
Bioinformatics in the Cloud Workshop
Documentation

Release 1.0

Adam Labadorf, Aaron Chevalier, Dileep Kishore, Sebastian Carrasco Pro

Aug 01, 2018

Contents

1 Prerequisites 3

2 Time & Location 5

3 Registration 7

4 Online Materials 9
4.1 Cloud Concepts Workshop . 9
4.2 Cloud App Deployment Workshop . 34
4.3 FireCloud Workshop . 46

5 Indices and tables 53

i

ii

Bioinformatics in the Cloud Workshop Documentation, Release 1.0

Cloud technologies are emerging as a critical tool in Bioinformatics analysis as datasets grow exponentially in number
and size. However, the set of cloud technologies and concepts necessary to deploy Bioinformatics analysis is rapidly
evolving and complex. This series of workshops will introduce the cloud analysis paradigm using the Amazon Web
Services (AWS) platform, cover some current strategies for deploying Bioinformatics data and applications for anal-
ysis, and give students some hands-on experience with these topics. The workshop will also highlight FireCloud, a
scalable Bioinformatics cloud solution provided by the Broad Institute.

Note: Bioinformatics knowledge is not required, as the materials are intended to be sufficiently generic to allow users
familiar with the prerequisite concepts to deploy their own applications in the cloud. The workshop simply uses a
bioinformatics analysis as the use case for the hands-on materials.

Quick links:

• Prerequisites

• Time & Location

• Registration

• Online Materials

Contents 1

https://software.broadinstitute.org/firecloud/

Bioinformatics in the Cloud Workshop Documentation, Release 1.0

2 Contents

CHAPTER 1

Prerequisites

This workshop is fairly technical. You will need a good understanding of the following to maximally benefit from the
materials:

• Ability to use linux/command line

• Programming in python, Java, C/C++, or other comparable languages

• General familiarity with how the linux operating system works

Attendees are expected to bring their own (preferrably Mac/Linux) laptops.

3

Bioinformatics in the Cloud Workshop Documentation, Release 1.0

4 Chapter 1. Prerequisites

CHAPTER 2

Time & Location

• Session 1 - Cloud Concepts: Monday July 30th 2PM-5PM

• Session 2 - Packaging and Deploying Applications: Wednesday August 1st 2PM-5PM

• Session 3 - FireCloud Case Study: Thursday August 2nd 2PM-5PM

Location: Life Sciences and Engineering Building (LSEB) 103

5

https://software.broadinstitute.org/firecloud/

Bioinformatics in the Cloud Workshop Documentation, Release 1.0

6 Chapter 2. Time & Location

CHAPTER 3

Registration

Registration is now closed.

7

Bioinformatics in the Cloud Workshop Documentation, Release 1.0

8 Chapter 3. Registration

CHAPTER 4

Online Materials

Nota bene

This content is under construction!

4.1 Cloud Concepts Workshop

This is day 1 of the “Bioinformatics in the Cloud” workshop. In this session, you will learn basic cloud concepts and
terminologies and work on setting up your own cloud instance and running an application on the cloud.

Workshop Outline:

• Introduction to the cloud (~10min) @Dileep

• Cloud concepts (~15min) @Sebastian

• Deployment Walkthrough: Web Console (~35min) @Sebastian

• Break (~5min)

• Deployment Walkthrough: CLI (~30min) @Dileep

• Working with deployed resources (~10min) @Dileep

• Hands-on section (~40min)

• Machine Learning on the Cloud (~30min) @Gerard

4.1.1 Prerequisites

The participants are required to have access to the following resources before attending the workshop

• AWS account Access to the AWS account through BU

• Web browser A modern web browser is needed to log into the AWS management console

9

Bioinformatics in the Cloud Workshop Documentation, Release 1.0

• A terminal emulator and SSH client A terminal emulator and ssh client are needed to log in remotely to our
AWS instance

• AWS CLI A working installation of the AWS CLI

4.1.2 What is Cloud Computing?

Cloud computing allows access to arbitrary amounts of compute resources instantaneously. The computing resources
exist on servers managed by the cloud providers, thereby, helping you avoid the hassle of hardware maintenance.

10 Chapter 4. Online Materials

Bioinformatics in the Cloud Workshop Documentation, Release 1.0

Key advantages

1. High availability - your files are always available across multiple systems

2. Fault tolerant - automatic backups enable recovery from failure

3. Scalability and Elasticity - easily scale compute resources to fit new requirements within minutes

There are various cloud providers, the most popular ones include Amazon (Amazon Web Services), Google (Google
Compute Engine) and Microsoft (Azure).

Common use-cases

1. Web hosting

2. Storage

3. Software as a Service

4. Big Data Analytics

5. Test and Development

4.1.3 Cloud concepts

Virtual Machines

Virtual Machines emulate the architecture and functionality of physical computers in the cloud. In AWS, VMs are
called Elastic Compute Cloud (EC2), which can be created using different operating systems (i.e. Linux, Windows)
and vCPU sizes. Using EC2 eliminates the need to invest in hardware up-front. EC2 can be used to launch as many or
as few virtual servers needed, configure security and networking, and manage storage. Amazon EC2 enables scaling
up or down to handle changes in requirements or spikes in popularity, reducing the need to forecast traffic.

4.1. Cloud Concepts Workshop 11

Bioinformatics in the Cloud Workshop Documentation, Release 1.0

Storage Units

Storage services are also provided for the VMs, in AWS they come in two types depending on your needs:

1. Elastic Block Storage (EBS): block level storage volumes that can be directly mount to EC2

2. Simple Storage Service (S3): bucket of storage accessible through API or command line

12 Chapter 4. Online Materials

Bioinformatics in the Cloud Workshop Documentation, Release 1.0

Databases

Relational Database Service (RDS) allows to set up, operate and scale relational databases (i.e. MySQL)

Serverless

Removes the need to worry about managing and operating web servers for applications. It also provides scaling and
cost-efficient options.

4.1.4 The AWS infrastructure

This workshop involves working with the Amazon Web Services (AWS) cloud infrastructure, but the concepts in this
workshop will apply to other cloud computing services as well. The only difference involves the exact terms used to
describe services and actions.

0. The AWS and the web console

1. Creating an account

In order to use AWS you will need to create an account. And in order to create instances and the other services used
in this workshop you, will need to associate a credit card with the account. For the purposes of this workshop we will
provide you with pre-existing AWS accounts, but you will need to create your own accounts for any future use.

4.1. Cloud Concepts Workshop 13

Bioinformatics in the Cloud Workshop Documentation, Release 1.0

2. Logging into the AWS console

To log into AWS, go to aws.amazon.com and hit the Sign in to the Console button as shown below.

3. AWS regions

An AWS Region is a physical warehouse of servers (data centers) and other computer hardware that Amazon main-
tains. At any point in time you are can only operate in one region. After logging in, the current region is shown in the
upper right corner of the console.

Regions are important for several reasons:

1. When you launch a service like an EC2 instance, it will be confined to the region you launched it in. If you
switch regions later, you will not see this instance.

2. The cost of usage for many AWS resources varies by region.

3. Since different regions are located in different parts of the world, your choice of region might add significant
networking overhead to the performance of your application.

14 Chapter 4. Online Materials

aws.amazon.com
https://console.aws.amazon.com/console/home

Bioinformatics in the Cloud Workshop Documentation, Release 1.0

At the time of writing the following AWS regions exist:

Region Name Region Endpoint protocol
US East (Ohio) us-east-2 rds.us-east-2.amazonaws.com HTTPS
US East (N. Virginia) us-east-1 rds.us-east-1.amazonaws.com HTTPS
US West (N. California) us-west-1 rds.us-west-1.amazonaws.com HTTPS
US West (Oregon) us-west-2 rds.us-west-2.amazonaws.com HTTPS
Asia Pacific (Tokyo) ap-northeast-1 rds.ap-northeast-1.amazonaws.com HTTPS
Asia Pacific (Seoul) ap-northeast-2 rds.ap-northeast-2.amazonaws.com HTTPS
Asia Pacific (Osaka-Local) ap-northeast-3 rds.ap-northeast-3.amazonaws.com HTTPS
Asia Pacific (Mumbai) ap-south-1 rds.ap-south-1.amazonaws.com HTTPS
Asia Pacific (Singapore) ap-southeast-1 rds.ap-southeast-1.amazonaws.com HTTPS
Asia Pacific (Sydney) ap-southeast-2 rds.ap-southeast-2.amazonaws.com HTTPS
Canada (Central) ca-central-1 rds.ca-central-1.amazonaws.com HTTPS
China (Beijing) cn-north-1 rds.cn-north-1.amazonaws.com.cn HTTPS
China (Ningxia) cn-northwest-1 rds.cn-northwest-1.amazonaws.com.cn HTTPS
EU (Frankfurt) eu-central-1 rds.eu-central-1.amazonaws.com HTTPS
EU (Ireland) eu-west-1 rds.eu-west-1.amazonaws.com HTTPS
EU (London) eu-west-2 rds.eu-west-2.amazonaws.com HTTPS
EU (Paris) eu-west-3 rds.eu-west-3.amazonaws.com HTTPS
South America (So Paulo) sa-east-1 rds.sa-east-1.amazonaws.com HTTPS

VPC: Virtual private cloud. Your private section of AWS, where you can place AWS resources, and allow/restrict
access to them.

1. EC2 instances

Amazon Elastic Compute Cloud (Amazon EC2) provides scalable computing capacity in the Amazon Web Services
(AWS) cloud. This service allows you to configure and rent computers to meet your compute needs on an as needed
basis. Using EC2 eliminates the need to invest in hardware up-front. EC2 can be used to launch as many or as few
virtual servers needed, configure security and networking, and manage storage. Amazon EC2 enables scaling up or
down to handle changes in requirements or spikes in popularity, reducing the need to forecast traffic.

4.1. Cloud Concepts Workshop 15

Bioinformatics in the Cloud Workshop Documentation, Release 1.0

Instance come in various shapes and sizes. Some instances might be geared towards running CPU intensive tasks
while other might be optmized for memory or storage. Some of the different options available are shown in the figure
below and more information can be found here.

The following sections outline the various steps involved in setting up an EC2 instance:

1. AMI selection

An Amazon Machine Instance (AMI) is a preconfigured template for launching an instance. It packages the various
applications you need for your server (including the operating system and additional software). There are four main
options when selecting an AMI: Quick Start, My AMIs, AWS Marketplace and Community AMIs. These
options can be seen in the image below on the left sidebar. Select the desired AMI and then proceed to the next step.

16 Chapter 4. Online Materials

https://aws.amazon.com/ec2/instance-types/
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AMIs.html

Bioinformatics in the Cloud Workshop Documentation, Release 1.0

2. Instance type selection

Once an AMI is selected, the next step is to choose an instance type. If choosing an AMI is equivalent to choosing the
software you want on your computer then choosing an instance type is equivalent to choosing the hardware. Broadly
speaking the different instance types vary in the number of CPUs, or size of RAM, or storage. The price per hour for
each of the options is not listed here. To get the price of a particular instance, look up the name of the instance on the
EC2 pricing list. Once you are ready, proceed to the next step by pressing the Next: Configure Instance
Details button.

3. Instance general configuration

Once you have selected your instance type, the next step is to configure your instance. This step involves many
advanced concepts that will be not be covered in detail in this tutorial. Using the Number of instances option
you can launch multiple instances with the same AMI and hardware configuration at the same time. Additionally you
could also Request Spot instances (spot instances offer spare compute capacity at steep discounts but they

4.1. Cloud Concepts Workshop 17

http://aws.amazon.com/ec2/pricing/

Bioinformatics in the Cloud Workshop Documentation, Release 1.0

are reclaimed whenever EC2 needs the capacity back) Shutdown behavior determines the behavior of the instance
when it is shutdown from within the AMI

For this tutorial we will use the proceed with the default values for all the options.

4. Instance storage configuration

The next step is to configure the storage that will be available to the instance. The storage that you start with depends
on the type of instance you have selected. In the image below we have an EBS root volumne with 8GiB size. This is
the Root volume where the operating system will exist By default, this volume is set to be deleted when the instance
is terminated, but, this behavior can be changed. The Add New Volume button can be used to add additional storage
to our instance.

• ephemeral or Instance store storage

• EBS storage

18 Chapter 4. Online Materials

Bioinformatics in the Cloud Workshop Documentation, Release 1.0

5. Instance tagging

When dealing with multiple instances, tagging creates a simpler way to track usage and billing information from
groups of related instances

6. Instance security

Secure login information for instances using key pairs (AWS stores the public key, and the user stores the private key
in a secure place) A firewall that enables you to specify the protocols, ports, and source IP ranges that can reach your
instances using security groups

7. Instance review

Static IPv4 addresses for dynamic cloud computing, known as Elastic IP addresses

4.1. Cloud Concepts Workshop 19

Bioinformatics in the Cloud Workshop Documentation, Release 1.0

Created instance

Create a key and save it

20 Chapter 4. Online Materials

Bioinformatics in the Cloud Workshop Documentation, Release 1.0

Key file example. The file can be saved as Test.pem

-----BEGIN RSA PRIVATE KEY-----
MIIEpAIBAAKCAQEAhEpF18lIUouMH8qia/BSB70vrQVq/mTTkiRbsACB78rzy3XGRMfvwUseIsGY
H6SDOAFrRlmTrAArH5A0t2TZ8PKrq7b9FtEAvMCeE7rWEiqBblAWiER0k1pbnIqyKJJCo1YRSUs0
oNMdvjB4CUylYraSsSNFYJG5gRwcNhBENLDVnDS79geQcPLu/JeEiJ9V+w+CCYAG40f7li/TuULr
rSy6Oq6jgn2Gy7rrHU7XHU5hcEvxuSeoLb8h/bH1N+cN/H7x3ipEjIDdA2ScCkRXum1V6/kTFQFq
vDG0lqoTlmTNKgDGpb+rdzJgOg/3QX4RSrX/c0W6aFkV9Ib/jQxT+wIDAQABAoIBADAvWXc6wpQG
bjiaN0T3mPlmqHnuEkWs9f8yLQ9TcACmvNwr/tbIuISAVu6z8zP7WSxKIAfU0twAh7SMcxclrdh8
m5kFIvRvlkQqKKnpENY3E0PZ+gsSXB/b9qhzQGdUtt8Fl3BJ61Z07016HA7PEyJ8e7v3q+p7ycTE
N2Zd0GocRIX8zxdRo9GS8ouS0QcFgNF8KblzlJ6Vs0gI7o7mIRZIm9vWkuR9Lp9uEPD2flUIvN3z
yRmY/FE/R1yc76Uq+g8eywifRAh+GFyyO8PmFoYRni4Ki6+tEIFaq5JauT0JJF66EZeZP8ZKoWm9
1K30Ucti2D5l8t+CpbBM5JxhmjECgYEAxz1ET42F1sBGYqNn5hmfjrRp+YF3EYz2awRSibOeerpJ
Bh1QZeB7/QD3wcB00XFiMu/3haP9xs4eesjSSug+1F59nyzDplNsybz1sYpUQwP9LjX0loUCIb8r
3O2VdLJ5ZJ9dfNgpStC/wi7kkr8xjK5XiHgP6DLk6+H1Lr2d+kMCgYEAqfpUseZ/sm1vYt80LlWI
r8ozsUmzuISRspGVUppyDD47Iyj/1mkiWnsFDDl07oBcFIUFIEd1rkJNB3gXKSr76kcY0X4lav7a
0dvse2T9PC/pLSFkax9UjVnydCN8ElyNoXI2wT5HuLDjjCmHBD/4E9ZOO201JICSbRxaykl17+kC
gYEAxRiWuxwFiqwq9Okxny856LIRJAIvB+2q17Mu84n8/OvL0YCuSBoKjf6nGcSJy6eevUUmV84i
/sho3o5Lek7F2NCg9RYTdjaRKAEGDNwK/0Cy9UPq8fwiX7/+ZE+jyg3EiQYeNaKhNqHLEQ3SkFkT
a1gMv7QGCG5QiAi/w71QyoECgYARcn+VDyrWXsNLK8wIYYE5QhESRpVrADiQUr84DmBcf1rEniW8
lWgQT4ZSHeexv300If9Hs+4RZ/7OIHaIJEBdaNTUVBV1KRm+5sscU15m+if+GOpc0Id2RuBLKYVH
wTZMdxPFvCXSgF2q+mxAdGx7ZMj88pW83HGrP3jWQLoZWQKBgQCX5jxy3QXlPpwDppqwKKBQ8cGn
YDDQHCeD5LhrVCUqo5DCobswzmGKU/xEqYsqlk/Mz1Zkvg4FbJwJDgQGkSyAu071NLi0O6w27dm+
UHuvF5mCDdAHWirFUBSiebxOpEQnkZ9IPXUUCSC6IQvPFbdGN8G3WjoER6Lw121Q4rJxGA==
-----END RSA PRIVATE KEY-----

4.1. Cloud Concepts Workshop 21

Bioinformatics in the Cloud Workshop Documentation, Release 1.0

2. S3 buckets

Simple storage service (S3)

This service allows the storage of large volumes of data, which can be accessed by an API or a command line interface
such as aws-cli

Setting up an S3 bucket

1. Create S3 bucket

22 Chapter 4. Online Materials

Bioinformatics in the Cloud Workshop Documentation, Release 1.0

2. Change permissions

4.1. Cloud Concepts Workshop 23

Bioinformatics in the Cloud Workshop Documentation, Release 1.0

3. Review

24 Chapter 4. Online Materials

Bioinformatics in the Cloud Workshop Documentation, Release 1.0

3. EBS

Elastic Block Storage

EBS allows to rent storage and directly mount it to your EC2 instance. In contrast to S3, EBS can only be connected
to one EC2 instance at a time and its storage prices are higher.

4.1. Cloud Concepts Workshop 25

Bioinformatics in the Cloud Workshop Documentation, Release 1.0

4. RDS

Relational Database Service

5. AWS Lambda

Run code without thinking about servers. Pay only for the compute time you consume.

6. Pricing

When you create EC2 instances or S3 buckets you are renting computing power from Amazon for which
you will be charged. Once you start the instance you will be charged hourly

There is a pricing list Amazon provides a monthly price calculator

4.1.5 CloudFormation

AWS CloudFormation is a service that helps deploy infrastructure as code. You create a template that describes all the
AWS resources that you want (like Amazon EC2 instances or Amazon RDS DB instances), and AWS CloudFormation
takes care of provisioning and configuring those resources for you. You don’t need to individually create and configure
AWS resources and figure out what’s dependent on what; AWS CloudFormation handles all of that. There are similar
resources for other services as well, for example, Azure Resource Manager for Microsoft Azure.

Advantages

1. Simplify infrastructure management

2. Quickly replicate your infrastructure

3. Reproducible infrastructure deployment

4. Easily control and track changes to your infrastructure

5. Automatic resource removal

Concepts

• Templates: The CloudFormation template is a JSON or YAML formatted text file that contains the configuration
information about the AWS resources you want to create. When fed to CloudFormation, the template will direct
it to create the required resources on AWS. Templates can also be created using the AWS CloudFormation
Designer

• Stacks: When you use AWS CloudFormation, you manage related resources as a single unit called a stack. You
create, update, and delete a collection of resources by creating, updating, and deleting stacks. All the resources
in a stack are defined by the stack’s AWS CloudFormation template. You can create, update or delete stacks by
using the AWS CloudFormation console, API, or AWS CLI.

• Change Sets: If you need to make changes to the running resources in a stack, you update the stack. Before
making changes to your resources, you can generate a change set, which is summary of your proposed changes.
Change sets allow you to see how your changes might impact your running resources, especially for critical
resources, before implementing them

26 Chapter 4. Online Materials

https://console.aws.amazon.com/cloudformation/designer
https://console.aws.amazon.com/cloudformation/designer
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cfn-console-create-stack.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/APIReference/API_CreateStack.html
http://docs.aws.amazon.com/cli/latest/reference/cloudformation/create-stack.html

Bioinformatics in the Cloud Workshop Documentation, Release 1.0

Template Components

The anatomy of a CloudFormation template:

{
"AWSTemplateFormatVersion": "version date",
"Description": "description of the template",
"Parameters": {"set of parameters"},
"Mappings": {"set of mappings"},
"Conditions": {"set of conditions"},
"Resources": {"set of resources"},
"Outputs": {"set of outputs"}

}

All templates consist of the following:

1. Parameters: Values to pass to your template at run-time (during stack creation), containing the specifics for
the EC2 or S3 needed. A parameter is an effective way to specify sensitive information, such as user names
and passwords or unique information, that you don’t want to store in the template itself. You can refer to
parameters from the Resources and Outputs sections of the template. Multiple parameters can be passed
such as the EC2 instance type, SSH security protocols, etc. For example, the code section below defines an
InstanceTypeParameter for an EC2 instance.

{
"Parameters": {
"InstanceTypeParameter": {
"Type": "String",
"Default": "t2.micro",
"AllowedValues": [
"t2.micro",
"m1.small",
"m1.large"

],
"Description": "Enter t2.micro, m1.small, or m1.large. Default is t2.

→˓micro."
}

}
}

2. Mappings: A mapping of keys and associated values that you use to specify conditional parameter values,
similar to a lookup table. You can match a key to a corresponding value by using the Fn::FindInMap
intrinsic function in the Resources and Outputs section. In this example, it will match the corresponding AMI
for a given AWS region

{
"Mappings": {

"RegionMap": {
"us-east-1": {
"32": "ami-6411e20d"

},
"us-west-1": {
"32": "ami-c9c7978c"

},
"eu-west-1": {
"32": "ami-37c2f643"

},
"ap-southeast-1": {

(continues on next page)

4.1. Cloud Concepts Workshop 27

Bioinformatics in the Cloud Workshop Documentation, Release 1.0

(continued from previous page)

"32": "ami-66f28c34"
},
"ap-northeast-1": {
"32": "ami-9c03a89d"

}
}

}
}

3. Conditions: Conditions that control whether certain resources are created or whether certain resource properties
are assigned a value during stack creation or update. For example, you could conditionally create a resource that
depends on whether the stack is for a production or test environment.

4. Resources: The Resources section specifies the stack resources and their properties, such as an AWS EC2
instance or an AWS S3 bucket. This is the only part of the template that is mandatory. Each resource is listed
separately and specifies the properties that are necessary for creating that particular resource. You can refer
to resources in the Resources and Outputs sections of the template. The following code section describes an
EC2Instance resource and InstanceSecurityGroup resource. The resource declaration begins with a
string that specifies the logical name for the resource.

{
"Resources": {
"EC2Instance": {

"Type": "AWS::EC2::Instance",
"Properties": {
"InstanceType": "InstanceType",
"SecurityGroups": [
"InstanceSecurityGroup"

],
"KeyName": "KeyName",
"ImageId": "ami-08f569078da6ad4c2"

}
},
"InstanceSecurityGroup": {

"Type": "AWS::EC2::SecurityGroup",
"Properties": {
"GroupDescription": "Enable SSH access via port 22",
"SecurityGroupIngress": [

{
"IpProtocol": "tcp",
"FromPort": 22,
"ToPort": 22,
"CidrIp": "SSHLocation"

}
]

}
}

}
}

5. Outputs: Describes the values that are returned whenever you view your stack’s properties. For example. you
can declare an output for an EC2 instance to display its id and availability zone

{
"Outputs": {
"InstanceId": {

(continues on next page)

28 Chapter 4. Online Materials

Bioinformatics in the Cloud Workshop Documentation, Release 1.0

(continued from previous page)

"Description": "InstanceId of the newly created EC2 instance",
"Value": "EC2Instance"

},
"AZ": {
"Description": "Availability Zone of the newly created EC2 instance",
"Value": {
"Fn::GetAtt": [
"EC2Instance",
"AvailabilityZone"

]
}

}
}

}

Note:

1. The Resource Type attribute has the format - AWS::ProductIdentifier::ResourceType. Eg: The
Resource Type for an S3 bucket is AWS::S3:Bucket and that for an EBS volume is AWS::EC2::Volume.

2. The Ref function returns the value of the object it refers to. The Ref function can also set a resource’s property
to the value of another resource.

3. Depending on the resource type, some properties are required, other optional properties are assigned default
values.

4. Some resources can have Multiple properties and some properties can have one or more subproperties.

Best Practices

Take a look at the official best practices to be able to use AWS CloudFormation more effectively and securely.

4.1.6 AWS CLI

The AWS CLI is an open source tool built on top of the AWS SDK for Python (Boto) that provides commands for
interacting with AWS services. With minimal configuration, you can start using all of the functionality provided by
the AWS Management Console from your favorite terminal program.

For installation instructions refer to the official documentation.

Advantages

1. Easy to install

2. Supports all Amazon Web Services

3. Easy to use

4. Can be incorporated in shell scripts for automation and reproducibility

4.1. Cloud Concepts Workshop 29

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/best-practices.html
https://docs.aws.amazon.com/cli/latest/userguide/installing.html

Bioinformatics in the Cloud Workshop Documentation, Release 1.0

Setting up your profile

Before you can start using the aws-cli you need to configure the CLI with your AWS credentials. The aws
configure command is the fastest way to set this up. This command automatically generates the credentials file at
~/.aws/credentials and the config file at ~/.aws/config.

$ aws configure
AWS Access Key ID [None]: AKIAIOSFODNN7EXAMPLE
AWS Secret Access Key [None]: wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY
Default region name [None]: us-east-1
Default output format [None]: json

The AWS CLI will prompt you for four pieces of information. AWS Access Key ID and AWS Secret Access Key are
your account credentials.

Alternatively you can manually create and populate these files.

~/.aws/credentials

[default]
aws_access_key_id=AKIAIOSFODNN7EXAMPLE
aws_secret_access_key=wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY

~/.aws/config

[default]
region=us-east-1
output=json

If you have multiple profiles you can also configure additional named profiles using the --profile option

$ aws configure --profile user2
AWS Access Key ID [None]: AKIAI44QH8DHBEXAMPLE
AWS Secret Access Key [None]: je7MtGbClwBF/2Zp9Utk/h3yCo8nvbEXAMPLEKEY
Default region name [None]: us-east-1
Default output format [None]: text

Commands

Help:

To get help when using the AWS CLI, you can simply add help at the end of a command or sub-command.

$ aws help
$ aws ec2 help
$ aws ec2 describe-instances help

The help for each command is divided into six sections: Name, Description, Synopsis, Options, Examples and Output.

Command Structure:

$ aws <command> <sub-command> [options and parameters]

Specifying parameter values

$ aws ec2 create-key-pair --key-name my-key-pair

30 Chapter 4. Online Materials

Bioinformatics in the Cloud Workshop Documentation, Release 1.0

Output:

The AWS CLI supports three different output formats:

• json

• Tab-delimited text

• ASCII formatted table

The default output format is chosen during the configuration step of aws configure. This can be changed by
editing the config file or setting the AWS_DEFAULT_OUTPUT environment variable.

Additionally, per command output can be changed using the --output option

$ aws swf list-domains --registration-status REGISTERED --output text

Example output
$ aws ec2 describe-volumes

{
"Volumes": [

{
"AvailabilityZone": "us-west-2a",
"Attachments": [

{
"AttachTime": "2013-09-17T00:55:03.000Z",
"InstanceId": "i-a071c394",
"VolumeId": "vol-e11a5288",
"State": "attached",
"DeleteOnTermination": true,
"Device": "/dev/sda1"

}
],
"VolumeType": "standard",
"VolumeId": "vol-e11a5288",
"State": "in-use",
"SnapshotId": "snap-f23ec1c8",
"CreateTime": "2013-09-17T00:55:03.000Z",
"Size": 30

},
{

"AvailabilityZone": "us-west-2a",
"Attachments": [

{
"AttachTime": "2013-09-18T20:26:16.000Z",
"InstanceId": "i-4b41a37c",
"VolumeId": "vol-2e410a47",
"State": "attached",
"DeleteOnTermination": true,
"Device": "/dev/sda1"

}
],
"VolumeType": "standard",
"VolumeId": "vol-2e410a47",
"State": "in-use",
"SnapshotId": "snap-708e8348",
"CreateTime": "2013-09-18T20:26:15.000Z",
"Size": 8

(continues on next page)

4.1. Cloud Concepts Workshop 31

Bioinformatics in the Cloud Workshop Documentation, Release 1.0

(continued from previous page)

}
]

}

You can query the resultant output using the --query option.

$ aws ec2 describe-instances --instance-ids i-0787e4282810ef9cf --query
→˓'Reservations[0].Instances[0].PublicIpAddress'
"54.183.22.255"

Examples:

The following examples show the interface in action performing various tasks and demonstrate how powerful it can
be.

deleting an s3 bucket
aws s3 rb s3://bucket-name --force

start ec2 instances
aws ec2 start-instances --instance-ids i-34hj23ie

Miscellaneous

• Try the aws-shell to get a more interactive command line experience.

• Use jq to parse the json outputs from various cli commands.

4.1.7 Cheat sheet

AWS CLI

1. Configuring your AWS CLI

$ aws configure --profile <profile>

CloudFormation

2. Deploying your stack using the AWS CLI via CloudFormation

$ aws --profile <profile> cloudformation create-stack --stack-name <stack> [--
→˓template-body <template>] [--parameters <parameters>]

Note: Local files need to be prefixed with file://

3. Verify and check stack deployment using the AWS CLI

$ aws --profile <profile> cloudformation describe-stacks [--stack-name <stack>]

4. List resources of a stack using the AWS CLI

32 Chapter 4. Online Materials

https://github.com/awslabs/aws-shell
https://stedolan.github.io/jq/

Bioinformatics in the Cloud Workshop Documentation, Release 1.0

$ aws --profile <profile> cloudformation list-stack-resources --stack-name <stack>

5. Validate your CloudFormation template using the AWS CLI

$ aws --profile <profile> cloudformation validate-template --template-body <template>

6. Update your stack using the AWS CLI

$ aws --profile <profile> cloudformation update-stack --stack-name <stack> [--
→˓template-body <template>] [--parameters <parameters>]

EC2 Instance

7. Connecting to the deployed EC2 instance via ssh

$ ssh -i <key.pem> user@<publicip>

To obtain the PublicIpAddress of your instance:

$ aws ec2 describe-instances --instance-ids i-0787e4282810ef9cf --query
→˓'Reservations[0].Instances[0].PublicIpAddress'

Note: The “key.pem” must only allow read access to the user

1. Key - The key specified must be at the path indicated. It must be the private key. Permissions on the key must
be restricted to the owner and the key must be associated with the instance.

2. User - The user name must match the default user name associated with the AMI you used to launch the instance.
For an Ubuntu AMI, this is ubuntu. For an Amazon Linux AMI, it is ec2-user.

3. Instance - The public IP address or DNS name of the instance. Verify that the address is public and that port 22
is open to your local machine on the instance’s security group.

S3 bucket

8. Copy an object from an S3 bucket to EC2 instance or local machine

$ aws s3 cp s3://my_bucket/my_folder/my_file.ext my_copied_file.ex

9. Copy an object from and EC2 instance or local machine to S3 bucket

$ aws s3 cp my_copied_file.ext s3://my_bucket/my_folder/my_file.ext

10. Download an entire Amazon S3 bucket to a local directory on your instance

$ aws s3 sync s3://remote_S3_bucket local_directory

Files

• EC2 template

• EC2 parameters

4.1. Cloud Concepts Workshop 33

https://bitbucket.org/bubioinformaticshub/cloud-bioinformatics/raw/c74b8fad4d526b676d90a044d5be3bc0dfa8fef2/00__cloud_concepts/files/ec2_template.json
https://bitbucket.org/bubioinformaticshub/cloud-bioinformatics/raw/c74b8fad4d526b676d90a044d5be3bc0dfa8fef2/00__cloud_concepts/files/ec2_parameters.json

Bioinformatics in the Cloud Workshop Documentation, Release 1.0

• S3 template

• S3 parameters

Exercise

1. Configure your AWS CLI

2. Run the cloudformation describe-stacks and ec2 describe-instances to look at existing
stacks or instances

3. Try to --query the output or display the --output in different formats

4. Combine the EC2 and S3 templates to create one template that launches both an EC2 instance and an S3 bucket

5. Validate the template using the cloudformation validate-template command

6. Update the ImageId to “ami-08f569078da6ad4c2” and run the cloudformation update-stack com-
mand

7. Connect to the EC2 instance using the pem file

8. Copy the contents of this S3 bucket (s3://buaws-training-shared/test_reads.fastq.gz) to the instance

9. Delete the stack using the cloudformation delete-stack command

4.2 Cloud App Deployment Workshop

This is day 2 of the “Bioinformatics in the Cloud” workshop. In this session, you will learn about containerization
software, how to execute docker containers on an AWS EC2 instance, and how to package your own applications into
docker images.

4.2.1 Prerequisites

docker

This workshop assumes you have an environment where docker is installed. If you followed workshop 1, the EC2
instance you deployed already has docker installed and configured. If not, you may follow this setup guide to use
docker on your own resources.

Creating an CloudFormation Stack

You may use the following template and parameters to create a CloudFormation stack with an EC2 instance that has
docker pre-installed:

• Template

• Parameters

You may download these files as-is to create your AWS stack, be sure to change the stack name to something else!:

$ aws configure
AWS Access Key ID [****************QNQG]:
AWS Secret Access Key [****************z5bv]:
Default region name [us-east-1]:
Default output format [json]:

(continues on next page)

34 Chapter 4. Online Materials

https://bitbucket.org/bubioinformaticshub/cloud-bioinformatics/raw/c74b8fad4d526b676d90a044d5be3bc0dfa8fef2/00__cloud_concepts/files/s3_template.json
https://bitbucket.org/bubioinformaticshub/cloud-bioinformatics/raw/c74b8fad4d526b676d90a044d5be3bc0dfa8fef2/00__cloud_concepts/files/s3_parameters.json
https://www.docker.com/
https://docs.docker.com/get-started/

Bioinformatics in the Cloud Workshop Documentation, Release 1.0

(continued from previous page)

$ aws cloudformation create-stack --template-body file://main.yaml \
--parameters file://buaws-training-ec2-parameters.json \
--stack-name ec2-stack-studentXX

{
"StackId": "arn:aws:cloudformation:us-east-1:438027732470:stack/test-stack-AL/18c.

→˓..."
}

When your stack creation is complete, you should ssh to the instance using the appropriate private key:

$ ssh -i buawsawstrainec2.pem ec2-user@<IP from cloudformation output>
The authenticity of host 'XX.XXX.XX.XX (XX.XXX.XX.XX)' can't be established.
RSA key fingerprint is 5d:e6:c4:f6:35:a5:9e:85:66:a4:b3:af:56:86:20:93.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added 'XX.XXX.XX.XX' (RSA) to the list of known hosts.
Last login: Mon Jul 23 16:27:27 2018 from nowhere

__| __|_)
_| (/ Amazon Linux AMI

___|___|___|

https://aws.amazon.com/amazon-linux-ami/2018.03-release-notes/
2 package(s) needed for security, out of 4 available
Run "sudo yum update" to apply all updates.
[ec2-user@ip-172-31-19-57 ~]$

4.2.2 Containerization

Motivation

Science today faces a reproducibility crisis. Key findings published cross scientific disciplines are not corroborated by
other scientists when tested independently. A survey conducted by Nature asked scientists which factors they though
contributed the most to the crisis. Over 80% of respondants felt the reason of ‘Methods, code unavailable’ contributed
to irreproducible research.

For many scientists, software and analysis have become an indispensible and increasingly unavoidable component of
their research. Critical findings now arise from the analysis of data that uses tools developed in house as well as tools
published by others. These components are usually integrated by custom ‘glue code’ that connects them together.

This environment poses a new set of challenges to scientists who use computational methods in their research:

• How do we write analysis code that is robust and reproducible?

• How can we concisely communicate our code with other researchers?

• How do we share analysis code with other researchers in a form that can be easily executed?

As computational analysis and tools become more complex, so do the environments needed to execute them. Modern
software packages often require hundreds of supporting software packages, provided either by a particular operating
system or from a third party. Further, each of these software package dependencies has a specific version or set of
versions that are needed for the package to run. The author of a package could in principle record all of these packages
and their dependencies and provide this list with their software distribution, but maintaining this list of software and
ensuring cross-platform compatibility is a major challenge. Environment management software packages such as
miniconda are available to address this challenge, but introduce additional complexity due to the fact that it itself is
an additional software dependency, package availability is largely dependent upon community support, and because

4.2. Cloud App Deployment Workshop 35

http://www.pnas.org/content/early/2018/03/08/1708272114
https://www.nature.com/news/1-500-scientists-lift-the-lid-on-reproducibility-1.19970
https://conda.io/miniconda.html

Bioinformatics in the Cloud Workshop Documentation, Release 1.0

third party software packages may not be supported across different platforms. A superior solution to managing and
deploying complex software environments is to create containerized applications.

Containerization

Containerization, also known as operating-system-level virtualization, is a technology that enables the encapsulation
and execution of sets of software and their dependencies in a platform-agnostic manner. A software container is a
file that has been built by specific containerization software, e.g. docker or singularity, to contain all of the necessary
software and instructions to run.

What is a container?

Generally speaking, a container is a file that specifies a collection of software that can run in a particular execution
environment. The execution environment is provided by the containerization software, e.g. docker, such that the
container doesn’t have to be aware of the particular machine it is running on. This means that a container will be
portable to any environment where the containerization software can run, thus eliminating the need for software
authors (i.e. us) to worry about whether or not our code will run on any given hardware/OS/etc.

At the time of writing (July 2018), docker is by far the most popular containerization software. docker has been
open source since its release in 2013 and an enormous docker community has grown since. Due to its popularity, this
workshop will use docker exclusively as the vehicle for demonstrating containerization of custom applications.

Another more recent containerization software called singularity is available that addresses some of the usability
shortcomings of docker. If docker is not available on your computational resources due to security concerns, then
singularity may be an option. The containerization concepts are identical between docker and singularity, and all of
the content of this workshop is easily adaptable to from docker to singularity.

4.2.3 Introduction to docker

docker

docker is an open source software project supported and provided for free by Docker Inc. The software is available
for Mac OS, Windows, and Linux operating systems. From its initial open source announcement in 2013, docker is:

a LinuX Container (LXC) technology augmented with a a high level API providing a lightweight virtual-
ization solution that runs Unix processes in isolation. It provides a way to automate software deployment
in a secure and repeatable environment.

(emphasis added). docker containers are:

• automated because every docker container contains all of its own configuration is run with the same executable
interface, and thus can be started automatically without manual intervention

• secure because each runs in its own environment isolated from the host and other containers

• repeatable because the container behavior is guaranteed to be the same on any system that runs the docker
software

These three properties make docker an excellent solution to the problems faced by scientists who wish to write repro-
ducible analysis and applications.

docker concepts

There are four critical concepts needed to get started as a docker user:

36 Chapter 4. Online Materials

https://en.wikipedia.org/wiki/Operating-system-level_virtualization
https://www.docker.com/
https://www.sylabs.io/guides/2.5.1/user-guide/
https://www.docker.com/
https://www.docker.com/
https://www.sylabs.io/guides/2.5.1/user-guide/
https://www.docker.com/
https://www.docker.com/company
https://www.docker.com/

Bioinformatics in the Cloud Workshop Documentation, Release 1.0

images

A docker image is a description of a software environment and is configuration. The concept of an image is abstract, as
images are not run directly. Instead, images are used to instantiate containers that are runnable. For those familiar with
object oriented programming, an image is to a container as a class is to an object. As such, images are not executed.

docker images are usually created, or built, with a Dockerfile. Images are often created using other images as a base
and adding more application-specific configuration and software. For example, a common base image contains a
standard ubuntu installation upon which other software is installed. While it is possible to build an image interactively
without writing a Dockerfile, this practice is highly discouraged due to its irreproducibility.

Images can either be stored locally or in a public or private Image Registry. In any case, in order to create a container
based off of an image, the image must be resident in the local docker installation. When building an image locally, the
image is automatically added to the local registry. When using an image published on a public registry like Docker
Hub, the image is first pulled to the local installation and then used to create an image.

Most docker images have a version associated with them. This enables the image to change over time while maintain-
ing backwards compatibility and reproducibility. The image version is specified at build time.

container

A container is an instance created by image. You can think of a container as a physical file that has all of the software
described by the image bundled together in a form that can be run. Each container is created using a single image.

By default, containers lack the permissions to communicate with the world outside its immediate docker execution
environment. When a container is run, the user can specify locations on the host system that are exposed to the docker
container by binding files and directories explicitly. The container can only read and write data to locations it is given
permission to access. Containers that run services, like web servers, can also be granted access to certain ports on the
host system at run time to allow communication outside of the host. In general, a docker container can only be granted
access to the resources available to the user running the container (e.g. a normal user without elevated privileges
cannot bind to reserved ports 0-1024 on linux).

Dockerfiles

A Dockerfile is a text file that contains the instructions for building an image. It is the preferred method for building
docker images, over creating them interactively.

Dockerfiles are organized into sections that specify different aspects of an image. The following is a simple Dockerfile
from the docs:

Use an official Python runtime as a parent image
This implicitly looks for and pulls the docker image named 'python'
annotated with version '2.7-slim' from Docker Hub (if it was not already
pulled locally)
FROM python:2.7-slim

Set the working directory to /app inside the container
The /app directory is created implicitly inside the container
WORKDIR /app

Copy the current (host) directory contents into the container at /app
ADD . /app

Install any needed packages specified in requirements.txt
The file requirements.txt was copied into /app during the ADD step above

(continues on next page)

4.2. Cloud App Deployment Workshop 37

https://hub.docker.com/_/ubuntu/
https://hostpresto.com/community/tutorials/how-to-create-a-docker-container-using-an-interactive-shell/
https://hub.docker.com/
https://hub.docker.com/
https://docs.docker.com/engine/reference/builder/

Bioinformatics in the Cloud Workshop Documentation, Release 1.0

(continued from previous page)

RUN pip install --trusted-host pypi.python.org -r requirements.txt

Make port 80 available to the world outside this container
This implies that app.py runs a web server on port 80
EXPOSE 80

Define environment variable $NAME
ENV NAME World

Run app.py when the container launches
CMD ["python", "app.py"]

The commands in all capital letters at the beginning of the line are Dockerfile commands that perform different con-
figuration operations on the image.

Image Registry

Image registries are servers that store and host docker images. The software to run a Docker Registry is freely available,
but Docker Hub is by far the most popular public registry. Docker images for your own apps can be freely published
to and listed on Docker Hub for others to pull and use. Other free registries exist, including Amazon Elastic Container
Registry and Google Cloud Container Registry.

Exercise

Navigate to Docker Hub and locate the python repository. Explore the page until you find the Dockerfile for python
version 3.7-stretch and view it. What parent image was used to build the python:3.7-stretch image?

Locate the parent image on Docker Hub and examine its Dockerfile. What parent image was used to build this image?

Continue looking up the parent images of each Dockerfile you find until you reach the root image. What is its name?

4.2.4 Running docker

Nota Bene

You must be using a computer with docker installed to complete the exercises on this page. If you are attending the
BU workshop, refer to the page on connecting to your EC2 instance for instructions on how to SSH into your instance.

Your First Docker Container

Containers are run using the command:

$ docker run <image name>[:<tag>]

The <image name> must be a recognized docker image name either on the local machine or on Docker Hub. The
optional :<tag> specifies a particular version of the image to run.

Exercise

Run a container for the hello-world docker image hosted on Docker Hub.

38 Chapter 4. Online Materials

https://docs.docker.com/registry/
https://hub.docker.com/
https://hub.docker.com/
https://aws.amazon.com/ecr/
https://aws.amazon.com/ecr/
https://cloud.google.com/container-registry/
https://hub.docker.com/
https://hub.docker.com/
https://hub.docker.com/

Bioinformatics in the Cloud Workshop Documentation, Release 1.0

If you need help, try running docker and docker run without any arguments to see usage information.

Read the text output by the container after it has been run.

Pulling docker images

As part of running a container from a public docker image, the image itself is pulled and stored locally. This only
occurs once for each version of an image; subsequently run containers will use the local copy of the image.

If you have never run any docker containers in this environment before, there should be no local images listed by the
docker images command:

$ docker images
REPOSITORY TAG IMAGE ID CREATED SIZE
$

To verify that the hello-world image has been pulled, we again use the docker images command after running
the container:

$ docker images
REPOSITORY TAG IMAGE ID CREATED SIZE
hello-world latest 2cb0d9787c4d 2 weeks ago 1.85kB
$

This output tells us that we have the latest version of the hello-world image in our local registry.

We can pull images explicitly, rather than doing so implicitly with a docker run call, using the docker pull
command:

$ docker pull nginx

This may be useful if we do not want to run a container immediately, or want to perform our own modifications to the
image locally prior to running.

Exercise

Pull the nginx image using the docker pull command. Verify that the latest image of nginx has been pulled using
docker images.

Managing docker containers

Running detached containers

The hello-world container runs, prints its message, and then exits. If we were running a docker container that
provided a service, we would want the container to persist running until we chose to shut it down. An example of this
is the nginx web server, which we can run with the command:

$ docker run -d -p 8080:80 nginx

Here, the -d flag tells docker to keep the container running and return control to the command line when it is finished
setting up the container. The -p 8080:80 means forward port 80, the default port for HTTP traffic, on the container
to the unrestricted port 8080 on the local machine. When control has returned to the command line, we can verify that
the container is still running using the docker ps command:

4.2. Cloud App Deployment Workshop 39

https://nginx.org/en/

Bioinformatics in the Cloud Workshop Documentation, Release 1.0

$ docker ps
CONTAINER ID IMAGE COMMAND CREATED
→˓STATUS PORTS NAMES
49af27e82231 nginx "nginx -g 'daemon of..." 4 minutes ago
→˓ Up 4 minutes 0.0.0.0:8080->80/tcp elastic_mcnulty
$

Exercise

Run an nginx container as above. Verify that the container is running with docker ps.

If specified correctly, the local port 8080 should behave as if it is a web server. Verify that this is the case by running:

$ curl localhost:8080

Attaching data volumes to containers

Scientific analyses almost always utilize some form of data. Docker containers are intended to execute code, and
are not designed to house data. Directories and data volumes that exist on the host machine can be mounted in the
container at run time to enable the container to read and write data to the host:

$ docker run -d -p 8080:80 --mount type=bind,source="$PWD"/data,target=/ nginx

The directory named data in the current host directory will be mounted as /data in the root directory of the
container.

Stopping running containers

When a docker container has been run in a detached state, it runs until it is stopped or encounters an error. To stop
a running container, we need either the CONTAINER ID or NAMES attribute of the running container from docker
ps:

$ docker ps
CONTAINER ID IMAGE COMMAND CREATED
→˓STATUS PORTS NAMES
49af27e82231 nginx "nginx -g 'daemon of..." 4 minutes ago
→˓ Up 4 minutes 0.0.0.0:8080->80/tcp elastic_mcnulty
$ docker stop 49af72e82231 # could also have provided elastic_mcnulty
49af27e82231
$ docker ps
CONTAINER ID IMAGE COMMAND CREATED
→˓STATUS PORTS NAMES
$

Stopping a container sends signals to the container that it should start shutting down, so once a container is stopped it
usually cannot be started again.

Nota Bene

Docker maintains a record of all containers that have been run on a machine. After they have been stopped, docker
ps does not show them, but the containers still exists. To see a list of all containers that have been run, use docker
ps -a.

40 Chapter 4. Online Materials

Bioinformatics in the Cloud Workshop Documentation, Release 1.0

It is good practice to remove old containers if they are no longer needed. You can do this with the command docker
container prune.

Creating docker images

Building a custom image

Chances are there is not an existing docker container that does exactly what you want (but check first!). To create your
own image, you must write a Dockerfile. As an example, we will create an image that has the python package scipy_
installed for us to use. It is common convention to create a new directory named for the the image you wish to create,
and create a text file named Dockerfile in it. In the scipy directory, our Dockerfile contains:

pull a current version of python3
FROM python:3.6

install scipy with pip
RUN pip install scipy

when the container is run, put us directly into a python3 interpreter
CMD ["python3"]

To build this docker images, we use the docker build command from within the scipy directory containing the
Dockerfile:

$ docker build --tag scipy:latest .
Sending build context to Docker daemon 2.048kB
Step 1/3 : FROM python:3.6
---> 638817465c7d

Step 2/3 : RUN pip install scipy
---> Running in 1eef65d3b6fd

Collecting scipy
Downloading https://files.pythonhosted.org/...

Collecting numpy>=1.8.2 (from scipy)
Downloading https://files.pythonhosted.org/...

Installing collected packages: numpy, scipy
Successfully installed numpy-1.15.0 scipy-1.1.0
Removing intermediate container 1eef65d3b6fd
---> 7f34e9147bef

Step 3/3 : CMD ["python3"]
---> Running in 5c9d778426e6

Removing intermediate container 5c9d778426e6
---> e27603f4ffaf

Successfully built e27603f4ffaf
Successfully tagged scipy:latest
$ docker images
REPOSITORY TAG IMAGE ID CREATED SIZE
scipy latest e27603f4ffaf About a minute ago 1.
→˓15GB
python 3.6 638817465c7d 25 hours ago 922MB
$

The --tag scipy:latest argument gives our image a name when it is listed in docker images. Notice also
that the python:3.6 image has been pulled in the process of building the scipy image.

Now that we have built our image, we can run and connect to the image using docker run with two additional
flags:

4.2. Cloud App Deployment Workshop 41

https://docs.docker.com/engine/reference/builder/

Bioinformatics in the Cloud Workshop Documentation, Release 1.0

$ docker run -i -t scipy
Python 3.6.0 (default, Jul 17 2018, 11:04:33)
[GCC 6.3.0 20170516] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import scipy
>>>

The -i flag tells docker we want to use the container interactively, and the -t flag connects our current terminal to
the container so that we may send and receive information to and from the terminal.

Exercise

Create a new Dockerfile where you will install the most recent version of R. Use ubuntu:bionic as the base image. You
may follow these instructions, without using the sudo command.

Hint: Use a different RUN line for each command.

Solution

Passing containers CLI arguments

The CMD Dockerfile command specifies a standalone executable to run when a container starts. However, sometimes
it is convenient to be able to pass command line arguments to a container, for example to run an analysis pipeline on
different files, or files with filenames that are not known at build time. For instance, if you we might want to run the
following:

$ docker run python process_fastq.py some_reads.fastq.gz

The CMD command does not allow command line arguments to be passed to the run command. Instead, the
ENTRYPOINT command is used to prefix a set of commands to any command line arguments passed to docker:

FROM python:3.6

we will mount the current working directory to /cwd when the container is run
WORKDIR /cwd

RUN pip install pysam

ENTRYPOINT instead of CMD
ENTRYPOINT ["python3"]

Any command line arguments passed to docker will be appended to the command(s) specified in the ENTRYPOINT.

If a container is intended to run files that exist on the host, the docker run command must also be supplied with a mount
point so the container can access the files. In the example above, the WORKDIR is specified as /cwd, so we can bind
the current working directory of the host to /cwd in the container so it can access the files process_fastq.py
and some_reads.fastq in the current directory:

$ docker run -mount type=bind,source=$PWD,target=/cwd process_fastq.py some_reads.
→˓fastq

42 Chapter 4. Online Materials

https://hub.docker.com/_/ubuntu/
https://www.digitalocean.com/community/tutorials/how-to-install-r-on-ubuntu-18-04

Bioinformatics in the Cloud Workshop Documentation, Release 1.0

4.2.5 Packaging your own application

Workflow Overview

The simplest workflow for building a docker container with your own code usually follows these steps:

1. Identify an appropriate image

2. Identify additional dependencies needed for your application

3. Install those dependencies with the appropriate RUN commands

4. Add your code to the image, either with ADD or git

5. Specify an appropriate CMD or ENTRYPOINT specification

6. Build your image, repeating 2-4 if needed until success

7. Run a container of your image, test behavior

8. Iterate, if needed

Preparing docker image for your code

Choosing a base image

The first step in creating a docker container is choosing an appropriate base image. In general, picking the most
specific image that meets your requirements is desirable. For example, if you are packaging a python app, it is likely
advantageous to choose a python base image with the appropriate python version rather than pulling an ubuntu base
image and installing python using RUN commands.

Installing dependencies

Once a base image is chosen, any additional dependencies need to be installed. For debian based images, the apt
package manager is used to manage additional packages. For Fedora based images, the yum package manager is used.
Be sure to check which base linux image is used for a more specific image to know which package manager to use.

Annoyance Alert

In practice, it can be hard to know all of the additional system packages that need to be installed. Often, building a
image to completion and running it to identify errors is the most expedient way to create an image.

Occasionally, a software package dependency, or a specific version of software, is not available in the software reposi-
tories for a base image linux distro. In these cases, it might be necessary to download and install precompiled binaries
manually, or build a package from source. For example, here is an example Dockerfile that installs a specific version
of samtools from a source release available on github:

FROM ubuntu:bionic

RUN apt update

need these packages to download and build samtools:
https://github.com/samtools/samtools/blob/1.9/INSTALL
RUN apt install -y wget gcc libz-dev ncurses-dev libbz2-dev liblzma-dev \

libcurl3-dev libcrypto++-dev make

(continues on next page)

4.2. Cloud App Deployment Workshop 43

https://hub.docker.com/_/python/
https://hub.docker.com/_/ubuntu/
https://hub.docker.com/_/ubuntu/
https://www.debian.org/derivatives/
https://wiki.debian.org/Apt
https://wiki.debian.org/Apt
https://itsfoss.com/best-fedora-linux-distributions/
http://yum.baseurl.org/
http://samtools.sourceforge.net/
https://github.com/samtools/samtools/releases
http://github.com

Bioinformatics in the Cloud Workshop Documentation, Release 1.0

(continued from previous page)

RUN wget https://github.com/samtools/samtools/releases/download/1.9/samtools-1.9.tar.
→˓bz2 && \

tar jxf samtools-1.9.tar.bz2 && \
cd samtools-1.9 && ./configure && make install

CMD ["samtools"]

Putting your code into a docker image

Once your dependencies are installed, the final step is to move your own code into your image. There are primarily
two different strategies for doing so:

• Copy source files into the image using the ADD command in the Dockerfile

• Clone a git repository into the image from a publicly hosted repo like github or bitbucket

Nota Bene

In any case, it is a good idea to create a git or other source code versioning system to develop your code, hosted
publicly if possible. Your Dockerfile should be developed and tracked along with your code, so that both can be
developed over time while maintaining reproducibility.

Locally

The local strategy is convenient when developing software. Running development code in a docker container ensures
your testing and debugging environment are consistent with the execution environment where your code will ultimately
run. To build from a local source tree:

1. Create a Dockerfile in the root directory where your code resides

2. Prepare the Dockerfile for your code as in Preparing docker image for your code

3. Copy all of the source files into a directory (e.g. /app) in the container with ADD . /app

4. Perform any setup that comes bundled with your package source (e.g. pip install -r requirements.
txt or python setup.py) with the RUN command

5. Set the CMD entry point appropriately for your app

6. Build your image with an appropriate tag

7. Run and test your application, ideally with unit tests

Assuming we have written a python application named app.py, from within the source code directory containing the
application we could write the following Dockerfile:

Use an official Python runtime as a parent image
FROM python:2.7-slim

Copy the current (host) directory contents into the container at /app
ADD . /app

Install any needed packages specified in requirements.txt
RUN pip install --trusted-host pypi.python.org -r requirements.txt

(continues on next page)

44 Chapter 4. Online Materials

http://github.com
http://bitbucket.org

Bioinformatics in the Cloud Workshop Documentation, Release 1.0

(continued from previous page)

mount the current working directory to /cwd when the container is run
WORKDIR /cwd

Run app.py when the container launches
ENTRYPOINT ["python", "app.py"]

When a container is run, app.py will be run directly and passed any additional arguments specified to the docker
run command.

Cloning from github/bitbucket

For software projects hosted on github or bitbucket, or when it is not desired to include a Dockerfile along with your
application source code, the Dockerfile can also be set to clone and install a git repo instead of adding code locally.
Instead of using the ADD command from above, use a RUN git clone <repo url> instead:

FROM python:3.6

have to install git to clone
RUN apt install git

git clone repo instead of ADD
RUN git clone https://bitbucket.org/bubioinformaticshub/docker_test_app /app
RUN pip install --trusted-host pypi.python.org -r /app/requirements.txt

mount the current working directory to /cwd when the container is run
WORKDIR /cwd

use ENTRYPOINT so we can pass files on the command line
ENTRYPOINT ["python", "/app/app.py"]

Cloning a public repo into a Docker container in this way has the advantage that the environment where you write
your code can be the same or different than the platform where the code is run.

There is one additional caveat to this method of adding code to your image. To save on build time, docker caches
the sequential steps in your Dockerfile when building an image, and only reruns the steps from the command where a
change has been made. The ADD command automatically detects if local file changes have been made and automati-
cally re-copies them into the container on docker build. This method of cloning a repo from bitbucket, however, does
not re-trigger a build. When cloning your application from a public git repo, the --no-cache flag must be provided
to your docker build command:

$ docker build --no-cache --tag app:latest .

This invalidates all build cache and re-clones your repo on each build.

Running your docker container

Once your code has been loaded into an image, containers for your image can be run in the normal way with docker
run. Any host directories containing files needed for the analysis must be mounted:

$ docker run --mount type=bind,source=/data,target=/data \
--mount type=bind,source=$PWD,target=/cwd app \
--in=/data/some_data.txt --out=/data/some_data_output.csv

4.2. Cloud App Deployment Workshop 45

http://github.com
http://bitbucket.org

Bioinformatics in the Cloud Workshop Documentation, Release 1.0

Remember that any time your code changes you will need to rebuild your image, including --no-cache if you pull
your code from a git repo.

Publishing your docker image

Once your docker image is complete and your app is read to share, you can create a free account on Docker Hub
and upload your image. Be sure to provide a full description of what the image does, what software it contains,
and how to run it, specifying any directories the container expects to be mounted to access data (e.g. /data). You
might alternatively consider hosting your image on the Amazon Elastic Container Registry or Google Cloud Container
Registry. If your app will primarily be executed in either AWS or GAE environments, it may be preferable to publish
your image to the corresponding registry.

Hands On Exercise

Writing the Dockerfile

Write, build, and run a Dockerfile that:

1. Uses the python:3.6 base image

2. Installs git with apt

3. Clones the repo docker_test_app

4. Installs the dependencies using the requirements.txt file in the repo

5. Configures the ENTRYPOINT to run the script in the repo with python3

Running the Dockerfile with data from an S3 bucket

Nota Bene

When you run this app, you should specify the -t flag to your docker run command.

Try running the container using docker run with no arguments to see the usage.

A fastq file that can be passed to this script has been made available on a shared S3 bucket. You will download this file
to your local instance using the aws cli. First, you must run aws configure and provide your access keys. Specify
us-east-1 as the region. The bucket address of the file is:

s3://buaws-training-shared/test_reads.fastq.gz

Download the file using the aws cli and pass it to the app using docker run. You must mount the directory where you
downloaded the fastq file using the --mount command line option as above.

4.3 FireCloud Workshop

This is day 3 of the “Bioinformatics in the Cloud” workshop. In this session, you will learn about the platform
FireCloud. We will learn how to run workflows, upload data, and create methods.

Workshop Outline:

• Introduction to FireCloud from Broad pipeline outreach coordinator Kate Noblett (~10min)

46 Chapter 4. Online Materials

https://hub.docker.com/
https://aws.amazon.com/ecr/
https://cloud.google.com/container-registry/
https://cloud.google.com/container-registry/
https://bitbucket.org/bubioinformaticshub/docker_test_app/src/master/

Bioinformatics in the Cloud Workshop Documentation, Release 1.0

• FireCloud Intro Presentation (~15min)

• FireCloud Guided Tour (~25min)

• FireCloud $5 Pipeline Hands-On (~15min)

• Break (~5min)

• FireCloud Custom Data and Method Hands-On (~40min)

• Explore FireCloud (Rest of Workshop Time)

4.3.1 Prerequisites

Note: The participants are required to have access to the following resources before attending the workshop

• FireCloud account Credits to run workflows ($300 free on sign up)

• portal.firecloud.org Make an account and connect to a google account

4.3.2 Five dollar genome analysis pipeline

Clone and run a featured workspace

Open up portal.firecloud.org

Find the pipeline

1. Navigate to the workspace tab

2. Navigate to “Featured Workspaces”

3. Click on “five-dollar-genome-analysis-pipeline”

4.3. FireCloud Workshop 47

http://portal.firecloud.org
http://portal.firecloud.org

Bioinformatics in the Cloud Workshop Documentation, Release 1.0

Clone the workspace

1. Append your name to the workspace name (to make it unique)

2. Clone the workspace

Find the workflow

1. Navigate to the Method Configurations tab

48 Chapter 4. Online Materials

Bioinformatics in the Cloud Workshop Documentation, Release 1.0

Select the pipeline

1. Select the five-dollar-genome-analysis-pipeline

Launch the analysis

1. Launch the analysis

Select the sample

1. Select either sample_id to run the analysis on

2. Launch

4.3. FireCloud Workshop 49

Bioinformatics in the Cloud Workshop Documentation, Release 1.0

Monitor the pipeline

1. Monitor the submitted job, well done!

4.3.3 Upload data and run a custom method

Setup

Please download the materials for this section FireCloud Files

Create a workspace in FireCloud

1. Workspaces > Create a new workspace

50 Chapter 4. Online Materials

Bioinformatics in the Cloud Workshop Documentation, Release 1.0

(a) name: hello_gatk_fc_YOUR_NAME

(b) billing project: YOUR_PROJECT

Add workspace attributes

1. Workspaces > Summary > Workspace attributes > Import Attributes

(a) data_bundle > FireCloud > workspaceAttributes.tsv

2. When it is uploaded, look at the workspace attributes section to see if the upload was successful

Set up data model

1. Workspaces > Data > Import Metadata > Import from file

(a) Upload in this order:

i. data_bundle > FireCloud > participant.txt

ii. data_bundle > FireCloud > sample.txt

2. When it is uploaded, look at the two tables in the data tab that are filled in to see if it was successfully uploaded.

Put WDL on FireCloud

1. Method Repository > Create New Method

(a) namespace: YOUR_NAME

(b) name: hello_gatk_fc

(c) wdl: load from file

i. This WDL calls HaplotypeCaller in GVCF mode, which takes a BAM
input & outputs a GVCF file of variant likelihoods.

ii. The FireCloud version has a docker image specified among other
runtime settings -- the memory and disk size of the machine
we will request from Google’s cloud, as well as the number of
times we will try to run on a preemptible machine.

iii. Notice that you can type in the WDL field to edit if needed.

(d) documentation: We won’t be filling this out today, but in general documentation here is highly
recommended, as it is helpful for others who may want to run your method.

(e) Upload

Import configuration to workspace

1. Method Repository > your method > Export to Workspace

(a) Use Blank Configuration

i. Name: hello_gatk_fc

ii. Root Entity Type: sample

iii. Destination Workspace: YOUR_PROJECT/hello_gatk_fc_YOUR_NAME

4.3. FireCloud Workshop 51

Bioinformatics in the Cloud Workshop Documentation, Release 1.0

(b) Would you like to go to the edit page now? Yes

(c)
Note: If you get popup “Synchronize Access to Method” Grant Read Permission

Fill in method config

1. Workspace > Method Configurations > hello_gatk_fc

2. Select the Edit Configuration button to fill it in. There are 3 types of inputs.

(a) In the data model

i. You’ll find this value in your data tab. Since it is under the sample section, and your root entity
type is sample, simply type this. and allow autocomplete to guide you.

ii. eg: inputBam = this.inputBam

(b) In the workspace attributes

i. You’ll find this value in your workspace attributes section under the summary tab. To find it,
type in workspace. and let autocomplete guide you.

ii. eg: refDict = workspace.refDict

(c) Hard-coded

i. These are values which are not in your data model or workspace attributes. They are fixed
numbers or strings that are typed in here. You can find the values for these inputs in the inputs
json in your data bundle (data_bundle > hello_gatk > hello_gatk_fc.inputs.json)

ii. eg: disk_size = 10

iii. eg: java_opt = "-Xmx2G"

3. Fill in the remaining inputs on your own/helping your neighbors.

4. Fill out the output. It won’t auto-complete, but we want to write it to the data model. The value should be
this.output_gvcf

5. Save the configuration

Run

1. Refresh the page and check for the yellow refresh credentials banner BEFORE running. This isn’t typically an
issue for users in a normal setting, but because in a workshop we start and stop a lot, the idle time can cause
the credentials to time out. It will throw a Rawls error if you run that won’t pop up until after the job has been
submitted and queued, which can be frustrating.

2. Method Config > Launch Analysis > Select sample > Launch

3. Watch & refresh from the monitor tab. Click the view link when it appears, and open the timing diagram to see
what’s happening.

52 Chapter 4. Online Materials

CHAPTER 5

Indices and tables

• genindex

• modindex

• search

53

	Prerequisites
	Time & Location
	Registration
	Online Materials
	Cloud Concepts Workshop
	Cloud App Deployment Workshop
	FireCloud Workshop

	Indices and tables

