
Blaze Documentation
Release 0.11.3

Continuum

Nov 18, 2017

Contents

1 Blaze 3

2 Presentations 5

Python Module Index 93

i

ii

Blaze Documentation, Release 0.11.3

The Blaze Ecosystem provides Python users high-level access to efficient computation on inconveniently large data.
Blaze can refer to both a particular library as well as an ecosystem of related projects that have spun off of Blaze
development.

Blaze is sponsored primarily by Continuum Analytics, and a DARPA XDATA grant.

Parts of the Blaze ecosystem are described below:

Several projects have come out of Blaze development other than the Blaze project itself.

• The Blaze Project: Translates NumPy/Pandas-like syntax to data computing systems (e.g. database, in-memory,
distributed-computing). This provides Python users with a familiar interface to query data living in a variety
of other data storage systems. One Blaze query can work across data ranging from a CSV file to a distributed
database.

Blaze presents a pleasant and familiar interface to us regardless of what computational solution or database we
use (e.g. Spark, Impala, SQL databases, No-SQL data-stores, raw-files). It mediates our interaction with files,
data structures, and databases, optimizing and translating our query as appropriate to provide a smooth and
interactive session. It allows the data scientists and analyst to write their queries in a unified way that does not
have to change because the data is stored in another format or a different data-store. It also provides a server-
component that allows URIs to be used to easily serve views on data and refer to Data remotely in local scripts,
queries, and programs.

• DataShape: A data type system

DataShape combines NumPy’s dtype and shape and extends to missing data, variable length strings, ragged
arrays, and more arbitrary nesting. It allows for the common description of data types from databases to HDF5
files, to JSON blobs.

• Odo: Migrates data between formats.

Odo moves data between formats (CSV, JSON, databases) and locations (local, remote, HDFS) efficiently and
robustly with a dead-simple interface by leveraging a sophisticated and extensible network of conversions.

• DyND: In-memory dynamic arrays

DyND is a dynamic ND-array library like NumPy that implements the datashape type system. It supports vari-
able length strings, ragged arrays, and GPUs. It is a standalone C++ codebase with Python bindings. Generally
it is more extensible than NumPy but also less mature.

• Dask.array: Multi-core / on-disk NumPy arrays

Dask.dataframe : Multi-core / on-disk Pandas data-frames

Dask.arrays provide blocked algorithms on top of NumPy to handle larger-than-memory arrays and to leverage
multiple cores. They are a drop-in replacement for a commonly used subset of NumPy algorithms.

Contents 1

http://www.continuum.io
http://www.darpa.mil/program/XDATA
http://datashape.pydata.org/
http://odo.pydata.org/
https://github.com/libdynd/libdynd
http://dask.pydata.org/
http://dask.pydata.org

Blaze Documentation, Release 0.11.3

Dask.dataframes provide blocked algorithms on top of Pandas to handle larger-than-memory data-frames and to
leverage multiple cores. They are a drop-in replacement for a subset of Pandas use-cases.

Dask also has a general “Bag” type and a way to build “task graphs” using simple decorators as well as nascent
distributed schedulers in addition to the multi-core and multi-threaded schedulers.

These projects are mutually independent. The rest of this documentation is just about the Blaze project itself. See the
pages linked to above for datashape, odo, dynd, or dask.

2 Contents

CHAPTER 1

Blaze

Blaze is a high-level user interface for databases and array computing systems. It consists of the following components:

• A symbolic expression system to describe and reason about analytic queries

• A set of interpreters from that query system to various databases / computational engines

This architecture allows a single Blaze code to run against several computational backends. Blaze interacts rapidly
with the user and only communicates with the database when necessary. Blaze is also able to analyze and optimize
queries to improve the interactive experience.

3

Blaze Documentation, Release 0.11.3

4 Chapter 1. Blaze

CHAPTER 2

Presentations

• See previous presentations about Blaze

• See previous blog posts about Blaze

2.1 Index

User facing

5

_static/presentations/index.html
http://continuum.io/blog/tags/blaze

Blaze Documentation, Release 0.11.3

2.1.1 Overview

Blaze Abstracts Computation and Storage

Several projects provide rich and performant data analytics. Competition between these projects gives rise to a vibrant
and dynamic ecosystem. Blaze augments this ecosystem with a uniform and adaptable interface. Blaze orchestrates
computation and data access among these external projects. It provides a consistent backdrop to build standard inter-
faces usable by the current Python community.

Demonstration

Blaze separates the computations that we want to perform:

>>> from blaze import *
>>> accounts = symbol('accounts', 'var * {id: int, name: string, amount: int}')

>>> deadbeats = accounts[accounts.amount < 0].name

From the representation of data

>>> L = [[1, 'Alice', 100],
... [2, 'Bob', -200],
... [3, 'Charlie', 300],
... [4, 'Denis', 400],
... [5, 'Edith', -500]]

Blaze enables users to solve data-oriented problems

>>> list(compute(deadbeats, L))
['Bob', 'Edith']

But the separation of expression from data allows us to switch between different backends.

Here we solve the same problem using Pandas instead of Pure Python.

6 Chapter 2. Presentations

Blaze Documentation, Release 0.11.3

>>> df = DataFrame(L, columns=['id', 'name', 'amount'])

>>> compute(deadbeats, df)
1 Bob
4 Edith
Name: name, dtype: object

Blaze doesn’t compute these results, Blaze intelligently drives other projects to compute them instead. These projects
range from simple Pure Python iterators to powerful distributed Spark clusters. Blaze is built to be extended to new
systems as they evolve.

Scope

Blaze speaks Python and Pandas as seen above and also several other technologies, including NumPy, SQL, Mongo,
Spark, PyTables, etc.. Blaze is built to make connecting to a new technology easy.

Blaze currently targets database and array technologies used for analytic queries. It strives to orchestrate and provide
interfaces on top of and in between other computational systems. We provide performance by providing data scientists
with intuitive access to a variety of tools.

2.1.2 Install

Installing

Blaze can be most easily installed from conda

$ conda install blaze

More up-to-date builds are available on the blaze anaconda channel: http://anaconda.org/blaze

conda install -c blaze blaze

Blaze may also be installed using pip:

pip install blaze --upgrade
or
pip install git+https://github.com/blaze/blaze --upgrade

If you are interested in the development version of Blaze you can obtain the source from Github.

$ git clone git@github.com:blaze/blaze.git

Anaconda can be downloaded for all platforms here: http://continuum.io/anaconda.html .

Introduction

To build project from source:

$ python setup.py install

To build documentation on a unix-based system:

$ cd docs
$ make docs

2.1. Index 7

http://conda.pydata.org/
http://anaconda.org/blaze
http://continuum.io/anaconda.html

Blaze Documentation, Release 0.11.3

To run tests:

$ py.test --doctest-modules --pyargs blaze

Strict Dependencies

Blaze depends on NumPy, Pandas, and a few pure-python libraries. It should be easy to install on any Numeric Python
setup.

• numpy >= 1.7

• datashape >= 0.4.4

• odo >= 0.3.1

• toolz >= 0.7.0

• cytoolz

• multipledispatch >= 0.4.7

• pandas

Optional Dependencies

Blaze can help you use a variety of other libraries like sqlalchemy or h5py. If these are installed then Blaze will
use them. Some of these are non-trivial to install. We recommend installation throgh conda.

• sqlalchemy

• h5py

• spark >= 1.1.0

• pymongo

• pytables

• bcolz

• flask >= 0.10.1

• pytest (for running tests)

2.1.3 Quickstart

This quickstart is here to show some simple ways to get started created and manipulating Blaze Symbols. To run these
examples, import blaze as follows.

>>> from blaze import *

Blaze Interactive Data

Create simple Blaze expressions from nested lists/tuples. Blaze will deduce the dimensionality and data type to use.

8 Chapter 2. Presentations

http://www.numpy.org/
https://github.com/blaze/datashape
https://github.com/blaze/odo
http://toolz.readthedocs.org/
https://github.com/pytoolz/cytoolz/
http://multiple-dispatch.readthedocs.org/
http://pandas.pydata.org/
http://www.sqlalchemy.org/
http://docs.h5py.org/en/latest/
http://spark.apache.org/
http://api.mongodb.org/python/current/
http://www.pytables.org/moin
https://github.com/Blosc/bcolz
http://flask.pocoo.org/
http://pytest.org/latest/

Blaze Documentation, Release 0.11.3

>>> t = data([(1, 'Alice', 100),
... (2, 'Bob', -200),
... (3, 'Charlie', 300),
... (4, 'Denis', 400),
... (5, 'Edith', -500)],
... fields=['id', 'name', 'balance'])

>>> t.peek()
id name balance

0 1 Alice 100
1 2 Bob -200
2 3 Charlie 300
3 4 Denis 400
4 5 Edith -500

Simple Calculations

Blaze supports simple computations like column selection and filtering with familiar Pandas getitem or attribute syn-
tax.

>>> t[t.balance < 0]
id name balance

0 2 Bob -200
1 5 Edith -500

>>> t[t.balance < 0].name
name

0 Bob
1 Edith

Stored Data

Define Blaze expressions directly from storage like CSV or HDF5 files. Here we operate on a CSV file of the traditional
iris dataset.

>>> from blaze.utils import example
>>> iris = data(example('iris.csv'))
>>> iris.peek()

sepal_length sepal_width petal_length petal_width species
0 5.1 3.5 1.4 0.2 Iris-setosa
1 4.9 3.0 1.4 0.2 Iris-setosa
2 4.7 3.2 1.3 0.2 Iris-setosa
3 4.6 3.1 1.5 0.2 Iris-setosa
4 5.0 3.6 1.4 0.2 Iris-setosa
5 5.4 3.9 1.7 0.4 Iris-setosa
6 4.6 3.4 1.4 0.3 Iris-setosa
7 5.0 3.4 1.5 0.2 Iris-setosa
8 4.4 2.9 1.4 0.2 Iris-setosa
9 4.9 3.1 1.5 0.1 Iris-setosa
...

Use remote data like SQL databases or Spark resilient distributed data-structures in exactly the same way. Here we
operate on a SQL database stored in a sqlite file.

2.1. Index 9

https://raw.githubusercontent.com/blaze/blaze/master/blaze/examples/data/iris.csv
https://raw.githubusercontent.com/blaze/blaze/master/blaze/examples/data/iris.db

Blaze Documentation, Release 0.11.3

>>> iris = data('sqlite:///%s::iris' % example('iris.db'))
>>> iris.peek()

sepal_length sepal_width petal_length petal_width species
0 5.1 3.5 1.4 0.2 Iris-setosa
1 4.9 3.0 1.4 0.2 Iris-setosa
2 4.7 3.2 1.3 0.2 Iris-setosa
3 4.6 3.1 1.5 0.2 Iris-setosa
4 5.0 3.6 1.4 0.2 Iris-setosa
5 5.4 3.9 1.7 0.4 Iris-setosa
6 4.6 3.4 1.4 0.3 Iris-setosa
7 5.0 3.4 1.5 0.2 Iris-setosa
8 4.4 2.9 1.4 0.2 Iris-setosa
9 4.9 3.1 1.5 0.1 Iris-setosa
...

More Computations

Common operations like Joins and split-apply-combine are available on any kind of data

>>> by(iris.species, # Group by species
... min=iris.petal_width.min(), # Minimum of petal_width per group
... max=iris.petal_width.max()) # Maximum of petal_width per group

species max min
0 Iris-setosa 0.6 0.1
1 Iris-versicolor 1.8 1.0
2 Iris-virginica 2.5 1.4

Finishing Up

Blaze computes only as much as is necessary to present the results on screen. Fully evaluate the computation, returning
an output similar to the input type by calling compute.

>>> t[t.balance < 0].name # Still an Expression
name

0 Bob
1 Edith

>>> list(compute(t[t.balance < 0].name)) # Just a raw list
['Bob', 'Edith']

Alternatively use the odo operation to push your output into a suitable container type.

>>> result = by(iris.species, avg=iris.petal_width.mean())
>>> result_list = odo(result, list) # Push result into a list
>>> odo(result, DataFrame) # Push result into a DataFrame

species avg
0 Iris-setosa 0.246
1 Iris-versicolor 1.326
2 Iris-virginica 2.026
>>> odo(result, example('output.csv')) # Write result to CSV file
<odo.backends.csv.CSV object at ...>

10 Chapter 2. Presentations

Blaze Documentation, Release 0.11.3

2.1.4 Basic Queries

Here we give a quick overview of some of the more common query functionality.

We use the well known iris dataset

>>> from blaze import data
>>> from blaze.utils import example
>>> iris = data(example('iris.csv'))
>>> iris.peek()

sepal_length sepal_width petal_length petal_width species
0 5.1 3.5 1.4 0.2 Iris-setosa
1 4.9 3.0 1.4 0.2 Iris-setosa
2 4.7 3.2 1.3 0.2 Iris-setosa
3 4.6 3.1 1.5 0.2 Iris-setosa
...

Column Access

Select individual columns using attributes

>>> iris.species
species

0 Iris-setosa
1 Iris-setosa
2 Iris-setosa
3 Iris-setosa
...

Or item access

>>> iris['species']
species

0 Iris-setosa
1 Iris-setosa
2 Iris-setosa
3 Iris-setosa
...

Select many columns using a list of names

>>> iris[['sepal_length', 'species']]
sepal_length species

0 5.1 Iris-setosa
1 4.9 Iris-setosa
2 4.7 Iris-setosa
3 4.6 Iris-setosa
...

Mathematical operations

Use mathematical operators and functions as normal

>>> from blaze import log
>>> log(iris.sepal_length * 10)

sepal_length

2.1. Index 11

Blaze Documentation, Release 0.11.3

0 3.931826
1 3.891820
2 3.850148
3 3.828641
...

Note that mathematical functions like log should be imported from blaze. These will translate to np.log, math.
log, sqlalchemy.sql.func.log, etc. based on the backend.

Reductions

As with many Blaze operations reductions like sum and mean may be used either as methods or as base functions.

>>> iris.sepal_length.mean()
5.84333333333333...

>>> from blaze import mean
>>> mean(iris.sepal_length)
5.84333333333333...

Split-Apply-Combine

The by operation expresses split-apply-combine computations. It has the general format

>>> by(table.grouping_columns, name_1=table.column.reduction(),
... name_2=table.column.reduction(),
... ...)

Here is a concrete example. Find the shortest, longest, and average petal length by species.

>>> from blaze import by
>>> by(iris.species, shortest=iris.petal_length.min(),
... longest=iris.petal_length.max(),
... average=iris.petal_length.mean())

species average longest shortest
0 Iris-setosa 1.462 1.9 1.0
1 Iris-versicolor 4.260 5.1 3.0
2 Iris-virginica 5.552 6.9 4.5

This simple model can be extended to include more complex groupers and more complex reduction expressions.

Add Computed Columns

Add new columns using the transform function

>>> transform(iris, sepal_ratio = iris.sepal_length / iris.sepal_width,
... petal_ratio = iris.petal_length / iris.petal_width)

sepal_length sepal_width petal_length petal_width species \
0 5.1 3.5 1.4 0.2 Iris-setosa
1 4.9 3.0 1.4 0.2 Iris-setosa
2 4.7 3.2 1.3 0.2 Iris-setosa
3 4.6 3.1 1.5 0.2 Iris-setosa

sepal_ratio petal_ratio

12 Chapter 2. Presentations

Blaze Documentation, Release 0.11.3

0 1.457143 7.000000
1 1.633333 7.000000
2 1.468750 6.500000
3 1.483871 7.500000
...

Text Matching

Match text with glob strings, specifying columns with keyword arguments.

>>> iris[iris.species.like('*versicolor')]
sepal_length sepal_width petal_length petal_width species

50 7.0 3.2 4.7 1.4 Iris-versicolor
51 6.4 3.2 4.5 1.5 Iris-versicolor
52 6.9 3.1 4.9 1.5 Iris-versicolor

Relabel Column names

>>> iris.relabel(petal_length='PETAL-LENGTH', petal_width='PETAL-WIDTH')
sepal_length sepal_width PETAL-LENGTH PETAL-WIDTH species

0 5.1 3.5 1.4 0.2 Iris-setosa
1 4.9 3.0 1.4 0.2 Iris-setosa
2 4.7 3.2 1.3 0.2 Iris-setosa

2.1.5 Examples

Blaze can help solve many common problems that data analysts and scientists encounter. Here are a few examples of
common issues that can be solved using blaze.

Combining separate, gzipped csv files.

>>> from blaze import odo
>>> from pandas import DataFrame
>>> odo(example('accounts_*.csv.gz'), DataFrame)

id name amount
0 1 Alice 100
1 2 Bob 200
2 3 Charlie 300
3 4 Dan 400
4 5 Edith 500

Split-Apply-Combine

>>> from blaze import data, by
>>> t = data('sqlite:///%s::iris' % example('iris.db'))
>>> t.peek()

sepal_length sepal_width petal_length petal_width species
0 5.1 3.5 1.4 0.2 Iris-setosa
1 4.9 3.0 1.4 0.2 Iris-setosa

2.1. Index 13

Blaze Documentation, Release 0.11.3

2 4.7 3.2 1.3 0.2 Iris-setosa
3 4.6 3.1 1.5 0.2 Iris-setosa
4 5.0 3.6 1.4 0.2 Iris-setosa
5 5.4 3.9 1.7 0.4 Iris-setosa
6 4.6 3.4 1.4 0.3 Iris-setosa
7 5.0 3.4 1.5 0.2 Iris-setosa
8 4.4 2.9 1.4 0.2 Iris-setosa
9 4.9 3.1 1.5 0.1 Iris-setosa
...
>>> by(t.species, max=t.petal_length.max(), min=t.petal_length.min())

species max min
0 Iris-setosa 1.9 1.0
1 Iris-versicolor 5.1 3.0
2 Iris-virginica 6.9 4.5

2.1.6 Split-Apply-Combine – Grouping

Grouping operations break a table into pieces and perform some reduction on each piece. Consider the iris dataset:

>>> from blaze import data, by
>>> from blaze.utils import example
>>> d = data('sqlite:///%s::iris' % example('iris.db'))
>>> d

sepal_length sepal_width petal_length petal_width species
0 5.1 3.5 1.4 0.2 Iris-setosa
1 4.9 3.0 1.4 0.2 Iris-setosa
2 4.7 3.2 1.3 0.2 Iris-setosa
3 4.6 3.1 1.5 0.2 Iris-setosa
4 5.0 3.6 1.4 0.2 Iris-setosa

We find the average petal length, grouped by species:

>>> by(d.species, avg=d.petal_length.mean())
species avg

0 Iris-setosa 1.462
1 Iris-versicolor 4.260
2 Iris-virginica 5.552

Split-apply-combine operations are a concise but powerful way to describe many useful transformations. They are
well supported in all backends and are generally efficient.

Arguments

The by function takes one positional argument, the expression on which we group the table, in this case d.species,
and any number of keyword arguments which define reductions to perform on each group. These must be named and
they must be reductions.

>>> by(grouper, name=reduction, name=reduction, ...)

>>> by(d.species, minimum=d.petal_length.min(),
... maximum=d.petal_length.max(),
... ratio=d.petal_length.max() - d.petal_length.min())

species maximum minimum ratio
0 Iris-setosa 1.9 1.0 0.9

14 Chapter 2. Presentations

Blaze Documentation, Release 0.11.3

1 Iris-versicolor 5.1 3.0 2.1
2 Iris-virginica 6.9 4.5 2.4

Limitations

This interface is restrictive in two ways when compared to in-memory dataframes like pandas or dplyr.

1. You must specify both the grouper and the reduction at the same time

2. The “apply” step must be a reduction

These restrictions make it much easier to translate your intent to databases and to efficiently distribute and parallelize
your computation.

Things that you can’t do

So, as an example, you can’t “just group” a table separately from a reduction

>>> groups = by(mytable.mycolumn) # Can't do this

You also can’t do non-reducing apply operations (although this could change for some backends with work)

>>> groups = by(d.A, result=d.B / d.B.max()) # Can't do this

2.1.7 Pandas to Blaze

This page maps pandas constructs to blaze constructs.

Imports and Construction

import numpy as np
import pandas as pd
from blaze import data, by, join, merge, concat

construct a DataFrame
df = pd.DataFrame({

'name': ['Alice', 'Bob', 'Joe', 'Bob'],
'amount': [100, 200, 300, 400],
'id': [1, 2, 3, 4],

})

put the `df` DataFrame into a Blaze Data object
df = data(df)

2.1. Index 15

Blaze Documentation, Release 0.11.3

Computation Pandas Blaze
Column Arithmetic

df.amount * 2 df.amount * 2

Multiple Columns
df[['id', 'amount']] df[['id', 'amount']]

Selection
df[df.amount > 300] df[df.amount > 300]

Group By
df.groupby('name').amount.
→˓mean()
df.groupby(['name', 'id
→˓']).amount.mean()

by(df.name, amount=df.
→˓amount.mean())
by(merge(df.name, df.id),

amount=df.amount.
→˓mean())

Join
pd.merge(df, df2, on='name
→˓')

join(df, df2, 'name')

Map
df.amount.map(lambda x: x
→˓+ 1)

df.amount.map(lambda x: x
→˓+ 1,

'int64')

Relabel Columns
df.rename(columns={'name
→˓': 'alias',

'amount
→˓': 'dollars'})

df.relabel(name='alias',
amount='dollars

→˓')

Drop duplicates
df.drop_duplicates()
df.name.drop_duplicates()

df.distinct()
df.name.distinct()

Reductions
df.amount.mean()
df.amount.value_counts()

df.amount.mean()
df.amount.count_values()

Concatenate
pd.concat((df, df)) concat(df, df)

Column Type Information
df.dtypes
df.amount.dtype

df.dshape
df.amount.dshape

Blaze can simplify and make more readable some common IO tasks that one would want to do with pandas. These
examples make use of the odo library. In many cases, blaze will able to handle datasets that can’t fit into main memory,
which is something that can’t be easily done with pandas.

from odo import odo

16 Chapter 2. Presentations

https://github.com/blaze/odo

Blaze Documentation, Release 0.11.3

Operation Pandas Blaze
Load directory of CSV files

df = pd.concat([pd.read_
→˓csv(filename)

for
→˓filename in

glob.glob(
→˓'path/to/*.csv')])

df = data('path/to/*.csv')

Save result to CSV file
df[df.amount < 0].to_csv(
→˓'output.csv')

odo(df[df.amount < 0],
'output.csv')

Read from SQL database
df = pd.read_sql('select
→˓* from t', con='sqlite:/
→˓//db.db')

df = pd.read_sql('select
→˓* from t',

con=sa.
→˓create_engine('sqlite://
→˓/db.db'))

df = data('sqlite://db.
→˓db::t')

2.1.8 SQL to Blaze

This page maps SQL expressions to blaze expressions.

Note: The following SQL expressions are somewhat specific to PostgreSQL, but blaze itself works with any database
for which a SQLAlchemy dialect exists.

Prerequisites

If you’re interested in testing these against a PostgreSQL database, make sure you’ve executed the following code in
psql session:

CREATE TABLE df (
id BIGINT,
amount DOUBLE PRECISION,
name TEXT

);

On the blaze side of things, the table below assumes the following code has been executed:

>>> from blaze import symbol, by, join, concat
>>> df = symbol('df', 'var * {id: int64, amount: float64, name: string}')

Note: Certain SQL constructs such as window functions don’t directly correspond to a particular Blaze expression.
Map expressions are the closest representation of window functions in Blaze.

2.1. Index 17

Blaze Documentation, Release 0.11.3

Computation SQL Blaze
Column Arithmetic

select amount * 2 from df df.amount * 2

Multiple Columns
select id, amount from df df[['id', 'amount']]

Selection
selelct * from df where
→˓amount > 300

df[df.amount > 300]

Group By
select avg(amount) from
→˓df group by name

by(df.name, amount=df.
→˓amount.mean())

select avg(amount) from
→˓df group by name, id

by(merge(df.name, df.id),
amount=df.amount.

→˓mean())

Join
select * from

df inner join df2
on df.name = df2.name

join(df, df2, 'name')

Map
select amount + 1 over ()
→˓from df

df.amount.map(lambda x: x
→˓+ 1,

'int64')

Relabel Columns
select

id,
name as alias,
amount as dollars

from df

df.relabel(name='alias',
amount='dollars

→˓')

Drop duplicates select distinct * from df df.distinct()

select distinct(name)
→˓from df

df.name.distinct()

/* postgresql only */
select distinct on (name)
→˓* from
df order by name

Reductions
select avg(amount) from df df.amount.mean()

select amount,
→˓count(amount)
from df group by amount

df.amount.count_values()

Concatenate
select * from df
union all
select * from df

concat(df, df)

Column Type Information
select

column_name,
data_type,
character_maximum_

→˓length
from

information_schema.
→˓columns
where

table_name = 'df'

df.dshape

select
column_name,
data_type,
character_maximum_

→˓length
from

information_schema.
→˓columns
where

table_name = 'df'
and

column_name = 'amount'

df.amount.dshape

18 Chapter 2. Presentations

Blaze Documentation, Release 0.11.3

2.1.9 URI strings

Blaze uses strings to specify data resources. This is purely for ease of use.

Example

Interact with a set of CSV files or a SQL database

>>> from blaze import *
>>> from blaze.utils import example
>>> t = data(example('accounts_*.csv'))
>>> t.peek()

id name amount
0 1 Alice 100
1 2 Bob 200
2 3 Charlie 300
3 4 Dan 400
4 5 Edith 500

>>> t = data('sqlite:///%s::iris' % example('iris.db'))
>>> t.peek()

sepal_length sepal_width petal_length petal_width species
0 5.1 3.5 1.4 0.2 Iris-setosa
1 4.9 3.0 1.4 0.2 Iris-setosa
2 4.7 3.2 1.3 0.2 Iris-setosa
3 4.6 3.1 1.5 0.2 Iris-setosa
4 5.0 3.6 1.4 0.2 Iris-setosa
5 5.4 3.9 1.7 0.4 Iris-setosa
6 4.6 3.4 1.4 0.3 Iris-setosa
7 5.0 3.4 1.5 0.2 Iris-setosa
8 4.4 2.9 1.4 0.2 Iris-setosa
9 4.9 3.1 1.5 0.1 Iris-setosa
...

Migrate CSV files into a SQL database

>>> from odo import odo
>>> odo(example('iris.csv'), 'sqlite:///myfile.db::iris')
Table('iris', MetaData(bind=Engine(sqlite:///myfile.db)), ...)

What sorts of URIs does Blaze support?

• Paths to files on disk, including the following extensions

– .csv

– .json

– .csv.gz/json.gz

– .hdf5 (uses h5py)

– .hdf5::/datapath

– hdfstore://filename.hdf5 (uses special pandas.HDFStore format)

– .bcolz

– .xls(x)

2.1. Index 19

Blaze Documentation, Release 0.11.3

• SQLAlchemy strings like the following

– sqlite:////absolute/path/to/myfile.db::tablename

– sqlite:////absolute/path/to/myfile.db (specify a particular table)

– postgresql://username:password@hostname:port

– impala://hostname (uses impyla)

– anything supported by SQLAlchemy

• MongoDB Connection strings of the following form

– mongodb://username:password@hostname:port/database_name::collection_name

• Blaze server strings of the following form

– blaze://hostname:port (port defaults to 6363)

In all cases when a location or table name is required in addition to the traditional URI (e.g. a data path within an
HDF5 file or a Table/Collection name within a database) then that information follows on the end of the URI after a
separator of two colons ::.

How it works

Blaze depends on the Odo library to handle URIs. URIs are managed through the resource function which is
dispatched based on regular expressions. For example a simple resource function to handle .json files might look
like the following (although Blaze’s actual solution is a bit more comprehensive):

from blaze import resource
import json

@resource.register('.+\.json')
def resource_json(uri):

with open(uri):
data = json.load(uri)

return data

Can I extend this to my own types?

Absolutely. Import and extend resource as shown in the “How it works” section. The rest of Blaze will pick up
your change automatically.

2.1.10 Tips for working with CSV files

How to

Typically one provides a csv filename to the data constructor like so

>>> d = data('myfile.csv')

GZip extensions or collections of csv files are handled in the same manner.

>>> d = data('myfile-2014-01-*.csv.gz')

In the case of collections of CSV files the files are sorted by filename and then considered to be concatenated into a
single table.

20 Chapter 2. Presentations

https://github.com/blaze/odo

Blaze Documentation, Release 0.11.3

How does it work?

Blaze primarily relies on Pandas to parse CSV files into DataFrames. In the case of large CSV files it may parse them
into several DataFrames and then use techniques laid out in the Out of Core Processing section.

What to do when things go wrong

The same thing that makes CSV files so popular with humans, simple readability/writability, makes them challenging
for computers to reason about robustly.

Interacting with CSV files often breaks down in one of two ways

1. We incorrectly guess the dialect of the CSV file (e.g. wrong delimiter, presence or absense of a header, ...)

2. We incorrectly guess the type of a column with the CSV file (e.g. an integer column turns out to have floats in
it)

Because Blaze operates in a lazy way, giving you access to large CSV files without reading the entire file into memory
it is forced to do some guesswork. By default it guesses the dialect and types on the first few hundred lines of text.
When this guesswork fails the user must supply additional information.

Correcting CSV Dialects

In the first case of incorrect guessing of CSV dialect (e.g. delimiter) Blaze respects and passes through all keyword
arguments to pandas.read_csv.

Note: In the case of a CSV file with all string data, you must pass the has_header=True argument if the first row
is the header row.

Correcting Column Types

In the second case of incorrect guessing of column types Blaze accepts a Datashape as an additional keyword argu-
ment. Common practice is to create a data object around a csv file, ask for its datashape, tweak that datashape and
then recreate the data object.

>>> d = data('myfile.csv')
>>> d
Exception: Integer column has NA values

>>> d.dshape # Perhaps that integer column should be a float
dshape("var * {name: string, amount: int64}")

<Copy-Paste>
>>> ds = dshape("var * {name: string, amount: float64}") # change int to float

>>> d = data('myfile.csv', dshape=ds)

Migrate to Binary Storage Formats

If you plan to reuse the same CSV files many times it may make sense to convert them to an efficient binary store like
HDF5 (common) or BColz (less common but faster). These storage formats provide better performance on your data
and also avoid the ambiguity that surrounds CSV files.

2.1. Index 21

http://pandas.pydata.org/pandas-docs/stable/generated/pandas.io.parsers.read_csv.html

Blaze Documentation, Release 0.11.3

One can migrate from CSV files to a binary storage format using the odo function.

>>> from odo import odo
>>> odo('myfiles-*.csv', 'myfile.bcolz')

or

>>> odo('myfiles-*.csv', 'myfile.hdf5::/mydataset')

or

>>> odo('myfiles-*.csv', 'sqlite:///mydb.db::mytable')

When migrating from a loosely formatted system like CSV to a more strict system like HDF5 or BColz there are a few
things to keep in mind

1. Neither supports variable length strings well

2. But each supports fixed-length strings well and supports compression to cover up overly large/wasteful fixed-
lengths

3. HDF5 does not support datetimes well but can easily encode datetimes as strings

4. BColz is a column store, offering much better performance on tables with many columns

5. HDF5 is a standard technology with excellent library support outside of the Python ecosystem

To ensure that you encode your dataset appropriately we recommend passing a datashape explicitly. As in our previous
example this can often be done by editing automatically generated datashapes

>>> d = data('myfile.csv')
>>> d.dshape
dshape("var * {name: string, amount: int64}")

<Copy-Paste>
>>> ds = dshape("var * {name: string[20, 'ascii'], amount: float64}")

>>> from odo import odo
>>> odo('myfiles-*.csv', 'myfile.bcolz', dshape=ds)

Providing a datashape removes data type ambiguity from the transfer.

2.1.11 Interacting with SQL Databases

How to

Typically one provides a SQL connection string to the data constructor

>>> db = data('postgresql:///user:pass@hostname')

or

>>> t = data('postgresql://user:pass@hostname::my-table-name')

Alternatively users familiar with SQLAlchemy can pass any SQLAlchemy engine, metadata, or Table objects to data.
This can be useful if you need to specify more information that does not fit comfortably into a URI (like a desired
schema.)

22 Chapter 2. Presentations

Blaze Documentation, Release 0.11.3

>>> import sqlalchemy
>>> engine = sqlalchemy.create_engine('postgreqsql://hostname')

>>> db = data(engine)

How does it work?

As you manipulate a Blaze expression Blaze in turn manipulates a SQLAlchemy expression. When you ask for a
result SQLAlchemy generates the SQL appropriate for your database and sends the query to the database to be run.

What databases does Blaze support?

Blaze derives all SQL support from SQLAlchemy so really one should ask, What databases does SQLAlchemy sup-
port?. The answer is quite a few in the main SQLAlchemy project and most when you include third party libraries.

However, URI support within Blaze is limited to a smaller set. For exotic databases you may have to create a
sqlalchemy.engine explicitly as shown above.

What operations work on SQL databases?

Most tabular operations, but not all. SQLAlchemy translation is a high priority. Failures include array operations like
slicing and dot products don’t make sense in SQL. Additionally some operations like datetime access are not yet well
supported through SQLAlchemy. Finally some databases, like SQLite, have limited support for common mathematical
functions like sin.

How can I try this out?

The easiest way to play with SQL is to download a SQLite database. We recommend the Lahman baseball statistics
database. After downloading one could connect blaze to that database with the following code

>>> from blaze import data
>>> db = data('sqlite:///Downloads/lahman2013.sqlite')
>>> db.<tab> # see available tables
db.AllstarFull db.FieldingOF db.Schools db.fields
db.Appearances db.FieldingPost db.SchoolsPlayers db.isidentical
db.AwardsManagers db.HallOfFame db.SeriesPost db.like
db.AwardsPlayers db.Managers db.Teams db.map
db.AwardsShareManagers db.ManagersHalf db.TeamsFranchises db.relabel
db.AwardsSharePlayers db.Master db.TeamsHalf db.schema
db.Batting db.Pitching db.apply db.temp
db.BattingPost db.PitchingPost db.data
db.Fielding db.Salaries db.dshape
>>> db.Teams.peek() # view one particular database

yearID lgID teamID franchID divID Rank G Ghome W L ... \
0 1871 NA BS1 BNA None 3 31 NaN 20 10 ...
1 1871 NA CH1 CNA None 2 28 NaN 19 9 ...
2 1871 NA CL1 CFC None 8 29 NaN 10 19 ...
3 1871 NA FW1 KEK None 7 19 NaN 7 12 ...

DP FP name park \
0 NaN 0.83 Boston Red Stockings South End Grounds I
1 NaN 0.82 Chicago White Stockings Union Base-Ball Grounds
2 NaN 0.81 Cleveland Forest Citys National Association Grounds

2.1. Index 23

https://github.com/jknecht/baseball-archive-sqlite/raw/master/lahman2013.sqlite
https://github.com/jknecht/baseball-archive-sqlite/raw/master/lahman2013.sqlite

Blaze Documentation, Release 0.11.3

3 NaN 0.80 Fort Wayne Kekiongas Hamilton Field

attendance BPF PPF teamIDBR teamIDlahman45 teamIDretro
0 NaN 103 98 BOS BS1 BS1
1 NaN 104 102 CHI CH1 CH1
2 NaN 96 100 CLE CL1 CL1
3 NaN 101 107 KEK FW1 FW1
...

One can then query and compute results as with a normal blaze workflow.

Connecting to a Schema Other than public with PostgreSQL

To connect to a non-default schema, one may pass a sqlalchemy.MetaData object to data. For example:

>>> from blaze import data
>>> from sqlalchemy import MetaData
>>> ds = data(MetaData('postgresql://localhost/test', schema='my_schema'))
>>> ds.dshape
dshape("{table_a: var * {a: ?int32}, table_b: var * {b: ?int32}}")

Foreign Keys and Automatic Joins

Often times one wants to access the columns of a table into which we have a foreign key.

For example, given a products table with this schema:

create table products (
id integer primary key,
name text

)

and an orders table with this schema:

create table orders (
id integer primary key,
product_id integer references (id) products,
quantity integer

)

we want to get the name of the products in every order. In SQL, you would write the following join:

select
o.id, p.name

from
orders o

inner join
products p

on o.product_id = p.id

This is fairly straightforward. However, when you have more than two joins the SQL gets unruly and hard to read.
What we really want is a syntactically simply way to follow the chain of foreign key relationships and be able to access
columns in foreign tables without having to write a lot of code. This is where blaze comes in.

Blaze can generate the above joins for you, so instead of writing a bunch of joins in SQL you can simply access the
columns of a foreign table as if they were columns on the foreign key column.

24 Chapter 2. Presentations

Blaze Documentation, Release 0.11.3

The previous example in blaze looks like this:

>>> from blaze import data, compute
>>> d = data('postgresql://localhost/db')
>>> d.fields
['products', 'orders']
>>> expr = d.orders.product_id.name
>>> print(compute(expr))
SELECT orders.id, p.name
FROM orders as o, products as p
WHERE o.product_id = p.id

Warning: The above feature is very experimental right now. We would appreciate bug reports and feedback on
the API.

2.1.12 Out of Core Processing

Blaze includes nascent support for out-of-core processing with Pandas DataFrames and NumPy NDArrays. It com-
bines a computationally-rich in-memory solution (like pandas/numpy) with a computationally-poor out-of-core solu-
tion.

How do I use this?

Naive use of Blaze triggers out-of-core systems automatically when called on large files.

>>> d = data('my-small-file.csv')
>>> d.my_column.count() # Uses Pandas

>>> d = data('my-large-file.csv')
>>> d.my_column.count() # Uses Chunked Pandas

How does it work?

Blaze breaks up the data resource into a sequence of chunks. It pulls one chunk into memory, operates on it, pulls
in the next, etc.. After all chunks are processed it often has to finalize the computation with another operation on the
intermediate results.

In the example above one might accomplish the computation above, counting the number of non-null elements, with
pure Pandas as follows:

Operate on each chunk
intermediate = []
for chunk in pd.read_csv('my-large-file.csv', chunksize=1000000):

intermediate.append(chunk.my_column.count())

Finish computation by operating on the intermediate result
result = sum(intermediate)

This example accomplishes a single computation on the entire dataset, d.my_column.count(), by separating it
into two stages

1. compute chunk.my_column.count() on each in-memory chunk

2.1. Index 25

Blaze Documentation, Release 0.11.3

2. compute intermediate.sum() on the aggregated intermediate results

Blaze figures out this process for you. The code above only serves as an example of the kind of thing that Blaze does
automatically. Blaze knows how to separate a broad range of computations. Notable exceptions include joins and
sorts. Blaze does not currently support out-of-core computation on joins and sorts.

Complex Example

To investigate further try out the split function in blaze.expr.split. It will tell you exactly how Blaze intends
to break up your computation. Here is a more complex example doing an out-of-core split-apply-combine operation:

>>> from blaze import *
>>> from blaze.expr.split import split

>>> bank = symbol('bank', 'var * {name: string, balance: int}')

>>> expr = by(bank.name, avg=bank.balance.mean())

>>> split(bank, expr)
((chunk,

by(chunk.name, avg_count=count(chunk.balance),
avg_total=sum(chunk.balance))),

(aggregate,
by(aggregate.name, avg=(sum(aggregate.avg_total)) /

sum(aggregate.avg_count))))

As in the first example this chunked split-apply-combine operation translates the intended results into two different
computations, one to perform on each in-memory chunk of the data and one to perform on the aggregated results.

Note that you do not need to use split yourself. Blaze does this for you automatically.

Parallel Processing

If a data source is easily separable into chunks in a parallel manner then computation may be accelerated by a parallel
map function provided by the multiprocessing module (or any similar module).

For example a dataset comprised of many CSV files may be easily split up (one csv file = one chunk.) To supply a
parallel map function one currently must use the explicit compute function.

>>> d = data('my-many-csv-files-*.csv')
>>> d.my_column.count() # Single core by default
...

>>> import multiprocessing
>>> pool = multiprocessing.Pool(4) # Four processes

>>> compute(d.my_column.count(), map=pool.map) # Parallel over four cores
...

Note that one can only parallelize over datasets that can be easily split in a non-serial fashion. In particular one can
not parallelize computation over a single CSV file. Collections of CSV files and binary storage systems like HDF5
and BColz all support multiprocessing.

26 Chapter 2. Presentations

Blaze Documentation, Release 0.11.3

Beyond CSVs

While pervasive, CSV files may not be the best choice for speedy processing. Binary storage formats like HDF5 and
BColz provide more opportunities for parallelism and are generally much faster for large datasets.

2.1.13 Server

Blaze provides uniform access to a variety of common data formats. Blaze Server builds off of this uniform interface
to host data remotely through a JSON web API.

Setting up a Blaze Server

To demonstrate the use of the Blaze server we serve the iris csv file.

>>> # Server code, run this once. Leave running.

>>> from blaze import *
>>> from blaze.utils import example
>>> csv = CSV(example('iris.csv'))
>>> data(csv).peek()

sepal_length sepal_width petal_length petal_width species
0 5.1 3.5 1.4 0.2 Iris-setosa
1 4.9 3.0 1.4 0.2 Iris-setosa
2 4.7 3.2 1.3 0.2 Iris-setosa
3 4.6 3.1 1.5 0.2 Iris-setosa
4 5.0 3.6 1.4 0.2 Iris-setosa
5 5.4 3.9 1.7 0.4 Iris-setosa
6 4.6 3.4 1.4 0.3 Iris-setosa
7 5.0 3.4 1.5 0.2 Iris-setosa
8 4.4 2.9 1.4 0.2 Iris-setosa
9 4.9 3.1 1.5 0.1 Iris-setosa
...

Then we host this publicly on port 6363

from blaze.server import Server
server = Server(csv)
server.run(host='0.0.0.0', port=6363)

A Server is the following

1. A dataset that blaze understands or dictionary of such datasets

2. A Flask app.

With this code our machine is now hosting our CSV file through a web-application on port 6363. We can now access
our CSV file, through Blaze, as a service from a variety of applications.

Serving Data from the Command Line

Blaze ships with a command line tool called blaze-server to serve up data specified in a YAML file.

Note: To use the YAML specification feature of Blaze server please install the pyyaml library. This can be done
easily with conda:

2.1. Index 27

http://flask.pocoo.org/docs/0.10/quickstart/#a-minimal-application

Blaze Documentation, Release 0.11.3

conda install pyyaml

YAML Specification

The structure of the specification file is as follows:

name1:
source: path or uri
dshape: optional datashape

name2:
source: path or uri
dshape: optional datashape

...
nameN:
source: path or uri
dshape: optional datashape

Note: When source is a directory, Blaze will recurse into the directory tree and call odo.resource on the leaves
of the tree.

Here’s an example specification file:

iriscsv:
source: ../examples/data/iris.csv

irisdb:
source: sqlite:///../examples/data/iris.db

accounts:
source: ../examples/data/accounts.json.gz
dshape: "var * {name: string, amount: float64}"

The previous YAML specification will serve the following dictionary:

>>> from odo import resource
>>> resources = {
... 'iriscsv': resource('../examples/data/iris.csv'),
... 'irisdb': resource('sqlite:///../examples/data/iris.db'),
... 'accounts': resource('../examples/data/accounts.json.gz',
... dshape="var * {name: string, amount: float64}")
... }

The only required key for each named data source is the source key, which is passed to odo.resource. You can
optionally specify a dshape parameter, which is passed into odo.resource along with the source key.

Advanced YAML usage

If odo.resource requires extra keyword arguments for a particular resource type and they are provided in the
YAML file, these will be forwarded on to the resource call.

If there is an imports entry for a resource whose value is a list of module or package names, Blaze server will
import each of these modules or packages before calling resource.

For example:

28 Chapter 2. Presentations

Blaze Documentation, Release 0.11.3

name1:
source: path or uri
dshape: optional datashape
kwarg1: extra kwarg
kwarg2: etc.

name2:
source: path or uri
imports: ['mod1', 'pkg2']

For this YAML file, Blaze server will pass on kwarg1=... and kwarg2=... to the resource() call for name1
in addition to the dshape=... keyword argument.

Also, before calling resource on the source of name2, Blaze server will first execute an import mod1 and
import pkg2 statement.

Command Line Interface

1. UNIX

YAML file specifying resources to load and optionally their
→˓datashape
$ cat example.yaml
iriscsv:

source: ../examples/data/iris.csv
irisdb:

source: sqlite:///../examples/data/iris.db
accounts:

source: ../examples/data/accounts.json.gz
dshape: "var * {name: string, amount: float64}"

serve data specified in a YAML file and follow symbolic links
$ blaze-server example.yaml --follow-links

You can also construct a YAML file from a heredoc to pipe to blaze-
→˓server
$ cat <<EOF
datadir:

source: /path/to/data/directory
EOF | blaze-server

2. Windows

If you're on Windows you can do this with powershell
PS C:\> @'
datadir:

source: C:\path\to\data\directory
'@ | blaze-server

Interacting with the Web Server from the Client

Computation is now available on this server at localhost:6363/compute.json. To communicate the compu-
tation to be done we pass Blaze expressions in JSON format through the request. See the examples below.

2.1. Index 29

Blaze Documentation, Release 0.11.3

Fully Interactive Python-to-Python Remote work

The highest level of abstraction and the level that most will probably want to work at is interactively sending compu-
tations to a Blaze server process from a client.

We can use Blaze server to have one Blaze process control another. Given our iris web server we can use Blaze on the
client to drive the server to do work for us

Client code, run this in a separate process from the Server

>>> from blaze import data, by
>>> t = data('blaze://localhost:6363') # doctest: +SKIP

>>> t # doctest: +SKIP
sepal_length sepal_width petal_length petal_width species

0 5.1 3.5 1.4 0.2 Iris-setosa
1 4.9 3.0 1.4 0.2 Iris-setosa
2 4.7 3.2 1.3 0.2 Iris-setosa
3 4.6 3.1 1.5 0.2 Iris-setosa
4 5.0 3.6 1.4 0.2 Iris-setosa
5 5.4 3.9 1.7 0.4 Iris-setosa
6 4.6 3.4 1.4 0.3 Iris-setosa
7 5.0 3.4 1.5 0.2 Iris-setosa
8 4.4 2.9 1.4 0.2 Iris-setosa
9 4.9 3.1 1.5 0.1 Iris-setosa
...

>>> by(t.species, min=t.petal_length.min(),
... max=t.petal_length.max()) # doctest: +SKIP

species max min
0 Iris-virginica 6.9 4.5
1 Iris-setosa 1.9 1.0
2 Iris-versicolor 5.1 3.0

We interact on the client machine through the data object but computations on this object cause communications
through the web API, resulting in seemlessly interactive remote computation.

The blaze server and client can be configured to support various serialization formats. These formats are exposed
in the blaze.server module. The server and client must both be told to use the same serialization format. For
example:

Server setup.
>>> from blaze import Server
>>> from blaze.server import msgpack_format, json_format
>>> Server(my_data, formats=(msgpack_format, json_format).run() # doctest: +SKIP

Client code, run this in a separate process from the Server
>>> from blaze import Client, data
>>> from blaze.server import msgpack_format, json_format
>>> msgpack_client = data(Client('localhost', msgpack_format)) # doctest: +SKIP
>>> json_client = data(Client('localhost', json_format)) # doctest +SKIP

In this example, msgpack_client will make requests to the /compute.msgpack endpoint and will send and
receive data using the msgpack protocol; however, the json_client will make requests to the /compute.json
endpoint and will send and receive data using the json protocol.

30 Chapter 2. Presentations

Blaze Documentation, Release 0.11.3

Using the Python Requests Library

Moving down the stack, we can interact at the HTTP request level with Blaze serer using the requests library.

Client code, run this in a separate process from the Server

>>> import json
>>> import requests
>>> query = {'expr': {'op': 'sum',
... 'args': [{'op': 'Field',
... 'args': [':leaf', 'petal_length']}]}}
>>> r = requests.get('http://localhost:6363/compute.json',
... data=json.dumps(query),
... headers={'Content-Type': 'application/vnd.blaze+json'}) #
→˓doctest: +SKIP
>>> json.loads(r.content) # doctest: +SKIP
{u'data': 563.8000000000004,
u'names': ['petal_length_sum'],
u'datashape': u'{petal_length_sum: float64}'}

Now we use Blaze to generate the query programmatically

>>> from blaze import symbol
>>> from blaze.server import to_tree
>>> from pprint import pprint

>>> # Build a Symbol like our served iris data
>>> dshape = """var * {
... sepal_length: float64,
... sepal_width: float64,
... petal_length: float64,
... petal_width: float64,
... species: string
... }""" # matching schema to csv file
>>> t = symbol('t', dshape)
>>> expr = t.petal_length.sum()
>>> d = to_tree(expr, names={t: ':leaf'})
>>> query = {'expr': d}
>>> pprint(query)
{'expr': {'args': [{'args': [':leaf', 'petal_length'], 'op': 'Field'},

[0],
False],

'op': 'sum'}}

Alternatively we build a query to grab a single column

>>> pprint(to_tree(t.species, names={t: ':leaf'}))
{'args': [':leaf', 'species'], 'op': 'Field'}

Using curl

In fact, any tool that is capable of sending requests to a server is able to send computations to a Blaze server.

We can use standard command line tools such as curl to interact with the server:

$ curl \
-H "Content-Type: application/vnd.blaze+json" \

2.1. Index 31

Blaze Documentation, Release 0.11.3

-d '{"expr": {"op": "Field", "args": [":leaf", "species"]}}' \
localhost:6363/compute.json

{
"data": [

"Iris-setosa",
"Iris-setosa",
...
],

"datashape": "var * {species: string}",
}

$ curl \
-H "Content-Type: application/vnd.blaze+json" \
-d '{"expr": {"op": "sum", \

"args": [{"op": "Field", \
"args": [":leaf", "petal_Length"]}]}}' \

localhost:6363/compute.json

{
"data": 563.8000000000004,
"datashape": "{petal_length_sum: float64}",

}

These queries deconstruct the Blaze expression as nested JSON. The ":leaf" string is a special case pointing to the
base data. Constructing these queries can be difficult to do by hand, fortunately Blaze can help you to build them.

Adding Data to the Server

Data resources can be added to the server from the client by sending a resource URI to the server. The data initially
on the server must have a dictionary-like interface to be updated.

>>> from blaze.utils import example
>>> query = {'accounts': example('accounts.csv')}
>>> r = requests.get('http://localhost:6363/add',
... data=json.dumps(query),
... headers={'Content-Type': 'application/vnd.blaze+json'})

Advanced Use

Blaze servers may host any data that Blaze understands from a single integer

>>> server = Server(1)

To a dictionary of several heterogeneous datasets

>>> server = Server({
... 'my-dataframe': df,
... 'iris': resource('iris.csv'),
... 'baseball': resource('sqlite:///baseball-statistics.db')
... })

A variety of hosting options are available through the Flask project

32 Chapter 2. Presentations

http://flask.pocoo.org/docs/0.10/quickstart/#a-minimal-application

Blaze Documentation, Release 0.11.3

>>> help(server.app.run)
Help on method run in module flask.app:

run(self, host=None, port=None, debug=None, **options) method of flask.app.Flask
→˓instance
Runs the application on a local development server. If the
:attr:`debug` flag is set the server will automatically reload
for code changes and show a debugger in case an exception happened.

...

Caching

Caching results on frequently run queries may significantly improve user experience in some cases. One may wrap a
Blaze server in a traditional web-based caching system like memcached or use a data centric solution.

The Blaze CachedDataset might be appropriate in some situations. A cached dataset holds a normal dataset and a
dict like object.

>>> dset = {'my-dataframe': df,
... 'iris': resource('iris.csv'),
... 'baseball': resource('sqlite:///baseball-statistics.db')}

>>> from blaze.cached import CachedDataset
>>> cached = CachedDataset(dset, cache=dict())

Queries and results executed against a cached dataset are stored in the cache (here a normal Python dict) for fast
future access.

If accumulated results are likely to fill up memory then other, on-disk dict-like structures can be used like Shove or
Chest.

>>> from chest import Chest
>>> cached = CachedDataset(dset, cache=Chest())

These cached objects can be used anywhere normal objects can be used in Blaze, including an interactive (and now
performance cached) data object

>>> d = data(cached)

or a Blaze server

>>> server = Server(cached)

Flask Blueprint

If you would like to use the blaze server endpoints from within another flask application, you can register the blaze
API blueprint with your application. For example:

>>> from blaze.server import api, json_format
>>> my_app.register_blueprint(api, data=my_data, formats=(json_format,))

When registering the API, you must pass the data that the API endpoints will serve. You must also pass an iterable of
serialization format objects that the server will respond to.

2.1. Index 33

https://docs.python.org/dev/library/stdtypes.html#dict
https://pypi.python.org/pypi/shove/0.5.6
https://github.com/mrocklin/chest

Blaze Documentation, Release 0.11.3

Profiling

The blaze server allows users and server administrators to profile computations run on the server. This allows develop-
ers to better understand the performance profile of their computations to better tune their queries or the backend code
that is executing the query. This profiling will also track the time spent in serializing the data.

By default, blaze servers will not allow profiling. To enable profiling on the blaze server, pass
allow_profiler=True to the Server object. Now when we try to compute against this server, we may pass
profile=True to compute. For example:

>>> client = Client(...)
>>> compute(expr, client, profile=True)

After running the above code, the server will have written a new pstats file containing the results of the run. This fill
will be found at: profiler_output/<md5>/<timestamp>. We use the md5 hash of the str of the expression
so that users can more easily track down their stats information. Users can find the hash of their expression with
expr_md5().

The profiler output directory may be configured with the profiler_output argument to the Server.

Clients may also request that the profiling data be sent back in the response so that analysis may happen on the client.
To do this, we change our call to compute to look like:

>>> from io import BytesIO
>>> buf = BytesIO()
>>> compute(expr, client, profile=True, profiler_output=buf)

After that computation, buf will have the the marshalled stats data suitable for reading with pstats. This feature is
useful when blaze servers are being run behind a load balancer and we do not want to search all of the servers to find
the output.

Note: Because the data is serialized with marshal it must be read by the same version of python as the server. This
means that a python 2 client cannot unmarshal the data written by a python 3 server. This is to conform with the file
format expected by pstats, the standard profiling output inspection library.

System administrators may also configure all computations to be profiled by default. This is useful if the client code
cannot be easily changed or threading arguments to compute is hard in an application setting. This may be set with
profile_by_default=True when constructing the server.

Conclusion

Because this process builds off Blaze expressions it works equally well for data stored in any format on which Blaze
is trained, including in-memory DataFrames, SQL/Mongo databases, or even Spark clusters.

2.1.14 Datashape

Blaze uses datashape, a data layout language for array programming, as its type system.

• Documentation

• Source

34 Chapter 2. Presentations

https://docs.python.org/dev/library/profile.html#module-pstats
https://docs.python.org/dev/library/marshal.html#module-marshal
https://docs.python.org/dev/library/profile.html#module-pstats
http://datashape.pydata.org/
https://github.com/blaze/datashape

Blaze Documentation, Release 0.11.3

2.1.15 What Blaze Doesn’t Do

Blaze occasionally suffers from over-hype. The terms Big-Data and Pandas inevitably conflate in people’s minds to
become something unattainable and lead to disappointment. Blaze is limited; learning those limitations can direct you
to greater productivity.

First and foremost, Blaze does not replace Pandas. Pandas will always be more feature rich and more mature than
Blaze. There are things that you simply can’t do if you want to generalize out of memory.

If your data fits nicely in memory then use NumPy/Pandas. Your data probably fits nicely in memory.

Some concrete things Blaze doesn’t do

1. Clean unstructured data. Blaze only handles analytic queries on structured data.

2. Most things in SciPy. Including things like FFT, and gradient descent.

3. Most things in SciKit Learn/Image/etc..

4. Statistical inference - We invite you to build this (this one is actually pretty doable.)

5. Parallelize your existing Python code

6. Replace Spark - Blaze may operate on top of Spark, it doesn’t compete with it.

7. Compute quickly - Blaze uses other things to compute, it doesn’t compute anything itself. So asking questions
about how fast Blaze is are determined entirely by how fast other things are.

That’s not to say that these can’t be done

Blaze aims to be a foundational data interface like numpy/pandas rather than try to implement the entire PyData
stack (scipy, scikit-learn, etc..) Only by keeping scope small do we have a chance at relevance.

Of course, others can build off of Blaze in the same way that scipy and scikit-learn built off of numpy/
pandas. Blaze devs often also do this work (it’s important) but we generally don’t include it in the Blaze library.

It’s also worth mentioning that different classes of algorithms work well on small vs large datasets. It could be that the
algorithm that you like most may not easily extend beyond the scope of memory. A direct translation of scikit-learn
algorithms to Blaze would likely be computationally disastrous.

What Blaze Does

Blaze is a query system that looks like NumPy/Pandas. You write Blaze queries, Blaze translates those queries to
something else (like SQL), and ships those queries to various database to run on other people’s fast code. It smoothes
out this process to make interacting with foreign data as accessible as using Pandas. This is actually quite difficult.

Blaze increases human accessibility, not computational performance.

But we work on other things

Blaze devs interact with a lot of other computational systems. Sometimes we find holes where systems should exist,
but don’t. In these cases we may write our own computational system. In these cases we naturally hook up Blaze to
serve as a front-end query system. We often write about these experiments.

As a result you may see us doing some of the things we just said “Blaze doesn’t do”. These things aren’t Blaze (but
you can use Blaze to do them easily.)

2.1. Index 35

Blaze Documentation, Release 0.11.3

2.1.16 API

This page contains a comprehensive list of functionality within blaze. Docstrings should provide sufficient under-
standing for any individual function or class.

Interactive Use

_Data Bind a data resource to a symbol, for use in expressions and
computation.

Expressions

Projection Select a subset of fields from data.
Selection Filter elements of expression based on predicate
Label An expression with a name.
ReLabel Table with same content but with new labels
Map Map an arbitrary Python function across elements in a col-

lection
Apply Apply an arbitrary Python function onto an expression
Coerce Coerce an expression to a different type.
Coalesce SQL like coalesce.
Cast Cast an expression to a different type.

Sort Table in sorted order
Distinct Remove duplicate elements from an expression
Head First n elements of collection
Merge Merge many fields together
Join Join two tables on common columns
Concat Stack tables on common columns
IsIn Check if an expression contains values from a set.

By Split-Apply-Combine Operator

Blaze Server

Server

Client

Additional Server Utilities

expr_md5
to_tree
from_tree

36 Chapter 2. Presentations

Blaze Documentation, Release 0.11.3

data_spider
from_yaml

Definitions

blaze.interactive.data(data_source, dshape=None, name=None, fields=None, schema=None,
**kwargs)

Bind a data resource to a symbol, for use in expressions and computation.

A data object presents a consistent view onto a variety of concrete data sources. Like symbol objects, they
are meant to be used in expressions. Because they are tied to concrete data resources, data objects can be used
with compute directly, making them convenient for interactive exploration.

Parameters data_source : object

Any type with discover and compute implementations

fields : list, optional

Field or column names, will be inferred from data_source if possible

dshape : str or DataShape, optional

DataShape describing input data

name : str, optional

A name for the data.

Examples

>>> t = data([(1, 'Alice', 100),
... (2, 'Bob', -200),
... (3, 'Charlie', 300),
... (4, 'Denis', 400),
... (5, 'Edith', -500)],
... fields=['id', 'name', 'balance'])
>>> t[t.balance < 0].name

name
0 Bob
1 Edith

class blaze.expr.collections.Concat
Stack tables on common columns

Parameters lhs, rhs : Expr

Collections to concatenate

axis : int, optional

The axis to concatenate on.

See also:

blaze.expr.collections.Merge

2.1. Index 37

Blaze Documentation, Release 0.11.3

Examples

>>> from blaze import symbol

Vertically stack tables:

>>> names = symbol('names', '5 * {name: string, id: int32}')
>>> more_names = symbol('more_names', '7 * {name: string, id: int32}')
>>> stacked = concat(names, more_names)
>>> stacked.dshape
dshape("12 * {name: string, id: int32}")

Vertically stack matrices:

>>> mat_a = symbol('a', '3 * 5 * int32')
>>> mat_b = symbol('b', '3 * 5 * int32')
>>> vstacked = concat(mat_a, mat_b, axis=0)
>>> vstacked.dshape
dshape("6 * 5 * int32")

Horizontally stack matrices:

>>> hstacked = concat(mat_a, mat_b, axis=1)
>>> hstacked.dshape
dshape("3 * 10 * int32")

blaze.expr.collections.concat(lhs, rhs, axis=0)
Stack tables on common columns

Parameters lhs, rhs : Expr

Collections to concatenate

axis : int, optional

The axis to concatenate on.

See also:

blaze.expr.collections.Merge

Examples

>>> from blaze import symbol

Vertically stack tables:

>>> names = symbol('names', '5 * {name: string, id: int32}')
>>> more_names = symbol('more_names', '7 * {name: string, id: int32}')
>>> stacked = concat(names, more_names)
>>> stacked.dshape
dshape("12 * {name: string, id: int32}")

Vertically stack matrices:

>>> mat_a = symbol('a', '3 * 5 * int32')
>>> mat_b = symbol('b', '3 * 5 * int32')
>>> vstacked = concat(mat_a, mat_b, axis=0)

38 Chapter 2. Presentations

Blaze Documentation, Release 0.11.3

>>> vstacked.dshape
dshape("6 * 5 * int32")

Horizontally stack matrices:

>>> hstacked = concat(mat_a, mat_b, axis=1)
>>> hstacked.dshape
dshape("3 * 10 * int32")

class blaze.expr.collections.Distinct
Remove duplicate elements from an expression

Parameters on : tuple of Field

The subset of fields or names of fields to be distinct on.

Examples

>>> from blaze import symbol
>>> t = symbol('t', 'var * {name: string, amount: int, id: int}')
>>> e = distinct(t)

>>> data = [('Alice', 100, 1),
... ('Bob', 200, 2),
... ('Alice', 100, 1)]

>>> from blaze.compute.python import compute
>>> sorted(compute(e, data))
[('Alice', 100, 1), ('Bob', 200, 2)]

Use a subset by passing on:

>>> import pandas as pd
>>> e = distinct(t, 'name')
>>> data = pd.DataFrame([['Alice', 100, 1],
... ['Alice', 200, 2],
... ['Bob', 100, 1],
... ['Bob', 200, 2]],
... columns=['name', 'amount', 'id'])
>>> compute(e, data)

name amount id
0 Alice 100 1
1 Bob 100 1

blaze.expr.collections.distinct(expr, *on)
Remove duplicate elements from an expression

Parameters on : tuple of Field

The subset of fields or names of fields to be distinct on.

Examples

2.1. Index 39

Blaze Documentation, Release 0.11.3

>>> from blaze import symbol
>>> t = symbol('t', 'var * {name: string, amount: int, id: int}')
>>> e = distinct(t)

>>> data = [('Alice', 100, 1),
... ('Bob', 200, 2),
... ('Alice', 100, 1)]

>>> from blaze.compute.python import compute
>>> sorted(compute(e, data))
[('Alice', 100, 1), ('Bob', 200, 2)]

Use a subset by passing on:

>>> import pandas as pd
>>> e = distinct(t, 'name')
>>> data = pd.DataFrame([['Alice', 100, 1],
... ['Alice', 200, 2],
... ['Bob', 100, 1],
... ['Bob', 200, 2]],
... columns=['name', 'amount', 'id'])
>>> compute(e, data)

name amount id
0 Alice 100 1
1 Bob 100 1

class blaze.expr.collections.Head
First n elements of collection

See also:

blaze.expr.collections.Tail

Examples

>>> from blaze import symbol
>>> accounts = symbol('accounts', 'var * {name: string, amount: int}')
>>> accounts.head(5).dshape
dshape("5 * {name: string, amount: int32}")

blaze.expr.collections.head(child, n=10)
First n elements of collection

See also:

blaze.expr.collections.Tail

Examples

>>> from blaze import symbol
>>> accounts = symbol('accounts', 'var * {name: string, amount: int}')
>>> accounts.head(5).dshape
dshape("5 * {name: string, amount: int32}")

40 Chapter 2. Presentations

Blaze Documentation, Release 0.11.3

class blaze.expr.collections.IsIn
Check if an expression contains values from a set.

Return a boolean expression indicating whether another expression contains values that are members of a col-
lection.

Parameters expr : Expr

Expression whose elements to check for membership in keys

keys : Sequence

Elements to test against. Blaze stores this as a frozenset.

Examples

Check if a vector contains any of 1, 2 or 3:

>>> from blaze import symbol
>>> t = symbol('t', '10 * int64')
>>> expr = t.isin([1, 2, 3])
>>> expr.dshape
dshape("10 * bool")

blaze.expr.collections.isin(expr, keys)
Check if an expression contains values from a set.

Return a boolean expression indicating whether another expression contains values that are members of a col-
lection.

Parameters expr : Expr

Expression whose elements to check for membership in keys

keys : Sequence

Elements to test against. Blaze stores this as a frozenset.

Examples

Check if a vector contains any of 1, 2 or 3:

>>> from blaze import symbol
>>> t = symbol('t', '10 * int64')
>>> expr = t.isin([1, 2, 3])
>>> expr.dshape
dshape("10 * bool")

class blaze.expr.collections.Join
Join two tables on common columns

Parameters lhs, rhs : Expr

Expressions to join

on_left : str, optional

The fields from the left side to join on. If no on_right is passed, then these are the
fields for both sides.

on_right : str, optional

2.1. Index 41

Blaze Documentation, Release 0.11.3

The fields from the right side to join on.

how : {‘inner’, ‘outer’, ‘left’, ‘right’}

What type of join to perform.

suffixes: pair of str

The suffixes to be applied to the left and right sides in order to resolve duplicate field
names.

See also:

blaze.expr.collections.Merge

Examples

>>> from blaze import symbol
>>> names = symbol('names', 'var * {name: string, id: int}')
>>> amounts = symbol('amounts', 'var * {amount: int, id: int}')

Join tables based on shared column name

>>> joined = join(names, amounts, 'id')

Join based on different column names

>>> amounts = symbol('amounts', 'var * {amount: int, acctNumber: int}')
>>> joined = join(names, amounts, 'id', 'acctNumber')

blaze.expr.collections.join(lhs, rhs, on_left=None, on_right=None, how=’inner’, suf-
fixes=(‘_left’, ‘_right’))

Join two tables on common columns

Parameters lhs, rhs : Expr

Expressions to join

on_left : str, optional

The fields from the left side to join on. If no on_right is passed, then these are the
fields for both sides.

on_right : str, optional

The fields from the right side to join on.

how : {‘inner’, ‘outer’, ‘left’, ‘right’}

What type of join to perform.

suffixes: pair of str

The suffixes to be applied to the left and right sides in order to resolve duplicate field
names.

See also:

blaze.expr.collections.Merge

42 Chapter 2. Presentations

Blaze Documentation, Release 0.11.3

Examples

>>> from blaze import symbol
>>> names = symbol('names', 'var * {name: string, id: int}')
>>> amounts = symbol('amounts', 'var * {amount: int, id: int}')

Join tables based on shared column name

>>> joined = join(names, amounts, 'id')

Join based on different column names

>>> amounts = symbol('amounts', 'var * {amount: int, acctNumber: int}')
>>> joined = join(names, amounts, 'id', 'acctNumber')

class blaze.expr.collections.Merge
Merge many fields together

Examples

>>> from blaze import symbol, label
>>> accounts = symbol('accounts', 'var * {name: string, x: int, y: real}')
>>> merge(accounts.name, z=accounts.x + accounts.y).fields
['name', 'z']

To control the ordering of the fields, use label:

>>> merge(label(accounts.name, 'NAME'), label(accounts.x, 'X')).dshape
dshape("var * {NAME: string, X: int32}")
>>> merge(label(accounts.x, 'X'), label(accounts.name, 'NAME')).dshape
dshape("var * {X: int32, NAME: string}")

blaze.expr.collections.merge(*exprs, **kwargs)
Merge many fields together

Examples

>>> from blaze import symbol, label
>>> accounts = symbol('accounts', 'var * {name: string, x: int, y: real}')
>>> merge(accounts.name, z=accounts.x + accounts.y).fields
['name', 'z']

To control the ordering of the fields, use label:

>>> merge(label(accounts.name, 'NAME'), label(accounts.x, 'X')).dshape
dshape("var * {NAME: string, X: int32}")
>>> merge(label(accounts.x, 'X'), label(accounts.name, 'NAME')).dshape
dshape("var * {X: int32, NAME: string}")

class blaze.expr.collections.Sample
Random row-wise sample. Can specify n or frac for an absolute or fractional number of rows, respectively.

2.1. Index 43

Blaze Documentation, Release 0.11.3

Examples

>>> from blaze import symbol
>>> accounts = symbol('accounts', 'var * {name: string, amount: int}')
>>> accounts.sample(n=2).dshape
dshape("var * {name: string, amount: int32}")
>>> accounts.sample(frac=0.1).dshape
dshape("var * {name: string, amount: int32}")

blaze.expr.collections.sample(child, n=None, frac=None)
Random row-wise sample. Can specify n or frac for an absolute or fractional number of rows, respectively.

Examples

>>> from blaze import symbol
>>> accounts = symbol('accounts', 'var * {name: string, amount: int}')
>>> accounts.sample(n=2).dshape
dshape("var * {name: string, amount: int32}")
>>> accounts.sample(frac=0.1).dshape
dshape("var * {name: string, amount: int32}")

class blaze.expr.collections.Shift
Shift a column backward or forward by N elements

Parameters expr : Expr

The expression to shift. This expression’s dshape should be columnar

n : int

The number of elements to shift by. If n < 0 then shift backward, if n == 0 do nothing,
else shift forward.

blaze.expr.collections.shift(expr, n)
Shift a column backward or forward by N elements

Parameters expr : Expr

The expression to shift. This expression’s dshape should be columnar

n : int

The number of elements to shift by. If n < 0 then shift backward, if n == 0 do nothing,
else shift forward.

class blaze.expr.collections.Sort
Table in sorted order

Examples

>>> from blaze import symbol
>>> accounts = symbol('accounts', 'var * {name: string, amount: int}')
>>> accounts.sort('amount', ascending=False).schema
dshape("{name: string, amount: int32}")

Some backends support sorting by arbitrary rowwise tables, e.g.

44 Chapter 2. Presentations

Blaze Documentation, Release 0.11.3

>>> accounts.sort(-accounts.amount)

blaze.expr.collections.sort(child, key=None, ascending=True)
Sort a collection

Parameters key : str, list of str, or Expr

Defines by what you want to sort.

• A single column string: t.sort('amount')

• A list of column strings: t.sort(['name', 'amount'])

• An expression: t.sort(-t.amount)

If sorting a columnar dataset, the key is ignored, as it is not necessary:

• t.amount.sort()

• t.amount.sort('amount')

• t.amount.sort('foobar')

are all equivalent.

ascending : bool, optional

Determines order of the sort

class blaze.expr.collections.Tail
Last n elements of collection

See also:

blaze.expr.collections.Head

Examples

>>> from blaze import symbol
>>> accounts = symbol('accounts', 'var * {name: string, amount: int}')
>>> accounts.tail(5).dshape
dshape("5 * {name: string, amount: int32}")

blaze.expr.collections.tail(child, n=10)
Last n elements of collection

See also:

blaze.expr.collections.Head

Examples

>>> from blaze import symbol
>>> accounts = symbol('accounts', 'var * {name: string, amount: int}')
>>> accounts.tail(5).dshape
dshape("5 * {name: string, amount: int32}")

blaze.expr.collections.transform(t, replace=True, **kwargs)
Add named columns to table

2.1. Index 45

Blaze Documentation, Release 0.11.3

>>> from blaze import symbol
>>> t = symbol('t', 'var * {x: int, y: int}')
>>> transform(t, z=t.x + t.y).fields
['x', 'y', 'z']

class blaze.expr.expressions.Apply
Apply an arbitrary Python function onto an expression

See also:

blaze.expr.expressions.Map

Examples

>>> t = symbol('t', 'var * {name: string, amount: int}')
>>> h = t.apply(hash, dshape='int64') # Hash value of resultant dataset

You must provide the datashape of the result with the dshape= keyword. For datashape examples see http:
//datashape.pydata.org/grammar.html#some-simple-examples

If using a chunking backend and your operation may be safely split and concatenated then add the
splittable=True keyword argument

>>> t.apply(f, dshape='...', splittable=True)

class blaze.expr.expressions.Cast
Cast an expression to a different type.

This is only an expression time operation.

Examples

>>> s = symbol('s', '?int64')
>>> s.cast('?int32').dshape
dshape("?int32")

Cast to correct mislabeled optionals >>> s.cast(‘int64’).dshape dshape(“int64”)

Cast to give concrete dimension length >>> t = symbol(‘t’, ‘var * float32’) >>> t.cast(‘10 * float32’).dshape
dshape(“10 * float32”)

class blaze.expr.expressions.Coalesce
SQL like coalesce.

coalesce(a, b) = { a if a is not NULL b otherwise

}

Examples

>>> coalesce(1, 2)
1
>>> coalesce(1, None)
1
>>> coalesce(None, 2)

46 Chapter 2. Presentations

http://datashape.pydata.org/grammar.html#some-simple-examples
http://datashape.pydata.org/grammar.html#some-simple-examples

Blaze Documentation, Release 0.11.3

2
>>> coalesce(None, None) is None
True

class blaze.expr.expressions.Coerce
Coerce an expression to a different type.

Examples

>>> t = symbol('t', '100 * float64')
>>> t.coerce(to='int64')
t.coerce(to='int64')
>>> t.coerce('float32')
t.coerce(to='float32')
>>> t.coerce('int8').dshape
dshape("100 * int8")

class blaze.expr.expressions.ElemWise
Elementwise operation.

The shape of this expression matches the shape of the child.

class blaze.expr.expressions.Expr
Symbolic expression of a computation

All Blaze expressions (Join, By, Sort, ...) descend from this class. It contains shared logic and syntax. It in turn
inherits from Node which holds all tree traversal logic

cast(expr, to)
Cast an expression to a different type.

This is only an expression time operation.

Examples

>>> s = symbol('s', '?int64')
>>> s.cast('?int32').dshape
dshape("?int32")

Cast to correct mislabeled optionals >>> s.cast(‘int64’).dshape dshape(“int64”)

Cast to give concrete dimension length >>> t = symbol(‘t’, ‘var * float32’) >>> t.cast(‘10 *
float32’).dshape dshape(“10 * float32”)

map(func, schema=None, name=None)
Map an arbitrary Python function across elements in a collection

See also:

blaze.expr.expresions.Apply

Examples

>>> from datetime import datetime

2.1. Index 47

Blaze Documentation, Release 0.11.3

>>> t = symbol('t', 'var * {price: real, time: int64}') # times as integers
>>> datetimes = t.time.map(datetime.utcfromtimestamp)

Optionally provide extra schema information

>>> datetimes = t.time.map(datetime.utcfromtimestamp,
... schema='{time: datetime}')

class blaze.expr.expressions.Field
A single field from an expression.

Get a single field from an expression with record-type schema. We store the name of the field in the _name
attribute.

Examples

>>> points = symbol('points', '5 * 3 * {x: int32, y: int32}')
>>> points.x.dshape
dshape("5 * 3 * int32")

For fields that aren’t valid Python identifiers, use [] syntax:

>>> points = symbol('points', '5 * 3 * {"space station": float64}')
>>> points['space station'].dshape
dshape("5 * 3 * float64")

class blaze.expr.expressions.Label
An expression with a name.

See also:

blaze.expr.expressions.ReLabel

Examples

>>> accounts = symbol('accounts', 'var * {name: string, amount: int}')
>>> expr = accounts.amount * 100
>>> expr._name
'amount'
>>> expr.label('new_amount')._name
'new_amount'

class blaze.expr.expressions.Map
Map an arbitrary Python function across elements in a collection

See also:

blaze.expr.expresions.Apply

Examples

>>> from datetime import datetime

48 Chapter 2. Presentations

Blaze Documentation, Release 0.11.3

>>> t = symbol('t', 'var * {price: real, time: int64}') # times as integers
>>> datetimes = t.time.map(datetime.utcfromtimestamp)

Optionally provide extra schema information

>>> datetimes = t.time.map(datetime.utcfromtimestamp,
... schema='{time: datetime}')

class blaze.expr.expressions.Projection
Select a subset of fields from data.

See also:

blaze.expr.expressions.Field

Examples

>>> accounts = symbol('accounts',
... 'var * {name: string, amount: int, id: int}')
>>> accounts[['name', 'amount']].schema
dshape("{name: string, amount: int32}")
>>> accounts[['name', 'amount']]
accounts[['name', 'amount']]

class blaze.expr.expressions.ReLabel
Table with same content but with new labels

See also:

blaze.expr.expressions.Label

Notes

When names are not valid Python names, such as integers or string with spaces, you must pass a dictionary to
relabel. For example

>>> s = symbol('s', 'var * {"0": int64}')
>>> s.relabel({'0': 'foo'})
s.relabel({'0': 'foo'})
>>> t = symbol('t', 'var * {"whoo hoo": ?float32}')
>>> t.relabel({"whoo hoo": 'foo'})
t.relabel({'whoo hoo': 'foo'})

Examples

>>> accounts = symbol('accounts', 'var * {name: string, amount: int}')
>>> accounts.schema
dshape("{name: string, amount: int32}")
>>> accounts.relabel(amount='balance').schema
dshape("{name: string, balance: int32}")
>>> accounts.relabel(not_a_column='definitely_not_a_column')
Traceback (most recent call last):

...
ValueError: Cannot relabel non-existent child fields: {'not_a_column'}

2.1. Index 49

Blaze Documentation, Release 0.11.3

>>> s = symbol('s', 'var * {"0": int64}')
>>> s.relabel({'0': 'foo'})
s.relabel({'0': 'foo'})
>>> s.relabel(0='foo')
Traceback (most recent call last):

...
SyntaxError: keyword can't be an expression

class blaze.expr.expressions.Selection
Filter elements of expression based on predicate

Examples

>>> accounts = symbol('accounts',
... 'var * {name: string, amount: int, id: int}')
>>> deadbeats = accounts[accounts.amount < 0]

class blaze.expr.expressions.SimpleSelection
Internal selection class that does not treat the predicate as an input.

class blaze.expr.expressions.Slice
Elements start until stop. On many backends, a step parameter is also allowed.

Examples

>>> from blaze import symbol
>>> accounts = symbol('accounts', 'var * {name: string, amount: int}')
>>> accounts[2:7].dshape
dshape("5 * {name: string, amount: int32}")
>>> accounts[2:7:2].dshape
dshape("3 * {name: string, amount: int32}")

class blaze.expr.expressions.Symbol
Symbolic data. The leaf of a Blaze expression

Examples

>>> points = symbol('points', '5 * 3 * {x: int, y: int}')
>>> points
<`points` symbol; dshape='5 * 3 * {x: int32, y: int32}'>
>>> points.dshape
dshape("5 * 3 * {x: int32, y: int32}")

blaze.expr.expressions.apply(expr, func, dshape, splittable=False)
Apply an arbitrary Python function onto an expression

See also:

blaze.expr.expressions.Map

50 Chapter 2. Presentations

Blaze Documentation, Release 0.11.3

Examples

>>> t = symbol('t', 'var * {name: string, amount: int}')
>>> h = t.apply(hash, dshape='int64') # Hash value of resultant dataset

You must provide the datashape of the result with the dshape= keyword. For datashape examples see http:
//datashape.pydata.org/grammar.html#some-simple-examples

If using a chunking backend and your operation may be safely split and concatenated then add the
splittable=True keyword argument

>>> t.apply(f, dshape='...', splittable=True)

blaze.expr.expressions.cast(expr, to)
Cast an expression to a different type.

This is only an expression time operation.

Examples

>>> s = symbol('s', '?int64')
>>> s.cast('?int32').dshape
dshape("?int32")

Cast to correct mislabeled optionals >>> s.cast(‘int64’).dshape dshape(“int64”)

Cast to give concrete dimension length >>> t = symbol(‘t’, ‘var * float32’) >>> t.cast(‘10 * float32’).dshape
dshape(“10 * float32”)

blaze.expr.expressions.coalesce(a, b)
SQL like coalesce.

coalesce(a, b) = { a if a is not NULL b otherwise

}

Examples

>>> coalesce(1, 2)
1
>>> coalesce(1, None)
1
>>> coalesce(None, 2)
2
>>> coalesce(None, None) is None
True

blaze.expr.expressions.coerce(expr, to)
Coerce an expression to a different type.

Examples

2.1. Index 51

http://datashape.pydata.org/grammar.html#some-simple-examples
http://datashape.pydata.org/grammar.html#some-simple-examples

Blaze Documentation, Release 0.11.3

>>> t = symbol('t', '100 * float64')
>>> t.coerce(to='int64')
t.coerce(to='int64')
>>> t.coerce('float32')
t.coerce(to='float32')
>>> t.coerce('int8').dshape
dshape("100 * int8")

blaze.expr.expressions.label(expr, lab)
An expression with a name.

See also:

blaze.expr.expressions.ReLabel

Examples

>>> accounts = symbol('accounts', 'var * {name: string, amount: int}')
>>> expr = accounts.amount * 100
>>> expr._name
'amount'
>>> expr.label('new_amount')._name
'new_amount'

blaze.expr.expressions.ndim(expr)
Number of dimensions of expression

>>> symbol('s', '3 * var * int32').ndim
2

blaze.expr.expressions.projection(expr, names)
Select a subset of fields from data.

See also:

blaze.expr.expressions.Field

Examples

>>> accounts = symbol('accounts',
... 'var * {name: string, amount: int, id: int}')
>>> accounts[['name', 'amount']].schema
dshape("{name: string, amount: int32}")
>>> accounts[['name', 'amount']]
accounts[['name', 'amount']]

blaze.expr.expressions.relabel(child, labels=None, **kwargs)
Table with same content but with new labels

See also:

blaze.expr.expressions.Label

52 Chapter 2. Presentations

Blaze Documentation, Release 0.11.3

Notes

When names are not valid Python names, such as integers or string with spaces, you must pass a dictionary to
relabel. For example

>>> s = symbol('s', 'var * {"0": int64}')
>>> s.relabel({'0': 'foo'})
s.relabel({'0': 'foo'})
>>> t = symbol('t', 'var * {"whoo hoo": ?float32}')
>>> t.relabel({"whoo hoo": 'foo'})
t.relabel({'whoo hoo': 'foo'})

Examples

>>> accounts = symbol('accounts', 'var * {name: string, amount: int}')
>>> accounts.schema
dshape("{name: string, amount: int32}")
>>> accounts.relabel(amount='balance').schema
dshape("{name: string, balance: int32}")
>>> accounts.relabel(not_a_column='definitely_not_a_column')
Traceback (most recent call last):

...
ValueError: Cannot relabel non-existent child fields: {'not_a_column'}
>>> s = symbol('s', 'var * {"0": int64}')
>>> s.relabel({'0': 'foo'})
s.relabel({'0': 'foo'})
>>> s.relabel(0='foo')
Traceback (most recent call last):

...
SyntaxError: keyword can't be an expression

blaze.expr.expressions.selection(table, predicate)
Filter elements of expression based on predicate

Examples

>>> accounts = symbol('accounts',
... 'var * {name: string, amount: int, id: int}')
>>> deadbeats = accounts[accounts.amount < 0]

blaze.expr.expressions.symbol(name, dshape, token=None)
Symbolic data. The leaf of a Blaze expression

Examples

>>> points = symbol('points', '5 * 3 * {x: int, y: int}')
>>> points
<`points` symbol; dshape='5 * 3 * {x: int32, y: int32}'>
>>> points.dshape
dshape("5 * 3 * {x: int32, y: int32}")

2.1. Index 53

Blaze Documentation, Release 0.11.3

class blaze.expr.reductions.Reduction
A column-wise reduction

Blaze supports the same class of reductions as NumPy and Pandas.

sum, min, max, any, all, mean, var, std, count, nunique

Examples

>>> from blaze import symbol
>>> t = symbol('t', 'var * {name: string, amount: int, id: int}')
>>> e = t['amount'].sum()

>>> data = [['Alice', 100, 1],
... ['Bob', 200, 2],
... ['Alice', 50, 3]]

>>> from blaze.compute.python import compute
>>> compute(e, data)
350

class blaze.expr.reductions.Summary
A collection of named reductions

Examples

>>> from blaze import symbol
>>> t = symbol('t', 'var * {name: string, amount: int, id: int}')
>>> expr = summary(number=t.id.nunique(), sum=t.amount.sum())

>>> data = [['Alice', 100, 1],
... ['Bob', 200, 2],
... ['Alice', 50, 1]]

>>> from blaze import compute
>>> compute(expr, data)
(2, 350)

class blaze.expr.reductions.count
The number of non-null elements

class blaze.expr.reductions.nelements
Compute the number of elements in a collection, including missing values.

See also:

blaze.expr.reductions.count compute the number of non-null elements

Examples

54 Chapter 2. Presentations

Blaze Documentation, Release 0.11.3

>>> from blaze import symbol
>>> t = symbol('t', 'var * {name: string, amount: float64}')
>>> t[t.amount < 1].nelements()
nelements(t[t.amount < 1])

class blaze.expr.reductions.std
Standard Deviation

Parameters child : Expr

An expression

unbiased : bool, optional

Compute the square root of an unbiased estimate of the population variance if this is
True.

Warning: This does not return an unbiased estimate of the population standard
deviation.

See also:

var

blaze.expr.reductions.summary(keepdims=False, axis=None, **kwargs)
A collection of named reductions

Examples

>>> from blaze import symbol
>>> t = symbol('t', 'var * {name: string, amount: int, id: int}')
>>> expr = summary(number=t.id.nunique(), sum=t.amount.sum())

>>> data = [['Alice', 100, 1],
... ['Bob', 200, 2],
... ['Alice', 50, 1]]

>>> from blaze import compute
>>> compute(expr, data)
(2, 350)

class blaze.expr.reductions.var
Variance

Parameters child : Expr

An expression

unbiased : bool, optional

Compute an unbiased estimate of the population variance if this is True. In NumPy
and pandas, this parameter is called ddof (delta degrees of freedom) and is equal to 1
for unbiased and 0 for biased.

blaze.expr.reductions.vnorm(expr, ord=None, axis=None, keepdims=False)
Vector norm

See np.linalg.norm

2.1. Index 55

Blaze Documentation, Release 0.11.3

class blaze.expr.arrays.Transpose
Transpose dimensions in an N-Dimensional array

Examples

>>> x = symbol('x', '10 * 20 * int32')
>>> x.T
transpose(x)
>>> x.T.shape
(20, 10)

Specify axis ordering with axes keyword argument

>>> x = symbol('x', '10 * 20 * 30 * int32')
>>> x.transpose([2, 0, 1])
transpose(x, axes=[2, 0, 1])
>>> x.transpose([2, 0, 1]).shape
(30, 10, 20)

class blaze.expr.arrays.TensorDot
Dot Product: Contract and sum dimensions of two arrays

>>> x = symbol('x', '20 * 20 * int32')
>>> y = symbol('y', '20 * 30 * int32')

>>> x.dot(y)
tensordot(x, y)

>>> tensordot(x, y, axes=[0, 0])
tensordot(x, y, axes=[0, 0])

blaze.expr.arrays.dot(lhs, rhs)
Dot Product: Contract and sum dimensions of two arrays

>>> x = symbol('x', '20 * 20 * int32')
>>> y = symbol('y', '20 * 30 * int32')

>>> x.dot(y)
tensordot(x, y)

>>> tensordot(x, y, axes=[0, 0])
tensordot(x, y, axes=[0, 0])

blaze.expr.arrays.transpose(expr, axes=None)
Transpose dimensions in an N-Dimensional array

Examples

>>> x = symbol('x', '10 * 20 * int32')
>>> x.T
transpose(x)
>>> x.T.shape
(20, 10)

56 Chapter 2. Presentations

Blaze Documentation, Release 0.11.3

Specify axis ordering with axes keyword argument

>>> x = symbol('x', '10 * 20 * 30 * int32')
>>> x.transpose([2, 0, 1])
transpose(x, axes=[2, 0, 1])
>>> x.transpose([2, 0, 1]).shape
(30, 10, 20)

blaze.expr.arrays.tensordot(lhs, rhs, axes=None)
Dot Product: Contract and sum dimensions of two arrays

>>> x = symbol('x', '20 * 20 * int32')
>>> y = symbol('y', '20 * 30 * int32')

>>> x.dot(y)
tensordot(x, y)

>>> tensordot(x, y, axes=[0, 0])
tensordot(x, y, axes=[0, 0])

class blaze.expr.arithmetic.Arithmetic
Super class for arithmetic operators like add or mul

class blaze.expr.math.notnull
Return whether an expression is not null

Examples

>>> from blaze import symbol, compute
>>> s = symbol('s', 'var * int64')
>>> expr = notnull(s)
>>> expr.dshape
dshape("var * bool")
>>> list(compute(expr, [1, 2, None, 3]))
[True, True, False, True]

class blaze.expr.math.UnaryMath
Mathematical unary operator with real valued dshape like sin, or exp

class blaze.expr.broadcast.Broadcast
Fuse scalar expressions over collections

Given elementwise operations on collections, e.g.

>>> from blaze import sin
>>> a = symbol('a', '100 * int')
>>> t = symbol('t', '100 * {x: int, y: int}')

>>> expr = sin(a) + t.y**2

It may be best to represent this as a scalar expression mapped over a collection

>>> sa = symbol('a', 'int')
>>> st = symbol('t', '{x: int, y: int}')

2.1. Index 57

Blaze Documentation, Release 0.11.3

>>> sexpr = sin(sa) + st.y**2

>>> expr = Broadcast((a, t), (sa, st), sexpr)

This provides opportunities for optimized computation.

In practice, expressions are often collected into Broadcast expressions automatically. This class is mainly in-
tented for internal use.

blaze.expr.broadcast.scalar_symbols(exprs)
Gives a sequence of scalar symbols to mirror these expressions

Examples

>>> x = symbol('x', '5 * 3 * int32')
>>> y = symbol('y', '5 * 3 * int32')

>>> xx, yy = scalar_symbols([x, y])

>>> xx._name, xx.dshape
('x', dshape("int32"))
>>> yy._name, yy.dshape
('y', dshape("int32"))

blaze.expr.broadcast.broadcast_collect(expr, broadcastable=(<class
‘blaze.expr.expressions.Map’>, <class
‘blaze.expr.expressions.Field’>, <class
‘blaze.expr.datetime.DateTime’>, <class
‘blaze.expr.arithmetic.UnaryOp’>,
<class ‘blaze.expr.arithmetic.BinOp’>,
<class ‘blaze.expr.expressions.Coerce’>,
<class ‘blaze.expr.collections.Shift’>,
<class ‘blaze.expr.strings.Like’>,
<class ‘blaze.expr.strings.StrCat’>),
want_to_broadcast=(<class
‘blaze.expr.expressions.Map’>, <class
‘blaze.expr.datetime.DateTime’>, <class
‘blaze.expr.arithmetic.UnaryOp’>,
<class ‘blaze.expr.arithmetic.BinOp’>,
<class ‘blaze.expr.expressions.Coerce’>,
<class ‘blaze.expr.collections.Shift’>,
<class ‘blaze.expr.strings.Like’>, <class
‘blaze.expr.strings.StrCat’>), no_recurse=None)

Collapse expression down using Broadcast - Tabular cases only

Expressions of type Broadcastables are swallowed into Broadcast operations

>>> t = symbol('t', 'var * {x: int, y: int, z: int, when: datetime}')
>>> expr = (t.x + 2*t.y).distinct()

>>> broadcast_collect(expr)
distinct(Broadcast(_children=(t,), _scalars=(t,), _scalar_expr=t.x + (2 * t.y)))

58 Chapter 2. Presentations

Blaze Documentation, Release 0.11.3

>>> from blaze import exp
>>> expr = t.x + 2 * exp(-(t.x - 1.3) ** 2)
>>> broadcast_collect(expr)
Broadcast(_children=(t,), _scalars=(t,), _scalar_expr=t.x + (2 * (exp(-((t.x - 1.
→˓3) ** 2)))))

class blaze.expr.datetime.DateTime
Superclass for datetime accessors

class blaze.expr.split_apply_combine.By
Split-Apply-Combine Operator

Examples

>>> from blaze import symbol
>>> t = symbol('t', 'var * {name: string, amount: int, id: int}')
>>> e = by(t['name'], total=t['amount'].sum())

>>> data = [['Alice', 100, 1],
... ['Bob', 200, 2],
... ['Alice', 50, 3]]

>>> from blaze.compute.python import compute
>>> sorted(compute(e, data))
[('Alice', 150), ('Bob', 200)]

blaze.expr.split_apply_combine.count_values(expr, sort=True)
Count occurrences of elements in this column

Sort by counts by default Add sort=False keyword to avoid this behavior.

2.1.17 Release Notes

Release 0.11.0

Release 0.11.0

New Expressions

• Many new string utility expressions were added that follow the Pandas vectorized string methods API closely
http://pandas.pydata.org/pandas-docs/stable/text.html#text-string-methods. These are gathered under the .str
sub-namespace, allowing the user to say:

t.col.str.lower()

to compute a new column with the string contents lowercased.

• Likewise, many new datetime utility expressions were added to the .dt sub-namespace, following Pandas
vectorized datetime methods API http://pandas.pydata.org/pandas-docs/stable/timeseries.html.

2.1. Index 59

http://pandas.pydata.org/pandas-docs/stable/text.html#text-string-methods
http://pandas.pydata.org/pandas-docs/stable/timeseries.html

Blaze Documentation, Release 0.11.3

Improved Expressions

None

New Backends

None

Improved Backends

None

Experimental Features

None

API Changes

• The following functions were deprecated in favor of equivalent functions without the str_ name prefix:

deprecated function replacement function
str_len() len()
str_upper() upper()
str_lower() lower()
str_cat() cat()

Bug Fixes

None

Miscellaneous

None

Release 0.10.2

Release 0.10.2

New Expressions

None

Improved Expressions

• Adds support for any and all to the sql backend (#1511).

60 Chapter 2. Presentations

https://github.com/blaze/blaze/issues/1511

Blaze Documentation, Release 0.11.3

New Backends

None

Improved Backends

• To allow access to the map and apply expressions in client / server interactions when in a trusted environ-
ment, new _trusted versions of the several default SerializationFormat instances were added. These
trusted variants allow (de)serialization of builtin functions, NumPy functions, and Pandas functions. They are
intentially kept separate from the default versions to ensure they are not accidentally enabled in untrusted envi-
ronments (#1497 #1504).

Experimental Features

None

API Changes

None

Bug Fixes

• Fixed a bug with to_tree() and slice objects. Have to change the order of cases in to_tree() to ensure
slice objects are handled before lookups inside the names namespace (#1516).

• Perform more input validation for sort() expression arguments (#1517).

• Fixes issue with string and datetime coercions on Pandas objects (#1519 #1524).

• Fixed a bug with isin and Selections on sql selectables (#1528).

Miscellaneous

Expression Identity Rework

Expression are now memoized by their inputs. This means that two identical expressions will always be the same
object, or that a.isidentical(b) is the same as a is b. isidentical is called hundreds of thousands of
times in a normal blaze workload. Moving more work to expression construction time has been shown to dramatically
improve compute times when the expressions grow in complexity or size. In the past, blaze was spending linear time
relative to the expression size to compare expressions because it needed to recurse through the entire expression tree
but now it can do isidentical in constant time.

Users should still use a.isidentical(b) instead of a is b because we reserve the right to add more arguments
or change the implementation of isidentical in the future.

Release 0.10.1

Release 0.10.1

Date TBD

2.1. Index 61

https://github.com/blaze/blaze/issues/1497
https://github.com/blaze/blaze/issues/1504
https://github.com/blaze/blaze/issues/1516
https://github.com/blaze/blaze/issues/1517
https://github.com/blaze/blaze/issues/1519
https://github.com/blaze/blaze/issues/1524
https://github.com/blaze/blaze/issues/1528

Blaze Documentation, Release 0.11.3

New Expressions

None

Improved Expressions

None

New Backends

None

Improved Backends

• Blaze server’s /add endpoint was enhanced to take a more general payload (#1481).

• Adds consistency check to blaze server at startup for YAML file and dynamic addition options (#1491).

Experimental Features

• The str_cat() expression was added, mirroring Pandas’ Series.str.cat() API (#1496).

API Changes

None

Bug Fixes

• The content type specification parsing was improved to accept more elaborate headers (#1490).

• The discoverablility consistency check is done before a dataset is dynamically added to the server (#1498).

Miscellaneous

None

Release 0.10.0

Release 0.10.0

Date TBD

62 Chapter 2. Presentations

https://github.com/blaze/blaze/issues/1481
https://github.com/blaze/blaze/issues/1491
https://github.com/blaze/blaze/issues/1496
https://github.com/blaze/blaze/issues/1490
https://github.com/blaze/blaze/issues/1498

Blaze Documentation, Release 0.11.3

New Expressions

• The sample expression allows random sampling of rows to facilitate interactive data exploration (#1410). It is
implemented for the Pandas, Dask, SQL, and Python backends.

• Adds coalesce() expression which takes two arguments and returns the first non missing value. If both are
missing then the result is missing. For example: coalesce(1, 2) == 1, coalesce(None, 1) == 1,
and coalesce(None, None) == None. This is inspired by the sql function of the same name (#1409).

• Adds cast() expression to reinterpret an expression’s dshape. This is based on C++ reinterpret_cast,
or just normal C casts. For example: symbol('s', 'int32').cast('uint32').dshape ==
dshape('uint32'). This expression has no affect on the computation, it merely tells blaze to treat the
result of the expression as the new dshape. The compute definition for cast is simply:

@dispatch(Cast, object)
def compute_up(expr, data, **kwargs):

return data

(#1409).

Improved Expressions

• The test suite was expanded to validate proper expression input error handling (#1420).

• The truncate() function was refactored to raise an exception for incorrect inputs, rather than using assertions
(#1443).

• The docstring for Mergewas expanded to include examples using Label to control the ordering of the columns
in the result (#1447).

New Backends

None

Improved Backends

• Adds greatest and least support to the sql backend (#1428).

• Generalize Field to support collections.Mapping object (#1467).

Experimental Features

• The str_upper and str_lower expressions were added for the Pandas and SQL backends (#1462). These
are marked experimental since their names are subject to change. More string methods will be added in coming
versions.

API Changes

• The strlen expression was deprecated in favor of str_len (#1462).

• Long deprecated Table() and TableSymbol() were removed (#1441). The TableSymbol tests in
test_table.py were migrated to test_symbol.py.

2.1. Index 63

https://github.com/blaze/blaze/issues/1410
https://github.com/blaze/blaze/issues/1409
https://github.com/blaze/blaze/issues/1409
https://github.com/blaze/blaze/issues/1420
https://github.com/blaze/blaze/issues/1443
https://github.com/blaze/blaze/issues/1447
https://github.com/blaze/blaze/issues/1428
https://github.com/blaze/blaze/issues/1467
https://github.com/blaze/blaze/issues/1462
https://github.com/blaze/blaze/issues/1462
https://github.com/blaze/blaze/issues/1441

Blaze Documentation, Release 0.11.3

• Data() has been deprecated in favor of data(). InteractiveSymbol has been deprecated and tem-
porarily replaced by _Data. These deprecations will be in place for the 0.10 release. In the 0.11 release,
_Data will be renamed to Data, calls to data() will create Data instances, and InteractiveSymbol
will be removed (#1431 and #1421).

• compute() has a new keyword argument return_type which defaults to 'native' (#1401, #1411,
#1417), which preserves existing behavior. In the 0.11 release, return_type will be changed to default to
'core', which will odo non-core backends into core backends as the final step in a call to compute.

• Due to API instability and on the recommendation of DyND developers, we removed the DyND dependency
temporarily (#1379). When DyND achieves its 1.0 release, DyND will be re-incorporated into Blaze. The
existing DyND support in Blaze was rudimentary and based on an egregiously outdated and buggy version of
DyND. We are aware of no actual use of DyND via Blaze in practice.

• The Expr __repr__ method’s triggering of implicit computation has been deprecated. Using this aspect of
Blaze will trigger a DeprecationWarning in version 0.10, and this behavior will be replaced by a stan-
dard (boring) __repr__ implementation in version 0.11. Users can explicitly trigger a computation to see
a quick view of the results of an interactive expression by means of the peek() method. By setting the
use_new_repr flag to True, users can use the new (boring) __repr__ implementation in version 0.10
(#1414 and #1395).

Bug Fixes

• The str_upper and str_lower schemas were fixed to pass through their underlying _child‘s schema to
ensure option types are handled correctly (#1472).

• Fixed a bug with Pandas’ implementation of compute_up on Broadcast expressions (#1442). Added tests
for Pandas frame and series and dask dataframes on Broadcast expressions.

• Fixed a bug with Sample on SQL backends (#1452 #1423 #1424 #1425).

• Fixed several bugs relating to adding new datasets to blaze server instances (#1459). Blaze server will make a
best effort to ensure that the added dataset is valid and loadable; if not, it will return appropriate HTTP status
codes.

Miscellaneous

• Adds logging to server compute endpoint. Includes expression being computed and total time to compute.
(#1436)

• Merged the core and all conda recipes (#1451). This simplifies the build process and makes it consistent
with the single blaze package provided by the Anaconda distribution.

• Adds a --yaml-dir option to blaze-server to indicate the server should load path-based yaml resources
relative to the yaml file’s directory, not the CWD of the process (#1460).

Release 0.9.1

Release 0.9.1

Date December 17th, 2015

64 Chapter 2. Presentations

https://github.com/blaze/blaze/issues/1431
https://github.com/blaze/blaze/issues/1421
https://github.com/blaze/blaze/issues/1401
https://github.com/blaze/blaze/issues/1411
https://github.com/blaze/blaze/issues/1417
https://github.com/blaze/blaze/issues/1379
https://github.com/blaze/blaze/issues/1414
https://github.com/blaze/blaze/issues/1395
https://github.com/blaze/blaze/issues/1472
https://github.com/blaze/blaze/issues/1442
https://github.com/blaze/blaze/issues/1452
https://github.com/blaze/blaze/issues/1423
https://github.com/blaze/blaze/issues/1424
https://github.com/blaze/blaze/issues/1425
https://github.com/blaze/blaze/issues/1459
https://github.com/blaze/blaze/issues/1436
https://github.com/blaze/blaze/issues/1451
https://github.com/blaze/blaze/issues/1460

Blaze Documentation, Release 0.11.3

New Expressions

Improved Expressions

• The Like expression was improved to support more general Select queries that result from Join operations
rather than soely ColumnElement queries (#1371 #1373).

• Adds std and var reductions for timedelta types for sql and pandas backends (#1382).

New Backends

None

Improved Backends

• Blaze Server no longer depends on Bokeh for CORS handling, and now uses the flask-cors third-party package
(#1378).

Experimental Features

None

API Changes

None

Bug Fixes

• Fixed a blaze-server entry point bug regarding an ambiguity between the spider() function and the
:module:‘~blaze.server.spider‘ module (#1385).

• Fixed blaze.expr.datetime.truncate() handling for the sql backend (#1393).

• Fix blaze.expr.core.isidentical() to check the _hashargs instead of the _args. This fixes a
case that caused objects that hashed the same to not compare equal when somewhere in the tree of _args was
a non hashable structure (#1387).

• Fixed a type issue where datetime - datetime :: datetime instead of timedelta (#1382).

• Fixed a bug that caused coerce() to fail when computing against ColumnElements. This would break
coerce for many sql operations (#1382).

• Fixed reductions over timedelta returning float (#1382).

• Fixed interactive repr for timedelta not coercing to timedelta objects (#1382).

• Fixed weakkeydict cache failures that were causing .dshape lookups to fail sometimes (#1399).

• Fixed relabeling columns over selects by using reconstruct_select (:issue: 1471).

2.1. Index 65

https://github.com/blaze/blaze/issues/1371
https://github.com/blaze/blaze/issues/1373
https://github.com/blaze/blaze/issues/1382
https://github.com/blaze/blaze/issues/1378
https://github.com/blaze/blaze/issues/1385
https://github.com/blaze/blaze/issues/1393
https://github.com/blaze/blaze/issues/1387
https://github.com/blaze/blaze/issues/1382
https://github.com/blaze/blaze/issues/1382
https://github.com/blaze/blaze/issues/1382
https://github.com/blaze/blaze/issues/1382
https://github.com/blaze/blaze/issues/1399

Blaze Documentation, Release 0.11.3

Miscellaneous

• Removed support for Spark 1.3 (#1386) based on community consensus.

• Added blaze.utils.literal_compile() for converting sqlalchemy expressions into sql strings with
bind parameters inlined as sql literals. blaze.utils.normalize() now accepts a sqlalchemy selectable
and uses literal_compile to convert into a string first (#1386).

Release 0.9.0

Release 0.9.0

Date December 17th, 2015

New Expressions

• Add a shift() expression for shifting data backwards or forwards by N rows (#1266).

Improved Expressions

New Backends

• Initial support for dask.dataframe has been added, see (#1317). Please send feedback via an issue or pull request
if we missed any expressions you need.

Improved Backends

• Adds support for tail() in the sql backend (#1289).

• Blaze Server now supports dynamically adding datasets (#1329).

• Two new keyword only arguments are added to compute() for use when computing against a Client object:

1. compute_kwargs: This is a dictionary to send to the server to use as keyword arguments when calling
compute on the server.

2. odo_kwargs: This is a dictionary to send to the server to use as keyword arguments when calling odo
on the server.

This extra information is completely optional and will have different meanings based on the backend of the data
on the server (#1342).

• Can now point Data() to URLs of CSVs (#1336).

Experimental Features

• There is now support for joining tables from multiple sources. This is very experimental right now, so use it at
your own risk. It currently only works with things that fit in memory (#1282).

• Foreign columns in database tables that have foreign key relationships can now be accessed with a more concise
syntax (#1192).

66 Chapter 2. Presentations

https://github.com/blaze/blaze/issues/1386
https://github.com/blaze/blaze/issues/1386
https://github.com/blaze/blaze/issues/1266
https://github.com/blaze/blaze/issues/1317
https://github.com/blaze/blaze/issues/1289
https://github.com/blaze/blaze/issues/1329
https://github.com/blaze/blaze/issues/1342
https://github.com/blaze/blaze/issues/1336
https://github.com/blaze/blaze/issues/1282
https://github.com/blaze/blaze/issues/1192

Blaze Documentation, Release 0.11.3

API Changes

• Removed support for Python 2.6 (#1267).

• Removed support for Python 3.3 (#1270).

• When a CSV file consists of all strings, you must pass has_header=True when using the Data constructor
(#1254).

• Comparing date and datetime datashaped things to the empty string now raises a TypeError (#1308).

• Like expressions behave like a predicate, and operate on columns, rather than performing the selection for you
on a table (#1333, #1340).

• blaze.server.Server.run() no longer retries binding to a new port by default. Also, positional argu-
ments are no longer forwarded to the inner flask app’s run method. All keyword arguments not consumed by
the blaze server run are still forwarded (#1316).

• Server represents datashapes in a canonical form with consistent linebreaks for use by non-Python clients
(#1361).

Bug Fixes

• Fixed a bug where Merge expressions would unpack option types in their fields. This could cause you to
have a table where expr::{a: int32} but expr.a::?int32. Note that the dotted access is an option
(#1262).

• Explicitly set Node.__slots__ and Expr.__slots__ to (). This ensures instances of slotted subclasses
like Join do not have a useless empty __dict__ attribute (#1274 and #1268).

• Fixed a bug that prevented creating a InteractiveSymbol that wrapped nan if the dshape was datetime.
This now correctly coerces to NaT (#1272).

• Fixed an issue where blaze client/server could not use isin expressions because the frozenset failed to seri-
alize. This also added support for rich serialization over json for things like datetimes (#1255).

• Fixed a bug where len would fail on an interactive expression whose resources were sqlalchemy objects
(#1273).

• Use aliases instead of common table expressions (CTEs) because MySQL doesn’t have CTEs (#1278).

• Fixed a bug where we couldn’t display an empty string identifier in interactive mode (#1279).

• Fixed a bug where comparisons with optionals that should have resulted in optionals did not (#1292).

• Fixed a bug where Join.schema would not always be instantiated (#1288).

• Fixed a bug where comparisons to a empty string magically converted the empty string to None (#1308).

• Fix the retry kwarg to the blaze server. When retry is False, an exception is now properly raised if the port
is in use. (#1316).

• Fixed a bug where leaves that only appeared in the predicate of a selection would not be in scope in time to
compute the predicate. This would cause whole expressions like a[a > b] to fail because b was not in scope
(#1275).

• Fix a broken test on machines that don’t allow postgres to read from the local filesystem (#1323).

• Updated a test to reflect changes from odo #366 (#1323).

• Fixed pickling of blaze expressions with interactive symbols (#1319).

• Fixed repring partials in blaze expression to show keyword arguments (#1319).

2.1. Index 67

https://github.com/blaze/blaze/issues/1267
https://github.com/blaze/blaze/issues/1270
https://github.com/blaze/blaze/issues/1254
https://github.com/blaze/blaze/issues/1308
https://github.com/blaze/blaze/issues/1333
https://github.com/blaze/blaze/issues/1340
https://github.com/blaze/blaze/issues/1316
https://github.com/blaze/blaze/issues/1361
https://github.com/blaze/blaze/issues/1262
https://github.com/blaze/blaze/issues/1274
https://github.com/blaze/blaze/issues/1268
https://github.com/blaze/blaze/issues/1272
https://github.com/blaze/blaze/issues/1255
https://github.com/blaze/blaze/issues/1273
https://github.com/blaze/blaze/issues/1278
https://github.com/blaze/blaze/issues/1279
https://github.com/blaze/blaze/issues/1292
https://github.com/blaze/blaze/issues/1288
https://github.com/blaze/blaze/issues/1308
https://github.com/blaze/blaze/issues/1316
https://github.com/blaze/blaze/issues/1275
https://github.com/blaze/blaze/issues/1323
https://github.com/blaze/odo/issues/366
https://github.com/blaze/blaze/issues/1323
https://github.com/blaze/blaze/issues/1319
https://github.com/blaze/blaze/issues/1319

Blaze Documentation, Release 0.11.3

• Fixed a memory leak that would preserve the lifetime of any blaze expression that had cached an attribute access
(#1335).

• Fixed a bug where common_subexpression() gave the wrong answer (#1325, #1338).

• BinaryMath operations without numba installed were failing (#1343).

• win32 tests were failing for hypot and atan2 due to slight differences in numpy vs numba implementations
of those functions (#1343).

• Only start up a ThreadPool when using the h5py backend (#1347, #1331).

• Fix return type for sum and mean reductions whose children have a Decimal dshape.

Miscellaneous

• blaze.server.Server.run() now uses warnings.warn() instead of print when it fails to bind
to a port and is retrying (#1316).

• Make expressions (subclasses of Expr) weak referencable (:issue:‘1319).

• Memoize dshape and schema methods (#1319).

• Use pandas.DataFrame.sort_values() with pandas version >= 0.17.0 (#1321).

Release 0.8.3

Release 0.8.3

Date September 15, 2015

New Expressions

• Adds Tail which acts as an opposite to head. This is exposed throught the tail() function. This returns the
last n elements from a collection. (#1187)

• Adds notnull returning an indicator of whether values in a field are null (#697, #733)

Improved Expressions

• Distinct expressions now support an on parameter to allow distinct on a subset of columns (#1159)

• Reduction instances are now named as their class name if their _child attribute is named '_' (#1198)

• Join expressions now promotes the types of the fields being joined on. This allows us to join things like int32
and int64 and have the result be an int64. This also allows us to join any type a with ?a. (#1193, #1218).

New Backends

Improved Backends

• Blaze now tries a bit harder to avoid generating ScalarSelects when using the SQL backend (#1201,
#1205)

• ReLabel expressions on the SQL backend are now flattened (#1217).

68 Chapter 2. Presentations

https://github.com/blaze/blaze/issues/1335
https://github.com/blaze/blaze/issues/1325
https://github.com/blaze/blaze/issues/1338
https://github.com/blaze/blaze/issues/1343
https://github.com/blaze/blaze/issues/1343
https://github.com/blaze/blaze/issues/1347
https://github.com/blaze/blaze/issues/1331
https://docs.python.org/dev/library/warnings.html#warnings.warn
https://github.com/blaze/blaze/issues/1316
https://github.com/blaze/blaze/issues/1319
https://github.com/blaze/blaze/issues/1321
https://github.com/blaze/blaze/issues/1187
https://github.com/blaze/blaze/issues/697
https://github.com/blaze/blaze/issues/733
https://github.com/blaze/blaze/issues/1159
https://github.com/blaze/blaze/issues/1198
https://github.com/blaze/blaze/issues/1193
https://github.com/blaze/blaze/issues/1218
https://github.com/blaze/blaze/issues/1201
https://github.com/blaze/blaze/issues/1205
https://github.com/blaze/blaze/issues/1217

Blaze Documentation, Release 0.11.3

API Changes

• Serialization format in blaze server is now passed in as a mimetype (#1176)

• We only allow and use HTTP POST requests when sending a computation to Blaze server for consistency with
the HTTP spec (#1172)

• Allow Client objects to explicitly disable verification of ssl certificates by passing verify_ssl=False.
(#1170)

• Enable basic auth for the blaze server. The server now accepts an authorization keyword which must be
a callable that accepts an object holding the username and password, or None if no auth was given and returns
a bool indicating if the request should be allowed. Client objects can pass an optional auth keyword which
should be a tuple of (username, password) to send to the server. (#1175)

• We now allow Distinct expressions on ColumnElement to be more general and let things like sa.sql.
elements.Label objects through (#1212)

• Methods now take priority over field names when using attribute access for Field instances to fix a bug that
prevented accessing the method at all (#1204). Here’s an example of how this works:

>>> from blaze import symbol
>>> t = symbol('t', 'var * {max: float64, isin: int64, count: int64}')
>>> t['count'].max()
t.count.max()
>>> t.count() # calls the count method on t
t.count()
>>> t.count.max() # AttributeError
Traceback (most recent call last):

...
AttributeError: ...

Bug Fixes

• Upgrade versioneer so that our version string is now PEP 440 compliant (#1171)

• Computed columns (e.g., the result of a call to transform()) can now be accessed via standard attribute
access when using the SQL backend (#1201)

• Fixed a bug where blaze server was depending on an implementation detail of CPython regarding builtins
(#1196)

• Fixed incorrect SQL generated by count on a subquery (#1202).

• Fixed an ImportError generated by an API change in dask.

• Fixed an issue where columns were getting trampled if there were column name collisions in a sql join. (#1208)

• Fixed an issue where arithmetic in a Merge expression wouldn’t work because arithmetic wasn’t defined on
sa.sql.Select objects (#1207)

• Fixed a bug where the wrong value was being passed into time() (#1213)

• Fixed a bug in sql relabel that prevented relabeling anything that generated a subselect. (#1216)

• Fixed a bug where methods weren’t accessible on fields with the same name (#1204)

• Fixed a bug where optimized expressions going into a pandas group by were incorrectly assigning extra values
to the child DataFrame (#1221)

2.1. Index 69

https://github.com/blaze/blaze/issues/1176
https://github.com/blaze/blaze/issues/1172
https://github.com/blaze/blaze/issues/1170
https://github.com/blaze/blaze/issues/1175
https://github.com/blaze/blaze/issues/1212
https://github.com/blaze/blaze/issues/1204
https://www.python.org/dev/peps/pep-0440
https://github.com/blaze/blaze/issues/1171
https://github.com/blaze/blaze/issues/1201
https://github.com/blaze/blaze/issues/1196
https://github.com/blaze/blaze/issues/1202
https://github.com/blaze/blaze/issues/1208
https://github.com/blaze/blaze/issues/1207
https://github.com/blaze/blaze/issues/1213
https://github.com/blaze/blaze/issues/1216
https://github.com/blaze/blaze/issues/1204
https://github.com/blaze/blaze/issues/1221

Blaze Documentation, Release 0.11.3

• Fixed a bug where multiple same-named operands caused incorrect scope to be constructed ultimately resulting
in incorrect results on expressions like x + x + x (#1227). Thanks to @llllllllll and @jcrist for discussion
around solving the issue.

• Fixed a bug where minute() and Minute were not being exported which made them unusable from the blaze
server (#1232).

• Fixed a bug where repr was being called on data resources rather than string, which caused massive slowdowns
on largish expressions running against blaze server (#1240, #1247).

• Skip a test on Win32 + Python 3.4 and PyTables until this gets sorted out on the library side (#1251).

Miscellaneous

• We now run tests against pandas master to catch incompatibility issues (#1243).

Release 0.8.2

Release 0.8.2

Date July 9th, 2015

Bug Fixes

• Fix broken sdist tarball

Release 0.8.1

Release 0.8.1

Date July 7th, 2015

New Expressions

• String arithmetic is now possible across the numpy and pandas backends via the + (concatenation) and * (repeat)
operators (#1058).

• Datetime arithmetic is now available (#1112).

• Add a Concat expression that implements Union-style operations (#1128).

• Add a Coerce expression that casts expressions to a different datashape. This maps to astype in numpy and
cast in SQL (#1137).

Improved Expressions

• ReLabel expressions repr differently depending on whether the existing column names are valid Python
variable names (#1070).

New Backends

None

70 Chapter 2. Presentations

https://github.com/blaze/blaze/issues/1227
https://github.com/blaze/blaze/issues/1232
https://github.com/blaze/blaze/issues/1240
https://github.com/blaze/blaze/issues/1247
https://github.com/blaze/blaze/issues/1251
https://github.com/blaze/blaze/issues/1243
https://github.com/blaze/blaze/issues/1058
https://github.com/blaze/blaze/issues/1112
https://github.com/blaze/blaze/issues/1128
https://github.com/blaze/blaze/issues/1137
https://github.com/blaze/blaze/issues/1070

Blaze Documentation, Release 0.11.3

Improved Backends

• In-memory merges of CSV files are now possible (#1121).

• Tie blueprint registration to data registration (#1061).

• Don’t catch import error when flask doesn’t exist, since blaze does this in its __init__.py (#1087).

• Multiple serialization formats including JSON, pickle, and msgpack are now available. Additionally, one can
add custom serialization formats with this implementation (#1102, #1122).

• Add a 'names' field to the response of the compute.<format> route for Bokeh compatibility (#1129).

• Add cross origin resource sharing for Bokeh compatibility (#1134).

• Add a command line interface (#1115).

• Add a way to tell the blaze server command line interface what to server via a YAML file (#1115).

• Use aliases to allow expressions on the SQL backend that involve a multiple step reduction operation (#1066,
#1126).

• Fix unary not operator ~ (#1091).

• Postgres uses == to compare NaN so we do it that way as well for the postgresql backend (#1123).

• Find table inside non-default schema when serving off a SQLAlchemy MetaData object (#1145).

API Changes

• Remove old ExprClient(). Use Client instead (#1154).

• Make sort + slice and sort + slice semantics of the SQL backend reflect those of numpy (#1125).

• The following syntax is no longer allowed for Blaze server (#1154):

>>> Data('blaze://localhost::accounts') # raises an error

Use this syntax instead:

>>> Data('blaze://localhost').accounts # valid

Bug Fixes

• Handle SQLAlchemy API churn around reference of ColumnElement objects in the 1.0.x series (#1071,
#1076).

• Obscure hashing bug when passing in both a pandas Timestamp and a datetime.datetime object. Both
objects hash to the same value but don’t necessarily compare equal; this makes Python call __eq__ which
caused an Eq expression to be constructed (#1097).

• Properly handle And expressions that involve the same field in MongoDB (#1099).

• Handle Dask API changes (#1114).

• Use the date function in SQLAlchemy when getting the date attribute of a datetime dshaped expression.
Previously this was calling extract, which is incorrect for the postgres backend (#1120).

• Fix API compatibility with different versions of psutil (#1136).

• Use explicit int64 comparisons on Windows, since the default values may be different (#1148).

2.1. Index 71

https://github.com/blaze/blaze/issues/1121
https://github.com/blaze/blaze/issues/1061
https://github.com/blaze/blaze/issues/1087
https://github.com/blaze/blaze/issues/1102
https://github.com/blaze/blaze/issues/1122
https://github.com/blaze/blaze/issues/1129
https://github.com/blaze/blaze/issues/1134
https://github.com/blaze/blaze/issues/1115
https://github.com/blaze/blaze/issues/1115
https://github.com/blaze/blaze/issues/1066
https://github.com/blaze/blaze/issues/1126
https://github.com/blaze/blaze/issues/1091
https://github.com/blaze/blaze/issues/1123
https://github.com/blaze/blaze/issues/1145
https://github.com/blaze/blaze/issues/1154
https://github.com/blaze/blaze/issues/1125
https://github.com/blaze/blaze/issues/1154
https://github.com/blaze/blaze/issues/1071
https://github.com/blaze/blaze/issues/1076
https://github.com/blaze/blaze/issues/1097
https://github.com/blaze/blaze/issues/1099
https://github.com/blaze/blaze/issues/1114
https://github.com/blaze/blaze/issues/1120
https://github.com/blaze/blaze/issues/1136
https://github.com/blaze/blaze/issues/1148

Blaze Documentation, Release 0.11.3

• Fix name attribute propagation in pandas Series objects (#1152).

• Raise a more informative error when trying to subset with an unsupported expression in the MongoDB backend
(#1155).

Release 0.7.3

• General maturation of many backends through use.

• Renamed into to odo

Release 0.7.0

• Pull out data migration utilities to into project

• Out-of-core CSV support now depends on chunked pandas computation

• h5py and bcolz backends support multi-threading/processing

• Remove data directory including SQL, HDF5 objects. Depend on standard types within other projects instead
(e.g. sqlalchemy.Table, h5py.Dataset, ...)

• Better support SQL nested queries for complex queries

• Support databases, h5py files, servers as first class datasets

Release 0.6.6

• Not intended for public use, mostly for internal build systems

• Bugfix

Release 0.6.5

• Improve uri string handling #715

• Various bug fixes #715

Release 0.6.4

• Back CSV with pandas.read_csv. Better performance and more robust unicode support but less robust
missing value support (some regressions) #597

• Much improved SQL support #626 #650 #652 #662

• Server supports remote execution of computations, not just indexing #631

• Better PyTables and datetime support #608 #639

• Support SparkSQL #592

72 Chapter 2. Presentations

https://github.com/blaze/blaze/issues/1152
https://github.com/blaze/blaze/issues/1155

Blaze Documentation, Release 0.11.3

Release 0.6.3

• by takes only two arguments, the grouper and apply child is inferred using common_subexpression

• Better handling of pandas Series object

• Better printing of empty results in interactive mode

• Regex dispatched resource function bound to Table, e.g. Table('/path/to/file.csv')

Release 0.6.2

• Efficient CSV to SQL migration using native tools #454

• Dispatched drop and create_index functions #495

• DPlyr interface at blaze.api.dplyr. #484

• Various bits borrowed from that interface

– transform function adopted to main namespace

– Summary object for named reductions

– Keyword syntax in by and merge e.g. by(t, t.col, label=t.col2.max(),
label2=t.col2.min())

• New Computation Server #527

• Better PyTables support #487 #496 #526

Release 0.6.1

• More consistent behavior of into

• bcolz backend

• Control namespace leakage

Release 0.6

• Nearly complete rewrite

• Add abstract table expression system

• Translate expressions onto a variety of backends

• Support Python, NumPy, Pandas, h5py, sqlalchemy, pyspark, PyTables, pymongo

Release 0.5

• HDF5 in catalog.

• Reductions like any, all, sum, product, min, max.

• Datetime design and some initial functionality.

• Change how Storage and ddesc works.

• Some preliminary rolling window code.

• Python 3.4 now in the test harness.

2.1. Index 73

Blaze Documentation, Release 0.11.3

Release 0.4.2

• Fix bug for compatibility with numba 0.12

• Add sql formats

• Add hdf5 formats

• Add support for numpy ufunc operators

Release 0.4.1

• Fix bug with compatibility for numba 0.12

Release 0.4

• Split the datashape and blz modules out.

• Add catalog and server for blaze arrays.

• Add remote arrays.

• Add csv and json persistence formats.

• Add python3 support

• Add scidb interface

Release 0.3

• Solidifies the execution subsystem around an IR based on the pykit project, as well as a ckernel abstraction at
the ABI level.

• Supports ufuncs running on ragged array data.

• Cleans out previous low level data descriptor code, the data descriptor will have a higher level focus.

• Example out of core groupby operation using BLZ.

Release 0.2

• Brings in dynd as a required dependency for in-memory data.

Release 0.1

• Initial preview release

2.1.18 Contributors

Current Core Developers

• Phillip Cloud

• Joe Jevnik

• Matt Rocklin

74 Chapter 2. Presentations

Blaze Documentation, Release 0.11.3

• Kurt Smith

Contributors

• Andy R. Terrel

• Mark Wiebe

• Majid alDosari

• Francesc Alted

• Tyler Alumbaugh

• Dav Clark

• Stephen Diehl

• Christine Doig

• Mark Florisson

• Damien Garaud

• Valentin Haenel

• Lila Hickey

• Maggie Mari

• Travis Oliphant

• Milos Popovic

• Stan Seibert

• Hugo Shi

• Oscar Villellas Guillén

• Peter Wang

• Matt Westcott

• Ben Zaitlen

2.1.19 Legal

Blaze is a community project much like Numpy. It is released under a permissive BSD license.

The BSD 2-clause license allows you almost unlimited freedom with the software so long as you include the BSD
copyright notice in it (found below).

Continuum Analytics sponsors development on Blaze.

License:

Copyright (c) 2014, Continuum Analytics, Inc.
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:

2.1. Index 75

Blaze Documentation, Release 0.11.3

Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.

Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Internal

2.1.20 Expression Design

At its core Blaze expresses analytics queries symbolicly. It represents these queries as an abstract expression tree. This
tree dictates user interaction, optimizations, and is eventually walked to translate into other computational systems.
Deep knowledge of abstact expressions is not necessary to use Blaze; it is essential to develop in it.

76 Chapter 2. Presentations

Blaze Documentation, Release 0.11.3

Consider the following example:

>>> from blaze import symbol, log
>>> x = symbol('x', 'int64')
>>> y = symbol('y', 'float32')
>>> z = log(x - 1)**y

We represent the mathematical expression log(x - 1)**y as a tree where every operator (e.g. log, pow) is
a node whose children are its arguments. All Blaze expressions and indeed all expressions in any programming
language can be represnted this way. Blaze encodes this tree as a data structure where every node is an object with
type corresponding to its operation. For example there exists the following classes

class pow(Expr):
...

class sub(Expr):
...

class log(Expr):
...

And our expression, written explicitly as Blaze sees it, would look like the following:

>>> from blaze.expr import Pow, Sub, log, symbol
>>> z = Pow(log(Sub(symbol('x', 'int64'), 1)),
... symbol('y', 'float32'))
>>> z
(log(x - 1)) ** y

2.1. Index 77

Blaze Documentation, Release 0.11.3

Common Expression Attributes

There are a few important attributes and methods to investigate a Blaze expression.

• __class__: The type of a node corresponds to its operation:

type(z) == pow

• dshape: The shape and type of the data for this expression. This is often more important that the actual type
of the node:

.. code-block:: python

>>> s = symbol('s', 'var * float64')
>>> s.dshape
dshape("var * float64")
>>> s.mean().dshape
dshape("float64")

• ._args: All children of a node, including parameters. Args may include both Blaze expressions and other
variables like strings:

z._args == (log(x - 1), y)
x._args == ('x', 'int64')

• ._hashargs: The arguments in a form that is hashable. This is only different from ._args when the
arguments contain things that are not normally hashable with the hash builtin function.

• ._inputs: All children of a node, excluding parameters. All inputs are Blaze expressions.:

z._inputs == (log(x - 1), y)
x._inputs == ()

• ._leaves(): The symbols at the bottom of the expression tree:

z._leaves() == (x, y)
x._leaves() == (x,)

By recursively traversing either ._args or ._inputs you may inspect or transform either all information pertaining
to the tree or just the expressions.

To clear up confusion between ._args from ._inputs consider the following tabular example with sort. .
_inputs contains only other Blaze expressions while ._args also contains parameters like the string 'balance'.

>>> t = symbol('t', 'var * {name: string, balance: int}')
>>> expr = t.sort('balance', ascending=True)
>>> expr._args
(<`t` symbol; dshape='...'>, 'balance', True)
>>> expr._inputs
(<`t` symbol; dshape='...'>,)

Some convenience functions for common traversals already exist:

• ._subs: replace nodes in the tree according to replacement dictionary:

>>> z
(log(x - 1)) ** y
>>> z._subs({'x': 'a', 'y': 'b'})
(log(a - 1)) ** b

78 Chapter 2. Presentations

Blaze Documentation, Release 0.11.3

• ._subterms, a traversal along ._inputs:

>>> list(z._subterms())
[(log(x - 1)) ** y, log(x - 1), x - 1, <`x` symbol; dshape=...>, <`y` symbol;
→˓dshape=...>]

• ._traverse, a traversal along ._args:

>>> list(z._traverse())
[(log(x - 1)) ** y,
log(x - 1),
x - 1,
<`x` symbol; dshape=...>,
'x',
dshape("int64"),
0,
1,
<`y` symbol; dshape=...>,
'y',
dshape("float32"),
0]

2.1.21 Expressions

Blaze expressions describe computational workflows symbolically. They allow developers to architect and check their
computations rapidly before applying them to data. These expressions can then be compiled down to a variety of
supported backends.

Tables

Table expressions track operations found in relational algebra or your standard Pandas/R DataFrame object. Operations
include projecting columns, filtering, mapping and basic mathematics, reductions, split-apply-combine (group by)
operations, and joining. This compact set of operations can express a surprisingly large set of common computations.
They are widely supported.

Symbol

A Symbol refers to a single collection of data. It must be given a name and a datashape.

>>> from blaze import symbol
>>> accounts = symbol('accounts', 'var * {id: int, name: string, balance: int}')

Projections, Selection, Arithmetic

Many operations follow from standard Python syntax, familiar from systems like NumPy and Pandas.

The following example defines a collection, accounts, and then selects the names of those accounts with negative
balance.

>>> accounts = symbol('accounts', 'var * {id: int, name: string, balance: int}')
>>> deadbeats = accounts[accounts.balance < 0].name

2.1. Index 79

Blaze Documentation, Release 0.11.3

Internally this doesn’t do any actual work because we haven’t specified a data source. Instead it builds a symbolic
representation of a computation to execute in the future.

>>> deadbeats
accounts[accounts.balance < 0].name
>>> deadbeats.dshape
dshape("var * string")

Split-apply-combine, Reductions

Blaze borrows the by operation from R and Julia. The by operation is a combined groupby and reduction,
fulfilling split-apply-combine workflows.

>>> from blaze import by
>>> by(accounts.name, # Splitting/grouping element
... total=accounts.balance.sum()) # Apply and reduction
by(accounts.name, total=sum(accounts.balance))

This operation groups the collection by name and then sums the balance of each group. It finds out how much all of
the “Alice”s, “Bob”s, etc. of the world have in total.

Note the reduction sum in the third apply argument. Blaze supports the standard reductions of numpy like sum, min,
max and also the reductions of Pandas like count and nunique.

Join

Collections can be joined with the join operation, which allows for advanced queries to span multiple collections.

>>> from blaze import join
>>> cities = symbol('cities', 'var * {name: string, city: string}')
>>> join(accounts, cities, 'name')
Join(lhs=accounts, rhs=cities, _on_left='name', _on_right='name', how='inner',
→˓suffixes=('_left', '_right'))

If given no inputs, join will join on all columns with shared names between the two collections.

>>> shared_names = join(accounts, cities)

Type Conversion

Type conversion of expressions can be done with the coerce expression. Here’s how to compute the average account
balance for all the deadbeats in my accounts table and then cast the result to a 64-bit integer:

>>> deadbeats = accounts[accounts.balance < 0]
>>> avg_deliquency = deadbeats.balance.mean()
>>> chopped = avg_deliquency.coerce(to='int64')
>>> chopped
mean(accounts[accounts.balance < 0].balance).coerce(to='int64')

Other

Blaze supports a variety of other operations common to our supported backends. See our API docs for more details.

80 Chapter 2. Presentations

Blaze Documentation, Release 0.11.3

2.1.22 Backends

Blaze backends include projects like streaming Python, Pandas, SQLAlchemy, MongoDB, PyTables, and Spark. Most
Blaze expressions can run well on any of these backends, allowing developers to easily transition their computation to
changing performance needs.

Existing Backends

Streaming Python

via toolz and cytoolz

Blaze can operate on core Python data structures like lists, tuples, ints and strings. This can be useful both in small
cases like rapid prototyping or unit testing but also in large cases where streaming computation is desired.

The performance of Python data structures like dict make Python a surprisingly powerful platform for data-structure
bound computations commonly found in split-apply-combine and join operations. Additionally, Python’s support for
lazy iterators (i.e. generators) means that it can easily support streaming computations that pull data in from disk,
taking up relatively little memory.

Pandas

Pandas DataFrames are the gold standard for in-memory data analytics. They are fast, intuitive, and come with a
wealth of additional features like plotting, and data I/O.

SQLAlchemy

Blaze levarages the SQLAlchemy project, which provides a uniform interface over the varied landscape of SQL
systems. Blaze manipulates SQLAlchemy expressions which are then compiled down to SQL query strings of the
appropriate backend.

The prevalance of SQL among data technologies makes this backend particularly useful. Databases like Impala and
Hive have SQLAlchemy dialects, enabling easy Blaze interoperation.

MongoDB

Blaze drives MongoDB through the pymongo interface and is able to use many of the built in operations such as
aggregration and group by.

PyTables

PyTables provides compressed Table objects backed by the popular HDF5 library. Blaze can compute simple expres-
sions using PyTables, such as elementwise operations and row-wise selections.

Spark

Spark provides resilient distributed in-memory computing and easy access to HDFS storage. Blaze drives Spark
through the PySpark interface.

2.1. Index 81

http://toolz.readthedocs.org/en/latest/
https://github.com/pytoolz/cytoolz/
http://api.mongodb.org/python/current/api/pymongo/index.html
https://spark.apache.org/docs/0.9.0/python-programming-guide.html

Blaze Documentation, Release 0.11.3

Benefits of Backend Agnostic Computation

For maximum performance and expressivity it is best to use the backends directly. Blaze is here when absolute
customization is not required.

Familiarity

Users within the numeric Python ecosystem may be familiar with the NumPy and Pandas interfaces but relatively
unfamiliar with SQL or the functional idioms behind Spark or Streaming Python. In this case Blaze provides a
familiar interface which can drive common computations in these more exotic backends.

Prototyping and Testing

Blaze allows you to prototype and test your computation on a small dataset using Python or Pandas and then scale that
computation up to larger computational systems with confidence that nothing will break.

A changing hardware landscape drives a changing software landscape. Analytic code written for systems today may
not be relevant for systems five years from now. Symbolic systems like Blaze provide some stability on top of this
rapidly changing ecosystem.

Static Analysis

Not yet implemented

Blaze is able to inspect and optimize your computation before it is run. Common optimizations include loop fusion,
rearranging joins and projections to minimize data flow, etc..

2.1.23 Interactive Expressions

Internally Blaze is abstract; this limits interactivity. Blaze interactive expressions resolve this issue and provide a
smooth experience to handling foreign data.

Expressions with Data

Internally Blaze separates the intent of the computation from the data/backend. While powerful, this abstract separation
limits interactivity, one of the core goals of Blaze.

Blaze interactive expressions are like normal expressions but their leaves may hold on to a concrete data resource (like
a DataFrame or SQL database.) This embeds a specific data context, providing user interface improvements at the cost
of full generality.

Example

We create an interactive expression by calling the data constructor on any object or URI with which Blaze is familiar.

>>> from blaze import data, Symbol
>>> from blaze.utils import example
>>> db = data('sqlite:///%s' % example('iris.db')) # an interactive expression
>>> db.iris

sepal_length sepal_width petal_length petal_width species
0 5.1 3.5 1.4 0.2 Iris-setosa

82 Chapter 2. Presentations

Blaze Documentation, Release 0.11.3

1 4.9 3.0 1.4 0.2 Iris-setosa
2 4.7 3.2 1.3 0.2 Iris-setosa
3 4.6 3.1 1.5 0.2 Iris-setosa
4 5.0 3.6 1.4 0.2 Iris-setosa
5 5.4 3.9 1.7 0.4 Iris-setosa
6 4.6 3.4 1.4 0.3 Iris-setosa
7 5.0 3.4 1.5 0.2 Iris-setosa
8 4.4 2.9 1.4 0.2 Iris-setosa
9 4.9 3.1 1.5 0.1 Iris-setosa
...

>>> db.iris.species.<tab>
db.iris.species.columns db.iris.species.max
db.iris.species.count db.iris.species.min
db.iris.species.count_values db.iris.species.ndim
db.iris.species.distinct db.iris.species.nunique
db.iris.species.dshape db.iris.species.relabel
db.iris.species.expr db.iris.species.resources
db.iris.species.fields db.iris.species.schema
db.iris.species.head db.iris.species.shape
db.iris.species.isidentical db.iris.species.sort
db.iris.species.label db.iris.species.species
db.iris.species.like db.iris.species.to_html
db.iris.species.map

>>> db.iris.species.distinct()
species

0 Iris-setosa
1 Iris-versicolor
2 Iris-virginica

In the case above db is a Symbol, just like any normal Blaze leaf expresion

>>> isinstance(db, Symbol)
True

But db has one additional field, db.data which points to a SQLAlchemy Table.

>>> db.data
<sqlalchemy.Table at 0x7f0f64ffbdd0>

Compute calls including db may omit the customary namespace, e.g.

>>> from blaze import compute
>>> expr = db.iris.species.distinct()

>>> # compute(expr, {db: some_sql_object}) # Usually provide a namespace
>>> compute(expr)
['Iris-setosa', 'Iris-versicolor', 'Iris-virginica']

This implicit namespace can be found with the ._resources method

>>> expr._resources()
{db: <sqlalchemy.Table object>}

Additionally, we override the __repr__ and _repr_html_ methods to include calls to compute. This way,
whenever an expression is printed to the screen a small computation is done to print the computed data instead.

2.1. Index 83

Blaze Documentation, Release 0.11.3

As an example, this __repr__ function looks something like the following:

from odo import odo
from pandas import DataFrame
from blaze import Expr

def __repr__(expr):
expr = expr.head(10) # Only need enough to print to the screen
result = compute(expr) # Do the work necessary to get a result
df = odo(result, DataFrame) # Shove into a DataFrame
return repr(df) # Use pandas' nice printing

Expr.__repr__ = __repr__ # Override normal __repr__ method

This provides smooth interactive feel of interactive expressions. Work is only done when an expression is printed to
the screen and excessive results are avoided by wrapping all computations in a .head(10).

2.1.24 Developer Workflow

This page describes how to install and improve the development version of Blaze.

If this documentation isn’t sufficiently clear or if you have other questions then please email blaze-dev@continuum.io.

Installing Development Blaze

Blaze depends on many other projects, both projects that develop alongside blaze (like odo) as well a number of
community projects (like pandas).

Blaze development happens in the following projects, all of which are available on github.com/blaze/project-name

• Blaze

• DataShape

• Odo

• Dask

Bleeding edge binaries are kept up-to-date on the blaze conda channel. New developers likely only need to interact
with one or two of these libraries so we recommend downloading everything by the conda channel and then only
cloning those git repositories that you actively need:

conda install -c blaze blaze # install everything from dev channel
git clone git://github.com/blaze/blaze.git # only clone blaze and odo
git clone git://github.com/blaze/odo.git # only clone blaze and odo

GitHub Flow

Source code and issue management are hosted in this github page, and usage of git roughly follows GitHub Flow.
What this means is that the master branch is generally expected to be stable, with tests passing on all platforms, and
features are developed in descriptively named feature branches and merged via github’s Pull Requests.

Coding Standards

Unified Python 2 and 3 Codebase:

84 Chapter 2. Presentations

mailto:blaze-dev@continuum.io
https://github.com/blaze/blaze
https://github.com/blaze/datashape
https://github.com/blaze/odo
https://github.com/blaze/dask
https://github.com/blaze/blaze
http://scottchacon.com/2011/08/31/github-flow.html

Blaze Documentation, Release 0.11.3

Blaze source code simultaneously supports both Python 2 and Python 3 with a single codebase.

To support this, all .py files must begin with a few __future__ imports, as follows.:

from __future__ import absolute_import, division, print_function

Testing:

In order to keep the master branch functioning with passing tests, there are two automated testing mechanisms being
used. First is Travis CI, which is configured to automatically build any pull requests that are made. This provides a
smoke test against both Python 2 and Python 3 before a merge.

The Travis tests only run on Linux, but Blaze is supported on Linux, OS X, and Windows. Further tests and bleeding-
edge builds are carried out using Anaconda build which tests and builds Blaze on the following platforms/versions

• Python versions 2.6, 2.7, 3.3, 3.4

• Operating systems Windows, OS-X, Linux

• 32-bit and 64-bit

Relative Imports:

To avoid the side effects of top level imports, e.g. import blaze, all internal code should be imported relatively. Thus:

#file: blaze/objects/table.py
from blaze import Array

should be:

#file: blaze/objects/table.py
from .array import Array

For cross submodule imports, import from the module api. For example:

#file: blaze/objects/table.py
from ..io import printing

Relation with Continuum

Blaze is developed in part by Continuum Analytics, a for profit company. Continuum’s efforts on Blaze are open
source and freely available to the public. The open nature of Blaze is protected by a BSD license.

2.1.25 Expressions and Computation

This is a developer level document. It conveys some of the design decisions around the use of expressions and their
lowering to computational backends. It is intended for new developers. It is not necessary to understand this document
in order to use Blaze.

Expressions

Blaze represents expressions as Python objects. Classes include

• Symbol: leaf expression, t

• Projection: subset of columns, t[['name', 'amount']]

• Selection: subset of rows t[t.amount < 0]

2.1. Index 85

https://travis-ci.org/
http://continuum.io/

Blaze Documentation, Release 0.11.3

• Field: single column of data or field of record dataset t.name

• Broadcast: a scalar expression broadcast to a collection, t.amount + 1

• Join: join two expressions on shared fields , join(t, s, 'id')

• Reduction: perform a sum or min or max on a collection, t.amount.sum()

• By: split-apply-combine operation, by(t.name, total=t.amount.sum())

• Also: Sort, Distinct, Head, Label, Map, Merge, ...

In each case an operation (like Selection) is a Python class. Each expression defines a fixed set of fields in the
_arguments attribute

class Selection(Expr):
_arguments = '_child', 'predicate'

class Field(ElemWise):
_arguments = '_child', 'fieldname'

To create a node in the tree explicitly we create a Python object of this class

>>> from blaze.expr import *
>>> t = symbol('t', 'var * {id: int, name: string, amount: int}')
>>> amounts = Field(t, 'amount')

This object contains its information in a .args attribute

>>> amounts._args == (t, 'amount')
True

And the set of input expressions in a ._inputs attribute

>>> amounts._inputs == (t,)
True

By traversing ._args one can traverse the tree of all identifying information (including annotating strings and values
like 'amount') or by traversing ._inputs one can inspect the much sparser tree of just the major expressions,
skipping parameters like the particular field name to be selected.

Most terms have only a single child input. And so often the ._inputs tree is just a single line of nodes. Notable
exceptions include operations like Join and BinOp which contain two inputs.

Expression Invariants

Blaze expressions adhere to the following properties:

1. They and all of their stored fields are immutable

2. Their string representations evaluate to themselves. E.g. eval(str(expr)) == expr

3. They have simple __init__ constructors that only copy in fields to the object. For intelligent argument
handling they have functions. E.g. the Join class has an analagous join function that should be used by
users. Same with the internal By class as the user-level by function.

4. They can compute their datashape .dshape given the datashape of their children and their arguments.

86 Chapter 2. Presentations

Blaze Documentation, Release 0.11.3

Organization

All expr code occurs in blaze/expr/. This directory should be self-contained and not dependent on other parts of
Blaze like compute or api.

• blaze/expr/core.py contains code related to abstract tree traversal

• blaze/expr/expr.py contains code related to datashape imbued expressions

• blaze/expr/collections.py contains operations related to expressions with datashapes that contain a
dimension. Operations like Selection and Join live here

• blaze/expr/datetime.py, blaze/expr/string.py, ... all contain specialized operations for par-
ticular domains.

Computation

Once we have a Blaze expression like the following:

>>> deadbeats = t[t.amount < 0].name

and some data like the following:

>>> data = [[1, 'Alice', 100],
... [2, 'Bob', -200],
... [3, 'Charlie', 300]]

and a mapping of Symbols to data like the following:

>>> namespace = {t: data}

then we need to evaluate the intent of the expression on the data. We do this in a step-by-step system outlined by
various compute functions. The user experience is as follows

>>> from blaze import compute
>>> list(compute(deadbeats, namespace))
['Bob']

But internally compute traverses our expression from the leaves (like t) on up, transforming data as it goes. At
each step it looks at a node in the Blaze expression graph like the following:

>>> selection_t = t[t.amount < 0]

and transforms the data appropriately, like the following:

>>> predicate = lambda amt: amt < 0
>>> data = filter(predicate, data)

This step-by-step approach is easy to define through dispatched compute_up functions. We create a small recipe
for how to compute each expression type (e.g. Projection, Selection, By) against each data type (e.g., list,
DataFrame, sqlalchemy.Table,) Here is the recipe mapping a Selection to a DataFrame:

>>> @dispatch(Selection, DataFrame)
... def compute_up(t, df, **kwargs):
... predicate = compute(t.predicate, df)
... return df[predicate]

2.1. Index 87

Blaze Documentation, Release 0.11.3

This approach is modular and allows interpretation systems to be built up as a collection of small pieces. One can
begin the construction of a new backend by showing Blaze how to perform each individual operation on a new data
type. For example here is a start of a backend for PyTables:

>>> @dispatch(Selection, tb.Table)
... def compute_up(expr, data):
... s = eval_str(expr.predicate) # Produce string like 'amount < 0'
... return data.read_where(s) # Use PyTables read_where method

>>> @dispatch(Head, tb.Table)
... def compute_up(expr, data):
... return data[:expr.n] # PyTables supports standard indexing

>>> @dispatch(Field, tb.Table)
... def compute_up(expr, data):
... return data.col(expr._name) # Use the PyTables .col method

These small functions are isolated enough from Blaze to be easy for new developers to write, even without deep
knowledge of Blaze internals.

Compute Traversal

The compute_up functions expect to be given:

1. The expression containing information about the computation to be performed

2. The data elements corresponding to the .inputs of that expression

The compute function orchestrates compute_up functions and performs the actual traversal, accruing intermediate
results from the use of compute_up. By default compute performs a bottom_up traversal. First it evaluates the
leaves of the computation by swapping out keys for values in the input dictionary, {t: data}. It then calls
compute_up functions on these leaves to find intermediate nodes in the tree. It repeats this process, walking up the
tree, and at each stage translating a Blaze expression into the matching data element given the data elements of the
expression’s children. It continues this process until it reaches the root node, at which point it can return the result to
the user.

Sometimes we want to perform pre-processing or post-processing on the expression or the result. For example when
calling compute on a blaze.data.SQL object we actually want to pre-process this input to extract out the
sqlalchemy.Table object and call compute_up on that. When we’re finished and have successfully trans-
lated our Blaze expression to a SQLAlchemy expression we want to post-process this result by actually running the
query in our SQL database and returning the concrete results.

Adding Expressions

Expressions can be added by creating a new subclass of blaze.expr.expressions.Expr. When adding a
class, one should define all of the arguments the type will accept in the _arguments attribute. Blaze expressions
are memoized based on these arguments. Memoization happens at object construction time so any custom initial-
ization logic should happen in the __new__ instead of the __init__. Construction should always forward to the
superclass’s __new__. By default, the __new__ will reflect a signature from the _arguments attribute.

To define the shape of our new expression, we should implement the _dshape method. This method should use the
shapes of the arguments passed in the constructor plus knowledge of this type of transformation to return the datashape
of this expression. For example, thinking of sum, we would probably want a method like:

def _dshape(self):
Drop the dimension of the child reducing to a scalar type.
return self._child.schema.measure

88 Chapter 2. Presentations

Blaze Documentation, Release 0.11.3

Here we see the .schema attribute being used. This attribute dispatches to another optional method: _schema.
This method should return the datashape with the shape stripped off, or just the data type. If this is not defined, it will
be implemented in terms of the _dshape method. This is often convenient for subclasses where the rules about the
schema change but the rules for the dimensions are all the same, like blaze.expr.reductions.Reduction.

The constructor is not public construction point for a blaze expression. After the class is defined a pairing function
should be added to construct and type check the new node. For example, if our node is Concat, then the functions
should be called concat. We will want to decorate this function with odo.utils.copydoc() to pull the doc-
string from the class. This function’s main job is type checking the operands. Any constructed node should be in a
valid state. If the types do not check out, simply raise a TypeError with a helpful message to the user.

Now that the new expression class is defined and the types work out, it must be dispatched to in the compute backends.
For each backend that can implement this new feature, a corrosponding compute_up dispatch should be defined.
For example, assuming we just defined sum, we would need to implement something like:

@dispatch(sum, np.ndarray)
def compute_up(expr, arr, **kwargs):

...

@dispatch(sum, pd.Series)
def compute_up(expr, arr, **kwargs):

...

@dispatch(sum, (list, tuple))
def compute_up(expr, arr, **kwargs):

...

...

Each of these function definitions should appear in the blaze.compute.* module for the given backend. For
example, the ndarray definition should go in blaze.compute.numpy.

After implementing the various compute up functions, tests should be written for this behavior. Tests should be added
to blaze/expr/tests for the expression itself, including tests against the construction and the dshape. Tests are
also needed for each of the particular backend implementations to assert that the results of performing the computation
is correct accross our various backends.

2.1.26 Computation Pipeline

This is a developer level document. It conveys some of the design decisions around the use of expressions and their
lowering to computational backends. It is intended for developers. It is not necessary to understand this document in
order to use Blaze.

Problem

Given an expression:

>>> from blaze import symbol, sum
>>> x = symbol('x', '5 * int')
>>> y = symbol('y', '5 * int')
>>> expr = sum(x ** 2 + y)
>>> expr
sum((x ** 2) + y)

2.1. Index 89

Blaze Documentation, Release 0.11.3

And data arranged into a namespace

>>> import numpy as np
>>> xdata = np.array([1, 2, 3, 4, 5])
>>> ydata = np.array([10, 20, 30, 40, 50])
>>> ns = {x: xdata, y: ydata}

Our goal is to produce the result implied by the expression

>>> np.sum(xdata ** 2 + ydata)
205

Using many small functions defined for each backend to do small pieces of this computation

@dispatch(blaze.expr.sum, numpy.ndarray)
def compute_up(expr, data):

return numpy.sum(data)

Simple Solution

A simple solution to this problem is to walk from the leaves of the expression tree, applying compute_up functions
to data resources until we reach the top. In cases like the above example this suffices. This is called a bottom up
traversal.

Complications

Some backends require more sophistication. In principle we may want to do the following:

1. Modify/optimize the expression tree for a given backend. optimize(expr, data) -> expr

2. Modify the data resources before we start execution. pre_compute(expr, data) -> data

3. Modify the data resources as they change type throughout the computation pre_compute(expr, data)
-> data

4. Clean up the data result after we complete execution. post_compute(expr, data) -> data

5. Process a leaf of the tree in a bottom up fashion as described above. compute_up(expr, data) ->
data

6. Process large chunks of the tree at once, rather than always start from the bottom. compute_down(expr,
data) -> data

Each of these steps is critical to one backend or another. We describe each in turn and then give the complete picture
of the entire pipeline.

optimize :: expr, data -> expr

Optimize takes an expression and some data and changes the expression based on the data type.

For example in columnar stores (like bcolz.ctable) we insert projections in the expression to reduce the memory
footprint. In numpy-based array backends we insert Broadcast operations to perform loop fusion.

This function is applied throughout the tree at the top-most point at which it is applicable. It is not applied at leaves
which have little to optimize.

90 Chapter 2. Presentations

Blaze Documentation, Release 0.11.3

pre_compute :: expr, data -> data

Pre-compute is applied to leaf data elements prior to computation (xdata and ydata in the example above). It might
be used for example, to load data into memory.

We apply pre_compute at two stages of the pipeline

1. At the beginning of the computation

2. Any time that the data significantly changes type

So for example for the dataset:

data = {'my_foo': Foo(...)}

If we apply the computation:

X -> X.my_foo.distinct()

Then after the X -> X.my_foo computation as the type changes from dict to Foo we will call pre_compute
again on the Foo object with the remaining expression:

data = pre_compute(X.my_foo.distinct(), Foo(...))

A real use case is the streaming Python backend which consumes either sequences of tuples or sequences of dicts.
precompute(expr, Sequence) detects which case we are in and normalizes to sequences of tuples. This
pre-computation allows the rest of the Python backend to make useful assumptions.

Another use case is computation on CSV files. If the CSV file is small we’d like to transform it into a pandas
DataFrame. If it is large we’d like to transform it into a Python iterator. This logic can be encoded as a pre_compute
function and so will be triggered whenever a CSV object is first found.

post_compute :: expr, data -> data

Post-compute finishes a computation. It is handed the data after all computation has been done.

For example, in the case of SQLAlchemy queries the post_compute function actually sends the query to the SQL
engine and collects results. This occurs only after Blaze finishes translating everything.

compute_up :: expr, data -> data

Compute up walks the expression tree bottom up and processes data step by step.

Compute up is the most prolific function in the computation pipeline and encodes most of the logic. A brief example

@dispatch(blaze.expr.Add, np.ndarray, np.ndarray)
def compute_up(expr, lhs, rhs):

return lhs + rhs

compute_down :: expr, data -> data

In some cases we want to process large chunks of the expression tree at once. Compute-down operates on the tree
top-down, being given the root node / full expression first, and proceeding down the tree while it can not find a match.

Compute-down is less common than compute-up. It is most often used when one backend wants to ship an entire
expression over to another. This is done, for example, in the SparkSQL backend in which we take the entire expression
and execute it against a SQL backend, and then finally apply that computation onto the SchemaRDD.

2.1. Index 91

Blaze Documentation, Release 0.11.3

It is also used extensively in backends that leverage chunking. These backends want to process a large part of the
expression tree at once.

Full Pipeline

The full pipeline looks like the following

1. Pre-compute all leaves of data

2. Optimize the expression

3. Try calling compute_down on the entire expression tree

4. Otherwise, traverse up the tree from the leaves, calling compute_up. Repeat this until the data significantly
changes type (e.g. list to int after a sum operation)

5. Reevaluate optimize on the expression and pre_compute on all of the data elements.

6. Go to step 3

7. Call post_compute on the result

This is outlined in blaze/compute/core.py in the functions compute(Expr, dict) and
top_then_bottom_then_top_again_etc.

History

This design is ad-hoc. Each of the stages listed above arose from need, not from principled fore-thought. Undoubtedly
this system could be improved. In particular much of the complexity comes from the fact that compute_up/down
functions may transform our data arbitrarily. This, along with various particular needs from all of the different data
types, forces the flip-flopping between top-down and bottom-up traversals. Please note that while this strategy works
well most of the time pathalogical cases do exist.

2.2 Older Versions

Older versions of these documents can be found here.

92 Chapter 2. Presentations

Python Module Index

b
blaze.expr.arithmetic, 57
blaze.expr.arrays, 56
blaze.expr.broadcast, 57
blaze.expr.collections, 37
blaze.expr.datetime, 59
blaze.expr.expressions, 46
blaze.expr.math, 57
blaze.expr.reductions, 53
blaze.expr.split_apply_combine, 59
blaze.interactive, 37

93

Blaze Documentation, Release 0.11.3

94 Python Module Index

Index

A
Apply (class in blaze.expr.expressions), 46
apply() (in module blaze.expr.expressions), 50
Arithmetic (class in blaze.expr.arithmetic), 57

B
blaze.expr.arithmetic (module), 57
blaze.expr.arrays (module), 56
blaze.expr.broadcast (module), 57
blaze.expr.collections (module), 37
blaze.expr.datetime (module), 59
blaze.expr.expressions (module), 46
blaze.expr.math (module), 57
blaze.expr.reductions (module), 53
blaze.expr.split_apply_combine (module), 59
blaze.interactive (module), 37
Broadcast (class in blaze.expr.broadcast), 57
broadcast_collect() (in module blaze.expr.broadcast), 58
By (class in blaze.expr.split_apply_combine), 59

C
Cast (class in blaze.expr.expressions), 46
cast() (blaze.expr.expressions.Expr method), 47
cast() (in module blaze.expr.expressions), 51
Coalesce (class in blaze.expr.expressions), 46
coalesce() (in module blaze.expr.expressions), 51
Coerce (class in blaze.expr.expressions), 47
coerce() (in module blaze.expr.expressions), 51
Concat (class in blaze.expr.collections), 37
concat() (in module blaze.expr.collections), 38
count (class in blaze.expr.reductions), 54
count_values() (in module

blaze.expr.split_apply_combine), 59

D
data() (in module blaze.interactive), 37
DateTime (class in blaze.expr.datetime), 59
Distinct (class in blaze.expr.collections), 39
distinct() (in module blaze.expr.collections), 39

dot() (in module blaze.expr.arrays), 56

E
ElemWise (class in blaze.expr.expressions), 47
Expr (class in blaze.expr.expressions), 47

F
Field (class in blaze.expr.expressions), 48

H
Head (class in blaze.expr.collections), 40
head() (in module blaze.expr.collections), 40

I
IsIn (class in blaze.expr.collections), 40
isin() (in module blaze.expr.collections), 41

J
Join (class in blaze.expr.collections), 41
join() (in module blaze.expr.collections), 42

L
Label (class in blaze.expr.expressions), 48
label() (in module blaze.expr.expressions), 52

M
Map (class in blaze.expr.expressions), 48
map() (blaze.expr.expressions.Expr method), 47
Merge (class in blaze.expr.collections), 43
merge() (in module blaze.expr.collections), 43

N
ndim() (in module blaze.expr.expressions), 52
nelements (class in blaze.expr.reductions), 54
notnull (class in blaze.expr.math), 57

P
Projection (class in blaze.expr.expressions), 49

95

Blaze Documentation, Release 0.11.3

projection() (in module blaze.expr.expressions), 52
Python Enhancement Proposals

PEP 440, 69

R
Reduction (class in blaze.expr.reductions), 53
ReLabel (class in blaze.expr.expressions), 49
relabel() (in module blaze.expr.expressions), 52

S
Sample (class in blaze.expr.collections), 43
sample() (in module blaze.expr.collections), 44
scalar_symbols() (in module blaze.expr.broadcast), 58
Selection (class in blaze.expr.expressions), 50
selection() (in module blaze.expr.expressions), 53
Shift (class in blaze.expr.collections), 44
shift() (in module blaze.expr.collections), 44
SimpleSelection (class in blaze.expr.expressions), 50
Slice (class in blaze.expr.expressions), 50
Sort (class in blaze.expr.collections), 44
sort() (in module blaze.expr.collections), 45
std (class in blaze.expr.reductions), 55
Summary (class in blaze.expr.reductions), 54
summary() (in module blaze.expr.reductions), 55
Symbol (class in blaze.expr.expressions), 50
symbol() (in module blaze.expr.expressions), 53

T
Tail (class in blaze.expr.collections), 45
tail() (in module blaze.expr.collections), 45
TensorDot (class in blaze.expr.arrays), 56
tensordot() (in module blaze.expr.arrays), 57
transform() (in module blaze.expr.collections), 45
Transpose (class in blaze.expr.arrays), 56
transpose() (in module blaze.expr.arrays), 56

U
UnaryMath (class in blaze.expr.math), 57

V
var (class in blaze.expr.reductions), 55
vnorm() (in module blaze.expr.reductions), 55

96 Index

	Blaze
	Presentations
	Python Module Index

