

    
      
          
            
  
Welcome to BigDFT-suite’s documentation!

The BigDFT-suite project regroup the packages which are needed
to install, run and employ the BigDFT code for production calculations.


Overview of BigDFT



	Publications

	Talks

	Available Functionalities








Users’ instructions



	Get the code

	Install the code
	Install via Docker

	Install from sources





	Run the code

	Frequently encountered problems








Developers’ instructions



	BigDFT-suite manifesto

	Tips for developers
	Choose the correct package in which to insert the developments

	Read the coding rules

	Document the API of the high-level routines

	Create a test for the functionality

	Make a notebook which demonstrates the functionality in PyBigDFT

	Insert the notebook as a tutorial in the PyBigDFT documentation









Example of link  to futile_index [https://bigdft-suite.readthedocs.io/projects/futile/en/latest/index.html#futile-index], followed by exemple
to pybigdft_tutorials [https://bigdft-suite.readthedocs.io/projects/PyBigDFT/en/latest/tutorials.html#pybigdft-tutorials], actualized.

Example of link zipfile.ZipFile [https://docs.python.org/3/library/zipfile.html#zipfile.ZipFile] to python class
or to f/f_precisions [https://bigdft-suite.readthedocs.io/projects/futile/en/latest/f_prec.html#f/f_precisions] or maybe futile.Utils.find_files() [https://bigdft-suite.readthedocs.io/projects/futile/en/latest/pyfutile.html#futile.Utils.find_files] this, or again BigDFT.Logfiles [https://bigdft-suite.readthedocs.io/projects/PyBigDFT/en/latest/BigDFT.Logfiles.html#module-BigDFT.Logfiles]. If all these links are not broken, we may reach the following conclusion: intersphinx seems to work.






Indices and tables


	Index


	Module Index


	Search Page








          

      

      

    

  

    
      
          
            
  
Publications

Here, you can find the links to papers describing [http://bigdft.org/Wiki/index.php?title=Articles_describing_BigDFT] and using [http://bigdft.org/Wiki/index.php?title=Articles_using_BigDFT] BigDFT.




Talks

You can find some conference and workshop slides about BigDFT here [http://bigdft.org/Wiki/index.php?title=Presenting_BigDFT].




Available Functionalities


Todo

insert list of functionalities, current status (i.e. works/under development) and compatibility issues, and link to notebook if appropriate







          

      

      

    

  

    
      
          
            
  
Get the code

BigDFT is available on Launchpad [https://launchpad.net/bigdft], from where it can be downloaded as a tar file or via bzr using the command bzr branch lp:bigdft.




Install the code


Install via Docker

BigDFT may be installed via Docker, see instructions here [https://hub.docker.com/r/bigdft/sdk//].


Todo

insert some basic information about Docker






Install from sources



	The BigDFT suite
	Upstream packages

	Native packages





	Usage of the Installer.py script

	Installing from a configure line

	Using a configuration file (rcfile)
	The default behaviour (no information)

	How to invoke a configuration file

	Manipulating the configuration file

	The Python syntax of the configuration file





	Building the executables

	Linking external software with BigDFT packages

	The BigDFT Installer class










Run the code

We recommend running BigDFT using a jupyter notebook.  Various features have been implemented in PyBigDFT for the straightforward pre- and post-processing of calculations, as demonstrated in these tutorials: pybigdft_tutorials [https://bigdft-suite.readthedocs.io/projects/PyBigDFT/en/latest/tutorials.html#pybigdft-tutorials], with further examples available on  github [https://github.com/luigigenovese/BigDFT-nb].


Todo

add some brief text and a link to explain what a jupyter-notebook is; tips for using notebooks remotely (link to script); how to run without using a notebook, i.e. the key ingredients of a calculation and where to find variables - should be at a very basic level.






Frequently encountered problems


Todo

add here any problems (and how to avoid them) which occur on a frequent basis







          

      

      

    

  

    
      
          
            
  
The BigDFT suite

From version 1.8.0, that can be downloaded either from the provided
tarball or by having a launchpad account, via

bzr branch lp:bigdft

the build system of BigDFT has been modified. Instead of building the
code with one single configure line, the code is now built as a suite of
different packages.


[image: buildprocedure.png]


In this scheme we might see how the BigDFT code is separated. This was
also the same compiling procedure that has been used for the 1.7.x
versions of the code. The figure describes the interdependencies among
these packages. Let us describe each of the packages which are depicted
here. The packages might be separated in upstream contributions and
native contributions


Upstream packages


	libyaml: this library is used to parse the
yaml <http://yaml.org/> Markup language, that is used in the
BigDFT input files;


	PyYaml <https://pyyaml.org/>: this is a Python module which makes
possible to convert Yaml into python objects. This part is mainly
used for postprocessing purposes as BigDFT logfile also comes in yaml
format;


	libXC:
this <http://www.tddft.org/programs/octopus/wiki/index.php/Libxc>
library handles most of the XC functionals that can be invoked from
BigDFT runs;


	GaIn: this library handles analytic integrals of common operators
between Gaussian Functions. It does not perform low-level operations
and can be linked separately;







Native packages


	futile [https://bigdft-suite.readthedocs.io/projects/futile/en/latest/index.html#futile-index]:  a library
handling most common FORTRAN low-level operations, like memory
managment, profiling routines, I/O operations. It also supports yaml
output and parsing for fortran programs. It also provides wrappers
routines to MPI and linear algebra operations. This library is
intensively used in BigDFT packages;


	CheSS: A module for performing Fermi Operator Expansions via
Chebyshev Polynomials, released as a separate project on
Launchpad [https://launchpad.net/chess]


	psolver: a flexible real-space Poisson Solver based on
Interpolating Scaling Functions. It constitutes a fundamental
building block of BigDFT code, and it can also be used separately and
linked to other codes. It also internally uses the futile library
for the I/O.


	libABINIT: this is a subsection of files coming from
ABINIT [http://www.abinit.org] software package, to which
BigDFT has been coupled since the early days. It handles different
parts like symmetries, ewald corrections, PAW routines, density and
potential mixing routines and some MD minimizers. Also some XC
functionals, initially natively implemented in the ABINIT code,
are also coded in this library. Also this library uses the futile
code, through the (experimental) PAW section.


	BigDFT [http://www.bigdft.org]: the core routines of this
package


	spred: a library for structure prediction tools, that is compiled
on top of BigDFT routines.




In the previous versions, all these different packages were compiled
with the same configuration instructions. With the present version, each of
the code sections described above can be considered as a separate
package (some more are upcoming), which improves modularity between code
sections and reduces side-effects. In addition, each package can now be
compiled with different installation instructions.

We have used a building suite tool based on the
Jhbuild <https://wiki.gnome.org/action/show/Projects/Jhbuild?action=show&redirect=Jhbuild>,
which is regularly used by developers of gnome project. We have
re-adapted/added some of the functionality of the jhbuild package to
meet the needs of our package. Let us now present how the installation
should work. We have prepared a script, called Installer.py, which
should take care on the main actions related to BigDFT suite compilation
and installation. Let us investigate how it works.






Usage of the Installer.py script

As mentioned above the BigDFT suite is compiled by means of instructions
from the Python script Installer.py. Such script triggers the usage
of the jhbuild.py Python file which is at the basis of the
jhbuild project mentioned above. There are various actions available in
addition to the build command. To know them, just type

$ ./Installer.py help
Parsing arguments with method argparse...
Quick overview of the BigDFT suite Installer program
--------------------------------------------------
USAGE: Installer.py <action> <package>
--------------------------------------------------Available actions
autogen :
      Perform the autogen in the modules which need that. For developers only.
build :
      Compile and install the code with the given configuration.
buildone :
      Build a single module of the suite
check :
      Perform check in the bigdft branches, skip external libraries.
clean :
      Clean the branches for a fresh reinstall.
cleanone :
      Clean a single module of the suite
dist :
      Creates a tarfile for the suite tailored to reproduce the compilation options specified.
dry_run :
      Visualize the list of modules that will be compiled with the provided configuration in the 'buildprocedure.png' file.
link :
      Show the linking line that have to be used to connect an external executable to the package (when applicable)
make :
      Recompile the bigdft internal branches, skip configuring step.
startover :
      Wipe out all the build directories and recompile the important parts
update :
      Useful to update a pre-compiled branch after a merge
--------------------------------------------------
Available packages: ['futile', 'chess', 'psolver', 'bigdft', 'PyBigDFT', 'spred']
--------------------------------------------------
QIFI-QIFI-QIFI-QIFI-QIFI-QIFI-QIFI-QIFI-QIFI-QIFI- (Quick Instructions For the Impatient)
Ideally, there are two different policies:
Developer: From a development branch, start by "autogen", then "build"
     User: From a tarball, start by "build"
Perform the "dry_run" command to have a graphical overview of the building procedure





So for example, to build the tarball of bigdft-suite out of a valid
branch, you may type


Installer.py dist bigdft




You should have eventually a tarfile named bigdft-suite.tar.gz in
the build tree. Such tarfile may be used to build the suite in another
machine.

Few important informations:


	This script is intendent to provide the end-user with a
functional set of executables coming from the suite packages. It has
to be used to (re-)work on the entire suite, not a single package
only.


	It does not replace the traditional make commands. A developer of
a single package, say futile for example, should first compile
*and install (make install) the package in its build directory,
then rebuild the dependencies. In such a case, it is advised to run
Installer.py clean first, then the build command would work.







Installing from a configure line

As written above, packages were already configured and compiled with a
previous BigDFT version. Therefore we have prepared a compilation method
to compile the 1.8.x build system from a configure line. See in the
examples page
some of the configure lines which were already tested on different
machines.

The principle of this installer is to execute, in a build directory
different of the source one, instead of the configure script, the
following command:

<path_to_sources>/Installer.py build -c 

Let us consider the example of the pilipili machine (internal L_Sim
lab machine). Clearly, environment modules still have to be loaded:

module load intel/13.0.1 impi/4.1.0.024

Then the installer script can be used with the following command:


<path_to_sources>/Installer.py build -c 'FCFLAGS=-O2 -openmp' \

'--with-ext-linalg=-L/opt/intel/composer_xe_2013.1.117/mkl/lib/intel64 -lmkl_rt -lmkl_scalapack_lp64 -lmkl_blacs_openmpi_lp64 -liomp5 -lm' \

'--enable-opencl' 'CC=mpicc' \

CFLAGS='-openmp' 'CXX=mpicxx' 'FC=mpifc' 'F77=mpif77' 'FCLIBS= '



The following message dialog will appear:


Configuration chosen for the Installer:\

 Hostname: pilipili

 Source directory: /home/athelas/genovese/work/BigDFT/1.8\

 Compiling from a branch: True\

 Build directory: /local/genovese/binaries/1.8-ocl\

 Action chosen: build\

 Verbose: False\

 Jhbuild baseline: <path_to_sources>/jhbuild.py \

 Configuration options:\

   Source: Environment variable 'BIGDFT_CONFIGURE_FLAGS'\

   Value: '"FCFLAGS=-O2 -openmp" "--with-ext-linalg=-L/opt/intel/composer_xe_2013.1.117/mkl/lib/intel64 -lmkl_rt -lmkl_scalapack_lp64 -lmkl_blacs_openmpi_lp64 -liomp5 -lm" "--enable-opencl" "CC=mpicc" "CXX=mpicxx" "FC=mpifc" "F77=mpif77" "FCLIBS= " '\

Do you want to continue (Y/n)? 



The Installer script has detected the different compilation options. It
has filled the environment variable BIGDFT_CONFIGURE_FLAGS with the
options passed after the -c option in the command line. By typing
Y the bigdft bundle will build.

As we did not specified the -v option (type ./Installer.py help
for the available commands and options), the code will be built in
silent mode (this would correspond to the tinderbox option of
JhBuild. You should have the following information in the output:


List of modules to be treated: ['libyaml', 'futile', 'psolver', 'libxc', 'libABINIT', 'GaIn', 'bigdft', 'spred']

libyaml : ['checkout', 'configure', 'build', 'install']

futile : ['checkout', 'configure', 'build', 'install']

psolver : ['checkout', 'configure', 'build', 'install']

libxc : ['checkout', 'configure', 'build', 'install']

libABINIT : ['checkout', 'configure', 'build', 'install']

GaIn : ['checkout', 'configure', 'build', 'install']

bigdft : ['checkout', 'configure', 'build', 'install']

spred : ['checkout', 'configure', 'build', 'install']



Then in the directory named buildlogs of the build tree you might
find the index.html file that contains the status of the
compilation.

At the end of a successful compilation, you find in the build directory
a file named buildrc that may be used for future compilation and to
specify more flexible configurations options. See next section for the
details.




Using a configuration file (rcfile)

The environment variable BIGDFT_CONFIGURE_FLAGS is a way to indicate
some general options for all modules. A more powerful method is to use a
rcfile configuration file which indicates all possible option for
each module. Some examples are provided in the directory rcfiles.
For advanced features, the different possible options are detailed in
1 [https://developer.gnome.org/jhbuild/stable/config-reference.html].


The default behaviour (no information)

Working with a configuration file is the default behaviour of
jhbuild. Therefore it is normally expected to provide a file to the
Installer.py script (see next section on how to do that). If no
files is provided in the command line, the script search for (priority
order):


	A file named buildrc in the current build directory;


	A file in the directory rcfiles/ of the source tree that contains
the hostname string (or a part if it) in its basename. If multiple
files satisfy this condition, it offers a choice.




Therefore when asked to proceed for the installation, it is advised to
pay attention in the initial message which is the file chosen for the
configuration.




How to invoke a configuration file

The name of the configuration file might be specified with the -f
option of the installer. the file might be either specified via its
absolute path, or by its name. In this case, it is searched for in
(priority order):


	The current working directory;


	The directory rcfiles/ of the source tree.







Manipulating the configuration file

The principle of the configuration file is to provide configure options
which are different for each o the packaged of the suite (called modules
in the jhbuild spirit). Therefore, to each of the package one must
associate a configure line. Such information is provided in the
dictionary module_autogenargs of jhbuild, and might be specified as
follows (see e.g. the file dynamic.rc)

module_autogenargs['libxc'] = "CC=gcc --enable-shared"

or, alternatively

module_autogenargs.update({'libxc': "CC=gcc --enable-shared"})

depending on your taste. If the BigDFT suite is compiled from a
configure line, at the end of the first compilation a buildrc file
is produced, that can be then used in the following compilations.




The Python syntax of the configuration file

An rcfile is invoked inside the collection of python modules provided by
jhbuild. Therefore within this file the python syntax is necessary.
This adds extra features that would otherwise be difficult to implement.
For example, one might define functions that indicate common
configuration options, or that retrieve the current working directory to
define more elaborated configuation lines. For example, in a rcfile we
may found (see for example the file mira.rc of the distribution):


def fcflags_short():

 return """'FCFLAGS= -g -O3'"""

[...]

module_autogenargs.update({

  'libxc': fcflags_short(),

 [...]

 }



We here prefer to use return values of functions rather that to define
extra variables in the script as jhbuild warns if unknown variable
names are found in the configuration file.






Building the executables

There are some practical examples of compilations on different
architectures
where you might find useful information on how the code has been
compiled on different platforms and for different options.




Linking external software with BigDFT packages

From version 1.8.0 on the build system of BigDFT is “generic” in the
sense that it does not only allow the compilation of the main BigDFT
software, but also of various sub-packages. This is useful if one is
only interested in some of the packages distributed with BigDFT.

As an example we will show the compilation of the CheSS package, which
itself depends on futile. It can be downloaded here:
2 [https://launchpad.net/chess] After downloading the tar.gz execute
the following steps:


tar -xzvf CheSS-0.1.1.tar.gz

cd CheSS-0.1.1

mkdir Build

cd Build

../Installer.py build chess -d -c FC= CC= FCFLAGS= --with-ext-linalg=



A dialogue similar to this one should appear:


Configuration chosen for the Installer:

  Hostname: stephan-Latitude-E7450

  Source directory: /home/stephan/Documents/BigDFT/stablebranch

  Compiling from a branch: True

  Build directory: /home/stephan/Documents/BigDFT/stablebranch/Build-gnu_debug

  Action chosen: dist

  Verbose: True

  Jhbuild baseline: ../jhbuild.py -f buildrc

  Configuration options:

    Source: Configuration file '/home/stephan/Documents/BigDFT/stablebranch/Build-gnu_debug/buildrc'

Do you want to continue (Y/n)? 



Confirm and wait until the compilation in complete. In order to link now
another software with CheSS, run the command

../Installer.py link chess

which should give you an output similar to this one:


--------- Linking line to build with package "chess":

  -I/home/stephan/Downloads/CheSS-0.1.1/Build/install/include-L/home/stephan/Downloads/CheSS-0.1.1/Build/install/lib -lCheSS-1 -lfutile-1 -lblacs-openmpi -lblacsF77init-openmpi -llapack -lblas -lyaml -lrt -lfutile-1 -lblacs-openmpi -lblacsF77init-openmpi -llapack -lblas -lyaml -lrt

--------------------------------------------------



This is the link line that you can now use in your other software to
link with CheSS.




The BigDFT Installer class





          

      

      

    

  

    
      
          
            
  
BigDFT-suite manifesto

The code is not a monolithic piece of software but a collection of independent
packages that may be installed independently.
The Installer script has been
designed for the purpose.




Tips for developers


Choose the correct package in which to insert the developments

The first question to ask yourself is the generality of the
functionality you are going to implement.
The spirit is to work at the lowest possible level for a given task.
The idea is to make available the functionality also to other potential
users of the BigDFT-suite subpackages.
This will also help in a better structure of the API of each package.

For instance, suppose you would like to implement a continuum solvent
cavity determination for a particular DFT run of a molecular system.
The correct level of development in this case would be the psolver
package, as this is presently dealing with continuum solvents and cavities.

For a general overview one might say that:



	futile deals with low-level functionalities like stdlib (but for FORTRAN).
New MPI wrappers, strategies for memory copy and allocations should be implemented there.


	at_lab library (will) deal with all the operations which are associated to position


	<to_B_continued>










Read the coding rules

For some inspiration on coding style and strategies, read this [http://bigdft.org/Wiki/index.php?title=Coding_Rules].




Document the API of the high-level routines


Todo

write something here






Create a test for the functionality

Each of the packages has its own continuous integration procedure,  refer to
it for a suitable implementation.



	futile, psolver: F_REGTEST_INSTRUCTION (to be documented)


	bigdft see here [http://bigdft.org/Wiki/index.php?title=Inserting_a_new_test_in_the_distribution].










Make a notebook which demonstrates the functionality in PyBigDFT

For each new high level functionality, you should create a jupyter notebook which demonstrates the new capability.  The idea is to ensure continuity and to help acquaint users with the new feature.  Some examples of notebooks can be found on github [https://github.com/luigigenovese/BigDFT-nb].




Insert the notebook as a tutorial in the PyBigDFT documentation

Once an appropriate notebook has been written, this should be added to the tutorial directory (BIGDFT_ROOT/PyBigDFT/source/tutorials), so that the documentation will be automatically generated and available as a tutorial at pybigdft_tutorials [https://bigdft-suite.readthedocs.io/projects/PyBigDFT/en/latest/tutorials.html#pybigdft-tutorials].







          

      

      

    

  

    
      
          
            

Index



 




          

      

      

    

  _static/comment.png





_static/down-pressed.png





_static/comment-bright.png





_static/comment-close.png





_static/file.png





_static/logo_header.png





_static/down.png





_static/minus.png





_static/plus.png





_static/ajax-loader.gif





_images/buildprocedure.png





_static/buildprocedure.png





nav.xhtml

    
      Table of Contents


      
        		
          Welcome to BigDFT-suite’s documentation!
        


        		
          Publications
        


        		
          Talks
        


        		
          Available Functionalities
        


        		
          Get the code
        


        		
          Install the code
          
            		
              Install via Docker
            


            		
              Install from sources
              
                		
                  The BigDFT suite
                


                		
                  Usage of the Installer.py script
                


                		
                  Installing from a configure line
                


                		
                  Using a configuration file (rcfile)
                


                		
                  Building the executables
                


                		
                  Linking external software with BigDFT packages
                


                		
                  The BigDFT Installer class
                


              


            


          


        


        		
          Run the code
        


        		
          Frequently encountered problems
        


        		
          BigDFT-suite manifesto
        


        		
          Tips for developers
          
            		
              Choose the correct package in which to insert the developments
            


            		
              Read the coding rules
            


            		
              Document the API of the high-level routines
            


            		
              Create a test for the functionality
            


            		
              Make a notebook which demonstrates the functionality in PyBigDFT
            


            		
              Insert the notebook as a tutorial in the PyBigDFT documentation
            


          


        


      


    
  

_static/up-pressed.png





_static/up.png





