
libscapi Documentation
Release 1.0

libscapi team

December 12, 2018

Contents

1 Introduction 3
1.1 Why Should I Use libscapi? . 3
1.2 Architecture . 3

2 Installation 5
2.1 Installing LibSCAPI - Linux . 5
2.2 Installing LibSCAPI - Windows . 7

3 Quickstart 9
3.1 Your First libscapi Application . 9
3.2 Compiling and Running the libscapi Code . 10
3.3 Establishing Secure Communication . 11

4 The Communication Layer 13
4.1 Communication Design . 13
4.2 Setting up communication . 13
4.3 Using an established connection . 16

5 Security Levels 17

6 Circuits 19
6.1 Create the circuit . 19

7 Layer 1: Basic Primitives 23
7.1 Cryptographic Hash . 23
7.2 Pseudorandom Function (PRF) . 24
7.3 Pseudorandom Permutation (PRP) . 27
7.4 Pseudorandom Generator (PRG) . 29
7.5 Trapdoor Permutation . 30
7.6 Discrete Log Group (DLOG) . 33
7.7 Key Derivation Function (KDF) . 39

8 Layer 2: Non Interactive Protocols 41
8.1 Message Authentication Codes . 41
8.2 Symmetric Encryption . 44
8.3 Asymmetric Encryption . 47

9 Layer 3: Interactive Protocols 57
9.1 Oblivious Transfer Protocols . 57

i

9.2 Sigma Protocols . 61
9.3 Zero Knowledge Proofs and Zero Knowledge Proofs of Knowledge 66
9.4 Commitment Schemes . 68

10 License 73

ii

libscapi Documentation, Release 1.0

Libscapi is an open-source c++ library for implementing secure two-party and multiparty computation protocols
(SCAPI stands for the “Secure Computation API”). It provides a reliable, efficient, and highly flexible cryptographic
infrastructure. SCAPI also has a java version, that can be found at https://scapi.readthedocs.io/en/latest/index.html.
SCAPI is free and is licensed under an adaptation of the MIT license, you can read more about the license here.

Contents 1

https://scapi.readthedocs.io/en/latest/index.html

libscapi Documentation, Release 1.0

2 Contents

CHAPTER 1

Introduction

LibSCAPI is an open-source general library tailored for Secure Computation implementations. libscapi provides a
flexible and efficient infrastructure for the implementation of secure computation protocols, that is both easy to use
and robust. We hope that SCAPI will help to promote the goal of making secure computation practical.

Why Should I Use libscapi?

• libscapi provides uniformity. As of today, different research groups are using different implementions. It
is hard to compare different results, and implementations carried out by one group cannot be used by others.
libscapi is trying to solve this problem by offering a modular codebase to be used as the standard library for
Secure Computation.

• libscapi is flexible. libscapi’s lower-level primitives inherit from modular interfaces, so that primitives can
be replaced easily. libscapi leaves the choice of which concrete primitives to actually use to the high-level
application calling the protocol. This flexibility can be used to find the most efficient primitives for each specific
problem.

• libscapi is efficient. libscapi is implemented in c++ and wraps the most efficient libraries and implementations
in order to run more efficiently. For example, elliptic curve operations in libscapi are implemented using the
extremely efficient Miracl library written in C.

• libscapi is built to please. libscapi has been written with the understanding that others will be using it, and so
an emphasis has been placed on clean design and coding, documentation, and so on.

Architecture

libscapi is composed of the following four layers:

1. Low-level primitives: these are functions that are basic building blocks for cryptographic constructions (e.g.,
pseudorandom functions, pseudorandom generators, discrete logarithm groups, and hash functions belong to
this layer).

2. Non-interactive mid-level protocols: these are non-interactive functions that can be applications within them-
selves in addition to being tools (e.g., encryption and signature schemes belong to this layer).

3. Interactive mid-level protocols: these are interactive protocols involving two or more parties; typically, the
protocols in this layer are popular building blocks like commitments, zero knowledge and oblivious transfer.

4. High level Protocols: these are implementations of known cryptographic multi-party and two-party protocols.
For example, Yao and GMW.

3

libscapi Documentation, Release 1.0

In addition to these four main layers, there is an orthogonal communication layer that is used for setting up commu-
nication channels and sending messages and also a circuit package that contains boolean circuits and garbled boolean
circuit implementations used in libscapi’s layers.

4 Chapter 1. Introduction

CHAPTER 2

Installation

Scapi is simple enough to install, the installation varies on different operating systems. Scapi currently supports Linux
and Windows.

Installing LibSCAPI - Linux

The following explains how to install libscapi on Ubuntu. For other Linux variants it should work as well with the
appropriate adjustments.

Prerequisites

Update and install git, gcc, gmp, and open ssl. On Ubuntu environment is should look like:

$ sudo apt-get update
$ sudo apt-get install -y git build-essential
$ sudo apt-get install -y libssl-ocaml-dev libssl-dev
$ sudo apt-get install -y libgmp3-dev

Download and install boost (the last step might take some time. patience):

$ wget -O boost_1_64_0.tar.bz2 http://sourceforge.net/projects/boost/files/boost/1.64.0/boost_1_64_0.tar.bz2/download
$ tar --bzip2 -xf boost_1_64_0.tar.bz2
$ cd boost_1_64_0
$./bootstrap.sh
$./b2

More details about boost here: http://www.boost.org/doc/libs/1_64_0/more/getting_started/unix-variants.html

Building libscapi and publishing libs

Download and build libscapi:

$ cd ~
$ git clone https://github.com/cryptobiu/libscapi.git
$ cd libscapi
$ make

Publish new libs:

5

http://www.boost.org/doc/libs/1_64_0/more/getting_started/unix-variants.html

libscapi Documentation, Release 1.0

$ sudo ldconfig ~/boost_1_60_0/stage/lib/ ~/libscapi/install/lib/

Building and Running the Tests

In order to build and run tests:

$ cd ~/libscapi/test
$ make
$./tests.exe

Samples

Build and run the samples program:

$ cd ~/libscapi/samples
$ make

In order to see all available samples:

$./libscapi_example.exe

In order to run simple examples (dlog or sha1):

$./libscapi_example.exe dlog
$./libscapi_example.exe sha1

You should get some print outs if everything works well.

In order to run the CommExample. Open two terminals. In the first run:

$./libscapi_example.exe comm 1 Comm/CommConfig.txt

And in the other run:

$./libscapi_example.exe comm 2 Comm/CommConfig.txt

In order to run Semi-honset YAO, run in the first terminal:

$./libscapi_example.exe yao 1 Yao/YaoConfig.txt

And in the second:

$./libscapi_example.exe yao 2 Yao/YaoConfig.txt

Finally in order to run the Sigma example - in the first terminal run:

$./libscapi_example.exe sigma 1 SigmaPrototocls/SigmaConfig.txt

And in the second terminal:

$./libscapi_example.exe sigma 1 SigmaPrototocls/SigmaConfig.txt

You can edit the config file in order to play with the different params in all examples.

6 Chapter 2. Installation

libscapi Documentation, Release 1.0

Installing LibSCAPI - Windows

Installing scapi on windows will require git client and Visual Studio IDE. We tested it with VS2015.

Prerequisites:

1. Download and install open ssl for windows: https://slproweb.com/products/Win32OpenSSL.html (choose 64bit
not light)

2. Download and install boost binaries for windos: https://sourceforge.net/projects/boost/files/boost-
binaries/1.60.0/ choose 64 bit version 14

The windows solutions assume that boost is installed at C:\local\boost_1_60_0 and that OpenSSL at:
C:\OpenSSL-Win64

Pull libscapi from GitHub. For convenient we will assume that libscapi is located at:
c:\code\scapi\libscapi‘. If it is located somewhere eles then the following paths should be adjusted
accrodingly.

1. Build Miracl for windows 64:

(a) Open solution MiraclWin64.sln at: C:\code\libscapi\lib\MiraclCompilation

(b) Build the solution once for debug and once for release

2. Build OTExtension for window 64:

(a) Open solution OTExtension.sln at C:\code\libscapi\lib\OTExtension\Win64-sln

(b) Build solution once for debug and once for release

3. Build GarbledCircuit project

(a) Open solution ScGarbledCircuitWin64.sln at C:\code\libscapi\lib\ScGarbledCircuit\ScGarbledCircuitWin64

(b) Build solution once for debug and once for release

4. Build the NTL solution:

(a) Open solution NTL-WIN64.sln at C:\code\libscapi\lib\NTL\windows\NTL-WIN64

(b) Build solution once for debug and once for release

5. Build Scapi Solution including examples and test:

(a) Open solution ScapiCpp.sln at C:\code\libscapi\windows-solutions\scapi-sln

(b) Build solution once for debug and once for release - (as needed)

6. Run tests.

(a) Go to C:\code\libscapi\windows-solutions\scapi-sln\x64\debug

(b) run ./scapi_tests.exe and make sure all is green

7. Run example:

(a) open two terminals

(b) in both of them go to: C:\code\libscapi\windows-solutions\scapi-sln\x64\debug

(c) To see available samples run libscapi_examples.exe

(d) Follow instruction of how to run the different samples as exaplained in the linux section

(e) You can edit the different config file to play with the paramaters

2.2. Installing LibSCAPI - Windows 7

https://slproweb.com/products/Win32OpenSSL.html
https://sourceforge.net/projects/boost/files/boost-binaries/1.60.0/
https://sourceforge.net/projects/boost/files/boost-binaries/1.60.0/

libscapi Documentation, Release 1.0

8 Chapter 2. Installation

CHAPTER 3

Quickstart

Eager to get started? This page gives a good introduction to Libscapi. It assumes you already have libscapi installed.
If you do not, head over to the Installation section.

Your First libscapi Application

We begin with a minimal application and go through some basic examples.

#include "../../include/primitives/DlogOpenSSL.hpp"

int main(int argc, char* argv[]){
// initiate a discrete log group
// (in this case the OpenSSL implementation of the elliptic curve group K-233)
DlogGroup* dlog = new OpenSSLDlogECF2m("include/configFiles/NISTEC.txt", "K-233");

// get the group generator and order
auto g = dlog->getGenerator();
biginteger q = dlog->getOrder();

// create a random exponent r
shared_ptr<PrgFromOpenSSLAES> gen = get_seeded_prg();
biginteger r = getRandomInRange(0, q - 1, gen.get());

// exponentiate g in r to receive a new group element
auto g1 = dlog->exponentiate(g.get(), r);
// create a random group element
auto h = dlog->createRandomElement();
// multiply elements
auto gMult = dlog->multiplyGroupElements(g1.get(), h.get());

}

Pay attention to the definition of the discrete log group. In libscapi we will always use a generic data type such as
DlogGroup instead of a more specified data type. This allows us to replace the group to a different implementation
or a different group entirely, without changing our code.

Let’s break it down:

We include the libscapi primitive OpenSSLDlogECF2m class that extends the DlogGroup abstract class (imple-
ments a discrete log group). This is a wrapper class to an implementation of an elliptic curve group in the OpenSSL

9

libscapi Documentation, Release 1.0

library. Since DlogGroup is abstract class, we can easily choose a different group without changing a single line of
code except the one in emphasis.

We also use the get_seeded_prg() function implemented by libscapi, that returns an object of type PrgFromOpenSS-
lAES. This is a libscapi’s class that provides a cryptographically pseudo random generator.

In order to handle big numbers we use the biginteger define that represents boost::multiprecision::mpz_int in
linux systems and boost::multiprecision::cpp_int in windows.

#include "../../include/primitives/DlogOpenSSL.hpp"

Our main class defines a discrete log group, and then extract the group properties (generator and order).

// initiate a discrete log group
// (in this case the OpenSSL implementation of the elliptic curve group K-233
// using the NISTEC.txt file that provided by libscapi that is a at libscapi/include/configFiles)
DlogGroup* dlog = new OpenSSLDlogECF2m("include/configFiles/NISTEC.txt", "K-233");

// get the group generator and order
auto g = dlog->getGenerator();
biginteger q = dlog->getOrder();

We then choose a random exponent, and exponentiate the generator in this exponent.

// create a random exponent r
shared_ptr<PrgFromOpenSSLAES> gen = get_seeded_prg();
biginteger r = getRandomInRange(0, q - 1, gen.get());

// exponentiate g in r to receive a new group element
auto g1 = dlog->exponentiate(g.get(), r);

We then select another group element randomly.

// create a random group element
auto h = dlog->createRandomElement();

Finally, we demonstrate how to multiply group elements.

// multiply elements
auto gMult = dlog->multiplyGroupElements(g1.get(), h.get());

Compiling and Running the libscapi Code

Save this example to a file called DlogExample.cpp. In order to compile this file, type in the terminal:

$ g++ example.cpp -I/home/moriya -I/home/moriya/boost_1_60_0 -std=c++11 scapi.a -lboost_system -L/home/moriya/boost_1_60_0/stage/lib -lssl -lcrypto -lgmp

Note that we use the scapi.a which is the libscapi lirary. The -I command sets the include files to use in the program
and the -l command sets the libraries to link to the program.

A file called a.out should be created as a result. In order to run this file, type in the terminal:

$./a.out

10 Chapter 3. Quickstart

libscapi Documentation, Release 1.0

Establishing Secure Communication

The first thing that needs to be done to obtain communication services is to setup the connections between the
different parties. Libscapi provides two communication types - tcp communication and ssl tcp communication.
The abstract communication class called commParty and the concrete classes are CommPartyTCPSynced and
CommPartyTcpSslSynced. Both communication types use boost::asio::io_service in order to set
communication between the parties.

Let’s get a look at the following code:

#include <libscapi/include/comm/Comm.hpp>

int main(int argc, char* argv[]) {

boost::asio::io_service io_service;
SocketPartyData me, other;
if (atoi(argv[1]) == 0){

me = SocketPartyData(boost_ip::address::from_string("127.0.0.1"), 8000);
other = SocketPartyData(boost_ip::address::from_string("127.0.0.1"), 8001);

} else {
me = SocketPartyData(boost_ip::address::from_string("127.0.0.1"), 8001);
other = SocketPartyData(boost_ip::address::from_string("127.0.0.1"), 8000);

}

shared_ptr<CommParty> channel = make_shared<CommPartyTCPSynced>(io_service, me, other);
// connect to party one
channel->join(500, 5000);
cout<<"channel established"<<endl;

}

In this example, we establish a communication between two parties in the same machine, using ports 8000 and 8001.

A CommParty represents an established connection between two parties. It has two main functions:

void write(const byte* data, int size)

Sends a message data to the other party, the number of bytes in data should be equal to size.

size_t read(byte* buffer, int sizeToRead)

Receives a message with sizeToRead bytes from the channel. The buffer should have at least sizeToRead bytes.

This means that from the applications point of view, once it obtains the channels it can completely forget about it and
just send and receive messages.

3.3. Establishing Secure Communication 11

libscapi Documentation, Release 1.0

12 Chapter 3. Quickstart

CHAPTER 4

The Communication Layer

Contents

• The Communication Layer
– Communication Design

* Class hierarchy
– Setting up communication

* Fetch the list of ips and ports
* Setting up the actual communication

– Using an established connection

Communication Design

The communication layer provides communication services for any interactive cryptographic protocol. We have two
types of communication, plain (unauthenticated and unencrypted) communication and secure channels using ssl. This
layer is heavily used by the interactive protocols in libscapi’ third layer and by MPC protocols. It can also be used
by any other cryptographic protocol that requires communication. Currently the communication layer is a two-party
communication channel. MultiParty communication can be achieved by setting a communication between each pair
of parties.

Class hierarchy

The main communication clas is CommParty. This is an abstract class that declares all communication functionali-
ties. There are two concrete classes that derive the CommParty class:

• CommPartyTCPSynced - establish a plain channel between the parties.

• CommPartyTcpSslSynced - establish an ssl channel between the parties.

Setting up communication

There are several steps involved in setting up a communication channel between parties. Each one of them will be
explained below: First, let’s take a look of an example for setting a cummunication between 3 parties:

13

libscapi Documentation, Release 1.0

#include <libscapi/include/comm/Comm.hpp>

int main(int argc, char* argv[]) {

int numParties = 3;

//open file
ConfigFile cf("/home/moriya/libscapi/protocols/GMW/Parties");

string portString, ipString;
vector<int> ports(numParties);
vector<string> ips(numParties);
int counter = 0;
for (int i = 0; i < numParties; i++) {

portString = "party_" + to_string(i) + "_port";
ipString = "party_" + to_string(i) + "_ip";
//get partys IPs and ports data
ports[i] = stoi(cf.Value("", portString));
ips[i] = cf.Value("", ipString);

}

SocketPartyData me, other;
boost::asio::io_service io_service;

int id = atoi(argv[1]);
for (int i=0; i<numParties; i++){

if (i < id) {// This party will be the receiver in the protocol

me = SocketPartyData(boost_ip::address::from_string(ips[id]), ports[id] + i);
cout<<"my port = "<<ports[id] + i<<endl;
other = SocketPartyData(boost_ip::address::from_string(ips[i]), ports[i] + id - 1);
cout<<"other port = "<<ports[i] + id - 1<<endl;

shared_ptr<CommParty> channel = make_shared<CommPartyTCPSynced>(io_service, me, other);
// connect to party one
channel->join(500, 5000);
cout<<"channel established"<<endl;

} else if (i>id) {// This party will be the sender in the protocol
me = SocketPartyData(boost_ip::address::from_string(ips[id]), ports[id] + i - 1);
cout<<"my port = "<<ports[id] + i - 1<<endl;
other = SocketPartyData(boost_ip::address::from_string(ips[i]), ports[i] + id);
cout<<"other port = "<< ports[i] + id<<endl;

shared_ptr<CommParty> channel = make_shared<CommPartyTCPSynced>(io_service, me, other);
// connect to party one
channel->join(500, 5000);
cout<<"channel established"<<endl;

}
}

}

Fetch the list of ips and ports

The first step towards obtaining communication services is to setup the connections between the different parties. In
order start obtaining the communication, party should first get a list of the parties’ ips and ports. Each pair of ip and

14 Chapter 4. The Communication Layer

libscapi Documentation, Release 1.0

port represents a party in the protocol. The ips and ports can be obtaind from a file or any other way. In the example
above the reading from the file is done via ConfigFile wich is a libscapi’s class that reads from a given file :

//open file
ConfigFile cf("/home/moriya/libscapi/protocols/GMW/Parties");

string portString, ipString;
vector<int> ports(numParties);
vector<string> ips(numParties);
int counter = 0;
for (int i = 0; i < numParties; i++) {

portString = "party_" + to_string(i) + "_port";
ipString = "party_" + to_string(i) + "_ip";
//get partys IPs and ports data
ports[i] = stoi(cf.Value("", portString));
ips[i] = cf.Value("", ipString);

}

In the example, the parties file contains for each party in the protocol the ip and starting port number. The other port
numbers are the next indices.

party_0_ip = 127.0.0.1
party_1_ip = 127.0.0.1
party_2_ip = 127.0.0.1
party_0_port = 8000
party_1_port = 8020
party_2_port = 8040

Setting up the actual communication

The actual communication is done by creating the channels and activate them. Once a channel has been activated, it
can be used to write and read messages. Each channel communicates between two parties and uses a single port for
each one of them. In order to create the channel, one should give the ips and ports of the parties on both channel’s
sides.

As we said before, the abstract communication class is CommParty and there are two concrete classes
CommPartyTCPSynced and CommPartyTcpSslSynced. The constructors of the concrete classes are follow:

CommPartyTCPSynced(boost::asio::io_service& ioService, SocketPartyData me, SocketPartyData other)

CommPartyTcpSslSynced(boost::asio::io_service& ioService, SocketPartyData me, SocketPartyData
other, string certificateChainFile, string password, string privateKeyFile,
string tmpDHFile, string clientVerifyFile)

Parameters

• out – boost::asio::io_service io_service - Boost’s object that used in the
communication.

• out – SocketPartyData me - An object that contains the ip and the port of this party.

• out – SocketPartyData other - An object that contains the ip and the port of the
party that we want to communicate with.

CommPartyTcpSslSynced also accepts the parameters for the ssl protocol:

• out – string certificateChainFile

• out – string password

• out – string privateKeyFile

4.2. Setting up communication 15

libscapi Documentation, Release 1.0

• out – string tmpDHFile

• out – string clientVerifyFile

After the channel has been creates, it needs to get activated. This is done by the join function of the channel:

void join(int sleep_between_attempts, int timeout)
This function setups a double edge connection with the the current party and the other party. The method blocks
until both sides are connected to each other. In case of timeout, the communication fails and an error is thrown.

After the join function is complete, the channel is ready to send and receive messages.

In the example above the code that creates a channel and activate it is:

me = SocketPartyData(boost_ip::address::from_string(ips[id]), ports[id] + i);
cout<<"my port = "<<ports[id] + i<<endl;
other = SocketPartyData(boost_ip::address::from_string(ips[i]), ports[i] + id - 1);
cout<<"other port = "<<ports[i] + id - 1<<endl;

shared_ptr<CommParty> channel = make_shared<CommPartyTCPSynced>(io_service, me, other);
// connect to party one
channel->join(500, 5000);

First, we create a SocketPartyData for the current application with the ip and port. Second, we create a SocketPartyData
for the other application and then we create the channel and activate it.

Using an established connection

A connection is represented by the CommParty interface. Once a channel is established, we can write() and
read() data between parties. There are multiple write and read functions:

void write(const byte* data, int size)
Writes bytes from data to the other party. This function Will write exactly size bytes.

void writeWithSize(const byte* data, int size)
Writes the size of the data parameter, then writes the data itself.

size_t read(byte* buffer, int sizeToRead)
Reads exactly sizeToRead bytes and put them in buffer. This function Will block until all bytes are read.

There are also functions that working on strings and vectors:

void write(string s)

void writeWithSize(string s)

int readSize()

size_t readWithSizeIntoVector(vector<byte>& targetVector)

16 Chapter 4. The Communication Layer

CHAPTER 5

Security Levels

In many cases, a cryptographic primitive is not just “secure” or “insecure”. Rather, it may meet some notion of security
and not another. A classic example is encryption, where a scheme can be secure in the presence of eavesdropping
adversaries (EAV), in the presence of chosen-plaintext attacks (CPA) or in the presence of chosen-ciphertext attacks
(CCA). These three levels of security also form a hierarchy (any scheme that is secure in the presence of chosen-
ciphertext attacks, is secure against chosen-plaintext attacks and so on). The choice of which level of security to
require, depends on the application. We remark that it is not always wise to take the “most secure” scheme since this
sometimes comes with a performance penalty. In addition, in some cases (like in commitments), the security levels
are non-comparable.

Protocols that by definition need to work with primitives that hold a specific security level are responsible for checking
that the primitives meet the security level requirements. For example, an encryption scheme that is secure under DDH
should check that it receives a Dlog Group with security level DDH.

The library therefore includes a hierarchy of security level classes; These classes have no methods and are only
markers. Each concrete class that is based on any security level should derive the relevant class, to declare itself as
secure as the security level class.

17

libscapi Documentation, Release 1.0

18 Chapter 5. Security Levels

CHAPTER 6

Circuits

Circuits are basic building block which often use in Scapi, espacially in MPC protocols.

Garbled Circuit refers the case of a circuit which we don’t want the evaluator to know the values in the middle of the
circuit evaluation. Meaning, each gate’s output should tell nothing about its actual result. In order to get this goal we
garble the circuit. In case of a Boolean circuit, each wire gets two garbled values (which we called “keys”). During the
circuit computation, each gate outputs one of its output wire’s garbled values. At the end, the circuit outputs garbled
values for each output wire. In order to translate it to a meaningful result, one should call the translate function of the
circuit.

All garbled circuits have four main operations:

1. The garble function that creates the garbled table.

2. The compute function that computes a result on a garbled circuit on the input which is the keys that were
chosen for each input wire.

3. The verify method is used in the case of a malicious adversary to verify that the garbled circuit created is
an honest garbling of the agreed upon non garbled circuit.

4. The translate method that translates the garbled output which usually is generated by the compute() func-
tion into meaningful output (a 0/1 result, rather than the keys outputed by compute).

Create the circuit

The best way to create a circuit is using a file. There are three formats of circuits that are quite similar:

Two-Party Boolean circuit

The format of the circuit file should be as follows.

1. Number of gates

2. Number of parties

3. For each party:

• Party number

• Number of inputs for that party

• A list of integer labels of each of these input wires.

4. Number of output wires

19

libscapi Documentation, Release 1.0

5. List of integer labels of each of these output wires.

6. For each gate:

• Number of input wires

• Number of output wires

• Input wires labels

• Output Wires labels

• Truth table (as a 0-1 string).

An example file:

1 // One gate
2 // Two parties
1 1 0 // Party one, has one input wire, labeled "0"
2 1 1 // Party two, has one input wire, labeled "1"
1 // One output wire
2 // The output wire, labeled "2"
2 1 0 1 2 0001 // The first (and only) gate has 2 input wire labeled "0" and "1", one output wire labeled "2" and the truth table is 0001 (AND gate).

Multi-Party Boolean circuit

The format of the circuit file should be as follows.

1. Number of gates

2. Number of parties

3. For each party:

• Party number

• Number of inputs for that party

• A list of integer labels of each of these input wires.

4. For each party:

• Party number

• Number of outputs for that party

• A list of integer labels of each of these output wires.

5. For each gate:

• Number of input wires

• Number of output wires

• Input wires labels

• Output Wires labels

• Truth table (as a 0-1 string).

An example file:

1 // One gate
2 // Two parties
1 1 0 // Party one, has one input wire, labeled "0"
2 1 1 // Party two, has one input wire, labeled "1"

20 Chapter 6. Circuits

libscapi Documentation, Release 1.0

1 1 0 // Party one has no output wires
2 1 2 // Party two has one output wire, labeled "2"
2 1 0 1 2 0001 // The first (and only) gate has 2 input wire labeled "0" and "1", one output wire labeled "2" and the truth table is 0001 (AND gate).

Multi-Party Arithmetic circuit

The format of the circuit file should be as follows.

1. Number of gates

2. Number of parties

3. For each party:

• Party number

• Number of inputs for that party

• A list of integer labels of each of these input wires.

4. For each party:

• Party number

• Number of outputs for that party

• A list of integer labels of each of these output wires.

5. For each gate:

• Number of input wires

• Number of output wires

• Input wires labels

• Output Wires labels

• A number that indicates the circuit type, see table below.

The available gates types are listed in the next table:

Gate type Number
ADD 1
MULT 2
SCALAR MULTIPLICATION 5
SUBTRACT 6
SCALAR ADD 7

An example file:

1 // One gate
2 // Two parties
1 1 0 // Party one, has one input wire, labeled "0"
2 1 1 // Party two, has one input wire, labeled "1"
1 1 0 // Party one has no output wires
2 1 2 // Party two has one output wire, labeled "2"
2 1 0 1 2 1 // The first (and only) gate has 2 input wire labeled "0" and "1", one output wire labeled "2" and the gate number is 1 (AND gate).

6.1. Create the circuit 21

libscapi Documentation, Release 1.0

22 Chapter 6. Circuits

CHAPTER 7

Layer 1: Basic Primitives

Cryptographic Hash

A cryptographic hash function is a deterministic procedure that takes an arbitrary block of data and returns a fixed-
size bit string, the (cryptographic) hash value. There are two main levels of security that we will consider here:

• target collision resistance: meaning that given 𝑥 it is hard to find 𝑦 such that 𝐻(𝑦) = 𝐻(𝑥).

• collision resistance: meaning that it is hard to find any 𝑥 and 𝑦 such that 𝐻(𝑥) = 𝐻(𝑦).

Note: We do not include preimage resistance since cryptographically this is just a one-way function.

Contents

• Cryptographic Hash
– The CryptographicHash abstract class
– Usage
– Supported Hash Types

The CryptographicHash abstract class

The user may request to pass partial data to the hash and only after some iterations to obtain the hash of all the data.
This is done by calling the function update(). After the user is done updating the data it can call the hashFinal()
to obtain the hash output.

void update(const vector<byte>& in, int inOffset, int inLen)
Adds the vector to the existing msg to hash.

Parameters

• in – input vector

• inOffset – the offset within the vector

• inLen – the length. The number of bytes to take after the offset

void hashFinal(vector<byte>& out, int outOffset)
Completes the hash computation.

Parameters

• out – the output in vector

23

libscapi Documentation, Release 1.0

• outOffset – the offset which to put the result bytes from

Usage

Below is an example of using Cryptographic hash:

//create an input array in and an output array out
...

//create an OpenSSL sha224 function.
CryptographicHash* hash = new OpenSSLSHA224();

//call the update function in the Hash interface.
hash->update(in, 0, in.length);

//get the result of hashing the updated input.
hash->hashFinal(out, 0);

Supported Hash Types

In this section we present the hash functions provided by libscapi.

The OpenSSL implementation:

Class Name Class Location
OpenSSLSHA1 libscapi/include/primitives/hashOpenSSL.hpp
OpenSSLSHA224 libscapi/include/primitives/hashOpenSSL.hpp
OpenSSLSHA256 libscapi/include/primitives/hashOpenSSL.hpp
OpenSSLSHA384 libscapi/include/primitives/hashOpenSSL.hpp
OpenSSLSHA512 libscapi/include/primitives/hashOpenSSL.hpp

The Blake2 implementation:

Class Name Class Location
Blake2SHA1 libscapi/include/primitives/hashBlake2.hpp
Blake2SHA224 libscapi/include/primitives/hashBlake2.hpp
Blake2SHA256 libscapi/include/primitives/hashBlake2.hpp
Blake2SHA384 libscapi/include/primitives/hashBlake2.hpp
Blake2SHA512 libscapi/include/primitives/hashBlake2.hpp

Pseudorandom Function (PRF)

In cryptography, a pseudorandom function family, abbreviated PRF, is a collection of efficiently-computable func-
tions which emulate a random function in the following way: no efficient algorithm can distinguish (with significant
advantage) between a function chosen randomly from the PRF family and a random oracle (a function whose outputs
are fixed completely at random).

24 Chapter 7. Layer 1: Basic Primitives

libscapi Documentation, Release 1.0

Contents

• Pseudorandom Function (PRF)
– The PseudorandomFunction abstract class

* Block Manipulation
* Setting the Secret Key

– Basic Usage
– Pseudorandom Function with Varying Input-Output Lengths

* How to use the Varying Input-Output Length PRF
– Supported Prf Types

The PseudorandomFunction abstract class

The main function of this class is computeBlock(). We supply several versions for compute, with and without
length. Since both PRP’s and PRF’s may have varying input/output length, for such algorithms the length should
be supplied. We provide the version without the lengths and not just the versions with length of input and output,
although it suffices, to avoid confusion and misuse from a basic user that only knows how to use block ciphers. A user
that uses the block cipher TripleDES, may be confused by the “compute with length” functions since TripleDES has a
pre-defined length and it cannot be changed.

Block Manipulation

void PseudorandomFunction::computeBlock(const vector<byte>& inBytes, int inOff, vec-
tor<byte>& outBytes, int outOff)

Computes the function using the secret key. The user supplies the input vector and the offset from which to take
the data from. The user also supplies the output vector as well as the offset. The computeBlock function will
put the output in the output vector starting at the offset. This function is suitable for block ciphers where the
input/output length is known in advance.

Parameters

• inBytes – input bytes to compute

• inOff – input offset in the inBytes array

• outBytes – output bytes. The resulted bytes of compute

• outOff – output offset in the outBytes array to put the result from

void PseudorandomFunction::computeBlock(const vector<byte>& inBytes, int inOff, int inLen, vec-
tor<byte>& outBytes, int outOff, int outLen)

Computes the function using the secret key. This function is provided in the abstract class especially for the sub-
family PrfVaryingIOLength, which may have variable input and output length. If the implemented algorithm is
a block cipher then the size of the input as well as the output is known in advance and the use may call the other
computeBlock function where length is not require.

Parameters

• inBytes – input bytes to compute

• inOff – input offset in the inBytes vector

• inLen – the length of the input vector

• outBytes – output bytes. The resulted bytes of compute

• outOff – output offset in the outBytes vector to put the result from

• outLen – the length of the output vector

7.2. Pseudorandom Function (PRF) 25

libscapi Documentation, Release 1.0

void PseudorandomFunction::computeBlock(const vector<byte>& inBytes, int inOffset, int inLen,
vector<byte>& outBytes, int outOffset)

Computes the function using the secret key.

This function is provided in this PseudorandomFunction abstract class for the sake of classes for which the input
length can be different for each computation. Hmac and Prf/Prp with variable input length are examples of such
classes.

Parameters

• inBytes – input bytes to compute

• inOffset – input offset in the inBytes vector

• inLen – the length of the input vector

• outBytes – output bytes. The resulted bytes of compute.

• outOffset – output offset in the outBytes vector to put the result from

int PseudorandomFunction::getBlockSize()

Returns the input block size in bytes

Setting the Secret Key

SecretKey PseudorandomFunction::generateKey(AlgorithmParameterSpec& keyParams)
Generates a secret key to initialize this prf object.

Parameters keyParams algorithmParameterSpec contains the required parameters for the key gen-
eration

Returns the generated secret key

SecretKey PseudorandomFunction::generateKey(int keySize)
Generates a secret key to initialize this prf object.

Parameters keySize is the required secret key size in bits

Returns the generated secret key

bool PseudorandomFunction::isKeySet()
An object trying to use an instance of prf needs to check if it has already been initialized.

Returns true if the object was initialized by calling the function setKey.

void PseudorandomFunction::setKey(SecretKey& secretKey)
Sets the secret key for this prf. The key can be changed at any time.

Parameters secretKey secret key

Basic Usage

//Create secretKey and in, in2, out vectors
...

// create a PRF of type TripleDES using openssl library
PseudorandomFunction* prf = new OpenSSLTripleDES();

//set the key
prf->setKey(secretKey);

26 Chapter 7. Layer 1: Basic Primitives

libscapi Documentation, Release 1.0

//compute the function with input in and output out.
prf->computeBlock(in, 0, out, 0);

Pseudorandom Function with Varying Input-Output Lengths

A pseudorandom function with varying input/output lengths does not have pre-defined input and output lengths. The
input and output length may be different for each compute function call. The length of the input as well as the output
is determined upon user request. The class IteratedPrfVarying implements this functionality using an inner
PRF that must implement the PrfVaryingInputLength abstract class. An example for such PRF is Hmac.

How to use the Varying Input-Output Length PRF

//Create secret key and in, out byte vectors
...

//create the Prf varying.
PseudorandomFunction* prf = new IteratedPrfVarying(make_shared<OpenSSLHMAC>());

//set the key
prf->setKey(secretKey);

//compute the function with input in of size 10 and output out of size 20.
prf->computeBlock(in, 0, 10, out, 0, 20);

Supported Prf Types

In this section we present the prf functions provided by libscapi.

Class Name Class Location
IteratedPrfVarying libscapi/include/primitives/Prf.hpp
LubyRackoffPrpFromPrfVarying libscapi/include/primitives/Prf.hpp

The OpenSSL implementation:

Class Name Class Location
OpenSSLHMAC libscapi/include/primitives/PrfOpenSSL.hpp

Pseudorandom Permutation (PRP)

Pseudorandom permutations are bijective pseudorandom functions that are efficiently invertible. As such, they are
of the pseudorandom function type and their input length always equals their output length. In addition (and unlike
general pseudorandom functions), they are efficiently invertible.

The PseudorandomPermutation abstract class

The PseudorandomPermutation class derives the PseudorandomFunction abstract class, and adds the
following functionality.

void PseudorandomPermutation::invertBlock(const vector<byte>& inBytes, int inOff, vec-
tor<byte>& outBytes, int outOff)

Inverts the permutation using the given key.

7.3. Pseudorandom Permutation (PRP) 27

libscapi Documentation, Release 1.0

This function is a part of the PseudorandomPermutation class since any PseudorandomPermutation must be
efficiently invertible (given the key). For block ciphers, for example, the length is known in advance and so
there is no need to specify the length.

Parameters

• inBytes – input bytes to invert.

• inOff – input offset in the inBytes vector

• outBytes – output bytes. The resulted bytes of invert

• outOff – output offset in the outBytes vector to put the result from

void PseudorandomPermutation::invertBlock(const vector<byte>& inBytes, int inOff, vec-
tor<byte>& outBytes, int outOff, int len)

Inverts the permutation using the given key.

Since PseudorandomPermutation can also have varying input and output length (although the input and the
output should be the same length), the common parameter len of the input and the output is needed.

Parameters

• inBytes – input bytes to invert.

• inOff – input offset in the inBytes vector

• outBytes – output bytes. The resulted bytes of invert

• outOff – output offset in the outBytes vector to put the result from

• len – the length of the input and the output

Basic Usage

//Create secretKey and in, out, inv vectors
...

//create the prp object
PseudorandomPermutation* prp = new OpenSSLAES();

//set the key
prp->setKey(secretKey);

//run the permutation on a block-size prefix of in
prp->computeBlock(in, 0, out, 0);

//invert the permutation
prp->invertBlock(out, 0, inv, 0);

Pseudorandom Permutation with Varying Input-Output Lengths

A pseudorandom permutation with varying input/output lengths does not have pre-defined input/output lengths. The
input and output length (that must be equal) may be different for each function call. The length of the input/output is
determined upon user request.

We implement the Luby-Rackoff algorithm as an example of PRP with varying I/O lengths. The class that implements
the algorithm is LubyRackoffPrpFromPrfVarying.

28 Chapter 7. Layer 1: Basic Primitives

libscapi Documentation, Release 1.0

How to use the Varying Input-Output Length PRP

//Create secretKey and in, out vectors
...

//create the prp object
PseudorandomPermutation* prp = new LubyRackoffPrpFromPrfVarying();

//set the key
prp->setKey(secretKey);

//invert the permutation with input in and output out of common size 20.
prp->invertBlock(in, 0, out, 0, 20);

Supported Prp Types

In this section we present the prp functions provided by libscapi.

The OpenSSL implementation:

Class Name Class Location
OpenSSLAES libscapi/include/primitives/PrfOpenSSL.hpp
OpenSSLTripleDes libscapi/include/primitives/PrfOpenSSL.hpp

Pseudorandom Generator (PRG)

A pseudorandom generator (PRG) is a deterministic algorithm that takes a “short” uniformly distributed string,
known as the seed, and outputs a longer string that cannot be efficiently distinguished from a uniformly distributed
string of that length.

The PseudorandomGenerator abstract class

The main function of this class is getPrgBytes(). It streams the prg bytes and return the reauired amount of
pseudo random bytes:

void PseudorandomGenerator::getPRGBytes(vector<byte>& outBytes, int outOffset, int outlen)
Streams the prg bytes.

Parameters

• outBytes – output bytes. The result of streaming the bytes.

• outOffset – output offset

• outlen – the required output length

Setting the Secret Key

SecretKey PseudorandomGenerator::generateKey(AlgorithmParameterSpec& keyParams)
Generates a secret key to initialize this prg object.

Parameters keyParams algorithmParameterSpec contains the required parameters for the key gen-
eration

Returns the generated secret key

7.4. Pseudorandom Generator (PRG) 29

libscapi Documentation, Release 1.0

SecretKey PseudorandomGenerator::generateKey(int keySize)
Generates a secret key to initialize this prg object.

Parameters keySize is the required secret key size in bits

Returns the generated secret key

bool PseudorandomGenerator::isKeySet()
An object trying to use an instance of prg needs to check if it has already been initialized.

Returns true if the object was initialized by calling the function setKey.

void PseudorandomGenerator::setKey(SecretKey& secretKey)
Sets the secret key for this prg. The key can be changed at any time.

Parameters secretKey secret key

Basic Usage

//Create secret key and out byte vector
...

//Create a prg
PseudorandomGenerator* prg = new PrgFromOpenSSLAES();
SecretKey secretKey = prg->generateKey(256); //256 is the key size in bits.

//set the key
prg->setKey(secretKey);

//get PRG bytes. The caller is responsible for allocating the out array.
//The result will be put in the out array.
prg->getPRGBytes(out.length, out);

Supported Prg Types

In this section we present the prg functions provided by libscapi.

Class Name Class Location
ScPrgFromPrf libscapi/include/primitives/Prg.hpp
PrgFromOpenSSLAES libscapi/include/primitives/Prf.hpp

The OpenSSL implementation:

Class Name Class Location
OpenSSLRC4 libscapi/include/primitives/Prg.hpp

Trapdoor Permutation

A trapdoor permutation is a bijection (1-1 and onto function) that is easy to compute for everyone, yet is hard to
invert unless given special additional information, called the “trapdoor”. The public key is essentially the function
description and the private key is the trapdoor.

30 Chapter 7. Layer 1: Basic Primitives

libscapi Documentation, Release 1.0

Contents

• Trapdoor Permutation
– The TPElement abstract class
– The TrapdoorPermutation abstract class

* Core Functionality
* Generating TPElements
* Checking Element Validity
* Encryption Keys Functionality

– BasicUsage
– Supported Trapdoor Permutations

The TPElement abstract class

The TPElement class represents a trapdoor permutation element.

biginteger TPElement::getElement()
Returns the trapdoor element value as bigInteger.

Returns the value of the element

The TrapdoorPermutation abstract class

This class is the general class of trapdoor permutation.

Core Functionality

shared_ptr<TPElement> TrapdoorPermutation::compute(TPElement* tpEl)
Computes the operation of this trapdoor permutation on the given TPElement.

Parameters tpEl the input for the computation

Returns the result TPElement from the computation

shared_ptr<TPElement> TrapdoorPermutation::invert(TPElement* tpEl)
Inverts the operation of this trapdoor permutation on the given TPElement.

Parameters tpEl the input to invert

Returns the result TPElement from the invert operation

byte TrapdoorPermutation::hardCorePredicate(TPElement* tpEl)
Computes the hard core predicate of the given tpElement.

A hard-core predicate of a one-way function 𝑓 is a predicate 𝑏 (i.e., a function whose output is a single bit)
which is easy to compute given 𝑥 but is hard to compute given 𝑓(𝑥). In formal terms, there is no probabilistic
polynomial time algorithm that computes 𝑏(𝑥) from 𝑓(𝑥) with probability significantly greater than one half
over random choice of 𝑥.

Parameters tpEl the input to the hard core predicate

Returns (byte) the hard core predicate.

vector<byte> TrapdoorPermutation::hardCoreFunction(TPElement* tpEl)
Computes the hard core function of the given tpElement.

7.5. Trapdoor Permutation 31

libscapi Documentation, Release 1.0

A hard-core function of a one-way function 𝑓 is a function 𝑔 which is easy to compute given 𝑥 but is hard to
compute given 𝑓(𝑥). In formal terms, there is no probabilistic polynomial time algorithm that computes 𝑔(𝑥)
from 𝑓(𝑥) with probability significantly greater than one half over random choice of 𝑥.

Parameters tpEl the input to the hard core function

Returns byte[] the result of the hard core function

Generating TPElements

shared_ptr<TPElement> TrapdoorPermutation::generateRandomTPElement()
creates a random TPElement that is valid for this trapdoor permutation

Returns the created random element

shared_ptr<TPElement> TrapdoorPermutation::generateUncheckedTPElement(const biginte-
ger& x)

Creates a TPElement from a specific value 𝑥. This function does not guarantee that the the returned TPElement
object is valid. It is the caller’s responsibility to pass a legal 𝑥 value.

Returns Set the 𝑥 value and return the created random element

Checking Element Validity

TPElValidity TrapdoorPermutation::isElement(TPElement* tpEl)
Checks if the given element is valid for this trapdoor permutation

Parameters tpEl the element to check

Returns (TPElValidity) enum number that indicate the validation of the element

Throws IllegalArgumentException if the given element is invalid for this permutation

Encryption Keys Functionality

void setKey(const shared_ptr<PublicKey>& publicKey, const shared_ptr<PrivateKey>& privateKey)
Sets this trapdoor permutation with public key and private key.

Parameters

• publicKey – the public key

• privateKey – the private key that without it the permutation cannot be inverted efficiently.
If the private key is not given, the object can compute but canot invert.

bool isKeySet()

Checks if this trapdoor permutation object has been previously initialized. To initialize the object the
setKey() function has to be called with corresponding parameters after construction.

return true if the object was initialized, false otherwise.

shared_ptr<PublicKey> getPubKey()

Returns returns the public key

32 Chapter 7. Layer 1: Basic Primitives

libscapi Documentation, Release 1.0

BasicUsage

We demonstrate a basic usage scenario with a sender party that wish to hide a secret using the trapdoor permutation,
and a receiver who is not able to invert the permutation on the secret.

Here is the code of the sender:

//Create public key, private key and secret
...

//instantiate the rsa permutation using the openssl library:
OpenSSLRSAPermutation trapdoorPermutation;
//set the keys for this trapdoor permutation
trapdoorPermutation.setKey(publicKey, privateKey);

// represent the secret (originally was of BigInteger type) using TPElement
TPElement secretElement = trapdoorPermutation.generateTPElement(secret);
//hide the secret using the trapdoor permutation
TPElement maskedSecret = trapdoorPermutation.compute(secretElement);

// this line will succeed, because the private key is known to the sender
TPElement invertedElement = trapdoorPermutation.invert(maskedSecret);

// send the public key and the secret to the other side
...

Here is the code of the receiver:

// receive public key and secretMsg
...

//instantiate the rsa permutation using the openssl library:
OpenSSLRSAPermutation trapdoorPermutation;
//set the keys for this trapdoor permutation
trapdoorPermutation.setKey(publicKey);

// reconstruct a TPElement from a biginteger
TPElement maskedSecret = trapdoorPermutation.generateTPElement(secretMsg);

// this line will fail, because the private key is not known to the receiver
TPElement secretElement = trapdoorPermutation.invert(maskedSecret);

Supported Trapdoor Permutations

In this section we present the trapddor permutations provided by libscapi.

OpenSSL implementation of RSA trapdoor permutation:

Key Class Location
OpenSSLRSAPermutation libscapi/include/primitives/TrapdoorPermutationOpenSSL.hpp

Discrete Log Group (DLOG)

The discrete logarithm problem is as follows: given a generator 𝑔 of a finite group 𝐺 and a random element ℎ ∈ 𝐺,
find the (unique) integer 𝑥 such that 𝑔𝑥 = ℎ. In cryptography, we are interested in groups for which the discrete
logarithm problem (Dlog for short) is assumed to be hard (or other discrete-log type assumptions like CDH and

7.6. Discrete Log Group (DLOG) 33

libscapi Documentation, Release 1.0

DDH). The two most common classes are a prime subgroup of the group 𝑍*
𝑝 for a large 𝑝, and some Elliptic curve

groups.

We provide the implementation of the most important Dlog groups in cryptography (see diagram below):

• 𝑍*
𝑝

• Elliptic curve over the field 𝐺𝐹 [2𝑚]

• Elliptic curve over the field 𝑍𝑝

Although Elliptic curves groups look very different, the discrete log problem over them can be described as follows.
Given an elliptic curve 𝐸 over a finite field 𝐹 , a base point on that curve 𝑃 (i.e., a generator of the group defined from
the curve), and a random point 𝑄 on the curve, the problem is to find the integer 𝑛 such that 𝑛𝑃 = 𝑄.

We have currently incorporated the elliptic curves recommended by NIST.

Contents

• Discrete Log Group (DLOG)
– Class Hierarchy:
– The DlogGroup abstract class

* Group Parameters
* Exponentiation
* Multiplication and Inverse
* Group Element Generation
* Validation
* Group Classification
* Group Element Serialization
* Byte Array Encoding

– The GroupElement abstract class
– The GroupParams class
– Basic Usage
– Supported Dlog Types

Class Hierarchy:

The root of the family is a general Dlog Group that presents functionality that all Dlog Groups should implement.

At the second level we encounter three interfaces:

1. PrimeOrderSubGroup: The order 𝑞 of the group must be a prime.

2. DlogZp: Dlog Group over the 𝑍*
𝑝 field.

3. DlogEllipticCurve: Any elliptic curve.

At the third level we have:

1. DlogZpSafePrime: The order 𝑞 is not only a prime but also is such that prime 𝑝 = 2 * 𝑞 + 1.

2. DlogEcFp: Any elliptic curve over 𝐹𝑝.

3. DlogEcF2m: Any elliptic curve over 𝐹2[𝑚].

All these are general interfaces. Specifically, we implement Dlog Groups that are of prime order; therefore all the
concrete classes presented here implement this interface. Other implementations may choose to add Dlog Groups that
are not of prime order, and they are at liberty of doing so. They just need not to declare that they implement the
PrimeOrderSubGroup interface.

34 Chapter 7. Layer 1: Basic Primitives

http://www.nist.gov/

libscapi Documentation, Release 1.0

We also see in the diagram two other interfaces that are used by DlogGroup:

1. GroupParams.

2. GroupElement.

The DlogGroup abstract class

Group Parameters

shared_ptr<GroupElement> DlogGroup::getGenerator()
The generator g of the group is an element of the group such that, when written multiplicatively, every element
of the group is a power of g.

Returns the generator of this Dlog group

shared_ptr<GroupElement> DlogGroup::createRandomGenerator()
Creates a random generator of this Dlog group

Returns the random generator

biginteger DlogGroup::getOrder()

Returns the order of this Dlog group

shared_ptr<GroupParams> DlogGroup::getGroupParams()
GroupParams is a structure that holds the actual data that makes this group a specific Dlog group. For example,
for a Dlog group over Zp* what defines the group is p.

Returns the GroupParams of that Dlog group

string DlogGroup::getGroupType()
Each concrete class implementing this interface returns a string with a meaningful name for this type of Dlog
group. For example: “elliptic curve over F2m” or “Zp*”

Returns the name of the group type

shared_ptr<GroupElement> DlogGroup::getIdentity()

Returns the identity of this Dlog group

Exponentiation

shared_ptr<GroupElement> DlogGroup::exponentiate(GroupElement* base, const biginteger& expo-
nent)

Raises the base GroupElement to the exponent. The result is another GroupElement.

Returns the result of the exponentiation

shared_ptr<GroupElement> DlogGroup::exponentiateWithPreComputedValues(const
shared_ptr<GroupElement>&
base, const
biginteger&
exponent)

Computes the product of several exponentiations of the same base and distinct exponents. An optimization
is used to compute it more quickly by keeping in memory the result of h1, h2, h4,h8,... and using it in the
calculation.

Note that if we want a one-time exponentiation of h it is preferable to use the basic exponentiation function since
there is no point to keep anything in memory if we have no intention to use it.

7.6. Discrete Log Group (DLOG) 35

libscapi Documentation, Release 1.0

Returns the exponentiation result

void DlogGroup::endExponentiateWithPreComputedValues(const
shared_ptr<GroupElement>&
base)

This function cleans up any resources used by exponentiateWithPreComputedValues for the requested base. It
is recommended to call it whenever an application does not need to continue calculating exponentiations for this
specific base.

shared_ptr<GroupElement> DlogGroup::simultaneousMultipleExponentiations(vector<shared_ptr<GroupElement>>&
groupEle-
ments, vec-
tor<biginteger>&
exponentia-
tions)

Computes the product of several exponentiations with distinct bases and distinct exponents. Instead of comput-
ing each part separately, an optimization is used to compute it simultaneously.

Parameters

• groupElements – vector of base elements to exponentiate

• exponentiations – vector of exponents

Returns the exponentiation result

Multiplication and Inverse

shared_ptr<GroupElement> DlogGroup::getInverse(GroupElement* groupElement)
Calculates the inverse of the given GroupElement.

Parameters groupElement to invert

Returns the inverse element of the given GroupElement

shared_ptr<GroupElement> DlogGroup::multiplyGroupElements(GroupElement* groupElement1,
GroupElement* groupEle-
ment2)

Multiplies two GroupElements

Returns the multiplication result

Group Element Generation

shared_ptr<GroupElement> DlogGroup::createRandomElement()
Creates a random member of this Dlog group

Returns the random element

shared_ptr<GroupElement> DlogGroup::generateElement(bool bCheckMembership, vec-
tor<biginteger>& values)

This function allows the generation of a group element by a protocol that holds a Dlog Group but does not know
if it is a Zp Dlog Group or an Elliptic Curve Dlog Group. It receives the possible values of a group element and
whether to check membership of the group element to the group or not.

It may be not necessary to check membership if the source of values is a trusted source (it can be the group
itself after some calculation). On the other hand, to work with a generated group element that is not really an
element in the group is wrong. It is up to the caller of the function to decide if to check membership or not. If
bCheckMembership is false always generate the element. Else, generate it only if the values are correct.

36 Chapter 7. Layer 1: Basic Primitives

libscapi Documentation, Release 1.0

Parameters

• bCheckMembership –

• values –

Returns the generated GroupElement

Validation

bool DlogGroup::isGenerator()
Checks if the element set as the generator is indeed the generator of this group.

Returns true if the generator is valid, false otherwise.

bool DlogGroup::isMember(GroupElement* element)
Checks if the given element is a member of this Dlog group

Parameters element possible group element for which to check that it is a member of this group

Returns true if the given element is a member of this group, false otherwise.

bool DlogGroup::validateGroup()
Checks parameters of this group to see if they conform to the type this group is supposed to be.

Returns true if valid, false otherwise.

Group Classification

bool DlogGroup::isOrderGreaterThan(int numBits)
Checks if the order of this group is greater than 2^numBits

Returns true if the order is greater than 2^numBits, false otherwise.

bool DlogGroup::isPrimeOrder()
Checks if the order is a prime number

Returns true if the order is a prime number, false otherwise.

Group Element Serialization

shared_ptr<GroupElement> DlogGroup::reconstructElement(bool bCheckMembership, GroupEle-
mentSendableData* data)

Reconstructs a GroupElement given the GroupElementSendableData data, which might have been received
through a Channel open between the party holding this DlogGroup and some other party.

Parameters

• bCheckMembership – whether to check that the data provided can actually reconstruct an
element of this DlogGroup. Since this action is expensive it should be used only if necessary.

• data – the GroupElementSendableData from which we wish to “reconstruct” an element of
this DlogGroup

Returns the reconstructed GroupElement

7.6. Discrete Log Group (DLOG) 37

libscapi Documentation, Release 1.0

Byte Array Encoding

shared_ptr<GroupElement> DlogGroup::encodeByteArrayToGroupElement(const vec-
tor<unsigned
char>& binaryS-
tring)

This function takes any string of length up to k bytes and encodes it to a Group Element. k can be obtained
by calling getMaxLengthOfByteArrayForEncoding() and it is calculated upon construction of this group; it
depends on the length in bits of p.

The encoding-decoding functionality is not a bijection, that is, it is a 1-1 function but is not onto. Therefore,
any string of length in bytes up to k can be encoded to a group element but not every group element can be
decoded to a binary string in the group of binary strings of length up to 2^k.

Thus, the right way to use this functionality is first to encode a byte array and then to decode it, and not the
opposite.

Parameters binaryString the byte array to encode

Returns the encoded group Element or null if the string could not be encoded

const vector<unsigned char> DlogGroup::decodeGroupElementToByteArray(GroupElement*
groupElement)

This function decodes a group element to a byte array. This function is guaranteed to work properly ONLY if
the group element was obtained as a result of encoding a binary string of length in bytes up to k.

This is because the encoding-decoding functionality is not a bijection, that is, it is a 1-1 function but is not onto.
Therefore, any string of length in bytes up to k can be encoded to a group element but not any group element
can be decoded to a binary sting in the group of binary strings of length up to 2^k.

Parameters groupElement the element to decode

Returns the decoded byte array

int DlogGroup::getMaxLengthOfByteArrayForEncoding()
This function returns the value k which is the maximum length of a string to be encoded to a Group Element of
this group. Any string of length k has a numeric value that is less than (p-1)/2. k is the maximum length a binary
string is allowed to be in order to encode the said binary string to a group element and vice-versa. If a string
exceeds the k length it cannot be encoded.

Returns k the maximum length of a string to be encoded to a Group Element of this group. k can
be zero if there is no maximum.

const vector<byte> DlogGroup::mapAnyGroupElementToByteArray(GroupElement* groupEle-
ment)

This function maps a group element of this dlog group to a byte array. This function does not have an inverse
function, that is, it is not possible to re-construct the original group element from the resulting byte array.

Returns a byte array representation of the given group element

The GroupElement abstract class

shared_ptr<GroupElementSendableData> GroupElement::generateSendableData()
This function is used when a group element needs to be sent via a channel or any other means of sending data.
It retrieves all the data needed to reconstruct this Group Element at a later time and/or in a different VM. It puts
all the data in an instance of the relevant class that implements the GroupElementSendableData interface.

Returns the GroupElementSendableData object

bool GroupElement::isIdentity()
checks if this element is the identity of the group.

38 Chapter 7. Layer 1: Basic Primitives

libscapi Documentation, Release 1.0

Returns true if this element is the identity of the group, false otherwise.

The GroupParams class

biginteger GroupParams::getQ()

Returns the group order q

Basic Usage

// initiate a discrete log group (in this case the OpenSSL implementation of the elliptic curve group K-233)
DlogGroup* dlog = new OpenSSLDlogECF2m("include/configFiles/NISTEC.txt", "K-233");

// get the group generator and order
shared_ptr<GroupElement> g = dlog->getGenerator();
biginteger q = dlog->getOrder();
auto random = get_seeded_prg();

// create a random exponent r
biginteger r = getRandomInRange(0, q - 1, random.get());
// exponentiate g in r to receive a new group element
shared_ptr<GroupElement> g1 = dlog->exponentiate(g.get(), r);
// create a random group element

shared_ptr<GroupElement> h = dlog->createRandomElement();
// multiply elements
shared_ptr<GroupElement> gMult = dlog->multiplyGroupElements(g1.get(), h.get());

Supported Dlog Types

In this section we present the Discrete log groups provided by libscapi.

The OpenSSL implementation:

Class Name Class Location
OpenSSLDlogZpSafePrime libscapi/include/primitives/DlogOpenSSL.hpp
OpenSSLDlogECFp libscapi/include/primitives/DlogOpenSSL.hpp
OpenSSLDlogECF2m libscapi/include/primitives/DlogOpenSSL.hpp

Key Derivation Function (KDF)

A key derivation function (or KDF) is used to derive (close to) uniformly distributed string/s from a secret value with
high entropy (but no other guarantee regarding its distribution).

Contents

• Key Derivation Function (KDF)
– The Key Derivation Function abstract class:
– Basic Usage
– Supported KDF Types

7.7. Key Derivation Function (KDF) 39

libscapi Documentation, Release 1.0

The Key Derivation Function abstract class:

SecretKey KeyDerivationFunction::deriveKey(const vector<byte>& entropySource, int inOff,
int inLen, int outLen, const vector<byte>&
iv=vector<byte>())

Generates a new secret key from the given seed and iv (if given).

Parameters

• entropySource – the secret key that is the seed for the key generation

• inOff – the offset within the entropySource to take the bytes from

• inLen – the length of the seed

• outLen – the required output key length

• iv – info for the key generation

Returns SecretKey the derivated key.

Basic Usage

KeyDerivationFunction* kdf = new HKDF(make_shared<OpenSSLHMAC>());
vector<byte> source(3, 1);
int targetLen = 128;
vector<byte> kdfed = kdf->deriveKey(source, 0, source.size(), targetLen).getEncoded();

Supported KDF Types

In this section we present the key derivation functions provided by libscapi.

Class Name Class Location
HKDF libscapi/include/primitives/Kdf.hpp

40 Chapter 7. Layer 1: Basic Primitives

CHAPTER 8

Layer 2: Non Interactive Protocols

The second layer of libscapi currently includes different symmetric and asymmetric encryption schemes. In the future
this layer will also include message authentication codes and digital signatures. It heavily uses the primitives of the
first layer to perform internal operations. For example, the ElGamal encryption scheme uses DlogGroup.

Message Authentication Codes

In cryptography, a Message Authentication Code (MAC) is a short piece of information used to authenticate a mes-
sage and to provide integrity and authenticity assurances on the message. Integrity assurances detect accidental and
intentional message changes, while authenticity assurances affirm the message’s origin. libscapi currently provides
only one implementation of message authentication codes: HMAC.

Contents

• Message Authentication Codes
– The Mac abstract class

* Basic Mac and Verify Functionality
* Calulcating the Mac when not all the message is known up front
* Key Handling
* Mac Properties

– HMAC
* The Hmac class
* Basic Usage

The Mac abstract class

This is the general class for Mac. Every class in this family must derive this class.

class Mac

Basic Mac and Verify Functionality

vector<byte> Mac::mac(const vector<byte>& msg, int offset, int msgLen)
Computes the mac operation on the given msg and return the calculated tag.

Parameters

• msg – the message to operate the mac on.

41

libscapi Documentation, Release 1.0

• offset – the offset within the message vector to take the bytes from.

• msgLen – the length of the message in bytes.

Returns vector<byte> the return tag from the mac operation.

bool Mac::verify(const vector<byte>& msg, int offset, int msgLength, vector<byte>& tag)
Verifies that the given tag is valid for the given message.

Parameters

• msg – the message to compute the mac on to verify the tag.

• offset – the offset within the message array to take the bytes from.

• msgLength – the length of the message in bytes.

• tag – the tag to verify.

Returns true if the tag is the result of computing mac on the message. false, otherwise.

Calulcating the Mac when not all the message is known up front

void Mac::update(vector<byte>& msg, int offset, int msgLen)
Adds the byte array to the existing message to mac.

Parameters

• msg – the message to add.

• offset – the offset within the message array to take the bytes from.

• msgLen – the length of the message in bytes.

void Mac::doFinal(vector<byte>& msg, int offset, int msgLength, vector<byte>& tag_res)
Completes the mac computation and puts the result tag in the tag array.

Parameters

• msg – the end of the message to mac.

• offset – the offset within the message array to take the bytes from.

• msgLength – the length of the message in bytes.

Returns the result tag from the mac operation.

Key Handling

SecretKey Mac::generateKey(int keySize)
Generates a secret key to initialize this mac object.

Parameters keySize is the required secret key size in bits.

Returns the generated secret key.

SecretKey Mac::generateKey(AlgorithmParameterSpec& keyParams)
Generates a secret key to initialize this mac object.

Parameters keyParams algorithmParameterSpec contains parameters for the key generation of this
mac algorithm.

Returns the generated secret key.

42 Chapter 8. Layer 2: Non Interactive Protocols

libscapi Documentation, Release 1.0

bool Mac::isKeySet()
An object trying to use an instance of mac needs to check if it has already been initialized.

Returns true if the object was initialized by calling the function setKey.

void Mac::setMacKey(SecretKey& secretKey)
Sets the secret key for this mac. The key can be changed at any time.

Parameters secretKey secret key

Mac Properties

int Mac::getMacSize()
Returns the input block size in bytes.

Returns the input block size.

HMAC

We presented the same HMAC algorithm in the first layer of libscapi. However, there it was only presented as a PRF.
In order to make HMAC become also a MAC and not just a PRF, all we have to do is to derive the Mac class. This
means that now our HMAC needs to know how to mac and verify. HMAC is a mac that does not require knowing the
length of the message in advance.

The Hmac class

Hmac is a Marker interface. Every class that implements it is signed as Hmac. Hmac has varying input length and
thus implements the interface PrfVaryingInputLength. Currenty the BcHMAC class implements the Hmac interface.

Hmac : public virtual PrfVaryingInputLength, public virtual UniqueTagMac, public virtual UnlimitedTime

Basic Usage

Sender usage:

//Create an hmac object.
OpenSSLHMAC hmac("SHA-1");

//Generate a SecretKey
Hmac.generateKey(128);

//Set the secretKey.
hmac.setKey(secretKey);

//Get the message to mac and calculate the mac tag.
auto tag = hmac.mac(msg, offset, length);

//Send the msg and tag to the receiver.
...

Receiver usage:

//Get secretKey, msg and tag byte arrays.
...
//Create the same hmac object as the sender’s hmac object and set the key.
...

8.1. Message Authentication Codes 43

libscapi Documentation, Release 1.0

// receive the message and the tag
...
// Verify the tag with the given msg.
If (hmac.verify(tag, msg, offset, length)) { //Tag is valid.

//Continue working...
} else return ERROR; //Tag is not valid.

Symmetric Encryption

There are three main categories of symmetric encryption:

1. An encryption based on modes of operation using a pseudo-random permutation and a randomized IV. The
randomized IV is crucial for security. CBCEnc and CTREnc belong to this category.

2. An authenticated encryption where the message gets first encrypted and then mac-ed. EncryptThenMac be-
longs to this category.

3. Homomorphic encryption.

Libscapi currently implemented the CTR encryption only. In the future we may add more implementations.

The symmetric encryption class implements three main functionalities that correspond to the cryptographer’s language
in which an encryption scheme is composed of three algorithms:

1. Generation of the key.

2. Encryption of the plaintext.

3. Decryption of the ciphertext.

Contents

• Symmetric Encryption
– The SymmetricEnc abstract class

* Encryption and Decryption
* Key Generation
* Key Handling

– The CTREnc abstract class
– Basic Usage
– Supported Encryption Types

The SymmetricEnc abstract class

class SymmetricEnc : public Eav, public Indistinguishable
This is the main class for the Symmetric Encryption family. Any symmetric encryption scheme belongs by
default at least to the Eavsdropper Security Level and to the Indistinguishable Security Level.

Encryption and Decryption

shared_ptr<SymmetricCiphertext> SymmetricEnc::encrypt(Plaintext* plaintext)
Encrypts a plaintext. It lets the system choose the random IV.

Returns an IVCiphertext, which contains the IV used and the encrypted data.

44 Chapter 8. Layer 2: Non Interactive Protocols

libscapi Documentation, Release 1.0

shared_ptr<SymmetricCiphertext> SymmetricEnc::encrypt(Plaintext* plaintext, vector<byte>& iv)
This function encrypts a plaintext. It lets the user choose the random IV.

Parameters iv random bytes to use in the encryption pf the message.

Returns an IVCiphertext, which contains the IV used and the encrypted data.

shared_ptr<Plaintext> SymmetricEnc::decrypt(SymmetricCiphertext* ciphertext)
This function performs the decryption of a ciphertext returning the corresponding decrypted plaintext.

Parameters ciphertext The Ciphertext to decrypt.

Returns the decrypted plaintext.

Key Generation

SecretKey SymmetricEnc::generateKey(AlgorithmParameterSpec& keyParams)
Generates a secret key to initialize this symmetric encryption.

Parameters keyParams algorithmParameterSpec contains parameters for the key generation of this
symmetric encryption.

Returns the generated secret key.

SecretKey SymmetricEnc::generateKey(int keySize)
Generates a secret key to initialize this symmetric encryption.

Parameters keySize is the required secret key size in bits.

Returns the generated secret key.

Key Handling

bool SymmetricEnc::isKeySet()
An object trying to use an instance of symmetric encryption needs to check if it has already been initialized.

Returns true if the object was initialized by calling the function setKey.

void SymmetricEnc::setKey(SecretKey& secretKey)
Sets the secret key for this symmetric encryption. The key can be changed at any time.

Parameters secretKey secret key.

The CTREnc abstract class

This is a marker class, for the CTR method:

8.2. Symmetric Encryption 45

libscapi Documentation, Release 1.0

CTREnc : public virtual SymmetricEnc, public Cpa

Basic Usage

Sender usage:

OpenSSLCTREncRandomIV encryptor("AES");

//Generate a SecretKey using the created object and set it.
SecretKey key = encryptor.generateKey(128);
encryptor.setKey(key);

//Get a plaintext to encrypt, and encrypt the plaintext.
...
SymmetricCiphertext cipher = encryptor.encrypt(plaintext);

//Send the cipher to the decryptor.
...

Receiver usage:

//Create the same SymmetricEnc object as the sender’s encryption object, and set the key.
//Get the ciphertext and decrypt it to get the plaintext.
Plaintext plaintext = decryptor.decrypt(cipher);

Supported Encryption Types

In this section we present the symmetric encryptions provided by libscapi.

The OpenSSL implementation:

Class Name Class Location
OpenSSLCTREncRandomIV libscapi/include/mid_layer/OpenSSLSymmetricEnc.hpp

46 Chapter 8. Layer 2: Non Interactive Protocols

libscapi Documentation, Release 1.0

Asymmetric Encryption

Asymmetric encryption refers to a cryptographic system requiring two separate keys, one to encrypt the plaintext, and
one to decrypt the ciphertext. Neither key will do both functions. One of these keys is public and the other is kept
private. If the encryption key is the one published then the system enables private communication from the public to
the decryption key’s owner.

Contents

• Asymmetric Encryption
– The AsymmetricEnc abstract class

* Encryption and Decryption
* Plaintext Manipulation
* Key Generation
* Key Handling
* Reconstruction (from communication channel)

– Using the Generic Interface
– El Gamal Encryption Scheme

* ElGamalEnc abstract class
* ElGamalOnByteArrayEnc class

· Constructors
· Complete Encryption

* ElGamalOnGroupElementEnc class
· Constructors
· Complete Encryption
· Multiply Ciphertexts (Homomorphic Encryption operation)

* Basic Usage
– Cramer Shoup DDH Encryption Scheme

* The CramerShoupOnGroupElementEnc class
* Basic Usage

– Damgard Jurik Encryption Scheme
* DamgardJurikEnc class
* Basic Usage

Asymmetric encryption can be used by a protocol or a user in two different ways:

1. The protocol works on an abstract level and does not know the concrete algorithm of the asymmetric encryption.
This way the protocol cannot create a specific Plaintext to the encrypt function because it does not know which concrete
Plaintext the encrypt function should get. Similarly, the protocol does not know how to treat the Plaintext returned
from the decrypt function. In these cases the protocol has a byte array that needs to be encrypted.

2. The protocol knows the concrete algorithm of the asymmetric encryption. This way the protocol knows which
Plaintext implementation the encrypt function gets and the decrypt function returns. Therefore, the protocol can
be specific and cast the plaintext to the concrete implementation. For example, the protocol knows that it has
a DamgardJurikEnc object, so the encrypt function gets a BigIntegerPlaintext and the decrypt function returns
a BigIntegerPlaintext. The protocol can create such a plaintext in order to call the encrypt function or cast the
returned plaintext from the decrypt function to get the BigInteger value that was encrypted.

The AsymmetricEnc abstract class

class AsymmetricEnc : public Cpa, Indistinguishable
General class for asymmetric encryption. Each class of this family must derive this class.

8.3. Asymmetric Encryption 47

libscapi Documentation, Release 1.0

Encryption and Decryption

shared_ptr<AsymmetricCiphertext> AsymmetricEnc::encrypt(const shared_ptr<Plaintext>& plain-
Text)

Encrypts the given plaintext using this asymmetric encryption scheme.

Parameters plainText message to encrypt

Returns Ciphertext the encrypted plaintext

shared_ptr<AsymmetricCiphertext> AsymmetricEnc::encrypt(const shared_ptr<Plaintext>& plain-
Text, const biginteger& r)

Decrypts the given ciphertext using this asymmetric encryption scheme.

Parameters cipher ciphertext to decrypt

Returns Plaintext the decrypted cipher

Plaintext Manipulation

shared_ptr<Plaintext> AsymmetricEnc::generatePlaintext(vector<byte>& text)
Generates a Plaintext suitable for this encryption scheme from the given message.

A Plaintext object is needed in order to use the encrypt function. Each encryption scheme might generate
a different type of Plaintext according to what it needs for encryption. The encryption function receives as
argument an object of type Plaintext in order to allow a protocol holding the encryption scheme to be oblivious
to the exact type of data that needs to be passed for encryption.

Parameters text byte array to convert to a Plaintext object.

vector<byte> AsymmetricEnc::generateBytesFromPlaintext(Plaintext* plaintext)
Generates a byte array from the given plaintext. This function should be used when the user does not know the
specific type of the Asymmetric encryption he has, and therefore he is working on byte array.

Parameters plaintext to generates byte array from.

Returns the byte array generated from the given plaintext.

int AsymmetricEnc::getMaxLengthOfByteArrayForPlaintext()
Returns the maximum size of the byte array that can be passed to generatePlaintext function. This is the maxi-
mum size of a byte array that can be converted to a Plaintext object suitable to this encryption scheme.

Returns the maximum size of the byte array that can be passed to generatePlaintext function.

bool AsymmetricEnc::hasMaxByteArrayLengthForPlaintext()
There are some encryption schemes that have a limit of the byte array that can be passed to the generatePlaintext.
This function indicates whether or not there is a limit. Its helps the user know if he needs to pass an array with
specific length or not.

Returns true if this encryption scheme has a maximum byte array length to generate a plaintext
from; false, otherwise.

Key Generation

pair<shared_ptr<PublicKey>, shared_ptr<PrivateKey>> AsymmetricEnc::generateKey(AlgorithmParameterSpec*
keyParams)

Generates public and private keys for this asymmetric encryption.

Parameters keyParams hold the required parameters to generate the encryption scheme’s keys

Returns KeyPair holding the public and private keys relevant to the encryption scheme

48 Chapter 8. Layer 2: Non Interactive Protocols

libscapi Documentation, Release 1.0

pair<shared_ptr<PublicKey>, shared_ptr<PrivateKey>> AsymmetricEnc::generateKey()
Generates public and private keys for this asymmetric encryption.

Returns KeyPair holding the public and private keys

Key Handling

shared_ptr<PublicKey> AsymmetricEnc::getPublicKey()
Returns the PublicKey of this encryption scheme.

This function should not be use to check if the key has been set. To check if the key has been set use isKeySet
function.

Returns the PublicKey

bool AsymmetricEnc::isKeySet()
Checks if this AsymmetricEnc object has been previously initialized with corresponding keys.

Returns true if either the Public Key has been set or the key pair (Public Key, Private Key) has
been set; false otherwise.

void AsymmetricEnc::setKey(const shared_ptr<PublicKey>& publicKey, const
shared_ptr<PrivateKey>& privateKey)

Sets this asymmetric encryption with public key and private key.

void AsymmetricEnc::setKey(const shared_ptr<PublicKey>& publicKey)
Sets this asymmetric encryption with a public key

In this case the encryption object can be used only for encryption.

Reconstruction (from communication channel)

shared_ptr<AsymmetricCiphertext> AsymmetricEnc::reconstructCiphertext(AsymmetricCiphertextSendableData*
data)

Reconstructs a suitable AsymmetricCiphertext from data that was probably obtained via a Channel or any other
means of sending data (including serialization).

We emphasize that this is NOT in any way an encryption function, it just receives ENCRYPTED DATA and
places it in a ciphertext object.

Parameters data contains all the necessary information to construct a suitable ciphertext.

Returns the AsymmetricCiphertext that corresponds to the implementing encryption scheme, for
ex: CramerShoupCiphertext

shared_ptr<PrivateKey> AsymmetricEnc::reconstructPrivateKey(KeySendableData* data)
Reconstructs a suitable PrivateKey from data that was probably obtained via a Channel or any other means of
sending data (including serialization).

We emphasize that this function does NOT in any way generate a key, it just receives data and recreates a
PrivateKey object.

Parameters data a KeySendableData object needed to recreate the original key. The actual type of
KeySendableData has to be suitable to the actual encryption scheme used, otherwise it throws
an IllegalArgumentException

Returns a new PrivateKey with the data obtained as argument

shared_ptr<PublicKey> AsymmetricEnc::reconstructPublicKey(KeySendableData* data)
Reconstructs a suitable PublicKey from data that was probably obtained via a Channel or any other means of
sending data (including serialization).

8.3. Asymmetric Encryption 49

libscapi Documentation, Release 1.0

We emphasize that this function does NOT in any way generate a key, it just receives data and recreates a
PublicKey object.

Parameters data a KeySendableData object needed to recreate the original key. The actual type of
KeySendableData has to be suitable to the actual encryption scheme used, otherwise it throws
an IllegalArgumentException

Returns a new PublicKey with the data obtained as argument

Using the Generic Interface

Sender Usage:

//Get an abstract Asymmetric encryption object from somewhere.
//Generate a key pair using the encryptor.
auto pair = encryptor.generateKey();

//Publish your public key.
Publish(pair.first);

//Set private key and party2’s public key:
encryptor.setKey(party2PublicKey, pair.second);

//Generate a plaintext suitable for this encryption object using the encryption object.
Plaintext plaintext = encryptor.generatePlaintext(msg);

//Encrypt the plaintext
AsymmetricCiphertext cipher = encryptor.encrypt(plaintext);

//Send cipher and keys to the receiver.
...

Receiver Usage:

//Get the same asymmetric encryption object as the sender’s object. //Generate a keyPair using the encryption object.
auto pair = encryptor.generateKey();

//Publish your public key.
Publish(pair.getPublic());

//Set private key and party1’s public key:
encryptor.setKey(party1PublicKey, pair.second);

//Get the ciphertext and decrypt it to get the plaintext.
...

Plaintext plaintext = encryptor.decrypt(cipher);
//Get the plaintext bytes using the encryption object and use it as needed.
auto text = encryptor.generatesBytesFromPlaintext(plaintext);
...

El Gamal Encryption Scheme

The El Gamal encryption scheme’s security is based on the hardness of the decisional Diffie-Hellman (DDH) problem.
ElGamal encryption can be defined over any cyclic group 𝐺. Its security depends upon the difficulty of a certain
problem in 𝐺 related to computing discrete logarithms. We implement El Gamal over a Dlog Group (𝐺, 𝑞, 𝑔) where 𝑞
is the order of group 𝐺 and 𝑔 is the generator.

50 Chapter 8. Layer 2: Non Interactive Protocols

libscapi Documentation, Release 1.0

ElGamal encryption scheme can encrypt a group element and a byte array. The general case that accepts a message
that should be encrypted usually uses the encryption on a byte array, but in other cases there are protocols that do
multiple calculations and might want to keep working on a close group. For those cases we provide encryption on a
group element.

In order to allow these two encryption types, we provide two ElGamal concrete classes. One implements the encrypt
function on a group element and is called ElGamalOnGroupElementEnc, and the other one implements the encrypt
function on a byte array and is called ElGamalOnByteArrayEnc.

Note: Note that ElGamal on a groupElement is an asymmetric multiplicative homomorphic encryption, while ElGa-
mal on a ByteArray is not.

ElGamalEnc abstract class

class ElGamalEnc : public AsymmetricEnc
General class for El Gamal encryption scheme. Every concrete implementation of ElGamal should derive this
class. By definition, this encryption scheme is CPA-secure and Indistinguishable.

ElGamalOnByteArrayEnc class

class ElGamalOnByteArrayEnc : public ElGamalEnc
This class performs the El Gamal encryption scheme that perform the encryption on a ByteArray. The general
encryption of a message usually uses this type of encryption. By definition, this encryption scheme is CPA-
secure and Indistinguishable.

Constructors

ElGamalOnByteArrayEnc::ElGamalOnByteArrayEnc()
Default constructor. Uses the default implementations of DlogGroup and KDF.

ElGamalOnByteArrayEnc::ElGamalOnByteArrayEnc(const shared_ptr<DlogGroup>&
dlogGroup, const
shared_ptr<KeyDerivationFunction>&
kdf, const
shared_ptr<PrgFromOpenSSLAES>&
random)

Constructor that gets a DlogGroup and source of randomness.

Parameters

• dlogGroup – must be DDH secure.

• kdf – a key derivation function.

• random – source of randomness

8.3. Asymmetric Encryption 51

libscapi Documentation, Release 1.0

Complete Encryption

shared_ptr<AsymmetricCiphertext> ElGamalOnByteArrayEnc::completeEncryption(const
shared_ptr<GroupElement>&
c1,
GroupEle-
ment* hy,
Plaintext*
plaintext)

This is a protected function. It completes the encryption operation.

Parameters plaintext contains message to encrypt. MUST be of type ByteArrayPlaintext.

Returns Ciphertext of type ElGamalOnByteArrayCiphertext containing the encrypted message.

ElGamalOnGroupElementEnc class

class ElGamalOnGroupElementEnc : public ElGamalEnc, public AsymMultiplicativeHomomorphicEnc
This class performs the El Gamal encryption scheme that perform the encryption on a GroupElement.

In some cases there are protocols that do multiple calculations and might want to keep working on a close group.
For those cases we provide encryption on a group element. By definition, this encryption scheme is CPA-secure
and Indistinguishable.

Constructors

ElGamalOnGroupElementEnc::ElGamalOnGroupElementEnc()
Default constructor. Uses the default implementations of DlogGroup and random.

ElGamalOnGroupElementEnc::ElGamalOnGroupElementEnc(const shared_ptr<DlogGroup>&
dlogGroup, const
shared_ptr<PrgFromOpenSSLAES>&
random)

Constructor that gets a DlogGroup and source of randomness.

Parameters

• dlogGroup – must be DDH secure.

• random – source of randomness.

Complete Encryption

shared_ptr<AsymmetricCiphertext> ElGamalOnGroupElementEnc::completeEncryption(const
shared_ptr<GroupElement>&
c1,
GroupEle-
ment*
hy,
Plain-
text*
plain-
text)

This is a protected function. It completes the encryption operation.

Parameters plaintext contains message to encrypt. MUST be of type GroupElementPlaintext.

52 Chapter 8. Layer 2: Non Interactive Protocols

libscapi Documentation, Release 1.0

Returns Ciphertext of type ElGamalOnGroupElementCiphertext containing the encrypted message.

Multiply Ciphertexts (Homomorphic Encryption operation)

shared_ptr<AsymmetricCiphertext> ElGamalOnGroupElementEnc::multiply(AsymmetricCiphertext*
cipher1, Asymmet-
ricCiphertext*
cipher2)

Calculates the ciphertext resulting of multiplying two given ciphertexts. Both ciphertexts have to have been
generated with the same public key and DlogGroup as the underlying objects of this ElGamal object.

Returns Ciphertext of the multiplication of the plaintexts p1 and p2 where alg.encrypt(p1)=cipher1
and alg.encrypt(p2)=cipher2

shared_ptr<AsymmetricCiphertext> ElGamalOnGroupElementEnc::multiply(AsymmetricCiphertext*
cipher1, Asymmet-
ricCiphertext*
cipher2, biginteger&
r)

Calculates the ciphertext resulting of multiplying two given ciphertexts using the given random value r. Both
ciphertexts have to have been generated with the same public key and DlogGroup as the underlying objects of
this ElGamal object.

Returns Ciphertext of the multiplication of the plaintexts p1 and p2 where alg.encrypt(p1)=cipher1
and alg.encrypt(p2)=cipher2

Basic Usage

Sender usage:

shared_ptr<DlogGroup> dlog = make_shared<OpenSSLDlogECF2m>();
//Create an ElGamalOnGroupElement encryption object.
ElGamalOnGroupElementEnc elGamal(dlog);

//Generate a keyPair using the ElGamal object.
auto pair = elGamal.generateKey();

//Publish your public key.
Publish(pair.first);

//Set private key and party2’s public key:
elGamal.setKey(party2PublicKey, pair.second);

//Create a GroupElementPlaintext to encrypt and encrypt the plaintext.
GroupElementPlaintext plaintext(dlog->createRandomElement());
AsymmetricCiphertext cipher = elGamal.encrypt(plaintext);

//Sends cipher to the receiver.

Receiver usage:

//Create an ElGamal object with the same DlogGroup definition as party1.
//Generate a keyPair using the ElGamal object.
auto pair = elGamal.generateKey();

//Publish your public key.
Publish(pair.first);

8.3. Asymmetric Encryption 53

libscapi Documentation, Release 1.0

//Set private key and party1’s public key:
elGamal.setKey(party1PublicKey, pair.second);

//Get the ciphertext and decrypt it to get the plaintext.
...
shared_ptr<Plaintext> plaintext = elGamal.decrypt(cipher);

//Get the plaintext element and use it as needed.
GroupElement element = ((GroupElementPlaintext*)plaintext.get()).getElement();
...

Cramer Shoup DDH Encryption Scheme

The Cramer Shoup encryption scheme’s security is based on the hardness of the decisional Diffie-Hellman (DDH)
problem, like El Gamal encryption scheme. Cramer Shoup encryption can be defined over any cyclic group 𝐺. Its
security depends upon the difficulty of a certain problem in 𝐺 related to computing discrete logarithms.

We implement Cramer Shoup over a Dlog Group (𝐺, 𝑞, 𝑔) where 𝑞 is the order of group 𝐺 and 𝑔 is the generator.

In contrast to El Gamal, which is extremely malleable, Cramer–Shoup adds other elements to ensure non-malleability
even against a resourceful attacker. This non-malleability is achieved through the use of a hash function and additional
computations, resulting in a ciphertext which is twice as large as in El Gamal.

Similary to ElGamal, Cramer Shoup encryption scheme can encrypt a group element and a byte array. libscapi only
provides the group element version.

The CramerShoupOnGroupElementEnc class

class CramerShoupOnGroupElementEnc : public AsymmetricEnc, Cca2
Implementation of CramerShoup encryption scheme over group elements.

CramerShoupOnGroupElementEnc::CramerShoupOnGroupElementEnc(const
shared_ptr<DlogGroup>&
dlogGroup, const
shared_ptr<CryptographicHash>&
hash, const
shared_ptr<PrgFromOpenSSLAES>&
random)

Constructor that lets the user choose the underlying dlog, hash and random.

Parameters

• dlogGroup – underlying DlogGroup to use, it has to have DDH security level

• hash – underlying hash to use, has to have CollisionResistant security level

• random – source of randomness.

Basic Usage

Sender usage:

//Create an underlying DlogGroup.
shared_ptr<DlogGroup> dlog = make_shared<OpenSSLDlogECF2m>();

//Create a CramerShoupOnByteArray encryption object.

54 Chapter 8. Layer 2: Non Interactive Protocols

libscapi Documentation, Release 1.0

CramerShoupOnGroupElementEnc encryptor (dlog);

//Generate a keyPair using the CramerShoup object.
auto pair = encryptor.generateKey();

//Publish your public key.
Publish(pair.first);

//Set private key and party2’s public key:
encryptor.setKey(party2PublicKey, pair.second);

//Get a vector message to encrypt. Check if the length of the given msg is valid.
if (encryptor.hasMaxByteArrayLengthForPlaintext()){

if (msg.size() > encryptor.getMaxLengthOfByteArrayForPlaintext()) {
throw invalid_argument(“message too long”);

}
}

//Generate a plaintext suitable to this CramerShoup object.
auto plaintext = encryptor.generatePlaintext(msg);

//Encrypt the plaintext
auto cipher = encrypor.encrypt(plaintext);

//Send cipher and keys to the receiver.

Receiver usage:

//Create a CramerShoup object with the same DlogGroup definition as party1.
//Generate a keyPair using the CramerShoup object.
auto pair = encryptor.generateKey();

//Publish your public key.
Publish(pair.first);

//Set private key and party1’s public key:
encryptor.setKey(party1PublicKey, pair.second);

//Get the ciphertext and decrypt it to get the plaintext. ...
auto plaintext = encryptor.decrypt(cipher);

//Get the plaintext element and use it as needed.
GroupElement element = ((GroupElementPlaintext*)plaintext.get()).getElement();

Damgard Jurik Encryption Scheme

Damgard Jurik is an asymmetric encryption scheme that is based on the Paillier encryption scheme. This encryption
scheme is CPA-secure and Indistinguishable.

DamgardJurikEnc class

class DamgardJurikEnc : public AsymAdditiveHomomorphicEnc
Damgard Jurik is an asymmetric encryption scheme based on the Paillier encryption scheme. By definition, this
encryption scheme is CPA-secure and Indistinguishable.

8.3. Asymmetric Encryption 55

libscapi Documentation, Release 1.0

DamgardJurikEnc::DamgardJurikEnc(const shared_ptr<PrgFromOpenSSLAES>& random)
Constructor that lets the user choose the source of randomness.

shared_ptr<AsymmetricCiphertext> DamgardJurikEnc::reRandomize(AsymmetricCiphertext*
cipher)

This function takes an encryption of some plaintext (let’s call it originalPlaintext) and returns a cipher that
“looks” different but it is also an encryption of originalPlaintext.

Basic Usage

The code example below is used when the sender and receiver know the specific type of asymmetric encryption object.

Sender code:

//Create a DamgardJurik encryption object.
DamgardJurikEnc encryptor;

//Generate a keyPair using the DamgardJurik object.
DJKeyGenParameterSpec spec(128, 40)
auto pair = encryptor.generateKey(spec);

//Publish your public key.
Publish(pair.first);

//Set private key and party2’s public key:
encryptor.setKey(party2PublicKey, pair.second);

//Get the biginteger value to encrypt, create a BigIntegerPlaintext with it and encrypt the plaintext.
...
BigIntegerPlainText plaintext(num);
auto cipher = encryptor.encrypt(plaintext);

//Send cipher and keys to the receiver.

Receiver code:

//Create a DamgardJurik object with the same definition as party1.
//Generate a keyPair using the DamgardJurik object.
auto pair = encryptor.generateKey();

//Publish your public key.
Publish(pair.first);

//Set private key and party1’s public key:
encryptor.setKey(party1PublicKey, pair.second);

//Get the ciphertext and decrypt it to get the plaintext. ...
auto plaintext = elGamal.decrypt(cipher);

//Get the plaintext element and use it as needed.
biginteger element = ((BigIntegerPlainText)plaintext.get()).getX();

56 Chapter 8. Layer 2: Non Interactive Protocols

CHAPTER 9

Layer 3: Interactive Protocols

The Interactive Protocol layer contains interactive protocols which can be used as a standalone protocols or as building
blocks of higher cryptographic schemes. The protocols in this layer are two-party protocols, meaning that there are
two participants in the protocol execution when each one has a different role. For example, OT protocol consists of a
sender and a receiver, ZK protocol consists of a prover and a verifier, etc. The communication between the parties is
done through the SCAPI’s Communication Layer.

This layer contains the following components:

Oblivious Transfer Protocols

In Oblivious Transfer, a party called the sender has 𝑛 messages, and a party called the receiver has an index 𝑖. The
receiver wishes to receive the 𝑖𝑡ℎ message of the sender, without the sender learning 𝑖, while the sender wants to ensure
that the receiver receives only one of the 𝑛 messages.

Contents

• Oblivious Transfer Protocols
– Class Hierarchy

* abstract classes
· The OTSender abstract class
· The OTReciever abstract class
· The OTBatchSender abstract class
· The OTBatchReceiver abstract class
· The Input/Output Interfaces

* Concrete implementations
– Basic Usage

Class Hierarchy

The general structure of OT protocols contains three components:

• Sender and receiver abstract classes

• Sender and receiver concrete classes

57

libscapi Documentation, Release 1.0

abstract classes

Both Sender and Receiver abstract classes declare the transfer() function, which executes the OT protocol. The
transfer() function of the sender runs the protocol from the sender’s point of view, while the transfer function of
the receiver runs the protocol from the receiver’s point of view. There are two types of abstract classes. One is for the
regular OT case and the other for the batch OT case .

In the regular OT case, both transfer functions accept two parameters:

• A channel that is used to send and receive messages during the protocol execution.

• An input object that holds the required parameter to the sender/receiver execution.

In the batch OT case, the transfer functions accept just the input object, since all concrete implementations use their
own communication rether than libscapi’s channel.

The input types are OTSInput and OTRInput for the regular case, and OTBatchSInput and OTBatchRInput
for the batch case. These are abstract classes for the sender’s and receiver’s input, respectively. Each concrete imple-
mentation may have some different parameters and should implement a dedicated input class that holds them. The
transfer functions of the sender and the receiver differ in their return value. In the regular case, the sender’s transfer
function returns void, and the receiver’s transfer function returns OTROutput. In the batch case, the sender’s trans-
fer function returns OTBatchSOutput, and the receiver’s transfer function returns OTBatchROutput. All types
of output are abstract classes and work as marker classes. Each concrete OT receiver should implement a dedicated
output class that holds the necessary output objects.

The OTSender abstract class

class OTSender

void OTSender::transfer(CommParty* channel, OTSInput* input)
The transfer stage of OT protocol which can be called several times in parallel. The OT implementation support
usage of many calls to transfer, with single preprocess execution. This way, one can execute multiple OTs by
creating the OT sender once and call the transfer function for each input couple. In order to enable parallel calls,
each transfer call should use a different channel to send and receive messages. This way the parallel executions
of the function will not block each other.

Parameters

• channel – each call should get a different one.

• input – The parameters given in the input must match the DlogGroup member of this class,
which given in the constructor.

The OTReciever abstract class

class OTReceiver

shared_ptr<OTROutput> OTReceiver::transfer(CommParty* channel, OTRInput* input)
The transfer stage of OT protocol which can be called several times in parallel. The OT implementation support
usage of many calls to transfer, with single preprocess execution. This way, one can execute multiple OT by
creating the OT receiver once and call the transfer function for each input couple. In order to enable parallel
calls, each transfer call should use a different channel to send and receive messages. This way the parallel
executions of the function will not block each other.

Parameters

• channel – each call should get a different one.

58 Chapter 9. Layer 3: Interactive Protocols

libscapi Documentation, Release 1.0

• input – The parameters given in the input must match the DlogGroup member of this class,
which given in the constructor.

Returns OTROutput, the output of the protocol.

The OTBatchSender abstract class

class OTBatchSender

shared_ptr<OTBatchSOutput> OTBatchSender::transfer(OTBatchSInput* input)
The transfer stage of OT protocol which does mulptiple OTs in parallel.

Parameters input The parameters used in the

The OTBatchReceiver abstract class

class OTBatchReceiver

shared_ptr<OTBatchROutput> OTBatchReceiver::transfer(OTBatchRInput* input)
The transfer stage of OT protocol which does mulptiple OTs in parallel.

Parameters input The parameters given in the input must match the DlogGroup member of this
class, which given in the constructor.

Returns OTROutput, the output of the protocol.

The Input/Output Interfaces

Every OT sender and receiver need inputs during the protocol execution, but every concrete protocol needs different
inputs. The following classes are marker classes for regular and batch OT sender/receiver inputs, where there is an
implementing class for each OT protocol.

class OTSInput

class OTRInput

class OTBatchSInput

class OTBatchRInput

Similar, every regular OT receiver and every batch sender and receiver outputs a result in the end of the protocol
execution, but every concrete protocol output different data. The following classes are marker classes for OT output,
where there is an implementing class for each OT protocol.

class OTROutput

class OTBatchSOutput

class OTBatchROutput

Concrete implementations

As we have already said, each concrete OT implementation should implement dedicated sender and receiver classes.
These classes implement the functionalities that are unique for the specific implementation. Most OT protocols can
work on two different types of inputs: byte arrays and DlogGroup elements. Each input type should be treated
differently, thus we decided to have concrete sender/receiver classes for each input option.

Concrete regular OT implemented so far are:

9.1. Oblivious Transfer Protocols 59

libscapi Documentation, Release 1.0

• Semi Honest

• Privacy Only

• One Sided Simulation

• Full Simulation

• Full Simulation – ROM

• UC

Concrete batch OT implemented so far are:

• Batch Semi Honest Extension. This is a wrapper of Michael Zohner’s implementation.

• Batch Malicious Extension. There are two wrappers: One wraps the Michael Zohner’s implementation and the
other wraps the Bristol’s implementation.

Basic Usage

In order to execute the OT protocol, both sender and receiver should be created as separate programs (Usually not on
the same machine). The main function in the sender and the receiver is the transfer function, that gets the communi-
cation channel between them and input.

Steps in sender creation:

• Given a Channel object channel do:

• Create an OTSender (for example, OTSemiHonestDDHOnGroupElementSender).

• Create input for the sender. Usually, the input for the receiver contains x0 and x1.

• Call the transfer function of the sender with channel and the created input.

//Creates the OT sender object.
OTSemiHonestDDHOnGroupElementSender sender;

//Creates input for the sender.
auto x0 = dlog.createRandomElement();
auto x1 = dlog.createRandomElement();
OTSOnGroupElementInput input(x0, x1);

//call the transfer part of the OT protocol
sender.transfer(&channel, &input);

Steps in receiver creation:

• Given a Channel object channel do:

• Create an OTReceiver (for example, OTSemiHonestDDHOnGroupElementReceiver).

• Create input for the receiver. Usually, the input for the receiver contains only sigma parameter.

• Call the transfer function of the receiver with channel and the created input.

//Creates the OT receiver object.
OTSemiHonestDDHOnGroupElementReceiver receiver;

//Creates input for the receiver.
byte sigma = 1;
OTRBasicInput input(sigma);

60 Chapter 9. Layer 3: Interactive Protocols

libscapi Documentation, Release 1.0

OTROutput output = receiver.transfer(&channel, &input);
//use output...

Sigma Protocols

Sigma Protocols are a basic building block for Zero-knowledge proofs, Zero-Knowledge Proofs Of Knowledge and
more. A sigma protocol is a 3-round proof, comprised of:

1. A first message from the prover to the verifier

2. A random challenge from the verifier

3. A second message from the prover.

Sigma Protocol can be executed as a standalone protocol or as a building block for another protocol, like Zero Knowl-
edge proofs. As a standalone protocol, Sigma protocol should execute the protocol as is, including the communication
between the prover and the verifier. As a building block for other protocols, Sigma protocol should only compute the
prover’s first and second messages and the verifier’s challenge and verification. This is, in other words, the protocol
functions without communication between the parties.

To enable both options, there is a separation between the communication part and the actual protocol computations.
The general structure of Sigma Protocol contains the following components:

• Prover, Verifier and Simulator generic classes.

• ProverComputation and VerifierComputation abstract classes.

• ProverComputation and VerifierComputation concrete classes (Specific to each protocol).

Contents

• Sigma Protocols
– The Prover class
– The Verifier class
– The Simulator class
– Computation classes

* SigmaProverComputation
* SigmaVerifierComputation

– Supported Protocols
– Example of Usage

The Prover class

The SigmaProtocolProver class has two modes of operation:

1. Explicit mode - call processFirstMessage() to process the first message and afterwards call processSecondMes-
sage() to process the second message.

2. Implicit mode - Call prove() function that calls the above two functions. This way is more easy to use since the
user should not be aware of the order in which the functions must be called.

class SigmaProtocolProver
General class for Sigma Protocol prover. This class manages the communication functionality of all the sigma
protocol provers. It sends the first message, receives the challenge from the prover and sends the second mes-
sage. It uses SigmaProverComputation instance of a concrete sigma protocol to compute the actual messages.

9.2. Sigma Protocols 61

libscapi Documentation, Release 1.0

Sigma protocols are a basic building block for zero-knowledge, zero-knowledge proofs of knowledge and more.

A sigma protocol is a 3-round proof, comprised of a first message from the prover to the verifier, a random
challenge from the verifier and a second message from the prover. See Hazay-Lindell (chapter 6) for more
information.

void SigmaProtocolProver::processSecondMsg()
Processes the second step of the sigma protocol. It receives the challenge from the verifier, computes the second
message and then sends it to the verifier.

This is a blocking function!

void SigmaProtocolProver::prove(const shared_ptr<SigmaProverInput>& input)
Runs the proof of this protocol.

This function executes the proof at once by calling the above functions one by one. This function can be called
when a user does not want to save time by doing operations in parallel.

The Verifier class

The SigmaProtocolVerifier also has two modes of operation:

1. Explicit mode – call sampleChallenge() to sample the challenge, then sendChallenge() to receive the prover’s
first message and then call processVerify() to receive the prover’s second message and verify the proof.

2. Implicit mode - Call verify() function that calls the above three functions. Same as the prove function of the
prover, this way is much simpler, since the user should not know the order of the functions.

class SigmaProtocolVerifier
General class for Sigma Protocol verifier. This class manages the communication functionality of all the sigma
protocol verifiers, such as send the challenge to the prover and receive the prover messages. It uses SigmaVeri-
fierComputation instance of a concrete sigma protocol to compute the actual calculations.

vector<byte> SigmaProtocolVerifier::getChallenge()
Returns the sampled challenge.

Returns the challenge.

bool SigmaProtocolVerifier::processVerify(SigmaCommonInput* input)
Waits to the prover’s second message and then verifies the proof. This is a blocking function!

Returns true if the proof has been verified; false, otherwise.

void SigmaProtocolVerifier::sampleChallenge()
Samples the challenge for this protocol.

void SigmaProtocolVerifier::sendChallenge()
Waits for the prover’s first message and then sends the chosen challenge to the prover. This is a blocking
function!

void SigmaProtocolVerifier::setChallenge(const vector<byte>& challenge)
Sets the given challenge.

bool SigmaProtocolVerifier::verify(SigmaCommonInput* input)
Runs the verification of this protocol.

This function executes the verification protocol at once by calling the following functions one by one. This
function can be called when a user does not want to save time by doing operations in parallel.

Returns true if the proof has been verified; false, otherwise.

62 Chapter 9. Layer 3: Interactive Protocols

libscapi Documentation, Release 1.0

The Simulator class

The SigmaSimulator has two simulate() functions. Both functions simulate the sigma protocol. The difference
between them is the source of the challenge; one function receives the challenge as an input argument, while the
other samples a random challenge. Both simulate functions return SigmaSimulatorOutput object that holds the
simulated a, e, z.

class SigmaSimulator
General class for Sigma Protocol Simulator. The simulator is a probabilistic polynomial-time function, that
on input x and challenge e outputs a transcript of the form (a, e, z) with the same probability distribution as
transcripts between the honest prover and verifier on common input x.

int SigmaSimulator::getSoundnessParam()
Returns the soundness parameter for this Sigma simulator.

Returns t soundness parameter

shared_ptr<SigmaSimulatorOutput> SigmaSimulator::simulate(SigmaCommonInput* input, const
vector<byte>& challenge)

Computes the simulator computation.

Returns the output of the computation - (a, e, z).

shared_ptr<SigmaSimulatorOutput> SigmaSimulator::simulate(SigmaCommonInput* input)
Chooses random challenge and computes the simulator computation.

Returns the output of the computation - (a, e, z).

Computation classes

The classes that operate the actual protocol phases derive the SigmaProverComputation and
SigmaVerifierComputation abstract classes. SigmaProverComputation computes the prover’s mes-
sages and SigmaVerifierComputation computes the verifier’s challenge and verification. Each operation is done in a
dedicated function.

In case that Sigma Protocol is used as a building block, the protocol which uses it will hold an instance of SigmaProver-
Computation or SigmaVerifierComputation and will call the required function. Each concrete sigma protocol should
implement the computation classes.

SigmaProverComputation

class SigmaProverComputation
This abstract class manages the mathematical calculations of the prover side in the sigma protocol. It samples
random values and computes the messages.

shared_ptr<SigmaProtocolMsg> SigmaProverComputation::computeFirstMsg(const
shared_ptr<SigmaProverInput>&
input)

Computes the first message of the sigma protocol.

shared_ptr<SigmaProtocolMsg> SigmaProverComputation::computeSecondMsg(const vec-
tor<byte>&
challenge)

Computes the second message of the sigma protocol.

9.2. Sigma Protocols 63

libscapi Documentation, Release 1.0

SigmaVerifierComputation

class SigmaVerifierComputation
This abstract class manages the mathematical calculations of the verifier side in the sigma protocol. It samples
random challenge and verifies the proof.

void SigmaVerifierComputation::sampleChallenge()
Samples the challenge for this protocol.

void SigmaVerifierComputation::setChallenge(const vector<byte>& challenge)
Sets the given challenge.

vector<byte> SigmaVerifierComputation::getChallenge()
Returns the sampled challenge.

Returns the challenge.

bool SigmaVerifierComputation::verify(SigmaCommonInput* input, SigmaProtocolMsg* a,
SigmaProtocolMsg* z)

Verifies the proof.

Returns true if the proof has been verified; false, otherwise.

Supported Protocols

Concrete Sigma protocols implemented so far are:

• Dlog

• DH

• Extended DH

• Pedersen commitment knowledge

• Pedersen committed value

• El Gamal commitment knowledge

• El Gamal committed value

• El Gamal private key

• El Gamal encrypted value

• Cramer-Shoup encrypted value

• Damgard-Jurik encrypted zero

• Damgard-Jurik encrypted value

• Damgard-Jurik product

• AND (of multiple statements)

• OR of two statements

• OR of multiple statements

Example of Usage

Steps in prover creation:

64 Chapter 9. Layer 3: Interactive Protocols

libscapi Documentation, Release 1.0

• Given a Channel object channel and input for the concrete Sigma protocol prover (In the example below, x
and h) do:

– Create a SigmaProverComputation (for example, SigmaDlogProverComputation).

– Create a SigmaProtocolProver with channel and the proverComputation.

– Create input object for the prover.

– Call the prove() function of the prover with the input.

Prover code example:

//Creates the dlog group, use the koblitz curve.
auto dlog = make_shared<OpenSSLDlogECF2m>("K-233");

//Creates sigma prover computation.
shared_ptr<SigmaProverComputation> proverComputation = make_shared<SigmaDlogProverComputation>(dlog, t, get_seeded_prg());

//Create Sigma Prover with the given SigmaProverComputation.
SigmaProver prover(channel, proverComputation);

//Creates input for the prover.
shared_ptr<SigmaProverInput> input = make_shared<SigmaDlogProverInput>(h, w);

//Calls the prove function of the prover.
prover.prove(input);

Steps in verifier creation:

• Given a Channel object channel and input for the concrete Sigma protocol verifier (In the example below, h)
do:

– Create a SigmaVerifierComputation (for example, SigmaDlogVerifierComputation).

– Create a SigmaProtocolVerifier with channel and verifierComputation.

– Create input object for the verifier.

– Call the verify() function of the verifier with the input.

Verifier code example:

//Creates the dlog group, use the koblitz curve.
auto dlog = make_shared<OpenSSLDlogECF2m>("K-233");

//Creates sigma verifier computation.
shared_ptr<SigmaVerifierComputation> verifierComputation = make_shared<SigmaDlogVerifierComputation>(dlog, t, get_seeded_prg());

//Creates Sigma verifier with the given SigmaVerifierComputation.
SigmaVerifier verifier(channel, verifierComputation);

// Creates input for the verifier.
shared_ptr<SigmaCommonInput> input = make_shared<SigmaDlogCommonInput>(h);

//Calls the verify function of the verifier.
verifier.verify(input);

9.2. Sigma Protocols 65

libscapi Documentation, Release 1.0

Zero Knowledge Proofs and Zero Knowledge Proofs of Knowledge

A zero-knowledge proof or a zero-knowledge protocol is a method by which one party (the prover) can prove to
another party (the verifier) that a given statement is true, without conveying any additional information apart from
the fact that the statement is indeed true. A zero-knowledge proof of knowledge (ZKPOK) is a sub case of zero
knowledge proofs, in which the prover proves to the verifier that he knows how to prove a statement, without actually
proving it.

Contents

• Zero Knowledge Proofs and Zero Knowledge Proofs of Knowledge
– Zero Knowledge abstract classes

* ZKProver
* ZKVerifier
* ZKProverInput
* ZKCommonInput

– Zero Knowledge Proof of Knowledge classes
– Implemented Protocols
– Example of Usage

Zero Knowledge abstract classes

ZKProver

The ZKProver abstract class declares the prove() function that accepts an input and runs the ZK proof. The input
type is ZKProverInput, which is a marker class. Every concrete protocol should have a dedicated input class that
extends it.

class ZKProver
A zero-knowledge proof or zero-knowledge protocol is a method by which one party (the prover) can prove to
another party (the verifier) that a given statement is true, without conveying any additional information apart
from the fact that the statement is indeed true.

This is a general class that simulates the prover side of the Zero Knowledge proof. Every class that derive this
class is signed as Zero Knowledge prover.

void ZKProver::prove(const shared_ptr<ZKProverInput>& input)
Runs the prover side of the Zero Knowledge proof.

Parameters input holds necessary values to the proof calculations.

ZKVerifier

The ZKVerifier abstract class declares the verify() function that accepts an input and runs the ZK proof
verification. The input type is ZKCommonInput, which is a marker class of inputs that are common for the prover
and the verifier. Every concrete protocol should have a dedicated input class that extends it.

class ZKVerifier
A zero-knowledge proof or zero-knowledge protocol is a method by which one party (the prover) can prove to
another party (the verifier) that a given statement is true, without conveying any additional information apart
from the fact that the statement is indeed true.

This is a general class that simulates the verifier side of the Zero Knowledge proof. Every class that derive this
class is signed as Zero Knowledge verifier.

66 Chapter 9. Layer 3: Interactive Protocols

libscapi Documentation, Release 1.0

bool ZKVerifier::verify(ZKCommonInput* input, const shared_ptr<SigmaProtocolMsg>& emptyA,
const shared_ptr<SigmaProtocolMsg>& emptyZ)

Runs the verifier side of the Zero Knowledge proof.

Parameters input holds necessary values to the varification calculations.

Returns true if the proof was verified; false, otherwise.

ZKProverInput

class ZKProverInput
Marker class. Each concrete ZK prover’s input class should derive this class.

ZKCommonInput

class ZKCommonInput
This is a marker class for Zero Knowledge input, where there is an implementing class for each concrete Zero
Knowledge protocol.

Zero Knowledge Proof of Knowledge classes

ZKPOKProver and ZKPOKVerifier are marker classes that extend the ZKProver and ZKVerifier classes.
ZKPOK concrete protocol should extend these marker classes instead of the general ZK classes.

class ZKPOKProver : public ZKProver
This is a general class that simulates the prover side of the Zero Knowledge proof of knowledge. Every class
that derive it is signed as ZKPOK prover.

ZKPOKVerifier : public virtual ZKVerifier
This is a general class that simulates the verifier side of the Zero Knowledge proof of knowledge. Every class
that derive it is signed as ZKPOK verifier.

Implemented Protocols

Concrete Zero Knowledge protocols implemented so far are:

• Zero Knowledge from any sigma protocol

• Zero Knowledge Proof of Knowledge from any sigma protocol (currently implemented using Pedersen Com-
mitment scheme)

• Zero Knowledge Proof of Knowledge from any sigma protocol Fiat Shamir (Random Oracle Model)

Example of Usage

Steps in prover creation:

• Given a Channel object channel and input for the underlying SigmaProverComputation (in the following case,
h and x) do:

– Create a SigmaProverComputation (for example, SigmaDlogProverComputation).

– Create a ZKProver with channel and the proverComputation (ForExample, ZKFromSigmaProver).

– Create input object for the prover.

9.3. Zero Knowledge Proofs and Zero Knowledge Proofs of Knowledge 67

libscapi Documentation, Release 1.0

– Call the prove function of the prover with the input.

Prover code example:

//create the ZK prover
auto dlog = make_shared<OpenSSLDlogECF2m>("K-233");
ZKFromSigmaProver prover(channel, make_shared<SigmaDlogProverComputation>(dlog, 40, get_seeded_prg()));

//create the input for the prover
shared_ptr<SigmaDlogProverInput> input = make_shared<SigmaDlogProverInput>(h, x);

//Call prove function
prover.prove(input);

Steps in verifier creation:

• Given a Channel object channel and input for the underlying SigmaVerifierComputation (In the example below,
h) do:

– Create a SigmaVerifierComputation (for example, SigmaDlogVerifierComputation).

– Create a ZKVerifier with channel and verifierComputation (For example, ZKFromSigmaVerifier).

– Create input object for the verifier.

– Call the verify function of the verifier with the input.

Verifier code example:

//create the ZK prover
auto dlog = make_shared<OpenSSLDlogECF2m>("K-233");
ZKFromSigmaVerifier verifier(channel, make_shared<SigmaDlogVerifierComputation>(dlog, 40, get_seeded_prg()), get_seeded_prg());

//create the input for the verifier
shared_ptr<SigmaDlogCommonInput> input = make_shared<SigmaDlogCommonInput>(h);

//Call verify function
cout << verifier.verify(input) << endl;

Commitment Schemes

A commitment scheme allows one to commit to a chosen value (or a chosen statement) while keeping it hidden from
others, with the ability to reveal the committed value later. There exist some commitment schemes that can be proven
by ZK protocols.

68 Chapter 9. Layer 3: Interactive Protocols

libscapi Documentation, Release 1.0

Contents

• Commitment Schemes
– The Committer class

* Commit and Decommit
* Conversion to and from CmtCommitValue
* Inner state functions

– The Receiver class
* Receive Commitment and Decommitment
* Conversion to and from CmtCommitValue
* Inner state functions

– Implemented Protocols
– Example of Usage

The Committer class

class CmtCommitter
This the general class of the Committer side of a Commitment Scheme. A commitment scheme has a commit-
ment phase in which the committer send the commitment to the Receiver, and a decommitment phase in which
the the Committer sends the decommitment to the Receiver.

Commit and Decommit

void CmtCommitter::commit(const shared_ptr<CmtCommitValue>& input, long id)
This function is the heart of the commitment phase from the Committer’s point of view.

Parameters

• input – The value that the committer commits about.

• id – Unique value attached to the input to keep track of the commitments in the case that
many commitments are performed one after the other without decommiting them yet.

void CmtCommitter::decommit(long id)
This function is the heart of the decommitment phase from the Committer’s point of view.

Parameters id Unique value used to identify which previously committed value needs to be decom-
mitted now.

There are cases when the user wants to commit the input but remain non-interactive, meaning not to send the generate
message yet. The reasons for doing that are vary, for example the user wants to prepare a lot of commitments and send
together. In these cases the commit function is not useful since it sends the generates commit message to the other
party. The following function provide the ability to generate the commitment and decommitment messages and get
them without send to the other party:

shared_ptr<CmtCCommitmentMsg> CmtCommitter::generateCommitmentMsg(const
shared_ptr<CmtCommitValue>&
input, long id)

This function generates a commitment message using the given input and ID.

shared_ptr<CmtCDecommitmentMessage> CmtCommitter::generateDecommitmentMsg(long id)
This function generate a decommitment message using the given id.

9.4. Commitment Schemes 69

libscapi Documentation, Release 1.0

Conversion to and from CmtCommitValue

vector<byte> CmtCommitter::generateBytesFromCommitValue(CmtCommitValue* value)
This function converts the given commit value to a byte array.

Parameters value to get its bytes.

Returns the generated bytes.

shared_ptr<CmtCommitValue> CmtCommitter::generateCommitValue(const vector<byte>& x)
This function wraps the raw data x with a suitable CommitValue instance according to the actual implementaion.

Parameters x array to convert into a commitValue.

Returns the created CommitValue.

Inner state functions

CmtCommitmentPhaseValues* CmtCommitter::getCommitmentPhaseValues(long id)
This function returns the values calculated during the commit phase for a specific commitment. This function
is used for protocols that need values of the commitment, like ZK protocols during proofs on the commitment.
We recommended not to call this function from somewhere else.

Parameters id of the specific commitment

Returns values calculated during the commit phase

vector<shared_ptr<void>> CmtCommitter::getPreProcessValues()
This function returns the values calculated during the preprocess phase. This function is used for protocols that
need values of the commitment, like ZK protocols during proofs on the commitment. We recommended not to
call this function from somewhere else.

Returns values calculated during the preprocess phase

shared_ptr<CmtCommitValue> CmtCommitter::sampleRandomCommitValue()
This function samples random commit value to commit on.

Returns the sampled commit value.

The Receiver class

class CmtReceiver
This the general class of the Receiver side of a Commitment Scheme. A commitment scheme has a commitment
phase in which the Receiver waits for the commitment sent by the Committer; and a decommitment phase in
which the Receiver waits for the decommitment sent by the Committer and checks whether to accept or reject
the decommitment.

Receive Commitment and Decommitment

shared_ptr<CmtRCommitPhaseOutput> CmtReceiver::receiveCommitment()
This function is the heart of the commitment phase from the Receiver’s point of view.

Returns the id of the commitment and some other information if necessary according to the imple-
menting class.

shared_ptr<CmtCommitValue> CmtReceiver::receiveDecommitment(long id)
This function is the heart of the decommitment phase from the Receiver’s point of view.

Parameters id wait for a specific message according to this id

70 Chapter 9. Layer 3: Interactive Protocols

libscapi Documentation, Release 1.0

Returns the commitment

shared_ptr<CmtCommitValue> CmtReceiver::verifyDecommitment(CmtCCommitmentMsg*
commitmentMsg, CmtCDe-
commitmentMessage* decom-
mitmentMsg)

There are cases when the receiver gets the commitment and decommitments in the application (not by the
channel), and the receiver does not use the receiveCommitment and receiveDecommitment function. In these
cases this function should be called for each pair of commitment and decommitment messages. The reasons for
doing that are vary, for example a protocol that prepare a lot of commitments and send together. In these cases
the receiveCommitment and receiveDecommitment functions are not useful since they receive the generates
messages separately to the other party. This function generates the message without sending it and this allows
the user to save it and send it later if he wants.

Conversion to and from CmtCommitValue

vector<byte> CmtReceiver::generateBytesFromCommitValue(CmtCommitValue* value)
This function converts the given commit value to a byte array.

Parameters value to get its bytes.

Returns the generated bytes.

Inner state functions

shared_ptr<void> CmtReceiver::getCommitmentPhaseValues(long id)
Return the intermediate values used during the commitment phase.

Parameters id get the commitment values according to this id.

Returns a general array of Objects.

vector<shared_ptr<void>> CmtReceiver::getPreProcessedValues()
Return the values used during the pre-process phase (usually upon construction). Since these values vary be-
tween the different implementations this function returns a general array of Objects.

Returns a general array of Objects

Implemented Protocols

Each concrete commitment protocol should have committer and receiver classes that extends the CmtCommitter
and CmtReceiver abstract classes mentioned above or the CmtCommitterWithProofs and
CmtReceiverWithProofs, in case the scheme can be proven.

Concrete Commitments protocols implemented so far are: * Pedersen commitment * Pedersen Hash commitment *
Pedersen Trapdoor commitment * El Gamal commitment * El Gamal Hash commitment * Simple Hash commitment
* Equivoqal commitments

Example of Usage

Commitment protocol has two sides: committer and receiver. In order to execute the commitment protocol, both
committer and receiver should be created as separate programs (Usually not on the same machine).

Steps in committer creation:

• Given a Channel object ch do:

9.4. Commitment Schemes 71

libscapi Documentation, Release 1.0

– Create a CmtCommitter (for example, CmtPedersenCommitter).

– Create an instance of the concrete CommitValue that suits the commitment scheme (This can be done
by calling the function generateCommitValue(byte[]).

– Call the commit() function of the committer with the committed value and id.

– Call the decommit() function of the committer with the same id sent to the commit() function.

Code example:

//create the committer
auto dlog = make_shared<OpenSSLDlogECF2m>("K-233");
CmtPedersenCommitter committer(ch, dlog, get_seeded_prg());

//generate CommitValue from string
vector<byte> msg(10, 0);
auto val = committer.generateCommitValue(msg);

//Commit on the commit value with id 2
committer.commit(val, 2);

//decommit id 2
committer.decommit(2);

Steps in receiver creation:

• Given a Channel object ch do:

– Create a CmtReceiver (for example, CmtPedersenReceiver).

– Call the receiverCommitment() function of the receiver.

– Call the receiveDecommitment() function of the receiver with the id given in the output of the
receiverCommitment() function.

– The CommitValue returned from the receiveDecommitment() can be converted to bytes using
the generateBytesFromCommitValue() function of the receiver.

Code example:

//create the receiver
auto dlog = make_shared<OpenSSLDlogECF2m>("K-233");
CmtPedersenReceiver receiver(ch, dlog, get_seeded_prg());

//Receive the commitment on the commit value
auto output = receiver.receiveCommitment();

//Receive the decommit
auto val = receiver.receiveDecommitment(output.getCommitmentId());

//Convert the commitValue to bytes.
vector<byte> committedVector = receiver.generateBytesFromCommitValue(val.get());

for (int i=0; i<committedVector.size(); i++){
cout << committedVector[i];

}
cout<<endl;

72 Chapter 9. Layer 3: Interactive Protocols

CHAPTER 10

License

Copyright (c) 2012 - Libscapi.

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documen-
tation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software. THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR
A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPY-
RIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH
THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

We request that any publication and/or code referring to and/or based on SCAPI contain an appropriate citation to
SCAPI, including a reference to https://github.com/cryptobiu/libscapi.

SCAPI uses other open source libraries: Crypto++, Miracl, NTL, OpenSSL, OtExtension and Bouncy Castle. Please
see these projects for any further licensing issues.

If you can’t find what you are looking for, have a look at the index or try to use the search:

• genindex

• search

73

https://github.com/cryptobiu/libscapi
https://github.com/cryptobiu/libscapi

libscapi Documentation, Release 1.0

74 Chapter 10. License

Index

A
AsymmetricEnc (C++ class), 47
AsymmetricEnc::encrypt (C++ function), 48
AsymmetricEnc::generateBytesFromPlaintext (C++

function), 48
AsymmetricEnc::generateKey (C++ function), 48
AsymmetricEnc::generatePlaintext (C++ function), 48
AsymmetricEnc::getMaxLengthOfByteArrayForPlaintext

(C++ function), 48
AsymmetricEnc::getPublicKey (C++ function), 49
AsymmetricEnc::hasMaxByteArrayLengthForPlaintext

(C++ function), 48
AsymmetricEnc::isKeySet (C++ function), 49
AsymmetricEnc::reconstructCiphertext (C++ function),

49
AsymmetricEnc::reconstructPrivateKey (C++ function),

49
AsymmetricEnc::reconstructPublicKey (C++ function),

49
AsymmetricEnc::setKey (C++ function), 49

C
CmtCommitter (C++ class), 69
CmtCommitter::commit (C++ function), 69
CmtCommitter::decommit (C++ function), 69
CmtCommitter::generateBytesFromCommitValue (C++

function), 70
CmtCommitter::generateCommitmentMsg (C++ func-

tion), 69
CmtCommitter::generateCommitValue (C++ function),

70
CmtCommitter::generateDecommitmentMsg (C++ func-

tion), 69
CmtCommitter::getCommitmentPhaseValues (C++ func-

tion), 70
CmtCommitter::getPreProcessValues (C++ function), 70
CmtCommitter::sampleRandomCommitValue (C++

function), 70
CmtReceiver (C++ class), 70
CmtReceiver::generateBytesFromCommitValue (C++

function), 71
CmtReceiver::getCommitmentPhaseValues (C++ func-

tion), 71
CmtReceiver::getPreProcessedValues (C++ function), 71
CmtReceiver::receiveCommitment (C++ function), 70
CmtReceiver::receiveDecommitment (C++ function), 70
CmtReceiver::verifyDecommitment (C++ function), 71
CommPartyTcpSslSynced (C++ function), 15
CommPartyTCPSynced (C++ function), 15
CramerShoupOnGroupElementEnc (C++ class), 54
CramerShoupOnGroupElementEnc::CramerShoupOnGroupElementEnc

(C++ function), 54

D
DamgardJurikEnc (C++ class), 55
DamgardJurikEnc::DamgardJurikEnc (C++ function), 55
DamgardJurikEnc::reRandomize (C++ function), 56
DlogGroup::createRandomElement (C++ function), 36
DlogGroup::createRandomGenerator (C++ function), 35
DlogGroup::decodeGroupElementToByteArray (C++

function), 38
DlogGroup::encodeByteArrayToGroupElement (C++

function), 38
DlogGroup::endExponentiateWithPreComputedValues

(C++ function), 36
DlogGroup::exponentiate (C++ function), 35
DlogGroup::exponentiateWithPreComputedValues (C++

function), 35
DlogGroup::generateElement (C++ function), 36
DlogGroup::getGenerator (C++ function), 35
DlogGroup::getGroupParams (C++ function), 35
DlogGroup::getGroupType (C++ function), 35
DlogGroup::getIdentity (C++ function), 35
DlogGroup::getInverse (C++ function), 36
DlogGroup::getMaxLengthOfByteArrayForEncoding

(C++ function), 38
DlogGroup::getOrder (C++ function), 35
DlogGroup::isGenerator (C++ function), 37
DlogGroup::isMember (C++ function), 37
DlogGroup::isOrderGreaterThan (C++ function), 37
DlogGroup::isPrimeOrder (C++ function), 37

75

libscapi Documentation, Release 1.0

DlogGroup::mapAnyGroupElementToByteArray (C++
function), 38

DlogGroup::multiplyGroupElements (C++ function), 36
DlogGroup::reconstructElement (C++ function), 37
DlogGroup::simultaneousMultipleExponentiations (C++

function), 36
DlogGroup::validateGroup (C++ function), 37

E
ElGamalEnc (C++ class), 51
ElGamalOnByteArrayEnc (C++ class), 51
ElGamalOnByteArrayEnc::completeEncryption (C++

function), 52
ElGamalOnByteArrayEnc::ElGamalOnByteArrayEnc

(C++ function), 51
ElGamalOnGroupElementEnc (C++ class), 52
ElGamalOnGroupElementEnc::completeEncryption

(C++ function), 52
ElGamalOnGroupElementEnc::ElGamalOnGroupElementEnc

(C++ function), 52
ElGamalOnGroupElementEnc::multiply (C++ function),

53

G
GroupElement::generateSendableData (C++ function),

38
GroupElement::isIdentity (C++ function), 38
GroupParams::getQ (C++ function), 39

H
hashFinal (C++ function), 23

I
isKeySet (C++ function), 32
isKeySet::getPubKey (C++ function), 32

J
join (C++ function), 16

K
KeyDerivationFunction::deriveKey (C++ function), 40

M
Mac (C++ class), 41
Mac::doFinal (C++ function), 42
Mac::generateKey (C++ function), 42
Mac::getMacSize (C++ function), 43
Mac::isKeySet (C++ function), 42
Mac::mac (C++ function), 41
Mac::setMacKey (C++ function), 43
Mac::update (C++ function), 42
Mac::verify (C++ function), 42

O
OTBatchReceiver (C++ class), 59
OTBatchReceiver::transfer (C++ function), 59
OTBatchRInput (C++ class), 59
OTBatchROutput (C++ class), 59
OTBatchSender (C++ class), 59
OTBatchSender::transfer (C++ function), 59
OTBatchSInput (C++ class), 59
OTBatchSOutput (C++ class), 59
OTReceiver (C++ class), 58
OTReceiver::transfer (C++ function), 58
OTRInput (C++ class), 59
OTROutput (C++ class), 59
OTSender (C++ class), 58
OTSender::transfer (C++ function), 58
OTSInput (C++ class), 59

P
PseudorandomFunction::computeBlock (C++ function),

25, 26
PseudorandomFunction::generateKey (C++ function), 26
PseudorandomFunction::getBlockSize (C++ function),

26
PseudorandomFunction::isKeySet (C++ function), 26
PseudorandomFunction::setKey (C++ function), 26
PseudorandomGenerator::generateKey (C++ function),

29
PseudorandomGenerator::getPRGBytes (C++ function),

29
PseudorandomGenerator::isKeySet (C++ function), 30
PseudorandomGenerator::setKey (C++ function), 30
PseudorandomPermutation::invertBlock (C++ function),

27, 28

R
read (C++ function), 16
readSize (C++ function), 16
readWithSizeIntoVector (C++ function), 16

S
setKey (C++ function), 32
SigmaProtocolProver (C++ class), 61
SigmaProtocolProver::processSecondMsg (C++ func-

tion), 62
SigmaProtocolProver::prove (C++ function), 62
SigmaProtocolVerifier (C++ class), 62
SigmaProtocolVerifier::getChallenge (C++ function), 62
SigmaProtocolVerifier::processVerify (C++ function), 62
SigmaProtocolVerifier::sampleChallenge (C++ function),

62
SigmaProtocolVerifier::sendChallenge (C++ function),

62
SigmaProtocolVerifier::setChallenge (C++ function), 62

76 Index

libscapi Documentation, Release 1.0

SigmaProtocolVerifier::verify (C++ function), 62
SigmaProverComputation (C++ class), 63
SigmaProverComputation::computeFirstMsg (C++ func-

tion), 63
SigmaProverComputation::computeSecondMsg (C++

function), 63
SigmaSimulator (C++ class), 63
SigmaSimulator::getSoundnessParam (C++ function), 63
SigmaSimulator::simulate (C++ function), 63
SigmaVerifierComputation (C++ class), 64
SigmaVerifierComputation::getChallenge (C++ func-

tion), 64
SigmaVerifierComputation::sampleChallenge (C++ func-

tion), 64
SigmaVerifierComputation::setChallenge (C++ function),

64
SigmaVerifierComputation::verify (C++ function), 64
SymmetricEnc (C++ class), 44
SymmetricEnc::decrypt (C++ function), 45
SymmetricEnc::encrypt (C++ function), 44
SymmetricEnc::generateKey (C++ function), 45
SymmetricEnc::isKeySet (C++ function), 45
SymmetricEnc::setKey (C++ function), 45

T
TPElement::getElement (C++ function), 31
TrapdoorPermutation::compute (C++ function), 31
TrapdoorPermutation::generateRandomTPElement (C++

function), 32
TrapdoorPermutation::generateUncheckedTPElement

(C++ function), 32
TrapdoorPermutation::hardCoreFunction (C++ function),

31
TrapdoorPermutation::hardCorePredicate (C++ func-

tion), 31
TrapdoorPermutation::invert (C++ function), 31
TrapdoorPermutation::isElement (C++ function), 32

U
update (C++ function), 23

W
write (C++ function), 16
writeWithSize (C++ function), 16

Z
ZKCommonInput (C++ class), 67
ZKPOKProver (C++ class), 67
ZKProver (C++ class), 66
ZKProver::prove (C++ function), 66
ZKProverInput (C++ class), 67
ZKVerifier (C++ class), 66
ZKVerifier::verify (C++ function), 67

Index 77

	Introduction
	Why Should I Use libscapi?
	Architecture

	Installation
	Installing LibSCAPI - Linux
	Installing LibSCAPI - Windows

	Quickstart
	Your First libscapi Application
	Compiling and Running the libscapi Code
	Establishing Secure Communication

	The Communication Layer
	Communication Design
	Setting up communication
	Using an established connection

	Security Levels
	Circuits
	Create the circuit

	Layer 1: Basic Primitives
	Cryptographic Hash
	Pseudorandom Function (PRF)
	Pseudorandom Permutation (PRP)
	Pseudorandom Generator (PRG)
	Trapdoor Permutation
	Discrete Log Group (DLOG)
	Key Derivation Function (KDF)

	Layer 2: Non Interactive Protocols
	Message Authentication Codes
	Symmetric Encryption
	Asymmetric Encryption

	Layer 3: Interactive Protocols
	Oblivious Transfer Protocols
	Sigma Protocols
	Zero Knowledge Proofs and Zero Knowledge Proofs of Knowledge
	Commitment Schemes

	License

