
blighty Documentation
Release 2.0.0

Gabriele N. Tornetta

Nov 22, 2018

Contents:

1 The blighty project 3

2 Usage 5

3 A clock widget 7

4 Issues 9

5 The brag corner 11
5.1 blighty package . 11

Python Module Index 19

i

ii

blighty Documentation, Release 2.0.0

• genindex

• modindex

• search

Contents: 1

blighty Documentation, Release 2.0.0

2 Contents:

CHAPTER 1

The blighty project

This is the documentation for blighty, a Python package for the creation of widgets for the Linux desktop. The
idea is to replicate the wonders of conky, but with Python support instead of Lua.

3

https://github.com/brndnmtthws/conky

blighty Documentation, Release 2.0.0

4 Chapter 1. The blighty project

CHAPTER 2

Usage

Using blighty is very simple and should come quite natural to you, especially if you already have experience with
Cairo from conky.

All the you need to do is extend one of the Canvas classes provided by the package (e.g. blighty.x11.canvas.
Canvas) and implement the on_draw method.

Start by reading through the documentation of the blighty.x11 module and then make your way to the examples
folder from the GitHub repository.

5

https://github.com/P403n1x87/blighty/tree/master/examples

blighty Documentation, Release 2.0.0

6 Chapter 2. Usage

CHAPTER 3

A clock widget

Here is the example of a simple clock widget:

from blighty import CanvasGravity, brush
from blighty.x11 import Canvas, start_event_loop

import datetime

from math import pi as PI

class Clock(Canvas):
def on_button_pressed(self, button, state, x, y):

self.dispose()

@brush
def hand(ctx, angle, length, thickness):

ctx.save()
ctx.set_source_rgba(1, 1, 1, 1)
ctx.set_line_width(thickness)
ctx.rotate(angle)
ctx.move_to(0, length * .2)
ctx.line_to(0, -length)
ctx.stroke()
ctx.restore()

def on_draw(self, ctx):
now = datetime.datetime.now()

ctx.translate(self.width >> 1, self.height >> 1)

ctx.hand(
angle = now.second / 30 * PI,
length = (self.height >> 1) * .9,
thickness = 1

(continues on next page)

7

blighty Documentation, Release 2.0.0

(continued from previous page)

)

mins = now.minute + now.second / 60
ctx.hand(

angle = mins / 30 * PI,
length = (self.height >> 1) * .8,
thickness = 3

)

hours = (now.hour % 12) + mins / 60
ctx.hand(

angle = hours / 6 * PI,
length = (self.height >> 1) * .5,
thickness = 6

)

if __name__ == "__main__":
clock = Clock(0, 0, 400, 400, gravity = CanvasGravity.CENTER)
clock.show()
start_event_loop()

8 Chapter 3. A clock widget

CHAPTER 4

Issues

If you find any issues with blighty, or for a list of all the currently known and open issues, please visit https:
//github.com/P403n1x87/blighty/issues.

9

https://github.com/P403n1x87/blighty/issues
https://github.com/P403n1x87/blighty/issues

blighty Documentation, Release 2.0.0

10 Chapter 4. Issues

CHAPTER 5

The brag corner

The blighty project was founded by Gabriele Tornetta in 2018.

5.1 blighty package

5.1.1 Module content

This module contains the common objects and types for the different kind of canvases provided by blighty.

class blighty.CanvasGravity
Window gravity control type.

The positioning of a canvas on the screen is controlled by its gravity. By default, a window is positioned in
a coordinate system where the origin is located in the top-left corner of the screen, with the x axis running
horizontally from left to right, and the y from top to bottom. To change the location of the origin, use one of the
following values.

CENTER = 5

EAST = 6

NORTH = 2

NORTH_EAST = 3

NORTH_WEST = 1

SOUTH = 8

SOUTH_EAST = 9

SOUTH_WEST = 7

STATIC = 10

WEST = 4

11

blighty Documentation, Release 2.0.0

class blighty.CanvasType
The Canvas type.

The canvas types enumerated in this Python type reflect the same window types that one can request to the
window manager via the Extended Window Manager Hints.

• NORMAL is a normal top-level window.

• DESKTOP is a window drawn directly on the desktop.

• DOCK indicates a dock or panel window that will usually stay on top of other windows.

• UNDECORATED is a type of window that behaves as a toolbar. As such, it is undecorated.

DESKTOP = 1

DOCK = 2

NORMAL = 0

UNDECORATED = 3

5.1.2 Subpackages

blighty.gtk package

Module contents

Submodules

blighty.gtk.canvas module

blighty.x11 package

Module contents

This module provides support for creating X11 canvases. If you are trying to replicate conky’s behaviour, the API
offered by this module is the closest to it.

Submodules

blighty.x11.canvas module

Description

This module provides the Canvas class for the creation of X11 canvases.

The Canvas class is, in Java terminoly, abstract and should not be instantiated directly. Instead, applications should
define their own subclasses of the Canvas and implement the on_draw() method, which gets called periodically
to perform the required draw operations using pycairo.

Once created, an instance of a subclass of Canvas can be shown on screen by calling the show() method. This
starts drawing the canvas on screen by calling the on_draw callback at regular intervals in time. Events can be handled
by starting the event loop with blighty.x11.start_event_loop(), as described in more details in the Event
handling section.

12 Chapter 5. The brag corner

https://standards.freedesktop.org/wm-spec/wm-spec-1.3.html

blighty Documentation, Release 2.0.0

Creating a canvas

Canvases are created by simply subclassing the Canvas class and implementing the on_draw() callback.

The Canvas constructor (i.e. the __new__() magic method) takes the following arguments:

Ar-
gu-
ment

Description

x These arguments describe the basic geometry of the canvas. The x and y coordinates are relative to the
gravity argument (see below). The width and height arguments give the canvas size in pixels.y

width
height
in-
ter-
val

The time interval between calls to the on_draw() callback, in milliseconds.
Default value: 1000 (i.e. 1 second)

win-
dow_type

The type of window to create. The possible choices are enumerated in the blighty.CanvasType type
and are named after the equivalent _NET_WM_WINDOW_TYPE hints for the window manager. This is
analogous to conky’s own_window_type configuration setting.
Default value: CanvasType.DESKTOP

grav-
ity

Defines the coordinate system for the canvas relative to the screen. The allowed values are enumerated in the
blighty.CanvasGravity type. This is the equivalent of the conky alignment configuration setting.
For example, the value CanvasGravity.SOUTH_EAST indicates that the canvas should be positioned
relative to the bottom-right corner of the screen.
Default value: CanvasGravity.NORTH_WEST

sticky Whether the window should stick to the desktop and hence be visible in all workspaces.
Default value: True

keep_belowWhether the window should stay below any other window on the screen.
Default value: True

skip_taskbarWhether the window should not have an entry in the taskbar.
Default value: True

skip_pagerWhether the window should not appear in the pager.
Default value: True

Note that the interval can be changed dynamically by setting the interval attribute on the canvas object directly
after it has been created.

If you want to distribute your subclasses of Canvas, we recommend that you create a static method build that
returns an instance of the subclass, with some of the argumets set to a predefined values. This is useful if you want to
distribute widgets with, e.g., a predefined size, as a Python module.

Showing the canvas

When a canvas is created, it is not immediately shown to screen. To map it to screen and start the draw cycle one has
to call the show() method explicitly.

If you need to pass data to the canvas, you might want to do that before calling this method, since presumably the
on_draw() callback, which will start to be called, makes use of it.

Finally, you must start the main event loop with blighty.x11.start_event_loop() to start drawing on
the canvases, and in case that they should handle input events, like mouse button clicks or key presses. Note
however that execution in the current thread will halt at this call, until it returns after a call to blighty.x11.
stop_event_loop().

5.1. blighty package 13

blighty Documentation, Release 2.0.0

For more details on how to handle events with your X11 canvases, see the section Event handling below.

Disposing of a canvas

If you want to programmatically dispose of a canvas, you can call the dispose() method. This doesn’t destroy the
canvas immediately, but sends a delete request to the main event loop instead. This is the preffered way of getting rid
of a canvas when you are running the event loop. You can also use the destroy() method directly, which destroys
the canvas immediately. However this is not thread safe and should not be called in the on_draw() callback when
running the event loop.

Event handling

A feature that distinguishes blighty from conky is that it allows you to handle simple user input on the canvases.
Currently, X11 canvases support two events: mouse button and key press events.

Mouse button events can be handled by implementing the on_button_pressed() callback in the subclass of
Canvas. The signature is the following:

def on_button_pressed(self, button, state, x, y):

and the semantics of the arguments is the same as the XButtonEvent1.

To handle key presses, implement the on_key_pressed callback with the following signature:

def on_key_pressed(self, keysym, state):

The state argument has the same semantics as in the on_button_pressed() case, while the keysym is de-
scribed, e,g, in the Keyboard Econding section of the Xlib guide.

A simple example

Here is a simple example that shows all the above concepts in action:

from blighty import CanvasGravity
from blighty.x11 import Canvas, start_event_loop

class MyCanvas(Canvas):
@staticmethod
def build(x, y):

return MyCanvas(x, y, 200, 200, gravity = CanvasGravity.NORTH)

def on_button_pressed(self, button, state, x, y):
if button == 1: # Left mouse button pressed

self.dispose()

def on_draw(self, ctx):
ctx.set_source_rgb(1, 0, 0)
ctx.rectangle(0, 0, ctx.canvas.width >> 1, ctx.canvas.height >> 1)
ctx.fill()

if __name__ == "__main__":
Instantiate the canvas

(continues on next page)

1 https://tronche.com/gui/x/xlib/events/keyboard-pointer/keyboard-pointer.html

14 Chapter 5. The brag corner

https://tronche.com/gui/x/xlib/input/keyboard-encoding.html
https://tronche.com/gui/x/xlib/events/keyboard-pointer/keyboard-pointer.html

blighty Documentation, Release 2.0.0

(continued from previous page)

canvas = MyCanvas.build()

Map it on screen
canvas.show()

Start the event loop
start_event_loop()

Extra features

The Canvas class comes with some handy extra features that can help with common patterns, thus sparing you to
have to type boilerplate code.

Brushes

Brushes are a way to rebind methods from your subclass of Canvas to the Cairo context. Consider the following
example:

from random import random as r

class RectCanvas(blighty.x11.Canvas):
def rect(self, ctx, width, height):

ctx.set_source_rgb(*[r() for _ in range(3)])
ctx.rectangle(0, 0, width, height)
ctx.fill()

def on_draw(self, ctx):
for i in range(4):

self.rect(ctx, self.width >> i, self.height >> i)

The method rect is defined under the class RectCanvas for convenience. However, from a logical point of view,
it would make more sense for this method to belong to ctx, since the general pattern of these helper methods requires
that we pass ctx as one of the arguments.

If one prefixes the rect method with draw_ then it turns into an implicit brush. The on_draw() callback is called
with the ctx argument being an instance of ExtendedContext. The draw_rect brush is then available from
ctx as a bound method. The sample code above can then be refactored as:

from random import random as r

class RectCanvas(blighty.x11.Canvas):
def draw_rect(ctx, width, height):

ctx.set_source_rgb(*[r() for _ in range(3)])
ctx.rectangle(0, 0, width, height)
ctx.fill()

def on_draw(self, ctx):
for i in range(4):

ctx.rect(self.width >> i, self.height >> i)

Notice how draw_rect now takes less arguments, and how the first one is ctx, the (extended) Cairo context.

If you do not wish to prefix your methods with draw_, you can use the blighty.brush() decorator instead to
create an explicit brush. The code would then look like this:

5.1. blighty package 15

blighty Documentation, Release 2.0.0

from blighty import brush
from random import random as r

class RectCanvas(blighty.x11.Canvas):
@brush
def rect(ctx, width, height):

ctx.set_source_rgb(*[r() for _ in range(3)])
ctx.rectangle(0, 0, width, height)
ctx.fill()

def on_draw(self, ctx):
for i in range(4):

ctx.rect(self.width >> i, self.height >> i)

Text alignment

A common task is writing text on a canvas. With Cairo, text alignment usually requires the same pattern: get the text
extents and compute the new position. To help with that, Canvas objects come with a pre-defined write_text()
brush. Please refer to the API documentation below for usage details.

Grid

When designing a canvas from scrach, it is hard to guess at positions without any guiding lines. To help with precise
placement, every Canvas object comes with a draw_grid brush that creates a rectangular grid on the canvas. The
spacing between the lines is set to 50 pixels by default (assuming that the scale hasn’t been changed before). This can
be adjusted by passing the new spacing along the two directions as arguments. Please refer to the API documentation
below for more details.

References

Module API

class blighty.x11.canvas.Canvas(*args, **kwargs)
Bases: x11.BaseCanvas

X11 Canvas object.

This class is meant to be used as a superclass and should not be instantiated directly. Subclasses should im-
plement the on_draw() callback, which is invoked every time the canvas needs to be redrawn. Redraws
happen at regular intervals in time, as specified by the interval attribute (also passed as an argument via the
constructor).

destroy()
Destroy the canvas.

This method is not thread-safe. Use the dispose() method instead.

dispose()
Mark the canvas as ready to be destroyed to free up resources.

draw_grid(x=50, y=50)
Draw a grid on the canvas [implicit brush].

16 Chapter 5. The brag corner

blighty Documentation, Release 2.0.0

This implicit brush method is intended to help with determining the location of points on the canvas during
development.

Parameters

• x (int) – The horizontal spacing between lines.

• y (int) – The vertical spacing between lines.

get_size()
Get the canvas size.

Returns the 2-tuple of width and height in pixels.

Return type tuple

height
The canvas height. Read-only.

interval
The refresh interval, in milliseconds.

move()
Move the canvas to new coordinates.

The x and y coordinates are relative to the canvas gravity.

on_draw(ctx)
Draw callback.

Once the show() method is called on a Canvas object, this method gets called at regular intervals of
time to perform the draw operation. Every subclass of Canvas must implement this method.

show()
Map the canvas to screen and set it ready for drawing.

width
The canvas width. Read-only.

write_text(x, y, text, align=3)
Write aligned text [explicit brush].

This explicit brush method helps write aligned text on the canvas. The x and y coordinates are relative to
the specified alignment. By default, this is blighty.TextAlign.TOP_LEFT, meaning that the text
will be left-aligned and on top of the horizontal line that passes through y on the vertical axis. In terms of
the point (x,y) on the Canvas, the text will develop in the NE direction.

The return value is the text extents, in case that some further draw operations depend on the space required
by the text to be drawn on the canvas.

Note that font face and size need to be set on the Cairo context prior to a call to this method.

Parameters

• x (int) – The horizontal coordinate.

• y (int) – The vertical coordinate.

• text (str) – The text to write.

• align (int) – The text alignment. Detaulf is TextAlign.TOP_LEFT.

Returns The same return value as cairo.text_extents.

Return type tuple

5.1. blighty package 17

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple

blighty Documentation, Release 2.0.0

x
The canvas x coordinate. Read-only.

y
The canvas y coordinate. Read-only.

18 Chapter 5. The brag corner

Python Module Index

b
blighty, 11
blighty.x11, 12
blighty.x11.canvas, 12

19

blighty Documentation, Release 2.0.0

20 Python Module Index

Index

B
blighty (module), 11
blighty.x11 (module), 12
blighty.x11.canvas (module), 12

C
Canvas (class in blighty.x11.canvas), 16
CanvasGravity (class in blighty), 11
CanvasType (class in blighty), 11
CENTER (blighty.CanvasGravity attribute), 11

D
DESKTOP (blighty.CanvasType attribute), 12
destroy() (blighty.x11.canvas.Canvas method), 16
dispose() (blighty.x11.canvas.Canvas method), 16
DOCK (blighty.CanvasType attribute), 12
draw_grid() (blighty.x11.canvas.Canvas method), 16

E
EAST (blighty.CanvasGravity attribute), 11

G
get_size() (blighty.x11.canvas.Canvas method), 17

H
height (blighty.x11.canvas.Canvas attribute), 17

I
interval (blighty.x11.canvas.Canvas attribute), 17

M
move() (blighty.x11.canvas.Canvas method), 17

N
NORMAL (blighty.CanvasType attribute), 12
NORTH (blighty.CanvasGravity attribute), 11
NORTH_EAST (blighty.CanvasGravity attribute), 11
NORTH_WEST (blighty.CanvasGravity attribute), 11

O
on_draw() (blighty.x11.canvas.Canvas method), 17

S
show() (blighty.x11.canvas.Canvas method), 17
SOUTH (blighty.CanvasGravity attribute), 11
SOUTH_EAST (blighty.CanvasGravity attribute), 11
SOUTH_WEST (blighty.CanvasGravity attribute), 11
STATIC (blighty.CanvasGravity attribute), 11

U
UNDECORATED (blighty.CanvasType attribute), 12

W
WEST (blighty.CanvasGravity attribute), 11
width (blighty.x11.canvas.Canvas attribute), 17
write_text() (blighty.x11.canvas.Canvas method), 17

X
x (blighty.x11.canvas.Canvas attribute), 17

Y
y (blighty.x11.canvas.Canvas attribute), 18

21

	The blighty project
	Usage
	A clock widget
	Issues
	The brag corner
	blighty package

	Python Module Index

