>> from blocks.bricks import MLP, Logistic
>>> mlp = MLP(activations=[Logistic(name='sigmoid_0'),
... Logistic(name='sigmoid_1')], dims=[16, 8, 4],
... weights_init=IsotropicGaussian(), biases_init=Constant(0.01))
>>> [child.name for child in mlp.children]
['linear_0', 'sigmoid_0', 'linear_1', 'sigmoid_1']
>>> y = mlp.apply(x)
>>> mlp.children[0].input_dim
16

We can see that the MLP brick automatically constructed two child bricks to perform the linear transformations. When
we applied the MLP to x, it automatically configured the input and output dimensions of its children. Likewise,
when we call initialize(), it automatically pushed the weight matrix and biases initialization configuration to
its children.

>>> mlp.initialize()
>>> mlp.children[0].parameters[0].get_value()
array([[-0.38312393, -1.7718271 , 0.78074479, -0.74750996],

...
[1.32390416, -0.56375355, -0.24268186, -2.06008577]])

There are cases where we want to override the way the parent brick configured its children. For example in the case
where we want to initialize the weights of the first layer in an MLP slightly differently from the others. In order to do
so, we need to have a closer look at the life cycle of a brick. In the first two sections we already talked talked about
the three stages in the life cycle of a brick:

1. Construction of the brick

2. Allocation of its parameters

3. Initialization of its parameters

When dealing with children, the life cycle actually becomes a bit more complicated. (The full life cycle is doc-
umented as part of the Brick class.) Before allocating or initializing parameters, the parent brick calls its
push_allocation_config() and push_initialization_config()methods, which configure the chil-
dren. If you want to override the child configuration, you will need to call these methods manually, after which you
can override the child bricks’ configuration.

1.3. Building with bricks 11

Blocks Documentation, Release 0.2.0

>>> mlp = MLP(activations=[Logistic(name='sigmoid_0'),
... Logistic(name='sigmoid_1')], dims=[16, 8, 4],
... weights_init=IsotropicGaussian(), biases_init=Constant(0.01))
>>> y = mlp.apply(x)
>>> mlp.push_initialization_config()
>>> mlp.children[0].weights_init = Constant(0.01)
>>> mlp.initialize()
>>> mlp.children[0].parameters[0].get_value()
array([[0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01],

...
[0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01]])

1.4 Managing the computation graph

Theano constructs computation graphs of mathematical expressions. Bricks help you build these graphs, but they do
more than that. When you apply a brick to a Theano variable, it automatically annotates this Theano variable, in two
ways:

• It defines the role this variable plays in the computation graph e.g. it will label weight matrices and biases as
parameters, keep track of which variables were the in- and outputs of your bricks, and more.

• It constructs auxiliary variables. These are variables which are not outputs of your brick, but might still be of
interest. For example, if you are training a neural network, you might be interested to know the norm of your
weight matrices, so Blocks attaches these as auxiliary variables to the graph.

1.4.1 Using annotations

The ComputationGraph class provides an interface to this annotated graph. For example, let’s say we want to
train an autoencoder using weight decay on some of the layers.

>>> from theano import tensor
>>> x = tensor.matrix('features')
>>> from blocks.bricks import MLP, Logistic, Rectifier
>>> from blocks.initialization import IsotropicGaussian, Constant
>>> mlp = MLP(activations=[Rectifier()] * 2 + [Logistic()],
... dims=[784, 256, 128, 784],
... weights_init=IsotropicGaussian(), biases_init=Constant(0.01))
>>> y_hat = mlp.apply(x)
>>> from blocks.bricks.cost import BinaryCrossEntropy
>>> cost = BinaryCrossEntropy().apply(x, y_hat)

Our Theano computation graph is now defined by our loss, cost. We initialize the managed graph.

>>> from blocks.graph import ComputationGraph
>>> cg = ComputationGraph(cost)

We will find that there are many variables in this graph.

>>> print(cg.variables)
[TensorConstant{0}, b, W_norm, b_norm, features, TensorConstant{1.0}, ...]

To apply weight decay, we only need the weights matrices. These have been tagged with the WEIGHT role. So let’s
create a filter that finds these for us.

12 Chapter 1. Tutorials

Blocks Documentation, Release 0.2.0

>>> from blocks.filter import VariableFilter
>>> from blocks.roles import WEIGHT
>>> print(VariableFilter(roles=[WEIGHT])(cg.variables))
[W, W, W]

Note that the variables in cg.variables are ordered according to the topological order of their apply nodes. This
means that for a feedforward network the parameters will be returned in the order of our layers.

But let’s imagine for a second that we are actually dealing with a far more complicated network, and we want to apply
weight decay to the parameters of one layer in particular. To do that, we can filter the variables by the bricks that
created them.

>>> second_layer = mlp.linear_transformations[1]
>>> from blocks.roles import PARAMETER
>>> var_filter = VariableFilter(roles=[PARAMETER], bricks=[second_layer])
>>> print(var_filter(cg.variables))
[b, W]

Note: There are a variety of different roles that you can filter by. You might have noted already that there is a
hierarchy to many of them: Filtering by PARAMETER will also return variables of the child roles WEIGHT and BIAS.

We can also see what auxiliary variables our bricks have created. These might be of interest to monitor during training,
for example.

>>> print(cg.auxiliary_variables)
[W_norm, b_norm, W_norm, b_norm, W_norm, b_norm]

1.5 Live plotting

Note: The live plotting functionality is part of blocks-extras, which must be separately installed.

Plots often give a clearer image of your training progress than textual logs. This is why Blocks has a Plot extension
which allows you to plot the entries from the log that you are interested in.

We use Bokeh, an interactive visualization library, to perform the plotting. More specifically, we use the Bokeh Plot
Server. This is basically a light web server to which Blocks can send data, which then gets displayed in live plots
in your browser. The advantage of this approach is that you can even monitor your models’ training progress over a
network.

First, make sure that you installed the necessary requirements (see the installation instructions). To start the server
type

$ bokeh-server

This will start a server that is accesible on your computer at http://localhost:5006. If you want to make sure
that you can access your plots across a network (or the internet), you can listen on all IP addresses using

$ bokeh-server --ip 0.0.0.0

Now that your plotting server is up and running, start your main loop and pass the Plot extension. Consider this
example of fitting the function 𝑓(𝑥) = 𝑥𝑎 to 𝑓(𝑥) = 𝑥2.

1.5. Live plotting 13

http://bokeh.pydata.org/

Blocks Documentation, Release 0.2.0

>>> import theano
>>> a = theano.shared(3.)
>>> a.name = 'a'
>>> x = theano.tensor.scalar('data')
>>> cost = abs(x ** 2 - x ** a)
>>> cost.name = 'cost'

We train on a 150 random points in [0, 1].

>>> import numpy
>>> from fuel.streams import DataStream
>>> from fuel.datasets import IterableDataset
>>> data_stream = DataStream(IterableDataset(
... numpy.random.rand(150).astype(theano.config.floatX)))

Now let’s train with gradient descent and plot the results.

>>> from blocks.main_loop import MainLoop
>>> from blocks.algorithms import GradientDescent, Scale
>>> from blocks.extensions import FinishAfter
>>> from blocks.extensions.monitoring import TrainingDataMonitoring
>>> from blocks_extras.extensions.plot import Plot
>>> main_loop = MainLoop(
... model=None, data_stream=data_stream,
... algorithm=GradientDescent(cost=cost,
... parameters=[a],
... step_rule=Scale(learning_rate=0.1)),
... extensions=[FinishAfter(after_n_epochs=1),
... TrainingDataMonitoring([cost, a], after_batch=True),
... Plot('Plotting example', channels=[['cost'], ['a']],
... after_batch=True)])
>>> main_loop.run()

Tip: If you want to plot channels in the same figure, pass them as part of the same list. For example, [['cost',
'a']] would have plotted a single figure with both the cost and the estimate of the exponent.

Open up your browser and go to http://localhost:5006 to see your model cost go down in real-time!

14 Chapter 1. Tutorials

Blocks Documentation, Release 0.2.0

1.5. Live plotting 15

Blocks Documentation, Release 0.2.0

16 Chapter 1. Tutorials

CHAPTER 2

In-depth

2.1 Recurrent neural networks

Warning: This section is very much work in progress!

This tutorial explains recurrent bricks in Blocks. Readers unfamiliar with bricks should start with the bricks overview
first and continue with this tutorial afterwards.

2.1.1 Quickstart example

(1, 1, 1)

+

(1, 1, 1)

+

(1, 1, 1)

+(0, 0, 0) (1, 1, 1) (2, 2, 2) (3, 3, 3)

As a starting example, we’ll be building an RNN which accumulates the input it receives (figure above). The equation
describing that RNN is

h𝑡 = h𝑡−1 + x𝑡

17

Blocks Documentation, Release 0.2.0

>>> import numpy
>>> import theano
>>> from theano import tensor
>>> from blocks import initialization
>>> from blocks.bricks import Identity
>>> from blocks.bricks.recurrent import SimpleRecurrent
>>> x = tensor.tensor3('x')
>>> rnn = SimpleRecurrent(
... dim=3, activation=Identity(), weights_init=initialization.Identity())
>>> rnn.initialize()
>>> h = rnn.apply(x)
>>> f = theano.function([x], h)
>>> print(f(numpy.ones((3, 1, 3), dtype=theano.config.floatX)))
[[[1. 1. 1.]]

[[2. 2. 2.]]

[[3. 3. 3.]]]...

Let’s modify that example so that the RNN accumulates two times the input it receives (figure below).

(1, 1, 1)

+

 x2

(1, 1, 1)

+

 x2

(1, 1, 1)

+

 x2

(0, 0, 0) (2, 2, 2) (4, 4, 4) (6, 6, 6)

The equation for the RNN is

h𝑡 = h𝑡−1 + 2 · x𝑡

>>> from blocks.bricks import Linear
>>> doubler = Linear(
... input_dim=3, output_dim=3, weights_init=initialization.Identity(2),
... biases_init=initialization.Constant(0))
>>> doubler.initialize()
>>> h_doubler = rnn.apply(doubler.apply(x))
>>> f = theano.function([x], h_doubler)
>>> print(f(numpy.ones((3, 1, 3), dtype=theano.config.floatX)))
[[[2. 2. 2.]]

[[4. 4. 4.]]

[[6. 6. 6.]]]...

Note that in order to double the input we had to apply a bricks.Linear brick to x, even though

h𝑡 = 𝑓(Vh𝑡−1 +Wx𝑡 + b)

18 Chapter 2. In-depth

Blocks Documentation, Release 0.2.0

is what is usually thought of as the RNN equation. The reason why recurrent bricks work that way is it allows greater
flexibility and modularity: Wx𝑡 can be replaced by a whole neural network if we want.

2.1.2 Initial states

(1, 1, 1)

+

(1, 1, 1)

+

(1, 1, 1)

+(1, 1, 1) (2, 2, 2) (3, 3, 3) (4, 4, 4)

Recurrent models all have in common that their initial state has to be specified. However, in constructing our toy
examples, we omitted to pass h0 when applying the recurrent brick. What happened?

It turns out that recurrent bricks set that initial state to zero if it’s not passed as argument, which is a good sane default
in most cases, but we can just as well set it explicitly.

We will modify the starting example so that it accumulates the input it receives, but starting from one instead of zero
(figure above):

h𝑡 = h𝑡−1 + x𝑡, h0 = 1

>>> h0 = tensor.matrix('h0')
>>> h = rnn.apply(inputs=x, states=h0)
>>> f = theano.function([x, h0], h)
>>> print(f(numpy.ones((3, 1, 3), dtype=theano.config.floatX),
... numpy.ones((1, 3), dtype=theano.config.floatX)))
[[[2. 2. 2.]]

[[3. 3. 3.]]

[[4. 4. 4.]]]...

2.1.3 Reverse

Todo: Say something about the reverse argument

2.1.4 Getting initial states back

Todo: Say something about the return_initial_states argument

2.1. Recurrent neural networks 19

Blocks Documentation, Release 0.2.0

2.1.5 Iterate (or not)

The apply method of a recurrent brick accepts an iterate argument, which defaults to True. It is the reason for
passing above a tensor of one more dimension than described in recurrent.SimpleRecurrent.apply() -
the extra first dimension corresponds to the length of the sequence we are iterating over.

Setting iterate to False causes the apply method to compute only one step in the sequence.

This is very useful when you’re trying to combine multiple recurrent layers in a network.

Imagine you’d like to build a network with two recurrent layers. The second layer accumulates the output of the first
layer, while the first layer accumulates the input of the network and the output of the second layer (see figure below).

(1, 1, 1)

+

(1, 1, 1)

+

(1, 1, 1)

+(0, 0, 0) (1, 1, 1) (3, 3, 3) (8, 8, 8)

(0, 0, 0) + (1, 1, 1) + (4, 4, 4) + (12, 12, 12)

Here’s how you can create a recurrent brick that encapsulate the two layers:

>>> from blocks.bricks.recurrent import BaseRecurrent, recurrent
>>> class FeedbackRNN(BaseRecurrent):
... def __init__(self, dim, **kwargs):
... super(FeedbackRNN, self).__init__(**kwargs)
... self.dim = dim
... self.first_recurrent_layer = SimpleRecurrent(
... dim=self.dim, activation=Identity(), name='first_recurrent_layer',
... weights_init=initialization.Identity())
... self.second_recurrent_layer = SimpleRecurrent(
... dim=self.dim, activation=Identity(), name='second_recurrent_layer',
... weights_init=initialization.Identity())
... self.children = [self.first_recurrent_layer,
... self.second_recurrent_layer]
...
... @recurrent(sequences=['inputs'], contexts=[],
... states=['first_states', 'second_states'],
... outputs=['first_states', 'second_states'])
... def apply(self, inputs, first_states=None, second_states=None):
... first_h = self.first_recurrent_layer.apply(
... inputs=inputs, states=first_states + second_states, iterate=False)
... second_h = self.second_recurrent_layer.apply(
... inputs=first_h, states=second_states, iterate=False)
... return first_h, second_h

(continues on next page)

20 Chapter 2. In-depth

Blocks Documentation, Release 0.2.0

(continued from previous page)

...

... def get_dim(self, name):

... return (self.dim if name in ('inputs', 'first_states', 'second_states')

... else super(FeedbackRNN, self).get_dim(name))

...
>>> x = tensor.tensor3('x')
>>> feedback = FeedbackRNN(dim=3)
>>> feedback.initialize()
>>> first_h, second_h = feedback.apply(inputs=x)
>>> f = theano.function([x], [first_h, second_h])
>>> for states in f(numpy.ones((3, 1, 3), dtype=theano.config.floatX)):
... print(states)
[[[1. 1. 1.]]

[[3. 3. 3.]]

[[8. 8. 8.]]]
[[[1. 1. 1.]]

[[4. 4. 4.]]

[[12. 12. 12.]]]...

There’s a lot of things going on here!

We defined a recurrent brick class called FeedbackRNN whose constructor initializes two bricks.recurrent.
SimpleRecurrent bricks as its children.

The class has a get_dim method whose purpose is to tell the dimensionality of each input to the brick’s apply
method.

The core of the class resides in its apply method. The @recurrent decorator is used to specify which of the
arguments to the method are sequences to iterate over, what is returned when the method is called and which of those
returned values correspond to recurrent states. Its relationship with the inputs and outputs arguments to the
@application decorator is as follows:

• outputs, like in @application, defines everything that’s returned by apply, including recurrent outputs

• states is a subset of outputs that corresponds to recurrent outputs, which means that the union of
sequences and states forms what would be inputs in @application

Notice how no call to theano.scan() is being made. This is because the implementation of apply is responsible
for computing one time step of the recurrent application of the brick. It takes states at time 𝑡 − 1 and inputs at time 𝑡
and produces the output for time 𝑡. The rest is all handled by the @recurrent decorator behind the scenes.

This is why the iterate argument of the apply method is so useful: it allows to combine multiple recurrent brick
applications within another apply implementation.

Tip: When looking at a recurrent brick’s documentation, keep in mind that the parameters to its apply method are
explained in terms of a single iteration, i.e. with the assumption that iterate = False.

2.1.6 See Also

• LSTM implementation: bricks.recurrent.LSTM

• GRU implementation: bricks.recurrent.GatedRecurrent

2.1. Recurrent neural networks 21

https://theano.readthedocs.io/en/latest/library/scan.html#theano.scan

Blocks Documentation, Release 0.2.0

• Bidirectional RNNs: bricks.recurrent.Bidirectional

• Deep recurrent networks (stacked RNNs): bricks.recurrent.RecurrentStack

2.2 Configuration

Blocks allows module-wide configuration values to be set using a YAML configuration file and environment variables.
Environment variables override the configuration file which in its turn overrides the defaults.

The configuration is read from ~/.blocksrc if it exists. A custom configuration file can be used by setting the
BLOCKS_CONFIG environment variable. A configuration file is of the form:

data_path: /home/user/datasets

If a setting is not configured and does not provide a default, a ConfigurationError is raised when it is accessed.

Configuration values can be accessed as attributes of blocks.config.config.

>>> from blocks.config import config
>>> print(config.default_seed)
1

The following configurations are supported:

default_seed
The seed used when initializing random number generators (RNGs) such as NumPy RandomState objects as
well as Theano’s MRG_RandomStreams objects. Must be an integer. By default this is set to 1.

recursion_limit
The recursion max depth limit used in MainLoop as well as in other situations when deep recursion is required.
The most notable example of such a situation is pickling or unpickling a complex structure with lots of objects,
such as a big Theano computation graph.

profile, BLOCKS_PROFILE
A boolean value which determines whether to print profiling information at the end of a call to MainLoop.
run().

log_backend
The backend to use for logging experiments. Defaults to python, which stores the log as a Python object in
memory. The other option is sqlite.

sqlite_database, BLOCKS_SQLITEDB
The SQLite database file to use.

max_blob_size
The maximum size of an object to store in an SQLite database in bytes. Objects beyond this size will trigger a
warning. Defaults to 4 kilobyte.

temp_dir, BLOCKS_TEMPDIR
The directory in which Blocks will create temporary files. If unspecified, the platform-dependent default chosen
by the Python tempfile module is used.

class blocks.config.ConfigurationError
Bases: exceptions.Exception

Error raised when a configuration value is requested but not set.

22 Chapter 2. In-depth

http://yaml.org/
https://en.wikipedia.org/wiki/Environment_variable
https://docs.scipy.org/doc/numpy/reference/generated/numpy.random.RandomState.html#numpy.random.RandomState
https://theano.readthedocs.io/en/latest/library/sandbox/rng_mrg.html#theano.sandbox.rng_mrg.MRG_RandomStreams

Blocks Documentation, Release 0.2.0

2.3 Create your own brick

This tutorial explains how to create a custom brick, which is useful if you want to group several specific operations
(which can be bricks themselves) into a single one so that you can easily reuse it.

The first part of this tutorial lists the requirements and optional components that a brick should/can implement while
the second part describes the construction of a simple toy brick.

This tutorial assumes that you are already familiar with bricks and how to use them from a user point of view.

2.3.1 Bricks ingredients and recipe

All the bricks in Blocks inherit directly or indirectly from the Brick. There is already a rich inheritance hierarchy
of bricks implemented in Blocks and thus, you should consider which brick level to inherit from. Bear in mind that
multiple inheritance is often possible and advocated whenever it makes sense.

Here are examples of possible bricks to inherit from:

• Sequence: a sequence of bricks.

• Initializable: a brick that defines a same initialization scheme (weights and biases) for all its children.

• Feedforward: declares an interface for bricks with one input and one output.

• Linear: a linear transformation with optional bias. Inherits from Initializable and Feedforward.

• BaseRecurrent: the base class for recurrent bricks. Check the tutorial about rnns for more information.

• many more!

Let’s say that you want to create a brick from scratch, simply inheriting from Brick, then you should consider
overwriting the following methods (strictly speaking, all these methods are optional, check the docstring of Brick
for a precise description of the life-cycle of a brick):

• Brick.__init__(): you should pass by argument the attributes of your brick. It is also in this method that
you should create the potential “children bricks” that belongs to your brick (in that case, you have to pass the
children bricks to super().__init__). The initialization of the attributes can be lazy as described later in
the tutorial.

• apply(): you need to implement a method that actually implements the operation of the brick, taking as
arguments the inputs of the brick and returning its outputs. It can have any name and for simple bricks is often
named apply. You should decorate it with the application() decorator, as explained in the next section.
If you design a recurrent brick, you should instead decorate it with the recurrent() decorator as explained
in the tutorial about rnns.

• Brick._allocate(): you should implement this method to allocate the shared variables (often representing
parameters) of the brick. In Blocks, by convention, the built-in bricks allocate their shared variables with nan
values and we recommend you to do the same.

• Brick._initialize(): you should implement this method to initialize the shared variables of your brick.
This method is called after the allocation.

• Brick._push_allocation_config(): you should consider overwriting this method if you want to
change configuration of the children bricks before they allocate their parameters.

• Brick._push_initialization_config(): you should consider overwriting this method if you want
to change the initialization schemes of the children before they get initialized. If the children bricks need
to be initialized with the same scheme, then you should inherit your brick from Initializable, which
automatically pushes the initialization schemes of your brick (provided as arguments weights_init and
biases_init of the constructor) to the children bricks.

2.3. Create your own brick 23

Blocks Documentation, Release 0.2.0

• get_dim(): implementing this function is useful if you want to provide a simple way to get the dimensions
of the inputs and outputs of the brick.

If you want to inherit from a specific brick, check its docstring to identify the particular methods to overwrite and the
attributes to define.

Application methods

The apply() method listed above is probably the most important method of your brick because it is the one that
actually takes theano tensors as inputs, process them and return output tensors. You should decorate it with the
application() decorator, which names variables and register auxiliary variables of the operation you implement.
It is used as follows:

>>> class Foo(Brick):
... @application(inputs=['input1', 'input2'], outputs=['output'])
... def apply(self, input1, input2):
... y = input1 + input2
... return y

In the case above, it will automatically rename the theano tensor variable input1 to Foo_apply_input1,
input2 to Foo_apply_input2 and the output of the method to foo_apply_output. It will also add roles
and names to the tag attributes of the variables, as shown below:

>>> foo = Foo()
>>> i1 = tensor.matrix('i1')
>>> i2 = tensor.matrix('i2')
>>> y = foo.apply(i1, i2)
>>> theano.printing.debugprint(y)
Elemwise{identity} [id A] 'foo_apply_output'
|Elemwise{add,no_inplace} [id B] ''
|Elemwise{identity} [id C] 'foo_apply_input1'
| |i1 [id D]
|Elemwise{identity} [id E] 'foo_apply_input2'

|i2 [id F]
>>> print(y.name)
foo_apply_output
>>> print(y.tag.name)
output
>>> print(y.tag.roles)
[OUTPUT]

Under the hood, the @application decorator creates an object of class Application, named apply, which
becomes an attribute of the brick class (by opposition to class instances):

>>> print(type(Foo.apply))
<class 'blocks.bricks.base.Application'>

Application properties

In the previous examples, the names of the arguments of the application methods were directly provided as arguments
of the @application decorator because they were common to all instances of the classes. On the other hand, if
these names need to be defined differently for particular instances of the class, you should use the apply.property
decorator. Let’s say that we want to name our attribute inputs with the string self.fancy_name, then we should
write:

24 Chapter 2. In-depth

Blocks Documentation, Release 0.2.0

>>> class Foo(Brick):
... def __init__(self, fancy_name):
... self.fancy_name = fancy_name
... @application
... def apply(self, input)
... ...
... @apply.property('inputs')
... def apply_inputs(self):
... # Note that you can use any python code to define the name
... return self.fancy_name

Using application calls

You may want to save particular variables defined in the apply method in order to use them later, for example to
monitor them during training. For that, you need to pass application_call as argument of your apply function
and use the add_auxiliary_variable function to register your variables of interest, as shown in this example:

>>> class Foo(Brick):
... @application
... def apply(self, x, application_call):
... application_call.add_auxiliary_variable(x.mean())
... return x + 1

add_auxiliary_variable annotates the variable x.mean() as an auxiliary variable and you can thus later
retrieve it with the computational graph ComputationGraph and filters VariableFilter. In the case of the
Foo Brick defined above, we retrieve x.mean() as follows:

>>> from blocks.graph import ComputationGraph
>>> x = tensor.fmatrix('x')
>>> y = Foo().apply(x)
>>> cg = ComputationGraph(y)
>>> print(cg.auxiliary_variables)
[mean]

Lazy initialization

Instead of forcing the user to provide all the brick attributes as arguments to the Brick.__init__() method, you
could let him/her specify them later, after the creation of the brick. To enable this mechanism, called lazy initialization,
you need to decorate the constructor with the lazy() decorator:

>>> @lazy(allocation=['attr1', 'attr2'])
... def __init__(self, attr1, attr1)
... ...

This allows the user to specify attr1 and attr2 after the creation of the brick. For example, the following
ChainOfTwoFeedforward brick is composed of two Feedforward bricks for which you do not need to specify
the input_dim of brick2 directly at its creation.

>>> class ChainOfTwoFeedforward(Feedforward):
... """Two sequential Feedforward bricks."""
... def __init__(self, brick1, brick2, **kwargs):
... self.brick1 = brick1
... self.brick2 = brick2

(continues on next page)

2.3. Create your own brick 25

Blocks Documentation, Release 0.2.0

(continued from previous page)

... children = [self.brick1, self.brick2]

... kwargs.setdefault('children', []).extend(children)

... super(Feedforward, self).__init__(**kwargs)

...

... @property

... def input_dim(self):

... return self.brick1.input_dim

...

... @input_dim.setter

... def input_dim(self, value):

... self.brick1.input_dim = value

...

... @property

... def output_dim(self):

... return self.brick2.output_dim

...

... @output_dim.setter

... def output_dim(self, value):

... self.brick2.output_dim = value

...

... def _push_allocation_config(self):

... self.brick2.input_dim = self.brick1.get_dim('output')

...

... @application

... def apply(self, x):

... return self.brick2.apply(self.brick1.apply(x))

Note how get_dim is used to retrieve the input_dim of brick1. You can now use a
ChainOfTwoFeedforward brick as follows.

>>> brick1 = Linear(input_dim=3, output_dim=2, use_bias=False,
... weights_init=Constant(2))
>>> brick2 = Linear(output_dim=4, use_bias=False, weights_init=Constant(2))
>>>
>>> seq = ChainOfTwoFeedforward(brick1, brick2)
>>> seq.initialize()
>>> brick2.input_dim
2

2.3.2 Example

For the sake of the tutorial, let’s consider a toy operation that takes two batch inputs and multiplies them respectively
by two matrices, resulting in two outputs.

The first step is to identify which brick to inherit from. Clearly we are implementing a variant of the Linear brick.
Contrary to Linear, ours has two inputs and two outputs, which means that we can not inherit from Feedforward,
which requires a single input and a single output. Our brick will have to manage two shared variables representing
the matrices to multiply the inputs with. As we want to initialize them with the same scheme, we should inherit from
Initializable, which automatically push the initialization schemes to the children. The initialization schemes
are provided as arguments weights_init and biases_init of the constructor of our brick (in the kwargs).

>>> class ParallelLinear(Initializable):
... r"""Two linear transformations without biases.
...
... Brick which applies two linear (affine) transformations by

(continues on next page)

26 Chapter 2. In-depth

Blocks Documentation, Release 0.2.0

(continued from previous page)

... multiplying its two inputs with two weight matrices, resulting in

... two outputs.

... The two inputs, weights and outputs can have different dimensions.

...

... Parameters

... ----------

... input_dim{1,2} : int

... The dimensions of the two inputs.

... output_dim{1,2} : int

... The dimension of the two outputs.

... """

... @lazy(allocation=['input_dim1', 'input_dim2',

... 'output_dim1', 'output_dim2'])

... def __init__(self, input_dim1, input_dim2, output_dim1, output_dim2,

... **kwargs):

... super(ParallelLinear, self).__init__(**kwargs)

... self.input_dim1 = input_dim1

... self.input_dim2 = input_dim2

... self.output_dim1 = output_dim1

... self.output_dim2 = output_dim2

...

... def __allocate(self, input_dim, output_dim, number):

... W = shared_floatx_nans((input_dim, output_dim),

... name='W'+number)

... add_role(W, WEIGHT)

... self.parameters.append(W)

... self.add_auxiliary_variable(W.norm(2), name='W'+number+'_norm')

...

... def _allocate(self):

... self.__allocate(self.input_dim1, self.output_dim1, '1')

... self.__allocate(self.input_dim2, self.output_dim2, '2')

...

... def _initialize(self):

... W1, W2 = self.parameters

... self.weights_init.initialize(W1, self.rng)

... self.weights_init.initialize(W2, self.rng)

...

... @application(inputs=['input1_', 'input2_'], outputs=['output1',

... 'output2'])

... def apply(self, input1_, input2_):

... """Apply the two linear transformations.

...

... Parameters

... ----------

... input{1,2}_ : :class:`~tensor.TensorVariable`

... The two inputs on which to apply the transformations

...

... Returns

... -------

... output{1,2} : :class:`~tensor.TensorVariable`

... The two inputs multiplied by their respective matrices

...

... """

... W1, W2 = self.parameters

... output1 = tensor.dot(input1_, W1)

... output2 = tensor.dot(input2_, W2)

... return output1, output2
(continues on next page)

2.3. Create your own brick 27

Blocks Documentation, Release 0.2.0

(continued from previous page)

...

... def get_dim(self, name):

... if name == 'input1_':

... return self.input_dim1

... if name == 'input2_':

... return self.input_dim2

... if name == 'output1':

... return self.output_dim1

... if name == 'output2':

... return self.output_dim2

... super(ParallelLinear, self).get_dim(name)

You can test the brick as follows:

>>> input_dim1, input_dim2, output_dim1, output_dim2 = 10, 5, 2, 1
>>> batch_size1, batch_size2 = 1, 2
>>>
>>> x1_mat = 3 * numpy.ones((batch_size1, input_dim1),
... dtype=theano.config.floatX)
>>> x2_mat = 4 * numpy.ones((batch_size2, input_dim2),
... dtype=theano.config.floatX)
>>>
>>> x1 = theano.tensor.matrix('x1')
>>> x2 = theano.tensor.matrix('x2')
>>> parallel1 = ParallelLinear(input_dim1, input_dim2, output_dim1,
... output_dim2, weights_init=Constant(2))
>>> parallel1.initialize()
>>> output1, output2 = parallel1.apply(x1, x2)
>>>
>>> f1 = theano.function([x1, x2], [output1, output2])
>>> f1(x1_mat, x2_mat)
[array([[60., 60.]]...), array([[40.],

[40.]]...)]

One can also create the brick using Linear children bricks, which

>>> class ParallelLinear2(Initializable):
... def __init__(self, input_dim1, input_dim2, output_dim1, output_dim2,
... **kwargs):
... self.linear1 = Linear(input_dim1, output_dim1,
... use_bias=False, **kwargs)
... self.linear2 = Linear(input_dim2, output_dim2,
... use_bias=False, **kwargs)
... children = [self.linear1, self.linear2]
... kwargs.setdefault('children', []).extend(children)
... super(ParallelLinear2, self).__init__(**kwargs)
...
... @application(inputs=['input1_', 'input2_'], outputs=['output1',
... 'output2'])
... def apply(self, input1_, input2_):
... output1 = self.linear1.apply(input1_)
... output2 = self.linear2.apply(input2_)
... return output1, output2
...
... def get_dim(self, name):
... if name in ['input1_', 'output1']:
... return self.linear1.get_dim(name)

(continues on next page)

28 Chapter 2. In-depth

Blocks Documentation, Release 0.2.0

(continued from previous page)

... if name in ['input2_', 'output2']:

... return self.linear2.get_dim(name)

... super(ParallelLinear2, self).get_dim(name)

You can test this new version as follows:

>>> parallel2 = ParallelLinear2(input_dim1, input_dim2, output_dim1,
... output_dim2, weights_init=Constant(2))
>>> parallel2.initialize()
>>> # The weights_init initialization scheme is pushed to the children
>>> # bricks. We can verify it as follows.
>>> w = parallel2.weights_init
>>> w0 = parallel2.children[0].weights_init
>>> w1 = parallel2.children[1].weights_init
>>> print(w == w0 == w1)
True
>>>
>>> output1, output2 = parallel2.apply(x1, x2)
>>>
>>> f2 = theano.function([x1, x2], [output1, output2])
>>> f2(x1_mat, x2_mat)
[array([[60., 60.]]...), array([[40.],

[40.]]...)]

Actually it was not even necessary to create a custom brick for this particular operation as Blocks has a brick, called
:class:Parallel, which applies the same prototype brick to several inputs. In our case the prototype brick we want
to apply to our two inputs is a :class:Linear brick with no bias:

>>> parallel3 = Parallel(
... prototype=Linear(use_bias=False),
... input_names=['input1_', 'input2_'],
... input_dims=[input_dim1, input_dim2],
... output_dims=[output_dim1, output_dim2], weights_init=Constant(2))
>>> parallel3.initialize()
>>>
>>> output1, output2 = parallel3.apply(x1, x2)
>>>
>>> f3 = theano.function([x1, x2], [output1, output2])
>>> f3(x1_mat, x2_mat)
[array([[60., 60.]]...), array([[40.],

[40.]]...)]

2.4 Serialization

The ability to save models and their training progress is important for two reasons:

1. Neural nets can take days or even weeks to train. If training is interrupted during this time, it is important that
we can continue from where we left off.

2. We need the ability to save models in order to share them with others or save them for later use or inspection.

These two goals come with differing requirements, which is why Blocks implements a custom serialization approach
that tries to meet both needs in the dump() and load() functions.

2.4. Serialization 29

Blocks Documentation, Release 0.2.0

2.4.1 Pickling the training loop

Warning: Due to the complexity of serializing a Python objects as large as the main loop, (un)pickling will
sometimes fail because it exceeds the default maximum recursion depth set in Python. Increasing the limit should
fix the problem.

When checkpointing, Blocks pickles the entire main loop, effectively serializing the exact state of the model as
well as the training state (iteration state, extensions, etc.). Technically there are some difficulties with this approach:

• Some Python objects cannot be pickled e.g. file handles, generators, dynamically generated classes, nested
classes, etc.

• The pickling of Theano objects can be problematic.

• We do not want to serialize the training data kept in memory, since this can be prohibitively large.

Blocks addresses these problems by avoiding certain data structures such as generators and nested classes (see the
developer guidelines) and overriding the pickling behaviour of some objects, making the pickling of the main loop
possible.

However, pickling can be problematic for long-term storage of models, because

• Unpickling depends on the libraries used being unchanged. This means that if you updated Blocks, Theano, etc.
to a new version where the interface has changed, loading your training progress could fail.

• The unpickling of Theano objects can be problematic, especially when transferring from GPU to CPU or vice
versa.

• It is not possible on Python 2 to unpickle objects that were pickled in Python 3.

2.4.2 Parameter saving

This is why Blocks intercepts the pickling of all Theano shared variables (which includes the parameters), and stores
them as separate NPY files. The resulting file is a ZIP archive that contains the pickled main loop as well as a collection
of NumPy arrays. The NumPy arrays (and hence parameters) in the ZIP file can be read, across platforms, using the
numpy.load() function, making it possible to inspect and load parameter values, even if the unpickling of the main
loop fails.

2.5 API Reference

Warning: This API reference is currently nothing but a dump of docstrings, ordered alphabetically.

The API reference contains detailed descriptions of the different end-user classes, functions, methods, etc. you will
need to work with Blocks.

Note: This API reference only contains end-user documentation. If you are looking to hack away at Blocks’ internals,
you will find more detailed comments in the source code.

30 Chapter 2. In-depth

http://docs.scipy.org/doc/numpy-dev/neps/npy-format.html
https://docs.scipy.org/doc/numpy/reference/generated/numpy.load.html#numpy.load

Blocks Documentation, Release 0.2.0

2.5.1 Algorithms

class blocks.algorithms.AdaDelta(decay_rate=0.95, epsilon=1e-06)
Bases: blocks.algorithms.StepRule

Adapts the step size over time using only first order information.

Parameters

• decay_rate (float, optional) – Decay rate in [0, 1]. Defaults to 0.95.

• epsilon (float, optional) – Stabilizing constant for RMS. Defaults to 1e-6.

Notes

For more information, see [ADADELTA].

compute_step(parameter, previous_step)
Build a Theano expression for the step for a parameter.

This method is called by default implementation of compute_steps(), it relieves from writing a loop
each time.

Parameters

• parameter (TensorSharedVariable) – The parameter.

• previous_step (TensorVariable) – Some quantity related to the gradient of the
cost with respect to the parameter, either the gradient itself or a step in a related direction.

Returns

• step (Variable) – Theano variable for the step to take.

• updates (list) – A list of tuples representing updates to be performed. This is useful for
stateful rules such as Momentum which need to update shared variables after itetations.

class blocks.algorithms.AdaGrad(learning_rate=0.002, epsilon=1e-06)
Bases: blocks.algorithms.StepRule

Implements the AdaGrad learning rule.

Parameters

• learning_rate (float, optional) – Step size. Default value is set to 0.0002.

• epsilon (float, optional) – Stabilizing constant for one over root of sum of
squares. Defaults to 1e-6.

Notes

For more information, see [ADAGRAD].

compute_step(parameter, previous_step)
Build a Theano expression for the step for a parameter.

This method is called by default implementation of compute_steps(), it relieves from writing a loop
each time.

Parameters

• parameter (TensorSharedVariable) – The parameter.

2.5. API Reference 31

https://docs.python.org/3.4/library/functions.html#float
https://docs.python.org/3.4/library/functions.html#float
https://docs.python.org/3.4/library/functions.html#float
https://docs.python.org/3.4/library/functions.html#float

Blocks Documentation, Release 0.2.0

• previous_step (TensorVariable) – Some quantity related to the gradient of the
cost with respect to the parameter, either the gradient itself or a step in a related direction.

Returns

• step (Variable) – Theano variable for the step to take.

• updates (list) – A list of tuples representing updates to be performed. This is useful for
stateful rules such as Momentum which need to update shared variables after itetations.

class blocks.algorithms.Adam(learning_rate=0.002, beta1=0.9, beta2=0.999, epsilon=1e-08, de-
cay_factor=1)

Bases: blocks.algorithms.StepRule

Adam optimizer as described in [King2014].

Parameters

• learning_rate (float, optional) – Step size. Default value is set to 0.002.

• beta1 (float, optional) – Exponential decay rate for the first moment estimates.
Default value is set to 0.9.

• beta2 (float, optional) – Exponential decay rate for the second moment estimates.
Default value is set to 0.999.

• epsilon (float, optional) – Default value is set to 1e-8.

• decay_factor (float, optional) – Default value is set to 1.

compute_step(parameter, previous_step)
Build a Theano expression for the step for a parameter.

This method is called by default implementation of compute_steps(), it relieves from writing a loop
each time.

Parameters

• parameter (TensorSharedVariable) – The parameter.

• previous_step (TensorVariable) – Some quantity related to the gradient of the
cost with respect to the parameter, either the gradient itself or a step in a related direction.

Returns

• step (Variable) – Theano variable for the step to take.

• updates (list) – A list of tuples representing updates to be performed. This is useful for
stateful rules such as Momentum which need to update shared variables after itetations.

class blocks.algorithms.BasicMomentum(momentum=0.0)
Bases: blocks.algorithms.StepRule

Accumulates step with exponential discount.

Parameters momentum (float, optional) – The momentum coefficient. Defaults to 0.

Notes

This step rule is intended to be used in conjunction with another step rule, _e.g._ Scale. For an all-batteries-
included experience, look at Momentum.

compute_step(parameter, previous_step)
Build a Theano expression for the step for a parameter.

32 Chapter 2. In-depth

https://docs.python.org/3.4/library/functions.html#float
https://docs.python.org/3.4/library/functions.html#float
https://docs.python.org/3.4/library/functions.html#float
https://docs.python.org/3.4/library/functions.html#float
https://docs.python.org/3.4/library/functions.html#float
https://docs.python.org/3.4/library/functions.html#float

Blocks Documentation, Release 0.2.0

This method is called by default implementation of compute_steps(), it relieves from writing a loop
each time.

Parameters

• parameter (TensorSharedVariable) – The parameter.

• previous_step (TensorVariable) – Some quantity related to the gradient of the
cost with respect to the parameter, either the gradient itself or a step in a related direction.

Returns

• step (Variable) – Theano variable for the step to take.

• updates (list) – A list of tuples representing updates to be performed. This is useful for
stateful rules such as Momentum which need to update shared variables after itetations.

class blocks.algorithms.BasicRMSProp(decay_rate=0.9, max_scaling=100000.0)
Bases: blocks.algorithms.StepRule

Scales the step size by a running average of the recent step norms.

Parameters

• decay_rate (float, optional) – How fast the running average decays, value in [0,
1] (lower is faster). Defaults to 0.9.

• max_scaling (float, optional) – Maximum scaling of the step size, in case the
running average is really small. Needs to be greater than 0. Defaults to 1e5.

Notes

This step rule is intended to be used in conjunction with another step rule, _e.g._ Scale. For an all-batteries-
included experience, look at RMSProp.

In general, this step rule should be used _before_ other step rules, because it has normalization properties that
may undo their work. For instance, it should be applied first when used in conjunction with Scale.

For more information, see [Hint2014].

compute_step(parameter, previous_step)
Build a Theano expression for the step for a parameter.

This method is called by default implementation of compute_steps(), it relieves from writing a loop
each time.

Parameters

• parameter (TensorSharedVariable) – The parameter.

• previous_step (TensorVariable) – Some quantity related to the gradient of the
cost with respect to the parameter, either the gradient itself or a step in a related direction.

Returns

• step (Variable) – Theano variable for the step to take.

• updates (list) – A list of tuples representing updates to be performed. This is useful for
stateful rules such as Momentum which need to update shared variables after itetations.

class blocks.algorithms.CompositeRule(components)
Bases: blocks.algorithms.StepRule

Chains several step rules.

2.5. API Reference 33

https://docs.python.org/3.4/library/functions.html#float
https://docs.python.org/3.4/library/functions.html#float

Blocks Documentation, Release 0.2.0

Parameters components (list of StepRule) – The learning rules to be chained. The rules will
be applied in the order as given.

compute_steps(previous_steps)
Build a Theano expression for steps for all parameters.

Override this method if you want to process the steps with respect to all parameters as a whole, not
parameter-wise.

Parameters previous_steps (OrderedDict) – An OrderedDict of
(TensorSharedVariable TensorVariable) pairs. The keys are the parame-
ters being trained, the values are the expressions for quantities related to gradients of the cost
with respect to the parameters, either the gradients themselves or steps in related directions.

Returns

• steps (OrderedDict) – A dictionary of the proposed steps in the same form as previ-
ous_steps.

• updates (list) – A list of tuples representing updates to be performed.

class blocks.algorithms.GradientDescent(cost=None, parameters=None, step_rule=None,
gradients=None, known_grads=None, con-
sider_constant=None, **kwargs)

Bases: blocks.algorithms.UpdatesAlgorithm

A base class for all gradient descent algorithms.

By “gradient descent” we mean a training algorithm of the following form:

for batch in data:
steps = step_rule.compute_steps(parameters,

gradients_wr_parameters)
for parameter in parameters:

parameter -= steps[parameter]

Note, that the step is subtracted, not added! This is done in order to make step rule chaining possible.

Parameters

• cost (TensorVariable, optional) – The objective to be minimized. Unused if gradi-
ents is specified.

• parameters (list of TensorSharedVariable, optional) – The parameters to be
tuned. If not provided, inferred from the keys of gradients (in which case gradients must be
an OrderedDict).

• step_rule (instance of StepRule, optional) – An object encapsulating most of the
algorithm’s logic. Its compute_steps method is called to get Theano expression for steps.
Note, that the step rule might have a state, e.g. to remember a weighted sum of gradients
from previous steps like it is done in gradient descent with momentum. If None, an instance
of Scale is created.

• gradients (OrderedDict or list of 2-tuples, optional) – A dictio-
nary mapping a parameter to an expression for the cost’s gradient with respect to the pa-
rameter, or equivalently, a list of (parameter, gradient) tuples. If None, the gradient are
taken automatically using theano.gradient.grad().

• known_grads (dict, optional) – A passthrough to theano.tensor.grad’s
known_grads argument. Useful when you know the [approximate] gradients of some
sub-expressions and would like Theano to use that information to compute parameter
gradients. Only makes sense when gradients is None.

34 Chapter 2. In-depth

https://theano.readthedocs.io/en/latest/library/gradient.html#theano.gradient.grad
https://docs.python.org/3.4/library/stdtypes.html#dict

Blocks Documentation, Release 0.2.0

• consider_constant (list, optional) – A passthrough to theano.tensor.grad’s
consider_constant argument. A list of expressions through which gradients will not be
backpropagated. Only makes sense when gradients is None.

gradients
OrderedDict – The gradient dictionary.

step_rule
instance of StepRule – The step rule.

Notes

Changing updates attribute or calling add_updates after the initialize method is called will have no effect.

If a cost and parameters are provided, gradients are taken immediately upon construction, and changes to these
attributes after construction will have no effect.

gradients must be an OrderedDict if parameters is unspecified because ordinary dictionaries have an unpre-
dictable iteration order due to hash randomization (which is enabled by default since versions 2.7.3 and 3.2.3
of Python). This source of variability, when combined with Theano’s heuristic graph optimizations, can cause
serious reproducibility issues.

class blocks.algorithms.Momentum(learning_rate=1.0, momentum=0.0)
Bases: blocks.algorithms.CompositeRule

Accumulates step with exponential discount.

Combines BasicMomentum and Scale to form the usual momentum step rule.

Parameters

• learning_rate (float, optional) – The learning rate by which the previous step
scaled. Defaults to 1.

• momentum (float, optional) – The momentum coefficient. Defaults to 0.

learning_rate
SharedVariable – A variable for learning rate.

momentum
SharedVariable – A variable for momentum.

See also:

SharedVariableModifier

class blocks.algorithms.RMSProp(learning_rate=1.0, decay_rate=0.9, max_scaling=100000.0)
Bases: blocks.algorithms.CompositeRule

Scales the step size by a running average of the recent step norms.

Combines BasicRMSProp and Scale to form the step rule described in [Hint2014].

Parameters

• learning_rate (float, optional) – The learning rate by which the previous step
scaled. Defaults to 1.

• decay_rate (float, optional) – How fast the running average decays (lower is
faster). Defaults to 0.9.

• max_scaling (float, optional) – Maximum scaling of the step size, in case the
running average is really small. Defaults to 1e5.

2.5. API Reference 35

https://docs.python.org/3.4/library/stdtypes.html#list
https://docs.python.org/3.4/library/functions.html#float
https://docs.python.org/3.4/library/functions.html#float
https://docs.python.org/3.4/library/functions.html#float
https://docs.python.org/3.4/library/functions.html#float
https://docs.python.org/3.4/library/functions.html#float

Blocks Documentation, Release 0.2.0

learning_rate
SharedVariable – A variable for learning rate.

decay_rate
SharedVariable – A variable for decay rate.

See also:

SharedVariableModifier

class blocks.algorithms.RemoveNotFinite(scaler=1)
Bases: blocks.algorithms.StepRule

A step rule that skips steps with non-finite elements.

Replaces a step (the parameter update of a single shared variable) which contains non-finite elements (such as
inf or NaN) with a step rescaling the parameters.

Parameters scaler (float, optional) – The scaling applied to the parameter in case the
step contains non-finite elements. Defaults to 1, which means that parameters will not be
changed.

Notes

This rule should be applied last!

This trick was originally used in the GroundHog framework.

compute_step(parameter, previous_step)
Build a Theano expression for the step for a parameter.

This method is called by default implementation of compute_steps(), it relieves from writing a loop
each time.

Parameters

• parameter (TensorSharedVariable) – The parameter.

• previous_step (TensorVariable) – Some quantity related to the gradient of the
cost with respect to the parameter, either the gradient itself or a step in a related direction.

Returns

• step (Variable) – Theano variable for the step to take.

• updates (list) – A list of tuples representing updates to be performed. This is useful for
stateful rules such as Momentum which need to update shared variables after itetations.

class blocks.algorithms.Restrict(step_rule, variables)
Bases: blocks.algorithms.StepRule

Applies a given StepRule only to certain variables.

Example applications include clipping steps on only certain parameters, or scaling a certain kind of parameter’s
updates (e.g. adding an additional scalar multiplier to the steps taken on convolutional filters).

Parameters

• step_rule (StepRule) – The StepRule to be applied on the given variables.

• variables (iterable) – A collection of Theano variables on which to apply step_rule.
Variables not appearing in this collection will not have step_rule applied to them.

36 Chapter 2. In-depth

https://docs.python.org/3.4/library/functions.html#float
https://github.com/lisa-groundhog/GroundHog

Blocks Documentation, Release 0.2.0

compute_steps(previous_steps)
Build a Theano expression for steps for all parameters.

Override this method if you want to process the steps with respect to all parameters as a whole, not
parameter-wise.

Parameters previous_steps (OrderedDict) – An OrderedDict of
(TensorSharedVariable TensorVariable) pairs. The keys are the parame-
ters being trained, the values are the expressions for quantities related to gradients of the cost
with respect to the parameters, either the gradients themselves or steps in related directions.

Returns

• steps (OrderedDict) – A dictionary of the proposed steps in the same form as previ-
ous_steps.

• updates (list) – A list of tuples representing updates to be performed.

class blocks.algorithms.Scale(learning_rate=1.0)
Bases: blocks.algorithms.StepRule

A step in the direction proportional to the previous step.

If used in GradientDescent alone, this step rule implements steepest descent.

Parameters learning_rate (float) – The learning rate by which the previous step is multi-
plied to produce the step.

learning_rate
TensorSharedVariable – The shared variable storing the learning rate used.

compute_step(parameter, previous_step)
Build a Theano expression for the step for a parameter.

This method is called by default implementation of compute_steps(), it relieves from writing a loop
each time.

Parameters

• parameter (TensorSharedVariable) – The parameter.

• previous_step (TensorVariable) – Some quantity related to the gradient of the
cost with respect to the parameter, either the gradient itself or a step in a related direction.

Returns

• step (Variable) – Theano variable for the step to take.

• updates (list) – A list of tuples representing updates to be performed. This is useful for
stateful rules such as Momentum which need to update shared variables after itetations.

class blocks.algorithms.StepClipping(threshold=None)
Bases: blocks.algorithms.StepRule

Rescales an entire step if its L2 norm exceeds a threshold.

When the previous steps are the gradients, this step rule performs gradient clipping.

Parameters threshold (float, optional) – The maximum permitted L2 norm for the step.
The step will be rescaled to be not higher than this quanity. If None, no rescaling will be applied.

threshold
tensor.TensorSharedVariable – The shared variable storing the clipping threshold used.

2.5. API Reference 37

https://docs.python.org/3.4/library/functions.html#float
https://docs.python.org/3.4/library/functions.html#float

Blocks Documentation, Release 0.2.0

compute_steps(previous_steps)
Build a Theano expression for steps for all parameters.

Override this method if you want to process the steps with respect to all parameters as a whole, not
parameter-wise.

Parameters previous_steps (OrderedDict) – An OrderedDict of
(TensorSharedVariable TensorVariable) pairs. The keys are the parame-
ters being trained, the values are the expressions for quantities related to gradients of the cost
with respect to the parameters, either the gradients themselves or steps in related directions.

Returns

• steps (OrderedDict) – A dictionary of the proposed steps in the same form as previ-
ous_steps.

• updates (list) – A list of tuples representing updates to be performed.

class blocks.algorithms.StepRule
Bases: object

A rule to compute steps for a gradient descent algorithm.

compute_step(parameter, previous_step)
Build a Theano expression for the step for a parameter.

This method is called by default implementation of compute_steps(), it relieves from writing a loop
each time.

Parameters

• parameter (TensorSharedVariable) – The parameter.

• previous_step (TensorVariable) – Some quantity related to the gradient of the
cost with respect to the parameter, either the gradient itself or a step in a related direction.

Returns

• step (Variable) – Theano variable for the step to take.

• updates (list) – A list of tuples representing updates to be performed. This is useful for
stateful rules such as Momentum which need to update shared variables after itetations.

compute_steps(previous_steps)
Build a Theano expression for steps for all parameters.

Override this method if you want to process the steps with respect to all parameters as a whole, not
parameter-wise.

Parameters previous_steps (OrderedDict) – An OrderedDict of
(TensorSharedVariable TensorVariable) pairs. The keys are the parame-
ters being trained, the values are the expressions for quantities related to gradients of the cost
with respect to the parameters, either the gradients themselves or steps in related directions.

Returns

• steps (OrderedDict) – A dictionary of the proposed steps in the same form as previ-
ous_steps.

• updates (list) – A list of tuples representing updates to be performed.

class blocks.algorithms.TrainingAlgorithm
Bases: object

Base class for training algorithms.

38 Chapter 2. In-depth

https://docs.python.org/3.4/library/functions.html#object
https://docs.python.org/3.4/library/functions.html#object

Blocks Documentation, Release 0.2.0

A training algorithm object has a simple life-cycle. First it is initialized by calling its initialize() method.
At this stage, for instance, Theano functions can be compiled. After that the process_batch() method is
repeatedly called with a batch of training data as a parameter.

initialize(**kwargs)
Initialize the training algorithm.

process_batch(batch)
Process a batch of training data.

batch
dict – A dictionary of (source name, data) pairs.

class blocks.algorithms.UpdatesAlgorithm(updates=None, theano_func_kwargs=None,
on_unused_sources=’raise’, **kwargs)

Bases: blocks.algorithms.TrainingAlgorithm

Base class for algorithms that use Theano functions with updates.

Parameters

• updates (list of tuples or OrderedDict) – The updates that should be performed.

• theano_func_kwargs (dict, optional) – A passthrough to theano.function for
additional arguments. Useful for passing profile or mode arguments to the theano function
that will be compiled for the algorithm.

• on_unused_sources (str, one of 'raise' (default), 'ignore',
'warn') – Controls behavior when not all sources in a batch are used (i.e. there is no
variable with a matching name in the inputs of the computational graph of the updates).

updates
list of TensorSharedVariable updates – Updates to be done for every batch. It is required that the
updates are done using the old values of optimized parameters.

Notes

Changing updates attribute or calling add_updates after the initialize method is called will have no effect.

add_updates(updates)
Add updates to the training process.

The updates will be done _before_ the parameters are changed.

Parameters updates (list of tuples or OrderedDict) – The updates to add.

initialize()
Initialize the training algorithm.

process_batch(batch)
Process a batch of training data.

batch
dict – A dictionary of (source name, data) pairs.

updates

class blocks.algorithms.VariableClipping(threshold, axis=None)
Bases: blocks.algorithms.StepRule

Clip the maximum norm of individual variables along certain axes.

2.5. API Reference 39

https://docs.python.org/3.4/library/collections.html#collections.OrderedDict
https://docs.python.org/3.4/library/stdtypes.html#dict
https://docs.python.org/3.4/library/stdtypes.html#str
https://docs.python.org/3.4/library/collections.html#collections.OrderedDict

Blocks Documentation, Release 0.2.0

This StepRule can be used to implement L2 norm constraints on e.g. the weight vectors of individ-
ual hidden units, convolutional filters or entire weight tensors. Combine with Restrict (and possibly
CompositeRule), to apply such constraints only to certain variables and/or apply different norm constraints
to different variables.

Parameters

• threshold (float) – Maximum norm for a given (portion of a) tensor.

• axis (int or iterable, optional) – An integer single axis, or an iterable col-
lection of integer axes over which to sum in order to calculate the L2 norm. If None (the
default), the norm is computed over all elements of the tensor.

Notes

Because of the way the StepRule API works, this particular rule implements norm clipping of the value
after update in the following way: it computes parameter - previous_step, scales it to have (possibly
axes-wise) norm(s) of at most threshold, then subtracts that value from parameter to yield an ‘equivalent step’
that respects the desired norm constraints. This procedure implicitly assumes one is doing simple (stochastic)
gradient descent, and so steps computed by this step rule may not make sense for use in other contexts.

Investigations into max-norm regularization date from [Srebro2005]. The first appearance of this technique as
a regularization method for the weight vectors of individual hidden units in feed-forward neural networks may
be [Hinton2012].

compute_step(parameter, previous_step)
Build a Theano expression for the step for a parameter.

This method is called by default implementation of compute_steps(), it relieves from writing a loop
each time.

Parameters

• parameter (TensorSharedVariable) – The parameter.

• previous_step (TensorVariable) – Some quantity related to the gradient of the
cost with respect to the parameter, either the gradient itself or a step in a related direction.

Returns

• step (Variable) – Theano variable for the step to take.

• updates (list) – A list of tuples representing updates to be performed. This is useful for
stateful rules such as Momentum which need to update shared variables after itetations.

2.5.2 Bricks

• Convolutional bricks

• Routing bricks

• Recurrent bricks

• Attention bricks

• Sequence generators

• Cost bricks

blocks.bricks.application(*args, **kwargs)
Decorator for methods that apply a brick to inputs.

40 Chapter 2. In-depth

https://docs.python.org/3.4/library/functions.html#float
https://docs.python.org/3.4/library/functions.html#int

Blocks Documentation, Release 0.2.0

Parameters

• optional (**kwargs,) – The application method to wrap.

• optional – Attributes to attach to this application.

Notes

This decorator replaces application methods with Application instances. It also sets the attributes given as
keyword arguments to the decorator.

Note that this decorator purposely does not wrap the original method using e.g. wraps() or
update_wrapper(), since that would make the class impossible to pickle (see notes at Application).

Examples

>>> class Foo(Brick):
... @application(inputs=['x'], outputs=['y'])
... def apply(self, x):
... return x + 1
... @application
... def other_apply(self, x):
... return x - 1
>>> foo = Foo()
>>> Foo.apply.inputs
['x']
>>> foo.apply.outputs
['y']
>>> Foo.other_apply
<blocks.bricks.base.Application object at ...>

class blocks.bricks.Brick(name=None, children=None)
Bases: blocks.graph.annotations.Annotation

A brick encapsulates Theano operations with parameters.

A brick goes through the following stages:

1. Construction: The call to __init__() constructs a Brick instance with a name and creates any child
bricks as well.

2. Allocation of parameters:

(a) Allocation configuration of children: The push_allocation_config() method configures any
children of this block.

(b) Allocation: The allocate() method allocates the shared Theano variables required for the param-
eters. Also allocates parameters for all children.

3. The following can be done in either order:

(a) Application: By applying the brick to a set of Theano variables a part of the computational graph of
the final model is constructed.

(b) The initialization of parameters:

i. Initialization configuration of children: The push_initialization_config() method
configures any children of this block.

2.5. API Reference 41

https://docs.python.org/3.4/library/functools.html#functools.wraps
https://docs.python.org/3.4/library/functools.html#functools.update_wrapper

Blocks Documentation, Release 0.2.0

ii. Initialization: This sets the initial values of the parameters by a call to initialize(), which
is needed to call the final compiled Theano function. Also initializes all children.

Not all stages need to be called explicitly. Step 3(a) will automatically allocate the parameters if needed. Sim-
ilarly, step 3(b.2) and 2(b) will automatically perform steps 3(b.1) and 2(a) if needed. They only need to be
called separately if greater control is required. The only two methods which always need to be called are an
application method to construct the computational graph, and the initialize() method in order to initialize
the parameters.

At each different stage, a brick might need a certain set of configuration settings. All of these settings can be
passed to the __init__() constructor. However, by default many bricks support lazy initialization. This
means that the configuration settings can be set later.

Note: Some arguments to __init__() are always required, even when lazy initialization is enabled. Other
arguments must be given before calling allocate(), while others yet only need to be given in order to call
initialize(). Always read the documentation of each brick carefully.

Lazy initialization can be turned off by setting Brick.lazy = False. In this case, there is no need to call
initialize() manually anymore, but all the configuration must be passed to the __init__() method.

Parameters name (str, optional) – The name of this brick. This can be used to filter the
application of certain modifications by brick names. By default, the brick receives the name of
its class (lowercased).

name
str – The name of this brick.

print_shapes
bool – False by default. If True it logs the shapes of all the input and output variables, which can be
useful for debugging.

parameters
list of TensorSharedVariable and None – After calling the allocate() method this attribute
will be populated with the shared variables storing this brick’s parameters. Allows for None so that
parameters can always be accessed at the same index, even if some parameters are only defined given a
particular configuration.

children
list of bricks – The children of this brick.

allocated
bool – False if allocate() has not been called yet. True otherwise.

initialized
bool – False if allocate() has not been called yet. True otherwise.

allocation_config_pushed
bool – False if allocate() or push_allocation_config() hasn’t been called yet. True
otherwise.

initialization_config_pushed
bool – False if initialize() or push_initialization_config() hasn’t been called yet.
True otherwise.

Notes

To provide support for lazy initialization, apply the lazy() decorator to the __init__() method.

42 Chapter 2. In-depth

https://docs.python.org/3.4/library/stdtypes.html#str

Blocks Documentation, Release 0.2.0

Brick implementations must call the __init__() constructor of their parent using su-
per(BlockImplementation, self).__init__(**kwargs) at the beginning of the overriding __init__.

The methods _allocate() and _initialize() need to be overridden if the brick needs to allocate shared
variables and initialize their values in order to function.

A brick can have any number of methods which apply the brick on Theano variables. These methods should be
decorated with the application() decorator.

If a brick has children, they must be listed in the children attribute. Moreover, if the
brick wants to control the configuration of its children, the _push_allocation_config() and
_push_initialization_config() methods need to be overridden.

Examples

Most bricks have lazy initialization enabled.

>>> import theano
>>> from blocks.initialization import IsotropicGaussian, Constant
>>> from blocks.bricks import Linear
>>> linear = Linear(input_dim=5, output_dim=3,
... weights_init=IsotropicGaussian(),
... biases_init=Constant(0))
>>> x = theano.tensor.vector()
>>> linear.apply(x) # Calls linear.allocate() automatically
linear_apply_output
>>> linear.initialize() # Initializes the weight matrix

allocate()
Allocate shared variables for parameters.

Based on the current configuration of this Brick create Theano shared variables to store the parameters.
After allocation, parameters are accessible through the parameters attribute.

This method calls the allocate() method of all children first, allowing the _allocate() method to
override the parameters of the children if needed.

Raises ValueError – If the configuration of this brick is insufficient to determine the number
of parameters or their dimensionality to be initialized.

Notes

This method sets the parameters attribute to an empty list. This is in order to ensure that calls to this
method completely reset the parameters.

children

get_dim(name)
Get dimension of an input/output variable of a brick.

Parameters name (str) – The name of the variable.

get_dims(names)
Get list of dimensions for a set of input/output variables.

Parameters names (list) – The variable names.

Returns dims – The dimensions of the sources.

2.5. API Reference 43

https://docs.python.org/3.4/library/exceptions.html#ValueError
https://docs.python.org/3.4/library/stdtypes.html#str
https://docs.python.org/3.4/library/stdtypes.html#list

Blocks Documentation, Release 0.2.0

Return type list

get_hierarchical_name(parameter, delimiter=’/’)
Return hierarhical name for a parameter.

Returns a path of the form brick1/brick2/brick3.parameter1. The delimiter is configurable.

Parameters delimiter (str) – The delimiter used to separate brick names in the path.

get_unique_path()
Returns unique path to this brick in the application graph.

initialize()
Initialize parameters.

Intialize parameters, such as weight matrices and biases.

Notes

If the brick has not allocated its parameters yet, this method will call the allocate() method in order
to do so.

parameters

print_shapes = False
See Brick.print_shapes

push_allocation_config()
Push the configuration for allocation to child bricks.

Bricks can configure their children, based on their own current configuration. This will be automatically
done by a call to allocate(), but if you want to override the configuration of child bricks manually,
then you can call this function manually.

push_initialization_config()
Push the configuration for initialization to child bricks.

Bricks can configure their children, based on their own current configuration. This will be automatically
done by a call to initialize(), but if you want to override the configuration of child bricks manually,
then you can call this function manually.

blocks.bricks.lazy(allocation=None, initialization=None)
Makes the initialization lazy.

This decorator allows the user to define positional arguments which will not be needed until the allocation or
initialization stage of the brick. If these arguments are not passed, it will automatically replace them with a
custom None object. It is assumed that the missing arguments can be set after initialization by setting attributes
with the same name.

Parameters

• allocation (list) – A list of argument names that are needed for allocation.

• initialization (list) – A list of argument names that are needed for initialization.

Examples

44 Chapter 2. In-depth

https://docs.python.org/3.4/library/stdtypes.html#list
https://docs.python.org/3.4/library/stdtypes.html#str
https://docs.python.org/3.4/library/stdtypes.html#list
https://docs.python.org/3.4/library/stdtypes.html#list

Blocks Documentation, Release 0.2.0

>>> class SomeBrick(Brick):
... @lazy(allocation=['a'], initialization=['b'])
... def __init__(self, a, b, c='c', d=None):
... print(a, b, c, d)
>>> brick = SomeBrick('a')
a NoneInitialization c None
>>> brick = SomeBrick(d='d', b='b')
NoneAllocation b c d

class blocks.bricks.BatchNormalization(**kwargs)
Bases: blocks.bricks.interfaces.RNGMixin, blocks.bricks.interfaces.
Feedforward

Normalizes activations, parameterizes a scale and shift.

Parameters

• input_dim (int or tuple) – Shape of a single input example. It is assumed that a
batch axis will be prepended to this.

• broadcastable (tuple, optional) – Tuple of the same length as input_dim which
specifies which of the per-example axes should be averaged over to compute means and
standard deviations. For example, in order to normalize over all spatial locations in a
(batch_index, channels, height, width) image, pass (False, True, True). The batch axis is
always averaged out.

• conserve_memory (bool, optional) – Use an implementation that stores less in-
termediate state and therefore uses less memory, at the expense of 5-10% speed. Default is
True.

• epsilon (float, optional) – The stabilizing constant for the minibatch standard
deviation computation (when the brick is run in training mode). Added to the variance
inside the square root, as in the batch normalization paper.

• scale_init (object, optional) – Initialization object to use for the learned scaling
parameter (γ in [BN]). By default, uses constant initialization of 1.

• shift_init (object, optional) – Initialization object to use for the learned shift
parameter (β in [BN]). By default, uses constant initialization of 0.

• mean_only (bool, optional) – Perform “mean-only” batch normalization as de-
scribed in [SK2016].

• learn_scale (bool, optional) – Whether to include a learned scale parameter
(γ in [BN]) in this brick. Default is True. Has no effect if mean_only is True
(i.e. a scale parameter is never learned in mean-only mode).

• learn_shift (bool, optional) – Whether to include a learned shift parameter
(β in [BN]) in this brick. Default is True.

Notes

In order for trained models to behave sensibly immediately upon upon deserialization, by default, this brick
runs in inference mode, using a population mean and population standard deviation (initialized to zeros and
ones respectively) to normalize activations. It is expected that the user will adapt these during training in some
fashion, independently of the training objective, e.g. by taking a moving average of minibatch-wise statistics.

In order to train with batch normalization, one must obtain a training graph by transforming the origi-
nal inference graph. See apply_batch_normalization() for a routine to transform graphs, and

2.5. API Reference 45

https://docs.python.org/3.4/library/functions.html#int
https://docs.python.org/3.4/library/stdtypes.html#tuple
https://docs.python.org/3.4/library/stdtypes.html#tuple
https://docs.python.org/3.4/library/functions.html#bool
https://docs.python.org/3.4/library/functions.html#float
https://docs.python.org/3.4/library/functions.html#object
https://docs.python.org/3.4/library/functions.html#object
https://docs.python.org/3.4/library/functions.html#bool
https://docs.python.org/3.4/library/functions.html#bool
https://docs.python.org/3.4/library/functions.html#bool

Blocks Documentation, Release 0.2.0

batch_normalization() for a context manager that may enable shorter compile times (every instance
of BatchNormalization is itself a context manager, entry into which causes applications to be in mini-
batch “training” mode, however it is usually more convenient to use batch_normalization() to enable
this behaviour for all of your graph’s BatchNormalization bricks at once).

Note that training in inference mode should be avoided, as this brick introduces scales and shift pa-
rameters (tagged with the PARAMETER role) that, in the absence of batch normalization, usually makes
things unstable. If you must do this, filter for and remove BATCH_NORM_SHIFT_PARAMETER and
BATCH_NORM_SCALE_PARAMETER from the list of parameters you are training, and this brick should be-
have as a (somewhat expensive) no-op.

This Brick accepts scale_init and shift_init arguments but is not an instance of Initializable, and will
therefore not receive pushed initialization config from any parent brick. In almost all cases, you will probably
want to stick with the defaults (unit scale and zero offset), but you can explicitly pass one or both initializers to
override this.

This has the necessary properties to be inserted into a blocks.bricks.conv.
ConvolutionalSequence as-is, in which case the input_dim should be omitted at construction, to
be inferred from the layer below.

apply

get_dim(name)
Get dimension of an input/output variable of a brick.

Parameters name (str) – The name of the variable.

image_size

normalization_axes

num_channels

num_output_channels

output_dim

class blocks.bricks.SpatialBatchNormalization(**kwargs)
Bases: blocks.bricks.bn.BatchNormalization

Convenient subclass for batch normalization across spatial inputs.

Parameters input_dim (int or tuple) – The input size of a single example. Must be length
at least 2. It’s assumed that the first axis of this tuple is a “channels” axis, which should not be
summed over, and all remaining dimensions are spatial dimensions.

Notes

See BatchNormalization for more details (and additional keyword arguments).

class blocks.bricks.BatchNormalizedMLP(**kwargs)
Bases: blocks.bricks.sequences.MLP

Convenient subclass for building an MLP with batch normalization.

Parameters

• conserve_memory (bool, optional, by keyword only) – See
BatchNormalization.

• mean_only (bool, optional, by keyword only) – See
BatchNormalization.

46 Chapter 2. In-depth

https://docs.python.org/3.4/library/stdtypes.html#str
https://docs.python.org/3.4/library/functions.html#int
https://docs.python.org/3.4/library/stdtypes.html#tuple
https://docs.python.org/3.4/library/functions.html#bool
https://docs.python.org/3.4/library/functions.html#bool

Blocks Documentation, Release 0.2.0

• learn_scale (bool, optional, by keyword only) – See
BatchNormalization.

• learn_shift (bool, optional, by keyword only) – See
BatchNormalization.

Notes

All other parameters are the same as MLP. Each activation brick is wrapped in a Sequence containing an
appropriate BatchNormalization brick and the activation that follows it.

By default, the contained Linear bricks will not contain any biases, as they could be canceled out by the biases
in the BatchNormalization bricks being added. Pass use_bias with a value of True if you really want this
for some reason.

mean_only, learn_scale and learn_shift are pushed down to all created BatchNormalization bricks as
allocation config.

conserve_memory
Conserve memory.

class blocks.bricks.Feedforward(name=None, children=None)
Bases: blocks.bricks.base.Brick

Declares an interface for bricks with one input and one output.

Many bricks have just one input and just one output (activations, Linear, MLP). To make such bricks inter-
changable in most contexts they should share an interface for configuring their input and output dimensions.
This brick declares such an interface.

input_dim
int – The input dimension of the brick.

output_dim
int – The output dimension of the brick.

class blocks.bricks.Initializable(**kwargs)
Bases: blocks.bricks.interfaces.RNGMixin, blocks.bricks.base.Brick

Base class for bricks which push parameter initialization.

Many bricks will initialize children which perform a linear transformation, often with biases. This brick allows
the weights and biases initialization to be configured in the parent brick and pushed down the hierarchy.

Parameters

• weights_init (object) – A NdarrayInitialization instance which will be used by to
initialize the weight matrix. Required by initialize().

• biases_init (object, optional) – A NdarrayInitialization instance that will be used to
initialize the biases. Required by initialize() when use_bias is True. Only supported
by bricks for which has_biases is True.

• use_bias (bool, optional) – Whether to use a bias. Defaults to True. Required by
initialize(). Only supported by bricks for which has_biases is True.

• rng (numpy.random.RandomState) –

has_biases
bool – False if the brick does not support biases, and only has weights_init. For an example of
this, see Bidirectional. If this is False, the brick does not support the arguments biases_init
or use_bias.

2.5. API Reference 47

https://docs.python.org/3.4/library/functions.html#bool
https://docs.python.org/3.4/library/functions.html#bool
https://docs.python.org/3.4/library/functions.html#object
https://docs.python.org/3.4/library/functions.html#object
https://docs.python.org/3.4/library/functions.html#bool
https://docs.scipy.org/doc/numpy/reference/generated/numpy.random.RandomState.html#numpy.random.RandomState

Blocks Documentation, Release 0.2.0

has_biases = True

class blocks.bricks.LinearLike(**kwargs)
Bases: blocks.bricks.interfaces.Initializable

Initializable subclass with logic for Linear-like classes.

Notes

Provides W and b properties that can be overridden in subclasses to implement pre-application transformations
on the weights and biases. Application methods should refer to self.W and self.b rather than accessing the
parameters list directly.

This assumes a layout of the parameters list with the weights coming first and biases (if use_bias is True)
coming second.

W

b

class blocks.bricks.Random(theano_seed=None, **kwargs)
Bases: blocks.bricks.base.Brick

A mixin class for Bricks which need Theano RNGs.

Parameters theano_seed (int or list, optional) – Seed to use for a
MRG_RandomStreams object.

seed_rng = <mtrand.RandomState object>

theano_rng
Returns Brick’s Theano RNG, or a default one.

The default seed can be set through blocks.config.

theano_seed

class blocks.bricks.Linear(**kwargs)
Bases: blocks.bricks.interfaces.LinearLike, blocks.bricks.interfaces.
Feedforward

A linear transformation with optional bias.

Brick which applies a linear (affine) transformation by multiplying the input with a weight matrix. By default,
a bias term is added (see Initializable for information on disabling this).

Parameters

• input_dim (int) – The dimension of the input. Required by allocate().

• output_dim (int) – The dimension of the output. Required by allocate().

Notes

See Initializable for initialization parameters.

A linear transformation with bias is a matrix multiplication followed by a vector summation.

𝑓(x) = Wx+ b

48 Chapter 2. In-depth

https://docs.python.org/3.4/library/functions.html#int
https://docs.python.org/3.4/library/stdtypes.html#list
https://theano.readthedocs.io/en/latest/library/sandbox/rng_mrg.html#theano.sandbox.rng_mrg.MRG_RandomStreams
https://docs.python.org/3.4/library/functions.html#int
https://docs.python.org/3.4/library/functions.html#int

Blocks Documentation, Release 0.2.0

apply
Apply the linear transformation.

Parameters input (TensorVariable) – The input on which to apply the transformation

Returns output – The transformed input plus optional bias

Return type TensorVariable

get_dim(name)
Get dimension of an input/output variable of a brick.

Parameters name (str) – The name of the variable.

class blocks.bricks.Bias(**kwargs)
Bases: blocks.bricks.interfaces.Feedforward, blocks.bricks.interfaces.
Initializable

Add a bias (i.e. sum with a vector).

apply
Apply the linear transformation.

Parameters input (TensorVariable) – The input on which to apply the transformation

Returns output – The transformed input plus optional bias

Return type TensorVariable

get_dim(name)
Get dimension of an input/output variable of a brick.

Parameters name (str) – The name of the variable.

input_dim

output_dim

class blocks.bricks.Maxout(**kwargs)
Bases: blocks.bricks.base.Brick

Maxout pooling transformation.

A brick that does max pooling over groups of input units. If you use this code in a research project, please cite
[GWFM13].

Parameters num_pieces (int) – The size of the groups the maximum is taken over.

Notes

Maxout applies a set of linear transformations to a vector and selects for each output dimension the result with
the highest value.

apply
Apply the maxout transformation.

Parameters input (TensorVariable) – The input on which to apply the transformation

Returns output – The transformed input

Return type TensorVariable

class blocks.bricks.LinearMaxout(**kwargs)
Bases: blocks.bricks.interfaces.Initializable, blocks.bricks.interfaces.
Feedforward

2.5. API Reference 49

https://docs.python.org/3.4/library/stdtypes.html#str
https://docs.python.org/3.4/library/stdtypes.html#str
https://docs.python.org/3.4/library/functions.html#int

Blocks Documentation, Release 0.2.0

Maxout pooling following a linear transformation.

This code combines the Linear brick with a Maxout brick.

Parameters

• input_dim (int) – The dimension of the input. Required by allocate().

• output_dim (int) – The dimension of the output. Required by allocate().

• num_pieces (int) – The number of linear functions. Required by allocate().

Notes

See Initializable for initialization parameters.

apply
Apply the linear transformation followed by maxout.

Parameters input (TensorVariable) – The input on which to apply the transformations

Returns output – The transformed input

Return type TensorVariable

input_dim

class blocks.bricks.Identity(name=None, children=None)
Bases: blocks.bricks.interfaces.Activation

Elementwise application of identity function.

apply
Apply the identity function element-wise.

Parameters input (TensorVariable) – Theano variable to apply identity to, element-
wise.

Returns output – The input with the activation function applied.

Return type TensorVariable

class blocks.bricks.Tanh(name=None, children=None)
Bases: blocks.bricks.interfaces.Activation

Elementwise application of tanh function.

apply
Apply the tanh function element-wise.

Parameters input (TensorVariable) – Theano variable to apply tanh to, element-wise.

Returns output – The input with the activation function applied.

Return type TensorVariable

class blocks.bricks.Logistic(name=None, children=None)
Bases: blocks.bricks.interfaces.Activation

Elementwise application of logistic function.

apply
Apply the logistic function element-wise.

Parameters input (TensorVariable) – Theano variable to apply logistic to, element-wise.

50 Chapter 2. In-depth

https://docs.python.org/3.4/library/functions.html#int
https://docs.python.org/3.4/library/functions.html#int
https://docs.python.org/3.4/library/functions.html#int

Blocks Documentation, Release 0.2.0

Returns output – The input with the activation function applied.

Return type TensorVariable

class blocks.bricks.Softplus(name=None, children=None)
Bases: blocks.bricks.interfaces.Activation

Elementwise application of softplus function.

apply
Apply the softplus function element-wise.

Parameters input (TensorVariable) – Theano variable to apply softplus to, element-
wise.

Returns output – The input with the activation function applied.

Return type TensorVariable

class blocks.bricks.Rectifier(name=None, children=None)
Bases: blocks.bricks.interfaces.Activation

Elementwise application of rectifier function.

apply
Apply the rectifier function element-wise.

Parameters input (TensorVariable) – Theano variable to apply rectifier to, element-
wise.

Returns output – The input with the activation function applied.

Return type TensorVariable

class blocks.bricks.LeakyRectifier(leak=0.01, **kwargs)
Bases: blocks.bricks.interfaces.Activation

Elementwise application of leakyrectifier function.

apply
Apply the leakyrectifier function element-wise.

Parameters input (TensorVariable) – Theano variable to apply leakyrectifier to,
element-wise.

Returns output – The input with the activation function applied.

Return type TensorVariable

class blocks.bricks.Softmax(name=None, children=None)
Bases: blocks.bricks.base.Brick

A softmax brick.

Works with 2-dimensional inputs only. If you need more, see NDimensionalSoftmax.

apply
Standard softmax.

Parameters input (Variable) – A matrix, each row contains unnormalized log-probabilities
of a distribution.

Returns output_ – A matrix with probabilities in each row for each distribution from input_.

Return type Variable

2.5. API Reference 51

Blocks Documentation, Release 0.2.0

categorical_cross_entropy
Computationally stable cross-entropy for pre-softmax values.

Parameters

• y (TensorVariable) – In the case of a matrix argument, each row represents a proba-
bilility distribution. In the vector case, each element represents a distribution by specifying
the position of 1 in a 1-hot vector.

• x (TensorVariable) – A matrix, each row contains unnormalized probabilities of a
distribution.

Returns cost – A vector of cross-entropies between respective distributions from y and x.

Return type TensorVariable

log_probabilities
Normalize log-probabilities.

Converts unnormalized log-probabilities (exponents of which do not sum to one) into actual log-
probabilities (exponents of which sum to one).

Parameters input (Variable) – A matrix, each row contains unnormalized log-probabilities
of a distribution.

Returns output – A matrix with normalized log-probabilities in each row for each distribution
from input_.

Return type Variable

class blocks.bricks.NDimensionalSoftmax(name=None, children=None)
Bases: blocks.bricks.simple.Softmax

A wrapped brick class.

This brick was automatically constructed by wrapping Softmax with WithExtraDims.

See also:

BrickWrapper For explanation of brick wrapping.

Softmax WithExtraDims

apply
Wraps the application method with reshapes.

Parameters extra_ndim (int, optional) – The number of extra dimensions. Default is
zero.

See also:

Softmax.apply() For documentation of the wrapped application method.

apply_delegate()

categorical_cross_entropy
Wraps the application method with reshapes.

Parameters extra_ndim (int, optional) – The number of extra dimensions. Default is
zero.

See also:

52 Chapter 2. In-depth

https://docs.python.org/3.4/library/functions.html#int
https://docs.python.org/3.4/library/functions.html#int

Blocks Documentation, Release 0.2.0

Softmax.categorical_cross_entropy() For documentation of the wrapped application
method.

categorical_cross_entropy_delegate()

decorators = [<blocks.bricks.wrappers.WithExtraDims object>]

log_probabilities
Wraps the application method with reshapes.

Parameters extra_ndim (int, optional) – The number of extra dimensions. Default is
zero.

See also:

Softmax.log_probabilities() For documentation of the wrapped application method.

log_probabilities_delegate()

class blocks.bricks.Sequence(application_methods, **kwargs)
Bases: blocks.bricks.base.Brick

A sequence of bricks.

This brick applies a sequence of bricks, assuming that their in- and outputs are compatible.

Parameters application_methods (list) – List of BoundApplication or Brick to
apply. For Brick`s, the `.apply‘‘ method is used.

apply

apply_inputs()

apply_outputs()

class blocks.bricks.FeedforwardSequence(application_methods, **kwargs)
Bases: blocks.bricks.sequences.Sequence, blocks.bricks.interfaces.Feedforward

A sequence where the first and last bricks are feedforward.

Parameters application_methods (list) – List of BoundApplication to apply. The
first and last application method should belong to a Feedforward brick.

input_dim

output_dim

class blocks.bricks.MLP(**kwargs)
Bases: blocks.bricks.sequences.FeedforwardSequence, blocks.bricks.interfaces.
Initializable

A simple multi-layer perceptron.

Parameters

• activations (list of Brick, BoundApplication,) – or NoneA list of activations to
apply after each linear transformation. Give None to not apply any activation. It is assumed
that the application method to use is apply. Required for __init__().

• dims (list of ints) – A list of input dimensions, as well as the output dimension of
the last layer. Required for allocate().

• prototype (Brick, optional) – The transformation prototype. A copy will be created
for every activation. If not provided, an instance of Linear will be used.

2.5. API Reference 53

https://docs.python.org/3.4/library/functions.html#int
https://docs.python.org/3.4/library/stdtypes.html#list
https://docs.python.org/3.4/library/stdtypes.html#list

Blocks Documentation, Release 0.2.0

Notes

See Initializable for initialization parameters.

Note that the weights_init, biases_init (as well as use_bias if set to a value other than the default
of None) configurations will overwrite those of the layers each time the MLP is re-initialized. For more fine-
grained control, push the configuration to the child layers manually before initialization.

>>> from blocks.bricks import Tanh
>>> from blocks.initialization import IsotropicGaussian, Constant
>>> mlp = MLP(activations=[Tanh(), None], dims=[30, 20, 10],
... weights_init=IsotropicGaussian(),
... biases_init=Constant(1))
>>> mlp.push_initialization_config() # Configure children
>>> mlp.children[0].weights_init = IsotropicGaussian(0.1)
>>> mlp.initialize()

input_dim

output_dim

class blocks.bricks.WithExtraDims
Bases: blocks.bricks.wrappers.BrickWrapper

Wraps a brick’s applications to handle inputs with extra dimensions.

A brick can be often reused even when data has more dimensions than in the default setting. An example is
a situation when one wants to apply categorical_cross_entropy() to temporal data, that is when an
additional ‘time’ axis is prepended to its both x and y inputs.

This wrapper adds reshapes required to use application methods of a brick with such data by merging the extra
dimensions with the first non-extra one. Two key assumptions are made: that all inputs and outputs have the
same number of extra dimensions and that these extra dimensions are equal throughout all inputs and outputs.

While this might be inconvinient, the wrapped brick does not try to guess the number of extra dimensions, but
demands it as an argument. The considerations of simplicity and reliability motivated this design choice. Upon
availability in Blocks of a mechanism to request the expected number of dimensions for an input of a brick, this
can be reconsidered.

wrap(wrapped, namespace)
Wrap an application of the base brick.

This method should be overriden to write into its namespace argument all required changes.

Parameters

• mcs (type) – The metaclass.

• wrapped (Application) – The application to be wrapped.

• namespace (dict) – The namespace of the class being created.

class blocks.bricks.lookup.LookupTable(**kwargs)
Bases: blocks.bricks.interfaces.Initializable, blocks.bricks.interfaces.
Feedforward

Encapsulates representations of a range of integers.

This brick can be used to embed integers, e.g. word indices, into a vector space.

Parameters

54 Chapter 2. In-depth

https://docs.python.org/3.4/library/functions.html#type
https://docs.python.org/3.4/library/stdtypes.html#dict

Blocks Documentation, Release 0.2.0

• length (int) – The size of the lookup table, or in other words, one plus the maximum
index for which a representation is contained.

• dim (int) – The dimensionality of representations.

Notes

See Initializable for initialization parameters.

W

apply
Perform lookup.

Parameters indices (TensorVariable) – The indices of interest. The dtype must be
integer.

Returns output – Representations for the indices of the query. Has 𝑘 + 1 dimensions, where
𝑘 is the number of dimensions of the indices parameter. The last dimension stands for the
representation element.

Return type TensorVariable

get_dim(name)
Get dimension of an input/output variable of a brick.

Parameters name (str) – The name of the variable.

has_bias = False

input_dim

output_dim

Convolutional bricks

class blocks.bricks.conv.AveragePooling(**kwargs)
Bases: blocks.bricks.conv.Pooling

Average pooling layer.

Parameters include_padding (bool, optional) – When calculating an average, include
zeros that are the result of zero padding added by the padding argument. A value of True is only
accepted if ignore_border is also True. False by default.

Notes

For documentation on the remainder of the arguments to this class, see MaxPooling.

class blocks.bricks.conv.Convolutional(**kwargs)
Bases: blocks.bricks.interfaces.LinearLike

Performs a 2D convolution.

Parameters

• filter_size (tuple) – The height and width of the filter (also called kernels).

• num_filters (int) – Number of filters per channel.

2.5. API Reference 55

https://docs.python.org/3.4/library/functions.html#int
https://docs.python.org/3.4/library/functions.html#int
https://docs.python.org/3.4/library/stdtypes.html#str
https://docs.python.org/3.4/library/functions.html#bool
https://docs.python.org/3.4/library/stdtypes.html#tuple
https://docs.python.org/3.4/library/functions.html#int

Blocks Documentation, Release 0.2.0

• num_channels (int) – Number of input channels in the image. For the first layer this is
normally 1 for grayscale images and 3 for color (RGB) images. For subsequent layers this
is equal to the number of filters output by the previous convolutional layer. The filters are
pooled over the channels.

• batch_size (int, optional) – Number of examples per batch. If given, this will be
passed to Theano convolution operator, possibly resulting in faster execution.

• image_size (tuple, optional) – The height and width of the input (image or fea-
ture map). If given, this will be passed to the Theano convolution operator, resulting in
possibly faster execution times.

• step (tuple, optional) – The step (or stride) with which to slide the filters over the
image. Defaults to (1, 1).

• border_mode ({'valid', 'full'}, optional) – The border mode to use, see
scipy.signal.convolve2d() for details. Defaults to ‘valid’.

• tied_biases (bool) – Setting this to False will untie the biases, yielding a separate
bias for every location at which the filter is applied. If True, it indicates that the biases of
every filter in this layer should be shared amongst all applications of that filter. Defaults to
True.

apply
Perform the convolution.

Parameters input (TensorVariable) – A 4D tensor with the axes representing batch size,
number of channels, image height, and image width.

Returns

output – A 4D tensor of filtered images (feature maps) with dimensions representing batch
size, number of filters, feature map height, and feature map width.

The height and width of the feature map depend on the border mode. For ‘valid’
it is image_size - filter_size + 1 while for ‘full’ it is image_size +
filter_size - 1.

Return type TensorVariable

static conv2d_impl(input, filters, input_shape=None, filter_shape=None, border_mode=’valid’,
subsample=(1, 1), filter_flip=True, image_shape=None, filter_dilation=(1,
1), num_groups=1, unshared=False, **kwargs)

This function will build the symbolic graph for convolving a mini-batch of a stack of 2D inputs with a set
of 2D filters. The implementation is modelled after Convolutional Neural Networks (CNN).

Parameters

• input (symbolic 4D tensor) – Mini-batch of feature map stacks, of shape
(batch size, input channels, input rows, input columns). See the optional parameter
input_shape.

• filters (symbolic 4D or 6D tensor) – Set of filters used in CNN layer of
shape (output channels, input channels, filter rows, filter columns) for normal convolu-
tion and (output channels, output rows, output columns, input channels, filter rows, filter
columns) for unshared convolution. See the optional parameter filter_shape.

• input_shape (None, tuple/list of len 4 or 6 of int or
Constant variable) – The shape of the input parameter. Optional, possibly
used to choose an optimal implementation. You can give None for any element of the list
to specify that this element is not known at compile time.

56 Chapter 2. In-depth

https://docs.python.org/3.4/library/functions.html#int
https://docs.python.org/3.4/library/functions.html#int
https://docs.python.org/3.4/library/stdtypes.html#tuple
https://docs.python.org/3.4/library/stdtypes.html#tuple
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.convolve2d.html#scipy.signal.convolve2d
https://docs.python.org/3.4/library/functions.html#bool
https://docs.python.org/3.4/library/constants.html#None

Blocks Documentation, Release 0.2.0

• filter_shape (None, tuple/list of len 4 or 6 of int or
Constant variable) – The shape of the filters parameter. Optional, possibly
used to choose an optimal implementation. You can give None for any element of the list
to specify that this element is not known at compile time.

• border_mode (str, int or a tuple of two ints or pairs of
ints) – Either of the following:

'valid': apply filter wherever it completely overlaps with the input. Generates
output of shape: input shape - filter shape + 1

'full': apply filter wherever it partly overlaps with the input. Generates output of
shape: input shape + filter shape - 1

'half': pad input with a symmetric border of filter rows // 2 rows and
filter columns // 2 columns, then perform a valid convolution. For filters
with an odd number of rows and columns, this leads to the output shape being equal to
the input shape.

int: pad input with a symmetric border of zeros of the given width, then perform a
valid convolution.

(int1, int2): (for 2D) pad input with a symmetric border of int1, int2, then
perform a valid convolution.

(int1, (int2, int3)) or ((int1, int2), int3): (for 2D) pad input with
one symmetric border of int1‘ or int3, and one asymmetric border of (int2,
int3) or (int1, int2).

• subsample (tuple of len 2) – Factor by which to subsample the output. Also
called strides elsewhere.

• filter_flip (bool) – If True, will flip the filter rows and columns before sliding
them over the input. This operation is normally referred to as a convolution, and this
is the default. If False, the filters are not flipped and the operation is referred to as a
cross-correlation.

• image_shape (None, tuple/list of len 4 of int or Constant
variable) – Deprecated alias for input_shape.

• filter_dilation (tuple of len 2) – Factor by which to subsample (stride) the
input. Also called dilation elsewhere.

• num_groups (int) – Divides the image, kernel and output tensors into num_groups
separate groups. Each which carry out convolutions separately

• unshared (bool) – If true, then unshared or ‘locally connected’ convolution will be
performed. A different filter will be used for each region of the input.

• kwargs (Any other keyword arguments are accepted for
backwards) – compatibility, but will be ignored.

Returns Set of feature maps generated by convolutional layer. Tensor is of shape (batch size,
output channels, output rows, output columns)

Return type Symbolic 4D tensor

Notes

If cuDNN is available, it will be used on the GPU. Otherwise, it is the CorrMM convolution that will be
used “caffe style convolution”.

2.5. API Reference 57

https://docs.python.org/3.4/library/constants.html#None
https://docs.python.org/3.4/library/stdtypes.html#str
https://docs.python.org/3.4/library/functions.html#int
https://docs.python.org/3.4/library/functions.html#bool
https://docs.python.org/3.4/library/constants.html#None
https://docs.python.org/3.4/library/functions.html#int
https://docs.python.org/3.4/library/functions.html#bool

Blocks Documentation, Release 0.2.0

This is only supported in Theano 0.8 or the development version until it is released.

The parameter filter_dilation is an implementation of dilated convolution.

get_dim(name)
Get dimension of an input/output variable of a brick.

Parameters name (str) – The name of the variable.

static get_output_shape(image_shape, kernel_shape, border_mode, subsample, fil-
ter_dilation=None)

This function compute the output shape of convolution operation.

Parameters

• image_shape (tuple of int (symbolic or numeric)
corresponding to the input) – image shape. Its four (or five) element
must correspond respectively to: batch size, number of input channels, height and width
(and possibly depth) of the image. None where undefined.

• kernel_shape (tuple of int (symbolic or numeric)
corresponding to the) – kernel shape. For a normal convolution, its four
(for 2D convolution) or five (for 3D convolution) elements must correspond respectively
to : number of output channels, number of input channels, height and width (and possibly
depth) of the kernel. For an unshared 2D convolution, its six channels must correspond to
: number of output channels, height and width of the output, number of input channels,
height and width of the kernel. None where undefined.

• border_mode (string, int (symbolic or numeric) or tuple of
int (symbolic) – or numeric) or pairs of ints. If it is a string, it must be ‘valid’, ‘half’
or ‘full’. If it is a tuple, its two (or three) elements respectively correspond to the padding
on height and width (and possibly depth) axis. For asymmetric padding, provide a pair of
ints for each dimension.

• subsample (tuple of int (symbolic or numeric) Its two or
three elements) – espectively correspond to the subsampling on height and width
(and possibly depth) axis.

• filter_dilation (tuple of int (symbolic or numeric) Its two
or three) – elements correspond respectively to the dilation on height and width axis.

• - The shape of the convolution output does not depend on
the 'unshared' (Note) – or the ‘num_groups’ parameters.

Returns output_shape – four element must correspond respectively to: batch size, number of
output channels, height and width of the image. None where undefined.

Return type tuple of int corresponding to the output image shape. Its

num_output_channels

class blocks.bricks.conv.ConvolutionalSequence(**kwargs)
Bases: blocks.bricks.sequences.Sequence, blocks.bricks.interfaces.
Initializable, blocks.bricks.interfaces.Feedforward

A sequence of convolutional (or pooling) operations.

Parameters

• layers (list) – List of convolutional bricks (i.e. Convolutional,
ConvolutionalActivation, or Pooling bricks), or application methods from such
bricks. Activation bricks that operate elementwise can also be included.

58 Chapter 2. In-depth

https://arxiv.org/pdf/1511.07122v3.pdf
https://docs.python.org/3.4/library/stdtypes.html#str
https://docs.python.org/3.4/library/functions.html#int
https://docs.python.org/3.4/library/stdtypes.html#list

Blocks Documentation, Release 0.2.0

• num_channels (int) – Number of input channels in the image. For the first layer this is
normally 1 for grayscale images and 3 for color (RGB) images. For subsequent layers this
is equal to the number of filters output by the previous convolutional layer.

• batch_size (int, optional) – Number of images in batch. If given, will be passed
to theano’s convolution operator resulting in possibly faster execution.

• image_size (tuple, optional) – Width and height of the input (im-
age/featuremap). If given, will be passed to theano’s convolution operator resulting in pos-
sibly faster execution.

• border_mode ('valid', 'full' or None, optional) – The border mode to
use, see scipy.signal.convolve2d() for details. Unlike with Convolutional,
this defaults to None, in which case no default value is pushed down to child bricks at alloca-
tion time. Child bricks will in this case need to rely on either a default border mode (usually
valid) or one provided at construction and/or after construction (but before allocation).

• tied_biases (bool, optional) – Same meaning as in Convolutional. Defaults
to None, in which case no value is pushed to child Convolutional bricks.

Notes

The passed convolutional operators should be ‘lazy’ constructed, that is, without specifying the batch_size,
num_channels and image_size. The main feature of ConvolutionalSequence is that it will set the input
dimensions of a layer to the output dimensions of the previous layer by the push_allocation_config()
method.

The push behaviour of tied_biases mirrors that of use_bias or any initialization configuration: only an ex-
plicitly specified value is pushed down the hierarchy. border_mode also has this behaviour. The reason the
border_mode parameter behaves the way it does is that pushing a single default border_mode makes it very
difficult to have child bricks with different border modes. Normally, such things would be overridden after
push_allocation_config(), but this is a particular hassle as the border mode affects the allocation parameters of
every subsequent child brick in the sequence. Thus, only an explicitly specified border mode will be pushed
down the hierarchy.

get_dim(name)
Get dimension of an input/output variable of a brick.

Parameters name (str) – The name of the variable.

class blocks.bricks.conv.ConvolutionalTranspose(**kwargs)
Bases: blocks.bricks.conv.Convolutional

Performs the transpose of a 2D convolution.

Parameters

• num_filters (int) – Number of filters at the output of the transposed convolution, i.e.
the number of channels in the corresponding convolution.

• num_channels (int) – Number of channels at the input of the transposed convolution,
i.e. the number of output filters in the corresponding convolution.

• step (tuple, optional) – The step (or stride) of the corresponding convolution. De-
faults to (1, 1).

• image_size (tuple, optional) – Image size of the input to the transposed convo-
lution, i.e. the output of the corresponding convolution. Required for tied biases. Defaults
to None.

2.5. API Reference 59

https://docs.python.org/3.4/library/functions.html#int
https://docs.python.org/3.4/library/functions.html#int
https://docs.python.org/3.4/library/stdtypes.html#tuple
https://docs.python.org/3.4/library/constants.html#None
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.convolve2d.html#scipy.signal.convolve2d
https://docs.python.org/3.4/library/functions.html#bool
https://docs.python.org/3.4/library/stdtypes.html#str
https://docs.python.org/3.4/library/functions.html#int
https://docs.python.org/3.4/library/functions.html#int
https://docs.python.org/3.4/library/stdtypes.html#tuple
https://docs.python.org/3.4/library/stdtypes.html#tuple

Blocks Documentation, Release 0.2.0

• unused_edge (tuple, optional) – Tuple of pixels added to the inferred height and
width of the output image, whose values would be ignored in the corresponding forward
convolution. Must be such that 0 <= unused_edge[i] <= step[i]. Note that this pa-
rameter is ignored if original_image_size is specified in the constructor or manually
set as an attribute.

• original_image_size (tuple, optional) – The height and width of the image
that forms the output of the transpose operation, which is the input of the original (non-
transposed) convolution. By default, this is inferred from image_size to be the size that has
each pixel of the original image touched by at least one filter application in the original
convolution. Degenerate cases with dropped border pixels (in the original convolution) are
possible, and can be manually specified via this argument. See notes below.

See also:

Convolutional For the documentation of other parameters.

Notes

By default, original_image_size is inferred from image_size as being the minimum size of image that could
have produced this output. Let hanging[i] = original_image_size[i] - image_size[i] *
step[i]. Any value of hanging[i] greater than filter_size[i] - step[i] will result in border
pixels that are ignored by the original convolution. With this brick, any original_image_size such that
filter_size[i] - step[i] < hanging[i] < filter_size[i] for all i can be validly speci-
fied. However, no value will be output by the transposed convolution itself for these extra hanging border pixels,
and they will be determined entirely by the bias.

conv2d_impl(input_, W, input_shape, subsample, border_mode, filter_shape)
This function will build the symbolic graph for convolving a mini-batch of a stack of 2D inputs with a set
of 2D filters. The implementation is modelled after Convolutional Neural Networks (CNN).

Parameters

• input (symbolic 4D tensor) – Mini-batch of feature map stacks, of shape
(batch size, input channels, input rows, input columns). See the optional parameter
input_shape.

• filters (symbolic 4D or 6D tensor) – Set of filters used in CNN layer of
shape (output channels, input channels, filter rows, filter columns) for normal convolu-
tion and (output channels, output rows, output columns, input channels, filter rows, filter
columns) for unshared convolution. See the optional parameter filter_shape.

• input_shape (None, tuple/list of len 4 or 6 of int or
Constant variable) – The shape of the input parameter. Optional, possibly
used to choose an optimal implementation. You can give None for any element of the list
to specify that this element is not known at compile time.

• filter_shape (None, tuple/list of len 4 or 6 of int or
Constant variable) – The shape of the filters parameter. Optional, possibly
used to choose an optimal implementation. You can give None for any element of the list
to specify that this element is not known at compile time.

• border_mode (str, int or a tuple of two ints or pairs of
ints) – Either of the following:

'valid': apply filter wherever it completely overlaps with the input. Generates
output of shape: input shape - filter shape + 1

60 Chapter 2. In-depth

https://docs.python.org/3.4/library/stdtypes.html#tuple
https://docs.python.org/3.4/library/stdtypes.html#tuple
https://docs.python.org/3.4/library/constants.html#None
https://docs.python.org/3.4/library/constants.html#None
https://docs.python.org/3.4/library/stdtypes.html#str
https://docs.python.org/3.4/library/functions.html#int

Blocks Documentation, Release 0.2.0

'full': apply filter wherever it partly overlaps with the input. Generates output of
shape: input shape + filter shape - 1

'half': pad input with a symmetric border of filter rows // 2 rows and
filter columns // 2 columns, then perform a valid convolution. For filters
with an odd number of rows and columns, this leads to the output shape being equal to
the input shape.

int: pad input with a symmetric border of zeros of the given width, then perform a
valid convolution.

(int1, int2): (for 2D) pad input with a symmetric border of int1, int2, then
perform a valid convolution.

(int1, (int2, int3)) or ((int1, int2), int3): (for 2D) pad input with
one symmetric border of int1‘ or int3, and one asymmetric border of (int2,
int3) or (int1, int2).

• subsample (tuple of len 2) – Factor by which to subsample the output. Also
called strides elsewhere.

• filter_flip (bool) – If True, will flip the filter rows and columns before sliding
them over the input. This operation is normally referred to as a convolution, and this
is the default. If False, the filters are not flipped and the operation is referred to as a
cross-correlation.

• image_shape (None, tuple/list of len 4 of int or Constant
variable) – Deprecated alias for input_shape.

• filter_dilation (tuple of len 2) – Factor by which to subsample (stride) the
input. Also called dilation elsewhere.

• num_groups (int) – Divides the image, kernel and output tensors into num_groups
separate groups. Each which carry out convolutions separately

• unshared (bool) – If true, then unshared or ‘locally connected’ convolution will be
performed. A different filter will be used for each region of the input.

• kwargs (Any other keyword arguments are accepted for
backwards) – compatibility, but will be ignored.

Returns Set of feature maps generated by convolutional layer. Tensor is of shape (batch size,
output channels, output rows, output columns)

Return type Symbolic 4D tensor

Notes

If cuDNN is available, it will be used on the GPU. Otherwise, it is the CorrMM convolution that will be
used “caffe style convolution”.

This is only supported in Theano 0.8 or the development version until it is released.

The parameter filter_dilation is an implementation of dilated convolution.

get_dim(name)
Get dimension of an input/output variable of a brick.

Parameters name (str) – The name of the variable.

original_image_size

2.5. API Reference 61

https://docs.python.org/3.4/library/functions.html#bool
https://docs.python.org/3.4/library/constants.html#None
https://docs.python.org/3.4/library/functions.html#int
https://docs.python.org/3.4/library/functions.html#bool
https://arxiv.org/pdf/1511.07122v3.pdf
https://docs.python.org/3.4/library/stdtypes.html#str

Blocks Documentation, Release 0.2.0

class blocks.bricks.conv.Flattener(name=None, children=None)
Bases: blocks.bricks.base.Brick

Flattens the input.

It may be used to pass multidimensional objects like images or feature maps of convolutional bricks into bricks
which allow only two dimensional input (batch, features) like MLP.

apply

class blocks.bricks.conv.MaxPooling(**kwargs)
Bases: blocks.bricks.conv.Pooling

Max pooling layer.

Parameters

• pooling_size (tuple) – The height and width of the pooling region i.e. this is the
factor by which your input’s last two dimensions will be downscaled.

• step (tuple, optional) – The vertical and horizontal shift (stride) between pooling
regions. By default this is equal to pooling_size. Setting this to a lower number results in
overlapping pooling regions.

• input_dim (tuple, optional) – A tuple of integers representing the shape of the
input. The last two dimensions will be used to calculate the output dimension.

• padding (tuple, optional) – A tuple of integers representing the vertical and hori-
zontal zero-padding to be applied to each of the top and bottom (vertical) and left and right
(horizontal) edges. For example, an argument of (4, 3) will apply 4 pixels of padding to the
top edge, 4 pixels of padding to the bottom edge, and 3 pixels each for the left and right
edge. By default, no padding is performed.

• ignore_border (bool, optional) – Whether or not to do partial downsampling
based on borders where the extent of the pooling region reaches beyond the edge of the
image. If True, a (5, 5) image with (2, 2) pooling regions and (2, 2) step will be downsampled
to shape (2, 2), otherwise it will be downsampled to (3, 3). True by default.

Notes

Warning: As of this writing, setting ignore_border to False with a step not equal to the pooling size
will force Theano to perform pooling computations on CPU rather than GPU, even if you have specified a
GPU as your computation device. Additionally, Theano will only use [cuDNN] (if available) for pooling
computations with ignure_border set to True. You can ensure that the entire input is captured by at least one
pool by using the padding argument to add zero padding prior to pooling being performed.

class blocks.bricks.conv.Pooling(**kwargs)
Bases: blocks.bricks.interfaces.Initializable, blocks.bricks.interfaces.
Feedforward

Base Brick for pooling operations.

This should generally not be instantiated directly; see MaxPooling.

apply
Apply the pooling (subsampling) transformation.

62 Chapter 2. In-depth

https://docs.python.org/3.4/library/stdtypes.html#tuple
https://docs.python.org/3.4/library/stdtypes.html#tuple
https://docs.python.org/3.4/library/stdtypes.html#tuple
https://docs.python.org/3.4/library/stdtypes.html#tuple
https://docs.python.org/3.4/library/functions.html#bool

Blocks Documentation, Release 0.2.0

Parameters input (TensorVariable) – An tensor with dimension greater or equal to 2.
The last two dimensions will be downsampled. For example, with images this means that the
last two dimensions should represent the height and width of your image.

Returns output – A tensor with the same number of dimensions as input_, but with the last two
dimensions downsampled.

Return type TensorVariable

get_dim(name)
Get dimension of an input/output variable of a brick.

Parameters name (str) – The name of the variable.

image_size

num_channels

num_output_channels

Routing bricks

class blocks.bricks.parallel.Distribute(**kwargs)
Bases: blocks.bricks.parallel.Fork

Transform an input and add it to other inputs.

This brick is designed for the following scenario: one has a group of variables and another separate variable,
and one needs to somehow distribute information from the latter across the former. We call that “to distribute a
varible across other variables”, and refer to the separate variable as “the source” and to the variables from the
group as “the targets”.

Given a prototype brick, a Parallel brick makes several copies of it (each with its own parameters). At the
application time the copies are applied to the source and the transformation results are added to the targets (in
the literate sense).

>>> from theano import tensor
>>> from blocks.initialization import Constant
>>> x = tensor.matrix('x')
>>> y = tensor.matrix('y')
>>> z = tensor.matrix('z')
>>> distribute = Distribute(target_names=['x', 'y'], source_name='z',
... target_dims=[2, 3], source_dim=3,
... weights_init=Constant(2))
>>> distribute.initialize()
>>> new_x, new_y = distribute.apply(x=x, y=y, z=z)
>>> new_x.eval({x: [[2, 2]], z: [[1, 1, 1]]})
array([[8., 8.]]...
>>> new_y.eval({y: [[1, 1, 1]], z: [[1, 1, 1]]})
array([[7., 7., 7.]]...

Parameters

• target_names (list) – The names of the targets.

• source_name (str) – The name of the source.

• target_dims (list) – A list of target dimensions, corresponding to target_names.

• source_dim (int) – The dimension of the source input.

2.5. API Reference 63

https://docs.python.org/3.4/library/stdtypes.html#str
https://docs.python.org/3.4/library/stdtypes.html#list
https://docs.python.org/3.4/library/stdtypes.html#str
https://docs.python.org/3.4/library/stdtypes.html#list
https://docs.python.org/3.4/library/functions.html#int

Blocks Documentation, Release 0.2.0

• prototype (Feedforward, optional) – The transformation prototype. A copy will be
created for every input. By default a linear transformation is used.

target_dims
list

source_dim
int

Notes

See Initializable for initialization parameters.

apply
Distribute the source across the targets.

Parameters **kwargs (dict) – The source and the target variables.

Returns output – The new target variables.

Return type list

apply_inputs()

apply_outputs()

class blocks.bricks.parallel.Fork(**kwargs)
Bases: blocks.bricks.parallel.Parallel

Several outputs from one input by applying similar transformations.

Given a prototype brick, a Fork brick makes several copies of it (each with its own parameters). At the
application time the copies are applied to the input to produce different outputs.

A typical usecase for this brick is to produce inputs for gates of gated recurrent bricks, such as
GatedRecurrent.

>>> from theano import tensor
>>> from blocks.initialization import Constant
>>> x = tensor.matrix('x')
>>> fork = Fork(output_names=['y', 'z'],
... input_dim=2, output_dims=[3, 4],
... weights_init=Constant(2), biases_init=Constant(1))
>>> fork.initialize()
>>> y, z = fork.apply(x)
>>> y.eval({x: [[1, 1]]})
array([[5., 5., 5.]]...
>>> z.eval({x: [[1, 1]]})
array([[5., 5., 5., 5.]]...

Parameters

• output_names (list of str) – Names of the outputs to produce.

• input_dim (int) – The input dimension.

• prototype (Feedforward, optional) – The transformation prototype. A copy will be
created for every input. By default an affine transformation is used.

input_dim
int – The input dimension.

64 Chapter 2. In-depth

https://docs.python.org/3.4/library/stdtypes.html#dict
https://docs.python.org/3.4/library/stdtypes.html#list
https://docs.python.org/3.4/library/functions.html#int

Blocks Documentation, Release 0.2.0

output_dims
list – The output dimensions as a list of integers, corresponding to output_names.

See also:

Parallel, Initializable

apply

apply_outputs()

class blocks.bricks.parallel.Merge(**kwargs)
Bases: blocks.bricks.parallel.Parallel

Merges several variables by applying a transformation and summing.

Parameters

• input_names (list) – The input names.

• input_dims (list) – The dictionary of input dimensions, keys are input names, values
are dimensions.

• output_dim (int) – The output dimension of the merged variables.

• prototype (Feedforward, optional) – A transformation prototype. A copy will be
created for every input. If None, a linear transformation is used.

• child_prefix (str, optional) – A prefix for children names. By default “trans-
form” is used.

:param .. warning::: Note that if you want to have a bias you can pass a Linear brick as a prototype, but
this will result in several redundant biases. It is a better idea to use merge.children[0].use_bias
= True.

input_names
list – The input names.

input_dims
list – List of input dimensions corresponding to input_names.

output_dim
int – The output dimension.

Examples

>>> from theano import tensor
>>> from blocks.initialization import Constant
>>> a = tensor.matrix('a')
>>> b = tensor.matrix('b')
>>> merge = Merge(input_names=['a', 'b'], input_dims=[3, 4],
... output_dim=2, weights_init=Constant(1.))
>>> merge.initialize()
>>> c = merge.apply(a=a, b=b)
>>> c.eval({a: [[1, 1, 1]], b: [[2, 2, 2, 2]]})
array([[11., 11.]]...

apply

apply_inputs()

2.5. API Reference 65

https://docs.python.org/3.4/library/stdtypes.html#list
https://docs.python.org/3.4/library/stdtypes.html#list
https://docs.python.org/3.4/library/functions.html#int
https://docs.python.org/3.4/library/stdtypes.html#str

Blocks Documentation, Release 0.2.0

class blocks.bricks.parallel.Parallel(**kwargs)
Bases: blocks.bricks.interfaces.Initializable

Apply similar transformations to several inputs.

Given a prototype brick, a Parallel brick makes several copies of it (each with its own parameters). At the
application time every copy is applied to the respective input.

>>> from theano import tensor
>>> from blocks.initialization import Constant
>>> x, y = tensor.matrix('x'), tensor.matrix('y')
>>> parallel = Parallel(
... prototype=Linear(use_bias=False),
... input_names=['x', 'y'], input_dims=[2, 3], output_dims=[4, 5],
... weights_init=Constant(2))
>>> parallel.initialize()
>>> new_x, new_y = parallel.apply(x=x, y=y)
>>> new_x.eval({x: [[1, 1]]})
array([[4., 4., 4., 4.]]...
>>> new_y.eval({y: [[1, 1, 1]]})
array([[6., 6., 6., 6., 6.]]...

Parameters

• input_names (list) – The input names.

• input_dims (list) – List of input dimensions, given in the same order as input_names.

• output_dims (list) – List of output dimensions.

• prototype (Feedforward) – The transformation prototype. A copy will be created for
every input.

• child_prefix (str, optional) – The prefix for children names. By default “trans-
form” is used.

input_names
list – The input names.

input_dims
list – Input dimensions.

output_dims
list – Output dimensions.

Notes

See Initializable for initialization parameters.

apply

apply_inputs()

apply_outputs()

66 Chapter 2. In-depth

https://docs.python.org/3.4/library/stdtypes.html#list
https://docs.python.org/3.4/library/stdtypes.html#list
https://docs.python.org/3.4/library/stdtypes.html#list
https://docs.python.org/3.4/library/stdtypes.html#str

Blocks Documentation, Release 0.2.0

Recurrent bricks

Recurrent architectures

class blocks.bricks.recurrent.architectures.GatedRecurrent(**kwargs)
Bases: blocks.bricks.recurrent.base.BaseRecurrent, blocks.bricks.interfaces.
Initializable

Gated recurrent neural network.

Gated recurrent neural network (GRNN) as introduced in [CvMG14]. Every unit of a GRNN is equipped with
update and reset gates that facilitate better gradient propagation.

Parameters

• dim (int) – The dimension of the hidden state.

• activation (Brick or None) – The brick to apply as activation. If None a Tanh brick
is used.

• gate_activation (Brick or None) – The brick to apply as activation for gates. If
None a Logistic brick is used.

Notes

See Initializable for initialization parameters.

apply
Apply the gated recurrent transition.

Parameters

• states (TensorVariable) – The 2 dimensional matrix of current states in the shape
(batch_size, dim). Required for one_step usage.

• inputs (TensorVariable) – The 2 dimensional matrix of inputs in the shape
(batch_size, dim)

• gate_inputs (TensorVariable) – The 2 dimensional matrix of inputs to the gates
in the shape (batch_size, 2 * dim).

• mask (TensorVariable) – A 1D binary array in the shape (batch,) which is 1 if there
is data available, 0 if not. Assumed to be 1-s only if not given.

Returns output – Next states of the network.

Return type TensorVariable

get_dim(name)
Get dimension of an input/output variable of a brick.

Parameters name (str) – The name of the variable.

initial_states

state_to_gates

state_to_state

class blocks.bricks.recurrent.architectures.LSTM(**kwargs)
Bases: blocks.bricks.recurrent.base.BaseRecurrent, blocks.bricks.interfaces.
Initializable

2.5. API Reference 67

https://docs.python.org/3.4/library/functions.html#int
https://docs.python.org/3.4/library/stdtypes.html#str

Blocks Documentation, Release 0.2.0

Long Short Term Memory.

Every unit of an LSTM is equipped with input, forget and output gates. This implementation is based on code
by Mohammad Pezeshki that implements the architecture used in [GSS03] and [Grav13]. It aims to do as many
computations in parallel as possible and expects the last dimension of the input to be four times the output
dimension.

Unlike a vanilla LSTM as described in [HS97], this model has peephole connections from the cells to the gates.
The output gates receive information about the cells at the current time step, while the other gates only receive
information about the cells at the previous time step. All ‘peephole’ weight matrices are diagonal.

Parameters

• dim (int) – The dimension of the hidden state.

• activation (Brick, optional) – The activation function. The default and by far the
most popular is Tanh.

• gate_activation (Brick or None) – The brick to apply as activation for gates (in-
put/output/forget). If None a Logistic brick is used.

Notes

See Initializable for initialization parameters.

apply
Apply the Long Short Term Memory transition.

Parameters

• states (TensorVariable) – The 2 dimensional matrix of current states in the shape
(batch_size, features). Required for one_step usage.

• cells (TensorVariable) – The 2 dimensional matrix of current cells in the shape
(batch_size, features). Required for one_step usage.

• inputs (TensorVariable) – The 2 dimensional matrix of inputs in the shape
(batch_size, features * 4). The inputs needs to be four times the dimension of the LSTM
brick to insure each four gates receive different transformations of the input. See [Grav13]
equations 7 to 10 for more details. The inputs are then split in this order: Input gates, forget
gates, cells and output gates.

• mask (TensorVariable) – A 1D binary array in the shape (batch,) which is 1 if there
is data available, 0 if not. Assumed to be 1-s only if not given.

• [Grav13] Graves, Alex, Generating sequences with recurrent
(.) – neural networks, arXiv preprint arXiv:1308.0850 (2013).

Returns

• states (TensorVariable) – Next states of the network.

• cells (TensorVariable) – Next cell activations of the network.

get_dim(name)
Get dimension of an input/output variable of a brick.

Parameters name (str) – The name of the variable.

initial_states

68 Chapter 2. In-depth

https://docs.python.org/3.4/library/functions.html#int
https://docs.python.org/3.4/library/stdtypes.html#str

Blocks Documentation, Release 0.2.0

class blocks.bricks.recurrent.architectures.SimpleRecurrent(**kwargs)
Bases: blocks.bricks.recurrent.base.BaseRecurrent, blocks.bricks.interfaces.
Initializable

The traditional recurrent transition.

The most well-known recurrent transition: a matrix multiplication, optionally followed by a non-linearity.

Parameters

• dim (int) – The dimension of the hidden state

• activation (Brick) – The brick to apply as activation.

Notes

See Initializable for initialization parameters.

W

apply
Apply the simple transition.

Parameters

• inputs (TensorVariable) – The 2D inputs, in the shape (batch, features).

• states (TensorVariable) – The 2D states, in the shape (batch, features).

• mask (TensorVariable) – A 1D binary array in the shape (batch,) which is 1 if there
is data available, 0 if not. Assumed to be 1-s only if not given.

get_dim(name)
Get dimension of an input/output variable of a brick.

Parameters name (str) – The name of the variable.

initial_states

Helper bricks for recurrent networks

class blocks.bricks.recurrent.misc.Bidirectional(**kwargs)
Bases: blocks.bricks.interfaces.Initializable

Bidirectional network.

A bidirectional network is a combination of forward and backward recurrent networks which process inputs in
different order.

Parameters prototype (instance of BaseRecurrent) – A prototype brick from which the
forward and backward bricks are cloned.

Notes

See Initializable for initialization parameters.

apply
Applies forward and backward networks and concatenates outputs.

apply_delegate()

2.5. API Reference 69

https://docs.python.org/3.4/library/functions.html#int
https://docs.python.org/3.4/library/stdtypes.html#str

Blocks Documentation, Release 0.2.0

get_dim(name)
Get dimension of an input/output variable of a brick.

Parameters name (str) – The name of the variable.

has_bias = False

class blocks.bricks.recurrent.misc.RecurrentStack(transitions, fork_prototype=None,
states_name=’states’,
skip_connections=False,
**kwargs)

Bases: blocks.bricks.recurrent.base.BaseRecurrent, blocks.bricks.interfaces.
Initializable

Stack of recurrent networks.

Builds a stack of recurrent layers from a supplied list of BaseRecurrent objects. Each object must have a
sequences, contexts, states and outputs parameters to its apply method, such as the ones required by the recurrent
decorator from blocks.bricks.recurrent.

In Blocks in general each brick can have an apply method and this method has attributes that list the names
of the arguments that can be passed to the method and the name of the outputs returned by the method. The
attributes of the apply method of this class is made from concatenating the attributes of the apply methods of
each of the transitions from which the stack is made. In order to avoid conflict, the names of the arguments
appearing in the states and outputs attributes of the apply method of each layers are renamed. The names of the
bottom layer are used as-is and a suffix of the form ‘#<n>’ is added to the names from other layers, where ‘<n>’
is the number of the layer starting from 1, used for first layer above bottom.

The contexts of all layers are merged into a single list of unique names, and no suffix is added. Different layers
with the same context name will receive the same value.

The names that appear in sequences are treated in the same way as the names of states and outputs if
skip_connections is “True”. The only exception is the “mask” element that may appear in the sequences attribute
of all layers, no suffix is added to it and all layers will receive the same mask value. If you set skip_connections
to False then only the arguments of the sequences from the bottom layer will appear in the sequences attribute
of the apply method of this class. When using this class, with skip_connections set to “True”, you can supply all
inputs to all layers using a single fork which is created with output_names set to the apply.sequences attribute
of this class. For example, SequenceGenerator will create a such a fork.

Whether or not skip_connections is set, each layer above the bottom also receives an input (values to its se-
quences arguments) from a fork of the state of the layer below it. Not to be confused with the external fork
discussed in the previous paragraph. It is assumed that all states attributes have a “states” argument name (this
can be configured with states_name parameter.) The output argument with this name is forked and then added
to all the elements appearing in the sequences of the next layer (except for “mask”.) If skip_connections is False
then this fork has a bias by default. This allows direct usage of this class with input supplied only to the first
layer. But if you do supply inputs to all layers (by setting skip_connections to “True”) then by default there is
no bias and the external fork you use to supply the inputs should have its own separate bias.

Parameters

• transitions (list) – List of recurrent units to use in each layer. Each derived from
BaseRecurrent Note: A suffix with layer number is added to transitions’ names.

• fork_prototype (FeedForward, optional) – A prototype for the transformation ap-
plied to states_name from the states of each layer. The transformation is used when the
states_name argument from the outputs of one layer is used as input to the sequences of the
next layer. By default it Linear transformation is used, with bias if skip_connections is
“False”. If you supply your own prototype you have to enable/disable bias depending on the
value of skip_connections.

70 Chapter 2. In-depth

https://docs.python.org/3.4/library/stdtypes.html#str
https://docs.python.org/3.4/library/stdtypes.html#list

Blocks Documentation, Release 0.2.0

• states_name (string) – In a stack of RNN the state of each layer is used as input to
the next. The states_name identify the argument of the states and outputs attributes of each
layer that should be used for this task. By default the argument is called “states”. To be
more precise, this is the name of the argument in the outputs attribute of the apply method
of each transition (layer.) It is used, via fork, as the sequences (input) of the next layer. The
same element should also appear in the states attribute of the apply method.

• skip_connections (bool) – By default False. When true, the sequences of all layers
are add to the sequences of the apply of this class. When false only the sequences of the
bottom layer appear in the sequences of the apply of this class. In this case the default fork
used internally between layers has a bias (see fork_prototype.) An external code can inspect
the sequences attribute of the apply method of this class to decide which arguments it need
(and in what order.) With skip_connections you can control what is exposed to the externl
code. If it is false then the external code is expected to supply inputs only to the bottom layer
and if it is true then the external code is expected to supply inputs to all layers. There is just
one small problem, the external inputs to the layers above the bottom layer are added to a
fork of the state of the layer below it. As a result the output of two forks is added together
and it will be problematic if both will have a bias. It is assumed that the external fork has
a bias and therefore by default the internal fork will not have a bias if skip_connections is
true.

Notes

See BaseRecurrent for more initialization parameters.

apply
Apply the stack of transitions.

Parameters

• low_memory (bool) – Use the slow, but also memory efficient, implementation of this
code.

• *args (TensorVariable, optional) – Positional argumentes in the order in which
they appear in self.apply.sequences followed by self.apply.contexts.

• **kwargs (TensorVariable) – Named argument defined in self.apply.sequences,
self.apply.states or self.apply.contexts

Returns outputs – The outputs of all transitions as defined in self.apply.outputs

Return type (list of) TensorVariable

See also:

See docstring of this class for arguments appearing in the lists self.apply.sequences, self.apply.states,
self.apply.contexts. See recurrent() : for all other parameters such as iterate and return_initial_states
however reverse is currently not implemented.

do_apply(*args, **kwargs)
Apply the stack of transitions.

This is the undecorated implementation of the apply method. A method with an @apply decoration should
call this method with iterate=True to indicate that the iteration over all steps should be done internally by
this method. A method with a @recurrent method should have iterate=False (or unset) to indicate that the
iteration over all steps is done externally.

get_dim(name)
Get dimension of an input/output variable of a brick.

2.5. API Reference 71

https://docs.python.org/3.4/library/functions.html#bool
https://docs.python.org/3.4/library/functions.html#bool

Blocks Documentation, Release 0.2.0

Parameters name (str) – The name of the variable.

initial_states

low_memory_apply

normal_inputs(level)

static split_suffix(name)

static suffix(name, level)

static suffixes(names, level)

Base definitions for recurrent bricks

class blocks.bricks.recurrent.base.BaseRecurrent(name=None, children=None)
Bases: blocks.bricks.base.Brick

Base class for brick with recurrent application method.

has_bias = False

initial_states
Return initial states for an application call.

Default implementation assumes that the recurrent application method is called apply. It fetches the state
names from apply.states and a returns a zero matrix for each of them.

SimpleRecurrent, LSTM and GatedRecurrent override this method with trainable initial states
initialized with zeros.

Parameters

• batch_size (int) – The batch size.

• *args – The positional arguments of the application call.

• **kwargs – The keyword arguments of the application call.

initial_states_outputs()

blocks.bricks.recurrent.base.recurrent(*args, **kwargs)
Wraps an apply method to allow its iterative application.

This decorator allows you to implement only one step of a recurrent network and enjoy applying it to sequences
for free. The idea behind is that its most general form information flow of an RNN can be described as fol-
lows: depending on the context and driven by input sequences the RNN updates its states and produces output
sequences.

Given a method describing one step of an RNN and a specification which of its inputs are the elements of the
input sequence, which are the states and which are the contexts, this decorator returns an application method
which implements the whole RNN loop. The returned application method also has additional parameters, see
documentation of the recurrent_apply inner function below.

Parameters

• sequences (list of strs) – Specifies which of the arguments are elements of input
sequences.

• states (list of strs) – Specifies which of the arguments are the states.

• contexts (list of strs) – Specifies which of the arguments are the contexts.

72 Chapter 2. In-depth

https://docs.python.org/3.4/library/stdtypes.html#str
https://docs.python.org/3.4/library/functions.html#int

Blocks Documentation, Release 0.2.0

• outputs (list of strs) – Names of the outputs. The outputs whose names match
with those in the state parameter are interpreted as next step states.

Returns recurrent_apply – The new application method that applies the RNN to sequences.

Return type Application

See also:

The tutorial on RNNs

Attention bricks

This module defines the interface of attention mechanisms and a few concrete implementations. For a gentle introduc-
tion and usage examples see the tutorial TODO.

An attention mechanism decides to what part of the input to pay attention. It is typically used as a component of
a recurrent network, though one can imagine it used in other conditions as well. When the input is big and has
certain structure, for instance when it is sequence or an image, an attention mechanism can be applied to extract only
information which is relevant for the network in its current state.

For the purpose of documentation clarity, we fix the following terminology in this file:

• network is the network, typically a recurrent one, which uses the attention mechanism.

• The network has states. Using this word in plural might seem weird, but some recurrent networks like LSTM do
have several states.

• The big structured input, to which the attention mechanism is applied, is called the attended. When it has
variable structure, e.g. a sequence of variable length, there might be a mask associated with it.

• The information extracted by the attention from the attended is called glimpse, more specifically glimpses be-
cause there might be a few pieces of this information.

Using this terminology, the attention mechanism computes glimpses given the states of the network and the attended.

An example: in the machine translation network from [BCB] the attended is a sequence of so-called annotations,
that is states of a bidirectional network that was driven by word embeddings of the source sentence. The attention
mechanism assigns weights to the annotations. The weighted sum of the annotations is further used by the translation
network to predict the next word of the generated translation. The weights and the weighted sum are the glimpses. A
generalized attention mechanism for this paper is represented here as SequenceContentAttention.

class blocks.bricks.attention.AbstractAttention(**kwargs)
Bases: blocks.bricks.base.Brick

The common interface for attention bricks.

First, see the module-level docstring for terminology.

A generic attention mechanism functions as follows. Its inputs are the states of the network and the attended.
Given these two it produces so-called glimpses, that is it extracts information from the attended which is neces-
sary for the network in its current states

For computational reasons we separate the process described above into two stages:

1. The preprocessing stage, preprocess(), includes computation that do not involve the state. Those can be
often performed in advance. The outcome of this stage is called preprocessed_attended.

2. The main stage, take_glimpses(), includes all the rest.

When an attention mechanism is applied sequentially, some glimpses from the previous step might be necessary
to compute the new ones. A typical example for that is when the focus position from the previous step is required.
In such cases take_glimpses() should specify such need in its interface (its docstring explains how to do

2.5. API Reference 73

Blocks Documentation, Release 0.2.0

that). In addition initial_glimpses() should specify some sensible initialization for the glimpses to be
carried over.

Todo: Only single attended is currently allowed.

preprocess() and initial_glimpses() might end up needing masks, which are currently not pro-
vided for them.

Parameters

• state_names (list) – The names of the network states.

• state_dims (list) – The state dimensions corresponding to state_names.

• attended_dim (int) – The dimension of the attended.

state_names
list

state_dims
list

attended_dim
int

get_dim(name)
Get dimension of an input/output variable of a brick.

Parameters name (str) – The name of the variable.

initial_glimpses(batch_size, attended)
Return sensible initial values for carried over glimpses.

Parameters

• batch_size (int or Variable) – The batch size.

• attended (Variable) – The attended.

Returns initial_glimpses – The initial values for the requested glimpses. These might simply
consist of zeros or be somehow extracted from the attended.

Return type list of Variable

preprocess
Perform the preprocessing of the attended.

Stage 1 of the attention mechanism, see AbstractAttention docstring for an explanation of stages.
The default implementation simply returns attended.

Parameters attended (Variable) – The attended.

Returns preprocessed_attended – The preprocessed attended.

Return type Variable

take_glimpses(attended, preprocessed_attended=None, attended_mask=None, **kwargs)
Extract glimpses from the attended given the current states.

Stage 2 of the attention mechanism, see AbstractAttention for an explanation of stages. If prepro-
cessed_attended is not given, should trigger the stage 1.

74 Chapter 2. In-depth

https://docs.python.org/3.4/library/stdtypes.html#list
https://docs.python.org/3.4/library/stdtypes.html#list
https://docs.python.org/3.4/library/functions.html#int
https://docs.python.org/3.4/library/stdtypes.html#str

Blocks Documentation, Release 0.2.0

This application method must declare its inputs and outputs. The glimpses to be carried over are identified
by their presence in both inputs and outputs list. The attended must be the first input, the preprocessed
attended must be the second one.

Parameters

• attended (Variable) – The attended.

• preprocessed_attended (Variable, optional) – The preprocessed attended com-
puted by preprocess(). When not given, preprocess() should be called.

• attended_mask (Variable, optional) – The mask for the attended. This is required
in the case of padded structured output, e.g. when a number of sequences are force to
be the same length. The mask identifies position of the attended that actually contain
information.

• **kwargs (dict) – Includes the states and the glimpses to be carried over from the
previous step in the case when the attention mechanism is applied sequentially.

class blocks.bricks.attention.AbstractAttentionRecurrent(name=None, chil-
dren=None)

Bases: blocks.bricks.recurrent.base.BaseRecurrent

The interface for attention-equipped recurrent transitions.

When a recurrent network is equipped with an attention mechanism its transition typically consists of two steps:
(1) the glimpses are taken by the attention mechanism and (2) the next states are computed using the current
states and the glimpses. It is required for certain usecases (such as sequence generator) that apart from a do-it-all
recurrent application method interfaces for the first step and the second steps of the transition are provided.

apply(**kwargs)
Compute next states taking glimpses on the way.

compute_states(**kwargs)
Compute next states given current states and glimpses.

take_glimpses(**kwargs)
Compute glimpses given the current states.

class blocks.bricks.attention.AttentionRecurrent(transition, attention, dis-
tribute=None, add_contexts=True,
attended_name=None, at-
tended_mask_name=None,
**kwargs)

Bases: blocks.bricks.attention.AbstractAttentionRecurrent, blocks.bricks.
interfaces.Initializable

Combines an attention mechanism and a recurrent transition.

This brick equips a recurrent transition with an attention mechanism. In order to do this two more contexts are
added: one to be attended and a mask for it. It is also possible to use the contexts of the given recurrent transition
for these purposes and not add any new ones, see add_context parameter.

At the beginning of each step attention mechanism produces glimpses; these glimpses together with the current
states are used to compute the next state and finish the transition. In some cases glimpses from the previous
steps are also necessary for the attention mechanism, e.g. in order to focus on an area close to the one from the
previous step. This is also supported: such glimpses become states of the new transition.

To let the user control the way glimpses are used, this brick also takes a “distribute” brick as parameter that
distributes the information from glimpses across the sequential inputs of the wrapped recurrent transition.

Parameters

2.5. API Reference 75

https://docs.python.org/3.4/library/stdtypes.html#dict

Blocks Documentation, Release 0.2.0

• transition (BaseRecurrent) – The recurrent transition.

• attention (Brick) – The attention mechanism.

• distribute (Brick, optional) – Distributes the information from glimpses across the
input sequences of the transition. By default a Distribute is used, and those inputs
containing the “mask” substring in their name are not affected.

• add_contexts (bool, optional) – If True, new contexts for the attended and the
attended mask are added to this transition, otherwise existing contexts of the wrapped tran-
sition are used. True by default.

• attended_name (str) – The name of the attended context. If None, “attended” or the
first context of the recurrent transition is used depending on the value of add_contents flag.

• attended_mask_name (str) – The name of the mask for the attended context. If
None, “attended_mask” or the second context of the recurrent transition is used depend-
ing on the value of add_contents flag.

Notes

See Initializable for initialization parameters.

Wrapping your recurrent brick with this class makes all the states mandatory. If you feel this is a limitation
for you, try to make it better! This restriction does not apply to sequences and contexts: those keep being as
optional as they were for your brick.

Those coming to Blocks from Groundhog might recognize that this is a RecurrentLayerWithSearch, but on
steroids :)

apply
Preprocess a sequence attending the attended context at every step.

Preprocesses the attended context and runs do_apply(). See do_apply() documentation for further
information.

apply_contexts()

apply_delegate()

compute_states
Compute current states when glimpses have already been computed.

Combines an application of the distribute that alter the sequential inputs of the wrapped transition and an
application of the wrapped transition. All unknown keyword arguments go to the wrapped transition.

Parameters **kwargs – Should contain everything what self.transition needs and in addition
the current glimpses.

Returns current_states – Current states computed by self.transition.

Return type list of TensorVariable

compute_states_outputs()

do_apply
Process a sequence attending the attended context every step.

In addition to the original sequence this method also requires its preprocessed version, the one computed
by the preprocess method of the attention mechanism. Unknown keyword arguments are passed to the
wrapped transition.

76 Chapter 2. In-depth

https://docs.python.org/3.4/library/functions.html#bool
https://docs.python.org/3.4/library/stdtypes.html#str
https://docs.python.org/3.4/library/stdtypes.html#str

Blocks Documentation, Release 0.2.0

Parameters **kwargs – Should contain current inputs, previous step states, contexts, the pre-
processed attended context, previous step glimpses.

Returns outputs – The current step states and glimpses.

Return type list of TensorVariable

do_apply_contexts()

do_apply_outputs()

do_apply_sequences()

do_apply_states()

get_dim(name)
Get dimension of an input/output variable of a brick.

Parameters name (str) – The name of the variable.

initial_states

initial_states_outputs()

take_glimpses
Compute glimpses with the attention mechanism.

A thin wrapper over self.attention.take_glimpses: takes care of choosing and renaming the necessary ar-
guments.

Parameters **kwargs – Must contain the attended, previous step states and glimpses. Can
optionaly contain the attended mask and the preprocessed attended.

Returns glimpses – Current step glimpses.

Return type list of TensorVariable

take_glimpses_outputs()

class blocks.bricks.attention.GenericSequenceAttention(**kwargs)
Bases: blocks.bricks.attention.AbstractAttention

Logic common for sequence attention mechanisms.

compute_weighted_averages
Compute weighted averages of the attended sequence vectors.

Parameters

• weights (Variable) – The weights. The shape must be equal to the attended shape
without the last dimension.

• attended (Variable) – The attended. The index in the sequence must be the first
dimension.

Returns weighted_averages – The weighted averages of the attended elements. The shape is
equal to the attended shape with the first dimension dropped.

Return type Variable

compute_weights
Compute weights from energies in softmax-like fashion.

Todo: Use Softmax.

2.5. API Reference 77

https://docs.python.org/3.4/library/stdtypes.html#str

Blocks Documentation, Release 0.2.0

Parameters

• energies (Variable) – The energies. Must be of the same shape as the mask.

• attended_mask (Variable) – The mask for the attended. The index in the sequence
must be the first dimension.

Returns weights – Summing to 1 non-negative weights of the same shape as energies.

Return type Variable

class blocks.bricks.attention.SequenceContentAttention(**kwargs)
Bases: blocks.bricks.attention.GenericSequenceAttention, blocks.bricks.
interfaces.Initializable

Attention mechanism that looks for relevant content in a sequence.

This is the attention mechanism used in [BCB]. The idea in a nutshell:

1. The states and the sequence are transformed independently,

2. The transformed states are summed with every transformed sequence element to obtain match vectors,

3. A match vector is transformed into a single number interpreted as energy,

4. Energies are normalized in softmax-like fashion. The resulting summing to one weights are called attention
weights,

5. Weighted average of the sequence elements with attention weights is computed.

In terms of the AbstractAttention documentation, the sequence is the attended. The weighted averages
from 5 and the attention weights from 4 form the set of glimpses produced by this attention mechanism.

Parameters

• state_names (list of str) – The names of the network states.

• attended_dim (int) – The dimension of the sequence elements.

• match_dim (int) – The dimension of the match vector.

• state_transformer (Brick) – A prototype for state transformations. If None, a
linear transformation is used.

• attended_transformer (Feedforward) – The transformation to be applied to the
sequence. If None an affine transformation is used.

• energy_computer (Feedforward) – Computes energy from the match vector. If
None, an affine transformations preceeded by 𝑡𝑎𝑛ℎ is used.

Notes

See Initializable for initialization parameters.

compute_energies

get_dim(name)
Get dimension of an input/output variable of a brick.

Parameters name (str) – The name of the variable.

initial_glimpses

preprocess
Preprocess the sequence for computing attention weights.

78 Chapter 2. In-depth

https://docs.python.org/3.4/library/functions.html#int
https://docs.python.org/3.4/library/functions.html#int
https://docs.python.org/3.4/library/stdtypes.html#str

Blocks Documentation, Release 0.2.0

Parameters attended (TensorVariable) – The attended sequence, time is the 1-st di-
mension.

take_glimpses
Compute attention weights and produce glimpses.

Parameters

• attended (TensorVariable) – The sequence, time is the 1-st dimension.

• preprocessed_attended (TensorVariable) – The preprocessed sequence. If
None, is computed by calling preprocess().

• attended_mask (TensorVariable) – A 0/1 mask specifying available data. 0
means that the corresponding sequence element is fake.

• **states – The states of the network.

Returns

• weighted_averages (Variable) – Linear combinations of sequence elements with the
attention weights.

• weights (Variable) – The attention weights. The first dimension is batch, the second is
time.

take_glimpses_inputs()

class blocks.bricks.attention.ShallowEnergyComputer(**kwargs)
Bases: blocks.bricks.sequences.Sequence, blocks.bricks.interfaces.
Initializable, blocks.bricks.interfaces.Feedforward

A simple energy computer: first tanh, then weighted sum.

Parameters use_bias (bool, optional) – Whether a bias should be added to the energies.
Does not change anything if softmax normalization is used to produce the attention weights, but
might be useful when e.g. spherical softmax is used.

input_dim

output_dim

Sequence generators

Recurrent networks are often used to generate/model sequences. Examples include language modelling, machine
translation, handwriting synthesis, etc.. A typical pattern in this context is that sequence elements are generated one
often another, and every generated element is fed back into the recurrent network state. Sometimes also an attention
mechanism is used to condition sequence generation on some structured input like another sequence or an image.

This module provides SequenceGenerator that builds a sequence generating network from three main compo-
nents:

• a core recurrent transition, e.g. LSTM or GatedRecurrent

• a readout component that can produce sequence elements using the network state and the information from the
attention mechanism

• an attention mechanism (see attention for more information)

Implementation-wise SequenceGenerator fully relies on BaseSequenceGenerator. At the level
of the latter an attention is mandatory, moreover it must be a part of the recurrent transition (see
AttentionRecurrent). To simulate optional attention, SequenceGenerator wraps the pure recurrent net-
work in FakeAttentionRecurrent.

2.5. API Reference 79

https://docs.python.org/3.4/library/functions.html#bool

Blocks Documentation, Release 0.2.0

class blocks.bricks.sequence_generators.AbstractEmitter(name=None, chil-
dren=None)

Bases: blocks.bricks.base.Brick

The interface for the emitter component of a readout.

readout_dim
int – The dimension of the readout. Is given by the Readout brick when allocation configuration is
pushed.

See also:

Readout

SoftmaxEmitter for integer outputs

Notes

An important detail about the emitter cost is that it will be evaluated with inputs of different dimensions so it
has to be flexible enough to handle this. The two ways in which it can be applied are:

1. In :meth:BaseSequenceGenerator.cost_matrix where it will be applied to the whole sequence at
once.

2. In :meth:BaseSequenceGenerator.generate where it will be applied to only one step of the se-
quence.

cost(readouts, outputs)
Implements the respective method of Readout.

emit(readouts)
Implements the respective method of Readout.

initial_outputs(batch_size)
Implements the respective method of Readout.

class blocks.bricks.sequence_generators.AbstractFeedback(name=None, chil-
dren=None)

Bases: blocks.bricks.base.Brick

The interface for the feedback component of a readout.

See also:

Readout, LookupFeedback

feedback(outputs)
Implements the respective method of Readout.

class blocks.bricks.sequence_generators.AbstractReadout(**kwargs)
Bases: blocks.bricks.interfaces.Initializable

The interface for the readout component of a sequence generator.

The readout component of a sequence generator is a bridge between the core recurrent network and the output
sequence.

Parameters

• source_names (list) – A list of the source names (outputs) that are needed for
the readout part e.g. ['states'] or ['states', 'weighted_averages'] or
['states', 'feedback'].

• readout_dim (int) – The dimension of the readout.

80 Chapter 2. In-depth

https://docs.python.org/3.4/library/stdtypes.html#list
https://docs.python.org/3.4/library/functions.html#int

Blocks Documentation, Release 0.2.0

source_names
list

readout_dim
int

See also:

BaseSequenceGenerator see how exactly a readout is used

Readout the typically used readout brick

cost(readouts, outputs)
Compute generation cost of outputs given readouts.

Parameters

• readouts (Variable) – Readouts produced by the readout() method of a (. . . ,
readout dim) shape.

• outputs (Variable) – Outputs whose cost should be computed. Should have as many
or one less dimensions compared to readout. If readout has n dimensions, first n - 1
dimensions of outputs should match with those of readouts.

emit(readouts)
Produce outputs from readouts.

Parameters readouts (Variable) – Readouts produced by the readout() method of a
(batch_size, readout_dim) shape.

feedback(outputs)
Feeds outputs back to be used as inputs of the transition.

initial_outputs(batch_size)
Compute initial outputs for the generator’s first step.

In the notation from the BaseSequenceGenerator documentation this method should compute 𝑦0.

readout(**kwargs)
Compute the readout vector from states, glimpses, etc.

Parameters **kwargs (dict) – Contains sequence generator states, glimpses, contexts and
feedback from the previous outputs.

class blocks.bricks.sequence_generators.BaseSequenceGenerator(**kwargs)
Bases: blocks.bricks.interfaces.Initializable

A generic sequence generator.

This class combines two components, a readout network and an attention-equipped recurrent transition, into
a context-dependent sequence generator. Third component must be also given which forks feedback from the
readout network to obtain inputs for the transition.

The class provides two methods: generate() and cost(). The former is to actually generate sequences
and the latter is to compute the cost of generating given sequences.

The generation algorithm description follows.

Definitions and notation:

• States 𝑠𝑖 of the generator are the states of the transition as specified in transition.state_names.

• Contexts of the generator are the contexts of the transition as specified in transition.context_names.

2.5. API Reference 81

https://docs.python.org/3.4/library/stdtypes.html#dict

Blocks Documentation, Release 0.2.0

• Glimpses 𝑔𝑖 are intermediate entities computed at every generation step from states, contexts and the
previous step glimpses. They are computed in the transition’s apply method when not given or by explic-
itly calling the transition’s take_glimpses method. The set of glimpses considered is specified in transi-
tion.glimpse_names.

• Outputs 𝑦𝑖 are produced at every step and form the output sequence. A generation cost 𝑐𝑖 is assigned to
each output.

Algorithm:

1. Initialization.

𝑦0 = 𝑟𝑒𝑎𝑑𝑜𝑢𝑡.𝑖𝑛𝑖𝑡𝑖𝑎𝑙_𝑜𝑢𝑡𝑝𝑢𝑡𝑠(𝑐𝑜𝑛𝑡𝑒𝑥𝑡𝑠)
𝑠0, 𝑔0 = 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛.𝑖𝑛𝑖𝑡𝑖𝑎𝑙_𝑠𝑡𝑎𝑡𝑒𝑠(𝑐𝑜𝑛𝑡𝑒𝑥𝑡𝑠)

𝑖 = 1

By default all recurrent bricks from recurrent have trainable initial states initialized with zeros. Sub-
class them or BaseRecurrent directly to get custom initial states.

2. New glimpses are computed:

𝑔𝑖 = 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛.𝑡𝑎𝑘𝑒_𝑔𝑙𝑖𝑚𝑝𝑠𝑒𝑠(𝑠𝑖−1, 𝑔𝑖−1, 𝑐𝑜𝑛𝑡𝑒𝑥𝑡𝑠)

3. A new output is generated by the readout and its cost is computed:

𝑓𝑖−1 = 𝑟𝑒𝑎𝑑𝑜𝑢𝑡.𝑓𝑒𝑒𝑑𝑏𝑎𝑐𝑘(𝑦𝑖−1)

𝑟𝑖 = 𝑟𝑒𝑎𝑑𝑜𝑢𝑡.𝑟𝑒𝑎𝑑𝑜𝑢𝑡(𝑓𝑖−1, 𝑠𝑖−1, 𝑔𝑖, 𝑐𝑜𝑛𝑡𝑒𝑥𝑡𝑠)

𝑦𝑖 = 𝑟𝑒𝑎𝑑𝑜𝑢𝑡.𝑒𝑚𝑖𝑡(𝑟𝑖)

𝑐𝑖 = 𝑟𝑒𝑎𝑑𝑜𝑢𝑡.𝑐𝑜𝑠𝑡(𝑟𝑖, 𝑦𝑖)

Note that the new glimpses and the old states are used at this step. The reason for not merging all readout
methods into one is to make an efficient implementation of cost() possible.

4. New states are computed and iteration is done:

𝑓𝑖 = 𝑟𝑒𝑎𝑑𝑜𝑢𝑡.𝑓𝑒𝑒𝑑𝑏𝑎𝑐𝑘(𝑦𝑖)

𝑠𝑖 = 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛.𝑐𝑜𝑚𝑝𝑢𝑡𝑒_𝑠𝑡𝑎𝑡𝑒𝑠(𝑠𝑖−1, 𝑔𝑖, 𝑓𝑜𝑟𝑘.𝑎𝑝𝑝𝑙𝑦(𝑓𝑖), 𝑐𝑜𝑛𝑡𝑒𝑥𝑡𝑠)

𝑖 = 𝑖+ 1

5. Back to step 2 if the desired sequence length has not been yet reached.

A scheme of the algorithm described above follows.

82 Chapter 2. In-depth

Blocks Documentation, Release 0.2.0

Parameters

• readout (instance of AbstractReadout) – The readout component of the sequence
generator.

• transition (instance of AbstractAttentionRecurrent) – The transition com-
ponent of the sequence generator.

• fork (Brick) – The brick to compute the transition’s inputs from the feedback.

See also:

Initializable for initialization parameters

SequenceGenerator more user friendly interface to thisbrick

cost
Returns the average cost over the minibatch.

The cost is computed by averaging the sum of per token costs for each sequence over the minibatch.

Warning: Note that, the computed cost can be problematic when batches consist of vastly different
sequence lengths.

2.5. API Reference 83

Blocks Documentation, Release 0.2.0

Parameters

• outputs (TensorVariable) – The 3(2) dimensional tensor containing output se-
quences. The axis 0 must stand for time, the axis 1 for the position in the batch.

• mask (TensorVariable) – The binary matrix identifying fake outputs.

Returns cost – Theano variable for cost, computed by summing over timesteps and then aver-
aging over the minibatch.

Return type Variable

Notes

The contexts are expected as keyword arguments.

Adds average cost per sequence element AUXILIARY variable to the computational graph with name
per_sequence_element.

cost_matrix
Returns generation costs for output sequences.

See also:

cost() Scalar cost.

generate
A sequence generation step.

Parameters outputs (TensorVariable) – The outputs from the previous step.

Notes

The contexts, previous states and glimpses are expected as keyword arguments.

generate_delegate()

generate_outputs()

generate_states()

get_dim(name)
Get dimension of an input/output variable of a brick.

Parameters name (str) – The name of the variable.

initial_states

initial_states_outputs()

class blocks.bricks.sequence_generators.FakeAttentionRecurrent(transition,
**kwargs)

Bases: blocks.bricks.attention.AbstractAttentionRecurrent, blocks.bricks.
interfaces.Initializable

Adds fake attention interface to a transition.

BaseSequenceGenerator requires its transition brick to support AbstractAttentionRecurrent
interface, that is to have an embedded attention mechanism. For the cases when no attention is required (e.g.

84 Chapter 2. In-depth

https://docs.python.org/3.4/library/stdtypes.html#str

Blocks Documentation, Release 0.2.0

language modeling or encoder-decoder models), FakeAttentionRecurrent is used to wrap a usual re-
current brick. The resulting brick has no glimpses and simply passes all states and contexts to the wrapped
one.

Todo: Get rid of this brick and support attention-less transitions in BaseSequenceGenerator.

apply

apply_delegate()

compute_states

compute_states_delegate()

get_dim(name)
Get dimension of an input/output variable of a brick.

Parameters name (str) – The name of the variable.

initial_states

initial_states_outputs()

take_glimpses

class blocks.bricks.sequence_generators.LookupFeedback(num_outputs=None,
feedback_dim=None,
**kwargs)

Bases: blocks.bricks.sequence_generators.AbstractFeedback, blocks.bricks.
interfaces.Initializable

A feedback brick for the case when readout are integers.

Stores and retrieves distributed representations of integers.

feedback

get_dim(name)
Get dimension of an input/output variable of a brick.

Parameters name (str) – The name of the variable.

class blocks.bricks.sequence_generators.Readout(emitter=None, feedback_brick=None,
merge=None, merge_prototype=None,
post_merge=None,
merged_dim=None, **kwargs)

Bases: blocks.bricks.sequence_generators.AbstractReadout

Readout brick with separated emitter and feedback parts.

Readout combines a few bits and pieces into an object that can be used as the readout component
in BaseSequenceGenerator. This includes an emitter brick, to which emit(), cost() and
initial_outputs() calls are delegated, a feedback brick to which feedback() functionality is del-
egated, and a pipeline to actually compute readouts from all the sources (see the source_names attribute of
AbstractReadout).

The readout computation pipeline is constructed from merge and post_merge brick, whose responsibilites are
described in the respective docstrings.

Parameters

• emitter (an instance of AbstractEmitter) – The emitter component.

• feedback_brick (an instance of AbstractFeedback) – The feedback component.

2.5. API Reference 85

https://docs.python.org/3.4/library/stdtypes.html#str
https://docs.python.org/3.4/library/stdtypes.html#str

Blocks Documentation, Release 0.2.0

• merge (Brick, optional) – A brick that takes the sources given in source_names as an
input and combines them into a single output. If given, merge_prototype cannot be given.

• merge_prototype (FeedForward, optional) – If merge isn’t given, the transformation
given by merge_prototype is applied to each input before being summed. By default a
Linear transformation without biases is used. If given, merge cannot be given.

• post_merge (Feedforward, optional) – This transformation is applied to the merged
inputs. By default Bias is used.

• merged_dim (int, optional) – The input dimension of post_merge i.e. the output
dimension of merge (or merge_prototype). If not give, it is assumed to be the same as
readout_dim (i.e. post_merge is assumed to not change dimensions).

• **kwargs (dict) – Passed to the parent’s constructor.

See also:

BaseSequenceGenerator see how exactly a readout is used

AbstractEmitter, AbstractFeedback

cost

emit

feedback

get_dim(name)
Get dimension of an input/output variable of a brick.

Parameters name (str) – The name of the variable.

initial_outputs

readout

class blocks.bricks.sequence_generators.SequenceGenerator(readout, transition,
attention=None,
add_contexts=True,
**kwargs)

Bases: blocks.bricks.sequence_generators.BaseSequenceGenerator

A more user-friendly interface for BaseSequenceGenerator.

Parameters

• readout (instance of AbstractReadout) – The readout component for the sequence
generator.

• transition (instance of BaseRecurrent) – The recurrent transition to be used in the
sequence generator. Will be combined with attention, if that one is given.

• attention (object, optional) – The attention mechanism to be added to
transition, an instance of AbstractAttention.

• add_contexts (bool) – If True, the AttentionRecurrent wrapping the transi-
tion will add additional contexts for the attended and its mask.

• **kwargs (dict) – All keywords arguments are passed to the base class. If fork keyword
argument is not provided, Fork is created that forks all transition sequential inputs without
a “mask” substring in them.

86 Chapter 2. In-depth

https://docs.python.org/3.4/library/functions.html#int
https://docs.python.org/3.4/library/stdtypes.html#dict
https://docs.python.org/3.4/library/stdtypes.html#str
https://docs.python.org/3.4/library/functions.html#object
https://docs.python.org/3.4/library/functions.html#bool
https://docs.python.org/3.4/library/stdtypes.html#dict

Blocks Documentation, Release 0.2.0

class blocks.bricks.sequence_generators.SoftmaxEmitter(initial_output=0,
**kwargs)

Bases: blocks.bricks.sequence_generators.AbstractEmitter, blocks.bricks.
interfaces.Initializable, blocks.bricks.interfaces.Random

A softmax emitter for the case of integer outputs.

Interprets readout elements as energies corresponding to their indices.

Parameters initial_output (int or a scalar Variable) – The initial output.

cost

emit

get_dim(name)
Get dimension of an input/output variable of a brick.

Parameters name (str) – The name of the variable.

initial_outputs

probs

class blocks.bricks.sequence_generators.TrivialEmitter(**kwargs)
Bases: blocks.bricks.sequence_generators.AbstractEmitter

An emitter for the trivial case when readouts are outputs.

Parameters readout_dim (int) – The dimension of the readout.

Notes

By default cost() always returns zero tensor.

cost

emit

get_dim(name)
Get dimension of an input/output variable of a brick.

Parameters name (str) – The name of the variable.

initial_outputs

class blocks.bricks.sequence_generators.TrivialFeedback(**kwargs)
Bases: blocks.bricks.sequence_generators.AbstractFeedback

A feedback brick for the case when readout are outputs.

feedback

get_dim(name)
Get dimension of an input/output variable of a brick.

Parameters name (str) – The name of the variable.

Cost bricks

class blocks.bricks.cost.AbsoluteError(name=None, children=None)
Bases: blocks.bricks.cost.CostMatrix

cost_matrix

2.5. API Reference 87

https://docs.python.org/3.4/library/stdtypes.html#str
https://docs.python.org/3.4/library/functions.html#int
https://docs.python.org/3.4/library/stdtypes.html#str
https://docs.python.org/3.4/library/stdtypes.html#str

Blocks Documentation, Release 0.2.0

class blocks.bricks.cost.BinaryCrossEntropy(name=None, children=None)
Bases: blocks.bricks.cost.CostMatrix

cost_matrix

class blocks.bricks.cost.CategoricalCrossEntropy(name=None, children=None)
Bases: blocks.bricks.cost.Cost

apply

class blocks.bricks.cost.Cost(name=None, children=None)
Bases: blocks.bricks.base.Brick

apply

class blocks.bricks.cost.CostMatrix(name=None, children=None)
Bases: blocks.bricks.cost.Cost

Base class for costs which can be calculated element-wise.

Assumes that the data has format (batch, features).

apply

cost_matrix

class blocks.bricks.cost.MisclassificationRate(top_k=1)
Bases: blocks.bricks.cost.Cost

Calculates the misclassification rate for a mini-batch.

Parameters top_k (int, optional) – If the ground truth class is within the top_k highest
responses for a given example, the model is considered to have predicted correctly. Default: 1.

Notes

Ties for top_k-th place are broken pessimistically, i.e. in the (in practice, rare) case that there is a tie for top_k-th
highest output for a given example, it is considered an incorrect prediction.

apply

class blocks.bricks.cost.SquaredError(name=None, children=None)
Bases: blocks.bricks.cost.CostMatrix

cost_matrix

Wrapper bricks

class blocks.bricks.wrappers.BrickWrapper
Bases: object

Base class for wrapper metaclasses.

Sometimes one wants to extend a brick with the capability to handle inputs different from what it was designed
to handle. A typical example are inputs with more dimensions that was foreseen at the development stage. One
way to proceed in such a situation is to write a decorator that wraps all application methods of the brick class by
some additional logic before and after the application call. BrickWrapper serves as a convenient base class
for such decorators.

Note, that since directly applying a decorator to a Brick subclass will only take place after __new__() is
called, subclasses of BrickWrapper should be applied by setting the decorators attribute of the new brick
class, like in the example below:

88 Chapter 2. In-depth

https://docs.python.org/3.4/library/functions.html#int
https://docs.python.org/3.4/library/functions.html#object

Blocks Documentation, Release 0.2.0

>>> from blocks.bricks.base import Brick
>>> class WrappedBrick(Brick):
... decorators = [WithExtraDims()]

wrap(wrapped, namespace)
Wrap an application of the base brick.

This method should be overriden to write into its namespace argument all required changes.

Parameters

• mcs (type) – The metaclass.

• wrapped (Application) – The application to be wrapped.

• namespace (dict) – The namespace of the class being created.

class blocks.bricks.wrappers.WithExtraDims
Bases: blocks.bricks.wrappers.BrickWrapper

Wraps a brick’s applications to handle inputs with extra dimensions.

A brick can be often reused even when data has more dimensions than in the default setting. An example is
a situation when one wants to apply categorical_cross_entropy() to temporal data, that is when an
additional ‘time’ axis is prepended to its both x and y inputs.

This wrapper adds reshapes required to use application methods of a brick with such data by merging the extra
dimensions with the first non-extra one. Two key assumptions are made: that all inputs and outputs have the
same number of extra dimensions and that these extra dimensions are equal throughout all inputs and outputs.

While this might be inconvinient, the wrapped brick does not try to guess the number of extra dimensions, but
demands it as an argument. The considerations of simplicity and reliability motivated this design choice. Upon
availability in Blocks of a mechanism to request the expected number of dimensions for an input of a brick, this
can be reconsidered.

wrap(wrapped, namespace)
Wrap an application of the base brick.

This method should be overriden to write into its namespace argument all required changes.

Parameters

• mcs (type) – The metaclass.

• wrapped (Application) – The application to be wrapped.

• namespace (dict) – The namespace of the class being created.

2.5.3 Extensions

class blocks.extensions.CallbackName
Bases: str

A name of a TrainingExtension callback.

Raises

• TypeError on comparison with a string which is not a name of

• TrainingExtension callback.

2.5. API Reference 89

https://docs.python.org/3.4/library/functions.html#type
https://docs.python.org/3.4/library/stdtypes.html#dict
https://docs.python.org/3.4/library/functions.html#type
https://docs.python.org/3.4/library/stdtypes.html#dict
https://docs.python.org/3.4/library/stdtypes.html#str
https://docs.python.org/3.4/library/exceptions.html#TypeError

Blocks Documentation, Release 0.2.0

class blocks.extensions.CompositeExtension(sub_extensions, run_before_children=True,
**kwargs)

Bases: blocks.extensions.SimpleExtension

An extension that manages several other extensions.

Parameters

• sub_extensions (iterable) – An iterable collection of sub-extensions to manage.

• run_before_children (bool, optional) – Whether the container extension’s
own logic should be dispatched before that of the sub-extensions. If False, the containing
extension is dispatched last. Defaults to True.

Notes

The main use case for this class is bundling together groups of extensions that are most commonly used in
tandem, configured so as to interact with one another. Encapsulating this pattern in a single extension reduces
boilerplate.

Sub-extensions are dispatched in the order specified in sub_extensions, on whatever triggers they are
individually configured to respect.

Sub-extensions may be run on different triggers than the containing extension; the trigger keywords passed to
the constructor for this class only affect the outer extension’s logic, and sub-extensions should be configured
independently (possibly in a constructor for a subclass of CompositeExtension).

dispatch(callback_invoked, *from_main_loop)
Check conditions and call the do() method.

Also adds additional arguments if specified for a condition.

Todo: Add a check for a situation when several conditions are met at the same time and do something.

do(which_callback, *args)
Does the job of the training extension.

Parameters

• which_callback (str) – The name of the callback in the context of which do() is
run.

• *args (tuple) – The arguments from the main loop concatenated with additional argu-
ments from user.

Notes

Subclasses must accept additional positional arguments in their call signature for this method, even if they
are unused.

main_loop

class blocks.extensions.FinishAfter(**kwargs)
Bases: blocks.extensions.SimpleExtension

Finishes the training process when triggered.

do(which_callback, *args)
Does the job of the training extension.

90 Chapter 2. In-depth

https://docs.python.org/3.4/library/functions.html#bool
https://docs.python.org/3.4/library/stdtypes.html#str
https://docs.python.org/3.4/library/stdtypes.html#tuple

Blocks Documentation, Release 0.2.0

Parameters

• which_callback (str) – The name of the callback in the context of which do() is
run.

• *args (tuple) – The arguments from the main loop concatenated with additional argu-
ments from user.

Notes

Subclasses must accept additional positional arguments in their call signature for this method, even if they
are unused.

class blocks.extensions.Predicate(condition, num)
Bases: object

class blocks.extensions.Printing(**kwargs)
Bases: blocks.extensions.SimpleExtension

Prints log messages to the screen.

do(which_callback, *args)
Does the job of the training extension.

Parameters

• which_callback (str) – The name of the callback in the context of which do() is
run.

• *args (tuple) – The arguments from the main loop concatenated with additional argu-
ments from user.

Notes

Subclasses must accept additional positional arguments in their call signature for this method, even if they
are unused.

class blocks.extensions.ProgressBar(**kwargs)
Bases: blocks.extensions.TrainingExtension

Display a progress bar during training.

This extension tries to infer the number of iterations per epoch by querying the num_batches, num_examples
and batch_size attributes from the IterationScheme. When this information is not available it will display
a simplified progress bar that does not include the estimated time until the end of this epoch.

Notes

This extension should be run before other extensions that print to the screen at the end or at the beginning of the
epoch (e.g. the Printing extension). Placing ProgressBar before these extension will ensure you won’t get
intermingled output on your terminal.

after_epoch()
The callback invoked after an epoch is finished.

before_batch(batch)
The callback invoked before a batch is processed.

2.5. API Reference 91

https://docs.python.org/3.4/library/stdtypes.html#str
https://docs.python.org/3.4/library/stdtypes.html#tuple
https://docs.python.org/3.4/library/functions.html#object
https://docs.python.org/3.4/library/stdtypes.html#str
https://docs.python.org/3.4/library/stdtypes.html#tuple

Blocks Documentation, Release 0.2.0

Parameters batch (object) – The data batch to be processed.

before_epoch()
The callback invoked before starting an epoch.

create_bar()
Create a new progress bar.

Calls self.get_iter_per_epoch(), selects an appropriate set of widgets and creates a ProgressBar.

get_iter_per_epoch()
Try to infer the number of iterations per epoch.

class blocks.extensions.SimpleExtension(**kwargs)
Bases: blocks.extensions.TrainingExtension

A base class for simple extensions.

All logic of simple extensions is concentrated in the method do(). This method is called when certain con-
ditions are fulfilled. The user can manage the conditions by calling the add_condition method and by passing
arguments to the constructor. In addition to specifying when do() is called, it is possible to specify additional
arguments passed to do() under different conditions.

Parameters

• before_training (bool) – If True, do() is invoked before training.

• before_first_epoch (bool) – If True, do() is invoked before the first epoch.

• before_epoch (bool) – If True, do() is invoked before every epoch.

• on_resumption (bool, optional) – If True, do() is invoked when training is
resumed.

• on_interrupt (bool, optional) – If True, do() is invoked when training is in-
terrupted.

• after_epoch (bool) – If True, do() is invoked after every epoch.

• after_batch (bool) – If True, do() is invoked after every batch.

• after_training (bool) – If True, do() is invoked after training.

• after_n_epochs (int, optional) – If not None, do() is invoked when af-
ter_n_epochs epochs are done.

• every_n_epochs (int, optional) – If not None, do() is invoked after every n-th
epoch.

• after_n_batches (int, optional) – If not None, do() is invoked when af-
ter_n_batches batches are processed.

• every_n_batches (int, optional) – If not None, do() is invoked after every
n-th batch.

BOOLEAN_TRIGGERS = frozenset(['before_batch', 'after_batch', 'after_training', 'before_epoch', 'before_training', 'on_error', 'before_first_epoch', 'after_epoch', 'on_interrupt', 'on_resumption'])

INTEGER_TRIGGERS = frozenset(['every_n_batches', 'after_n_epochs', 'every_n_epochs', 'after_n_batches'])

add_condition(callbacks_names, predicate=None, arguments=None)
Adds a condition under which a do() is called.

Parameters

• callbacks_names (list of str) – The names of the callback in which the
method.

92 Chapter 2. In-depth

https://docs.python.org/3.4/library/functions.html#object
https://docs.python.org/3.4/library/functions.html#bool
https://docs.python.org/3.4/library/functions.html#bool
https://docs.python.org/3.4/library/functions.html#bool
https://docs.python.org/3.4/library/functions.html#bool
https://docs.python.org/3.4/library/functions.html#bool
https://docs.python.org/3.4/library/functions.html#bool
https://docs.python.org/3.4/library/functions.html#bool
https://docs.python.org/3.4/library/functions.html#bool
https://docs.python.org/3.4/library/functions.html#int
https://docs.python.org/3.4/library/functions.html#int
https://docs.python.org/3.4/library/functions.html#int
https://docs.python.org/3.4/library/functions.html#int

Blocks Documentation, Release 0.2.0

• predicate (function) – A predicate function the main loop’s log as the single pa-
rameter and returning True when the method should be called and False when should
not. If None, an always True predicate is used.

• arguments (iterable) – Additional arguments to be passed to do(). They will
be concatenated with the ones passed from the main loop (e.g. the batch in case of af-
ter_epoch callback).

Returns

Return type The extension object (allow chaining calls)

dispatch(callback_invoked, *from_main_loop)
Check conditions and call the do() method.

Also adds additional arguments if specified for a condition.

Todo: Add a check for a situation when several conditions are met at the same time and do something.

do(which_callback, *args)
Does the job of the training extension.

Parameters

• which_callback (str) – The name of the callback in the context of which do() is
run.

• *args (tuple) – The arguments from the main loop concatenated with additional argu-
ments from user.

Notes

Subclasses must accept additional positional arguments in their call signature for this method, even if they
are unused.

static parse_args(which_callback, args)
Separates do() arguments coming from different sources.

When a do() method receives arguments from both the main loop (e.g. a batch) and the user, it often has
to separate them. This method is the right tool to use.

Parameters

• which_callback (str) – The name of the callback.

• args (iterable) – The arguments.

Returns

• from_main_loop (tuple)

• from_user (tuple)

set_conditions(**kwargs)
Set the conditions for which this extension should be run.

:param See the SimpleExtension docstring for a list of: :param possible parameters.:

class blocks.extensions.Timestamp(log_record=’timestamp’, separator=’ ’, **kwargs)
Bases: blocks.extensions.SimpleExtension

Adds a human readable (ISO 8601) timestamp to the log.

2.5. API Reference 93

https://docs.python.org/3.4/library/stdtypes.html#str
https://docs.python.org/3.4/library/stdtypes.html#tuple
https://docs.python.org/3.4/library/stdtypes.html#str

Blocks Documentation, Release 0.2.0

Parameters

• log_record (str, optional) – The record name to use. Defaults to ‘timestamp’.

• separator (str, optional) – Separator between the date and time. ISO 8601 spec-
ifies ‘T’. Here, we default to ‘ ‘ (blank space) for human readability.

Notes

By default, triggers after every epoch as well as before training starts, after training finishes, when an error
occurs or when training is interrupted or resumed, as these are all generally useful circumstances for which
to have a timestamp. These can be disabled by passing False as the appropriate keyword argument; see
SimpleExtension.

DEFAULT_LOG_RECORD = 'timestamp'

do(*args)
Does the job of the training extension.

Parameters

• which_callback (str) – The name of the callback in the context of which do() is
run.

• *args (tuple) – The arguments from the main loop concatenated with additional argu-
ments from user.

Notes

Subclasses must accept additional positional arguments in their call signature for this method, even if they
are unused.

get_timestamp()

class blocks.extensions.Timing(prefix=”, **kwargs)
Bases: blocks.extensions.SimpleExtension

Add timing information to the log.

This adds data about the time spent in the algorithm’s process_batch() method as well as the time spent
reading data per batch or epoch. It also reports the time spent initializing the algorithm.

Parameters prefix (str) – Prefix to be added to the log record. Defaults to the empty string.

Notes

Add this extension before the Printing extension.

Created with callbacks like every_n_batches this extension averages the time.

This extension does not enable full profiling information. To see a full profile of the main loop at the end of
training, use the profile configuration (e.g. by setting BLOCKS_PROFILE=true).

do(which_callback, *args)
Does the job of the training extension.

Parameters

94 Chapter 2. In-depth

https://docs.python.org/3.4/library/stdtypes.html#str
https://docs.python.org/3.4/library/stdtypes.html#str
https://docs.python.org/3.4/library/stdtypes.html#str
https://docs.python.org/3.4/library/stdtypes.html#tuple
https://docs.python.org/3.4/library/stdtypes.html#str

Blocks Documentation, Release 0.2.0

• which_callback (str) – The name of the callback in the context of which do() is
run.

• *args (tuple) – The arguments from the main loop concatenated with additional argu-
ments from user.

Notes

Subclasses must accept additional positional arguments in their call signature for this method, even if they
are unused.

class blocks.extensions.TrainingExtension(name=None)
Bases: object

The base class for training extensions.

An extension is a set of callbacks sharing a joint context that are invoked at certain stages of the training
procedure. These callbacks typically add a certain functionality to the training procedure, e.g. running validation
on auxiliary datasets or early stopping.

Parameters name (str, optional) – The name of the extension. The names are useful in order
to distinguish between several extensions of the same type that belongs to the same main loop.
By default the name is set to the name of the class.

main_loop
MainLoop – The main loop to which the extension belongs.

name
str – The name of the extension.

after_batch(batch)
The callback invoked after a batch is processed.

Parameters batch (object) – The data batch just processed.

after_epoch()
The callback invoked after an epoch is finished.

after_training()
The callback invoked after training is finished.

before_batch(batch)
The callback invoked before a batch is processed.

Parameters batch (object) – The data batch to be processed.

before_epoch()
The callback invoked before starting an epoch.

before_training()
The callback invoked before training is started.

dispatch(callback_name, *args)
Runs callback with the given name.

The reason for having this method is to allow the descendants of the TrainingExtension to intercept
callback invocations and do something with them, e.g. block when certain condition does not hold. The
default implementation simply invokes the callback by its name.

main_loop

2.5. API Reference 95

https://docs.python.org/3.4/library/stdtypes.html#str
https://docs.python.org/3.4/library/stdtypes.html#tuple
https://docs.python.org/3.4/library/functions.html#object
https://docs.python.org/3.4/library/stdtypes.html#str
https://docs.python.org/3.4/library/functions.html#object
https://docs.python.org/3.4/library/functions.html#object

Blocks Documentation, Release 0.2.0

on_error(exception)
The callback invoked when an error occurs.

Parameters exception (object) – Exception occurred during the main loop run.

on_interrupt()
The callback invoked when training is interrupted.

on_resumption()
The callback invoked after training is resumed.

blocks.extensions.always_true(log)

blocks.extensions.callback(func)

blocks.extensions.has_done_epochs(log)

Monitoring extensions

class blocks.extensions.monitoring.DataStreamMonitoring(variables, data_stream,
updates=None, **kwargs)

Bases: blocks.extensions.SimpleExtension, blocks.extensions.monitoring.
MonitoringExtension

Monitors Theano variables and monitored-quantities on a data stream.

By default monitoring is done before the first and after every epoch.

Parameters

• variables (list of TensorVariable and) – MonitoredQuantity The variables
to monitor. The variable names are used as record names in the logs.

• updates (list of tuples or OrderedDict or None) – TensorSharedVariable up-
dates to be performed during evaluation. This parameter is only for Theano variables. Be
careful not to update any model parameters as this is not intended to alter your model in any
meaningful way. A typical use case of this option arises when the theano function used for
evaluation contains a call to scan() which might have returned shared variable updates.

• data_stream (instance of DataStream) – The data stream to monitor on. A data epoch
is requested each time monitoring is done.

do(callback_name, *args)
Write the values of monitored variables to the log.

class blocks.extensions.monitoring.MonitoringExtension(prefix=None, suffix=None,
**kwargs)

Bases: blocks.extensions.TrainingExtension

A mixin with logic shared by monitoring extensions.

Parameters

• prefix (str, optional) – The prefix for the log records done by the extension. It is
prepended to the variable names with an underscore as a separator. If not given, no prefix is
added to the names of the observed variables.

• suffix (str, optional) – The suffix for the log records done by the extension. It is
appended to the end of variable names with an underscore as a separator. If not given, no
suffix is added the names of the observed variables.

SEPARATOR = '_'

96 Chapter 2. In-depth

https://docs.python.org/3.4/library/functions.html#object
https://docs.python.org/3.4/library/collections.html#collections.OrderedDict
https://theano.readthedocs.io/en/latest/library/scan.html#theano.scan
https://docs.python.org/3.4/library/stdtypes.html#str
https://docs.python.org/3.4/library/stdtypes.html#str

Blocks Documentation, Release 0.2.0

add_records(log, record_tuples)
Helper function to add monitoring records to the log.

record_name(variable)
The record name for a variable.

class blocks.extensions.monitoring.TrainingDataMonitoring(variables, **kwargs)
Bases: blocks.extensions.SimpleExtension, blocks.extensions.monitoring.
MonitoringExtension

Monitors values of Theano variables on training batches.

Use this extension to monitor a quantity on every training batch cheaply. It integrates with the training algorithm
in order to avoid recomputing same things several times. For instance, if you are training a network and you
want to log the norm of the gradient on every batch, the backpropagation will only be done once. By controlling
the frequency with which the do() method is called, you can aggregate the monitored variables, e.g. only log
the gradient norm average over an epoch.

Parameters variables (list of TensorVariable or) – MonitoredQuantity The vari-
ables or non-Theano quantities to monitor. The variable names are used as record names in the
logs.

Notes

All the monitored variables are evaluated _before_ the parameter update.

Requires the training algorithm to be an instance of UpdatesAlgorithm.

do(callback_name, *args)
Initializes the buffer or commits the values to the log.

What this method does depends on from what callback it is called and with which arguments. When called
within before_training, it initializes the aggregation buffer and instructs the training algorithm what addi-
tional computations should be carried at each step by adding corresponding updates to it. In most_other
cases it writes aggregated values of the monitored variables to the log. An exception is when an argument
just_aggregate is given: in this cases it updates the values of monitored non-Theano quantities, but does
not write anything to the log.

blocks.extensions.monitoring.take_last(variable)

Training

class blocks.extensions.training.SharedVariableModifier(parameter, function,
num_args=None,
**kwargs)

Bases: blocks.extensions.SimpleExtension

Adjusts shared variable parameter using some function.

Applies a function to compute the new value of a shared parameter each iteration.

This class can be used to adapt over the training process parameters like learning rate, momentum, etc.

Parameters

• parameter (TensorSharedVariable) – Shared variable to be adjusted

• function (callable) – A function which outputs a numeric value to which the given
shared variable will be set and may take one or two arguments.

2.5. API Reference 97

Blocks Documentation, Release 0.2.0

In the first case, function that takes the total number of iterations done (int) as an input.

In the second case, it is a function which takes number of iterations done (int) and old
value of the shared variable (with the same dtype as parameter).

• num_args (int, optional) – The number of arguments to pass to the function. If
unspecified, it will be inferred. This is useful if you are using function-like objects for
which the arity of the function cannot be inferred.

Notes

This class includes a method function that calls the function passed in the constructor and a num_args
property which computes the number of arguments to use by inspecting the function object. Subclasses may
override a method called function and/or the num_args property and instead pass None to the superclass
constructor. This can be used to bypass certain serialization issues on Legacy Python regarding the unpicklability
of instance method objects.

do(which_callback, *args)
Does the job of the training extension.

Parameters

• which_callback (str) – The name of the callback in the context of which do() is
run.

• *args (tuple) – The arguments from the main loop concatenated with additional argu-
ments from user.

Notes

Subclasses must accept additional positional arguments in their call signature for this method, even if they
are unused.

function(*args)

num_args

class blocks.extensions.training.TrackTheBest(record_name, notification_name=None,
choose_best=<built-in function min>,
**kwargs)

Bases: blocks.extensions.SimpleExtension

Check if a log quantity has the minimum/maximum value so far.

Parameters

• record_name (str) – The name of the record to track.

• notification_name (str, optional) – The name for the record to be made in
the log when the current value of the tracked quantity is the best so far. It not given,
‘record_name’ plus “best_so_far” suffix is used.

• choose_best (callable, optional) – A function that takes the current value and
the best so far and return the best of two. By default min(), which corresponds to tracking
the minimum value.

best_name
str – The name of the status record to keep the best value so far.

98 Chapter 2. In-depth

https://docs.python.org/3.4/library/functions.html#int
https://docs.python.org/3.4/library/stdtypes.html#str
https://docs.python.org/3.4/library/stdtypes.html#tuple
https://docs.python.org/3.4/library/stdtypes.html#str
https://docs.python.org/3.4/library/stdtypes.html#str
https://docs.python.org/3.4/library/functions.html#min

Blocks Documentation, Release 0.2.0

notification_name
str – The name of the record written to the log when the current value of the tracked quantity is the best so
far.

Notes

In the likely case that you are relying on another extension to add the tracked quantity to the log, make sure
to place this extension after the extension that writes the quantity to the log in the extensions argument to
blocks.main_loop.MainLoop.

do(which_callback, *args)
Does the job of the training extension.

Parameters

• which_callback (str) – The name of the callback in the context of which do() is
run.

• *args (tuple) – The arguments from the main loop concatenated with additional argu-
ments from user.

Notes

Subclasses must accept additional positional arguments in their call signature for this method, even if they
are unused.

Serialization

class blocks.extensions.saveload.Checkpoint(path, parameters=None,
save_separately=None,
save_main_loop=True, use_cpickle=False,
**kwargs)

Bases: blocks.extensions.SimpleExtension

Saves a pickled version of the main loop to the disk.

The pickled main loop can be later reloaded and training can be resumed.

Makes a SAVED_TO record in the log with the serialization destination in the case of success and None in the
case of failure. The value of the record is a tuple of paths to which saving was done (there can be more than one
if the user added a condition with an argument, see do() docs).

Parameters

• path (str) – The destination path for pickling.

• parameters (list, optional) – The parameters to save separately. If None, the
parameters from the model (main_loop.model.parameters) are saved.

• save_separately (list of str, optional) – The list of the main loop’s at-
tributes to be saved (copied) in a separate file in the tar archive. It may be used for example
to save the log separetely. The name of the attribute will be used as name in the tar file.

• save_main_loop (bool) – Choose whether to save the main loop or not. This can be
useful for example if you are only interested in saving the parameters, but not the whole
main loop. Defaults to True.

• use_cpickle (bool) – See documentation of dump().

2.5. API Reference 99

https://docs.python.org/3.4/library/stdtypes.html#str
https://docs.python.org/3.4/library/stdtypes.html#tuple
https://docs.python.org/3.4/library/stdtypes.html#str
https://docs.python.org/3.4/library/stdtypes.html#list
https://docs.python.org/3.4/library/functions.html#bool
https://docs.python.org/3.4/library/functions.html#bool

Blocks Documentation, Release 0.2.0

Notes

Using pickling for saving the whole main loop object comes with certain limitations:

• Theano computation graphs build in the GPU-mode (theano.config.device == “gpu”) can not be used in
the usual mode (and vice-versa). Therefore using this extension binds you to using only one kind of device.

do(callback_name, *args)
Pickle the main loop object to the disk.

If *args contain an argument from user, it is treated as saving path to be used instead of the one given at
the construction stage.

class blocks.extensions.saveload.Load(path, load_iteration_state=False, load_log=False,
**kwargs)

Bases: blocks.extensions.SimpleExtension

Loads a saved checkpoint into the main loop.

Makes a LOADED_FROM record in the log with the dump path.

Parameters

• path (str) – The path to the folder with dump.

• load_iteration_state (bool) – If True, load the iteration state. This can be useful
when your model has very long epochs, and you want to resume when you were in the
middle of one. Defaults to False.

• load_log (bool) – If True, load the old log and continue logging from there. Convenient
because you end up with a single log of the entire training history. Defaults to False.

Notes

Requires the model to be created entirely using bricks, with a unique path/name for each brick, so that the
parameters can be matched to their values.

In order to load the iteration state and the log, the saved model needs to be unpickled. Note that resuming
training this way is still not entirely seamless because e.g. extensions will not be reloaded.

do(*args, **kwargs)
Does the job of the training extension.

Parameters

• which_callback (str) – The name of the callback in the context of which do() is
run.

• *args (tuple) – The arguments from the main loop concatenated with additional argu-
ments from user.

Notes

Subclasses must accept additional positional arguments in their call signature for this method, even if they
are unused.

load_to(main_loop)

100 Chapter 2. In-depth

https://docs.python.org/3.4/library/stdtypes.html#str
https://docs.python.org/3.4/library/functions.html#bool
https://docs.python.org/3.4/library/functions.html#bool
https://docs.python.org/3.4/library/stdtypes.html#str
https://docs.python.org/3.4/library/stdtypes.html#tuple

Blocks Documentation, Release 0.2.0

2.5.4 Filter

class blocks.filter.VariableFilter(roles=None, bricks=None, each_role=False,
name=None, name_regex=None, theano_name=None,
theano_name_regex=None, call_id=None, applica-
tions=None)

Bases: object

Filters Theano variables based on a range of criteria.

Parameters

• roles (list of VariableRole instances, optional) – Matches any variable which has one
of the roles given.

• bricks (list of Brick classes or list of) – instances of Brick, optional Matches any
variable that is instance of any of the given classes or that is owned by any of the given brick
instances.

• each_role (bool, optional) – If True, the variable needs to have all given roles.
If False, a variable matching any of the roles given will be returned. False by default.

• name (str, optional) – The variable name. The Blocks name (i.e. x.tag.name) is
used.

• name_regex (str, optional) – A regular expression for the variable name. The
Blocks name (i.e. x.tag.name) is used.

• theano_name (str, optional) – The variable name. The Theano name (i.e. x.name)
is used.

• theano_name_regex (str, optional) – A regular expression for the variable
name. The Theano name (i.e. x.name) is used.

• call_id (str, optional) – The call identifier as written in ApplicationCall
metadata attribute.

• applications (list of Application) – or BoundApplication, optional Matches
a variable that was produced by any of the applications given.

Notes

Note that only auxiliary variables, parameters, inputs and outputs are tagged with the brick that created them.
Other Theano variables that were created in the process of applying a brick will be filtered out.

Note that technically speaking, bricks are able to have non-shared variables as parameters. For example, we
can use the transpose of another weight matrix as the parameter of a particular brick. This means that in some
unusual cases, filtering by the PARAMETER role alone will not be enough to retrieve all trainable parameters in
your model; you will need to filter out the shared variables from these (using e.g. is_shared_variable()).

Examples

>>> from blocks.bricks import MLP, Linear, Logistic, Identity
>>> from blocks.roles import BIAS
>>> mlp = MLP(activations=[Identity(), Logistic()], dims=[20, 10, 20])
>>> from theano import tensor
>>> x = tensor.matrix()
>>> y_hat = mlp.apply(x)

(continues on next page)

2.5. API Reference 101

https://docs.python.org/3.4/library/functions.html#object
https://docs.python.org/3.4/library/functions.html#bool
https://docs.python.org/3.4/library/stdtypes.html#str
https://docs.python.org/3.4/library/stdtypes.html#str
https://docs.python.org/3.4/library/stdtypes.html#str
https://docs.python.org/3.4/library/stdtypes.html#str
https://docs.python.org/3.4/library/stdtypes.html#str

Blocks Documentation, Release 0.2.0

(continued from previous page)

>>> from blocks.graph import ComputationGraph
>>> cg = ComputationGraph(y_hat)
>>> from blocks.filter import VariableFilter
>>> var_filter = VariableFilter(roles=[BIAS],
... bricks=[mlp.linear_transformations[0]])
>>> var_filter(cg.variables)
[b]

blocks.filter.get_annotation(var, cls)
A helper function to retrieve an annotation of a particular type.

Notes

This function returns the first annotation of a particular type. If there are multiple–there shouldn’t be–it will
ignore them.

blocks.filter.get_application_call(var)
Retrieves the application call that created this variable.

See get_annotation().

blocks.filter.get_brick(var)
Retrieves the brick that created this variable.

See get_annotation().

2.5.5 Computational graph

class blocks.graph.ComputationGraph(outputs)
Bases: object

Encapsulates a managed Theano computation graph.

This implies that it not only contains the variables required to compute the given outputs, but also all the auxiliary
variables and updates that were attached to these variables through the annotation system.

All variables are presented in topologically sorted order according to the apply nodes that they are an input to.

Parameters outputs ((list of) TensorVariable) – The output(s) of the computation graph.

inputs
list of TensorVariable – The inputs of the computation graph. This does not include shared variables
and constants.

shared_variables
list of TensorSharedVariable – All the shared variables in the graph.

parameters
list of TensorSharedVariable – All the shared variables which have the PARAMETER role.

outputs
list of TensorVariable – The outputs of the computations graph (as passed to the constructor).

auxiliary_variables
list of TensorVariable – All variables which have the AUXILIARY role.

intermediary_variables
list of TensorVariable – Any variable that is not part of inputs or outputs.

102 Chapter 2. In-depth

https://docs.python.org/3.4/library/functions.html#object

Blocks Documentation, Release 0.2.0

variables
list of TensorVariable – All variables (including auxiliary) in the managed graph.

scans
list of Scan – All Scan ops used in this computation graph.

scan_variables
list of TensorVariable – All variables of the inner graphs of Scan ops.

updates
TensorSharedVariable updates – All the updates found attached to the annotations.

auxiliary_variables

dict_of_inputs()
Return a mapping from an input name to the input.

get_snapshot(data)
Evaluate all role-carrying Theano variables on given data.

Parameters data (dict of (data source, data) pairs) – Data for input vari-
ables. The sources should match with the names of the input variables.

Returns

Return type Dictionary of (variable, variable value on given data) pairs.

get_theano_function(additional_updates=None, **kwargs)
Create Theano function from the graph contained.

Parameters **kwargs (dict) – Keyword arguments to theano.function. Useful for specify-
ing compilation modes or profiling.

has_inputs(variable)
Check if a variable depends on input variables.

Returns True if the given variable depends on input variables, False otherwise.

Return type bool

inputs
Inputs to the graph, excluding constants and shared variables.

intermediary_variables

parameters

replace(replacements)
Replace certain variables in the computation graph.

Parameters replacements (dict) – The mapping from variables to be replaced to the cor-
responding substitutes.

Examples

>>> import theano
>>> from theano import tensor, function
>>> x = tensor.scalar('x')
>>> y = x + 2
>>> z = y + 3
>>> a = z + 5

Let’s suppose we have dependent replacements like

2.5. API Reference 103

https://docs.python.org/3.4/library/stdtypes.html#dict
https://docs.python.org/3.4/library/functions.html#bool
https://docs.python.org/3.4/library/stdtypes.html#dict

Blocks Documentation, Release 0.2.0

>>> replacements = {y: x * 2, z: y * 3}
>>> cg = ComputationGraph([a])
>>> theano.pprint(a)
'(((x + TensorConstant{2}) + TensorConstant{3}) +
TensorConstant{5})'
>>> cg_new = cg.replace(replacements)
>>> theano.pprint(
... cg_new.outputs[0])
'(((x * TensorConstant{2}) * TensorConstant{3}) +
TensorConstant{5})'

First two sums turned into multiplications

>>> float(function(cg_new.inputs, cg_new.outputs)(3.)[0])
23.0

scan_variables
Variables of Scan ops.

shared_variables

blocks.graph.apply_dropout(computation_graph, variables, drop_prob, rng=None, seed=None,
custom_divisor=None)

Apply dropout to specified variables in a graph.

Parameters

• computation_graph (instance of ComputationGraph) – The computation graph.

• variables (list of TensorVariable) – Variables to be dropped out.

• drop_prob (float) – Probability of dropping out. If you want to apply the dropout with
different probabilities for different layers, call it several times.

• rng (MRG_RandomStreams) – Random number generator.

• seed (int) – Random seed to be used if rng was not specified.

• custom_divisor (float or None, optional) – Divide dropped variables by
a given scalar value. If None, (default) dropped variables will be divided by (1 -
drop_prob) which is equivalent to scaling by (1 - drop_prob) at test time as recommended
in [DROPOUT].

Returns dropped_computation_graph – A new computation graph with dropout applied to the
specified variables. In order to train with, or monitor, the outputs of the original computation
graph with dropout applies, use the variables contained in dropped_computation_graph.outputs.

Return type instance of ComputationGraph

Notes

For more information, see [DROPOUT].

Examples

104 Chapter 2. In-depth

https://docs.python.org/3.4/library/functions.html#float
https://theano.readthedocs.io/en/latest/library/sandbox/rng_mrg.html#theano.sandbox.rng_mrg.MRG_RandomStreams
https://docs.python.org/3.4/library/functions.html#int
https://docs.python.org/3.4/library/functions.html#float
https://docs.python.org/3.4/library/constants.html#None

Blocks Documentation, Release 0.2.0

>>> import numpy
>>> from theano import tensor, function
>>> from blocks.bricks import MLP, Identity
>>> from blocks.filter import VariableFilter
>>> from blocks.initialization import Constant
>>> from blocks.roles import INPUT
>>> linear = MLP([Identity(), Identity()], [2, 10, 2],
... weights_init=Constant(1), biases_init=Constant(2))
>>> x = tensor.matrix('x')
>>> y = linear.apply(x)
>>> cg = ComputationGraph(y)

We are going to drop out all the input variables

>>> inputs = VariableFilter(roles=[INPUT])(cg.variables)

Here we apply dropout with default setting to our computation graph

>>> cg_dropout = apply_dropout(cg, inputs, 0.5)

Dropped out variables have role DROPOUT and are tagged with replacement_of tag. Let’s filter these variables
and check if they have the links to original ones.

>>> dropped_out = VariableFilter(roles=[DROPOUT])(cg_dropout.variables)
>>> inputs_referenced = [var.tag.replacement_of for var in dropped_out]
>>> set(inputs) == set(inputs_referenced)
True

Compiling theano functions to forward propagate in original and dropped out graphs

>>> fprop = function(cg.inputs, cg.outputs[0])
>>> fprop_dropout = function(cg_dropout.inputs, cg_dropout.outputs[0])

Initialize an MLP and apply these functions

>>> linear.initialize()
>>> fprop(numpy.ones((3, 2),
... dtype=theano.config.floatX))
array([[42., 42.],

[42., 42.],
[42., 42.]]...

>>> fprop_dropout(numpy.ones((3, 2),
... dtype=theano.config.floatX))
array([[0., 0.],

[0., 0.],
[0., 0.]]...

And after the second run answer is different

>>> fprop_dropout(numpy.ones((3, 2),
... dtype=theano.config.floatX))
array([[0., 52.],

[100., 0.],
[0., 0.]]...

blocks.graph.apply_noise(computation_graph, variables, level, seed=None)
Add Gaussian noise to certain variable of a computation graph.

2.5. API Reference 105

Blocks Documentation, Release 0.2.0

Parameters

• computation_graph (instance of ComputationGraph) – The computation graph.

• variables (TensorVariable) – Variables to add noise to.

• level (float) – Noise level.

• seed (int, optional) – The seed with which MRG_RandomStreams is initialized,
is set to 1 by default.

blocks.graph.collect_parameters(computation_graph, parameters)
Replace parameters with a single shared variable.

This can be useful if you need to calculate the full Hessian of a computational graph. It replaces parameters
with slices of a single large vectors like

>>> from blocks.utils import shared_floatx
>>> W1 = shared_floatx(numpy.random.rand(10, 10))
>>> W2 = shared_floatx(numpy.random.rand(10, 10))
>>> all_parameters = shared_floatx(numpy.concatenate(
... [W1.get_value().flatten(), W2.get_value().flatten()]))
>>> W1 = all_parameters[:W1.size]
>>> W2 = all_parameters[W1.size:]

Parameters

• computation_graph (ComputationGraph instance) – The managed Theano graph
in which to collect parameters.

• parameters (list of Theano shared variables) – The parameters whose
values should be collected.

Returns A new Theano graph which has all the given parameters collected into a single large shared
variable.

Return type ComputationGraph instance

Notes

Note that this replacement makes the training of the model significantly slower because of the large amount of
Theano’s set_subtensor calls needed to train the model.

Examples

>>> from blocks.bricks import MLP, Logistic
>>> from blocks.bricks.cost import SquaredError
>>> from theano import tensor
>>> x = tensor.matrix()
>>> mlp = MLP(activations=[Logistic(), Logistic()],
... dims=[784, 100, 784])
>>> cost = SquaredError().apply(x, mlp.apply(x))
>>> cg = ComputationGraph(cost)
>>> new_cg = collect_parameters(cg, cg.shared_variables)

The new graph only has a single shared variable. This variable receives the COLLECTOR role.

106 Chapter 2. In-depth

https://docs.python.org/3.4/library/functions.html#float
https://docs.python.org/3.4/library/functions.html#int
https://theano.readthedocs.io/en/latest/library/sandbox/rng_mrg.html#theano.sandbox.rng_mrg.MRG_RandomStreams

Blocks Documentation, Release 0.2.0

>>> new_cg.shared_variables
[collected_parameters]

The bricks’ variables have been replaced with reshaped segments of this single shared variable. These replace-
ments are given the COLLECTED role.

>>> from blocks.filter import VariableFilter
>>> from blocks.roles import PARAMETER
>>> var_filter = VariableFilter(roles=[COLLECTED])
>>> var_filter(new_cg.variables)
[Reshape{1}.0, Reshape{1}.0, Reshape{2}.0, Reshape{2}.0]

2.5.6 Parameter initialization

class blocks.initialization.Constant(constant)
Bases: blocks.initialization.NdarrayInitialization

Initialize parameters to a constant.

The constant may be a scalar or a ndarray of any shape that is broadcastable with the requested parameter
arrays.

Parameters constant (ndarray) – The initialization value to use. Must be a scalar or an ndar-
ray (or compatible object, such as a nested list) that has a shape that is broadcastable with any
shape requested by initialize.

generate(rng, shape)
Generate an initial set of parameters from a given distribution.

Parameters

• rng (numpy.random.RandomState) –

• shape (tuple) – A shape tuple for the requested parameter array shape.

Returns output – An ndarray with values drawn from the distribution specified by this object,
of shape shape, with dtype config.floatX.

Return type ndarray

class blocks.initialization.Identity(mult=1)
Bases: blocks.initialization.NdarrayInitialization

Initialize to the identity matrix.

Only works for 2D arrays. If the number of columns is not equal to the number of rows, the array will be
truncated or padded with zeros.

Parameters mult (float, optional) – Multiply the identity matrix with a scalar. Defaults to
1.

generate(rng, shape)
Generate an initial set of parameters from a given distribution.

Parameters

• rng (numpy.random.RandomState) –

• shape (tuple) – A shape tuple for the requested parameter array shape.

Returns output – An ndarray with values drawn from the distribution specified by this object,
of shape shape, with dtype config.floatX.

2.5. API Reference 107

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.random.RandomState.html#numpy.random.RandomState
https://docs.python.org/3.4/library/stdtypes.html#tuple
https://theano.readthedocs.io/en/latest/library/config.html#config.floatX
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3.4/library/functions.html#float
https://docs.scipy.org/doc/numpy/reference/generated/numpy.random.RandomState.html#numpy.random.RandomState
https://docs.python.org/3.4/library/stdtypes.html#tuple
https://theano.readthedocs.io/en/latest/library/config.html#config.floatX

Blocks Documentation, Release 0.2.0

Return type ndarray

class blocks.initialization.IsotropicGaussian(std=1, mean=0)
Bases: blocks.initialization.NdarrayInitialization

Initialize parameters from an isotropic Gaussian distribution.

Parameters

• std (float, optional) – The standard deviation of the Gaussian distribution. De-
faults to 1.

• mean (float, optional) – The mean of the Gaussian distribution. Defaults to 0

Notes

Be careful: the standard deviation goes first and the mean goes second!

generate(rng, shape)
Generate an initial set of parameters from a given distribution.

Parameters

• rng (numpy.random.RandomState) –

• shape (tuple) – A shape tuple for the requested parameter array shape.

Returns output – An ndarray with values drawn from the distribution specified by this object,
of shape shape, with dtype config.floatX.

Return type ndarray

class blocks.initialization.NdarrayInitialization
Bases: object

Base class specifying the interface for ndarray initialization.

generate(rng, shape)
Generate an initial set of parameters from a given distribution.

Parameters

• rng (numpy.random.RandomState) –

• shape (tuple) – A shape tuple for the requested parameter array shape.

Returns output – An ndarray with values drawn from the distribution specified by this object,
of shape shape, with dtype config.floatX.

Return type ndarray

initialize(var, rng, shape=None)
Initialize a shared variable with generated parameters.

Parameters

• var (object) – A Theano shared variable whose value will be set with values drawn
from this NdarrayInitialization instance.

• rng (numpy.random.RandomState) –

• shape (tuple) – A shape tuple for the requested parameter array shape.

108 Chapter 2. In-depth

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3.4/library/functions.html#float
https://docs.python.org/3.4/library/functions.html#float
https://docs.scipy.org/doc/numpy/reference/generated/numpy.random.RandomState.html#numpy.random.RandomState
https://docs.python.org/3.4/library/stdtypes.html#tuple
https://theano.readthedocs.io/en/latest/library/config.html#config.floatX
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3.4/library/functions.html#object
https://docs.scipy.org/doc/numpy/reference/generated/numpy.random.RandomState.html#numpy.random.RandomState
https://docs.python.org/3.4/library/stdtypes.html#tuple
https://theano.readthedocs.io/en/latest/library/config.html#config.floatX
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3.4/library/functions.html#object
https://docs.scipy.org/doc/numpy/reference/generated/numpy.random.RandomState.html#numpy.random.RandomState
https://docs.python.org/3.4/library/stdtypes.html#tuple

Blocks Documentation, Release 0.2.0

class blocks.initialization.Orthogonal(scale=1)
Bases: blocks.initialization.NdarrayInitialization

Initialize a random orthogonal matrix.

Only works for 2D arrays.

Parameters scale (float, optional) – Multiply the resulting matrix with a scalar. Defaults
to 1. For a discussion of the importance of scale for training time and generalization refer to
[Saxe2013].

generate(rng, shape)
Generate an initial set of parameters from a given distribution.

Parameters

• rng (numpy.random.RandomState) –

• shape (tuple) – A shape tuple for the requested parameter array shape.

Returns output – An ndarray with values drawn from the distribution specified by this object,
of shape shape, with dtype config.floatX.

Return type ndarray

class blocks.initialization.Sparse(num_init, weights_init, sparse_init=None)
Bases: blocks.initialization.NdarrayInitialization

Initialize only a fraction of the weights, row-wise.

Parameters

• num_init (int or float) – If int, this is the number of weights to initialize per row.
If float, it’s the fraction of the weights per row to initialize.

• weights_init (NdarrayInitialization instance) – The initialization scheme to
initialize the weights with.

• sparse_init (NdarrayInitialization instance, optional) – What to set the non-
initialized weights to (0. by default)

generate(rng, shape)
Generate an initial set of parameters from a given distribution.

Parameters

• rng (numpy.random.RandomState) –

• shape (tuple) – A shape tuple for the requested parameter array shape.

Returns output – An ndarray with values drawn from the distribution specified by this object,
of shape shape, with dtype config.floatX.

Return type ndarray

class blocks.initialization.SparseND(axis, **kwargs)
Bases: blocks.initialization.Sparse

Initialize only a fraction of the weights with configurable axes.

Parameters axis (int or sequence) – Which axis or axes are to be treated as a “unit” for the
purpose of the number of elements initialized. For example, an axis of (0, 1) when initializing
a 4D tensor W will treat the first two axes of the weight tensor as a grid and initialize num_init
elements of W[0, 0, :, :], another num_init elements of W[0, 1, :, :], and so on.

2.5. API Reference 109

https://docs.python.org/3.4/library/functions.html#float
https://docs.scipy.org/doc/numpy/reference/generated/numpy.random.RandomState.html#numpy.random.RandomState
https://docs.python.org/3.4/library/stdtypes.html#tuple
https://theano.readthedocs.io/en/latest/library/config.html#config.floatX
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3.4/library/functions.html#int
https://docs.python.org/3.4/library/functions.html#float
https://docs.scipy.org/doc/numpy/reference/generated/numpy.random.RandomState.html#numpy.random.RandomState
https://docs.python.org/3.4/library/stdtypes.html#tuple
https://theano.readthedocs.io/en/latest/library/config.html#config.floatX
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3.4/library/functions.html#int

Blocks Documentation, Release 0.2.0

Notes

See Sparse for documentation of other arguments.

generate(rng, shape)
Generate an initial set of parameters from a given distribution.

Parameters

• rng (numpy.random.RandomState) –

• shape (tuple) – A shape tuple for the requested parameter array shape.

Returns output – An ndarray with values drawn from the distribution specified by this object,
of shape shape, with dtype config.floatX.

Return type ndarray

class blocks.initialization.Uniform(mean=0.0, width=None, std=None)
Bases: blocks.initialization.NdarrayInitialization

Initialize parameters from a uniform distribution.

Parameters

• mean (float, optional) – The mean of the uniform distribution (i.e. the center of
mass for the density function); Defaults to 0.

• width (float, optional) – One way of specifying the range of the uniform distribu-
tion. The support will be [mean - width/2, mean + width/2]. Exactly one of width or std
must be specified.

• std (float, optional) – An alternative method of specifying the range of the uniform
distribution. Chooses the width of the uniform such that random variates will have a desired
standard deviation. Exactly one of width or std must be specified.

generate(rng, shape)
Generate an initial set of parameters from a given distribution.

Parameters

• rng (numpy.random.RandomState) –

• shape (tuple) – A shape tuple for the requested parameter array shape.

Returns output – An ndarray with values drawn from the distribution specified by this object,
of shape shape, with dtype config.floatX.

Return type ndarray

2.5.7 Logging

Log has two different backends configurable in .blocksrc, see Configuration.

Dictionary backend

class blocks.log.log.TrainingLog
Bases: collections.defaultdict, blocks.log.log.TrainingLogBase

Training log using a defaultdict as backend.

110 Chapter 2. In-depth

https://docs.scipy.org/doc/numpy/reference/generated/numpy.random.RandomState.html#numpy.random.RandomState
https://docs.python.org/3.4/library/stdtypes.html#tuple
https://theano.readthedocs.io/en/latest/library/config.html#config.floatX
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3.4/library/functions.html#float
https://docs.python.org/3.4/library/functions.html#float
https://docs.python.org/3.4/library/functions.html#float
https://docs.scipy.org/doc/numpy/reference/generated/numpy.random.RandomState.html#numpy.random.RandomState
https://docs.python.org/3.4/library/stdtypes.html#tuple
https://theano.readthedocs.io/en/latest/library/config.html#config.floatX
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3.4/library/collections.html#collections.defaultdict

Blocks Documentation, Release 0.2.0

Notes

For analysis of the logs, it can be useful to convert the log to a Pandas data frame:

df = DataFrame.from_dict(log, orient='index')

class blocks.log.log.TrainingLogBase(uuid=None)
Bases: object

Base class for training log.

A training log stores the training timeline, statistics and other auxiliary information. Training logs can use
different backends e.g. in-memory Python objects or an SQLite database.

Information is stored similar to a nested dictionary, so use log[time][key] to read data. An entry without
stored data will return an empty dictionary-like object that can be written to, log[time][key] = value.

Depending on the backend, log[time] = {'key': 'value'} could fail. Use log[time].
update({'key': 'value'}) for compatibility across backends.

In addition to the set of records displaying training dynamics, a training log has a status attribute, which is a
dictionary with data that is not bound to a particular time.

Warning: Changes to mutable objects might not be reflected in the log, depending on the backend. So
don’t use log.status['key'].append(...), use log.status['key'] = ... instead.

Parameters uuid (uuid.UUID, optional) – The UUID of this log. For persistent log backends,
passing the UUID will result in an old log being loaded. Otherwise a new, random UUID will
be created.

status
dict – A dictionary with data representing the current state of training. By default it contains
iterations_done, epochs_done and _epoch_ends (a list of time stamps when epochs ended).

current_row

h_uuid
Return a hexadecimal version of the UUID bytes.

This is necessary to store ids in an SQLite database.

last_epoch_row

previous_row

resume()
Resume a log by setting a new random UUID.

Keeps a record of the old log that this is a continuation of. It copies the status of the old log into the new
log.

Sqlite backend

class blocks.log.sqlite.SQLiteEntry(log, time)
Bases: _abcoll.MutableMapping

Store log entries in an SQLite database.

2.5. API Reference 111

http://pandas.pydata.org
https://docs.python.org/3.4/library/functions.html#object
https://docs.python.org/3.4/library/uuid.html#uuid.UUID

Blocks Documentation, Release 0.2.0

Each entry is a row with the columns uuid, time (iterations done), key and value. Note that SQLite only supports
numeric values, strings, and bytes (e.g. the uuid column), all other objects will be pickled before being stored.

Entries are automatically retrieved from ancestral logs (i.e. logs that were resumed from).

class blocks.log.sqlite.SQLiteLog(database=None, **kwargs)
Bases: blocks.log.log.TrainingLogBase, _abcoll.Mapping

Training log using SQLite as a backend.

Parameters

• database (str, optional) – The database (file) to connect to. Can also be :memory:.
See sqlite3.connect() for details. Uses config.sqlite_database by default.

• **kwargs – Arguments to pass to TrainingLogBase

conn

class blocks.log.sqlite.SQLiteStatus(log)
Bases: _abcoll.MutableMapping

blocks.log.sqlite.adapt_ndarray(obj)
Convert NumPy scalars to floats before storing in SQLite.

This makes it easier to inspect the database, and speeds things up.

Parameters obj (ndarray) – A NumPy array.

Returns If the array was a scalar, it returns a floating point number. Otherwise it binarizes the
NumPy array using adapt_obj()

Return type float or memoryview

blocks.log.sqlite.adapt_obj(obj)
Binarize objects to be stored in an SQLite database.

Parameters obj (object) – Any picklable object.

Returns blob – A buffer (Python 2) or memoryview (Python 3) of the pickled object that can be
stored as a BLOB in an SQLite database.

Return type memoryview

2.5.8 Main loop

class blocks.main_loop.MainLoop(algorithm, data_stream, model=None, log=None,
log_backend=None, extensions=None)

Bases: object

The standard main loop of Blocks.

In the MainLoop a model is trained by a training algorithm using data extracted from a data stream. This process
is scrupulously documented in a log object.

The MainLoop itself does very little: only fetching the data from the data stream and feeding it to the algorithm.
It expects the extensions to do most of the job. A respective callback of every extension is called at every stage
of training. The extensions should communicate between themselves and with the main loop object by means
of making records in the log. For instance in order to stop the training procedure an extension can make a record
training_finish_requested=True in the log. The main loop checks for such a record after every batch and every
epoch and terminates when finds it.

112 Chapter 2. In-depth

https://docs.python.org/3.4/library/stdtypes.html#str
https://docs.python.org/3.4/library/sqlite3.html#sqlite3.connect
https://docs.python.org/3.4/library/functions.html#float
https://docs.python.org/3.4/library/stdtypes.html#memoryview
https://docs.python.org/3.4/library/functions.html#object
https://docs.python.org/3.4/library/stdtypes.html#memoryview
https://docs.python.org/3.4/library/functions.html#object

Blocks Documentation, Release 0.2.0

The MainLoop also handles interruption signal SIGINT for you (e.g. the one program receives when you press
Ctrl + C). It notes this event in the log and at the next iteration or epoch end the main loop will be gracefully
finished, with calling all necessary extension callbacks and waiting until they finish.

Parameters

• algorithm (instance of TrainingAlgorithm) – The training algorithm.

• data_stream (instance of DataStream.) – The data stream. Should support
AbstractDataStream interface from Fuel.

• model (instance of ComputationGraph, optional) – An annotated computation graph,
typically represented by ComputationGraph or Model object. The main loop object
uses the model only for optional sanity checks, it is here mainly for the main loop extensions.

• log (instance of TrainingLog, optional) – The log. When not given, a TrainingLog
is created.

• log_backend (str) – The backend to use for the log. Currently python and sqlite are
available. If not given, config.log_backend will be used. Ignored if log is passed.

• extensions (list of TrainingExtension instances) – The training extensions. Will
be called in the same order as given here.

find_extension(name)
Find an extension with a given name.

Parameters name (str) – The name of the extension looked for.

Notes

Will crash if there no or several extension found.

iteration_state
Quick access to the (data stream, epoch iterator) pair.

model

run()
Starts the main loop.

The main loop ends when a training extension makes a training_finish_requested record in the log.

status
A shortcut for self.log.status.

exception blocks.main_loop.TrainingFinish
Bases: exceptions.Exception

An exception raised when a finish request is found in the log.

2.5.9 Model

A model in Blocks is simply an annotated computation graph. The class Model extends blocks.graph.
ComputationGraph :class:, which is able to handle annotations and roles in general, but is deliberately made
unaware of specific annotations that a Theano graph created by Blocks typically has, such as bricks and application
calls. The Model adds this functionality. Using Model you can do things like query all the bricks used to build the
computation graph, request “hierarchical names” of the parameters (a hierarchical name is a path-like string which in
addition to the parameter’s name contains names of the bricks on the path from a root brick to the brick that owns the
parameters, e.g. /mlp/linear/W).

2.5. API Reference 113

https://docs.python.org/3.4/library/stdtypes.html#str
https://docs.python.org/3.4/library/stdtypes.html#str

Blocks Documentation, Release 0.2.0

For more information, see Model docstring.

class blocks.model.Model(*args, **kwargs)
Bases: blocks.graph.ComputationGraph

Handles annotations in Blocks-built computation graphs.

Use this class to handle your Blocks-created computation graph.

Examples

>>> from theano import tensor
>>> from blocks.bricks import MLP, Tanh
>>> x = tensor.matrix('x')
>>> mlp = MLP([Tanh(), Tanh()], [10, 10, 10])
>>> y = mlp.apply(x)
>>> model = Model(y)

With Model you can get access to the brick hierarchy. The brick hierarchy is defined by children attributes
that every brick has. The bricks that are not children of other bricks are called top bricks. It is often useful to
have access to top bricks of a brick hierarchy used to build a computation graph, and here is how you can do it:

>>> model.get_top_bricks()
[<blocks.bricks.sequences.MLP object at ...]

You can also get “hierarchical” names for the parameters, which encode the position of the owning brick in the
brick hierarchy.

>>> model.get_parameter_dict()
OrderedDict([('/mlp/linear_1.b', b), ('/mlp/linear_0.b', b),
('/mlp/linear_0.W', W), ('/mlp/linear_1.W', W)])

check_sanity(algorithm)

get_parameter_dict()
Returns parameters with their hierarchical names.

The parameter names are formed from positions of their owner bricks in the bricks hierarchy. The variable
names are used for the parameters that do not belong to any brick.

Returns parameter_dict – A dictionary of (hierarchical name, shared variable) pairs.

Return type dict

get_parameter_values()
Return the values of model parameters.

The same hierarhical names as in get_parameter_dict() are used to uniquely identify parameters.

Returns parameter_values – Dictionary of (hierarchical name, ndarray) pairs.

Return type OrderedDict

get_top_bricks()
Get the bricks that do not have parents.

Returns bricks

Return type list of Brick

114 Chapter 2. In-depth

https://docs.python.org/3.4/library/stdtypes.html#dict
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray

Blocks Documentation, Release 0.2.0

set_parameter_values(parameter_values)
Set the values of model parameters.

The same hierarhical names as in get_parameter_dict() are used to uniquely identify parameters.

Parameters parameter_values (OrderedDict) – Dictionary of (hierarchical name,
ndarray) pairs.

2.5.10 Variable roles

blocks.roles.add_role(var, role)
Add a role to a given Theano variable.

Parameters

• var (TensorVariable) – The variable to assign the new role to.

• role (VariableRole instance) –

Notes

Some roles are subroles of others (e.g. WEIGHT is a subrole of PARAMETER). This function will not add a role
if a more specific role has already been added. If you need to replace a role with a parent role (e.g. replace
WEIGHT with PARAMETER) you must do so manually.

Examples

>>> from theano import tensor
>>> W = tensor.matrix()
>>> from blocks.roles import PARAMETER, WEIGHT
>>> add_role(W, PARAMETER)
>>> print(*W.tag.roles)
PARAMETER
>>> add_role(W, WEIGHT)
>>> print(*W.tag.roles)
WEIGHT
>>> add_role(W, PARAMETER)
>>> print(*W.tag.roles)
WEIGHT

Roles

All roles are implemented as subclasses of VariableRole.

class blocks.roles.VariableRole
Base class for all variable roles.

The actual roles are instances of the different subclasses of VariableRole. They are:

blocks.roles.INPUT = INPUT
The input of a Brick

blocks.roles.OUTPUT = OUTPUT
The output of a Brick

2.5. API Reference 115

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray

Blocks Documentation, Release 0.2.0

blocks.roles.AUXILIARY = AUXILIARY
Variables added to the graph as annotations

blocks.roles.COST = COST
A scalar cost that can be used to train or regularize

blocks.roles.PARAMETER = PARAMETER
A parameter of the model

blocks.roles.WEIGHT = WEIGHT
The weight matrices of linear transformations

blocks.roles.BIAS = BIAS
Biases of linear transformations

blocks.roles.FILTER = FILTER
The filters (kernels) of a convolution operation

2.5.11 Brick selectors

class blocks.select.Path(nodes)
Bases: object

Encapsulates a path in a hierarchy of bricks.

Currently the only allowed elements of paths are names of the bricks and names of parameters. The latter can
only be put in the end of the path. It is planned to support regular expressions in some way later.

Parameters nodes (list or tuple of path nodes) – The nodes of the path.

nodes
tuple – The tuple containing path nodes.

class BrickName
Bases: str

part()

class ParameterName
Bases: str

part()

parameter_separator = '.'

static parse(string)
Constructs a path from its string representation.

Todo: More error checking.

Parameters string (str) – String representation of the path.

separator = '/'

separator_re = <_sre.SRE_Pattern object>

class blocks.select.Selector(bricks)
Bases: object

Selection of elements of a hierarchy of bricks.

116 Chapter 2. In-depth

https://docs.python.org/3.4/library/functions.html#object
https://docs.python.org/3.4/library/stdtypes.html#list
https://docs.python.org/3.4/library/stdtypes.html#str
https://docs.python.org/3.4/library/stdtypes.html#str
https://docs.python.org/3.4/library/stdtypes.html#str
https://docs.python.org/3.4/library/functions.html#object

Blocks Documentation, Release 0.2.0

Parameters bricks (list of Brick) – The bricks of the selection.

get_parameters(parameter_name=None)
Returns parameters from selected bricks and their descendants.

Parameters parameter_name (Path.ParameterName, optional) – If given, only param-
eters with a name attribute equal to parameter_name are returned.

Returns parameters – A dictionary of (path, parameter) pairs, where path is a string represen-
tation of the path in the brick hierarchy to the parameter (i.e. the slash-delimited path to the
brick that owns the parameter, followed by a dot, followed by the parameter’s name), and
parameter is the Theano variable representing the parameter.

Return type OrderedDict

Examples

>>> from blocks.bricks import MLP, Tanh
>>> mlp = MLP([Tanh(), Tanh(), Tanh()], [5, 7, 11, 2])
>>> mlp.allocate()
>>> selector = Selector([mlp])
>>> selector.get_parameters()
OrderedDict([('/mlp/linear_0.W', W), ('/mlp/linear_0.b', b),
('/mlp/linear_1.W', W), ('/mlp/linear_1.b', b),
('/mlp/linear_2.W', W), ('/mlp/linear_2.b', b)])

Or, select just the weights of the MLP by passing the parameter name W:

>>> w_select = Selector([mlp])
>>> w_select.get_parameters('W')
OrderedDict([('/mlp/linear_0.W', W), ('/mlp/linear_1.W', W),
('/mlp/linear_2.W', W)])

select(path)
Select a subset of current selection matching the path given.

Warning: Current implementation is very inefficient (theoretical complexity is 𝑂(𝑛3), where 𝑛 is the
number of bricks in the hierarchy). It can be sped up easily.

Parameters path (Path or str) – The path for the desired selection. If a string is given it is
parsed into a path.

Returns

• Depending on the path given, one of the following

• * Selector with desired bricks.

• * list of SharedTensorVariable.

2.5.12 Serialization

This module provides load() and dump() functions that can serve as drop-in replacement for the respective func-
tions from the standard pickle module. The main differences between them and the standard ones are:

• The dump is physically a tarball, in which the pickle is stored as ‘_pkl’ file.

2.5. API Reference 117

https://docs.python.org/3.4/library/pickle.html#module-pickle

Blocks Documentation, Release 0.2.0

• A special file ‘_parameters’ in the tarball can contain the data of a selected set of Theano shared variables. This
data is referenced from _pkl using persistent id mechanism, which means that no duplication takes place. The
goal here is to save the values of the parameters (this is what these shared variables are in most cases) in the
most robust way possible. The actual format for ‘_parameters’ file is the one used by numpy.savez(), i.e. a
zip file of numpy arrays.

• More objects can be dumped in the archive using the add_to_dump function. If the object has the same pa-
rameters as the one already dumped, then you can avoid to dump those parameters thank to the persistent id
mechanism.

• The dump() strives to catch situations when the user tries to pickle a function or a class not defined in the
global namespace and give a meaningful warning.

If briefly, this module proposes a dumping mechanism which allows for greater robustness and persistence than stan-
dard pickling.

Examples

Consider a standard main loop (without an algorithm and a data stream for brevity)

>>> from theano import tensor
>>> from blocks.main_loop import MainLoop
>>> from blocks.bricks import MLP, Tanh, Softmax
>>> from blocks.model import Model
>>> mlp = MLP([Tanh(), None], [784, 10, 10])
>>> x = tensor.matrix('features')
>>> y = tensor.lmatrix('targets')
>>> cost = Softmax().categorical_cross_entropy(
... y.flatten(), mlp.apply(tensor.flatten(x, outdim=2)))
>>> main_loop = MainLoop(None, None, model=Model(cost))

Let’s see how the main loop is dumped by dump()

>>> from blocks.serialization import dump, load
>>> import tarfile
>>> with open('main_loop.tar', 'wb') as dst:
... dump(main_loop, dst)
>>> tarball = tarfile.open('main_loop.tar', 'r')
>>> tarball
<tarfile.TarFile object at ...>
>>> tarball.getnames()
['_pkl']
>>> tarball.close()

As promised, the dump is a tarball. Since we did not ask for any additional magic, it just contains the pickled main
loop in ‘_pkl’ file.

Let’s do something more interesting:

>>> with open('main_loop.tar', 'wb') as dst:
... dump(main_loop, dst,
... parameters=main_loop.model.parameters)
>>> tarball = tarfile.open('main_loop.tar', 'r')
>>> tarball.getnames()
['_parameters', '_pkl']

As requested by specifying the _parameters argument, the parameters were saved in a zip file.

118 Chapter 2. In-depth

https://docs.scipy.org/doc/numpy/reference/generated/numpy.savez.html#numpy.savez

Blocks Documentation, Release 0.2.0

>>> import numpy
>>> ps = numpy.load(tarball.extractfile(tarball.getmember('_parameters')))
>>> sorted(ps.keys())
['|mlp|linear_0.W', '|mlp|linear_0.b', '|mlp|linear_1.W', '|mlp|lin...]
>>> ps.close()

The names for parameters are chosen intelligently to reflect their position in the brick hierarchy, if they belong to
bricks, and by simply using the .name attribute, if they do not.

The loading of the main loop as a whole still works:

>>> with open('main_loop.tar', 'rb') as src:
... main_loop_loaded = load(src)
>>> main_loop_loaded
<blocks.main_loop.MainLoop object at ...>

Additionally, this module provides convenience routine load_parameters():

>>> with open('main_loop.tar', 'rb') as src:
... parameters = load_parameters(src)
>>> sorted(parameters.keys())
['/mlp/linear_0.W', '/mlp/linear_0.b', '/mlp/linear_1.W', '/mlp/line...]

Loading parameters saved by dump() with load_parameters() ensures that their hierarchical names are com-
patible with Model and Selector classes.

TODO: Add information about add_to_dump().

blocks.serialization.add_to_dump(object_, file_, name, parameters=None, use_cpickle=False,
protocol=2, **kwargs)

Pickles an object to an existing tar archive.

This function allows to dump more objects to an existing archive. If the object you want to dump posesses
the same set of shared variables as the object already dumped, you can pass them to the parameters argument,
which will avoid them to be serialized a second time. However, it won’t work if the shared variable you pass to
the parameters argument are not already in the archive.

Parameters

• object (object) – The object to pickle.

• file (file) – The destination for saving, opened in read-write mode (r+).

• name (str) – The name of the object you are dumping. It will be used as a file name in the
archive. ‘_pkl’ and ‘_paramters’ are reserved names and can’t be used.

• parameters (list, optional) – Shared variables whose internal numpy arrays
should be saved separately in the _parameters field of the tar file. Must be a subset of
the parameters already in the archive.

• use_cpickle (bool) – Use cPickle instead of pickle. Setting it to true will disable the
warning message if you try to pickle objects from the main module! Be sure that you don’t
have the warning before turning this flag on. Default: False.

• protocol (int, optional) – The pickling protocol to use. Unlike Python’s built-in
pickle, the default is set to 2 instead of 0 for Python 2. The Python 3 default (level 3) is
maintained.

• **kwargs – Keyword arguments to be passed to pickle.Pickler.

blocks.serialization.continue_training(path)
Continues training using checkpoint.

2.5. API Reference 119

https://docs.python.org/3.4/library/functions.html#object
https://docs.python.org/3.4/library/stdtypes.html#str
https://docs.python.org/3.4/library/stdtypes.html#list
https://docs.python.org/3.4/library/functions.html#bool
https://docs.python.org/3.4/library/functions.html#int

Blocks Documentation, Release 0.2.0

Parameters path (str) – Path to checkpoint.

Notes

Python picklers can unpickle objects from global namespace only if they are present in namespace where un-
pickling happens. Often global functions are needed for mapping, filtering and other data stream operations. In
a case if the main loop uses global objects and this function fails with a message like ` AttributeError:
'module' object has no attribute '...' ` it means that you need to import these objects.

Examples

This function can be used in two ways: in your script where a main loop defined or in a different script. For
later options see Notes section.

blocks.serialization.dump(object_, file_, parameters=None, use_cpickle=False, protocol=2,
**kwargs)

Pickles an object, optionally saving its parameters separately.

Parameters

• object (object) – The object to pickle. If None, only the parameters passed to the
parameters argument will be saved.

• file (file) – The destination for saving.

• parameters (list, optional) – Shared variables whose internal numpy arrays
should be saved separately in the _parameters field of the tar file.

• pickle_object (bool) – If False, object_ will not be serialized, only its parameters.
This flag can be used when object_ is not serializable, but one still want to save its parame-
ters. Default: True

• use_cpickle (bool) – Use cPickle instead of pickle. Setting it to true will disable the
warning message if you try to pickle objects from the main module, so be sure that there is
no warning before turning this flag on. Default: False.

• protocol (int, optional) – The pickling protocol to use. Unlike Python’s built-in
pickle, the default is set to 2 instead of 0 for Python 2. The Python 3 default (level 3) is
maintained.

• **kwargs – Keyword arguments to be passed to pickle.Pickler.

blocks.serialization.dump_and_add_to_dump(object_, file_, parameters=None, to_add=None,
use_cpickle=False, protocol=2, **kwargs)

Calls both dump and add_to_dump to serialze several objects.

This function is used to serialize several at the same time, using persistent ID. Its main advantage is that it can
be used with secure_dump.

Parameters

• object (object) – The object to pickle. If None, only the parameters passed to the
parameters argument will be saved.

• file (file) – The destination for saving.

• parameters (list, optional) – Shared variables whose internal numpy arrays
should be saved separately in the _parameters field of the tar file.

120 Chapter 2. In-depth

https://docs.python.org/3.4/library/stdtypes.html#str
https://docs.python.org/3.4/library/functions.html#object
https://docs.python.org/3.4/library/stdtypes.html#list
https://docs.python.org/3.4/library/functions.html#bool
https://docs.python.org/3.4/library/functions.html#bool
https://docs.python.org/3.4/library/functions.html#int
https://docs.python.org/3.4/library/functions.html#object
https://docs.python.org/3.4/library/stdtypes.html#list

Blocks Documentation, Release 0.2.0

• to_add (dict of objects) – A {‘name’: object} dictionnary of additional objects to
save in the tar archive. Its keys will be used as name in the tar file.

• use_cpickle (bool) – Use cPickle instead of pickle. Setting it to true will disable the
warning message if you try to pickle objects from the main module, so be sure that there is
no warning before turning this flag on. Default: False.

• protocol (int, optional) – The pickling protocol to use. Unlike Python’s built-in
pickle, the default is set to 2 instead of 0 for Python 2. The Python 3 default (level 3) is
maintained.

• **kwargs – Keyword arguments to be passed to pickle.Pickler.

blocks.serialization.load(file_, name=’_pkl’, use_cpickle=False, **kwargs)
Loads an object saved using the dump function.

By default, this function loads the object saved by the dump function. If some objects have been added to the
archive using the add_to_dump function, then you can load them by passing their name to the name parameter.

Parameters

• file (file) – The file that contains the object to load.

• name (str) – Name of the object to load. Default is _pkl, meaning that it is the original
object which have been dumped that is loaded.

• use_cpickle (bool) – Use cPickle instead of pickle. Default: False.

• **kwargs – Keyword arguments to be passed to pickle.Unpickler. Used for e.g. specifying
the encoding so as to load legacy Python pickles under Python 3.x.

Returns

Return type The object saved in file_.

blocks.serialization.load_parameters(file_)
Loads the parameter values saved by dump().

This functions loads the parameters that have been saved separately by dump(), ie the ones given to its param-
eter parameters.

Parameters file (file) – The source to load the parameters from.

Returns

Return type A dictionary of (parameter name, numpy array) pairs.

blocks.serialization.secure_dump(object_, path, dump_function=<function dump>, **kwargs)
Robust serialization - does not corrupt your files when failed.

Parameters

• object (object) – The object to be saved to the disk.

• path (str) – The destination for saving.

• dump_function (function) – The function that is used to perform the serialization.
Must take an object and file object as arguments. By default, dump() is used. An alternative
would be pickle.dump().

• **kwargs – Keyword arguments to be passed to dump_function.

2.5. API Reference 121

https://docs.python.org/3.4/library/functions.html#bool
https://docs.python.org/3.4/library/functions.html#int
https://docs.python.org/3.4/library/stdtypes.html#str
https://docs.python.org/3.4/library/functions.html#bool
https://docs.python.org/3.4/library/functions.html#object
https://docs.python.org/3.4/library/stdtypes.html#str
https://docs.python.org/3.4/library/pickle.html#pickle.dump

Blocks Documentation, Release 0.2.0

2.5.13 Theano expressions

blocks.theano_expressions.hessian_times_vector(gradient, parameter, vector,
r_op=False)

Return an expression for the Hessian times a vector.

Parameters

• gradient (TensorVariable) – The gradient of a cost with respect to parameter

• parameter (TensorVariable) – The parameter with respect to which to take the gra-
dient

• vector (TensorVariable) – The vector with which to multiply the Hessian

• r_op (bool, optional) – Whether to use Rop() or not. Defaults to False. Which
solution is fastest normally needs to be determined by profiling.

blocks.theano_expressions.l2_norm(tensors, squared=False)
Computes the total L2 norm of a set of tensors.

Converts all operands to TensorVariable (see as_tensor_variable()).

Parameters

• tensors (iterable of TensorVariable (or compatible)) – The tensors.

• squared (bool, optional) – If True, return the squared L2 norm. Default: False.

2.5.14 Common Utilities

blocks.utils.utils.change_recursion_limit(*args, **kwds)
Temporarily changes the recursion limit.

blocks.utils.utils.dict_subset(dict_, keys, pop=False, must_have=True)
Return a subset of a dictionary corresponding to a set of keys.

Parameters

• dict (dict) – The dictionary.

• keys (iterable) – The keys of interest.

• pop (bool) – If True, the pairs corresponding to the keys of interest are popped from the
dictionary.

• must_have (bool) – If True, a ValueError will be raised when trying to retrieve a key
not present in the dictionary.

Returns result – An ordered dictionary of retrieved pairs. The order is the same as in the keys
argument.

Return type OrderedDict

blocks.utils.utils.dict_union(*dicts, **kwargs)
Return union of a sequence of disjoint dictionaries.

Parameters

• dicts (dicts) – A set of dictionaries with no keys in common. If the first dictionary in
the sequence is an instance of OrderedDict, the result will be OrderedDict.

• **kwargs – Keywords and values to add to the resulting dictionary.

Raises ValueError – If a key appears twice in the dictionaries or keyword arguments.

122 Chapter 2. In-depth

https://docs.python.org/3.4/library/functions.html#bool
https://docs.python.org/3.4/library/functions.html#bool
https://docs.python.org/3.4/library/stdtypes.html#dict
https://docs.python.org/3.4/library/functions.html#bool
https://docs.python.org/3.4/library/functions.html#bool
https://docs.python.org/3.4/library/exceptions.html#ValueError

Blocks Documentation, Release 0.2.0

blocks.utils.utils.extract_args(expected, *args, **kwargs)
Route keyword and positional arguments to a list of names.

A frequent situation is that a method of the class gets to know its positional arguments only when an instance of
the class has been created. In such cases the signature of such method has to be *args, **kwargs. The downside
of such signatures is that the validity of a call is not checked.

Use extract_args() if your method knows at runtime, but not at evaluation/compile time, what arguments
it actually expects, in order to check that they are correctly received.

Parameters

• expected (list of str) – A list of strings denoting names for the expected argu-
ments, in order.

• args (iterable) – Positional arguments that have been passed.

• kwargs (Mapping) – Keyword arguments that have been passed.

Returns routed_args – An OrderedDict mapping the names in expected to values drawn from either
args or kwargs in the usual Python fashion.

Return type OrderedDict

Raises

• KeyError – If a keyword argument is passed, the key for which is not contained within
expected.

• TypeError – If an expected argument is accounted for in both the positional and keyword
arguments.

• ValueError – If certain arguments in expected are not assigned a value by either a posi-
tional or keyword argument.

blocks.utils.utils.find_bricks(top_bricks, predicate)
Walk the brick hierarchy, return bricks that satisfy a predicate.

Parameters

• top_bricks (list) – A list of root bricks to search downward from.

• predicate (callable) – A callable that returns True for bricks that meet the desired
criteria or False for those that don’t.

Returns found – A list of all bricks that are descendants of any element of top_bricks that satisfy
predicate.

Return type list

blocks.utils.utils.ipdb_breakpoint(x)
A simple hook function for put_hook() that runs ipdb.

Parameters x (ndarray) – The value of the hooked variable.

blocks.utils.utils.pack(arg)
Pack variables into a list.

Parameters arg (object) – Either a list or tuple, or any other Python object. Lists will be returned
as is, and tuples will be cast to lists. Any other variable will be returned in a singleton list.

Returns List containing the arguments

Return type list

blocks.utils.utils.print_shape(x, header=None)

2.5. API Reference 123

https://docs.python.org/3.4/library/exceptions.html#KeyError
https://docs.python.org/3.4/library/exceptions.html#TypeError
https://docs.python.org/3.4/library/exceptions.html#ValueError
https://docs.python.org/3.4/library/stdtypes.html#list
https://docs.python.org/3.4/library/stdtypes.html#list
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3.4/library/functions.html#object
https://docs.python.org/3.4/library/stdtypes.html#list

Blocks Documentation, Release 0.2.0

blocks.utils.utils.print_sum(x, header=None)

blocks.utils.utils.repr_attrs(instance, *attrs)
Prints a representation of an object with certain attributes.

Parameters

• instance (object) – The object of which to print the string representation

• *attrs – Names of attributes that should be printed.

Examples

>>> class A(object):
... def __init__(self, value):
... self.value = value
>>> a = A('a_value')
>>> repr(a)
<blocks.utils.A object at 0x7fb2b4741a10>
>>> repr_attrs(a, 'value')
<blocks.utils.A object at 0x7fb2b4741a10: value=a_value>

blocks.utils.utils.reraise_as(new_exc)
Reraise an exception as a different type or with a message.

This function ensures that the original traceback is kept, making for easier debugging.

Parameters new_exc (Exception or str) – The new error to be raised e.g. (ValueError(“New
message”)) or a string that will be prepended to the original exception message

Notes

Note that when reraising exceptions, the arguments of the original exception are cast to strings and appended to
the error message. If you want to retain the original exception arguments, please use:

>>> try:
... 1 / 0
... except Exception as e:
... reraise_as(Exception("Extra information", *e.args))
Traceback (most recent call last):
...

Exception: 'Extra information, ...

Examples

>>> class NewException(Exception):
... def __init__(self, message):
... super(NewException, self).__init__(message)
>>> try:
... do_something_crazy()
... except Exception:
... reraise_as(NewException("Informative message"))
Traceback (most recent call last):
...

NewException: Informative message ...

124 Chapter 2. In-depth

https://docs.python.org/3.4/library/functions.html#object
https://docs.python.org/3.4/library/exceptions.html#Exception
https://docs.python.org/3.4/library/stdtypes.html#str

Blocks Documentation, Release 0.2.0

blocks.utils.utils.unpack(arg, singleton=False)
Unpack variables from a list or tuple.

Parameters

• arg (object) – Either a list or tuple, or any other Python object. If passed a list or tuple of
length one, the only element of that list will be returned. If passed a tuple of length greater
than one, it will be cast to a list before returning. Any other variable will be returned as is.

• singleton (bool) – If True, arg is expected to be a singleton (a list or tuple with exactly
one element) and an exception is raised if this is not the case. False by default.

Returns A list of length greater than one, or any other Python object except tuple.

Return type object

2.5.15 Theano Utilities

blocks.utils.theano_utils.check_theano_variable(variable, n_dim, dtype_prefix)
Check number of dimensions and dtype of a Theano variable.

If the input is not a Theano variable, it is converted to one. None input is handled as a special case: no checks
are done.

Parameters

• variable (TensorVariable or convertible to one) – A variable to check.

• n_dim (int) – Expected number of dimensions or None. If None, no check is performed.

• dtype_prefix (str) – Expected dtype prefix or None. If None, no check is performed.

blocks.utils.theano_utils.is_graph_input(variable)
Check if variable is a user-provided graph input.

To be considered an input the variable must have no owner, and not be a constant or shared variable.

Parameters variable (TensorVariable) –

Returns True If the variable is a user-provided input to the graph.

Return type bool

blocks.utils.theano_utils.is_shared_variable(variable)
Check if a variable is a Theano shared variable.

Notes

This function excludes shared variables that store the state of Theano random number generators.

blocks.utils.theano_utils.put_hook(variable, hook_fn, *args)
Put a hook on a Theano variables.

Ensures that the hook function is executed every time when the value of the Theano variable is available.

Parameters

• variable (TensorVariable) – The variable to put a hook on.

• hook_fn (function) – The hook function. Should take a single argument: the variable’s
value.

• *args (list) – Positional arguments to pass to the hook function.

2.5. API Reference 125

https://docs.python.org/3.4/library/functions.html#object
https://docs.python.org/3.4/library/functions.html#bool
https://docs.python.org/3.4/library/functions.html#object
https://docs.python.org/3.4/library/functions.html#int
https://docs.python.org/3.4/library/stdtypes.html#str
https://docs.python.org/3.4/library/functions.html#bool
https://docs.python.org/3.4/library/stdtypes.html#list

Blocks Documentation, Release 0.2.0

blocks.utils.theano_utils.shared_floatx(value, name=None, borrow=False, dtype=None,
**kwargs)

Transform a value into a shared variable of type floatX.

Parameters

• value (ndarray) – The value to associate with the Theano shared.

• name (str, optional) – The name for the shared variable. Defaults to None.

• borrow (bool, optional) – If set to True, the given value will not be copied if possible.
This can save memory and speed. Defaults to False.

• dtype (str, optional) – The dtype of the shared variable. Default value is config.
floatX.

• **kwargs – Keyword arguments to pass to the shared() function.

Returns A Theano shared variable with the requested value and dtype.

Return type tensor.TensorSharedVariable

blocks.utils.theano_utils.shared_floatx_nans(shape, **kwargs)
Creates a shared variable array filled with nans.

Parameters

• shape (tuple) – A tuple of integers representing the shape of the array.

• **kwargs – Keyword arguments to pass to the shared_floatx() function.

Returns A Theano shared variable filled with nans.

Return type class:’tensor.TensorSharedVariable’

blocks.utils.theano_utils.shared_floatx_zeros(shape, **kwargs)
Creates a shared variable array filled with zeros.

Parameters

• shape (tuple) – A tuple of integers representing the shape of the array.

• **kwargs – Keyword arguments to pass to the shared_floatx() function.

Returns A Theano shared variable filled with zeros.

Return type class:’tensor.TensorSharedVariable’

blocks.utils.theano_utils.shared_floatx_zeros_matching(shared_variable,
name=None, **kwargs)

Create another shared variable with matching shape and broadcast.

Parameters

• shared_variable (:class:'tensor.TensorSharedVariable') – A Theano
shared variable with the desired shape and broadcastable flags.

• name (str, optional) – The name for the shared variable. Defaults to None.

• **kwargs – Keyword arguments to pass to the shared_floatx_zeros() function.

Returns A new shared variable, initialized to all zeros, with the same shape and broadcastable flags
as shared_variable.

Return type class:’tensor.TensorSharedVariable’

blocks.utils.theano_utils.shared_like(variable, name=None, **kwargs)
Construct a shared variable to hold the value of a tensor variable.

126 Chapter 2. In-depth

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3.4/library/stdtypes.html#str
https://docs.python.org/3.4/library/functions.html#bool
https://docs.python.org/3.4/library/stdtypes.html#str
https://theano.readthedocs.io/en/latest/library/config.html#config.floatX
https://theano.readthedocs.io/en/latest/library/config.html#config.floatX
https://theano.readthedocs.io/en/latest/library/index.html#theano.shared
https://docs.python.org/3.4/library/stdtypes.html#tuple
https://docs.python.org/3.4/library/stdtypes.html#tuple
https://docs.python.org/3.4/library/stdtypes.html#str

Blocks Documentation, Release 0.2.0

Parameters

• variable (TensorVariable) – The variable whose dtype and ndim will be used to
construct the new shared variable.

• name (str or None) – The name of the shared variable. If None, the name is determined
based on variable’s name.

• **kwargs – Keyword arguments to pass to the shared() function.

2.6 Development

We want to encourage everyone to contribute to the development of Blocks and Fuel. To ensure the codebase is of high
quality, we ask all new developers to have a quick read through these rules to make sure that any code you contribute
will be easy to merge!

2.6.1 Formatting guidelines

Blocks follows the PEP8 style guide closely, so please make sure you are familiar with it. Our Travis CI buildbots
(for Blocks, Fuel, and Blocks-extras) run flake8 as part of every build, which checks for PEP8 compliance (using the
pep8 tool) and for some common coding errors using pyflakes. You might want to install and run flake8 on your code
before submitting a PR to make sure that your build doesn’t fail because of e.g. a bit of extra whitespace.

Note that passing flake8 does not necessarily mean that your code is PEP8 compliant! Some guidelines which aren’t
checked by flake8:

• Imports should be grouped into standard library, third party, and local imports with a blank line in between
groups.

• Variable names should be explanatory and unambiguous.

There are also some style guideline decisions that were made specifically for Blocks and Fuel:

• Do not rename imports i.e. do not use import theano.tensor as T or import numpy as np.

• Direct imports, import ..., precede from ... import ... statements.

• Imports are otherwise listed alphabetically.

• Don’t recycle variable names (i.e. don’t use the same variable name to refer to different things in a particular
part of code), especially when they are arguments to functions.

2.6. Development 127

https://docs.python.org/3.4/library/stdtypes.html#str
https://docs.python.org/3.4/library/constants.html#None
https://theano.readthedocs.io/en/latest/library/index.html#theano.shared
https://www.python.org/dev/peps/pep-0008/
https://travis-ci.org/mila-udem/blocks
https://travis-ci.org/mila-udem/fuel
https://travis-ci.org/mila-udem/blocks-extras
https://pypi.python.org/pypi/flake8
https://pypi.python.org/pypi/pep8
https://pypi.python.org/pypi/pyflakes
https://pypi.python.org/pypi/flake8
https://pypi.python.org/pypi/flake8
https://pypi.python.org/pypi/flake8
https://www.python.org/dev/peps/pep-0008/#imports

Blocks Documentation, Release 0.2.0

• Group trivial attribute assignments from arguments and keyword arguments together, and separate them
from remaining code with a blank line. Avoid the use of implicit methods such as self.__dict__.
update(locals()).

class Foo(object):
def __init__(self, foo, bar, baz=None, **kwargs):

super(Foo, self).__init__(**kwargs)
if baz is None:

baz = []

self.foo = foo
self.bar = bar
self.baz = baz

2.6.2 Code guidelines

Some guidelines to keep in mind when coding for Blocks or Fuel. Some of these are simply preferences, others stem
from particular requirements we have, e.g., in order to serialize training progress, support Python 2 and 3 simultane-
ously, etc.

Validating function arguments

In general, be Pythonic and rely on duck typing.

When I see a bird that walks like a duck and swims like a duck and quacks like a duck, I call that bird a
duck.

—James Whitcomb Riley

That is, avoid trivial checks such as

isinstance(var, numbers.Integral)
isinstance(var, (tuple, list))

in cases where any number (like a float without a fractional part or a NumPy scalar) or iterable (like a dictionary view,
custom iterator) would work too.

If you need to perform some sort of input validation, don’t use assert statements. Raise a ValueError instead.
assert statements should only be used for sanity tests i.e. they should never be triggered, unless there is a bug in
the code.

Abstract classes

If a class is an abstract base class, use Python’s abc to mark it as such.

from abc import ABCMeta
from six import add_metaclass
@add_metaclass(ABCMeta)
class Abstract(object):

pass

Our documentation generator (Sphinx with the autodoc extension, running on Read the Docs) doesn’t recognize classes
which inherit the ABCMeta metaclass as abstract and will try to instantiate them, causing errors when building docu-
mentation. To prevent this, make sure to always use the add_metaclass decorator, regardless of the parent.

128 Chapter 2. In-depth

https://en.wikipedia.org/wiki/Duck_typing
https://en.wikipedia.org/wiki/Assertion_%28software_development%29#Comparison_with_error_handling
https://en.wikipedia.org/wiki/Class_%28computer_programming%29#Abstract_and_concrete
https://docs.python.org/3/library/abc.html
http://sphinx-doc.org/
http://sphinx-doc.org/ext/autodoc.html
https://readthedocs.org/

Blocks Documentation, Release 0.2.0

Python 2 and 3

Blocks and Fuel aim to be both Python 2 and Python 3 compliant using a single code-base, without using 2to3. There
are many online resources which discuss the writing of compatible code. For a quick overview see the cheatsheet from
Python Charmers. For non-trivial cases, we use the six compatibility library.

Documentation should be written to be Python 3 compliant.

Reraising exceptions

When catching exceptions, use the reraise_as() function to reraise the exception (optionally with a new message
or as a different type). Not doing so clobbers the original traceback, making it impossible to use pdb to debug the
problems.

Serialization

To ensure the reproducibility of scientific experiments, Blocks and Fuel try to make sure that stopping and resuming
training doesn’t affect the final results. In order to do so it takes a radical approach, serializing the entire training state
using pickle. Some things cannot be pickled, so their use should be avoided when the object will be pickled as part of
the main loop:

• Lambda functions

• Iterators and generators (use picklable_itertools)

• References to methods as attributes

• Any variable that lies outside of the global namespace, e.g., nested functions

• Dynamically generated classes (possible but complicated)

Mutable types as keyword argument defaults

A common source of mysterious bugs is the use of mutable types as defaults for keyword arguments.

class Foo(object):
def __init__(self, bar=[]):

bar.append('baz')
self.bar = bar

Initializing two instances of this class results in two objects sharing the same attribute bar with the value ['baz',
'baz'], which is often not what was intended. Instead, use:

class Foo(object):
def __init__(self, bar=None):

if bar is None:
bar = []

bar.append('baz')
self.bar = bar

Writing error messages

Comprehensive error messages can be a great way to inform users of what could have gone wrong. However, lengthy
error messages can clutter code, and implicitly concatenated strings over multiple lines are frustrating to edit. To
prevent this, use a separate triple-quoted string with escaped newlines to store the detailed explanation of your error.

2.6. Development 129

https://docs.python.org/2/library/2to3.html
http://python-future.org/compatible_idioms.html
http://python-future.org/compatible_idioms.html
https://pythonhosted.org/six/
http://www.ianbicking.org/blog/2007/09/re-raising-exceptions.html
https://docs.python.org/3/library/pickle.html
https://github.com/dwf/picklable_itertools
https://stackoverflow.com/questions/4647566/pickle-a-dynamically-parameterized-sub-class

Blocks Documentation, Release 0.2.0

Keep a terse error message directly in the code though, so that someone reading the code still knows what the error is
being raised for.

informative_error = """

You probably passed the wrong keyword argument, which caused this error. \
Please pass `b` instead of `{value}`, and have a look at the documentation \
of the `is_b` method for details."""

def is_b(value):
"""Raises an error if the value is not 'b'."""
if value != 'b':

raise ValueError("wrong value" + informative_error.format(value))
return value

2.6.3 Unit testing

Blocks and Fuel use unit testing to ensure that individual parts of the library behave as intended. It’s also essential in
ensuring that parts of the library are not broken by proposed changes. Since Blocks and Fuel were designed to be used
together, it is important to make sure changes in Fuel do not break Blocks.

All new code should be accompanied by extensive unit tests. Whenever a pull request is made, the full test suite is
run on Travis CI, and pull requests are not merged until all tests pass. Coverage analysis is performed using coveralls.
Please make sure that at the very least your unit tests cover the core parts of your committed code. In the ideal case,
all of your code should be unit tested.

If you are fixing a bug, please be sure to add a unit test to make sure that the bug does not get re-introduced later on.

The test suite can be executed locally using nose21.

2.6.4 Writing and building documentation

The documentation guidelines outline how to write documentation for Blocks and Fuel, and how to build a local copy
of the documentation for testing purposes.

2.6.5 Internal API

The development API reference contains documentation on the internal classes that Blocks uses. If you are not planning
on contributing to Blocks, have a look at the user API reference instead.

2.6.6 Installation

See the instructions at the bottom of the installation instructions.

2.6.7 Sending a pull request

See our pull request workflow for a refresher on the general recipe for sending a pull request to Blocks or Fuel.

1 For all tests but the doctests, nose can also be used.

130 Chapter 2. In-depth

https://travis-ci.org/mila-udem/blocks
https://coveralls.io/r/mila-udem/blocks
https://readthedocs.org/projects/nose2/
http://nose.readthedocs.org/en/latest/

Blocks Documentation, Release 0.2.0

2.6.8 Making a new release

Create an initial pull request and copy the following piece of markdown code. This pull request should only change
the version number. Then, create a pull request to Fuel which refers the first PR. Follow the instruction carefully and
check the boxes in process.

- **Stage 1**: Make changes in `master`:
- [] Freeze other PRs.

After we agreed to initiate the process of releasing a new version,
other PRs shouldn't be merged.

- [] Increase the version number counter of Blocks.

Change the version number in `blocks/__init__.py`.
- [] Increase the version number counter of Fuel.

Change the version number in `fuel/version.py`.
- **Stage 2**: After two PRs merged to Blocks and Fuel:

- [] Create a pull request to merge `master` into `stable`.

Add a link to the initial PR in order not to get lost in the numerous
pull requests.

- [] Create a pull request to Fuel.

This will be a corresponding PR to Fuel which merges its `master` into
`stable`. Add a link to the initial PR.

- [] Check the Travis CI build log *on both the pull requests merging
`master` into `stable`*.

Read carefully the Travis CI messages, check that it tests the
right version.

- [] Check the Theano version.

The `req*.txt` should refer the last development Theano version
which is known not to have bugs.

- [] Check the Fuel version in `req*.txt` files.

We should reference the stable version of Fuel. It can be seen
in the Travis CI output.

- [] Merge Fuel pull request.
- [] Merge this pull request.

- **Stage 3**: After the PRs are merged:
- [] Wait the build to pass.
- [] Check documentation build at ReadTheDocs.
- [] Double check that the version corresponds `__version__`.
- [] Create a release of Fuel by going to the

[releases page](https://github.com/mila-udem/fuel/releases) and
clicking "Draft new release".

- [] Create a release of Blocks by going to the
[releases page](https://github.com/mila-udem/blocks/releases) and
clicking "Draft new release".

Internal API

• Bricks

• Extensions

2.6. Development 131

Blocks Documentation, Release 0.2.0

• Utils

Bricks

class blocks.bricks.base.Application(application_function)
Bases: object

An application method belonging to a particular type of brick.

The application methods of each Brick class are automatically replaced by an instance of Application.
This allows us to store metadata about particular application methods (such as their in- and outputs) easily.

application
callable – The original (unbounded) application function defined on the Brick.

delegate_function
callable – A function that takes a Brick instance as an argument and returns a BoundApplication
object to which attribute requests should be routed.

properties
dict (str, callable) – A dictionary of property getters that should be called when an attribute with
the given name is requested.

instances
dict (Brick, BoundApplication) – A record of bound application instances created by the descrip-
tor protocol.

call_stack
list of Brick – The call stack of brick application methods. Used to check whether the current call
was made by a parent brick.

brick
type – The brick class to which this instance belongs.

Raises

• ValueError – If a brick’s application method is applied by another brick which does not
list the former as a child.

• ValueError – If the application method’s inputs and/or outputs don’t match with the
function signature or the values returned (respectively).

Notes

When a Brick is instantiated and its application method (i.e. an instance of this class) requested, the descrip-
tor protocol (through the __get__() method) automatically instantiates a BoundApplication class and
returns this. This bound application class can be used to store application information particular to a brick
instance. Any attributes unknown to the bounded application are automatically routed to the application that
instantiated it.

application_function

apply(bound_application, *args, **kwargs)

call_stack = []

delegate(f)
Decorator to assign a delegate application.

132 Chapter 2. In-depth

https://docs.python.org/3.4/library/functions.html#object
https://docs.python.org/3.4/library/stdtypes.html#dict
https://docs.python.org/3.4/library/stdtypes.html#str
https://docs.python.org/3.4/library/functions.html#callable
https://docs.python.org/3.4/library/stdtypes.html#dict
https://docs.python.org/3.4/library/stdtypes.html#list
https://docs.python.org/3.4/library/exceptions.html#ValueError
https://docs.python.org/3.4/library/exceptions.html#ValueError

Blocks Documentation, Release 0.2.0

An application method can assign a delegate application. Whenever an attribute is not available, it will be
requested from the delegate instead.

Examples

>>> class Foo(Brick):
... @application(outputs=['baz'])
... def apply(self, x):
... return x + 1
...
... @apply.property('inputs')
... def apply_inputs(self):
... return ['foo', 'bar']
>>> class Bar(Brick):
... def __init__(self, foo):
... self.foo = foo
...
... @application(outputs=['foo'])
... def apply(self, x):
... return x + 1
...
... @apply.delegate
... def apply_delegate(self):
... return self.foo.apply
>>> foo = Foo()
>>> bar = Bar(foo)
>>> bar.apply.outputs
['foo']
>>> bar.apply.inputs
['foo', 'bar']

inputs

name

property(name)
Decorator to make application properties.

Parameters name (str) – The name the property should take.

Examples

>>> class Foo(Brick):
... @application
... def apply(self, x):
... return x + 1
...
... @apply.property('inputs')
... def apply_inputs(self):
... return ['foo', 'bar']
>>> foo = Foo()
>>> foo.apply.inputs
['foo', 'bar']

class blocks.bricks.base.ApplicationCall(application)
Bases: blocks.graph.annotations.Annotation

2.6. Development 133

https://docs.python.org/3.4/library/stdtypes.html#str

Blocks Documentation, Release 0.2.0

A link between the variable tags and bricks.

The application call can be used to attach to an apply call auxiliary variables (e.g. monitors or regularizers) that
do not form part of the main computation graph.

The application call object is created before the call to the application method and can be accessed by specifying
an application_call argument.

Also see Annotation.

Parameters application (BoundApplication instance) – The bound application (i.e. be-
long to a brick instance) object being called

Examples

>>> class Foo(Brick):
... @application
... def apply(self, x, application_call):
... application_call.add_auxiliary_variable(x.mean())
... return x + 1
>>> x = tensor.vector()
>>> y = Foo().apply(x)
>>> from blocks.filter import get_application_call
>>> get_application_call(y)
<blocks.bricks.base.ApplicationCall object at ...>

add_auxiliary_variable(variable, roles=None, name=None)
Attach an auxiliary variable to the graph.

Auxiliary variables are Theano variables that are not part of a brick’s output, but can be useful nonetheless
e.g. as a regularizer or to monitor during training progress.

Parameters

• variable (TensorVariable) – The variable you want to add.

• roles (list of VariableRole instances, optional) – The roles of this variable. The
AUXILIARY role will automatically be added. Other options are COST, WEIGHT, etc.

• name (str, optional) – Name to give to the variable. If the variable already has a
name it will be overwritten.

Examples

>>> from blocks.bricks.base import application, Brick
>>> from blocks.roles import COST
>>> from blocks.utils import shared_floatx_nans
>>> class Foo(Brick):
... def _allocate(self):
... W = shared_floatx_nans((10, 10))
... self.add_auxiliary_variable(W.mean(), name='mean_W')
... @application
... def apply(self, x, application_call):
... application_call.add_auxiliary_variable(
... x - 1, name='x_minus_1')
... application_call.add_auxiliary_variable(
... x.mean(), roles=[COST], name='mean_x')

(continues on next page)

134 Chapter 2. In-depth

https://docs.python.org/3.4/library/stdtypes.html#str

Blocks Documentation, Release 0.2.0

(continued from previous page)

... return x + 1
>>> from theano import tensor
>>> x = tensor.vector()
>>> y = Foo().apply(x)
>>> from blocks.graph import ComputationGraph
>>> cg = ComputationGraph([y])
>>> from blocks.filter import VariableFilter
>>> var_filter = VariableFilter(roles=[AUXILIARY])
>>> var_filter(cg.variables)
{x_minus_1, mean_W, mean_x}
>>> var_filter = VariableFilter(roles=[COST])
>>> var_filter(cg.variables)
{mean_x}

class blocks.bricks.base.BoundApplication(application, brick)
Bases: object

An application method bound to a Brick instance.

name

class blocks.bricks.base.Brick(name=None, children=None)
Bases: blocks.graph.annotations.Annotation

A brick encapsulates Theano operations with parameters.

A brick goes through the following stages:

1. Construction: The call to __init__() constructs a Brick instance with a name and creates any child
bricks as well.

2. Allocation of parameters:

(a) Allocation configuration of children: The push_allocation_config() method configures any
children of this block.

(b) Allocation: The allocate() method allocates the shared Theano variables required for the param-
eters. Also allocates parameters for all children.

3. The following can be done in either order:

(a) Application: By applying the brick to a set of Theano variables a part of the computational graph of
the final model is constructed.

(b) The initialization of parameters:

i. Initialization configuration of children: The push_initialization_config() method
configures any children of this block.

ii. Initialization: This sets the initial values of the parameters by a call to initialize(), which
is needed to call the final compiled Theano function. Also initializes all children.

Not all stages need to be called explicitly. Step 3(a) will automatically allocate the parameters if needed. Sim-
ilarly, step 3(b.2) and 2(b) will automatically perform steps 3(b.1) and 2(a) if needed. They only need to be
called separately if greater control is required. The only two methods which always need to be called are an
application method to construct the computational graph, and the initialize() method in order to initialize
the parameters.

At each different stage, a brick might need a certain set of configuration settings. All of these settings can be
passed to the __init__() constructor. However, by default many bricks support lazy initialization. This
means that the configuration settings can be set later.

2.6. Development 135

https://docs.python.org/3.4/library/functions.html#object

Blocks Documentation, Release 0.2.0

Note: Some arguments to __init__() are always required, even when lazy initialization is enabled. Other
arguments must be given before calling allocate(), while others yet only need to be given in order to call
initialize(). Always read the documentation of each brick carefully.

Lazy initialization can be turned off by setting Brick.lazy = False. In this case, there is no need to call
initialize() manually anymore, but all the configuration must be passed to the __init__() method.

Parameters name (str, optional) – The name of this brick. This can be used to filter the
application of certain modifications by brick names. By default, the brick receives the name of
its class (lowercased).

name
str – The name of this brick.

print_shapes
bool – False by default. If True it logs the shapes of all the input and output variables, which can be
useful for debugging.

parameters
list of TensorSharedVariable and None – After calling the allocate() method this attribute
will be populated with the shared variables storing this brick’s parameters. Allows for None so that
parameters can always be accessed at the same index, even if some parameters are only defined given a
particular configuration.

children
list of bricks – The children of this brick.

allocated
bool – False if allocate() has not been called yet. True otherwise.

initialized
bool – False if allocate() has not been called yet. True otherwise.

allocation_config_pushed
bool – False if allocate() or push_allocation_config() hasn’t been called yet. True
otherwise.

initialization_config_pushed
bool – False if initialize() or push_initialization_config() hasn’t been called yet.
True otherwise.

Notes

To provide support for lazy initialization, apply the lazy() decorator to the __init__() method.

Brick implementations must call the __init__() constructor of their parent using su-
per(BlockImplementation, self).__init__(**kwargs) at the beginning of the overriding __init__.

The methods _allocate() and _initialize() need to be overridden if the brick needs to allocate shared
variables and initialize their values in order to function.

A brick can have any number of methods which apply the brick on Theano variables. These methods should be
decorated with the application() decorator.

If a brick has children, they must be listed in the children attribute. Moreover, if the
brick wants to control the configuration of its children, the _push_allocation_config() and
_push_initialization_config() methods need to be overridden.

136 Chapter 2. In-depth

https://docs.python.org/3.4/library/stdtypes.html#str

Blocks Documentation, Release 0.2.0

Examples

Most bricks have lazy initialization enabled.

>>> import theano
>>> from blocks.initialization import IsotropicGaussian, Constant
>>> from blocks.bricks import Linear
>>> linear = Linear(input_dim=5, output_dim=3,
... weights_init=IsotropicGaussian(),
... biases_init=Constant(0))
>>> x = theano.tensor.vector()
>>> linear.apply(x) # Calls linear.allocate() automatically
linear_apply_output
>>> linear.initialize() # Initializes the weight matrix

_abc_cache = <_weakrefset.WeakSet object>

_abc_negative_cache = <_weakrefset.WeakSet object>

_abc_negative_cache_version = 34

_abc_registry = <_weakrefset.WeakSet object>

_allocate()
Brick implementation of parameter initialization.

Implement this if your brick needs to allocate its parameters.

Warning: This method should never be called directly. Call initialize() instead.

_initialize()
Brick implementation of parameter initialization.

Implement this if your brick needs to initialize its parameters.

Warning: This method should never be called directly. Call initialize() instead.

_push_allocation_config()
Brick implementation of configuring child before allocation.

Implement this if your brick needs to set the configuration of its children before allocation.

Warning: This method should never be called directly. Call push_allocation_config()
instead.

_push_initialization_config()
Brick implementation of configuring child before initialization.

Implement this if your brick needs to set the configuration of its children before initialization.

Warning: This method should never be called directly. Call
push_initialization_config() instead.

2.6. Development 137

Blocks Documentation, Release 0.2.0

allocate()
Allocate shared variables for parameters.

Based on the current configuration of this Brick create Theano shared variables to store the parameters.
After allocation, parameters are accessible through the parameters attribute.

This method calls the allocate() method of all children first, allowing the _allocate() method to
override the parameters of the children if needed.

Raises ValueError – If the configuration of this brick is insufficient to determine the number
of parameters or their dimensionality to be initialized.

Notes

This method sets the parameters attribute to an empty list. This is in order to ensure that calls to this
method completely reset the parameters.

children

get_dim(name)
Get dimension of an input/output variable of a brick.

Parameters name (str) – The name of the variable.

get_dims(names)
Get list of dimensions for a set of input/output variables.

Parameters names (list) – The variable names.

Returns dims – The dimensions of the sources.

Return type list

get_hierarchical_name(parameter, delimiter=’/’)
Return hierarhical name for a parameter.

Returns a path of the form brick1/brick2/brick3.parameter1. The delimiter is configurable.

Parameters delimiter (str) – The delimiter used to separate brick names in the path.

get_unique_path()
Returns unique path to this brick in the application graph.

initialize()
Initialize parameters.

Intialize parameters, such as weight matrices and biases.

Notes

If the brick has not allocated its parameters yet, this method will call the allocate() method in order
to do so.

parameters

print_shapes = False
See Brick.print_shapes

push_allocation_config()
Push the configuration for allocation to child bricks.

138 Chapter 2. In-depth

https://docs.python.org/3.4/library/exceptions.html#ValueError
https://docs.python.org/3.4/library/stdtypes.html#str
https://docs.python.org/3.4/library/stdtypes.html#list
https://docs.python.org/3.4/library/stdtypes.html#list
https://docs.python.org/3.4/library/stdtypes.html#str

Blocks Documentation, Release 0.2.0

Bricks can configure their children, based on their own current configuration. This will be automatically
done by a call to allocate(), but if you want to override the configuration of child bricks manually,
then you can call this function manually.

push_initialization_config()
Push the configuration for initialization to child bricks.

Bricks can configure their children, based on their own current configuration. This will be automatically
done by a call to initialize(), but if you want to override the configuration of child bricks manually,
then you can call this function manually.

class blocks.bricks.base.Children(brick, *args, **kwargs)
Bases: blocks.utils.containers.AnnotatingList

Adds the brick to the list of parents of its children.

_abc_cache = <_weakrefset.WeakSet object>

_abc_negative_cache = <_weakrefset.WeakSet object>

_abc_negative_cache_version = 34

_abc_registry = <_weakrefset.WeakSet object>

_delitem(key)
The operation to perform when an item is deleted.

_setitem(key, value)
The operation to perform when an item is inserted/appended.

class blocks.bricks.base.LazyNone(name)
Bases: object

class blocks.bricks.base.Parameters(brick, *args, **kwargs)
Bases: blocks.utils.containers.AnnotatingList

Adds the PARAMETER role to parameters automatically.

_abc_cache = <_weakrefset.WeakSet object>

_abc_negative_cache = <_weakrefset.WeakSet object>

_abc_negative_cache_version = 34

_abc_registry = <_weakrefset.WeakSet object>

_setitem(key, value)
The operation to perform when an item is inserted/appended.

class blocks.bricks.base._Brick
Bases: abc.ABCMeta

Metaclass which attaches brick instances to the applications.

In addition picklability of Application objects is ensured. This means that Application objects can not
be added to a brick class after it is created. To allow adding application methods programatically, the following
hook is supported: the class namespace is searched for decorators attribute, which can contain a list of functions
to be applied to the namespace of the class being created. These functions can arbitratily modify this namespace.

blocks.bricks.base._variable_name(brick_name, application_name, name)

blocks.bricks.base.application(*args, **kwargs)
Decorator for methods that apply a brick to inputs.

Parameters

2.6. Development 139

https://docs.python.org/3.4/library/functions.html#object
https://docs.python.org/3.4/library/abc.html#abc.ABCMeta

Blocks Documentation, Release 0.2.0

• optional (**kwargs,) – The application method to wrap.

• optional – Attributes to attach to this application.

Notes

This decorator replaces application methods with Application instances. It also sets the attributes given as
keyword arguments to the decorator.

Note that this decorator purposely does not wrap the original method using e.g. wraps() or
update_wrapper(), since that would make the class impossible to pickle (see notes at Application).

Examples

>>> class Foo(Brick):
... @application(inputs=['x'], outputs=['y'])
... def apply(self, x):
... return x + 1
... @application
... def other_apply(self, x):
... return x - 1
>>> foo = Foo()
>>> Foo.apply.inputs
['x']
>>> foo.apply.outputs
['y']
>>> Foo.other_apply
<blocks.bricks.base.Application object at ...>

blocks.bricks.base.args_to_kwargs(args, f)

blocks.bricks.base.copy_and_tag(variable, brick, call, role, application_name, name)
Helper method to copy a variable and annotate it.

blocks.bricks.base.create_unbound_method(func, cls)
Create an unbounded method from a function and a class.

Notes

See https://bitbucket.org/gutworth/six/pull-request/64.

blocks.bricks.base.lazy(allocation=None, initialization=None)
Makes the initialization lazy.

This decorator allows the user to define positional arguments which will not be needed until the allocation or
initialization stage of the brick. If these arguments are not passed, it will automatically replace them with a
custom None object. It is assumed that the missing arguments can be set after initialization by setting attributes
with the same name.

Parameters

• allocation (list) – A list of argument names that are needed for allocation.

• initialization (list) – A list of argument names that are needed for initialization.

140 Chapter 2. In-depth

https://docs.python.org/3.4/library/functools.html#functools.wraps
https://docs.python.org/3.4/library/functools.html#functools.update_wrapper
https://bitbucket.org/gutworth/six/pull-request/64
https://docs.python.org/3.4/library/stdtypes.html#list
https://docs.python.org/3.4/library/stdtypes.html#list

Blocks Documentation, Release 0.2.0

Examples

>>> class SomeBrick(Brick):
... @lazy(allocation=['a'], initialization=['b'])
... def __init__(self, a, b, c='c', d=None):
... print(a, b, c, d)
>>> brick = SomeBrick('a')
a NoneInitialization c None
>>> brick = SomeBrick(d='d', b='b')
NoneAllocation b c d

blocks.bricks.base.rename_function(function, new_name)

class blocks.bricks.Activation(name=None, children=None)
Bases: blocks.bricks.base.Brick

Elementwise application of activation function.

_abc_cache = <_weakrefset.WeakSet object>

_abc_negative_cache = <_weakrefset.WeakSet object>

_abc_negative_cache_version = 34

_abc_registry = <_weakrefset.WeakSet object>

class blocks.bricks.interfaces.ActivationDocumentation
Bases: blocks.bricks.base._Brick

Dynamically adds documentation to activations.

Notes

See http://bugs.python.org/issue12773.

Extensions

class blocks.extensions.predicates.OnLogRecord(record_name)
Bases: object

Trigger a callback when a certain log record is found.

Parameters record_name (str) – The record name to check.

class blocks.monitoring.evaluators.AggregationBuffer(variables,
use_take_last=False)

Bases: object

Intermediate results of aggregating values of Theano variables.

Encapsulates aggregators for a list of Theano variables. Collects the respective updates and provides initializa-
tion and readout routines.

Parameters

• variables (list of TensorVariable) – The variable names are used as record names
in the logs. Hence, all the variable names must be unique.

• use_take_last (bool) – When True, the TakeLast aggregation scheme is used in-
stead of _DataIndependent for those variables that do not require data to be computed.

2.6. Development 141

http://bugs.python.org/issue12773
https://docs.python.org/3.4/library/functions.html#object
https://docs.python.org/3.4/library/stdtypes.html#str
https://docs.python.org/3.4/library/functions.html#object
https://docs.python.org/3.4/library/functions.html#bool

Blocks Documentation, Release 0.2.0

initialization_updates
list of tuples – Initialization updates of the aggregators.

accumulation_updates
list of tuples – Accumulation updates of the aggregators.

readout_variables
dict – A dictionary of record names to TensorVariable representing the aggregated values.

inputs
list of TensorVariable – The list of inputs needed for accumulation.

_compile()
Compiles Theano functions.

Todo: The current compilation method does not account for updates attached to ComputationGraph
elements. Compiling should be out-sourced to ComputationGraph to deal with it.

_create_aggregators()
Create aggregators and collect updates.

get_aggregated_values()
Readout the aggregated values.

initialize_aggregators()
Initialize the aggregators.

class blocks.monitoring.evaluators.DatasetEvaluator(variables, updates=None)
Bases: object

A DatasetEvaluator evaluates many Theano variables or other quantities.

The DatasetEvaluator provides a do-it-all method, evaluate(), which computes values of variables on
a dataset.

Alternatively, methods initialize_aggregators(), process_batch(),
get_aggregated_values() can be used with a custom loop over data.

The values computed on subsets of the given dataset are aggregated using the AggregationScheme`s
provided in the `aggregation_scheme tags. If no tag is given, the value is averaged over mini-
batches. However, care is taken to ensure that variables which do not depend on data are not unnecessarily
recomputed.

Parameters

• variables (list of TensorVariable and) – MonitoredQuantity The variable
names are used as record names in the logs. Hence, all the names must be unique.

Each variable can be tagged with an AggregationScheme that specifies how the value
can be computed for a data set by aggregating minibatches.

• updates (list of tuples or OrderedDict or None) – TensorSharedVariable up-
dates to be performed during evaluation. This parameter is only for Theano variables. Be
careful not to update any model parameters as this is not intended to alter your model in
any meaningfullway. A typical use case of this option arises when the theano function used
for evaluation contains a call to:function:~theano.scan which might have returned shared
variable updates.

_compile()
Compiles Theano functions.

142 Chapter 2. In-depth

https://docs.python.org/3.4/library/functions.html#object
https://docs.python.org/3.4/library/collections.html#collections.OrderedDict

Blocks Documentation, Release 0.2.0

Todo: The current compilation method does not account for updates attached to ComputationGraph
elements. Compiling should be out-sourced to ComputationGraph to deal with it.

evaluate(data_stream)
Compute the variables over a data stream.

Parameters data_stream (instance of DataStream) – The data stream. Only the first
epoch of data is used.

Returns

• A mapping from record names to the values computed on the provided

• dataset.

get_aggregated_values()

initialize_aggregators()

process_batch(batch)

class blocks.monitoring.evaluators.MonitoredQuantityBuffer(quantities)
Bases: object

Intermediate results of aggregating values of monitored-quantity.

Aggregate results for a list of monitored-quantity for every single batch. Provides initialization and readout
routines to initialize each quantity and capture its aggregated results.

Parameters quantities (list of MonitoredQuantity) – The quantity names are used as
record names in the logs. Hence, all the quantity names must be unique.

requires
list of TensorVariable – Needed to calculate monitored-quantities.

quantity_names
list of str – Names of quantities.

inputs
list of TensorVariable – The list of inputs needed for variables in requires.

aggregate_quantities(numerical_values)
Aggregate the results for every batch.

get_aggregated_values()
Get the aggregated values.

initialize_quantities()
Initialize the quantities.

blocks.monitoring.evaluators._validate_variable_names(variables)
Check for missing and duplicate variable names.

Utils

class blocks.utils.containers.AnnotatingList(items=None)
Bases: _abcoll.MutableSequence

Mutable sequence performing operations on inserted/removed items.

2.6. Development 143

https://docs.python.org/3.4/library/functions.html#object

Blocks Documentation, Release 0.2.0

Parameters items (iterable, optional) – An iterable of items to initialize the sequence
with.

_abc_cache = <_weakrefset.WeakSet object>

_abc_negative_cache = <_weakrefset.WeakSet object>

_abc_negative_cache_version = 34

_abc_registry = <_weakrefset.WeakSet object>

_delitem(key)
The operation to perform when an item is deleted.

_setitem(key, value)
The operation to perform when an item is inserted/appended.

insert(key, value)
S.insert(index, object) – insert object before index

class blocks.utils.profile.Profile
Bases: object

A profile of hierarchical timers.

Keeps track of timings performed with Timer. It also keeps track of the way these timings were nested and
makes use of this information when reporting.

enter(name)

exit(t)

report(f=<open file ’<stderr>’, mode ’w’>)
Print a report of timing information to standard output.

Parameters f (object, optional) – An object with a write method that accepts string
inputs. Can be a file object, sys.stdout, etc. Defaults to sys.stderr.

class blocks.utils.profile.Timer(name, profile)
Bases: object

A context manager to time the execution time of code within it.

This timer is attached to a Profile object that it reports timings to. The Profile object accumulates the
timings. Timers can be nested, which the Profile will automatically keep track of and use in its reporting.

Parameters

• name (str) – The name of this section. Expected to adhere to variable naming styles.

• profile (Profile) – The profile of the main loop. This is the object this context man-
ager will report the execution time to. The accumulation and processing of timing informa-
tion is handled by this object.

Notes

Timings are reported using timeit.default_timer().

144 Chapter 2. In-depth

https://docs.python.org/3.4/library/functions.html#object
https://docs.python.org/3.4/library/functions.html#object
https://docs.python.org/3.4/library/functions.html#object
https://docs.python.org/3.4/library/stdtypes.html#str
https://docs.python.org/3.4/library/timeit.html#timeit.default_timer

Blocks Documentation, Release 0.2.0

Building documentation

If you’ve made significant changes to the documentation, you can build a local to see how your changes are rendered.
You will need to install Sphinx, the Napoleon extension (to enable NumPy docstring support), and the Read the Docs
theme. You can do this by installing the optional docs requirements.

For Blocks:

$ pip install --upgrade git+git://github.com/user/blocks.git#egg=blocks[docs]

For Fuel:

$ pip install --upgrade git+git://github.com/user/fuel.git#egg=fuel[docs]

After the requirements have been installed, you can build a copy of the documentation by running the following
command from the root blocks (or fuel) directory.

$ sphinx-build -b html docs docs/_build/html

Docstrings

Blocks and Fuel follow the NumPy docstring standards. For a quick introduction, have a look at the NumPy or
Napoleon examples of compliant docstrings. A few common mistakes to avoid:

• There is no line break after the opening quotes (""").

• There is an empty line before the closing quotes (""").

• The summary should not be more than one line.

The docstrings are formatted using reStructuredText, and can make use of all the formatting capabilities this provides.
They are rendered into HTML documentation using the Read the Docs service. After code has been merged, please
ensure that documentation was built successfully and that your docstrings rendered as you intended by looking at the
online documentation (for Blocks or Fuel, which is automatically updated.

Writing doctests is encouraged, and they are run as part of the test suite. They should use Python 3 syntax.

References and Intersphinx

Sphinx allows you to reference other objects in the framework. This automatically creates links to the API documen-
tation of that object (if it exists).

This is a link to :class:`SomeClass` in the same file. If you want to
reference an object in another file, you can use a leading dot to tell
Sphinx to look in all files e.g. :meth:`.SomeClass.a_method`.

Intersphinx is an extension that is enabled which allows to you to reference the documentation of other projects such
as Theano, NumPy and Scipy.

The input to a method can be of the type :class:`~numpy.ndarray`. Note that
in this case we need to give the full path. The tilde (~) tells Sphinx not
to render the full path (numpy.ndarray), but only the object itself
(ndarray).

2.6. Development 145

http://sphinx-doc.org/
http://sphinxcontrib-napoleon.readthedocs.org/en/latest/example_numpy.html
https://github.com/snide/sphinx_rtd_theme
https://github.com/snide/sphinx_rtd_theme
https://github.com/numpy/numpy/blob/master/doc/HOWTO_DOCUMENT.rst.txt
https://github.com/numpy/numpy/blob/master/doc/example.py
http://sphinxcontrib-napoleon.readthedocs.org/en/latest/example_numpy.html
http://docutils.sourceforge.net/rst.html
https://readthedocs.org/
http://blocks.readthedocs.org/
http://fuel.readthedocs.org/
https://docs.python.org/2/library/doctest.html
http://sphinx-doc.org/domains.html#python-roles

Blocks Documentation, Release 0.2.0

Warning: Because of a bug in Napoleon you can’t use the reference to a type in the “Returns” section of your
docstring without giving it a name. This doesn’t render correctly:

Returns

:class:`Brick`

The returned Brick.

But this does:

Returns

retured_brick : :class:`Brick`

The returned Brick.

Pull request workflow

Blocks development takes place on GitHub; developers (including project leads!) add new features by sending pull
requests from their personal fork (we operate on the so-called fork & pull model).

This page serves as a “quick reference” for the recommended pull request workflow. It assumes you are working on
a UNIX-like environment with Git already installed. It is not intended to be an exhaustive tutorial on Git; there are
many of those available.

Before you begin

Create a GitHub account

If you don’t already have one, you should create yourself a GitHub account.

Fork the Blocks repository

Once you’ve set up your account and logged in, you should fork the Blocks repository to your account by clicking
the “Fork” button on the official repository’s web page. More information on forking is available in the GitHub
documentation.

Clone from your fork

In the side bar of your newly created fork of the Blocks repository, you should see a field that says HTTPS clone URL
above it. Copy that to your clipboard and run, at the terminal,

$ git clone CLONE_URL

where CLONE_URL is the URL you copied from your GitHub fork.

If you’re doing a lot of development with GitHub you should look into setting up SSH key authentication.

Add the official Blocks repository as a remote

In order to keep up with changes to the official Blocks repository, notify Git of its existence and location by running

146 Chapter 2. In-depth

https://bitbucket.org/birkenfeld/sphinx-contrib/issue/82/napoleon-return-type-containing-colons-is
http://github.com/
https://help.github.com/articles/using-pull-requests/
https://help.github.com/articles/using-pull-requests/
https://help.github.com/articles/using-pull-requests/#fork--pull
https://github.com/join
https://github.com/mila-udem/blocks
https://help.github.com/articles/fork-a-repo/
https://help.github.com/articles/fork-a-repo/
https://help.github.com/categories/ssh/

Blocks Documentation, Release 0.2.0

$ git remote add upstream https://github.com/mila-udem/blocks.git

You only need to do this once.

Beginning a pull request

Verify that origin points to your fork

Running the command

$ git remote -v | grep origin

should display two lines. The URLs therein should contain your GitHub username.

Update your upstream remote

Your cloned repository stores a local history of the activity in remote repositories, and only interacts with the Internet
when certain commands are invoked. In order to synchronize the activity in the official Blocks repository (which Git
now knows as upstream) with the local mirror of the history related to upstream, run

$ git fetch upstream

You should do this before starting every pull request, for reasons that will become clear below.

Create a new branch for your pull request based on the latest development version of Blocks

In order to create a new branch starting from the latest commit in the master branch of the official Blocks repository,
make sure you’ve fetched from upstream (see above) and run

$ git checkout -b my_branch_name_for_my_cool_feature upstream/master

Obviously, you’ll probably want to choose a better branch name.

Note that doing this (rather than simply creating a new branch from some arbtirary point) may save you from a
(possibly painful) rebase later on.

Working on your pull request

Make modifications, stage them, and commit them

Repeat until satisfied:

• Make some modifications to the code

• Stage them using git add (git add -p is particularly useful)

• git commit them, alternately git reset to undo staging by git add.

2.6. Development 147

Blocks Documentation, Release 0.2.0

Push the branch to your fork

$ git push -u origin my_branch_name_for_my_cool_feature

Submitting for review

Send a pull request

This can be done from the GitHub web interface for your fork. See this documentation from GitHub for more infor-
mation.

Give your pull request an appropriate title which makes it obvious what the content is. If it is intended to resolve
a specific ticket, put “Fixes #NNN.” in the pull request description field, where NNN is the issue number. By doing
this, GitHub will know to automatically close the issue when your pull request is merged.

Blocks development occurs in two separate branches: The master branch is the development branch. If you want to
contribute a new feature or change the behavior of Blocks in any way, please make your pull request to this branch.

The stable branch contains the latest release of Blocks. If you are fixing a bug (that is present in the latest release),
make a pull request to this branch. If the bug is present in both the master and stable branch, two separate pull
requests are in order. The command git-cherry-pick_ could be useful here.

Incorporating feedback

In order to add additional commits responding to reviewer feedback, simply follow the instructions above for using
git add and git commit, and finally git push (after running the initial command with -u, you should simply
be able to use git push without any further arguments).

Rebasing

Occasionally you will be asked to rebase your branch against the latest master. To do this, run (while you have your
branch checked out)

$ git fetch upstream && git rebase upstream/master

You may encounter an error message about one or more conflicts. See GitHub’s help page on the subject. Note that
after a rebase you will usually have to overwrite previous commits on your fork’s copy of the branch with git push
--force.

148 Chapter 2. In-depth

https://help.github.com/articles/using-pull-requests/#initiating-the-pull-request
https://github.com/blog/1506-closing-issues-via-pull-requests
https://help.github.com/articles/resolving-merge-conflicts-after-a-git-rebase/

CHAPTER 3

Quickstart

Construct your model.

>>> mlp = MLP(activations=[Tanh(), Softmax()], dims=[784, 100, 10],
... weights_init=IsotropicGaussian(0.01), biases_init=Constant(0))
>>> mlp.initialize()

Calculate your loss function.

>>> x = tensor.matrix('features')
>>> y = tensor.lmatrix('targets')
>>> y_hat = mlp.apply(x)
>>> cost = CategoricalCrossEntropy().apply(y.flatten(), y_hat)
>>> error_rate = MisclassificationRate().apply(y.flatten(), y_hat)

Load your training data using Fuel.

>>> mnist_train = MNIST(("train",))
>>> train_stream = Flatten(
... DataStream.default_stream(
... dataset=mnist_train,
... iteration_scheme=SequentialScheme(mnist_train.num_examples, 128)),
... which_sources=('features',))
>>> mnist_test = MNIST(("test",))
>>> test_stream = Flatten(
... DataStream.default_stream(
... dataset=mnist_test,
... iteration_scheme=SequentialScheme(mnist_test.num_examples, 1024)),
... which_sources=('features',))

And train!

>>> from blocks.model import Model
>>> main_loop = MainLoop(
... model=Model(cost), data_stream=train_stream,

(continues on next page)

149

Blocks Documentation, Release 0.2.0

(continued from previous page)

... algorithm=GradientDescent(

... cost=cost, parameters=ComputationGraph(cost).parameters,

... step_rule=Scale(learning_rate=0.1)),

... extensions=[FinishAfter(after_n_epochs=5),

... DataStreamMonitoring(

... variables=[cost, error_rate],

... data_stream=test_stream,

... prefix="test"),

... Printing()])
>>> main_loop.run()

...

For a runnable version of this code, please see the MNIST demo in our repository with examples.

3.1 Features

Currently Blocks supports and provides:

• Constructing parametrized Theano operations, called “bricks”

• Pattern matching to select variables and bricks in large models

• Algorithms to optimize your model

• Saving and resuming of training

• Monitoring and analyzing values during training progress (on the training set as well as on test sets)

• Application of graph transformations, such as dropout (limited support)

In the future we also hope to support:

• Dimension, type and axes-checking

150 Chapter 3. Quickstart

https://github.com/mila-udem/blocks-examples
https://coveralls.io/r/mila-udem/blocks
https://travis-ci.org/mila-udem/blocks
https://blocks.readthedocs.org/
https://scrutinizer-ci.com/g/mila-udem/blocks/
https://github.com/mila-udem/blocks/blob/master/LICENSE

CHAPTER 4

Indices and tables

• genindex

• modindex

151

Blocks Documentation, Release 0.2.0

152 Chapter 4. Indices and tables

Bibliography

[ADADELTA] Matthew D. Zeiler, ADADELTA: An Adaptive Learning Rate Method, arXiv:1212.5701.

[ADAGRAD] Duchi J, Hazan E, Singer Y., Adaptive subgradient methods for online learning and stochastic opti-
mization, http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf

[King2014] Diederik Kingma, Jimmy Ba, Adam: A Method for Stochastic Optimization, http://arxiv.org/abs/1412.
6980

[Hint2014] Geoff Hinton, Neural Networks for Machine Learning, lecture 6a, http://cs.toronto.edu/~tijmen/csc321/
slides/lecture_slides_lec6.pdf

[Srebro2005] Nathan Srebro and Adi Shraibman. “Rank, Trace-Norm and Max-Norm”. 18th Annual Conference on
Learning Theory (COLT), June 2005.

[Hinton2012] Geoffrey E. Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya Sutskever, Ruslan R. Salakhutdinov. “Im-
proving neural networks by preventing co-adaptation of feature detectors”. arXiv:1207.0580.

[BN] Sergey Ioffe and Christian Szegedy. Batch normalization: accelerating deep network training by reducing in-
ternal covariate shift. ICML (2015), pp. 448-456.

[SK2016] Tim Salimans and Diederik P. Kingma. Weight normalization: a simple reparameterization to accelerate
training of deep neural networks. arXiv 1602.07868.

[GWFM13] Ian J. Goodfellow, David Warde-Farley, Mehdi Mirza, Aaron Courville, and Yoshua Bengio, Maxout
networks, ICML (2013), pp. 1319-1327.

[cuDNN] NVIDIA cuDNN.

[CvMG14] Kyunghyun Cho, Bart van Merriënboer, Çağlar Gülçehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio, Learning Phrase Representations using RNN Encoder-Decoder for Statistical Ma-
chine Translation, EMNLP (2014), pp. 1724-1734.

[GSS03] Gers, Felix A., Nicol N. Schraudolph, and Jürgen Schmidhuber, Learning precise timing with LSTM recur-
rent networks, Journal of Machine Learning Research 3 (2003), pp. 115-143.

[Grav13] Graves, Alex, Generating sequences with recurrent neural networks, arXiv preprint arXiv:1308.0850
(2013).

[HS97] Sepp Hochreiter, and Jürgen Schmidhuber, Long Short-Term Memory, Neural Computation 9(8) (1997), pp.
1735-1780.

153

http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
http://cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
https://developer.nvidia.com/cudnn

Blocks Documentation, Release 0.2.0

[BCB] Dzmitry Bahdanau, Kyunghyun Cho and Yoshua Bengio. Neural Machine Translation by Jointly Learning to
Align and Translate.

[DROPOUT] Hinton et al. Improving neural networks by preventing co-adaptation of feature detectors,
arXiv:1207.0580.

[Saxe2013] Saxe, A.M., McClelland, J.L., Ganguli, S., 2013., Exact solutions to the nonlinear dynamics of learning
in deep linear neural networks, arXiv:1312.6120 [cond-mat, q-bio, stat].

154 Bibliography

Python Module Index

b
blocks.algorithms, 31
blocks.bricks, 141
blocks.bricks.attention, 73
blocks.bricks.base, 132
blocks.bricks.conv, 55
blocks.bricks.cost, 87
blocks.bricks.interfaces, 141
blocks.bricks.lookup, 54
blocks.bricks.parallel, 63
blocks.bricks.recurrent.architectures,

67
blocks.bricks.recurrent.base, 72
blocks.bricks.recurrent.misc, 69
blocks.bricks.sequence_generators, 79
blocks.bricks.wrappers, 88
blocks.config, 22
blocks.extensions, 89
blocks.extensions.monitoring, 96
blocks.extensions.predicates, 141
blocks.extensions.saveload, 99
blocks.extensions.training, 97
blocks.filter, 101
blocks.graph, 102
blocks.initialization, 107
blocks.log, 110
blocks.log.log, 110
blocks.log.sqlite, 111
blocks.main_loop, 112
blocks.model, 113
blocks.monitoring.evaluators, 141
blocks.roles, 115
blocks.select, 116
blocks.serialization, 117
blocks.theano_expressions, 122
blocks.utils.containers, 143
blocks.utils.profile, 144
blocks.utils.theano_utils, 125
blocks.utils.utils, 122

155

Blocks Documentation, Release 0.2.0

156 Python Module Index

Index

Symbols
_Brick (class in blocks.bricks.base), 139
_abc_cache (blocks.bricks.Activation attribute), 141
_abc_cache (blocks.bricks.base.Brick attribute), 137
_abc_cache (blocks.bricks.base.Children attribute), 139
_abc_cache (blocks.bricks.base.Parameters attribute), 139
_abc_cache (blocks.utils.containers.AnnotatingList at-

tribute), 144
_abc_negative_cache (blocks.bricks.Activation attribute),

141
_abc_negative_cache (blocks.bricks.base.Brick attribute),

137
_abc_negative_cache (blocks.bricks.base.Children

attribute), 139
_abc_negative_cache (blocks.bricks.base.Parameters at-

tribute), 139
_abc_negative_cache (blocks.utils.containers.AnnotatingList

attribute), 144
_abc_negative_cache_version (blocks.bricks.Activation

attribute), 141
_abc_negative_cache_version (blocks.bricks.base.Brick

attribute), 137
_abc_negative_cache_version

(blocks.bricks.base.Children attribute), 139
_abc_negative_cache_version

(blocks.bricks.base.Parameters attribute),
139

_abc_negative_cache_version
(blocks.utils.containers.AnnotatingList at-
tribute), 144

_abc_registry (blocks.bricks.Activation attribute), 141
_abc_registry (blocks.bricks.base.Brick attribute), 137
_abc_registry (blocks.bricks.base.Children attribute), 139
_abc_registry (blocks.bricks.base.Parameters attribute),

139
_abc_registry (blocks.utils.containers.AnnotatingList at-

tribute), 144
_allocate() (blocks.bricks.base.Brick method), 137
_compile() (blocks.monitoring.evaluators.AggregationBuffer

method), 142
_compile() (blocks.monitoring.evaluators.DatasetEvaluator

method), 142
_create_aggregators() (blocks.monitoring.evaluators.AggregationBuffer

method), 142
_delitem() (blocks.bricks.base.Children method), 139
_delitem() (blocks.utils.containers.AnnotatingList

method), 144
_initialize() (blocks.bricks.base.Brick method), 137
_push_allocation_config() (blocks.bricks.base.Brick

method), 137
_push_initialization_config() (blocks.bricks.base.Brick

method), 137
_setitem() (blocks.bricks.base.Children method), 139
_setitem() (blocks.bricks.base.Parameters method), 139
_setitem() (blocks.utils.containers.AnnotatingList

method), 144
_validate_variable_names() (in module

blocks.monitoring.evaluators), 143
_variable_name() (in module blocks.bricks.base), 139

A
AbsoluteError (class in blocks.bricks.cost), 87
AbstractAttention (class in blocks.bricks.attention), 73
AbstractAttentionRecurrent (class in

blocks.bricks.attention), 75
AbstractEmitter (class in

blocks.bricks.sequence_generators), 79
AbstractFeedback (class in

blocks.bricks.sequence_generators), 80
AbstractReadout (class in

blocks.bricks.sequence_generators), 80
accumulation_updates (blocks.monitoring.evaluators.AggregationBuffer

attribute), 142
Activation (class in blocks.bricks), 141
ActivationDocumentation (class in

blocks.bricks.interfaces), 141
AdaDelta (class in blocks.algorithms), 31
AdaGrad (class in blocks.algorithms), 31
Adam (class in blocks.algorithms), 32

157

Blocks Documentation, Release 0.2.0

adapt_ndarray() (in module blocks.log.sqlite), 112
adapt_obj() (in module blocks.log.sqlite), 112
add_auxiliary_variable() (blocks.bricks.base.ApplicationCall

method), 134
add_condition() (blocks.extensions.SimpleExtension

method), 92
add_records() (blocks.extensions.monitoring.MonitoringExtension

method), 96
add_role() (in module blocks.roles), 115
add_to_dump() (in module blocks.serialization), 119
add_updates() (blocks.algorithms.UpdatesAlgorithm

method), 39
after_batch() (blocks.extensions.TrainingExtension

method), 95
after_epoch() (blocks.extensions.ProgressBar method),

91
after_epoch() (blocks.extensions.TrainingExtension

method), 95
after_training() (blocks.extensions.TrainingExtension

method), 95
aggregate_quantities() (blocks.monitoring.evaluators.MonitoredQuantityBuffer

method), 143
AggregationBuffer (class in

blocks.monitoring.evaluators), 141
allocate() (blocks.bricks.base.Brick method), 137
allocate() (blocks.bricks.Brick method), 43
allocated (blocks.bricks.base.Brick attribute), 136
allocated (blocks.bricks.Brick attribute), 42
allocation_config_pushed (blocks.bricks.base.Brick at-

tribute), 136
allocation_config_pushed (blocks.bricks.Brick attribute),

42
always_true() (in module blocks.extensions), 96
AnnotatingList (class in blocks.utils.containers), 143
application (blocks.bricks.base.Application attribute),

132
Application (class in blocks.bricks.base), 132
application() (in module blocks.bricks), 40
application() (in module blocks.bricks.base), 139
application_function (blocks.bricks.base.Application at-

tribute), 132
ApplicationCall (class in blocks.bricks.base), 133
apply (blocks.bricks.attention.AttentionRecurrent at-

tribute), 76
apply (blocks.bricks.BatchNormalization attribute), 46
apply (blocks.bricks.Bias attribute), 49
apply (blocks.bricks.conv.Convolutional attribute), 56
apply (blocks.bricks.conv.Flattener attribute), 62
apply (blocks.bricks.conv.Pooling attribute), 62
apply (blocks.bricks.cost.CategoricalCrossEntropy

attribute), 88
apply (blocks.bricks.cost.Cost attribute), 88
apply (blocks.bricks.cost.CostMatrix attribute), 88
apply (blocks.bricks.cost.MisclassificationRate attribute),

88
apply (blocks.bricks.Identity attribute), 50
apply (blocks.bricks.LeakyRectifier attribute), 51
apply (blocks.bricks.Linear attribute), 48
apply (blocks.bricks.LinearMaxout attribute), 50
apply (blocks.bricks.Logistic attribute), 50
apply (blocks.bricks.lookup.LookupTable attribute), 55
apply (blocks.bricks.Maxout attribute), 49
apply (blocks.bricks.NDimensionalSoftmax attribute), 52
apply (blocks.bricks.parallel.Distribute attribute), 64
apply (blocks.bricks.parallel.Fork attribute), 65
apply (blocks.bricks.parallel.Merge attribute), 65
apply (blocks.bricks.parallel.Parallel attribute), 66
apply (blocks.bricks.Rectifier attribute), 51
apply (blocks.bricks.recurrent.architectures.GatedRecurrent

attribute), 67
apply (blocks.bricks.recurrent.architectures.LSTM

attribute), 68
apply (blocks.bricks.recurrent.architectures.SimpleRecurrent

attribute), 69
apply (blocks.bricks.recurrent.misc.Bidirectional at-

tribute), 69
apply (blocks.bricks.recurrent.misc.RecurrentStack at-

tribute), 71
apply (blocks.bricks.Sequence attribute), 53
apply (blocks.bricks.sequence_generators.FakeAttentionRecurrent

attribute), 85
apply (blocks.bricks.Softmax attribute), 51
apply (blocks.bricks.Softplus attribute), 51
apply (blocks.bricks.Tanh attribute), 50
apply() (blocks.bricks.attention.AbstractAttentionRecurrent

method), 75
apply() (blocks.bricks.base.Application method), 132
apply_contexts() (blocks.bricks.attention.AttentionRecurrent

method), 76
apply_delegate() (blocks.bricks.attention.AttentionRecurrent

method), 76
apply_delegate() (blocks.bricks.NDimensionalSoftmax

method), 52
apply_delegate() (blocks.bricks.recurrent.misc.Bidirectional

method), 69
apply_delegate() (blocks.bricks.sequence_generators.FakeAttentionRecurrent

method), 85
apply_dropout() (in module blocks.graph), 104
apply_inputs() (blocks.bricks.parallel.Distribute method),

64
apply_inputs() (blocks.bricks.parallel.Merge method), 65
apply_inputs() (blocks.bricks.parallel.Parallel method),

66
apply_inputs() (blocks.bricks.Sequence method), 53
apply_noise() (in module blocks.graph), 105
apply_outputs() (blocks.bricks.parallel.Distribute

method), 64
apply_outputs() (blocks.bricks.parallel.Fork method), 65

158 Index

Blocks Documentation, Release 0.2.0

apply_outputs() (blocks.bricks.parallel.Parallel method),
66

apply_outputs() (blocks.bricks.Sequence method), 53
args_to_kwargs() (in module blocks.bricks.base), 140
attended_dim (blocks.bricks.attention.AbstractAttention

attribute), 74
AttentionRecurrent (class in blocks.bricks.attention), 75
AUXILIARY (in module blocks.roles), 115
auxiliary_variables (blocks.graph.ComputationGraph at-

tribute), 102, 103
AveragePooling (class in blocks.bricks.conv), 55

B
b (blocks.bricks.LinearLike attribute), 48
BaseRecurrent (class in blocks.bricks.recurrent.base), 72
BaseSequenceGenerator (class in

blocks.bricks.sequence_generators), 81
BasicMomentum (class in blocks.algorithms), 32
BasicRMSProp (class in blocks.algorithms), 33
batch (blocks.algorithms.TrainingAlgorithm attribute), 39
batch (blocks.algorithms.UpdatesAlgorithm attribute), 39
BatchNormalization (class in blocks.bricks), 45
BatchNormalizedMLP (class in blocks.bricks), 46
before_batch() (blocks.extensions.ProgressBar method),

91
before_batch() (blocks.extensions.TrainingExtension

method), 95
before_epoch() (blocks.extensions.ProgressBar method),

92
before_epoch() (blocks.extensions.TrainingExtension

method), 95
before_training() (blocks.extensions.TrainingExtension

method), 95
best_name (blocks.extensions.training.TrackTheBest at-

tribute), 98
Bias (class in blocks.bricks), 49
BIAS (in module blocks.roles), 116
Bidirectional (class in blocks.bricks.recurrent.misc), 69
BinaryCrossEntropy (class in blocks.bricks.cost), 87
blocks.algorithms (module), 31
blocks.bricks (module), 40, 141
blocks.bricks.attention (module), 73
blocks.bricks.base (module), 132
blocks.bricks.conv (module), 55
blocks.bricks.cost (module), 87
blocks.bricks.interfaces (module), 141
blocks.bricks.lookup (module), 54
blocks.bricks.parallel (module), 63
blocks.bricks.recurrent.architectures (module), 67
blocks.bricks.recurrent.base (module), 72
blocks.bricks.recurrent.misc (module), 69
blocks.bricks.sequence_generators (module), 79
blocks.bricks.wrappers (module), 88
blocks.config (module), 22

blocks.extensions (module), 89
blocks.extensions.monitoring (module), 96
blocks.extensions.predicates (module), 141
blocks.extensions.saveload (module), 99
blocks.extensions.training (module), 97
blocks.filter (module), 101
blocks.graph (module), 102
blocks.initialization (module), 107
blocks.log (module), 110
blocks.log.log (module), 110
blocks.log.sqlite (module), 111
blocks.main_loop (module), 112
blocks.model (module), 113
blocks.monitoring.evaluators (module), 141
blocks.roles (module), 115
blocks.select (module), 116
blocks.serialization (module), 117
blocks.theano_expressions (module), 122
blocks.utils.containers (module), 143
blocks.utils.profile (module), 144
blocks.utils.theano_utils (module), 125
blocks.utils.utils (module), 122
BOOLEAN_TRIGGERS

(blocks.extensions.SimpleExtension attribute),
92

BoundApplication (class in blocks.bricks.base), 135
brick (blocks.bricks.base.Application attribute), 132
Brick (class in blocks.bricks), 41
Brick (class in blocks.bricks.base), 135
BrickWrapper (class in blocks.bricks.wrappers), 88

C
call_stack (blocks.bricks.base.Application attribute), 132
callback() (in module blocks.extensions), 96
CallbackName (class in blocks.extensions), 89
categorical_cross_entropy

(blocks.bricks.NDimensionalSoftmax at-
tribute), 52

categorical_cross_entropy (blocks.bricks.Softmax at-
tribute), 51

categorical_cross_entropy_delegate()
(blocks.bricks.NDimensionalSoftmax method),
53

CategoricalCrossEntropy (class in blocks.bricks.cost), 88
change_recursion_limit() (in module blocks.utils.utils),

122
check_sanity() (blocks.model.Model method), 114
check_theano_variable() (in module

blocks.utils.theano_utils), 125
Checkpoint (class in blocks.extensions.saveload), 99
children (blocks.bricks.base.Brick attribute), 136, 138
children (blocks.bricks.Brick attribute), 42, 43
Children (class in blocks.bricks.base), 139
collect_parameters() (in module blocks.graph), 106

Index 159

Blocks Documentation, Release 0.2.0

command line option
default_seed, 22
log_backend, 22
max_blob_size, 22
profile, BLOCKS_PROFILE, 22
recursion_limit, 22
sqlite_database, BLOCKS_SQLITEDB, 22
temp_dir, BLOCKS_TEMPDIR, 22

CompositeExtension (class in blocks.extensions), 89
CompositeRule (class in blocks.algorithms), 33
ComputationGraph (class in blocks.graph), 102
compute_energies (blocks.bricks.attention.SequenceContentAttention

attribute), 78
compute_states (blocks.bricks.attention.AttentionRecurrent

attribute), 76
compute_states (blocks.bricks.sequence_generators.FakeAttentionRecurrent

attribute), 85
compute_states() (blocks.bricks.attention.AbstractAttentionRecurrent

method), 75
compute_states_delegate()

(blocks.bricks.sequence_generators.FakeAttentionRecurrent
method), 85

compute_states_outputs()
(blocks.bricks.attention.AttentionRecurrent
method), 76

compute_step() (blocks.algorithms.AdaDelta method), 31
compute_step() (blocks.algorithms.AdaGrad method), 31
compute_step() (blocks.algorithms.Adam method), 32
compute_step() (blocks.algorithms.BasicMomentum

method), 32
compute_step() (blocks.algorithms.BasicRMSProp

method), 33
compute_step() (blocks.algorithms.RemoveNotFinite

method), 36
compute_step() (blocks.algorithms.Scale method), 37
compute_step() (blocks.algorithms.StepRule method), 38
compute_step() (blocks.algorithms.VariableClipping

method), 40
compute_steps() (blocks.algorithms.CompositeRule

method), 34
compute_steps() (blocks.algorithms.Restrict method), 36
compute_steps() (blocks.algorithms.StepClipping

method), 37
compute_steps() (blocks.algorithms.StepRule method),

38
compute_weighted_averages

(blocks.bricks.attention.GenericSequenceAttention
attribute), 77

compute_weights (blocks.bricks.attention.GenericSequenceAttention
attribute), 77

ConfigurationError (class in blocks.config), 22
conn (blocks.log.sqlite.SQLiteLog attribute), 112
conserve_memory (blocks.bricks.BatchNormalizedMLP

attribute), 47

Constant (class in blocks.initialization), 107
continue_training() (in module blocks.serialization), 119
conv2d_impl() (blocks.bricks.conv.Convolutional static

method), 56
conv2d_impl() (blocks.bricks.conv.ConvolutionalTranspose

method), 60
Convolutional (class in blocks.bricks.conv), 55
ConvolutionalSequence (class in blocks.bricks.conv), 58
ConvolutionalTranspose (class in blocks.bricks.conv), 59
copy_and_tag() (in module blocks.bricks.base), 140
cost (blocks.bricks.sequence_generators.BaseSequenceGenerator

attribute), 83
cost (blocks.bricks.sequence_generators.Readout at-

tribute), 86
cost (blocks.bricks.sequence_generators.SoftmaxEmitter

attribute), 87
cost (blocks.bricks.sequence_generators.TrivialEmitter

attribute), 87
Cost (class in blocks.bricks.cost), 88
COST (in module blocks.roles), 116
cost() (blocks.bricks.sequence_generators.AbstractEmitter

method), 80
cost() (blocks.bricks.sequence_generators.AbstractReadout

method), 81
cost_matrix (blocks.bricks.cost.AbsoluteError attribute),

87
cost_matrix (blocks.bricks.cost.BinaryCrossEntropy at-

tribute), 88
cost_matrix (blocks.bricks.cost.CostMatrix attribute), 88
cost_matrix (blocks.bricks.cost.SquaredError attribute),

88
cost_matrix (blocks.bricks.sequence_generators.BaseSequenceGenerator

attribute), 84
CostMatrix (class in blocks.bricks.cost), 88
create_bar() (blocks.extensions.ProgressBar method), 92
create_unbound_method() (in module

blocks.bricks.base), 140
current_row (blocks.log.log.TrainingLogBase attribute),

111

D
DatasetEvaluator (class in blocks.monitoring.evaluators),

142
DataStreamMonitoring (class in

blocks.extensions.monitoring), 96
decay_rate (blocks.algorithms.RMSProp attribute), 36
decorators (blocks.bricks.NDimensionalSoftmax at-

tribute), 53
DEFAULT_LOG_RECORD

(blocks.extensions.Timestamp attribute),
94

default_seed
command line option, 22

delegate() (blocks.bricks.base.Application method), 132

160 Index

Blocks Documentation, Release 0.2.0

delegate_function (blocks.bricks.base.Application at-
tribute), 132

dict_of_inputs() (blocks.graph.ComputationGraph
method), 103

dict_subset() (in module blocks.utils.utils), 122
dict_union() (in module blocks.utils.utils), 122
dispatch() (blocks.extensions.CompositeExtension

method), 90
dispatch() (blocks.extensions.SimpleExtension method),

93
dispatch() (blocks.extensions.TrainingExtension

method), 95
Distribute (class in blocks.bricks.parallel), 63
do() (blocks.extensions.CompositeExtension method), 90
do() (blocks.extensions.FinishAfter method), 90
do() (blocks.extensions.monitoring.DataStreamMonitoring

method), 96
do() (blocks.extensions.monitoring.TrainingDataMonitoring

method), 97
do() (blocks.extensions.Printing method), 91
do() (blocks.extensions.saveload.Checkpoint method),

100
do() (blocks.extensions.saveload.Load method), 100
do() (blocks.extensions.SimpleExtension method), 93
do() (blocks.extensions.Timestamp method), 94
do() (blocks.extensions.Timing method), 94
do() (blocks.extensions.training.SharedVariableModifier

method), 98
do() (blocks.extensions.training.TrackTheBest method),

99
do_apply (blocks.bricks.attention.AttentionRecurrent at-

tribute), 76
do_apply() (blocks.bricks.recurrent.misc.RecurrentStack

method), 71
do_apply_contexts() (blocks.bricks.attention.AttentionRecurrent

method), 77
do_apply_outputs() (blocks.bricks.attention.AttentionRecurrent

method), 77
do_apply_sequences() (blocks.bricks.attention.AttentionRecurrent

method), 77
do_apply_states() (blocks.bricks.attention.AttentionRecurrent

method), 77
dump() (in module blocks.serialization), 120
dump_and_add_to_dump() (in module

blocks.serialization), 120

E
emit (blocks.bricks.sequence_generators.Readout at-

tribute), 86
emit (blocks.bricks.sequence_generators.SoftmaxEmitter

attribute), 87
emit (blocks.bricks.sequence_generators.TrivialEmitter

attribute), 87

emit() (blocks.bricks.sequence_generators.AbstractEmitter
method), 80

emit() (blocks.bricks.sequence_generators.AbstractReadout
method), 81

enter() (blocks.utils.profile.Profile method), 144
evaluate() (blocks.monitoring.evaluators.DatasetEvaluator

method), 143
exit() (blocks.utils.profile.Profile method), 144
extract_args() (in module blocks.utils.utils), 123

F
FakeAttentionRecurrent (class in

blocks.bricks.sequence_generators), 84
feedback (blocks.bricks.sequence_generators.LookupFeedback

attribute), 85
feedback (blocks.bricks.sequence_generators.Readout at-

tribute), 86
feedback (blocks.bricks.sequence_generators.TrivialFeedback

attribute), 87
feedback() (blocks.bricks.sequence_generators.AbstractFeedback

method), 80
feedback() (blocks.bricks.sequence_generators.AbstractReadout

method), 81
Feedforward (class in blocks.bricks), 47
FeedforwardSequence (class in blocks.bricks), 53
FILTER (in module blocks.roles), 116
find_bricks() (in module blocks.utils.utils), 123
find_extension() (blocks.main_loop.MainLoop method),

113
FinishAfter (class in blocks.extensions), 90
Flattener (class in blocks.bricks.conv), 61
Fork (class in blocks.bricks.parallel), 64
function() (blocks.extensions.training.SharedVariableModifier

method), 98

G
GatedRecurrent (class in

blocks.bricks.recurrent.architectures), 67
generate (blocks.bricks.sequence_generators.BaseSequenceGenerator

attribute), 84
generate() (blocks.initialization.Constant method), 107
generate() (blocks.initialization.Identity method), 107
generate() (blocks.initialization.IsotropicGaussian

method), 108
generate() (blocks.initialization.NdarrayInitialization

method), 108
generate() (blocks.initialization.Orthogonal method), 109
generate() (blocks.initialization.Sparse method), 109
generate() (blocks.initialization.SparseND method), 110
generate() (blocks.initialization.Uniform method), 110
generate_delegate() (blocks.bricks.sequence_generators.BaseSequenceGenerator

method), 84
generate_outputs() (blocks.bricks.sequence_generators.BaseSequenceGenerator

method), 84

Index 161

Blocks Documentation, Release 0.2.0

generate_states() (blocks.bricks.sequence_generators.BaseSequenceGenerator
method), 84

GenericSequenceAttention (class in
blocks.bricks.attention), 77

get_aggregated_values() (blocks.monitoring.evaluators.AggregationBuffer
method), 142

get_aggregated_values() (blocks.monitoring.evaluators.DatasetEvaluator
method), 143

get_aggregated_values() (blocks.monitoring.evaluators.MonitoredQuantityBuffer
method), 143

get_annotation() (in module blocks.filter), 102
get_application_call() (in module blocks.filter), 102
get_brick() (in module blocks.filter), 102
get_dim() (blocks.bricks.attention.AbstractAttention

method), 74
get_dim() (blocks.bricks.attention.AttentionRecurrent

method), 77
get_dim() (blocks.bricks.attention.SequenceContentAttention

method), 78
get_dim() (blocks.bricks.base.Brick method), 138
get_dim() (blocks.bricks.BatchNormalization method),

46
get_dim() (blocks.bricks.Bias method), 49
get_dim() (blocks.bricks.Brick method), 43
get_dim() (blocks.bricks.conv.Convolutional method), 58
get_dim() (blocks.bricks.conv.ConvolutionalSequence

method), 59
get_dim() (blocks.bricks.conv.ConvolutionalTranspose

method), 61
get_dim() (blocks.bricks.conv.Pooling method), 63
get_dim() (blocks.bricks.Linear method), 49
get_dim() (blocks.bricks.lookup.LookupTable method),

55
get_dim() (blocks.bricks.recurrent.architectures.GatedRecurrent

method), 67
get_dim() (blocks.bricks.recurrent.architectures.LSTM

method), 68
get_dim() (blocks.bricks.recurrent.architectures.SimpleRecurrent

method), 69
get_dim() (blocks.bricks.recurrent.misc.Bidirectional

method), 69
get_dim() (blocks.bricks.recurrent.misc.RecurrentStack

method), 71
get_dim() (blocks.bricks.sequence_generators.BaseSequenceGenerator

method), 84
get_dim() (blocks.bricks.sequence_generators.FakeAttentionRecurrent

method), 85
get_dim() (blocks.bricks.sequence_generators.LookupFeedback

method), 85
get_dim() (blocks.bricks.sequence_generators.Readout

method), 86
get_dim() (blocks.bricks.sequence_generators.SoftmaxEmitter

method), 87
get_dim() (blocks.bricks.sequence_generators.TrivialEmitter

method), 87
get_dim() (blocks.bricks.sequence_generators.TrivialFeedback

method), 87
get_dims() (blocks.bricks.base.Brick method), 138
get_dims() (blocks.bricks.Brick method), 43
get_hierarchical_name() (blocks.bricks.base.Brick

method), 138
get_hierarchical_name() (blocks.bricks.Brick method),

44
get_iter_per_epoch() (blocks.extensions.ProgressBar

method), 92
get_output_shape() (blocks.bricks.conv.Convolutional

static method), 58
get_parameter_dict() (blocks.model.Model method), 114
get_parameter_values() (blocks.model.Model method),

114
get_parameters() (blocks.select.Selector method), 117
get_snapshot() (blocks.graph.ComputationGraph

method), 103
get_theano_function() (blocks.graph.ComputationGraph

method), 103
get_timestamp() (blocks.extensions.Timestamp method),

94
get_top_bricks() (blocks.model.Model method), 114
get_unique_path() (blocks.bricks.base.Brick method),

138
get_unique_path() (blocks.bricks.Brick method), 44
GradientDescent (class in blocks.algorithms), 34
gradients (blocks.algorithms.GradientDescent attribute),

35

H
h_uuid (blocks.log.log.TrainingLogBase attribute), 111
has_bias (blocks.bricks.lookup.LookupTable attribute),

55
has_bias (blocks.bricks.recurrent.base.BaseRecurrent at-

tribute), 72
has_bias (blocks.bricks.recurrent.misc.Bidirectional at-

tribute), 70
has_biases (blocks.bricks.Initializable attribute), 47
has_done_epochs() (in module blocks.extensions), 96
has_inputs() (blocks.graph.ComputationGraph method),

103
hessian_times_vector() (in module

blocks.theano_expressions), 122

I
Identity (class in blocks.bricks), 50
Identity (class in blocks.initialization), 107
image_size (blocks.bricks.BatchNormalization attribute),

46
image_size (blocks.bricks.conv.Pooling attribute), 63
initial_glimpses (blocks.bricks.attention.SequenceContentAttention

attribute), 78

162 Index

Blocks Documentation, Release 0.2.0

initial_glimpses() (blocks.bricks.attention.AbstractAttention
method), 74

initial_outputs (blocks.bricks.sequence_generators.Readout
attribute), 86

initial_outputs (blocks.bricks.sequence_generators.SoftmaxEmitter
attribute), 87

initial_outputs (blocks.bricks.sequence_generators.TrivialEmitter
attribute), 87

initial_outputs() (blocks.bricks.sequence_generators.AbstractEmitter
method), 80

initial_outputs() (blocks.bricks.sequence_generators.AbstractReadout
method), 81

initial_states (blocks.bricks.attention.AttentionRecurrent
attribute), 77

initial_states (blocks.bricks.recurrent.architectures.GatedRecurrent
attribute), 67

initial_states (blocks.bricks.recurrent.architectures.LSTM
attribute), 68

initial_states (blocks.bricks.recurrent.architectures.SimpleRecurrent
attribute), 69

initial_states (blocks.bricks.recurrent.base.BaseRecurrent
attribute), 72

initial_states (blocks.bricks.recurrent.misc.RecurrentStack
attribute), 72

initial_states (blocks.bricks.sequence_generators.BaseSequenceGenerator
attribute), 84

initial_states (blocks.bricks.sequence_generators.FakeAttentionRecurrent
attribute), 85

initial_states_outputs() (blocks.bricks.attention.AttentionRecurrent
method), 77

initial_states_outputs() (blocks.bricks.recurrent.base.BaseRecurrent
method), 72

initial_states_outputs() (blocks.bricks.sequence_generators.BaseSequenceGenerator
method), 84

initial_states_outputs() (blocks.bricks.sequence_generators.FakeAttentionRecurrent
method), 85

Initializable (class in blocks.bricks), 47
initialization_config_pushed (blocks.bricks.base.Brick at-

tribute), 136
initialization_config_pushed (blocks.bricks.Brick at-

tribute), 42
initialization_updates (blocks.monitoring.evaluators.AggregationBuffer

attribute), 141
initialize() (blocks.algorithms.TrainingAlgorithm

method), 39
initialize() (blocks.algorithms.UpdatesAlgorithm

method), 39
initialize() (blocks.bricks.base.Brick method), 138
initialize() (blocks.bricks.Brick method), 44
initialize() (blocks.initialization.NdarrayInitialization

method), 108
initialize_aggregators() (blocks.monitoring.evaluators.AggregationBuffer

method), 142
initialize_aggregators() (blocks.monitoring.evaluators.DatasetEvaluator

method), 143
initialize_quantities() (blocks.monitoring.evaluators.MonitoredQuantityBuffer

method), 143
initialized (blocks.bricks.base.Brick attribute), 136
initialized (blocks.bricks.Brick attribute), 42
INPUT (in module blocks.roles), 115
input_dim (blocks.bricks.attention.ShallowEnergyComputer

attribute), 79
input_dim (blocks.bricks.Bias attribute), 49
input_dim (blocks.bricks.Feedforward attribute), 47
input_dim (blocks.bricks.FeedforwardSequence at-

tribute), 53
input_dim (blocks.bricks.LinearMaxout attribute), 50
input_dim (blocks.bricks.lookup.LookupTable attribute),

55
input_dim (blocks.bricks.MLP attribute), 54
input_dim (blocks.bricks.parallel.Fork attribute), 64
input_dims (blocks.bricks.parallel.Merge attribute), 65
input_dims (blocks.bricks.parallel.Parallel attribute), 66
input_names (blocks.bricks.parallel.Merge attribute), 65
input_names (blocks.bricks.parallel.Parallel attribute), 66
inputs (blocks.bricks.base.Application attribute), 133
inputs (blocks.graph.ComputationGraph attribute), 102,

103
inputs (blocks.monitoring.evaluators.AggregationBuffer

attribute), 142
inputs (blocks.monitoring.evaluators.MonitoredQuantityBuffer

attribute), 143
insert() (blocks.utils.containers.AnnotatingList method),

144
instances (blocks.bricks.base.Application attribute), 132
INTEGER_TRIGGERS (blocks.extensions.SimpleExtension

attribute), 92
intermediary_variables (blocks.graph.ComputationGraph

attribute), 102, 103
ipdb_breakpoint() (in module blocks.utils.utils), 123
is_graph_input() (in module blocks.utils.theano_utils),

125
is_shared_variable() (in module

blocks.utils.theano_utils), 125
IsotropicGaussian (class in blocks.initialization), 108
iteration_state (blocks.main_loop.MainLoop attribute),

113

L
l2_norm() (in module blocks.theano_expressions), 122
last_epoch_row (blocks.log.log.TrainingLogBase at-

tribute), 111
lazy() (in module blocks.bricks), 44
lazy() (in module blocks.bricks.base), 140
LazyNone (class in blocks.bricks.base), 139
LeakyRectifier (class in blocks.bricks), 51
learning_rate (blocks.algorithms.Momentum attribute),

35

Index 163

Blocks Documentation, Release 0.2.0

learning_rate (blocks.algorithms.RMSProp attribute), 35
learning_rate (blocks.algorithms.Scale attribute), 37
Linear (class in blocks.bricks), 48
LinearLike (class in blocks.bricks), 48
LinearMaxout (class in blocks.bricks), 49
Load (class in blocks.extensions.saveload), 100
load() (in module blocks.serialization), 121
load_parameters() (in module blocks.serialization), 121
load_to() (blocks.extensions.saveload.Load method), 100
log_backend

command line option, 22
log_probabilities (blocks.bricks.NDimensionalSoftmax

attribute), 53
log_probabilities (blocks.bricks.Softmax attribute), 52
log_probabilities_delegate()

(blocks.bricks.NDimensionalSoftmax method),
53

Logistic (class in blocks.bricks), 50
LookupFeedback (class in

blocks.bricks.sequence_generators), 85
LookupTable (class in blocks.bricks.lookup), 54
low_memory_apply (blocks.bricks.recurrent.misc.RecurrentStack

attribute), 72
LSTM (class in blocks.bricks.recurrent.architectures), 67

M
main_loop (blocks.extensions.CompositeExtension at-

tribute), 90
main_loop (blocks.extensions.TrainingExtension at-

tribute), 95
MainLoop (class in blocks.main_loop), 112
max_blob_size

command line option, 22
Maxout (class in blocks.bricks), 49
MaxPooling (class in blocks.bricks.conv), 62
Merge (class in blocks.bricks.parallel), 65
MisclassificationRate (class in blocks.bricks.cost), 88
MLP (class in blocks.bricks), 53
model (blocks.main_loop.MainLoop attribute), 113
Model (class in blocks.model), 114
momentum (blocks.algorithms.Momentum attribute), 35
Momentum (class in blocks.algorithms), 35
MonitoredQuantityBuffer (class in

blocks.monitoring.evaluators), 143
MonitoringExtension (class in

blocks.extensions.monitoring), 96

N
name (blocks.bricks.base.Application attribute), 133
name (blocks.bricks.base.BoundApplication attribute),

135
name (blocks.bricks.base.Brick attribute), 136
name (blocks.bricks.Brick attribute), 42
name (blocks.extensions.TrainingExtension attribute), 95

NdarrayInitialization (class in blocks.initialization), 108
NDimensionalSoftmax (class in blocks.bricks), 52
nodes (blocks.select.Path attribute), 116
normal_inputs() (blocks.bricks.recurrent.misc.RecurrentStack

method), 72
normalization_axes (blocks.bricks.BatchNormalization

attribute), 46
notification_name (blocks.extensions.training.TrackTheBest

attribute), 98
num_args (blocks.extensions.training.SharedVariableModifier

attribute), 98
num_channels (blocks.bricks.BatchNormalization at-

tribute), 46
num_channels (blocks.bricks.conv.Pooling attribute), 63
num_output_channels (blocks.bricks.BatchNormalization

attribute), 46
num_output_channels (blocks.bricks.conv.Convolutional

attribute), 58
num_output_channels (blocks.bricks.conv.Pooling

attribute), 63

O
on_error() (blocks.extensions.TrainingExtension

method), 95
on_interrupt() (blocks.extensions.TrainingExtension

method), 96
on_resumption() (blocks.extensions.TrainingExtension

method), 96
OnLogRecord (class in blocks.extensions.predicates),

141
original_image_size (blocks.bricks.conv.ConvolutionalTranspose

attribute), 61
Orthogonal (class in blocks.initialization), 108
OUTPUT (in module blocks.roles), 115
output_dim (blocks.bricks.attention.ShallowEnergyComputer

attribute), 79
output_dim (blocks.bricks.BatchNormalization attribute),

46
output_dim (blocks.bricks.Bias attribute), 49
output_dim (blocks.bricks.Feedforward attribute), 47
output_dim (blocks.bricks.FeedforwardSequence at-

tribute), 53
output_dim (blocks.bricks.lookup.LookupTable at-

tribute), 55
output_dim (blocks.bricks.MLP attribute), 54
output_dim (blocks.bricks.parallel.Merge attribute), 65
output_dims (blocks.bricks.parallel.Fork attribute), 65
output_dims (blocks.bricks.parallel.Parallel attribute), 66
outputs (blocks.graph.ComputationGraph attribute), 102

P
pack() (in module blocks.utils.utils), 123
Parallel (class in blocks.bricks.parallel), 65
PARAMETER (in module blocks.roles), 116

164 Index

Blocks Documentation, Release 0.2.0

parameter_separator (blocks.select.Path attribute), 116
parameters (blocks.bricks.base.Brick attribute), 136, 138
parameters (blocks.bricks.Brick attribute), 42, 44
parameters (blocks.graph.ComputationGraph attribute),

102, 103
Parameters (class in blocks.bricks.base), 139
parse() (blocks.select.Path static method), 116
parse_args() (blocks.extensions.SimpleExtension static

method), 93
part() (blocks.select.Path.BrickName method), 116
part() (blocks.select.Path.ParameterName method), 116
Path (class in blocks.select), 116
Path.BrickName (class in blocks.select), 116
Path.ParameterName (class in blocks.select), 116
Pooling (class in blocks.bricks.conv), 62
Predicate (class in blocks.extensions), 91
preprocess (blocks.bricks.attention.AbstractAttention at-

tribute), 74
preprocess (blocks.bricks.attention.SequenceContentAttention

attribute), 78
previous_row (blocks.log.log.TrainingLogBase attribute),

111
print_shape() (in module blocks.utils.utils), 123
print_shapes (blocks.bricks.base.Brick attribute), 136,

138
print_shapes (blocks.bricks.Brick attribute), 42, 44
print_sum() (in module blocks.utils.utils), 123
Printing (class in blocks.extensions), 91
probs (blocks.bricks.sequence_generators.SoftmaxEmitter

attribute), 87
process_batch() (blocks.algorithms.TrainingAlgorithm

method), 39
process_batch() (blocks.algorithms.UpdatesAlgorithm

method), 39
process_batch() (blocks.monitoring.evaluators.DatasetEvaluator

method), 143
Profile (class in blocks.utils.profile), 144
profile, BLOCKS_PROFILE

command line option, 22
ProgressBar (class in blocks.extensions), 91
properties (blocks.bricks.base.Application attribute), 132
property() (blocks.bricks.base.Application method), 133
push_allocation_config() (blocks.bricks.base.Brick

method), 138
push_allocation_config() (blocks.bricks.Brick method),

44
push_initialization_config() (blocks.bricks.base.Brick

method), 139
push_initialization_config() (blocks.bricks.Brick

method), 44
put_hook() (in module blocks.utils.theano_utils), 125

Q
quantity_names (blocks.monitoring.evaluators.MonitoredQuantityBuffer

attribute), 143

R
Random (class in blocks.bricks), 48
readout (blocks.bricks.sequence_generators.Readout at-

tribute), 86
Readout (class in blocks.bricks.sequence_generators), 85
readout() (blocks.bricks.sequence_generators.AbstractReadout

method), 81
readout_dim (blocks.bricks.sequence_generators.AbstractEmitter

attribute), 80
readout_dim (blocks.bricks.sequence_generators.AbstractReadout

attribute), 81
readout_variables (blocks.monitoring.evaluators.AggregationBuffer

attribute), 142
record_name() (blocks.extensions.monitoring.MonitoringExtension

method), 97
Rectifier (class in blocks.bricks), 51
recurrent() (in module blocks.bricks.recurrent.base), 72
RecurrentStack (class in blocks.bricks.recurrent.misc), 70
recursion_limit

command line option, 22
RemoveNotFinite (class in blocks.algorithms), 36
rename_function() (in module blocks.bricks.base), 141
replace() (blocks.graph.ComputationGraph method), 103
report() (blocks.utils.profile.Profile method), 144
repr_attrs() (in module blocks.utils.utils), 124
requires (blocks.monitoring.evaluators.MonitoredQuantityBuffer

attribute), 143
reraise_as() (in module blocks.utils.utils), 124
Restrict (class in blocks.algorithms), 36
resume() (blocks.log.log.TrainingLogBase method), 111
RMSProp (class in blocks.algorithms), 35
run() (blocks.main_loop.MainLoop method), 113

S
Scale (class in blocks.algorithms), 37
scan_variables (blocks.graph.ComputationGraph at-

tribute), 103, 104
scans (blocks.graph.ComputationGraph attribute), 103
secure_dump() (in module blocks.serialization), 121
seed_rng (blocks.bricks.Random attribute), 48
select() (blocks.select.Selector method), 117
Selector (class in blocks.select), 116
SEPARATOR (blocks.extensions.monitoring.MonitoringExtension

attribute), 96
separator (blocks.select.Path attribute), 116
separator_re (blocks.select.Path attribute), 116
Sequence (class in blocks.bricks), 53
SequenceContentAttention (class in

blocks.bricks.attention), 78
SequenceGenerator (class in

blocks.bricks.sequence_generators), 86

Index 165

Blocks Documentation, Release 0.2.0

set_conditions() (blocks.extensions.SimpleExtension
method), 93

set_parameter_values() (blocks.model.Model method),
114

ShallowEnergyComputer (class in
blocks.bricks.attention), 79

shared_floatx() (in module blocks.utils.theano_utils), 125
shared_floatx_nans() (in module

blocks.utils.theano_utils), 126
shared_floatx_zeros() (in module

blocks.utils.theano_utils), 126
shared_floatx_zeros_matching() (in module

blocks.utils.theano_utils), 126
shared_like() (in module blocks.utils.theano_utils), 126
shared_variables (blocks.graph.ComputationGraph at-

tribute), 102, 104
SharedVariableModifier (class in

blocks.extensions.training), 97
SimpleExtension (class in blocks.extensions), 92
SimpleRecurrent (class in

blocks.bricks.recurrent.architectures), 68
Softmax (class in blocks.bricks), 51
SoftmaxEmitter (class in

blocks.bricks.sequence_generators), 86
Softplus (class in blocks.bricks), 51
source_dim (blocks.bricks.parallel.Distribute attribute),

64
source_names (blocks.bricks.sequence_generators.AbstractReadout

attribute), 80
Sparse (class in blocks.initialization), 109
SparseND (class in blocks.initialization), 109
SpatialBatchNormalization (class in blocks.bricks), 46
split_suffix() (blocks.bricks.recurrent.misc.RecurrentStack

static method), 72
sqlite_database, BLOCKS_SQLITEDB

command line option, 22
SQLiteEntry (class in blocks.log.sqlite), 111
SQLiteLog (class in blocks.log.sqlite), 112
SQLiteStatus (class in blocks.log.sqlite), 112
SquaredError (class in blocks.bricks.cost), 88
state_dims (blocks.bricks.attention.AbstractAttention at-

tribute), 74
state_names (blocks.bricks.attention.AbstractAttention

attribute), 74
state_to_gates (blocks.bricks.recurrent.architectures.GatedRecurrent

attribute), 67
state_to_state (blocks.bricks.recurrent.architectures.GatedRecurrent

attribute), 67
status (blocks.log.log.TrainingLogBase attribute), 111
status (blocks.main_loop.MainLoop attribute), 113
step_rule (blocks.algorithms.GradientDescent attribute),

35
StepClipping (class in blocks.algorithms), 37
StepRule (class in blocks.algorithms), 38

suffix() (blocks.bricks.recurrent.misc.RecurrentStack
static method), 72

suffixes() (blocks.bricks.recurrent.misc.RecurrentStack
static method), 72

T
take_glimpses (blocks.bricks.attention.AttentionRecurrent

attribute), 77
take_glimpses (blocks.bricks.attention.SequenceContentAttention

attribute), 79
take_glimpses (blocks.bricks.sequence_generators.FakeAttentionRecurrent

attribute), 85
take_glimpses() (blocks.bricks.attention.AbstractAttention

method), 74
take_glimpses() (blocks.bricks.attention.AbstractAttentionRecurrent

method), 75
take_glimpses_inputs() (blocks.bricks.attention.SequenceContentAttention

method), 79
take_glimpses_outputs() (blocks.bricks.attention.AttentionRecurrent

method), 77
take_last() (in module blocks.extensions.monitoring), 97
Tanh (class in blocks.bricks), 50
target_dims (blocks.bricks.parallel.Distribute attribute),

64
temp_dir, BLOCKS_TEMPDIR

command line option, 22
theano_rng (blocks.bricks.Random attribute), 48
theano_seed (blocks.bricks.Random attribute), 48
threshold (blocks.algorithms.StepClipping attribute), 37
Timer (class in blocks.utils.profile), 144
Timestamp (class in blocks.extensions), 93
Timing (class in blocks.extensions), 94
TrackTheBest (class in blocks.extensions.training), 98
TrainingAlgorithm (class in blocks.algorithms), 38
TrainingDataMonitoring (class in

blocks.extensions.monitoring), 97
TrainingExtension (class in blocks.extensions), 95
TrainingFinish, 113
TrainingLog (class in blocks.log.log), 110
TrainingLogBase (class in blocks.log.log), 111
TrivialEmitter (class in

blocks.bricks.sequence_generators), 87
TrivialFeedback (class in

blocks.bricks.sequence_generators), 87

U
Uniform (class in blocks.initialization), 110
unpack() (in module blocks.utils.utils), 124
updates (blocks.algorithms.UpdatesAlgorithm attribute),

39
updates (blocks.graph.ComputationGraph attribute), 103
UpdatesAlgorithm (class in blocks.algorithms), 39

166 Index

Blocks Documentation, Release 0.2.0

V
VariableClipping (class in blocks.algorithms), 39
VariableFilter (class in blocks.filter), 101
VariableRole (class in blocks.roles), 115
variables (blocks.graph.ComputationGraph attribute),

102

W
W (blocks.bricks.LinearLike attribute), 48
W (blocks.bricks.lookup.LookupTable attribute), 55
W (blocks.bricks.recurrent.architectures.SimpleRecurrent

attribute), 69
WEIGHT (in module blocks.roles), 116
WithExtraDims (class in blocks.bricks), 54
WithExtraDims (class in blocks.bricks.wrappers), 89
wrap() (blocks.bricks.WithExtraDims method), 54
wrap() (blocks.bricks.wrappers.BrickWrapper method),

89
wrap() (blocks.bricks.wrappers.WithExtraDims method),

89

Index 167

	Tutorials
	In-depth
	Quickstart
	Indices and tables
	Bibliography
	Python Module Index

