Bit Recovery Documentation
Release 1.2.2

Dirk Roorda

Sep 27,2017

Contents

1 ABOUT 3
1.1 Data in various stages of decay and salvation 3
1.2 Account. e e e e 7
1.3 Contents o o e e e e e e e e e e 7
2 checksum.pl 9
2.1 Description e e e e e e e e e 9
22 Usage e 9
23 Generating i e e e e e e e 10
2.4 Verifying . . . o L e e e e e e e e e e e 10
2.5 Repairing o i e e e e e e e e e 11
2.6 ReStOriNg o e e e e e e e e e 11
2.7 EXECULING . .« . o v ot e e e e e e e e e e e e e e e e e 11
2.8 DIagnostiCs it e e e e e e 11
29 Author e e 12
2.10 Configuration o o e e e e e e e e e e e e e e e e 12
2.11 Implementationdetails L e 12
3 perfset.pl 15
3.1 DeSCrIPtion . . . v v v v e 15
3.2 USAZE .« v v e e e e e e e e e e e e e 15
4 corrupt.pl 17
4.1 DesCription v v v e e e e e e e e e e e e e e e e e e e 17
42 USAZE . . v v i e e e e e e e e e 17
5 gather.pl 19
5.1 DesCription v v i e e e e e e e e e e e e e e e 19
52 USage o e e 19
6 Indices and tables 21

Bit Recovery Documentation, Release 1.2.2

pg.orig.chk

DCABBD31 CBSFBO44 BDO4FAF@ 2F608344 EBBS3D2E
780 | 83857234 FDDCSEGA CTDSEFCS 36779838 20808CACE
720 | ADDEFF49 AGEESSB3 94890517 11C7D966 2ABBI7ED
748 | B4OESTAG 82514B4A DB2C21CO 7ICE2BCT 81586100
760 | 5CC7A171 BCFIED4B EF708927 92603FR6 EBO4114A
7B0 | A70BA413 AAE44D16 1E2CD457 BBF2BECE FABB4B17
B89 | 51C57FBA A3GBBEO3 FF1SDCB2 BEAZEE4E EBDDIDTS
B20 | CB4CFD4D 4EAGFABC SBEDGDAE 92277C6B ADAF4AS4
B40 | 56ARACA2 51457A67 2AFBO21C 90441939 947CA5D5
B6@ | C4D982F@ FBEBC777 6275CCEA GLF15ED7 GDTAGACF
BBO | (3139648 B7CE91EB 48C51AD3 691311C8 FFO45ATE
080 | C509BBER 286CAC1D 62659186 BD2B7103 AB1ASABD
920 | DI994AAC 28FEBCIA 4CDACD24 1FFBEDA7 BA1496EY
940 | 2A7AA1E4 4BGCABAB 2ABRUABA GIBBE207 2F44CAE1
960 | 238D45DE 7F231457 ABOFFBEC F5@2C7AF 92354903
o648 DAASDE DB328CF3 EDASDEST
1008 | AAAE2202 FA1A3IDEA B22F78A4 4756EGBF GBAGOSER
1820 | BFBA1173 D9BB1C2@ BA4FCATA 4933AFFE 229B4767
1848 | GA26BA2C B4FACS95 96G29E24 BOCIS4ER BAISDDLS
1860 | GFEECAB2 232(746@ GETATBBG ABAO4DAD 52AEE19C
1088 | FEICF4ED BB49FDBE FA15783E ABBBDEDD 1BDBEFBT
1108 | BDE2EBD2 94@6D396 2BF1A630 5627ECAR 46261847
1128 | 937C5AFA 970DBCCF4 FBTER79D BCE7AOC3 4E9FB4BA
1148 | BFO137FC 67324A1B 3DBIC4ET C1BEDBAY 4FEBADEB
1168 | 3F1865C9 FBC7C173 667FB3DA GBABGFCF 97AABFF2
1188 | 92852846 B25DC26@ BBD4C@F4 FFAFAET4 COSBEG46
12008 | BECA734B 0431COBE 798BS260 4BACRE17 C18832CB
1228 | 2FBC566@ F15DB299 4@FSDB3A A2554A1D CFI77C4A
1248 | B7A45C3C 144438EB BC16GEBA AFCGEFEY E4ESE326
1260 | 7720387 A7C935B6 B25B0825 99E53I20E E3357851

DCABBD31 CBSFBD44 BDO4FAF@ 2F60A344 EBBSID2A [
788 | 83857234 FDDCSEGA@ C7DSEFCS 36779838 20808CACE
728 | ADDGFF49 AGEESSB3 94890517 11C7D966 2ABBI76D
748 | B4OESTAG B2514B4A DB2C21C9 73CB28C7 81586100
768 | 5CC76171 BCFIE948 EF798927 92603FA6 EB94114A
788 | A79BA413 AAE44D16 1E2CD457 BBF2BECE FABB4B17
BBA | 51C57FBA A3GBBA93 FF15DCB2 BBAZGE4E EADDIDTS
B28 | CB4CFD4D 4EAGFABC SBEDEDAE 92277C6E ADAFSAS4
B48 | 56ABBCAZ 51457A67 2AFBO21C 90441939 947CASDS
B68 | C4D9A2FA FBEBC777 6275CCEA 61F15ED7 GD7AGACF
BE@ | £31396A8 B7CE91EB 4AC51AD3 691311CA FFO45A7B
9848 | C500BBES 2@6CAC1D 62659186 BD2B7183 AB1858BD
920 | DI994AAC 2BFABCIA 4CDACD24 1FFBEDA7 BA1496EY
048 | 2ATAALE4 4BGCABAB 2ABAOABA GIBBE297 2F44CAE1
968 | 238D450E TF231457 AROFFEBC FSA2CTAF
988 | 7B328C55 GEGF4FGE FNDAASDE D320 DAST
1888 | AAAE2292 FBIA3DEA B22F70A4 4756EGBF GBAGISBA
1828 | BFBB1173 D9@B1C28 BA4FCATA 4933AFFE 229B4767
1848 | GA26B82C B4FAC595 96629E24 BICIS4ER BAISDD44
1860 | GTEECAB2 23207468 GETATBBG ABAJ4DAD S52AEE19C
1888 | FEICF46D BA4OFDBE FA15783FE ARBBDGDO 1BDBEFBT
1188 | BDE2EBD2 94860396 2BF18639 S627ECAR 46261847
1128 | 937C5AFA 97DBCCF4 FB7EA79D BCE7AIC3 4EIFB4BA
1148 | BFO137FC 67324A1B 3DBIC4ET C1BGDBA4 4FEBADER
1168 | 3F1865C9 FBCTC173 667FA30@ GBABGFCF 97AABFF2
1188 | 92852846 B25DC26@ BBD4CAF4 FFAFAET4 C95BEG4G
12088 | BECATI4R 094310908 798B526D 4BBCAG17 C18832CB
1228 | 2FBCS66@ F15DB299 4BFSDB3A A2554A10 CF777C4A
1248 | B7A45C3C 14443BEB BC166EB@ AFCEEFRI E4ESEIZ6
1268 | 77820387 A7C935B6 B258DB25 99E5320E E3357851

20: Replace 1 byte at offset 0x1409 with 1 byte
21: Replace 1 byte at offset 0x1628 with 1 byte
22: Replace 1 byte at offset 0x1640 with 1 byte
23: Replace 1 byte at offset 0x169e with 1 byte
24: Replace 1 byte at offset Ox181a with 1 byte
25: Replace 1 byte at offset 0x18dc with 1 byte
26: Replace 1 byte at offset 0x1900 with 1 byte
27: Replace 1 byte at offset 0x19¢7 with 1 byte

Contents:

Contents 1

Bit Recovery Documentation, Release 1.2.2

2 Contents

cHAPTER 1

ABOUT

Data in various stages of decay and salvation

When you store TeraBytes of data for many years, some bits in it will decay. It is hard to get figures about how
much damage we can expect. But it might be in the order of a handful per TB per year.

How do we recover from it? Here is an elegant method. Add some redundancy, in the form of checksums.
Periodically check the checksums. When there are errors, use the checksums to correct the errors, if possible. If it
is not possible, use a backup. But beware: the backup might have errors as well. Even the checksums themselves
might have errors. Before we explain our strategy, here is an example that it actually works.

1. original

We start with a photo of the author. It is a 436 KB jpeg image. This is indeed the uncorrupted form.

2. 174 bit errors

Now 174 bit errors are added, at random positions

Bit Recovery Documentation, Release 1.2.2

3. 104 errors in the backup

We will also use a backup, but also this one is corrupted: 104 different errors

4-5. 27 + 16 bit errors in the checksum files

We also corrupt the checksums: 27 bit errors

Info: /Users/dirk/Scratch/dirk.jpg.chk has 55936 bits
Need to generate 27 bit errors for [/Users/dirk/Scratch/dirk.jpg.chk]

4 Chapter 1. ABOUT

Bit Recovery Documentation, Release 1.2.2

800 dirk.jpg.chk vs dirk.jpg.orig.chk

6B | DCABBD31 CBSFBD44 BDO4FAFR 2FE9B344 EBBS3D28 GEA | DCABADI1 CBSFBD44 BDO4FAFA 2FROB344 EBBS3D2H
788 | 83857234 FDDCSEG@ CTDSEFCS 36779838 208088CACH 788 | B3A57234 FDDCSEGA CYDSEFCS 36779838 28MACACH
728 | ADDEFF49 AGEESSB3 094890517 11C70966 2ARBOTED 728 | ADDGFF49 AREES5B3 04890517 11C70D966 2ABBITED
748 | B4OESTAG B2514B4A DA2C21C9 F3ICAZACT B1586100 748 | B4OESTAG B251484A DB2C21C9 73ICAZBCT B158610D
768 | 5CC76171 BCF3EO48 EF7ORO27 02693FA6 ERO4114A 768 | 5CC76171 BCFIED4E EF798927 92693FA6 EAD4114A
7B [ATOBA413 AAE44D16 1E2CD457 BEF2BECE FABB4817 7B | ATORA413 AAE44D16 1E2CD457 BEFZBECE FABB4B17
888 | 51C57FBA A3GBBEY3 FF1SDCB2 BBAZGE4E EBDD1DTS B8 | 51C57FBA A3GBBRY3 FF15DCB2 BBA2BE4E EADDI1DTS
828 | CB4CFD4D 4EAGFBBC SBEDGDAE 92277C6B ADAF4ASS B20 | CB4CFD4D 4EAGFBBC SBEDEDBE 92277CGE ADAF4AS4
848 | 5EABBCAZ 51457A67 2AFB921C 90441939 947CHSDS B48 | 5EABACAZ 51457A67 2AFBI21C 90441939 947CASDS
868 | C4D982FA FBEBC777 6275CCEA B1F15EDT GDTAGBCF BGA | C4D9A2FA FBEBCT77 6275CCEA GIF1SEDT GD7AGBCF
BEA | C31306A8 BYCEJIER 4ACS51AD3 6091311CH FFO45ATR BE8 | C31306A8 BT7CED1ER 4BC51AD3 RO1311CH FFO45ATE
988 | (599BBEE 2@G6CACID 62659186 BD2B71A3 AB1ASEBD 908 | (508BRER 2ARCACID 626591B6 BD2B7183 AB1ASEBD
928 | D3994AAC 28FABCIA 4CDACD24 1FFBEDAT BA149GEY 928 | D3994AAC 2AFRBCIA 4CDACD24 1FFBEDAT BA1496ED
948 | 2ATAA1E4 4B6CABAB 2ABB9BBA GIBBE297 2F44CAE1 948 | 2ATAALE4 4BGCABAR 2ABBYABA G3BBE297 2F44CAE1
968 | 2380450E 7F231457 AROFFBBC FSA2CTAF 92354903 968 | 2380450E 7F231457 ABOFFEEC FSAZCTAF 92354903
988 | 7B328C55 G66F4FGE [DAASDE -DBIZBCFI-EDASDEST | | 288 7BI20C55 GHEF4FGE-FEDAASDE DB3ZBCF3 EDASDEST
1888 | AAAE2202 FB1A3DEA B22F7AA4 4756EGBF GBABUSEAR 1888 | AAAE2207 FBI1A3DEA B22F78A4 475RERBF GHAGOSBE
10208 | BFEE1173 DOBB1C2A BA4FCATA 4033IAFFE 220B4767 1028 | BFEA1173 DOBB1C2A BA4FCATA 40933AFFE 220B4767
1048 | GA26ER2C B4FACS05 OGG20E24 BOCIS4ER BAISDD44 | | 1848 | 6A26B02C B4FACS05 O6620E24 BOC3IS4ER BAISDDA4
1868 | GTEECAB2 232C746@ GETATBBE ABAO4DBD S2AEE19C 1868 | GTEECAB2 232C7460 GETATBRG ABAD4DAD S2AEE19C
1888 | FE1CF460 BA49FDBG FA1S7H3E ABBBDGDY 1BDBEFET 1BBR | FEICF46D BB49FDBE FA1S7B3E ABBBDGDY 1BDBEFB7
1188 | pDE2EBD2 94860396 2BF1MG39 S627ECAR 46261847 1188 | ADE2EBD2 94860396 2BF1MG39 SR27ECAR 46261847
1128 | 937C5AFA 970DBCCF4 FETEBT9D BCE7A9C3 4ESFB4BA 1128 | 937C5AFA 97DBCCF4 FETEBTI0 BCE7A9CI 4EIFB4EA
1148 [BF9137FC 67324A1B 3DB3ICAET C1BGDBA4 AFEBADER | | 1148 | BFO137FC 67324A1B 3DB3IC4ET C1BGDBA4 4FEBADER
1168 | 3F1865C9 FBCTC173 GETFE3DA GRAREFCF O7AABFF2 1168 | 3F18R5C0 FBCTC173 GETFE3DE GBABEFCF O7AABFF2
1188 | 928526846 B250C26@ BBD4CAF4 FFAFAET4 CO5BEG4E 118@ | 92852846 B25DC260 BBD4CAF4 FFAFAE74 COSBEG4G
1208 | BECETI4E 0431C0AE 79BBS260 4BBCAG17 C1A@32CE | | 1206 | BECETI4E 0431C06E 7OBBS260 4BBCAG1T C1AA32CE
1228 | 2FBC5668 F15DB299 4BFS0B38 A2554A1D CF777C4A | | 1228 | 2FBCS66A F15DB299 4BFSDB3R A2554A1D CF77TC4A
1248 | B7A45C3C 144438EE BC1GGEBA AFCREFED E4ESE326 1248 | B7A45C3C 14443BEB BC1GEEBA AFCREFGY E4ESE326
126@ | 77820387 A7CH935B6 B25BDB25 99E5328E E3357851 1268 | 77820387 A7C935B6 B258DB25 99E5320E E3357851

20: Replace 1 byte at offset 0x1409 with 1 byte
21: Replace 1 byte at offset 0x1628 with 1 byte
22: Replace 1 byte at offset 0x1640 with 1 byte
23: Replace 1 byte at offset 0x169e with 1 byte
24: Replace 1 byte at offset 0x181a with 1 byte
25: Replace 1 byte at offset 0x18dc with 1 byte
26: Replace 1 byte at offset 0x1900 with 1 byte
27: Replace 1 byte at offset 0x19¢7 with 1 byte

and the checksums of the backup are not spared either: 16 bit errors

Info: IUse'rsfdir‘kfﬁcr‘atchfdi'r‘k-f:u.jpg.chk has 55936 bits
Need to generate 16 bit errors for [/Users/dirk/Scratch/dirk-bu.jpg.chk]

6. checking the corrupt image with the corrupt checksums

we get 163 damaged blocks

Info: Verification results:
Total blocks: 436
Good blocks: 273
Damaged blocks: 163

7. after repairing 138 and leaving 25 bit errors

First we try to repair without using the backup, we can repair the majority of damaged blocks, 138.

1.1. Data in various stages of decay and salvation 5

Bit Recovery Documentation, Release 1.2.2

But 25 remain unrepaired. See the result.

Info: Repair results:
Repaired blocks: 138
Unrepaired blocks: 25
Suspicion level: @

Let us again check the checksums. 50 damaged blocks! But remember that the checksums themselves were faulty!

Info: Verification results:
Total blocks: 436
Good blocks: 386
Damaged blocks: 5@

Yet, by a combination of restoring and repairing it is effectively possible to correct all errors.

8. We need to use the backup

Info: Restore results:
Restored blocks: 5@
Unrestored blocks: ©
Suspicion level: @

9. fully restored, thank you

6 Chapter 1. ABOUT

Bit Recovery Documentation, Release 1.2.2

10. There are absolutely no errors left

dirk:~/Scratch > diff -s dirk-orig.jpg dirk-restored.jpg
Eilgs dirk—urig.jpg anq_Qirk—restured.jpg are identical

Account

This story I wrote on Good Friday, 2013-03-29. All data and screenshots were directly taken from the computer
when I executed the process as described above. By the way, that was a Macbook Air, and the whole process is
expressed in a Perl script, which only uses the module Digest:MD35. Both Perl and this module are already present
in OSX.

Contents

After that, I have tested extensively. The code for this lab is in Github. It is a tool for checksumming files in such
a way that you can recover from errors. It also does the recovering. Besides, it is an environment to test various
checksumming algorithms and parameters to see what performs best. You find also test data of a few dozens of
experiments, summarized in an excel document. The code is here (Perl).

There is a program for checksumming files, verifying, repairing and restoring: checksum.pl.

Then there is a setup to do experiments: perfset.pl creates a pool of corrupt file and organizes tests of various
checksum methods.

The question is: wich checksum methods perform best in the brute force search for the original byte sequence?
In order to make file corrupt, you can run corrupt.pl with a variety of parameters.

To gather the results of a series of experiments, use gather.pl. It creates a csv file, that you can use to create nice
graphics in a spreadsheet program.

1.2. Account 7

https://github.com/dirkroorda/bit-recover
https://github.com/dirkroorda/bit-recover/blob/master/experiment/summary.xlsx

Bit Recovery Documentation, Release 1.2.2

8 Chapter 1. ABOUT

CHAPTER 2

checksum.pl

Description

This tool is an instrument in bit preservation of (large) files. It is estimated that if one reads 10 TB from disk, 1 bit
will be in error. Also, when 1 TB is stored for a year without touching it, some bits might be damaged by random
physical events such as radiation.

In order to bit-peserve large files for longer periods of time (years, decades), it becomes important to guard against
data loss.

While there is no profound solution to this problem, the following stratgegy counts as best practice.
* Make several copies
* Divide the file and their copies in chuncks and compute checksums of the chunks

* periodically check checksums and restore damaged blocks from copies where the corresponding block is
undamaged.

Checksum.pl is a script to compute checksums for files, to verify checksums, and to repair corrupted file by means
of brute force searching, or if that is not feasible, by restoring from backup copies, even if those are corrupt
themselves. It works even when the checksums themselves are corrupt.

It al depends on the damage being not too big.

Usage

Call the script like this:

./checksum.pl [-v] [-m method] [-t task]* [-—conf kind=path]* --data kind=path,
— [backupfile] [origfile] [corruptfile]
where
Y verbose operation
method key of %config_checksum
task member of:
generate
verify

Bit Recovery Documentation, Release 1.2.2

repair

restore
restore_ambi_no
restore_ambi_only
execute_repair
execute_restore

diag
conf:
kind key of %$files
path will replace the name value in %files
data
kind key of %datafile
path path to a file on the file system

This script can generate checksums, verify them, and perform repair and restore from backup. The verification
step produces a file with mismatches, if present. The repair and restore steps look at the file with mismatches and
then try to find out how to repair those mismatches. The result is writen to a file with instructions. An execute step
reads those instructions and executes them, actually changing the data file. The checksum files are not modified.
They can easily be recomputed again.

All intermediate files (also those with the generated checksums) are binary: all data consists of fixed length strings,
64-bit integers, or fixed-size blocks of binary data. All these files have a header, indicating the checksum method
used, as well as the data block size and the checksum length.

With arguments like file:kind=path you can overrule the locations and names (but not extensions) of all files that
are read and written to. The kind part must occur as key in the %files hash.

Generating

Command:

’./checksum.pl file

Generates checksums for (large) files, block by block. The size of a block is configured to 1_000 bytes. The
main reason to keep it fairly small is to be able to do brute force guessing when a checksum is found not to agree
anymore with a datablock.

By generating many slight bit errors in the datablock as well as the checksum, and then searching for a valid
combination of datablock and checksum, we can be nearly completely sure that we have the original datablock
and checksum back.

The file with checksums has the same name as the input file, but with .chk appended to it.

Verifying

Command:

’./checksum.pl -v file

Verifies given checksums. It expects next to the input file a file.chk with checksums, in the format indicated above.
It then extracts from file each block as specified in file.chk, computes its checksum and compares it to the given
checksum.

If there are checksum errors, references to the blocks in error are written to an error file, with name file.x . This file
contains records of mismatch information. Such a record consists of just the block number, the given checksum,
and the computed checksum.

10 Chapter 2. checksum.pl

Bit Recovery Documentation, Release 1.2.2

If there are no errors, the file.x will not be present. If it existed, it will be deleted.

Repairing

Command:

’./checksum.pl -c file

Looks at checksum mismatches. In every case, modifies checksum and corresponding blocks in many small ways,
until the combination matches again. Both block and checksum are dithered. That means, a frame of at most n bits
wide moves over the data, and inside the frame the bits are mangled in all possible ways. The dither results of the
checksum are stored in a hash. The dithered blocks are not stored. They are generated on the fly, their checksum
is computed, and quickly tested against the hash of checksums. If there is a hit, it will be stored. If there are no
hits, repair is not possible by the current method. You might try further by increasing the frame width, or by trying
other kinds of variants of the block. But maybe it is better to forget this method and try to restore from backup in
such cases. If there are multiple hits, that would be a weird situation. Maybe there has been intentional tampering.
The program will give clear warnings in these cases.

The repair instructions are written to file.ri

Restoring

Command:

’./checksum.pl -r[alA] file file-backup

Compares blocks and checksums of data and backup. The bit positions where they differ, will be varied among all
possibilities. The checksums are stored in a hash for easy lookup. Then the blocks will be generated on the fly. So
even if the backup is damaged, and even if the checksums are all damaged, it is still possible by brute force search
to find the original data back. If data and backup differ in less than 20 bits per block, there are only a million
possibilities per block to be searched. If called with -rA only the blocks for which repair found multiple hits will
be restored (not the ones without hits) If called with -ra both the blocks for which repair found multiple hits and
no hits will be restored

The restore instructions are written file.rib

Executing

Commands:

./checksum.pl -ec file
./checksum.pl -er file

Executes the repair resp. restore instructions in file.ri resp. file.rib All information needed from the backup file is
already in the instruction file, so the backup file itself is not needed here. The work has been done in the previous
steps, this step only performs the write actions in the file.

Diagnostics

Command:

’./checksum.pl -dia file backupfile origfile corruptfile

2.5. Repairing 11

Bit Recovery Documentation, Release 1.2.2

Creates a diagnostic report of the repair and restore instructions. It takes as second argument the backup file and
as third argument the original file and as fourth argument the unrestored/unrepaired corrupted file. It gives all
info about the blocks which have not been restored correctly. On the basis of this information it shows which
instructions helped to correctly get the original back, and which instructions were faulty.

Author

Dirk Roorda, Data Archiving and Networked Services (DANS) 2013-03-29 dirk.roorda@dans.knaw.nl
See also DANS Lab Bit rot and recovery

Configuration

In order to compare performance between md5 and sha256 hashing we provide two standard configurations, which
can be invoked by the command line flag —m:

-m md5
-m sha256

invoke the md5 and the sha256 checksum algorithms respectively. The default parameter values for these methods
are loaded. It remains possible to overrule these values by means of additional flags on the command line.

The default checksum mode is sha256.

Implementation details

Looking for hits

When measuring how close a “hit” is to the actual situation, the number of different bits in the checksums and in
the blocks are counted. However, differences in the checksum count much more than differences in the blocks.

Bit differences in the checksums are far less probable than bit differences in the blocks, because blocks are larger.
Moreover, if checksums are very different, it is an indication of tampering: a new checksum has been computed
for a slightly altered block. So by default we multiply the checksum bit distance by the $data_checksum_ration. In
addition, you can configure to increase or decrease this effect by multiplying with the $check_diff_penalty which
is by default 1.

We compare hits with the foreground file, not with the backup. We want a hit that is closest to the foreground,
since the foreground has been always under our control, and the backup has been far less in our control.

We want to keep the search effort constant for the different checksum methods. Depending on the blocksize
determined by the checksum method, we can set the search parameters in such a way that the prescribed number
of search operations will be used.

Binary files and headers

Every binary non-data file we read, is a file generated by this program. Such a file has a header. It will be read and
written by the following two functions. It has the format:

a8 a8 L L L L

where:

12 Chapter 2. checksum.pl

http://www.dans.knaw.nl/en
mailto:dirk.roorda@dans.knaw.nl
http://demo.datanetworkservice.nl/mediawiki/index.php/Bit_Rot_and_Recovery

Bit Recovery Documentation, Release 1.2.2

a8 is arbitrary binary data of 8 bytes. Reserved for a string indicating the
—checksum method
a8 is arbitrary binary data of 8 bytes. Reserved for a string indicating the_
—checksum method

L is a long integer (32 bits = 4 bytes), indicating the checksum size
L is a long integer (32 bits = 4 bytes), indicating the checksum size
L is a long integer (32 bits = 4 bytes), indicating the block size
L is a long integer (32 bits = 4 bytes), indicating the block size

All together the header is 32 bytes = 256 bits

The header could be damaged. We assume the checksum size and the block size are powers of two. If one of
them does not appear a power of two, choose the other. If both are not powers of two, we are stuck. If both
are powers of two but different, we are also stuck. Likewise, we choose between the values encountered for the
checksummethod.

Reading and Writing files

Opens files for reading, writing, and read-writing. Uses the specification created in the init() function. Returns a
file handle in case of succes. The file handle is meant to be stored in global variables. So more than one routine
can easily read and write the same file.

Repair block

This function implements a main step: Repair a single block We apply ditherings progressively, in rounds cor-
responding to the frame length n of the dithering. We start with n = 0, then n = 1 and so on. So the smaller
disturbances will be checked first, and we assume that bigger disturbances do not compete with smaller ones. If
there are hits in a round, the next rounds will be skipped.

Restore block

now generate the set by creating all possible bit values at the positions where $strl and $str2 differ in order
to optimize the search process, we want to search in such a way that we do cases first where bits are taken
consecutively from the data version or the backup version. The reason is that errors come in bursts. Hence, if
backup and data differ in bit i and bit i+1, both bits are likely to be correct in either backup or in data. It is much
less likely that bit i is correct in data and bit i+1 in backup, or vice versa. So if the max number of brute force
operations does not permit full traversal, we do a partial traversal with the most likely suspects first. This will
increase the change of finding a good restore.

So we generate all possibile bit strings for the difference mask. We will xor the bits in the mask with the corre-
sponding bits in the data. So we should try bitstrings first with minimal alterations between 1s and Os.

Dithering

This is the technique used for repairing blocks.

Dithering is subtly mangling a bit string, by introducing a limitied amount of bit errors. We let an imaginary frame
of fixed width slide over the bitstring, and inside the frame we generate all possible bit errors.

More precisely, n-dithering is dithering with a frame of exactly width n. And <=n-dithering is dithering with
frames of width 1 to n.

If we do n-dithering, we generate bitstrings of length n, and x-or the input bitstring with it, at a reference position
that slides throughout the input.

Bit 0 and bit n-1 of an n-frame are always 1. If one or of them would be 0, we would have an n-1 frame, or an n-2
frame, or even less. We would be doing double work then.

2.11. Implementation details 13

Bit Recovery Documentation, Release 1.2.2

Bits 1 up to and including n-2 range over the full set of possible bitstrings of length n-2.

n-ditherings and m ditherings are mutually exclusive when n <> m. This is precisely because the end points are
always one, and the endpoints change the input bitstring.

So the number of ditherings with frame length <=nis: 2 * (n-1)

Masking

This is the technique used for restoring blocks. When the corresponding block from the backup is fetched, and
we have the data block, then in the most general case we do not know which block is right. They could be both
wrong. Even the checksums could be all wrong.

We assume however, that the bits in which they agree are correct.
So me make a mask of the differing bits, and we create all bit variations in that mask.
We try them all out by brute force.

So there is good chance that we find a hit, even if all initial data is corrupted.

14 Chapter 2. checksum.pl

CHAPTER 3

perfset.pl

Description

Generates a test sets from a base file called dataname-orig in a root directory. The root directory and some other
parameters are defined by the experiment. There are several experiments spelled out below, the first argument
selects a specific one. An original data file is corrupted and copied to form the starting point of several parts of the
test set. Each part correspondes to a checksum method such as md5 or sha256. Corruption is pseudo random, no
two corruptions will be the same. From then on both parts will be subjected to checksum tests and error correcting.

Usage

Command:

’./perfset.sh [-v] [-v] [-d] -e experiment [-tm timestamp]

where

-V verbose rsync, if twice: verbose all

-d debug mode when calling perl scripts

-f force fresh corruption

e execute the changes and perform final check
—-e experiment key of %experiment

15

Bit Recovery Documentation, Release 1.2.2

16 Chapter 3. perfset.pl

cHAPTER 4

corrupt.pl

Description

Corrupts the file with (burst)bit errors. If level is given, it is the desired number of (burst)bit errors per TB. If
number is given, it is the desired absolute number of bit errors.

The bit errors are generated at independently randomly chosen positions.

It is also possible to generate burst errors of length at most nbits. A burst error is a sequence of identical bits that
will overwrite a sequence of equal length in the input file. The length of the burst is determined randomly and
independently but stays below the maximum length. The value of the burst (zeroes or ones) will be determined

randomly.

Usage

Command:

’./corrupt.pl [-s] [-b nbits] [-1 level | -n number] —--data filex

17

Bit Recovery Documentation, Release 1.2.2

18 Chapter 4. corrupt.pl

CHAPTER B

gather.pl

Description

Gather data from experiments

Usage

Command:

’./gather.pl [-v] [-—base reportbasedir]

where

-V verbose rsync, if twice:
——base base directory of the reports

verbose all

19

Bit Recovery Documentation, Release 1.2.2

20

Chapter 5. gather.pl

CHAPTER O

Indices and tables

* genindex
¢ modindex

e search

21

	ABOUT
	Data in various stages of decay and salvation
	Account
	Contents

	checksum.pl
	Description
	Usage
	Generating
	Verifying
	Repairing
	Restoring
	Executing
	Diagnostics
	Author
	Configuration
	Implementation details

	perfset.pl
	Description
	Usage

	corrupt.pl
	Description
	Usage

	gather.pl
	Description
	Usage

	Indices and tables

