

bitpit Tutorial

This tutorial gives an introduction to how to use bitpit python library and its
features.

This is not a python tutorial. You are expected to have general knowledge in
python before you start this tutorial.

If you are looking for quick guide and do not want to spend much time reading,
have a look at the quick guide section.

Content

	Installation
	Requirements

	Installation

	Quick Guide
	Usage example

	As main script

	Other arguments

	Tutorial

	Download a File

	Display Download Information
	Display the file size

	Display the download speed

	Display the download state

	Automatic Restart

	Specify Path and Rate Limit
	Specify the file path

	Download rate limit

	Additional Tuning
	Connection Timeout

	Chunk Size

	Elegant Output
	Showing information in one line

	Showing the progress bar, percentage and ETA

	bitpit Reference

Indices and tables

	Index

	Module Index

	Search Page

Installation

Requirements

The major requirement of bitpit is python 3. bitpit is a python 3 library and
was never tested in python 2. So first make sure your version of python is 3.

Installation

Make sure you have pip for python 3 installed.

On windows install using pip by running the
command:

pip install bitpit

Or on linux:

pip3 install bitpit

Of course, pip command should be in your PATH environment variable. If you are
using windows there is a good chance pip is not in your PATH. In this case you
should specify the full pip path. Search about how to use pip on windows if you
are having trouble.

Try to import bitpit to be sure it was installed successfully:

>>> import bitpit
>>>

If it is imported without errors, you are ready to use it. You may want to have
a look at one or more of the following documents:

	
	Quick Guide For those who want short and quick highlights and usage

	example.

	
	Download a File This is the start of the library tutorial. It shows

	different library features.

	
	bitpit Reference This is the library reference. All classes and functions

	documentation is here.

Quick Guide

This is a quick guide to use the library. Read it if you want to have a quick
look in the library and do not want to spend much time here.

bitpit is an event driven http download library with automatic resume and other
features. The library is written in an event-driven style similar to GTK+.

Usage example

This is a typical usage example:

import bitpit

#will download this
url = 'https://www.python.org/static/img/python-logo.png'
d = bitpit.Downloader(url) #downloader instance

#listen to download events and call a function whenever an event happens
#print state when state changes
d.listen(
 'state-changed',
 lambda var, old_state: print('download state:', var.state)
)

#print speed in human readable format whenever speed changes
#speed is updated and callback is called every 1 second by default
d.listen(
 'speed-changed',
 lambda var: print('download speed:', *var.human_speed)
)

#register another callback function to the speed change signal
#print percentage downloaded whenever speed changes
d.listen('speed-changed', lambda var: print(int(var.percentage), '%'))

#print total file size in human readable format when the downloader knows the file size
d.listen(
 'size-changed',
 lambda var: print('total file size:', *var.human_size)
)

#done registering callbacks. lets start our download
#the following call will not block. it will start a new download thread
d.start()

#do some other work while download is taking place...

#wait for download completion or error
d.join()

As main script

This module can also be run as a main python script to download a file. You can have a look at the main function for another usage example.

commandline syntax:

python -m bitpit.py <url>

args:

	url: the url to download.

Other arguments

Most of what you can do is done by passing the desired args to
Downloader.__init__(). Here are most of the args you can use:

	url: URL to download

	
	path: The path to download the file at. if not supplied, will guess the file

	name from the URL.

	
	restart_wait: Time to wait in case of error before the download is retried.

	If not supplied, will never retry in case of error.

	
	update_period: The minimum time to wait before emitting speed-changed

	signal. Defaults to 1 second.

	timeout: Connection timeout. Defaults to 10 seconds.

	
	rate_limit: Maximum download bit rate. If not supplied, download without

	speed limit.

Tutorial

In Download a File you will find a more comprehensive bitpit tutorial.

Download a File

So we have bitpit installed and ready. Let’s start using it. In this tutorial we
are going to make a little download program. It is a little bit similar to the
downloader function but we will make it a little bit better.

First, we need to import the library:

import bitpit

Now let’s specify the URL we are going to download. We are going to download
python logo:

url = 'https://www.python.org/static/img/python-logo.png'

Next comes bitpit business. We create a Downloader instance:

dl = bitpit.Downloader(url)

Finally we start the download:

dl.start()
print('Download has started.')

Now the download will start. Notice that Downloader.start() call will not
block. The message Download has started. will be printed immediately before
the download finishes. Then our main thread will end but the downloading thread
will keep running until the file is fully downloaded or an error occures.

If you try the example above, you will see Download has started message
printed on the screen and nothing else. The program will freeze until the
download finishes. Imagine if we have a very big file such as linux mint [http://mirrors.evowise.com/linuxmint/stable/18.3/linuxmint-18.3-cinnamon-64bit.iso]. It will take a long time without us
knowing how much we have downloaded. That is not so convenient isn’t it? We will
look at that later but for now, let’s look at the program we have written so far

import bitpit

#will download this
url = 'https://www.python.org/static/img/python-logo.png'

#this is our downloader
dl = bitpit.Downloader(url)

#start downloading and tell user download has started.
dl.start()
print('Download has started.')

#end of the main thread

In Display Download Information, we will make the program give us information about the download such as
whether it has started or faced an error and also the download speed.

Display Download Information

At the moment we are able to download a file. But we have no information on how
fast our download is and if it is completed or there is some error.

Before we start, here is the tiny program we made previously if you need to
refresh your mind:

import bitpit

#will download this
url = 'https://www.python.org/static/img/python-logo.png'

#this is our downloader
dl = bitpit.Downloader(url)

#start downloading and tell user download has started.
dl.start()
print('Download has started.')

#end of the main thread

Now it is time to make it better.

Display the file size

If we are downloading a file, we probably want to know the file size.
bitpit is written in an event driven style. It is a little similar to GTK
library if you have used it before.
We need to do 2 steps to show the file size. First, we need to define a function
that will be called when the file size is known:

def on_size_changed(downloader):
 print(downloader.size)

This function takes 1 argument: downloader which is the Downloader
instance that we just knew its file size. In the function, we print the
Downloader.size property, which is just the file size in bytes.

Next, we need to tell the downloader to call this function as soon as it knows
the file size. You probably want to do this just before you start the download.
This is done using Downloader.listen() method:

dl.listen('size-changed', on_size_changed)

The Downloader.listen() takes at least 2 arguments. The first is the signal to
listen to. Here we listened to the size-changed signal which is emitted
whenever the downloader gets to know the size of the file being downloaded. The
second argument is the function to call when the signal is emitted. Here we put
the function we defined above.

After this call to Downloader.listen(), our function will be called as soon
as the file size is known. Our full program now becomes as follows:

import bitpit

def on_size_changed(downloader):
 print('The file size is', downloader.size)

#will download this
url = 'https://www.python.org/static/img/python-logo.png'

#this is our downloader
dl = bitpit.Downloader(url)

#listen to signals
#print size as soon as it is known
dl.listen('size-changed', on_size_changed)

#start downloading and tell user download has started.
dl.start()
print('Download has started.')

#end of the main thread

If you notice, the size is expressed in bytes. Showing the size in bytes gives
us a very big number that is difficult for humans to read. It would be easier
for us if we could display the size in Kilobytes or Megabytes. This can be done
by modifying the callback function on_size_changed() to be as follows:

def on_size_changed(downloader):
 print('The file size is', *downloader.human_size)

We just replaced Downloader.size property with Downloader.human_size
property. Downloader.human_size property gives us a 2-element tuple. The
first element is a float representing the size and the second element is a
string suffix with the value KB for kilobytes or MB for megabytes and so on.
In our call to print() function, we unpacked the tuple arguments using
python * operator. If you are not familiar with this, check it out in the python
here [https://docs.python.org/3/tutorial/controlflow.html#unpacking-argument-lists].

When I tried the new callback function, I got the following message printed:

The file size is 9.865234375 KB

We can use python string formatting to make it look better but we will leave it
for later.

Display the download speed

Other than the size, we want to know the download speed. Similar to the size, we
define a callback function and listen to a signal. The function we will define
will print the speed just like the size. The property we will use is
Downloader.speed. Also like the size, there is a Downloader.human_speed.
We will use Downloader.human_speed:

def on_speed_changed(downloader):
 print('The speed is', *downloader.human_speed)

The signal we want to listen to this time is speed-changed:

dl.listen('speed-changed', on_speed_changed)

The behaviour of speed-changed signal is a little bit different than
size-changed. When the download starts, the signal is emitted every 1 second
. It will keep being emitted periodically as long as the download is running. In
our program, the signal will not work very well because the file size is very
small. Try to download linux mint [http://mirrors.evowise.com/linuxmint/stable/18.3/linuxmint-18.3-cinnamon-64bit.iso] and you will see the signal working
properly.

There are other things we can do to improve our program regarding
speed-changed signal. For example, we can show how much we have downloaded
so far in the callback function because we probably have downloaded something
since the last time the signal was emitted. We can check
Downloader.downloaded and Downloader.human_downloaded to know that.
Furthermore, our callback will be printing a message every second which makes
the terminal full of confusing text. We can make our output better. However, we
will leave it to the end of the tutorial. For now we will stick to what we have
done so far.

Now our program has become as follows:

import bitpit

def on_size_changed(downloader):
 print('The file size is', downloader.size)

def on_speed_changed(downloader):
 print('The speed is', *downloader.human_speed)

#will download this
url = 'https://www.python.org/static/img/python-logo.png'

#this is our downloader
dl = bitpit.Downloader(url)

#listen to signals
#print size as soon as it is known
dl.listen('size-changed', on_size_changed)

#print speed periodically
dl.listen('speed-changed', on_speed_changed)

#start downloading and tell user download has started.
dl.start()
print('Download has started.')

#end of the main thread

Just as a final note in this section, you can change the time between
speed-changed signal emissions in Downloader.__init__() when you create
the downloader instance by passing the desired number of seconds in the
update_period argument. Check the class documentation for more details.

Display the download state

Another useful information we need in our download is its state. For example,
did it start or not? Is it completed or still in progress? Did it stop normally
or because of an error? This is what we are going to do.

Similar to the size and speed, we define a callback function and listen to a
signal:

def on_state_changed(downloader, old_state):
 print('The state changed to:', downloader.state)

dl.listen('state-changed', on_state_changed)

Notice that state-changed signal takes at least 2 positional argumetns.
The Downloader that changed state and the old state the downloader was on.
The state-changed signal is emitted whenever the download is started,
stopped, or completed. To know the new state, check the Downloader.state
property. It can be one of the following:
* pause: The download is not started or started then stopped by a calling
Downloader.stop() method.
* start: The download just started but is not download anything yet.
* download: The download is running and in progress.
* error: The download stopped bacause of an error.
* complete: The download completed.

Our program now has become like this:

import bitpit

def on_size_changed(downloader):
 print('The file size is', downloader.size)

def on_speed_changed(downloader):
 print('The speed is', *downloader.human_speed)

def on_state_changed(downloader, old_state):
 print('The state changed to:', downloader.state)

#will download this
url = 'https://www.python.org/static/img/python-logo.png'

#this is our downloader
dl = bitpit.Downloader(url)

#listen to signals
#print size as soon as it is known
dl.listen('size-changed', on_size_changed)

#print speed periodically
dl.listen('speed-changed', on_speed_changed)

#print state
dl.listen('state-changed', on_state_changed)

#start downloading and tell user download has started.
dl.start()
print('Download has started.')

#end of the main thread

In Automatic Restart, we will make our downloader automatically resume the download when the
download is interrupted due to an error.

Automatic Restart

So far, our program freezes until the download stops. However, when the program
ends we are not sure whether the file is stopped because it is completely
downloaded or because an error occured. What if an error occured and we want to
restart the download again? This is easy. We just pass restart_wait argument
to Downloader.__init__():

dl = bitpit.Downloader(url, restart_wait=30)

This argument decides the time to wait before the downloader retries downloading
when an error occures. It defaults to -1 if not given which means do not restart
even after an error. Because we gave it the value 30 here, anytime an error
happens, the downloader will wait for 30 seconds and then retry again. Try to
download linux mint [http://mirrors.evowise.com/linuxmint/stable/18.3/linuxmint-18.3-cinnamon-64bit.iso] and shutdown your internet connection. Here
is the output I got:

The file size is 1899528192
The speed is 0 B/s
The state changed to: start
The speed is 207.0622560278128 KB/s
The speed is 474.6406851817469 KB/s
The speed is 0 B/s
The state changed to: error
The file size is 1899528192
The speed is 0 B/s
The state changed to: start
The speed is 506.2438224533826 KB/s
The speed is 594.6743846283302 KB/s

You can see the state has changed to error after I shutdown my internet but
the program did not terminate. After 30 seconds, the state changed again to
start and the download continued. Now our program will only terminate when
the download is successfully completed.

One last note, some connection errors are perminant. For instance, if you get a
404 NOT FOUND error, then no matter how many times you try, the error will keep
happening. bitpit does not handle that and will keep trying to download
regardless of the error. You can check the error that happened by looking at the
Downloader.last_exception property. You will most probably get an exception
from requests.exceptions module.

We have only changed 1 line in this lesson. Now our program so far has become:

import bitpit

def on_size_changed(downloader):
 print('The file size is', downloader.size)

def on_speed_changed(downloader):
 print('The speed is', *downloader.human_speed)

def on_state_changed(downloader, old_state):
 print('The state changed to:', downloader.state)

#will download this
url = 'https://www.python.org/static/img/python-logo.png'

#this is our downloader
dl = bitpit.Downloader(url, restart_wait=30)

#listen to signals
#print size as soon as it is known
dl.listen('size-changed', on_size_changed)

#print speed periodically
dl.listen('speed-changed', on_speed_changed)

#print state
dl.listen('state-changed', on_state_changed)

#start downloading and tell user download has started.
dl.start()
print('Download has started.')

#end of the main thread

We are getting closer to the end.

In Specify Path and Rate Limit, we will specify the path and name to
save our file instead of saving it in the current directory with the default
name. We will also start limiting the download speed instead of eating up all
our internet bandwidth before my brother gets angry.

Specify Path and Rate Limit

So far our program gives us most of the information we need and also restarts
when an error occures. There are 2 things we will do in this lesson: First we
will specify where we want to save our file and second we want to limit the
download speed so that the internet does not become slow for the rest of the
family. I grouped the two in 1 lesson because both are straight forward.

Specify the file path

We want to decide where our file will be saved. This is done using the path
argument to Downloader.__init__():

dl = Downloader(url, path='~/Desktop/logo.png', restart_wait=30)

The above instruction tells the downloader to save the file in my desktop with
the name logo.png. In case you do not know what ~ means in a path, it
means the user home directory in linux systems. This will probably not work on
windows. We can make a portable way that works in both linux and windows by
importing and using pathlib standard python library:

dl = Downloader(
 url,
 path=pathlib.Path.home() / 'Desktop' / 'logo.png',
 restart_wait=30
)

If you are not familiar with pathlib, then you should have a look at this
awsome library.

You notice that in our first modification above, we supplied a python string in
the path argument. However, in our second modification, we gave a
pathlib.Path object. The argument path can take both. In fact, you can
give anything that pathlib.Path.__ini__() supports. If you want, you can also
give a binary file-like object and the data will be saved in it.

Download rate limit

To limit the download rate, you simply give rate_limit argument to
Downloader.__init__():

dl = Downloader(
 url,
 path=pathlib.Path.home() / 'Desktop' / 'logo.png',
 restart_wait=30,
 rate_limit=2048
)

In our example here, we made our maximum download speed 2 KB/s. Let’s see the
program output now:

The file size is 10102
The speed is 0 B/s
The state changed to: start
The speed is 1.9989241550312336 KB/s
The speed is 1.9988802572634587 KB/s
The speed is 1.9987825036005515 KB/s
The speed is 1.9989528185814844 KB/s
The file size is 10102
The speed is 0 B/s
The state changed to: complete

You can see that the download speed became very close to 2 KB/s (or a little
less). However, note that this may not work as expected for small files.

Our full program so far became:

import bitpit
import pathlib

def on_size_changed(downloader):
 print('The file size is', downloader.size)

def on_speed_changed(downloader):
 print('The speed is', *downloader.human_speed)

def on_state_changed(downloader, old_state):
 print('The state changed to:', downloader.state)

#will download this
url = 'https://www.python.org/static/img/python-logo.png'

#this is our downloader
dl = bitpit.Downloader(
 url,
 path=pathlib.Path.home() / 'Desktop' / 'logo.png',
 restart_wait=30,
 rate_limit=2048
)

#listen to signals
#print size as soon as it is known
dl.listen('size-changed', on_size_changed)

#print speed periodically
dl.listen('speed-changed', on_speed_changed)

#print state
dl.listen('state-changed', on_state_changed)

#start downloading and tell user download has started.
dl.start()
print('Download has started.')

#end of the main thread

In Additional Tuning, we will do our final tunes to our downloader.

Additional Tuning

Now we have most of our work done. We are going to look into a few minor
additional things we can do to modify our downloader behaviour.

Connection Timeout

We can change the connection timeout settings by giving the timeout argument
to Downloader.__init__(). The default value is 10 seconds. That is relatively
small. Let’s make it 1 minute:

dl = bitpit.Downloader(
 url,
 path=pathlib.Path.home() / 'Desktop' / 'logo.png',
 restart_wait=30,
 rate_limit=2048,
 timeout=60
)

Chunk Size

We can also supply the download chunk_size to Downloader.__init__().
The chunk size is the maximum number of bytes to download in a single network
read operation. You do not really need to change this at all but just in case
you want to change it. Having very low or very high values may slightly affect
download speed. There is no hard rule to figure out the best other than trying.
In my computer, the default value worked best. The default value is 4 KB. For
practice, let’s change it to 1 KB:

dl = bitpit.Downloader(
 url,
 path=pathlib.Path.home() / 'Desktop' / 'logo.png',
 restart_wait=30,
 rate_limit=2048,
 timeout=60,
 chunk_size=1024
)

The chunk_size cannot be greater than rate_limit. If it is greater,
bitpit will force it to be equal to rate_limit.

Here is our program so far:

import bitpit
import pathlib

def on_size_changed(downloader):
 print('The file size is', downloader.size)

def on_speed_changed(downloader):
 print('The speed is', *downloader.human_speed)

def on_state_changed(downloader, old_state):
 print('The state changed to:', downloader.state)

#will download this
url = 'https://www.python.org/static/img/python-logo.png'

#this is our downloader
dl = bitpit.Downloader(
 url,
 path=pathlib.Path.home() / 'Desktop' / 'logo.png',
 restart_wait=30,
 rate_limit=2048,
 timeout=60,
 chunk_size=1024
)

#listen to signals
#print size as soon as it is known
dl.listen('size-changed', on_size_changed)

#print speed periodically
dl.listen('speed-changed', on_speed_changed)

#print state
dl.listen('state-changed', on_state_changed)

#start downloading and tell user download has started.
dl.start()
print('Download has started.')

#end of the main thread

Now we have only one thing left to do. If you have noticed, our output is ugly.

In Elegant Output we are going to make it pretty. We will also introduce some
useful things in bitpit.

Elegant Output

We are finally in the last lesson. Let’s make our output beautiful.

Our goal will be to make the output look like this:

<state> | <File size> | <Downloaded> | <speed> [<progress bar>] <percentage>% <eta>

We have all the information in 1 line seperated by a pipe character “|”. The
state will show us in real time if there is any error. The file size, downloaded
bytes and speed will be in human readable form so that we can easily read it.
The progress bar will indicate how much portion we have downloaded so far. The
percentage will indicate the same as the progress bar but in numbers. Finally,
eta is the estimated time to finish the download. The information will be
printed in only 1 line. If it changes, we will make the information be updated
in the same line instead of printing so many lines like we did in the
on_speed_changed callback.

Showing information in one line

First, instead of having a callback function for each signal, let’s make 1
callback that will update all the information whenever 1 thing changes. Let’s
remove on_size_changed, on_speed_changed and on_state_changed
callbacks and write 1 callback to print the state, size, downloaded,
and speed instead:

def on_anything_changed(downloader, old_state=None):
 state = downloader.state
 size = '{} {}'.format(*downloader.human_size)
 downloaded = '{} {}'.format(*downloader.human_downloaded)
 speed = '{} {}'.format(*downloader.human_speed)

 text = '{} | {} | {} | {}'.format(state, size, downloaded, speed)
 print(text)

We will do the progress bar, the percentage and the estimated download time in a
later section.

Next, we modify all Downloader.listen() calls to register the new function:

#listen to everything
dl.listen('size-changed', on_anything_changed)
dl.listen('speed-changed', on_anything_changed)
dl.listen('state-changed', on_anything_changed)

Now our callback will be called when the state changes, when we know the
size and periodically when speed-change signal is emitted. Notice that we
also printed number of bytes downloaded which we did not do in previous
lessons. Now our output will be something like this:

pause | 9.865234375 KB | 0 B | 0 B/s
start | 9.865234375 KB | 0 B | 0 B/s
start | 9.865234375 KB | 0 B | 0 B/s
start | 9.865234375 KB | 2.0 KB | 1.9990254031527928 KB/s
start | 9.865234375 KB | 4.0 KB | 1.9989961600987338 KB/s
start | 9.865234375 KB | 6.0 KB | 1.9988544205541783 KB/s
start | 9.865234375 KB | 8.0 KB | 1.9987502773920875 KB/s
start | 9.865234375 KB | 9.865234375 KB | 1.9987502773920875 KB/s
complete | 9.865234375 KB | 9.865234375 KB | 0 B/s
complete | 9.865234375 KB | 9.865234375 KB | 0 B/s

Ok. We still have ugly output. First, let’s make all numbers rounded to 2
decimal places. In the callback, we will modify our format strings:

state = downloader.state
size = '{:0.2f} {}'.format(*downloader.human_size)
downloaded = '{:0.2f} {}'.format(*downloader.human_downloaded)
speed = '{:0.2f} {}'.format(*downloader.human_speed)

Second, we do not want to print multiple lines. We want to print only 1 line.
Let’s use the print function arguments to stay on the same line and use the
character \r to update it:

text = '\r{} | {} | {} | {}'.format(state, size, downloaded, speed)
print(text, end='', flush=True)

Now our callback will not print many lines. Instead, it will go back to the
beginning of the line and print the information on the same line erasing
anything previously shown.

Furthermore, let’s modify the print call to print spaces to fill all the
line with 79 characters just to erase the whole line in case we have garbage out
of our text width:

print(text.ljust(79), end='', flush=True)

Our callback now becomes:

def on_anything_changed(downloader, old_state=None):
 state = downloader.state
 size = '{:0.2f} {}'.format(*downloader.human_size)
 downloaded = '{:0.2f} {}'.format(*downloader.human_downloaded)
 speed = '{:0.2f} {}'.format(*downloader.human_speed)

 text = '\r{} | {} | {} | {}'.format(state, size, downloaded, speed)
 print(text.ljust(79), end='', flush=True)

Showing the progress bar, percentage and ETA

Let’s start with the progress bar. We use Downlaoder.bar() function to
generate a progress bar. The function takes 2 optional arguments. The first is
width which is the length in characters of the progress bar. It defaults to
30. Let’s make it 10. The second is char which is the character to
use to fill the bar. It defaults to ‘=’. Let’s make this a dash instead:

bar = downloader.bar(width=10, char='-')

Our callback now becomes:

def on_anything_changed(downloader, old_state=None):
 state = downloader.state
 size = '{:0.2f} {}'.format(*downloader.human_size)
 downloaded = '{:0.2f} {}'.format(*downloader.human_downloaded)
 speed = '{:0.2f} {}'.format(*downloader.human_speed)
 bar = downloader.bar(width=10, char='-')

 text = '\r{} | {} | {} | {} [{}]'.format(
 state,
 size,
 downloaded,
 speed,
 bar
)
 print(text.ljust(79), end='', flush=True)

Notice how we enclosed the progress bar in brackes within our format string.

Percentage and ETA are straight forward. We use Downloader.percentage and
Downloader.eta properties of the downloader:

percentage = int(downloader.percentage)
eta = downloader.eta

Downloader.percentage property returns the percentage (from 0 to 100) as a
float. we converted it to int to remove any digits after the decimal
point to reduce user confusion. eta returns a datetime.timedelta instance
which tells us the estimated time remaining until the download is completed.

Now our full callback function becomes:

def on_anything_changed(downloader, old_state=None):
 state = downloader.state
 size = '{:0.2f} {}'.format(*downloader.human_size)
 downloaded = '{:0.2f} {}'.format(*downloader.human_downloaded)
 speed = '{:0.2f} {}'.format(*downloader.human_speed)
 bar = downloader.bar(width=10, char='-')
 percentage = int(downloader.percentage)
 eta = downloader.eta

 text = '\r{} | {} | {} | {} [{}] {}% {}'.format(
 state,
 size,
 downloaded,
 speed,
 bar,
 percentage,
 eta
)
 print(text.ljust(79), end='', flush=True)

And now, this is our awesome program:

import bitpit
import pathlib

def on_anything_changed(downloader, old_state=None):
 state = downloader.state
 size = '{:0.2f} {}'.format(*downloader.human_size)
 downloaded = '{:0.2f} {}'.format(*downloader.human_downloaded)
 speed = '{:0.2f} {}'.format(*downloader.human_speed)
 bar = downloader.bar(width=10, char='-')
 percentage = int(downloader.percentage)
 eta = downloader.eta

 text = '\r{} | {} | {} | {} [{}] {}% {}'.format(
 state,
 size,
 downloaded,
 speed,
 bar,
 percentage,
 eta
)
 print(text.ljust(79), end='', flush=True)

#will download this
url = 'https://www.python.org/static/img/python-logo.png'

#this is our downloader
dl = bitpit.Downloader(
 url,
 path=pathlib.Path.home() / 'Desktop' / 'logo.png',
 restart_wait=30,
 rate_limit=2048,
 timeout=60,
 chunk_size=1024
)

#listen to everything
dl.listen('size-changed', on_anything_changed)
dl.listen('speed-changed', on_anything_changed)
dl.listen('state-changed', on_anything_changed)

#start downloading and tell user download has started.
dl.start()
print('Download has started.')

#end of the main thread

The output I got from this program is below:

start | 9.87 KB | 4.00 KB | 2.00 KB/s [----] 40% 0:00:02.934069

You can see that fractions of a second are shown in eta which is not very
nice. However, I will leave this to you to fix.

Finally we have an awesome download program. Of course, there are many things
we can improve on it. But I believe this form is enough to explain bitpit
features and how to use it.

You may want to have a look at bitpit Reference for complete documentation of
the library.

THE END…

bitpit Reference

	Date

	2019-10-13

	Version

	1.2.0

	Authors

	
	Mohammad Alghafli <thebsom@gmail.com>

Event driven http download library with automatic resume and other features.
The goal of this module is to ease the process of downloading files and resuming
interrupted downloads. The library is written in an event-driven style similar
to GTK. The module defines the class Downloader. Instances of this class
download a file from an http server and call callback functions whenever an
event happens ralated to this download. Examples of events are download state
change (start, pause, complete, error) and download speed change. The following
is a typical usage example:

import bitpit

#will download this
url = 'https://www.python.org/static/img/python-logo.png'
d = bitpit.Downloader(url) #downloader instance

#listen to download events and call a function whenever an event happens
#print state when state changes
d.listen('state-changed', lambda var: print('download state:', var.state))

#print speed in human readable format whenever speed changes
#speed is updated and callback is called every 1 second by default
d.listen('speed-changed', lambda var: print('download speed:', *var.human_speed))

#register another callback function to the speed change signal
#print percentage downloaded whenever speed changes
d.listen('speed-changed', lambda var: print(int(var.percentage), '%'))

#print total file size in human readable format when the downloader knows the file size
d.listen('size-changed', lambda var: print('total file size:', *var.human_size))

#done registering callbacks. lets start our download
#the following call will not block. it will start a new download thread
d.start()

#do some other work while download is taking place...

#wait for download completion or error
d.join()

This module can also be run as a main python script to download a file. You can
have a look at the main function for another usage example.

commandline syntax:

python -m bitpit.py [-r rate_limit] [-m max_running] url [url ...]

	args:

	
	url: one or more urls to download.

	-r rate_limit: total rate limit for all running downloads.

	-m max_running: maximum number of running downloads at any single time.

	
class bitpit.Downloader(url, path=None, dir_path=False, rate_limit=0, timeout=10, update_period=1, restart_wait=-1, chunk_size=4096)

	downloader class. instances of this class are able to download files from an
http or https server in a dedicated thread, pause download and resume
download. it subclasses Emitter.

in addition to listen and unlisten, you probably want to use the
following methods:

	self.start()

	self.stop()

	self.join()

	self.bar()

properties:

	name

	type

	access

	description

	url

	str

	RW

	url to download. cannot
be set if is_alive is
True.

	path

	pathlib.Path or
io.BufferedIOBase

	RW

	path to download at. if
an instance of
pathlib.Path, file
will be opened and
content will be written
to it. the file is
closed whenever the
download stops
(completion, pause or
error). if it is an
instance of
io.BufferedIOBase,
content is written to
the object and the
object is never closed.
cannot be set if
is_alive property is
True.

	restart_wait

	int

	RW

	number of seconds to
wait before restarting
the download in case of
error. setting it when
a restart thread is
active will restart the
thread again.

	restart_time

	datetime.datetime
or None

	R

	the time when the
download will be
restarted. None if
there is no scheduled
restart.

	chunk_size

	int

	RW

	number of bytes to write
in a single write
operation. ok to keep
default value. when set,
new value takes effect
in the next time the
download is started.

	update_period

	int

	RW

	speed-changed signal
is emitted every this
number of seconds.

	timeout

	int

	RW

	download will interrupt
when no bytes are
recieved for this number
of seconds. when set,
new value takes effect
in the next time the
download is started.

	rate_limit

	int

	RW

	speed limit of the
downloads in bytes per
second. may not work well
with small files.

	human_rate_limit

	tuple

	R

	same as rate_limit but
as human readable tuple.
eg. (100.0, ‘KB/s’).

	size

	int

	R

	total size of the file
being downloaded in
bytes. -1 if unknown.

	human_size

	tuple

	R

	same as size but as
human readable tuple.

	downloaded

	int

	R

	bytes downloaded so far.

	human_downloaded

	tuple

	R

	same as downloaded but
as human readable tuple.

	remaining

	int

	R

	bytes remaining to
complete the download.

	human_remaining

	tuple

	R

	same as remaining but
as human readable tuple.

	speed

	int

	R

	download speed in bytes
per second.

	human_speed

	tuple

	R

	same as speed but as
human readable tuple.

	ratio

	float

	R

	downloaded / size.
-1.0 if unknown.

	percentage

	float

	R

	100 * ratio

	eta

	datetime.timedelta

	R

	estimated time remaining
to complete the
download.

	state

	str

	R

	
	one of the following:

	
	start: trying to
connect.

	download:
downloading now.

	pause: stopped.

	error: stopped
because of an error.

	complete: completed.

	is_alive

	bool

	R

	True if download thread
is running. False
otherwise.

	is_restarting

	bool

	R

	True if restart thread
is running. False
otherwise.

	last_exception

	BaseException or
None

	R

	last exception that
occured during download.
None if no exception
occured yet.

	signals:

	
	
	state-changed: emitted when state property changes. its callback

	takes 2 positional arguments, the Downloader instance which
emitted the signal and the old state the Downloader was in.

	
	size-changed: emitted when size property changes. its callback takes

	1 positional argument, the Downloader instance which emitted the
signal.

	
	speed-changed: emitted when speed property changes. its callback

	takes 1 positional argument, the Downloader instance which emitted
the signal.

	
	url-changed: emitted when url property changes. its callback takes 1

	positional argument, the Downloader instance which emitted the
signal.

	
	path-changed: emitted when path property changes. its callback takes

	1 positional argument, the Downloader instance which emitted the
signal.

	
	restart-time-changed: emitted when restart_time property changes.

	its callback takes 1 positional argument, the Downloader instance
which emitted the signal.

	
	rate-limit-changed: emitted when rate_limit property changes. its

	callback takes 1 positional argument, the Downloader instance
which emitted the signal.

	
bar(width=30, char='=', unknown='?')

	returns a string of width width representing a progress bar.
the string is filled with char and spaces. the number of char
represents the part of the file downloaded (e.g., if half of the file
is downloaded, half of the string will be filled with char). the rest
of the string will be filled with spaces. if the ratio of downloaded
data is not known, returns a string of width width filled with the
unknown argument.

	args:

	
	width (int): number of characters in the bar.

	char (str) character to fill the bar with.

	
	unknown (str): character to fill the bar if the ratio downloaded is

	unknown.

	returns:

	a string containing width characters filled with char and spaces
to show the ratio of the downloaded bytes to the total file size.

	examples:

	if the width is 8 and 25% of the file is downloaded, the
returned string will be ‘== ‘

if the width is 8 and the ratio downloaded is not known, the
returned string will be ‘????????’

	
join(timeout=None)

	waits until the downloading thread terminates for any reason (download
completion, error or pause). check self.state after join if you want
to know the state of the download.

	args:

	
	
	timeout (None or int) the timeout for the join operation. defaults

	to None meaning no timeout.

	
restart(wait=None)

	schedules a download restart and returns. it is called when an error
occures during download and self.restart_wait property >= 0.

	args:

	
	
	wait (float or None): seconds to wait before the restart. if None,

	uses self.restart_wait.

	
start()

	starts a downloading thread. if self.path has data, the download will
resume and bytes will be appended to the end of the file. does nothing
if the downloader is already started. if there is a scheduled restart,
it will be cancelled.

	
stop()

	stops downloading thread. does nothing if the downloader is already
stopped. if there is a scheduled restart, it will be cancelled.

	
update_size()

	sends a head request to get the size of the file update self.size.

	
class bitpit.Emitter

	a base class for classes that implement event driven programming. a derived
class should define the class attribute __signals__ which is a sequence of
its valid signals.

	
emit(signal, *args)

	calls all callback functions previously registered for the signal by
previous calls to self.listen(). emitting a signal not present
in __signals__ class property raises KeyError. exceptions raised by
the callback function are printed to stderr and ignored.

	args:

	
	signal (str): the signal to call its callbacks.

	
	args: positional arguments to be passed to the callbacks. args

	that were passed to self.listen() will be after args that
are passed to this method.

	
listen(signal, func, *args, **kwargs)

	registers the callback function func for the signal signal. whenever
the signal is emitted, the callback function will be called with 1
argument which is the object that emitted the signal. listening to a
signal not present in class attribute __signals__ raises KeyError.
registering a callback function multiple times calls the function that
number of times when the signal is emitted.

	args:

	
	signal (str): the signal to listen to.

	func (a callable): the callback function.

	args: positional arguments to be passed to the callback.

	kwargs: keyword arguments to be passed to the callback.

	
unlisten(signal, func, *args, **kwargs)

	unregisters the callback function func for the signal signal.
unlistening from an unknown signal raises KeyError. unlistening a
callback which was not passed to listen method previously raises a
ValueError. unlistening a call back will remove it from callback list
only once. if the callback was passed to self.listen() multiple times,
it must be unlistened that number of times to be completely removed from
the callback list.

	args:

	
	signal (str): the signal to unlisten from.

	func (a callable): the callback function.

	args: args that were passed to self.listen().

	kwargs: kwargs that were passed to self.listen().

	
class bitpit.Manager(max_running=0, rate_limit=0, restart_wait=30, **kwargs)

	download manager class. multiple urls can be added to it. you can specify
the maximum number of downloads that run at a single time and the manager
will start or stop downloads to reach and not exceed this number. you can
also specify the total download rate limit and the manager class will
equally divide the speed over the running downloads.

the Manager class subclasses Emitter and emits signals when a
download is added or removed.

properties:

	name

	type

	access

	description

	rate_limit

	int

	RW

	rate limit for all running downloads. it will
be divided equally over the them. a value
<= 0 means no rate limit.

	max_running

	int

	RW

	maximum running downloads at a single time.
if the number of started downloads exceed
this number, the manager will stop some
downloads. if the number is less than this
number, the manager will start some
downloads. a value <= 0 means no limit.

	restart_wait

	float

	RW

	minimum time before the manager starts the
same download. even if max_running is not
reached, if restart_wait has not passed
since the download last stopped, the download
not started immediately. the manager will
wait until this number of seconds has passed
then start the download. this is to prevent
frequent restarts in case of network failure.

	kwargs

	dict

	RW

	keyword arguments to added downloads when
creating an instance of Downloader using
self.add()

	downloads

	list

	R

	downloads added to this manager. a list
containing Downloader instances.

	signals:

	
	
	add: emitted when a new Downloader is added. the signal’s callbacks

	take 2 positional arguments, the Manager instance that emitted the
signal and the Downloader that was just added. the added
Downloader can be found in self.downloads.

	
	remove: emitted when a Downloader is removed. the signal’s callbacks

	take 2 positional arguments, the Manager instance that emitted the
signal and the Downloader that was just removed. the removed
Downloader can no longer be found in self.downloads.

	
	property-changed: emitted when rate_limit, max_running,

	restart_wait or kwargs property is changed.

	
add(d)

	add a new download to the manager.

	args:

	
	
	d (str or Downloader): the url or Downloader instance to

	add. if d type is str, a new Downloader instance is
created with arguments taken from self.kwargs property.

	returns:

	the Downloader instance added.

	
remove(d)

	remove a previously added download then emits remove signal. if the
download is running, it is not stopped.

	args:

	
	d (Downloader): the downloader to remove.

	
start()

	start download manager thread. after a call to this method, the manager
will start checking added downloads to start, stop and change rate limit
when necessary.

	
stop()

	stop the manager thread.

	
stop_all()

	pause all currently running downloads. the manager thread is not
stopped. if you want to stop the manager and all downloads, call
self.stop() first.

	
update()

	tell the manager thread to check pending downloads to see if there is
need to start, stop or change rate limit to some of them. this is called
automatically when the state of any added download changes and when
manager properties are changed. you do not need to call it.

	
bitpit.human_readable(n, digits=3)

	return a human readable number of bytes.

	args:

	
	n (float): the number to return as human readable.

	digits (int): the number of digits before the decimal point.

	returns:

	
	tuple:

	
	(float) human readable number or None if n is None.

	(str) suffix or None if n is None.

	
bitpit.main(urls, rate_limit='0', max_running=5)

	downloads the given urls until done downloading them all. displays
statistics about downloads in the following format:
s | speed | downloaded | percent | eta | name

in the above format, the first item s is the first letter of the state of
the download. for example, for complete downloads, that would be the
letter c. Similarly, e would be for error and f for fatal error.
speed is the download speed in human readable format. downloaded is the
number of downloaded bytes in human readable format. percent is percentage
downloaded. eta is estimated time to complete the download. name is the
name of the file being downloaded or part of the name if the name is very
long.

	args:

	
	urls: the urls to download.

	rate_limit: total rate limit for all downloads

	max_running: maximum running downloads at any given time

 Python Module Index

 b

 		 	

 		
 b	

 	
 	
 bitpit	

Index

 A
 | B
 | D
 | E
 | H
 | J
 | L
 | M
 | R
 | S
 | U

A

 	
 	add() (bitpit.Manager method)

B

 	
 	bar() (bitpit.Downloader method)

 	
 	bitpit (module)

D

 	
 	Downloader (class in bitpit)

E

 	
 	emit() (bitpit.Emitter method)

 	
 	Emitter (class in bitpit)

H

 	
 	human_readable() (in module bitpit)

J

 	
 	join() (bitpit.Downloader method)

L

 	
 	listen() (bitpit.Emitter method)

M

 	
 	main() (in module bitpit)

 	
 	Manager (class in bitpit)

R

 	
 	remove() (bitpit.Manager method)

 	
 	restart() (bitpit.Downloader method)

S

 	
 	start() (bitpit.Downloader method)

 	(bitpit.Manager method)

 	
 	stop() (bitpit.Downloader method)

 	(bitpit.Manager method)

 	stop_all() (bitpit.Manager method)

U

 	
 	unlisten() (bitpit.Emitter method)

 	
 	update() (bitpit.Manager method)

 	update_size() (bitpit.Downloader method)

 _static/ajax-loader.gif

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

_static/file.png

nav.xhtml

 Table of Contents

 		
 bitpit Tutorial

 		
 Installation

 		
 Requirements

 		
 Installation

 		
 Quick Guide

 		
 Usage example

 		
 As main script

 		
 Other arguments

 		
 Tutorial

 		
 Download a File

 		
 Display Download Information

 		
 Display the file size

 		
 Display the download speed

 		
 Display the download state

 		
 Automatic Restart

 		
 Specify Path and Rate Limit

 		
 Specify the file path

 		
 Download rate limit

 		
 Additional Tuning

 		
 Connection Timeout

 		
 Chunk Size

 		
 Elegant Output

 		
 Showing information in one line

 		
 Showing the progress bar, percentage and ETA

 		
 bitpit Reference

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

