

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	Blocks 0.0.1 documentation

Welcome to Blocks’ documentation!

Blocks is a framework that helps you build and manage neural network models on
using Theano.

Want to get try it out? Start by installing Blocks and having a
look at the quickstart further down this page. Once you’re
hooked, try your hand at the tutorials and the
examples [https://github.com/mila-udem/blocks-examples].

Blocks is developed in parallel with Fuel [https://github.com/mila-udem/fuel], a dataset processing framework.

Warning

Blocks is a new project which is still under development. As such, certain
(all) parts of the framework are subject to change. The last stable (and
thus likely an outdated) version can be found in the stable branch.

Tip

That said, if you are interested in using Blocks and run into any problems,
feel free to ask your question on the mailing list [https://groups.google.com/forum/#!forum/blocks-users]. Also, don’t hesitate
to file bug reports and feature requests by making a GitHub issue [https://github.com/mila-udem/blocks/issues/new].

Tutorials

	Installation

	Introduction tutorial

	Building with bricks

	Managing the computation graph

	Live plotting

In-depth

	Recurrent neural networks

	Configuration

	Serialization

	API Reference

	Development

Quickstart

Construct your model.

>>> mlp = MLP(activations=[Tanh(), Softmax()], dims=[784, 100, 10],
... weights_init=IsotropicGaussian(0.01), biases_init=Constant(0))
>>> mlp.initialize()

Calculate your loss function.

>>> x = tensor.matrix('features')
>>> y = tensor.lmatrix('targets')
>>> y_hat = mlp.apply(x)
>>> cost = CategoricalCrossEntropy().apply(y.flatten(), y_hat)
>>> error_rate = MisclassificationRate().apply(y.flatten(), y_hat)

Load your training data using Fuel.

>>> mnist_train = MNIST(("train",))
>>> train_stream = Flatten(
... DataStream.default_stream(
... dataset=mnist_train,
... iteration_scheme=SequentialScheme(mnist_train.num_examples, 128)),
... which_sources=('features',))
>>> mnist_test = MNIST(("test",))
>>> test_stream = Flatten(
... DataStream.default_stream(
... dataset=mnist_test,
... iteration_scheme=SequentialScheme(mnist_test.num_examples, 1024)),
... which_sources=('features',))

And train!

>>> from blocks.model import Model
>>> main_loop = MainLoop(
... model=Model(cost), data_stream=train_stream,
... algorithm=GradientDescent(
... cost=cost, parameters=ComputationGraph(cost).parameters,
... step_rule=Scale(learning_rate=0.1)),
... extensions=[FinishAfter(after_n_epochs=5),
... DataStreamMonitoring(
... variables=[cost, error_rate],
... data_stream=test_stream,
... prefix="test"),
... Printing()])
>>> main_loop.run()

...

For a runnable version of this code, please see the MNIST demo
in our repository with examples [https://github.com/mila-udem/blocks-examples].

Features

Currently Blocks supports and provides:

	Constructing parametrized Theano operations, called “bricks”

	Pattern matching to select variables and bricks in large models

	Algorithms to optimize your model

	Saving and resuming of training

	Monitoring and analyzing values during training progress (on the training set
as well as on test sets)

	Application of graph transformations, such as dropout (limited support)

In the future we also hope to support:

	Dimension, type and axes-checking

 [https://coveralls.io/r/mila-udem/blocks][image: https://travis-ci.org/mila-udem/blocks.svg?branch=master]
 [https://travis-ci.org/mila-udem/blocks][image: https://readthedocs.org/projects/blocks/badge/?version=latest]
 [https://blocks.readthedocs.org/]
 [https://scrutinizer-ci.com/g/mila-udem/blocks/]
 [https://github.com/mila-udem/blocks/blob/master/LICENSE]

Indices and tables

	Index

	Module Index

 Copyright 2014-2015, Université de Montréal.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Blocks 0.0.1 documentation

Installation

The easiest way to install Blocks using the Python package manager pip. Blocks
isn’t listed yet on the Python Package Index (PyPI), so you will have to grab it
directly from GitHub.

$ pip install git+git://github.com/mila-udem/blocks.git \
 -r https://raw.githubusercontent.com/mila-udem/blocks/master/req.txt

This will give you the cutting-edge development version. The latest stable
release is in the stable branch and can be installed as follows.

$ pip install git+git://github.com/mila-udem/blocks.git@stable \
 -r https://raw.githubusercontent.com/mila-udem/blocks/stable/req.txt

Note

Blocks relies on several packages, such as Theano [http://deeplearning.net/software/theano/] and picklable_itertools [https://github.com/dwf/picklable_itertools],
to be installed directly from GitHub. The only way of doing so reliably is
through a req.txt file, which is why this installation command
might look slightly different from what you’re used to.

Installing requirements from GitHub requires pip 1.5 or higher; you can
update with pip update pip.

If you don’t have administrative rights, add the --user switch to the
install commands to install the packages in your home folder. If you want to
update Blocks, simply repeat the first command with the --upgrade switch
added to pull the latest version from GitHub.

Warning

Pip may try to install or update NumPy and SciPy if they are not present or
outdated. However, pip’s versions might not be linked to an optimized BLAS
implementation. To prevent this from happening make sure you update NumPy
and SciPy using your system’s package manager (e.g. apt-get or
yum), or use a Python distribution like Anaconda [https://store.continuum.io/cshop/anaconda/], before installing
Blocks. You can also pass the --no-deps switch and install all the
requirements manually.

If the installation crashes with ImportError: No module named
numpy.distutils.core, install NumPy and try again again.

Requirements

Blocks’ requirements are

	Theano [http://deeplearning.net/software/theano/], for pretty much everything

	PyYAML [http://pyyaml.org/wiki/PyYAML], to parse the configuration file

	six [http://pythonhosted.org/six/], to support both Python 2 and 3 with a single codebase

	Toolz [http://toolz.readthedocs.org/], to add a bit of functional programming where it is needed

Bokeh [http://bokeh.pydata.org/] is an optional requirement for if you want to use live plotting of your
training progress (part of blocks-extras_).

We develop using the bleeding-edge version of Theano, so be sure to follow the
relevant installation instructions [http://deeplearning.net/software/theano/install.html#bleeding-edge-install-instructions] to make sure that your Theano version is
up to date if you didn’t install it through Blocks.

Development

If you want to work on Blocks’ development, your first step is to fork Blocks
on GitHub [https://github.com/mila-udem/blocks/fork]. You will now want to install your fork of Blocks in editable mode.
To install in your home directory, use the following command, replacing USER
with your own GitHub user name:

$ pip install -e git+git@github.com:USER/blocks.git#egg=blocks[test,docs] --src=$HOME \
 -r https://raw.githubusercontent.com/mila-udem/blocks/master/req.txt

As with the usual installation, you can use --user or --no-deps if you
need to. You can now make changes in the blocks directory created by pip,
push to your repository and make a pull request.

If you had already cloned the GitHub repository, you can use the following
command from the folder you cloned Blocks to:

$ pip install -e file:.#egg=blocks[test,docs] -r req.txt

Documentation

If you want to build a local copy of the documentation, follow the instructions
at the documentation development guidelines.

 Copyright 2014-2015, Université de Montréal.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Blocks 0.0.1 documentation

Introduction tutorial

In this tutorial we will perform handwriting recognition by training a
multilayer perceptron [https://en.wikipedia.org/wiki/Multilayer_perceptron] (MLP) on the MNIST handwritten digit database [http://yann.lecun.com/exdb/mnist/].

The Task

MNIST is a dataset which consists of 70,000 handwritten digits. Each digit is a
grayscale image of 28 by 28 pixels. Our task is to classify each of the images
into one of the 10 categories representing the numbers from 0 to 9.

[image: _images/mnist.png]
Sample MNIST digits

The Model

We will train a simple MLP with a single hidden layer that uses the rectifier [https://en.wikipedia.org/wiki/Rectifier_%28neural_networks%29]
activation function. Our output layer will consist of a softmax [https://en.wikipedia.org/wiki/Softmax_function] function with
10 units; one for each class. Mathematically speaking, our model is parametrized
by \(\mathbf{\theta}\), defined as the weight matrices
\(\mathbf{W}^{(1)}\) and \(\mathbf{W}^{(2)}\), and bias vectors
\(\mathbf{b}^{(1)}\) and \(\mathbf{b}^{(2)}\). The rectifier activation
function is defined as

\[\mathrm{ReLU}(\mathbf{x})_i = \max(0, \mathbf{x}_i)\]

and our softmax output function is defined as

\[\mathrm{softmax}(\mathbf{x})_i = \frac{e^{\mathbf{x}_i}}{\sum_{j=1}^n e^{\mathbf{x}_j}}\]

Hence, our complete model is

\[f(\mathbf{x}; \mathbf{\theta}) = \mathrm{softmax}(\mathbf{W}^{(2)}\mathrm{ReLU}(\mathbf{W}^{(1)}\mathbf{x} + \mathbf{b}^{(1)}) + \mathbf{b}^{(2)})\]

Since the output of a softmax sums to 1, we can interpret it as a categorical
probability distribution: \(f(\mathbf{x})_c = \hat p(y = c \mid
\mathbf{x})\), where \(\mathbf{x}\) is the 784-dimensional (28 × 28) input
and \(c \in \{0, ..., 9\}\) one of the 10 classes. We can train the
parameters of our model by minimizing the negative log-likelihood i.e. the
cross-entropy between our model’s output and the target distribution. This
means we will minimize the sum of

\[l(\mathbf{f}(\mathbf{x}), y) = -\sum_{c=0}^9 \mathbf{1}_{(y=c)} \log f(\mathbf{x})_c = -\log f(\mathbf{x})_y\]

(where \(\mathbf{1}\) is the indicator function) over all examples. We use
stochastic gradient descent [https://en.wikipedia.org/wiki/Stochastic_gradient_descent] (SGD) on mini-batches for this.

Building the model

Blocks uses “bricks” to build models. Bricks are parametrized Theano
operations. You can read more about it in the
building with bricks tutorial.

Constructing the model with Blocks is very simple. We start by defining the
input variable using Theano.

Tip

Want to follow along with the Python code? If you are using IPython, enable
the doctest mode [http://ipython.org/ipython-doc/dev/interactive/tips.html#run-doctests] using the special %doctest_mode command so that you
can copy-paste the examples below (including the >>> prompts) straight
into the IPython interpreter.

>>> from theano import tensor
>>> x = tensor.matrix('features')

Note that we picked the name 'features' for our input. This is important,
because the name needs to match the name of the data source we want to train on.
MNIST defines two data sources: 'features' and 'targets'.

For the sake of this tutorial, we will go through building an MLP the long way.
For a much quicker way, skip right to the end of the next section. We begin
with applying the linear transformations and activations.

We start by initializing bricks with certain parameters e.g. input_dim.
After initialization we can apply our bricks on Theano variables to build the model
we want. We’ll talk more about bricks in the next tutorial, Building with bricks.

>>> from blocks.bricks import Linear, Rectifier, Softmax
>>> input_to_hidden = Linear(name='input_to_hidden', input_dim=784, output_dim=100)
>>> h = Rectifier().apply(input_to_hidden.apply(x))
>>> hidden_to_output = Linear(name='hidden_to_output', input_dim=100, output_dim=10)
>>> y_hat = Softmax().apply(hidden_to_output.apply(h))

Loss function and regularization

Now that we have built our model, let’s define the cost to minimize. For this,
we will need the Theano variable representing the target labels.

>>> y = tensor.lmatrix('targets')
>>> from blocks.bricks.cost import CategoricalCrossEntropy
>>> cost = CategoricalCrossEntropy().apply(y.flatten(), y_hat)

To reduce the risk of overfitting, we can penalize excessive values of
the parameters by adding a \(L2\)-regularization term (also known as
weight decay) to the objective function:

\[l(\mathbf{f}(\mathbf{x}), y) = -\log f(\mathbf{x})_y + \lambda_1\|\mathbf{W}^{(1)}\|^2 + \lambda_2\|\mathbf{W}^{(2)}\|^2\]

To get the weights from our model, we will use Blocks’ annotation features (read
more about them in the Managing the computation graph tutorial).

>>> from blocks.bricks import WEIGHT
>>> from blocks.graph import ComputationGraph
>>> from blocks.filter import VariableFilter
>>> cg = ComputationGraph(cost)
>>> W1, W2 = VariableFilter(roles=[WEIGHT])(cg.variables)
>>> cost = cost + 0.005 * (W1 ** 2).sum() + 0.005 * (W2 ** 2).sum()
>>> cost.name = 'cost_with_regularization'

Note

Note that we explicitly gave our variable a name. We do this so that when we
monitor the performance of our model, the progress monitor will know what
name to report in the logs.

Here we set \(\lambda_1 = \lambda_2 = 0.005\). And that’s it! We now have
the final objective function we want to optimize.

But creating a simple MLP this way is rather cumbersome. In practice, we would
have used the MLP class instead.

>>> from blocks.bricks import MLP
>>> mlp = MLP(activations=[Rectifier(), Softmax()], dims=[784, 100, 10]).apply(x)

Initializing the parameters

When we constructed the Linear bricks to build our
model, they automatically allocated Theano shared variables to store their
parameters in. All of these parameters were initially set to NaN. Before
we start training our network, we will want to initialize these parameters
by sampling them from a particular probability distribution. Bricks can do this
for you.

>>> from blocks.initialization import IsotropicGaussian, Constant
>>> input_to_hidden.weights_init = hidden_to_output.weights_init = IsotropicGaussian(0.01)
>>> input_to_hidden.biases_init = hidden_to_output.biases_init = Constant(0)
>>> input_to_hidden.initialize()
>>> hidden_to_output.initialize()

We have now initialized our weight matrices with entries drawn from a normal
distribution with a standard deviation of 0.01.

>>> W1.get_value()
 array([[0.01624345, -0.00611756, -0.00528172, ..., 0.00043597, ...

Training your model

Besides helping you build models, Blocks also provides the main other features
needed to train a model. It has a set of training algorithms (like SGD), an
interface to datasets, and a training loop that allows you to monitor and
control the training process.

We want to train our model on the training set of MNIST. We load the data using
the Fuel [http://fuel.readthedocs.org/en/latest/] framework. Have a look at this tutorial [https://fuel.readthedocs.org/en/latest/built_in_datasets.html] to get started.

After having configured Fuel, you can load the dataset.

>>> from fuel.datasets import MNIST
>>> mnist = MNIST(("train",))

Datasets only provide an interface to the data. For actual training, we will
need to iterate over the data in minibatches. This is done by initiating a data
stream which makes use of a particular iteration scheme. We will use an
iteration scheme that iterates over our MNIST examples sequentially in batches
of size 256.

>>> from fuel.streams import DataStream
>>> from fuel.schemes import SequentialScheme
>>> from fuel.transformers import Flatten
>>> data_stream = Flatten(DataStream.default_stream(
... mnist,
... iteration_scheme=SequentialScheme(mnist.num_examples, batch_size=256)))

The training algorithm we will use is straightforward SGD with a fixed
learning rate.

>>> from blocks.algorithms import GradientDescent, Scale
>>> algorithm = GradientDescent(cost=cost, parameters=cg.parameters,
... step_rule=Scale(learning_rate=0.1))

During training we will want to monitor the performance of our model on
a separate set of examples. Let’s create a new data stream for that.

>>> mnist_test = MNIST(("test",))
>>> data_stream_test = Flatten(DataStream.default_stream(
... mnist_test,
... iteration_scheme=SequentialScheme(
... mnist_test.num_examples, batch_size=1024)))

In order to monitor our performance on this data stream during training, we need
to use one of Blocks’ extensions, namely the DataStreamMonitoring
extension.

>>> from blocks.extensions.monitoring import DataStreamMonitoring
>>> monitor = DataStreamMonitoring(
... variables=[cost], data_stream=data_stream_test, prefix="test")

We can now use the MainLoop to combine all the different
bits and pieces. We use two more extensions to make our training stop after
a single epoch and to make sure that our progress is printed.

>>> from blocks.main_loop import MainLoop
>>> from blocks.extensions import FinishAfter, Printing
>>> main_loop = MainLoop(data_stream=data_stream, algorithm=algorithm,
... extensions=[monitor, FinishAfter(after_n_epochs=1), Printing()])
>>> main_loop.run()

BEFORE FIRST EPOCH

Training status:
 epochs_done: 0
 iterations_done: 0
Log records from the iteration 0:
 test_cost_with_regularization: 2.34244632721

AFTER ANOTHER EPOCH

Training status:
 epochs_done: 1
 iterations_done: 235
Log records from the iteration 235:
 test_cost_with_regularization: 0.664899230003
 training_finish_requested: True

TRAINING HAS BEEN FINISHED:

Training status:
 epochs_done: 1
 iterations_done: 235
Log records from the iteration 235:
 test_cost_with_regularization: 0.664899230003
 training_finish_requested: True
 training_finished: True

 Copyright 2014-2015, Université de Montréal.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Blocks 0.0.1 documentation

Building with bricks

Blocks is a framework that is supposed to make it easier to build complicated
neural network models on top of Theano [http://www.deeplearning.net/software/theano/]. In order to do so, we introduce the
concept of “bricks”, which you might have already come across in the
introduction tutorial.

Bricks life-cycle

Blocks uses “bricks” to build models. Bricks are parametrized Theano
operations. A brick is usually defined by a set of attributes and a set of
parameters, the former specifying the attributes that define the Block
(e.g., the number of input and output units), the latter representing the
parameters of the brick object that will vary during learning (e.g., the
weights and the biases).

The life-cycle of a brick is as follows:

	Configuration: set (part of) the attributes of the brick. Can take
place when the brick object is created, by setting the arguments of the
constructor, or later, by setting the attributes of the brick object. No
Theano variable is created in this phase.

	Allocation: (optional) allocate the Theano shared variables for the
parameters of the Brick. When Brick.allocate() is called, the
required Theano variables are allocated and initialized by default to NaN.

	Application: instantiate a part of the Theano computational graph,
linking the inputs and the outputs of the brick through its parameters
and according to the attributes. Cannot be performed (i.e., results in an
error) if the Brick object is not fully configured.

	Initialization: set the numerical values of the Theano variables
that store the parameters of the Brick. The user-provided value will
replace the default initialization value.

Note

If the Theano variables of the brick object have not been allocated when
apply() is called, Blocks will quietly call
Brick.allocate().

Example

Bricks take Theano variables as inputs, and provide Theano variables as outputs.

>>> import theano
>>> from theano import tensor
>>> from blocks.bricks import Tanh
>>> x = tensor.vector('x')
>>> y = Tanh().apply(x)
>>> print(y)
tanh_apply_output
>>> isinstance(y, theano.Variable)
True

This is clearly an artificial example, as this seems like a complicated way of
writing y = tensor.tanh(x). To see why Blocks is useful, consider a very
common task when building neural networks: Applying a linear transformation
(with optional bias) to a vector, and then initializing the weight matrix and
bias vector with values drawn from a particular distribution.

>>> from blocks.bricks import Linear
>>> from blocks.initialization import IsotropicGaussian, Constant
>>> linear = Linear(input_dim=10, output_dim=5,
... weights_init=IsotropicGaussian(),
... biases_init=Constant(0.01))
>>> y = linear.apply(x)

So what happened here? We constructed a brick called Linear with a
particular configuration: the input dimension (10) and output dimension (5).
When we called Linear.apply, the brick automatically constructed
the shared Theano variables [http://deeplearning.net/software/theano/tutorial/examples.html#using-shared-variables] needed to store its parameters. In the lifecycle
of a brick we refer to this as allocation.

>>> linear.parameters
[W, b]
>>> linear.parameters[1].get_value()
array([nan, nan, nan, nan, nan])

By default, all our parameters are set to NaN. To initialize them, simply
call the Brick.initialize() method. This is the last step in the
brick lifecycle: initialization.

>>> linear.initialize()
>>> linear.parameters[1].get_value()
array([0.01, 0.01, 0.01, 0.01, 0.01])

Keep in mind that at the end of the day, bricks just help you construct a Theano
computational graph, so it is possible to mix in regular Theano statements when
building models. (However, you might miss out on some of the niftier features
of Blocks, such as variable annotation.)

>>> z = tensor.max(y + 4)

Lazy initialization

In the example above we configured the Linear brick during
initialization. We specified input and output dimensions, and specified the
way in which weight matrices should be initialized. But consider the
following case, which is quite common: We want to take the output of one
model, and feed it as an input to another model, but the output and input
dimensions don’t match, so we will need to add a linear transformation in
the middle.

To support this use case, bricks allow for lazy initialization, which is
turned on by default. This means that you can create a brick without configuring
it fully (or at all):

>>> linear2 = Linear(output_dim=10)
>>> print(linear2.input_dim)
NoneAllocation

Of course, as long as the brick is not configured, we cannot actually apply it!

>>> linear2.apply(x)
Traceback (most recent call last):
 ...
ValueError: allocation config not set: input_dim

We can now easily configure our brick based on other bricks.

>>> linear2.input_dim = linear.output_dim
>>> linear2.apply(x)
linear_apply_output

In the examples so far, the allocation of the parameters has always happened
implicitly when calling the apply methods, but it can also be called
explicitly. Consider the following example:

>>> linear3 = Linear(input_dim=10, output_dim=5)
>>> linear3.parameters
Traceback (most recent call last):
 ...
AttributeError: 'Linear' object has no attribute 'parameters'
>>> linear3.allocate()
>>> linear3.parameters
[W, b]

Nested bricks

Many neural network models, especially more complex ones, can be considered
hierarchical structures. Even a simple multi-layer perceptron consists of
layers, which in turn consist of a linear transformation followed by a
non-linear transformation.

As such, bricks can have children. Parent bricks are able to configure their
children, to e.g. make sure their configurations are compatible, or have
sensible defaults for a particular use case.

>>> from blocks.bricks import MLP, Logistic
>>> mlp = MLP(activations=[Logistic(name='sigmoid_0'),
... Logistic(name='sigmoid_1')], dims=[16, 8, 4],
... weights_init=IsotropicGaussian(), biases_init=Constant(0.01))
>>> [child.name for child in mlp.children]
['linear_0', 'sigmoid_0', 'linear_1', 'sigmoid_1']
>>> y = mlp.apply(x)
>>> mlp.children[0].input_dim
16

We can see that the MLP brick automatically constructed two child
bricks to perform the linear transformations. When we applied the MLP to
x, it automatically configured the input and output dimensions of its
children. Likewise, when we call Brick.initialize(), it
automatically pushed the weight matrix and biases initialization
configuration to its children.

>>> mlp.initialize()
>>> mlp.children[1].parameters[0].get_value()
array([[-0.38312393, -1.7718271 , 0.78074479, -0.74750996],
 ...
 [1.32390416, -0.56375355, -0.24268186, -2.06008577]])

There are cases where we want to override the way the parent brick configured
its children. For example in the case where we want to initialize the weights of
the first layer in an MLP slightly differently from the others. In order to do
so, we need to have a closer look at the life cycle of a brick. In the first two
sections we already talked talked about the three stages in the life cycle of a
brick:

	Construction of the brick

	Allocation of its parameters

	Initialization of its parameters

When dealing with children, the life cycle actually becomes a bit more
complicated. (The full life cycle is documented as part of the
Brick class.) Before allocating or initializing parameters, the
parent brick calls its Brick.push_allocation_config() and
Brick.push_initialization_config() methods, which configure the
children. If you want to override the child configuration, you will need to
call these methods manually, after which you can override the child bricks’
configuration.

>>> mlp = MLP(activations=[Logistic(name='sigmoid_0'),
... Logistic(name='sigmoid_1')], dims=[16, 8, 4],
... weights_init=IsotropicGaussian(), biases_init=Constant(0.01))
>>> y = mlp.apply(x)
>>> mlp.push_initialization_config()
>>> mlp.children[0].weights_init = Constant(0.01)
>>> mlp.initialize()
>>> mlp.children[0].parameters[0].get_value()
array([[0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01],
 ...
 [0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01]])

 Copyright 2014-2015, Université de Montréal.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Blocks 0.0.1 documentation

Managing the computation graph

Theano constructs computation graphs of mathematical expressions. Bricks help
you build these graphs, but they do more than that.
When you apply a brick to a Theano variable, it automatically annotates this
Theano variable, in two ways:

	It defines the role this variable plays in the computation graph e.g. it will
label weight matrices and biases as parameters, keep track of which variables
were the in- and outputs of your bricks, and more.

	It constructs auxiliary variables. These are variables which are not
outputs of your brick, but might still be of interest. For example, if you are
training a neural network, you might be interested to know the norm of your
weight matrices, so Blocks attaches these as auxiliary variables to the graph.

Using annotations

The ComputationGraph class provides an interface to this annotated
graph. For example, let’s say we want to train an autoencoder using weight decay
on some of the layers.

>>> from theano import tensor
>>> x = tensor.matrix('features')
>>> from blocks.bricks import MLP, Logistic, Rectifier
>>> from blocks.initialization import IsotropicGaussian, Constant
>>> mlp = MLP(activations=[Rectifier()] * 2 + [Logistic()],
... dims=[784, 256, 128, 784],
... weights_init=IsotropicGaussian(), biases_init=Constant(0.01))
>>> y_hat = mlp.apply(x)
>>> from blocks.bricks.cost import BinaryCrossEntropy
>>> cost = BinaryCrossEntropy().apply(x, y_hat)

Our Theano computation graph is now defined by our loss, cost. We initialize
the managed graph.

>>> from blocks.graph import ComputationGraph
>>> cg = ComputationGraph(cost)

We will find that there are many variables in this graph.

>>> print(cg.variables)
[TensorConstant{0}, b, W_norm, b_norm, features, TensorConstant{1.0}, ...]

To apply weight decay, we only need the weights matrices. These have been tagged
with the WEIGHT role. So let’s create a filter that finds these for us.

>>> from blocks.filter import VariableFilter
>>> from blocks.roles import WEIGHT
>>> print(VariableFilter(roles=[WEIGHT])(cg.variables))
[W, W, W]

Note that the variables in cg.variables are ordered according to the topological
order of their apply nodes. This means that for a feedforward network the
parameters will be returned in the order of our layers.

But let’s imagine for a second that we are actually dealing with a far more
complicated network, and we want to apply weight decay to the parameters of one
layer in particular. To do that, we can filter the variables by the bricks that
created them.

>>> second_layer = mlp.linear_transformations[1]
>>> from blocks.roles import PARAMETER
>>> var_filter = VariableFilter(roles=[PARAMETER], bricks=[second_layer])
>>> print(var_filter(cg.variables))
[b, W]

Note

There are a variety of different roles that you can filter by. You might have
noted already that there is a hierarchy to many of them: Filtering by
PARAMETER will also return variables of the child
roles WEIGHT and BIAS.

We can also see what auxiliary variables our bricks have created. These might be
of interest to monitor during training, for example.

>>> print(cg.auxiliary_variables)
[W_norm, b_norm, W_norm, b_norm, W_norm, b_norm]

 Copyright 2014-2015, Université de Montréal.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Blocks 0.0.1 documentation

Live plotting

Note

The live plotting functionality is part of blocks-extras, which must be
separately installed.

Plots often give a clearer image of your training progress than textual logs.
This is why Blocks has a Plot extension which
allows you to plot the entries from the log that you are interested in.

We use Bokeh [http://bokeh.pydata.org/], an interactive visualization library, to perform the plotting.
More specifically, we use the Bokeh Plot Server. This is basically a light web
server to which Blocks can send data, which then gets displayed in live plots in
your browser. The advantage of this approach is that you can even monitor your
models’ training progress over a network.

First, make sure that you installed the necessary requirements (see the
installation instructions). To start the server type

$ bokeh-server

This will start a server that is accesible on your computer at
http://localhost:5006. If you want to make sure that you can access your
plots across a network (or the internet), you can listen on all IP addresses
using

$ bokeh-server --ip 0.0.0.0

Now that your plotting server is up and running, start your main loop and
pass the Plot extension. Consider this example of fitting the
function \(f(x) = x^a\) to \(f(x) = x^2\).

>>> import theano
>>> a = theano.shared(3.)
>>> a.name = 'a'
>>> x = theano.tensor.scalar('data')
>>> cost = abs(x ** 2 - x ** a)
>>> cost.name = 'cost'

We train on a 150 random points in \([0, 1]\).

>>> import numpy
>>> from fuel.streams import DataStream
>>> from fuel.datasets import IterableDataset
>>> data_stream = DataStream(IterableDataset(
... numpy.random.rand(150).astype(theano.config.floatX)))

Now let’s train with gradient descent and plot the results.

>>> from blocks.main_loop import MainLoop
>>> from blocks.algorithms import GradientDescent, Scale
>>> from blocks.extensions import FinishAfter
>>> from blocks.extensions.monitoring import TrainingDataMonitoring
>>> from blocks.extras.extensions.plot import Plot
>>> main_loop = MainLoop(
... model=None, data_stream=data_stream,
... algorithm=GradientDescent(cost=cost,
... parameters=[a],
... step_rule=Scale(learning_rate=0.1)),
... extensions=[FinishAfter(after_n_epochs=1),
... TrainingDataMonitoring([cost, a], after_batch=True),
... Plot('Plotting example', channels=[['cost'], ['a']],
... after_batch=True)])
>>> main_loop.run()

Tip

If you want to plot channels in the same figure, pass them as part of the
same list. For example, [['cost', 'a']] would have plotted a single
figure with both the cost and the estimate of the exponent.

Open up your browser and go to http://localhost:5006 to see your model
cost go down in real-time!

[image: _images/plot_cost.png]
[image: _images/plot_a.png]

 Copyright 2014-2015, Université de Montréal.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Blocks 0.0.1 documentation

Recurrent neural networks

Warning

This section is very much work in progress!

This tutorial explains recurrent bricks in Blocks. Readers unfamiliar with
bricks should start with the bricks overview first
and continue with this tutorial afterwards.

Quickstart example

[image: digraph accumulator { node [shape=plaintext,label="(1, 1, 1)"]; x_1; x_2; x_3; node [shape=plaintext]; h_0 [label="(0, 0, 0)"]; h_1 [label="(1, 1, 1)"]; h_2 [label="(2, 2, 2)"]; h_3 [label="(3, 3, 3)"]; node [shape=diamond,regular=1,label="+"]; plus_1; plus_2; plus_3; x_1 -> plus_1; x_2 -> plus_2; x_3 -> plus_3; h_0 -> plus_1 -> h_1 -> plus_2 -> h_2 -> plus_3 -> h_3; { rank=source; h_0, h_1, h_2, h_3, plus_1, plus_2, plus_3 } { rank=sink; x_1, x_2, x_3} }]

As a starting example, we’ll be building an RNN which accumulates the input it
receives (figure above). The equation describing that RNN is

\[\mathbf{h}_t = \mathbf{h}_{t-1} + \mathbf{x}_t\]

>>> import numpy
>>> import theano
>>> from theano import tensor
>>> from blocks import initialization
>>> from blocks.bricks import Identity
>>> from blocks.bricks.recurrent import SimpleRecurrent
>>> x = tensor.tensor3('x')
>>> rnn = SimpleRecurrent(
... dim=3, activation=Identity(), weights_init=initialization.Identity())
>>> rnn.initialize()
>>> h = rnn.apply(x)
>>> f = theano.function([x], h)
>>> print(f(numpy.ones((3, 1, 3), dtype=theano.config.floatX)))
[[[1. 1. 1.]]

 [[2. 2. 2.]]

 [[3. 3. 3.]]]...

Let’s modify that example so that the RNN accumulates two times the input it
receives (figure below).

[image: digraph accumulator { node [shape=plaintext,label="(1, 1, 1)"]; x_1; x_2; x_3; node [shape=plaintext]; h_0 [label="(0, 0, 0)"]; h_1 [label="(1, 1, 1)"]; h_2 [label="(2, 2, 2)"]; h_3 [label="(3, 3, 3)"]; node [shape=diamond,regular=1,label="+"]; plus_1; plus_2; plus_3; h_0 -> plus_1 -> h_1 -> plus_2 -> h_2 -> plus_3 -> h_3; edge [label=" x2"]; x_1 -> plus_1; x_2 -> plus_2; x_3 -> plus_3; { rank=source; h_0, h_1, h_2, h_3, plus_1, plus_2, plus_3 } { rank=sink; x_1, x_2, x_3} }]

The equation for the RNN is

\[\mathbf{h}_t = \mathbf{h}_{t-1} + 2 \cdot \mathbf{x}_t\]

>>> from blocks.bricks import Linear
>>> doubler = Linear(
... input_dim=3, output_dim=3, weights_init=initialization.Identity(2),
... biases_init=initialization.Constant(0))
>>> doubler.initialize()
>>> h_doubler = rnn.apply(doubler.apply(x))
>>> f = theano.function([x], h_doubler)
>>> print(f(numpy.ones((3, 1, 3), dtype=theano.config.floatX)))
[[[2. 2. 2.]]

 [[4. 4. 4.]]

 [[6. 6. 6.]]]...

Note that in order to double the input we had to apply a bricks.Linear
brick to x, even though

\[\mathbf{h}_t = f(\mathbf{V}\mathbf{h}_{t-1} + \mathbf{W}\mathbf{x}_t + \mathbf{b})\]

is what is usually thought of as the RNN equation. The reason why recurrent
bricks work that way is it allows greater flexibility and modularity:
\(\mathbf{W}\mathbf{x}_t\) can be replaced by a whole neural network if we
want.

Initial states

[image: digraph accumulator { node [shape=plaintext,label="(1, 1, 1)"]; x_1; x_2; x_3; node [shape=plaintext]; h_0 [label="(1, 1, 1)"]; h_1 [label="(2, 2, 2)"]; h_2 [label="(3, 3, 3)"]; h_3 [label="(4, 4, 4)"]; node [shape=diamond,regular=1,label="+"]; plus_1; plus_2; plus_3; x_1 -> plus_1; x_2 -> plus_2; x_3 -> plus_3; h_0 -> plus_1 -> h_1 -> plus_2 -> h_2 -> plus_3 -> h_3; { rank=source; h_0, h_1, h_2, h_3, plus_1, plus_2, plus_3 } { rank=sink; x_1, x_2, x_3} }]

Recurrent models all have in common that their initial state has to be
specified. However, in constructing our toy examples, we omitted to pass
\(\mathbf{h}_0\) when applying the recurrent brick. What happened?

It turns out that recurrent bricks set that initial state to zero if it’s not
passed as argument, which is a good sane default in most cases, but we can just
as well set it explicitly.

We will modify the starting example so that it accumulates the input it
receives, but starting from one instead of zero (figure above):

\[\mathbf{h}_t = \mathbf{h}_{t-1} + \mathbf{x}_t, \quad \mathbf{h}_0 = 1\]

>>> h0 = tensor.matrix('h0')
>>> h = rnn.apply(inputs=x, states=h0)
>>> f = theano.function([x, h0], h)
>>> print(f(numpy.ones((3, 1, 3), dtype=theano.config.floatX),
... numpy.ones((1, 3), dtype=theano.config.floatX)))
[[[2. 2. 2.]]

 [[3. 3. 3.]]

 [[4. 4. 4.]]]...

Reverse

Todo

Say something about the reverse argument

Getting initial states back

Todo

Say something about the return_initial_states argument

Iterate (or not)

The apply method of a recurrent brick accepts an iterate argument,
which defaults to True. Setting it to False causes the apply method
to compute only one step in the sequence.

This is very useful when you’re trying to combine multiple recurrent layers in
a network.

Imagine you’d like to build a network with two recurrent layers. The second
layer accumulates the output of the first layer, while the first layer
accumulates the input of the network and the output of the second layer (see
figure below).

[image: digraph feedback_rnn { node [shape=plaintext,label="(1, 1, 1)"]; x_1; x_2; x_3; node [shape=plaintext]; h1_0 [label="(0, 0, 0)"]; h1_1 [label="(1, 1, 1)"]; h1_2 [label="(4, 4, 4)"]; h1_3 [label="(12, 12, 12)"]; h2_0 [label="(0, 0, 0)"]; h2_1 [label="(1, 1, 1)"]; h2_2 [label="(3, 3, 3)"]; h2_3 [label="(8, 8, 8)"]; node [shape=diamond,regular=1,label="+"]; plus_1_1; plus_1_2; plus_1_3; plus_2_1; plus_2_2; plus_2_3; x_1 -> plus_1_1; x_2 -> plus_1_2; x_3 -> plus_1_3; h1_0 -> plus_1_1 -> h1_1 -> plus_1_2 -> h1_2 -> plus_1_3 -> h1_3; h2_0 -> plus_2_1 -> h2_1 -> plus_2_2 -> h2_2 -> plus_2_3 -> h2_3; h2_0 -> plus_1_1; h2_1 -> plus_1_2; h2_2 -> plus_1_3; edge [style=invis]; h2_0 -> h1_0; h2_1 -> h1_1; h2_2 -> h1_2; h2_3 -> h1_3; plus_2_1 -> plus_1_1; plus_2_2 -> plus_1_2; plus_2_3 -> plus_1_3; { rank=source; h2_0, h2_1, h2_2, h2_3, plus_2_1, plus_2_2, plus_2_3 } { rank=same; h1_0, h1_1, h1_2, h1_3, plus_1_1, plus_1_2, plus_1_3 } { rank=sink; x_1, x_2, x_3} }]

Here’s how you can create a recurrent brick that encapsulate the two layers:

>>> from blocks.bricks.recurrent import BaseRecurrent, recurrent
>>> class FeedbackRNN(BaseRecurrent):
... def __init__(self, dim, **kwargs):
... super(FeedbackRNN, self).__init__(**kwargs)
... self.dim = dim
... self.first_recurrent_layer = SimpleRecurrent(
... dim=self.dim, activation=Identity(), name='first_recurrent_layer',
... weights_init=initialization.Identity())
... self.second_recurrent_layer = SimpleRecurrent(
... dim=self.dim, activation=Identity(), name='second_recurrent_layer',
... weights_init=initialization.Identity())
... self.children = [self.first_recurrent_layer,
... self.second_recurrent_layer]
...
... @recurrent(sequences=['inputs'], contexts=[],
... states=['first_states', 'second_states'],
... outputs=['first_states', 'second_states'])
... def apply(self, inputs, first_states=None, second_states=None):
... first_h = self.first_recurrent_layer.apply(
... inputs=inputs, states=first_states + second_states, iterate=False)
... second_h = self.second_recurrent_layer.apply(
... inputs=first_h, states=second_states, iterate=False)
... return first_h, second_h
...
... def get_dim(self, name):
... return (self.dim if name in ('inputs', 'first_states', 'second_states')
... else super(FeedbackRNN, self).get_dim(name))
...
>>> x = tensor.tensor3('x')
>>> feedback = FeedbackRNN(dim=3)
>>> feedback.initialize()
>>> first_h, second_h = feedback.apply(inputs=x)
>>> f = theano.function([x], [first_h, second_h])
>>> for states in f(numpy.ones((3, 1, 3), dtype=theano.config.floatX)):
... print(states)
[[[1. 1. 1.]]

 [[3. 3. 3.]]

 [[8. 8. 8.]]]
[[[1. 1. 1.]]

 [[4. 4. 4.]]

 [[12. 12. 12.]]]...

There’s a lot of things going on here!

We defined a recurrent brick class called FeedbackRNN whose constructor
initializes two bricks.recurrent.SimpleRecurrent bricks as its
children.

The class has a get_dim method whose purpose is to tell the dimensionality
of each input to the brick’s apply method.

The core of the class resides in its apply method. The @recurrent
decorator is used to specify which of the arguments to the method are sequences
to iterate over, what is returned when the method is called and which of those
returned values correspond to recurrent states. Its
relationship with the inputs and outputs arguments to the
@application decorator is as follows:

	outputs, like in @application, defines everything that’s returned
by apply, including recurrent outputs

	states is a subset of outputs that corresponds to recurrent outputs,
which means that the union of sequences and states forms what would
be inputs in @application

Notice how no call to theano.scan() [http://theano.readthedocs.org/en/latest/library/scan.html#theano.scan] is being made. This is because the
implementation of apply is responsible for computing one time step of the
recurrent application of the brick. It takes states at time \(t - 1\) and
inputs at time \(t\) and produces the output for time \(t\). The rest is
all handled by the @recurrent decorator behind the scenes.

This is why the iterate argument of the apply method is so useful: it
allows to combine multiple recurrent brick applications within another apply
implementation.

Tip

When looking at a recurrent brick’s documentation, keep in mind that the
parameters to its apply method are explained in terms of a single
iteration, i.e. with the assumption that iterate = False.

 Copyright 2014-2015, Université de Montréal.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Blocks 0.0.1 documentation

Configuration

Blocks allows module-wide configuration values to be set using a YAML [http://yaml.org/]
configuration file and environment variables [https://en.wikipedia.org/wiki/Environment_variable]. Environment variables
override the configuration file which in its turn overrides the defaults.

The configuration is read from ~/.blocksrc if it exists. A custom
configuration file can be used by setting the BLOCKS_CONFIG environment
variable. A configuration file is of the form:

data_path: /home/user/datasets

If a setting is not configured and does not provide a default, a
ConfigurationError is raised when it is
accessed.

Configuration values can be accessed as attributes of
blocks.config.config.

>>> from blocks.config import config
>>> print(config.default_seed)
1

The following configurations are supported:

	
default_seed

	The seed used when initializing random number generators (RNGs) such as
NumPy RandomState [http://docs.scipy.org/doc/numpy/reference/generated/numpy.random.RandomState.html#numpy.random.RandomState] objects as well as Theano’s
MRG_RandomStreams [http://theano.readthedocs.org/en/latest/library/sandbox/rng_mrg.html#theano.sandbox.rng_mrg.MRG_RandomStreams] objects. Must be an
integer. By default this is set to 1.

	
recursion_limit

	The recursion max depth limit used in
MainLoop as well as in other situations when
deep recursion is required. The most notable example of such a situation
is pickling or unpickling a complex structure with lots of objects, such
as a big Theano computation graph.

	
profile, BLOCKS_PROFILE

	A boolean value which determines whether to print profiling information
at the end of a call to MainLoop.run().

	
log_backend

	The backend to use for logging experiments. Defaults to python, which
stores the log as a Python object in memory. The other option is
sqlite.

	
sqlite_database, BLOCKS_SQLITEDB

	The SQLite database file to use.

	
max_blob_size

	The maximum size of an object to store in an SQLite database in bytes.
Objects beyond this size will trigger a warning. Defaults to 4 kilobyte.

	
temp_dir

	The directory in which Blocks will create temporary files. If
unspecified, the platform-dependent default chosen by the Python
tempfile module is used.

	
class blocks.config.ConfigurationError

	Bases: exceptions.Exception

Error raised when a configuration value is requested but not set.

 Copyright 2014-2015, Université de Montréal.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Blocks 0.0.1 documentation

Serialization

The ability to save models and their training progress is important for two
reasons:

	Neural nets can take days or even weeks to train. If training is
interrupted during this time, it is important that we can continue from
where we left off.

	We need the ability to save models in order to share them with others or save
them for later use or inspection.

These two goals come with differing requirements, which is why Blocks
implements a custom serialization approach that tries to meet both needs in the
dump() and load() functions.

Pickling the training loop

Warning

Due to the complexity of serializing a Python objects as large as the main
loop, (un)pickling will sometimes fail because it exceeds the default maximum
recursion depth set in Python. Increasing the limit should fix the problem.

When checkpointing, Blocks pickles the entire main loop,
effectively serializing the exact state of the model as well as the training
state (iteration state, extensions, etc.). Technically there are some
difficulties with this approach:

	Some Python objects cannot be pickled e.g. file handles, generators,
dynamically generated classes, nested classes, etc.

	The pickling of Theano objects can be problematic.

	We do not want to serialize the training data kept in memory, since this can
be prohibitively large.

Blocks addresses these problems by avoiding certain data structures such as
generators and nested classes (see the developer guidelines) and overriding the pickling behaviour of some
objects, making the pickling of the main loop possible.

However, pickling can be problematic for long-term storage of models, because

	Unpickling depends on the libraries used being unchanged. This means that if
you updated Blocks, Theano, etc. to a new version where the interface has
changed, loading your training progress could fail.

	The unpickling of Theano objects can be problematic, especially when
transferring from GPU to CPU or vice versa.

	It is not possible on Python 2 to unpickle objects that were pickled in Python
3.

Parameter saving

This is why Blocks intercepts the pickling of all Theano shared variables (which
includes the parameters), and stores them as separate NPY [http://docs.scipy.org/doc/numpy-dev/neps/npy-format.html] files. The resulting
file is a ZIP arcive that contains the pickled main loop as well as a collection
of NumPy arrays. The NumPy arrays (and hence parameters) in the ZIP file can be
read, across platforms, using the numpy.load() [http://docs.scipy.org/doc/numpy/reference/generated/numpy.load.html#numpy.load] function, making it
possible to inspect and load parameter values, even if the unpickling of the
main loop fails.

 Copyright 2014-2015, Université de Montréal.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Blocks 0.0.1 documentation

API Reference

Warning

This API reference is currently nothing but a dump of docstrings, ordered
alphabetically.

The API reference contains detailed descriptions of the different end-user
classes, functions, methods, etc. you will need to work with Blocks.

Note

This API reference only contains end-user documentation. If you are
looking to hack away at Blocks’ internals, you will find more detailed
comments in the source code.

	Algorithms

	Bricks
	Convolutional bricks

	Routing bricks

	Recurrent bricks

	Attention bricks

	Sequence generators

	Cost bricks

	Wrapper bricks

	Extensions
	Monitoring extensions

	Training

	Serialization

	Filter

	Computational graph

	Parameter initialization

	Logging

	Main loop

	Model

	Variable roles
	Roles

	Brick selectors

	Theano expressions

	Utilities

 Copyright 2014-2015, Université de Montréal.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Blocks 0.0.1 documentation

 	API Reference

Algorithms

 Copyright 2014-2015, Université de Montréal.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Blocks 0.0.1 documentation

 	API Reference

Bricks

	Convolutional bricks

	Routing bricks

	Recurrent bricks

	Attention bricks

	Sequence generators

	Cost bricks

Convolutional bricks

Routing bricks

Recurrent bricks

Attention bricks

Sequence generators

Cost bricks

Wrapper bricks

 Copyright 2014-2015, Université de Montréal.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Blocks 0.0.1 documentation

 	API Reference

Extensions

	
class blocks.extensions.CallbackName

	Bases: str [http://docs.python.org/3.4/library/stdtypes.html#str]

A name of a TrainingExtension callback.

	Raises:	
	class:TypeError on comparison with a string which is not a name of

	TrainingExtension callback.

	
class blocks.extensions.FinishAfter(**kwargs)

	Bases: blocks.extensions.SimpleExtension

Finishes the training process when triggered.

	
do(which_callback, *args)

	

	
class blocks.extensions.Predicate(condition, num)

	Bases: object [http://docs.python.org/3.4/library/functions.html#object]

	
class blocks.extensions.Printing(**kwargs)

	Bases: blocks.extensions.SimpleExtension

Prints log messages to the screen.

	
do(which_callback, *args)

	

	
class blocks.extensions.ProgressBar(**kwargs)

	Bases: blocks.extensions.TrainingExtension

Display a progress bar during training.

This extension tries to infer the number of iterations per epoch
by querying the num_batches, num_examples and batch_size
attributes from the IterationScheme. When this information is
not available it will display a simplified progress bar that does not
include the estimated time until the end of this epoch.

Notes

This extension should be run before other extensions that print to
the screen at the end or at the beginning of the epoch (e.g. the
Printing extension). Placing ProgressBar before these
extension will ensure you won’t get intermingled output on your
terminal.

	
after_epoch()

	

	
before_batch(batch)

	

	
before_epoch()

	

	
create_bar()

	Create a new progress bar.

Calls self.get_iter_per_epoch(), selects an appropriate
set of widgets and creates a ProgressBar.

	
get_iter_per_epoch()

	Try to infer the number of iterations per epoch.

	
class blocks.extensions.SimpleExtension(**kwargs)

	Bases: blocks.extensions.TrainingExtension

A base class for simple extensions.

All logic of simple extensions is concentrated in the method
do(). This method is called when certain conditions are
fulfilled. The user can manage the conditions by calling the
add_condition method and by passing arguments to the constructor. In
addition to specifying when do() is called, it is possible to
specify additional arguments passed to do() under different
conditions.

	Parameters:	
	before_training (bool [http://docs.python.org/3.4/library/functions.html#bool]) – If True, do() is invoked before training.

	before_first_epoch (bool [http://docs.python.org/3.4/library/functions.html#bool]) – If True, do() is invoked before the first epoch.

	before_epoch (bool [http://docs.python.org/3.4/library/functions.html#bool]) – If True, do() is invoked before every epoch.

	on_resumption (bool, optional) – If True, do() is invoked when training is resumed.

	on_interrupt (bool, optional) – If True, do() is invoked when training is interrupted.

	after_epoch (bool [http://docs.python.org/3.4/library/functions.html#bool]) – If True, do() is invoked after every epoch.

	after_batch (bool [http://docs.python.org/3.4/library/functions.html#bool]) – If True, do() is invoked after every batch.

	after_training (bool [http://docs.python.org/3.4/library/functions.html#bool]) – If True, do() is invoked after training.

	after_n_epochs (int, optional) – If not None, do() is invoked when after_n_epochs
epochs are done.

	every_n_epochs (int, optional) – If not None, do() is invoked after every n-th epoch.

	after_n_batches (int, optional) – If not None, do() is invoked when after_n_batches
batches are processed.

	every_n_batches (int, optional) – If not None, do() is invoked after every n-th batch.

	
BOOLEAN_TRIGGERS = frozenset(['after_batch', 'after_training', 'before_epoch', 'before_training', 'before_first_epoch', 'after_epoch', 'on_interrupt', 'on_resumption'])

	

	
INTEGER_TRIGGERS = frozenset(['every_n_batches', 'after_n_epochs', 'every_n_epochs', 'after_n_batches'])

	

	
add_condition(callbacks_names, predicate=None, arguments=None)

	Adds a condition under which a do() is called.

	Parameters:	
	callbacks_names (list of str) – The names of the callback in which the method.

	predicate (function [http://theano.readthedocs.org/en/latest/library/compile/function.html#module-function]) – A predicate function the main loop’s log as the
single parameter and returning True when the method
should be called and False when should not. If None,
an always True predicate is used.

	arguments (iterable) – Additional arguments to be passed to do(). They will
be concatenated with the ones passed from the main loop
(e.g. the batch in case of after_epoch callback).

	Returns:	

	Return type:	The extension object (allow chaining calls)

	
dispatch(callback_invoked, *from_main_loop)

	Check conditions and call the do() method.

Also adds additional arguments if specified for a condition.

Todo

Add a check for a situation when several conditions are met
at the same time and do something.

	
do(which_callback, *args)

	Does the job of the training extension.

	Parameters:	
	which_callback (str [http://docs.python.org/3.4/library/stdtypes.html#str]) – The name of the callback in the context of which do() is
run.

	*args (tuple [http://docs.python.org/3.4/library/stdtypes.html#tuple]) – The arguments from the main loop concatenated with additional
arguments from user.

Notes

Subclasses must accept additional positional arguments in their
call signature for this method, even if they are unused.

	
static parse_args(which_callback, args)

	Separates do() arguments coming from different sources.

When a do() method receives arguments from both the main
loop (e.g. a batch) and the user, it often has to separate them.
This method is the right tool to use.

	Parameters:	
	which_callback (str [http://docs.python.org/3.4/library/stdtypes.html#str]) – The name of the callback.

	args (iterable) – The arguments.

	Returns:	
	from_main_loop (tuple)

	from_user (tuple)

	
set_conditions(**kwargs)

	Set the conditions for which this extension should be run.

	Parameters:	
	the (See) –

	parameters. (possible) –

	
class blocks.extensions.Timing(**kwargs)

	Bases: blocks.extensions.SimpleExtension

Add timing information to the log.

This adds data about the time spent in the algorithm’s
process_batch() method as well as the time spent
reading data per batch or epoch. It also reports the time spent
initializing the algorithm.

Notes

Add this extension before the Printing extension.

This extension does not enable full profiling information. To see a
full profile of the main loop at the end of training, use the
profile configuration (e.g. by setting BLOCKS_PROFILE=true).

	
do(which_callback, *args)

	

	
class blocks.extensions.TrainingExtension(name=None)

	Bases: object [http://docs.python.org/3.4/library/functions.html#object]

The base class for training extensions.

An extension is a set of callbacks sharing a joint context that are
invoked at certain stages of the training procedure. These callbacks
typically add a certain functionality to the training procedure,
e.g. running validation on auxiliary datasets or early stopping.

	Parameters:	name (str, optional) – The name of the extension. The names are useful in order to
distinguish between several extensions of the same type that
belongs to the same main loop. By default the name is set to
the name of the class.

	
main_loop

	MainLoop

The main loop to which the extension belongs.

	
name

	str

The name of the extension.

	
after_batch(batch)

	The callback invoked after a batch is processed.

	Parameters:	batch (object [http://docs.python.org/3.4/library/functions.html#object]) – The data batch just processed.

	
after_epoch()

	The callback invoked after an epoch is finished.

	
after_training()

	The callback invoked after training is finished.

	
before_batch(batch)

	The callback invoked before a batch is processed.

	Parameters:	batch (object [http://docs.python.org/3.4/library/functions.html#object]) – The data batch to be processed.

	
before_epoch()

	The callback invoked before starting an epoch.

	
before_training()

	The callback invoked before training is started.

	
dispatch(callback_name, *args)

	Runs callback with the given name.

The reason for having this method is to allow
the descendants of the TrainingExtension to intercept
callback invocations and do something with them, e.g. block
when certain condition does not hold. The default implementation
simply invokes the callback by its name.

	
main_loop

	

	
on_error()

	The callback invoked when an error occurs.

	
on_interrupt()

	The callback invoked when training is interrupted.

	
on_resumption()

	The callback invoked after training is resumed.

	
blocks.extensions.always_true(log)

	

	
blocks.extensions.callback(func)

	

	
blocks.extensions.has_done_epochs(log)

	

Monitoring extensions

Training

	
class blocks.extensions.training.SharedVariableModifier(parameter, function, **kwargs)

	Bases: blocks.extensions.SimpleExtension

Adjusts shared variable parameter using some function.

Applies a function to compute the new value of a shared parameter each
iteration.

This class can be used to adapt over the training process parameters
like learning rate, momentum, etc.

	Parameters:	
	parameter (TensorSharedVariable) – Shared variable to be adjusted

	function (callable [http://docs.python.org/3.4/library/functions.html#callable]) – A function which outputs a numeric value to which the
given shared variable will be set and may take one or two
arguments.

In the first case, function that takes the total number of
iterations done (int) as an input.

In the second case, it is a function which takes number of
iterations done (int) and old value of the shared variable
(with the same dtype as parameter).

	
do(which_callback, *args)

	

	
class blocks.extensions.training.TrackTheBest(record_name, notification_name=None, choose_best=<built-in function min>, **kwargs)

	Bases: blocks.extensions.SimpleExtension

Check if a log quantity has the minimum/maximum value so far.

	Parameters:	
	record_name (str [http://docs.python.org/3.4/library/stdtypes.html#str]) – The name of the record to track.

	notification_name (str, optional) – The name for the record to be made in the log when the current
value of the tracked quantity is the best so far. It not given,
‘record_name’ plus “best_so_far” suffix is used.

	choose_best (callable, optional) – A function that takes the current value and the best so far
and return the best of two. By default min() [http://docs.python.org/3.4/library/functions.html#min], which
corresponds to tracking the minimum value.

	
best_name

	str

The name of the status record to keep the best value so far.

	
notification_name

	str

The name of the record written to the log when the current
value of the tracked quantity is the best so far.

Notes

In the likely case that you are relying on another extension to
add the tracked quantity to the log, make sure to place this
extension after the extension that writes the quantity to the log
in the extensions argument to blocks.main_loop.MainLoop.

	
do(which_callback, *args)

	

Serialization

 Copyright 2014-2015, Université de Montréal.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Blocks 0.0.1 documentation

 	API Reference

Filter

 Copyright 2014-2015, Université de Montréal.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Blocks 0.0.1 documentation

 	API Reference

Computational graph

 Copyright 2014-2015, Université de Montréal.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Blocks 0.0.1 documentation

 	API Reference

Parameter initialization

	
class blocks.initialization.Constant(constant)

	Bases: blocks.initialization.NdarrayInitialization

Initialize parameters to a constant.

The constant may be a scalar or a ndarray [http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] of any shape
that is broadcastable with the requested parameter arrays.

	Parameters:	constant (ndarray [http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – The initialization value to use. Must be a scalar or an ndarray (or
compatible object, such as a nested list) that has a shape that is
broadcastable with any shape requested by initialize.

	
generate(rng, shape)

	

	
class blocks.initialization.Identity(mult=1)

	Bases: blocks.initialization.NdarrayInitialization

Initialize to the identity matrix.

Only works for 2D arrays. If the number of columns is not equal to the
number of rows, the array will be truncated or padded with zeros.

	Parameters:	mult (float, optional) – Multiply the identity matrix with a scalar. Defaults to 1.

	
generate(rng, shape)

	

	
class blocks.initialization.IsotropicGaussian(std=1, mean=0)

	Bases: blocks.initialization.NdarrayInitialization

Initialize parameters from an isotropic Gaussian distribution.

	Parameters:	
	std (float, optional) – The standard deviation of the Gaussian distribution. Defaults to 1.

	mean (float, optional) – The mean of the Gaussian distribution. Defaults to 0

Notes

Be careful: the standard deviation goes first and the mean goes
second!

	
generate(rng, shape)

	

	
class blocks.initialization.NdarrayInitialization

	Bases: object [http://docs.python.org/3.4/library/functions.html#object]

Base class specifying the interface for ndarray initialization.

	
generate(rng, shape)

	Generate an initial set of parameters from a given distribution.

	Parameters:	
	rng (numpy.random.RandomState [http://docs.scipy.org/doc/numpy/reference/generated/numpy.random.RandomState.html#numpy.random.RandomState]) –

	shape (tuple [http://docs.python.org/3.4/library/stdtypes.html#tuple]) – A shape tuple for the requested parameter array shape.

	Returns:	output –
An ndarray with values drawn from the distribution specified by
this object, of shape shape, with dtype
config.floatX [http://theano.readthedocs.org/en/latest/library/config.html#config.floatX].

	Return type:	ndarray [http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
initialize(var, rng, shape=None)

	Initialize a shared variable with generated parameters.

	Parameters:	
	var (object [http://docs.python.org/3.4/library/functions.html#object]) – A Theano shared variable whose value will be set with values
drawn from this NdarrayInitialization instance.

	rng (numpy.random.RandomState [http://docs.scipy.org/doc/numpy/reference/generated/numpy.random.RandomState.html#numpy.random.RandomState]) –

	shape (tuple [http://docs.python.org/3.4/library/stdtypes.html#tuple]) – A shape tuple for the requested parameter array shape.

	
class blocks.initialization.Orthogonal(scale=1)

	Bases: blocks.initialization.NdarrayInitialization

Initialize a random orthogonal matrix.

Only works for 2D arrays.

	Parameters:	
	scale (float, optional) – Multiply the resulting matrix with a scalar. Defaults to 1.
For a discussion of the importance of scale for training time
and generalization refer to [Saxe2013].

	. – [Saxe2014] Saxe, A.M., McClelland, J.L., Ganguli, S., 2013.
Exact solutions to the nonlinear dynamics of learning in deep
linear neural networks.
arXiv:1312.6120 [cond-mat, q-bio, stat].

	
generate(rng, shape)

	

	
class blocks.initialization.Sparse(num_init, weights_init, sparse_init=None)

	Bases: blocks.initialization.NdarrayInitialization

Initialize only a fraction of the weights, row-wise.

	Parameters:	
	num_init (int or float) – If int, this is the number of weights to initialize per row. If
float, it’s the fraction of the weights per row to initialize.

	weights_init (NdarrayInitialization instance) – The initialization scheme to initialize the weights with.

	sparse_init (NdarrayInitialization instance, optional) – What to set the non-initialized weights to (0. by default)

	
generate(rng, shape)

	

	
class blocks.initialization.Uniform(mean=0.0, width=None, std=None)

	Bases: blocks.initialization.NdarrayInitialization

Initialize parameters from a uniform distribution.

	Parameters:	
	mean (float, optional) – The mean of the uniform distribution (i.e. the center of mass for
the density function); Defaults to 0.

	width (float, optional) – One way of specifying the range of the uniform distribution. The
support will be [mean - width/2, mean + width/2]. Exactly one
of width or std must be specified.

	std (float, optional) – An alternative method of specifying the range of the uniform
distribution. Chooses the width of the uniform such that random
variates will have a desired standard deviation. Exactly one of
width or std must be specified.

	
generate(rng, shape)

	

 Copyright 2014-2015, Université de Montréal.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Blocks 0.0.1 documentation

 	API Reference

Logging

 Copyright 2014-2015, Université de Montréal.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Blocks 0.0.1 documentation

 	API Reference

Main loop

 Copyright 2014-2015, Université de Montréal.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Blocks 0.0.1 documentation

 	API Reference

Model

 Copyright 2014-2015, Université de Montréal.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Blocks 0.0.1 documentation

 	API Reference

Variable roles

	
blocks.roles.add_role(var, role)

	Add a role to a given Theano variable.

	Parameters:	
	var (TensorVariable) – The variable to assign the new role to.

	role (VariableRole instance) –

Notes

Some roles are subroles of others (e.g. WEIGHT is a subrole
of PARAMETER). This function will not add a role if a more
specific role has already been added. If you need to replace a role
with a parent role (e.g. replace WEIGHT with
PARAMETER) you must do so manually.

Examples

>>> from theano import tensor
>>> W = tensor.matrix()
>>> from blocks.roles import PARAMETER, WEIGHT
>>> add_role(W, PARAMETER)
>>> print(*W.tag.roles)
PARAMETER
>>> add_role(W, WEIGHT)
>>> print(*W.tag.roles)
WEIGHT
>>> add_role(W, PARAMETER)
>>> print(*W.tag.roles)
WEIGHT

Roles

All roles are implemented as subclasses of VariableRole.

	
class blocks.roles.VariableRole

	Base class for all variable roles.

The actual roles are instances of the different subclasses of
VariableRole. They are:

	
blocks.roles.INPUT = INPUT

	The input of a Brick

	
blocks.roles.OUTPUT = OUTPUT

	The output of a Brick

	
blocks.roles.AUXILIARY = AUXILIARY

	Variables added to the graph as annotations

	
blocks.roles.COST = COST

	A scalar cost that can be used to train or regularize

	
blocks.roles.PARAMETER = PARAMETER

	A parameter of the model

	
blocks.roles.WEIGHT = WEIGHT

	The weight matrices of linear transformations

	
blocks.roles.BIAS = BIAS

	Biases of linear transformations

	
blocks.roles.FILTER = FILTER

	The filters (kernels) of a convolution operation

 Copyright 2014-2015, Université de Montréal.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Blocks 0.0.1 documentation

 	API Reference

Brick selectors

 Copyright 2014-2015, Université de Montréal.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Blocks 0.0.1 documentation

 	API Reference

Theano expressions

	
blocks.theano_expressions.hessian_times_vector(gradient, parameter, vector, r_op=False)

	Return an expression for the Hessian times a vector.

	Parameters:	
	gradient (TensorVariable) – The gradient of a cost with respect to parameter

	parameter (TensorVariable) – The parameter with respect to which to take the gradient

	vector (TensorVariable) – The vector with which to multiply the Hessian

	r_op (bool, optional) – Whether to use Rop() or not. Defaults to
False. Which solution is fastest normally needs to be
determined by profiling.

	
blocks.theano_expressions.l2_norm(tensors)

	Computes the total L2 norm of a set of tensors.

Converts all operands to TensorVariable
(see as_tensor_variable()).

	Parameters:	tensors (iterable of TensorVariable (or compatible)) – The tensors.

 Copyright 2014-2015, Université de Montréal.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Blocks 0.0.1 documentation

 	API Reference

Utilities

 Copyright 2014-2015, Université de Montréal.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Blocks 0.0.1 documentation

Development

We want to encourage everyone to contribute to the development of Blocks. To
ensure the codebase is of high quality, we ask all new developers to have a
quick read through these rules to make sure that any code you contribute will be
easy to merge!

[image: ../_images/code_quality.png]

Formatting guidelines

Blocks follows the PEP8 style guide [https://www.python.org/dev/peps/pep-0008/] closely, so please make sure you are
familiar with it. Our Travis CI buildbot [https://travis-ci.org/mila-udem/blocks] runs flake8 [https://pypi.python.org/pypi/flake8] as part of every build,
which checks for PEP8 compliance (using the pep8 [https://pypi.python.org/pypi/pep8] tool) and for some common
coding errors using pyflakes [https://pypi.python.org/pypi/pyflakes]. You might want to install and run flake8 [https://pypi.python.org/pypi/flake8] on your
code before submitting a PR to make sure that your build doesn’t fail because of
e.g. a bit of extra whitespace.

Note that passing flake8 [https://pypi.python.org/pypi/flake8] does not necessarily mean that your code is PEP8
compliant! Some guidelines which aren’t checked by flake8 [https://pypi.python.org/pypi/flake8]:

	Imports should be grouped [https://www.python.org/dev/peps/pep-0008/#imports] into standard library, third party, and local
imports with a blank line in between groups.

	Variable names should be explanatory and unambiguous.

There are also some style guideline decisions that were made specifically for
Blocks:

	Do not rename imports i.e. do not use import theano.tensor as T or
import numpy as np.

	Direct imports, import ..., precede from ... import ... statements.

	Imports are otherwise listed alphabetically.

	Don’t recycle variable names (i.e. don’t use the same variable name to refer
to different things in a particular part of code), especially when they are
arguments to functions.

	Group trivial attribute assignments from arguments and keyword arguments
together, and separate them from remaining code with a blank line. Avoid the
use of implicit methods such as self.__dict__.update(locals()).

class Foo(object):
 def __init__(self, foo, bar, baz=None, **kwargs):
 super(Foo, self).__init__(**kwargs)
 if baz is None:
 baz = []

 self.foo = foo
 self.bar = bar
 self.baz = baz

Code guidelines

Some guidelines to keep in mind when coding for Blocks. Some of these are simply
preferences, others stem from particular requirements we have e.g. in order to
serialize training progress, support Python 2 and 3 simultaneously, etc.

Validating function arguments

In general, be Pythonic and rely on duck typing [https://en.wikipedia.org/wiki/Duck_typing].

When I see a bird that walks like a duck and swims like a duck and quacks
like a duck, I call that bird a duck.

James Whitcomb Riley

That is, avoid trivial checks such as

isinstance(var, numbers.Integral)
isinstance(var, (tuple, list))

in cases where any number (like a float without a fractional part or a NumPy
scalar) or iterable (like a dictionary view, custom iterator) would work too.

If you need to perform some sort of input validation, don’t use assert
statements. Raise a ValueError instead. assert statements should
only be used for sanity tests [https://en.wikipedia.org/wiki/Assertion_%28software_development%29#Comparison_with_error_handling] i.e. they should never be triggered, unless
there is a bug in the code.

Abstract classes

If a class is an abstract base class [https://en.wikipedia.org/wiki/Class_%28computer_programming%29#Abstract_and_concrete], use Python’s abc [https://docs.python.org/3/library/abc.html] to mark it as such.

from abc import ABCMeta
from six import add_metaclass
@add_metaclass(ABCMeta)
class Abstract(object):
 pass

Our documentation generator (Sphinx [http://sphinx-doc.org/] with the autodoc [http://sphinx-doc.org/ext/autodoc.html] extension, running on
Read the Docs [https://readthedocs.org/]) doesn’t recognize classes which inherit the ABCMeta
metaclass as abstract and will try to instantiate them, causing errors when
building documentation. To prevent this, make sure to always use the
add_metaclass decorator, regardless of the parent.

Python 2 and 3

Blocks aims to be both Python 2 and Python 3 compliant using a single code-base,
without using 2to3 [https://docs.python.org/2/library/2to3.html]. There are many online resources which discuss the writing
of compatible code. For a quick overview see the cheatsheet from Python
Charmers [http://python-future.org/compatible_idioms.html]. For non-trivial cases, we use the six [https://pythonhosted.org/six/] compatibility library.

Documentation should be written to be Python 3 compliant.

Reraising exceptions

When catching exceptions, use the reraise_as() function to
reraise the exception (optionally with a new message or as a different type).
Not doing so clobbers the original traceback [http://www.ianbicking.org/blog/2007/09/re-raising-exceptions.html], making it impossible to use
pdb to debug the problems.

Serialization

To ensure the reproducibility of scientific experiments Blocks tries to make
sure that stopping and resuming training doesn’t affect the final results. In
order to do so it takes a radical approach, serializing the entire training
state using pickle [https://docs.python.org/3/library/pickle.html]. Some things cannot be pickled, so their use should be
avoided when the object will be pickled as part of the main loop:

	Lambda functions

	Iterators and generators (use picklable_itertools [https://github.com/dwf/picklable_itertools])

	References to methods as attributes

	Any variable that lies outside of the global namespace e.g. nested functions

	Dynamically generated classes (possible [https://stackoverflow.com/questions/4647566/pickle-a-dynamically-parameterized-sub-class] but complicated)

Mutable types as keyword argument defaults

A common source of mysterious bugs is the use of mutable types as defaults for
keyword arguments.

class Foo(object):
 def __init__(self, bar=[]):
 bar.append('baz')
 self.bar = bar

Initializing two instances of this class results in two objects sharing the same
attribute bar with the value ['baz', 'baz'], which is often not what was
intended. Instead, use:

class Foo(object):
 def __init__(self, bar=None):
 if bar is None:
 bar = []
 bar.append('baz')
 self.bar = bar

Writing error messages

Comprehensive error messages can be a great way to inform users of what could
have gone wrong. However, lengthy error messages can clutter code, and
implicitly concatenated strings over multiple lines are frustrating to edit. To
prevent this, use a separate triple-quoted string with escaped newlines to
store the detailed explanation of your error. Keep a terse error message
directly in the code though, so that someone reading the code still knows what
the error is being raised for.

informative_error = """

You probably passed the wrong keyword argument, which caused this error. \
Please pass `b` instead of `{value}`, and have a look at the documentation \
of the `is_b` method for details."""

def is_b(value):
 """Raises an error if the value is not 'b'."""
 if value != 'b':
 raise ValueError("wrong value" + informative_error.format(value))
 return value

Unit testing

Blocks uses unit testing to ensure that individual parts of the library behave
as intended. It’s also essential in ensuring that parts of the library are not
broken by proposed changes.

All new code should be accompanied by extensive unit tests. Whenever a pull
request is made, the full test suite is run on Travis CI [https://travis-ci.org/mila-udem/blocks], and pull requests
are not merged until all tests pass. Coverage analysis is performed using
coveralls [https://coveralls.io/r/mila-udem/blocks]. Please make sure that at the very least your unit tests cover the
core parts of your committed code. In the ideal case, all of your code should be
unit tested.

If you are fixing a bug, please be sure to add a unit test to make sure that the
bug does not get re-introduced later on.

The test suite can be executed locally using nose2 [https://readthedocs.org/projects/nose2/] [1].

	[1]	For all tests but the doctests, nose [http://nose.readthedocs.org/en/latest/] can also be used.

Writing and building documentation

The documentation guidelines outline how to write documentation
for Blocks, and how to build a local copy of the documentation for testing
purposes.

Internal API

The development API reference contains documentation on
the internal classes that Blocks uses. If you are not planning on contributing
to Blocks, have a look at the user API reference instead.

Installation

See the instructions at the bottom of the installation instructions.

Sending a pull request

See our pull request workflow for a refresher on the
general recipe for sending a pull request to Blocks.

 Copyright 2014-2015, Université de Montréal.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Blocks 0.0.1 documentation

 	Development

Internal API

	Bricks

	Extensions

	Utils

Bricks

Extensions

	
class blocks.extensions.predicates.OnLogRecord(record_name)

	Bases: object [http://docs.python.org/3.4/library/functions.html#object]

Trigger a callback when a certain log record is found.

	Parameters:	record_name (str [http://docs.python.org/3.4/library/stdtypes.html#str]) – The record name to check.

Utils

 Copyright 2014-2015, Université de Montréal.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Blocks 0.0.1 documentation

 	Development

Building documentation

If you’ve made significant changes to the documentation, you can build a local
to see how your changes are rendered. You will need to install Sphinx [http://sphinx-doc.org/], the
Napoleon [http://sphinxcontrib-napoleon.readthedocs.org/en/latest/example_numpy.html] extension (to enable NumPy docstring support), and the Read the Docs
theme [https://github.com/snide/sphinx_rtd_theme]. You can do this by installing the optional docs requirements:

$ pip install --upgrade git+git://github.com/user/blocks.git#egg=blocks[docs]

After the requirements have been installed, you can build a copy of the
documentation by running the following command from the root blocks
directory.

$ sphinx-build -b html docs docs/_build/html

Docstrings

Blocks follows the NumPy docstring standards [https://github.com/numpy/numpy/blob/master/doc/HOWTO_DOCUMENT.rst.txt]. For a quick introduction, have
a look at the NumPy [https://github.com/numpy/numpy/blob/master/doc/example.py] or Napoleon [http://sphinxcontrib-napoleon.readthedocs.org/en/latest/example_numpy.html] examples of compliant docstrings. A few common
mistakes to avoid:

	There is no line break after the opening quotes (""").

	There is an empty line before the closing quotes (""").

	The summary should not be more than one line.

The docstrings are formatted using reStructuredText [http://docutils.sourceforge.net/rst.html], and can make use of all
the formatting capabilities this provides. They are rendered into HTML
documentation using the Read the Docs [https://readthedocs.org/] service. After code has been merged,
please ensure that documentation was built successfully and that your docstrings
rendered as you intended by looking at the online documentation [http://blocks.readthedocs.org/], which is
automatically updated.

Writing doctests [https://docs.python.org/2/library/doctest.html] is encouraged, and they are run as part of the test suite.
They should use Python 3 syntax.

References and Intersphinx

Sphinx allows you to reference other objects [http://sphinx-doc.org/domains.html#python-roles] in the framework. This
automatically creates links to the API documentation of that object (if it
exists).

This is a link to :class:`SomeClass` in the same file. If you want to
reference an object in another file, you can use a leading dot to tell
Sphinx to look in all files e.g. :meth:`.SomeClass.a_method`.

Intersphinx is an extension that is enabled which allows to you to reference
the documentation of other projects such as Theano, NumPy and Scipy.

The input to a method can be of the type :class:`~numpy.ndarray`. Note that
in this case we need to give the full path. The tilde (~) tells Sphinx not
to render the full path (numpy.ndarray), but only the object itself
(ndarray).

Warning

Because of a bug in Napoleon [https://bitbucket.org/birkenfeld/sphinx-contrib/issue/82/napoleon-return-type-containing-colons-is] you can’t use the reference to a type in the
“Returns” section of your docstring without giving it a name. This doesn’t
render correctly:

Returns

:class:`Brick`
 The returned Brick.

But this does:

Returns

retured_brick : :class:`Brick`
 The returned Brick.

 Copyright 2014-2015, Université de Montréal.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	Blocks 0.0.1 documentation

 	Development

Pull request workflow

Blocks development takes place on GitHub [http://github.com/]; developers (including project
leads!) add new features by sending pull requests [https://help.github.com/articles/using-pull-requests/] from their personal
fork (we operate on the so-called fork & pull [https://help.github.com/articles/using-pull-requests/#fork–pull] model).

This page serves as a “quick reference” for the recommended pull request
workflow. It assumes you are working on a UNIX-like environment with Git
already installed. It is not intended to be an exhaustive tutorial
on Git; there are many of those available.

Before you begin

Create a GitHub account

If you don’t already have one, you should
create yourself a GitHub account [https://github.com/join].

Fork the Blocks repository

Once you’ve set up your account and logged in, you should fork the Blocks
repository to your account by clicking the “Fork” button on the
official repository’s web page [https://github.com/mila-udem/blocks].
More information on forking is available in the GitHub documentation [https://help.github.com/articles/fork-a-repo/].

Clone from your fork

In the side bar of your newly created fork of the Blocks repository, you should
see a field that says HTTPS clone URL above it. Copy that to your clipboard
and run, at the terminal,

$ git clone CLONE_URL

where CLONE_URL is the URL you copied from your GitHub fork.

If you’re doing a lot of development with GitHub you should look into
setting up SSH key authentication [https://help.github.com/categories/ssh/].

Add the official Blocks repository as a remote

In order to keep up with changes to the official Blocks repository, notify
Git of its existence and location by running

$ git remote add upstream https://github.com/mila-udem/blocks.git

You only need to do this once.

Beginning a pull request

Verify that origin points to your fork

Running the command

$ git remote -v | grep origin

should display two lines. The URLs therein should contain your GitHub username.

Update your upstream remote

Your cloned repository stores a local history of the activity in remote
repositories, and only interacts with the Internet when certain commands
are invoked. In order to synchronize the activity in the official Blocks
repository (which Git now knows as upstream) with the local mirror of
the history related to upstream, run

$ git fetch upstream

You should do this before starting every pull request, for reasons that
will become clear below.

Create a new branch for your pull request based on the latest development version of Blocks

In order to create a new branch starting from the latest commit in the
master branch of the official Blocks repository, make sure you’ve fetched
from upstream (see above) and run

$ git checkout -b my_branch_name_for_my_cool_feature upstream/master

Obviously, you’ll probably want to choose a better branch name.

Note that doing this (rather than simply creating a new branch from some
arbtirary point) may save you from a (possibly painful) rebase later on.

Working on your pull request

Make modifications, stage them, and commit them

Repeat until satisfied:

	Make some modifications to the code

	Stage them using git add (git add -p is particularly useful)

	git commit them, alternately git reset to undo staging by
git add.

Push the branch to your fork

$ git push -u origin my_branch_name_for_my_cool_feature

Submitting for review

Send a pull request

This can be done from the GitHub web interface for your fork. See
this documentation from GitHub [https://help.github.com/articles/using-pull-requests/#initiating-the-pull-request] for more information.

Give your pull request an appropriate title which makes it obvious what
the content is. If it is intended to resolve a specific ticket, put “Fixes
#NNN.” in the pull request description field, where NNN is the issue
number. By doing this, GitHub will know to automatically close the issue [https://github.com/blog/1506-closing-issues-via-pull-requests]
when your pull request is merged.

Blocks development occurs in two separate branches: The master branch is the
development branch. If you want to contribute a new feature or change the
behavior of Blocks in any way, please make your pull request to this branch.

The stable branch contains the latest release of Blocks. If you are fixing a
bug (that is present in the latest release), make a pull request to this branch.
If the bug is present in both the master and stable branch, two separate
pull requests are in order. The command git-cherry-pick_ could be useful here.

Incorporating feedback

In order to add additional commits responding to reviewer feedback, simply
follow the instructions above for using git add and git commit, and
finally git push (after running the initial command with -u, you should
simply be able to use git push without any further arguments).

Rebasing

Occasionally you will be asked to rebase your branch against the latest
master. To do this, run (while you have your branch checked out)

$ git fetch upstream && git rebase upstream/master

You may encounter an error message about one or more conflicts. See
GitHub’s help page on the subject [https://help.github.com/articles/resolving-merge-conflicts-after-a-git-rebase/]. Note that after a rebase you will
usually have to overwrite previous commits on your fork’s copy of the
branch with git push --force.

 Copyright 2014-2015, Université de Montréal.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	Blocks 0.0.1 documentation

 Python Module Index

 b

 			

 		
 b	

 	[image: -]
 	
 blocks	

 	
 	
 blocks.config	

 	
 	
 blocks.extensions	

 	
 	
 blocks.extensions.predicates	

 	
 	
 blocks.extensions.training	

 	
 	
 blocks.initialization	

 	
 	
 blocks.log	

 	
 	
 blocks.roles	

 	
 	
 blocks.theano_expressions	

 Copyright 2014-2015, Université de Montréal.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	Blocks 0.0.1 documentation

Index

 A
 | B
 | C
 | D
 | F
 | G
 | H
 | I
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V
 | W

A

 	

 	add_condition() (blocks.extensions.SimpleExtension method)

 	add_role() (in module blocks.roles)

 	after_batch() (blocks.extensions.TrainingExtension method)

 	after_epoch() (blocks.extensions.ProgressBar method)

 	

 	(blocks.extensions.TrainingExtension method)

 	

 	after_training() (blocks.extensions.TrainingExtension method)

 	always_true() (in module blocks.extensions)

 	AUXILIARY (in module blocks.roles)

B

 	

 	before_batch() (blocks.extensions.ProgressBar method)

 	

 	(blocks.extensions.TrainingExtension method)

 	before_epoch() (blocks.extensions.ProgressBar method)

 	

 	(blocks.extensions.TrainingExtension method)

 	before_training() (blocks.extensions.TrainingExtension method)

 	best_name (blocks.extensions.training.TrackTheBest attribute)

 	BIAS (in module blocks.roles)

 	blocks.config (module)

 	blocks.extensions (module)

 	

 	blocks.extensions.predicates (module)

 	blocks.extensions.training (module)

 	blocks.initialization (module)

 	blocks.log (module)

 	blocks.roles (module)

 	blocks.theano_expressions (module)

 	BOOLEAN_TRIGGERS (blocks.extensions.SimpleExtension attribute)

C

 	

 	callback() (in module blocks.extensions)

 	CallbackName (class in blocks.extensions)

 	
 command line option

 	

 	default_seed

 	log_backend

 	max_blob_size

 	profile, BLOCKS_PROFILE

 	recursion_limit

 	sqlite_database, BLOCKS_SQLITEDB

 	temp_dir

 	ConfigurationError (class in blocks.config)

 	

 	Constant (class in blocks.initialization)

 	COST (in module blocks.roles)

 	create_bar() (blocks.extensions.ProgressBar method)

D

 	

 	
 default_seed

 	

 	command line option

 	dispatch() (blocks.extensions.SimpleExtension method)

 	

 	(blocks.extensions.TrainingExtension method)

 	

 	do() (blocks.extensions.FinishAfter method)

 	

 	(blocks.extensions.Printing method)

 	(blocks.extensions.SimpleExtension method)

 	(blocks.extensions.Timing method)

 	(blocks.extensions.training.SharedVariableModifier method)

 	(blocks.extensions.training.TrackTheBest method)

F

 	

 	FILTER (in module blocks.roles)

 	

 	FinishAfter (class in blocks.extensions)

G

 	

 	generate() (blocks.initialization.Constant method)

 	

 	(blocks.initialization.Identity method)

 	(blocks.initialization.IsotropicGaussian method)

 	(blocks.initialization.NdarrayInitialization method)

 	(blocks.initialization.Orthogonal method)

 	(blocks.initialization.Sparse method)

 	(blocks.initialization.Uniform method)

 	

 	get_iter_per_epoch() (blocks.extensions.ProgressBar method)

H

 	

 	has_done_epochs() (in module blocks.extensions)

 	

 	hessian_times_vector() (in module blocks.theano_expressions)

I

 	

 	Identity (class in blocks.initialization)

 	initialize() (blocks.initialization.NdarrayInitialization method)

 	INPUT (in module blocks.roles)

 	

 	INTEGER_TRIGGERS (blocks.extensions.SimpleExtension attribute)

 	IsotropicGaussian (class in blocks.initialization)

L

 	

 	l2_norm() (in module blocks.theano_expressions)

 	

 	
 log_backend

 	

 	command line option

M

 	

 	main_loop (blocks.extensions.TrainingExtension attribute), [1]

 	

 	
 max_blob_size

 	

 	command line option

N

 	

 	name (blocks.extensions.TrainingExtension attribute)

 	NdarrayInitialization (class in blocks.initialization)

 	

 	notification_name (blocks.extensions.training.TrackTheBest attribute)

O

 	

 	on_error() (blocks.extensions.TrainingExtension method)

 	on_interrupt() (blocks.extensions.TrainingExtension method)

 	on_resumption() (blocks.extensions.TrainingExtension method)

 	

 	OnLogRecord (class in blocks.extensions.predicates)

 	Orthogonal (class in blocks.initialization)

 	OUTPUT (in module blocks.roles)

P

 	

 	PARAMETER (in module blocks.roles)

 	parse_args() (blocks.extensions.SimpleExtension static method)

 	Predicate (class in blocks.extensions)

 	

 	Printing (class in blocks.extensions)

 	
 profile, BLOCKS_PROFILE

 	

 	command line option

 	ProgressBar (class in blocks.extensions)

R

 	

 	
 recursion_limit

 	

 	command line option

S

 	

 	set_conditions() (blocks.extensions.SimpleExtension method)

 	SharedVariableModifier (class in blocks.extensions.training)

 	SimpleExtension (class in blocks.extensions)

 	

 	Sparse (class in blocks.initialization)

 	
 sqlite_database, BLOCKS_SQLITEDB

 	

 	command line option

T

 	

 	
 temp_dir

 	

 	command line option

 	Timing (class in blocks.extensions)

 	

 	TrackTheBest (class in blocks.extensions.training)

 	TrainingExtension (class in blocks.extensions)

U

 	

 	Uniform (class in blocks.initialization)

V

 	

 	VariableRole (class in blocks.roles)

W

 	

 	WEIGHT (in module blocks.roles)

 Copyright 2014-2015, Université de Montréal.
 Created using Sphinx 1.3.1.

 _images/plot_cost.png
Plotting example #1

0.14

0.12]

0.08
0.06
0.04]

0.02]

cost

20

40

60

80

T
100

———
120

T
140

_images/plot_a.png
2.8 4

2.6 4

2.4 4

2.2 4

Plotting example #2

a

20

40

60

80

———
100

———
120

—
140

_images/code_quality.png
KEEP N MIND THAT TM
SELF-TAUGHT, S0 MY CODE
MAY BEA LITILE. MESSY.

LEMYE SEE-
T SURE
75 FNE.

\

L. MWOU.

v
THIS 15 LIKE BENG IN
R HOUSE BULLT BY A

CHILD USING NOTHING'
BUT A HATCHET AND A
PICTURE OF A HOUSE.

A

IT'S LIKE A SALAD RECIPE
URITTEN BY A CORPORATE.
LAWYER USING A PHONE

PUMDCORRECT THAT ONLY
KNEW EXCEL FORMULAS,

|

(

ITS LIKE SOMEONE TOOK A
TRANSCRIPT OF A COUPLE
ARGUING AT IKEA AND MADE
RANDOM EDITS UNTIL IT
COMPILED WITHOUT ERRORS|
\ 0Ky TUREFD
ASF/LE?U!DE

_images/mnist.png

search.html

 Navigation

 		
 index

 		
 modules |

 		Blocks 0.0.1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2014-2015, Université de Montréal.
 Created using Sphinx 1.3.1.

_static/comment.png

_static/down-pressed.png

_static/sequence_generator_scheme.png
Legena:
S - states
g - glimpses
r - readouts
y - outputs
f - feedback
C - costs

Dashed rectangle for outputs expresses the fact
that they can be provided by the user (see
BaseSequenceGenerator.cost method)

readout.emit:

contexts

transition.compute_states

_static/ajax-loader.gif

_static/up-pressed.png

_static/plot_cost.png
Plotting example #1

0.14

0.12]

0.08
0.06
0.04]

0.02]

cost

20

40

60

80

T
100

———
120

T
140

_static/plot_a.png
2.8 4

2.6 4

2.4 4

2.2 4

Plotting example #2

a

20

40

60

80

———
100

———
120

—
140

_static/comment-bright.png

_static/down.png

_static/code_quality.png
KEEP N MIND THAT TM
SELF-TAUGHT, S0 MY CODE
MAY BEA LITILE. MESSY.

LEMYE SEE-
T SURE
75 FNE.

\

L. MWOU.

v
THIS 15 LIKE BENG IN
R HOUSE BULLT BY A

CHILD USING NOTHING'
BUT A HATCHET AND A
PICTURE OF A HOUSE.

A

IT'S LIKE A SALAD RECIPE
URITTEN BY A CORPORATE.
LAWYER USING A PHONE

PUMDCORRECT THAT ONLY
KNEW EXCEL FORMULAS,

|

(

ITS LIKE SOMEONE TOOK A
TRANSCRIPT OF A COUPLE
ARGUING AT IKEA AND MADE
RANDOM EDITS UNTIL IT
COMPILED WITHOUT ERRORS|
\ 0Ky TUREFD
ASF/LE?U!DE

_static/up.png

_static/minus.png

_static/comment-close.png

_static/plus.png

_static/file.png

_static/mnist.png

