
Bigbom Digital Contracts
Documentation

Release 9/2018

Chris Nguyen

Sep 11, 2018

Overview:

1 Bigbom Digital Contract Platform Technical Paper 1
1.1 A brief history on contract signing . 1
1.2 The introduction of Bigbom Digital Contract . 2

2 Freelancer Smart Contract Architecture 9
2.1 Introduction . 9
2.2 High-level Overview . 9
2.3 Detailed Hirer Flow . 10
2.4 Detailed Freelancer Flow . 10
2.5 Stack . 11
2.6 Permissions . 11

3 How to work with Bigbom Freelancer DApp 13
3.1 Ropsten Contract Information . 13
3.2 Example . 13
3.3 Event lists: . 15

4 Ethereum Mainnet 17

5 Ropsten Testnet 19

6 Tomochain 21

7 DApps Integration Guide 23

8 BBFreelancer 25
8.1 Modifiers . 25

9 BBFreelancerJob 27
9.1 Events . 27
9.2 Functions . 28

10 BBFreelancerBid 31
10.1 Events . 31
10.2 Functions . 32

11 BBFreelancerPayment 33
11.1 Events . 34

i

11.2 Functions . 34

12 BBStorage 37
12.1 Modifiers . 38
12.2 Events . 38
12.3 Functions . 38

13 BBDocumentSign 43

14 BBLib 45

15 BBStandard 47
15.1 Functions . 47

16 BBParams 49

17 BBDispute 51
17.1 Events . 51
17.2 Functions . 52

18 BBVoting 55
18.1 Events . 56
18.2 Modifiers . 56
18.3 Functions . 57

19 AdminUpgradeabilityProxy 59

ii

CHAPTER 1

Bigbom Digital Contract Platform Technical Paper

This technical paper describes how a contract is being established between parties, and how Bigbom Digital Contract
Platform will implement it’s idea to implement a decentralized digital advertising ecosystem via smart contracts.

1.1 A brief history on contract signing

Paper Contract: The oldest, most popular method for establishing business relationship. Usually it requires two
people, representing their organization or themselves, in order to sign the contract. Some contracts requires a 3rd-
party as the validator. Once signed, both parties is obliged to follow their duties, written in the contract. Whether a
dispute happens, it will be resolve using the law of country that is designated in the contract.

One of the biggest problem with a paper contract is geography distance. Imagine Bob, which lives in New York
and need to do business with a partner in South Africa, he has to travel approximately 15 hours in order to get to
Johannesburg, took another day to meet the partner and sign to the contract, then take another same long flight back to
New York. What happens if his partner suddenly changes his mind, refusing to sign into the contract? What happens
if he’s gone rouge, and ran off AFTER took your money? Is Bob gonna hire a lawyer to bring him to the court, and
then paying all the expenses until he able to get the money back ?

With the development of internet communication, paper contract is less and less importance for a business, since it’s
show its weakness in cost and execution. That’s why Digital Contract was invented

Electronic Contract aka Docusign and friends: With the development of internet applications and cryptographic
algorithm, e-signature solutions was developed to give users the capability of signing contract without having physical
presence. One of the leading solution of e-signature is Docusign, which provides a Software-as-a-Service signing
solution. Signing a contract now requires just a few steps:

1. Uploading a contract under digital format, eg PDF or word format

2. Send an invitation link to signers. Each signer requires to create an e-signature

3. Sign the document. The signed document then available for both parties, with the e-signature stamped on the
document.

1

Bigbom Digital Contracts Documentation, Release 9/2018

With e-signature, Bob now does not need to spend 30 hours in airplane, and he still can do business with his partner
in Johannesburg. But the problem still persist. There is no guarantee that his partner will follow his obligation in the
contract. Geographic problem solved, but what about execution problem ?

1.2 The introduction of Bigbom Digital Contract

Bigbom Digital Contract is a blockchain-based solution built with the aim of solving the contract signing and contract
execution problem using a single platform. By combining the power of blockchain and e-signature, Bigbom Digital
Contract will help people doing business together, with less worries about the authenticity of the contract, and the
payment part of the contract. Let’s take this scenario to see how Bigbom Digital Contract is going to work.

Mandy is an advertiser, and she wants to run an ads campaign on John’s website, https://thefamousjohn.com.
Through direct contact, John is offering Mandy a Cost-Per-Click campaign, with the total 100,000 clicks on a
banner sitting on top of John’s website. The cost per every click is agree at 0.05$, which means it will cost Mandy
$5000 for the whole campaign, expected to run in 15 days.

Here is how Bigbom Digital Contract is going to take place.

1.2.1 E-Signing:

John will draft a contract, with all the terms included. After that he will start uploading the contract, using PDF format
into Bigbom Digital Contract platform. John then send an invitation to Mandy to her email address, asking Mandy
to review and sign the contract. After John and Mandy signed the contract, Bigbom Digital Contract platform will
calculate the hash of the document and store it into blockchain using a smart contract. By using this, signed data is
permanent, and both John and Mandy can re-check the authenticity of the contract anytime.

Below is the workflow for signing a document by using smart contract:

2 Chapter 1. Bigbom Digital Contract Platform Technical Paper

Bigbom Digital Contracts Documentation, Release 9/2018

• docHash is a sha3 hash from uploaded pdf. Notes that the hash is not on the file, but on the contents itself. An
example code in python

>>> Web3.sha3(0x747874)
>>> Web3.sha3(b’\x74\x78\x74')
>>> Web3.sha3(hexstr=‘0x747874’)
>>> Web3.sha3(hexstr=‘747874’)
>>> Web3.sha3(text=‘txt’)
HexBytes(‘0xd7278090a36507640ea6b7a0034b69b0d240766fa3f98e3722be93c613b29d2e’)

• Now with the docHash, a person with a Ethereum private key could easily sign it. The result will be a signature
of the docHash. Only the owner of signed address is able to verify signature.

• An Ethereum smart contract is responsible for store and query the list of signer. By validating the signer list, we
can know if a document has been signed by other parties or not.

1.2. The introduction of Bigbom Digital Contract 3

Bigbom Digital Contracts Documentation, Release 9/2018

1.2.2 Digital Contract Verification & Payment:

For contract execution, there are two key factors: Verifies that the contract has been executed as agreed, and proccess-
ing the payment. For tracking the execution of the contract, Bigbom Digital Contract allows to update the contract
progress via different methods, depends on the contract type. The general lifecycle is being describing in below image:

A vital part for both Advertisers and Ads Platform/Publisher is they have to able to know how much their budget has
been spent, and how much the is the progress of the campaign. By using smart contract, both parties will be able to
traceback to their historical data through the contract, since all data is immutable and transparent for both sides.

Digital Advertising Campaign type and metrics:

Cost-Per-Click Ads (CPC): A Cost-Per-Click Ad represents the cost to the advertiser everytime someone click to
their ads. Most of online ads platforms requires a target cost-per-click for new campaign to run.

Cost per Click formula:

Cost-Per-Mile (CPM): The “cost per thousand advertising impressions” metric (CPM) is calculated by dividing the
cost of an advertising placement by the number of impressions (expressed in thousands) that it generates. CPM is
useful for comparing the relative efficiency of various advertising opportunities or media and in evaluating the overall
costs of advertising campaigns (definition source)

Cost per Mile formula:

Cost-Per-Install (CPI): Cost Per Install campaigns are specific to mobile applications. In a Cost Per Install campaign,
publishers place digital ads across a range of media in an effort to drive installation of the advertised application. The
brand is charged a fixed or bid rate only when the application is installed. (definition source)

Cost per Install formula:

Contract-As-Code:

When an advertiser wants to buy a slot for their campaign, they will have to consider about their target and budget
, meaning that they will select which network that is able to provide the maxium target with the fixed budget cost.
In some other cases, some advertisers just want to reach their target, and they’re willing to spend the exact amout of
budget that is able to reach their target. Let’s try to imagine if a digital ad contract is a computer software function
with a set of parameters, that function will likely has these parameters:

1. Signed copy of the contract terms (as legal material)

2. Contract start date

3. Contract end date

4. Agreed target (amount of clicks, impressions or installs)

5. Budget

6. Minimum guaranteed target (for contract violation term)

7. Current milestone (current amount of clicks, impressions or installs)

8. Current spending

4 Chapter 1. Bigbom Digital Contract Platform Technical Paper

https://en.wikipedia.org/wiki/Cost_per_mille
http://www.businessofapps.com/guide/cost-per-install/

Bigbom Digital Contracts Documentation, Release 9/2018

With a contract-as-code design, it’s very easy to both advertisers and ads platforms/publisher to track and viewing
the progress. In practice, many ads platform and publisher is already implementing their own system to tracking and
updating their progress to their customers. However not all system is bullet-proof with cybersecurity crime, and the
cost of keeping data availability is not cheap at all. For a long time, most of enterprises is depending into expensive
systems/storages in order to achieving this.

Whereas most technologies tend to automate workers on the periphery doing menial tasks, blockchains
automate away the center. Instead of putting the taxi driver out of a job, blockchain puts Uber out of a job
and lets the taxi drivers work with the customer directly.

Vitalik Butterin

By using smart contract, all of these parameters will be stored inside the smart contract. Since blockchain is immutable
by itself, it’s very easy for both parties to query all the historical data (through the transaction id) and validates with
the actual results. Bigbom Digital Contract provides a set of contract templates that suits to each scenario, whether
you want to run your campaign with a specific target, or you want to join to a real-time bidding system with a specific
amount of budget.

Once these terms has been put into the smart contract. Bigbom Digital Contract platform will start to monitor the
campaign, and consequentaly update the campaign into the smart contract, until it ends. At this point, both Mandy and
John is aware about how well the campaign was, and what should be the actual cost.

1.2. The introduction of Bigbom Digital Contract 5

Bigbom Digital Contracts Documentation, Release 9/2018

Following workflow is describing how contract-as-code works:

Payment: Payment is a very complex topic. With a Digital Advertising Campaign, the actual bill is depends on
various factor, like the actual amount of clicks or installations.

We’re currently developing our smart contract in order to support following payment method:

Due Date Payment: The final payment amount will be determine at the contract end date. Based on the current result,
Our smart contract will determine the exact amount of payment for the seller side.

Pay as you go: A prefer payment method for most online platform is charging their customer based on the progress.

6 Chapter 1. Bigbom Digital Contract Platform Technical Paper

Bigbom Digital Contracts Documentation, Release 9/2018

Currently our smart contract is supporting daily payment. The amount of payment is determined by using the progress
of previous day, for calculating how much the seller side will get.

Generally speaking, the contract will end up in these scenarios:

a. John get paid based on what he delivered, for example $3500 for 70,000 clicks after 15 daysb. John get paid full
amount of $5000, if he able to deliver 100,000 clicks or more after 15 daysc. John does not get paid at all, since he’s
only able to deliver 9,000 clicks, and in the contract they both agreed that if the target dropped below 10%, Mandy
won’t have to pay anything.

Bigbom Digital Contract is able to adapt with all these scenarios. Before the contract goes into effective, it is required
that Mandy needs to make a security deposit into the contract. The amount of security deposit is negotiable between
Mandy and John. Bigbom Digital Contract will evaluate the amount of deposit and calculate the worth of clicks or
installations that is equal to the amount of desposit. Since the campaign stats is constanly being monitored by Bigbom
Digital Contract Platform, Mandy and John is able to see how much money has spent for the campaign. Before the
deposit is being depleted, Bigbom Digital Contract Platform will notify Mandy for making another deposit, in order
to keep the campaign running. If Mandy refuses to make the deposit, John will get a notification, suggesting him to
suspend the campaign.

Even if Mandy keeps the commitment and send the security deposit, there is a possibility that John is not able to fulfill
the contract terms, for example he cannot deliver more than 10,000 clicks after 15 days. In this case, since all the
security deposit is being kept by the Digital Contract, John will receive any money, and at the end of the campaign,
Mandy will get a refund, if the refund condition is met.

A demonstration for this payment process is as following:

Fiat/Token conversion: One of the biggest obstacle for people when using blockchain products is volatility in price.

1.2. The introduction of Bigbom Digital Contract 7

Bigbom Digital Contracts Documentation, Release 9/2018

Imagine a token with a price $0.02 today become $0.05 tomorrow, and then drops back to $0.01 the day after. With
the majority of people still using fiat currencies for daily trading, this volatility is unacceptable and prevent them to
adopting blockchain products. With the aim to create an entrance for fiat users, Bigbom Digital Contract Platform
is developing a method that calibrates the amount of actual BBO Token should be paid before the actual payment
happens, so people will be kept away from the volatility in price. Here’s how it works

Scenario 1: Mandy is a BBO hodler, and John acccept BBO for his payment. This is a very straight-forward case,
Mandy will make the deposit by BBO, and John will get paid by BBO as well.

Scenario 2: Mandy and John is not BBO holder, and they want to settle the contract in fiat, for example USD Dollar.
Bigbom Digital Contract Platform will ask Mandy for making the deposit in fiat, by sending money via a payment
gateway. After receiving the deposit, Bigbom Digital Contract Platform will calculate it to the actual BBO Token
amount based on the market price, and took an amount of BBO equivalent to the original amount, multiplying with
a factor of 2 from the Bigbom Reserve, then sending it to the Digital Contract as the deposit. The reason behind
multiplying to a factor to ensuring that Bigbom Digital Contract platform is able to endure the price changes up to two
times on market price each time payment term is being triggered.

Once the contract finished, Bigbom Digital Contract Platform will re-calculate the actual amount of BBO needed to
pay, based on John’s performance and current market price. At the end of the day, John will receive the amount of
BBO with similar value into USD Dollar that he supposed to get from Mandy. By integrating with other exchange
platform, John will have the capability to swap BBO into Ethereum/Bitcoin, or even Fiat currencies after he received
it.

At current phase, we will support USD and SGD as accepted fiat currencies, and will integrate with Kyber Network
for swapping BBO to ETH. More currencies and swapping method will come in the future.

8 Chapter 1. Bigbom Digital Contract Platform Technical Paper

CHAPTER 2

Freelancer Smart Contract Architecture

2.1 Introduction

There are three main components in Bigbom Freelancer App: BBFreelancerBid.sol, BBFreelancerJob.
sol, BBFreelancerPayment.sol

BBFreelancerJob.sol: manage job information

BBFreelancerBid.sol: manage biding

BBFreelancerPayment.sol: manage payment

2.2 High-level Overview

BBOFreelancer Dapp allows the hirer to post the job, they will automatically begin to receive bids from the freelancers.
They can choose the best freelancer & success work.

9

Bigbom Digital Contracts Documentation, Release 9/2018

2.3 Detailed Hirer Flow

• Post a job

• Choose the perfect freelancer

• Pay & success

2.4 Detailed Freelancer Flow

• Find a job

• Make your best bid

• Get awarded and earn

10 Chapter 2. Freelancer Smart Contract Architecture

Bigbom Digital Contracts Documentation, Release 9/2018

2.5 Stack

2.6 Permissions

BBFreelancer always has proxy contract over each contract to make the contract upgradeability. They are has Admin
permision is allowed to write to BBStorage contract

2.5. Stack 11

Bigbom Digital Contracts Documentation, Release 9/2018

12 Chapter 2. Freelancer Smart Contract Architecture

CHAPTER 3

How to work with Bigbom Freelancer DApp

3.1 Ropsten Contract Information

• BBO: 0x1d893910d30edc1281d97aecfe10aefeabe0c41b

• proxyAddressJob: 0x62aa93f9dffec25daf9d2955d468194e996e8c87

• proxyAddressBid: 0x0ff11890ef301dfd0fb37e423930b391836c69c9

• proxyAddressPayment: 0x7b7e6f2b02a48bd24b5b1554fafff5f70547ab0a

3.2 Example

• Job Status 0 : init 1 : start 2 : finish 4 : reject 5 : claim Payment 9 : accept Payment

• Create new job

let job = await BBFreelancerJob.at(proxyAddressJob);
var userA = '0x12312321';
var expiredTime = parseInt(Date.now()/1000) + 7 * 24 * 3600; // expired after 7 days
var totalTime = 3 * 24 * 3600;// requirement job done in 3 days
// createJob: jobHash, expiredTime, totalTime,budget, category
var jobLog = await job.createJob(jobHash, expiredTime, totalTime, 500e18, 'banner',
→˓{from:userA});
// check event logs

• cancel job

var jobLog = await job.cancelJob(jobHash, {from:userA});

• create bid

13

Bigbom Digital Contracts Documentation, Release 9/2018

var userB = '0x98988997897';
let bid = await BBFreelancerBid.at(proxyAddressBid);
var timeDone = 2 * 24 * 3600; //Freelancer suggest time done affer 2 days
var jobLog = await bid.createBid(jobHash, 400e18, timeDone,{from:userB});

• cancel bid

var jobLog = await bid.cancelBid(jobHash, {from:userB});

• acceept bid

var userA = '0x12312321';
let bid = await BBFreelancerBid.at(proxyAddressBid);
let bbo = await BBO.at(BBOAddress);// abi BBO contract
// approve bid's BBO amount to contract proxyAddressBid
await bbo.approve(proxyAddressBid, 400e18, {from:userA});
// call accept function
var jobLog = await bid.acceptBid(jobHash, accounts[1], {from:userA});

• start working job

var jobLog = await job.startJob(jobHash, {from:userB});

• finish job

var jobLog = await job.finishJob(jobHash, {from:userB});

• reject payment

let payment = await BBFreelancerPayment.at(proxyAddressPayment);
var userA = '';
var jobLog = await payment.rejectPayment(jobHash, {from:userA});

• claime payment

let payment = await BBFreelancerPayment.at(proxyAddressPayment);
var userB = '';
var jobLog = await payment.claimePayment(jobHash, {from:userB});

• acceept payment

var jobLog = await payment.acceptPayment(jobHash, {from:userA});

• get job by Hash

let job = await BBFreelancerJob.at(proxyAddressJob);
var jobLog = await job.getJob(jobHash);
// return [owner, expired, budget, cancel, status, freelancer]

• view list job

// event JobCreated(bytes jobHash, address indexed owner, uint created, string
→˓category);

BBFreelancerJob.at(proxyAddressJob).getPastEvents('JobCreated', {
filter: {owner: '0x123', category: ['banner','it']}, // filter by owner, category
fromBlock: 0, // should use recent number

(continues on next page)

14 Chapter 3. How to work with Bigbom Freelancer DApp

Bigbom Digital Contracts Documentation, Release 9/2018

(continued from previous page)

toBlock: 'latest'
}, function(error, events){

//TODO
});

3.3 Event lists:

• event JobCreated(bytes jobHash, address indexed owner, uint expired, bytes32 indexed category, uint256 bud-
get);

• event JobCanceled(bytes jobHash);

• event JobStarted(bytes jobHash);

• event JobFinished(bytes jobHash);

• event BidCreated(bytes jobHash, address indexed owner, uint256 bid, uint created);

• event BidCanceled(bytes jobHash, address indexed owner);

• event BidAccepted(bytes jobHash, address indexed freelancer);

• event PaymentClaimed(bytes jobHash, address indexed sender);

• event PaymentAccepted(bytes jobHash, address indexed sender);

• event PaymentRejected(bytes jobHash, address indexed sender);

3.3. Event lists: 15

Bigbom Digital Contracts Documentation, Release 9/2018

16 Chapter 3. How to work with Bigbom Freelancer DApp

CHAPTER 4

Ethereum Mainnet

17

Bigbom Digital Contracts Documentation, Release 9/2018

18 Chapter 4. Ethereum Mainnet

CHAPTER 5

Ropsten Testnet

var proxyAddressBid = '0x39abc4386a817b5d8a4b008e022b446637e2a1eb'
var proxyAddressPayment = '0x5c6e2663ca0481156a63c7c8ca0372c3efa0471f'
var storageAddress = '0x03427964b56c3e019d1b1aaf554e1fcd40aac8f9'
var proxyFactAddress = '0xd4a6CbEF73e5f03093d6f5d59ca27952AC9367B9'
var paramsProxy = '0x2866cef47dce5db897678695d08f0633102f164a'
var disputeProxy = '0xdeeaaad9a5f7c63fd2a29db1c9d522b056637b28'
var votingProxy = '0x347d3adf5081718020d11a2add2a52b39ad9971a'
var bbo = '0x1d893910d30edc1281d97aecfe10aefeabe0c41b'

19

Bigbom Digital Contracts Documentation, Release 9/2018

20 Chapter 5. Ropsten Testnet

CHAPTER 6

Tomochain

21

Bigbom Digital Contracts Documentation, Release 9/2018

22 Chapter 6. Tomochain

CHAPTER 7

DApps Integration Guide

23

Bigbom Digital Contracts Documentation, Release 9/2018

24 Chapter 7. DApps Integration Guide

CHAPTER 8

BBFreelancer

Contract BBFreelancer is BBStandard

imports: BBStandard.sol

Source: BBFreelancer.sol

BBFreelancer is modifiers contract used for BBFreelancerBid, BBFreelancerJob,
BBFreelancerPayment

• Modifiers

– jobNotExist

– isFreelancerOfJob

– isNotOwnerJob

– isOwnerJob

– isNotCanceled

– jobNotStarted

8.1 Modifiers

8.1.1 jobNotExist

Require job hash not exist in BBFreelancer System

modifier jobNotExist(bytes jobHash)

25

../../src/contracts/BBStandard.sol
../../src/contracts/BBFreelancer.sol

Bigbom Digital Contracts Documentation, Release 9/2018

8.1.2 isFreelancerOfJob

Require the sender is the freelancer of this Job Hash

modifier isFreelancerOfJob(bytes jobHash)

8.1.3 isNotOwnerJob

Require the sender is not the owner of this Job Hash

modifier isNotOwnerJob(bytes jobHash)

8.1.4 isOwnerJob

Require the sender is the owner of this Job Hash

modifier isOwnerJob(bytes jobHash)

8.1.5 isNotCanceled

Require this Job Hash is not canceled yet

modifier isNotCanceled(bytes jobHash)

8.1.6 jobNotStarted

Require this Job Hash is not started yet

modifier jobNotStarted(bytes jobHash)

26 Chapter 8. BBFreelancer

CHAPTER 9

BBFreelancerJob

Contract BBFreelancerJob is BBFreelancer

imports: BBFreelancerPayment.sol, BBLib.sol, BBFreelancer.sol

Source: BBFreelancerJob.sol

BBFreelancerJob is the contract implements Job Posting actions for Freelancer app

• Events

– JobCreated

– JobCanceled

– JobStarted

– JobFinished

• Functions

– getJob

– createJob

– cancelJob

– startJob

– finishJob

9.1 Events

9.1.1 JobCreated

Event for logging new Job creations.

27

../../src/contracts/BBFreelancerPayment.sol
../../src/contracts/BBLib.sol
../../src/contracts/BBFreelancer.sol
../../src/contracts/BBFreelancerJob.sol

Bigbom Digital Contracts Documentation, Release 9/2018

event JobCreated(bytes jobHash, address indexed owner, uint expired, bytes32 indexed category, uint256 budget,
uint256 estimateTime);

9.1.2 JobCanceled

Event for logging canceled job.

event JobCanceled(bytes jobHash);

9.1.3 JobStarted

Event for logging started job.

event JobStarted(bytes jobHash);

9.1.4 JobFinished

Event for logging finished job.

event JobFinished(bytes jobHash);

9.2 Functions

9.2.1 getJob

Get job detail by job hash.

function getJob(bytes jobHash) public view returns(address, uint256, uint256, bool, uint256, address)

Returns:

9.2.2 createJob

Post new job

function createJob(bytes jobHash, uint expired ,uint estimateTime, uint256 budget, bytes32 category) public jobNo-
tExist(jobHash)

Modifiers: jobNotExist

28 Chapter 9. BBFreelancerJob

Bigbom Digital Contracts Documentation, Release 9/2018

9.2.3 cancelJob

Cancel a job by jobHash

function cancelJob(bytes jobHash) public isOwnerJob(jobHash)

Modifiers: isOwnerJob

9.2.4 startJob

Start working on a job by jobHash

function startJob(bytes jobHash) public isNotCanceled(jobHash) jobNotStarted(jobHash) isFree-
lancerOfJob(jobHash)

Modifiers: isNotCanceled, jobNotStarted, isFreelancerOfJob

9.2.5 finishJob

Finish working on a job by jobHash

function finishJob(bytes jobHash) public isNotOwnerJob(jobHash) isFreelancerOfJob(jobHash)

Modifiers: isNotOwnerJob, isFreelancerOfJob

9.2. Functions 29

Bigbom Digital Contracts Documentation, Release 9/2018

30 Chapter 9. BBFreelancerJob

CHAPTER 10

BBFreelancerBid

Contract BBFreelancerBid is BBFreelancer

imports: BBFreelancerPayment.sol, BBLib.sol, BBFreelancer.sol

Source: BBFreelancerBid.sol

BBFreelancerBid is the contract implements Bidding actions for Freelancer app

• Events

– BidCreated

– BidCanceled

– BidAccepted

• Functions

– setPaymentContract

– createBid

– cancelBid

– acceptBid

10.1 Events

10.1.1 BidCreated

Event for logging Bid creations.

event BidCreated(bytes32 indexed jobHash , address indexed owner, uint256 bid, uint256 bidTime)

31

../../src/contracts/BBFreelancerPayment.sol
../../src/contracts/BBLib.sol
../../src/contracts/BBFreelancer.sol
../../src/contracts/BBFreelancerBid.sol

Bigbom Digital Contracts Documentation, Release 9/2018

10.1.2 BidCanceled

Event for logging the canceled Bid .

event BidCanceled(bytes32 indexed jobHash, address indexed owner);

10.1.3 BidAccepted

Event for logging Bid creations.

event BidAccepted(bytes32 indexed jobHash, address indexed freelancer);

10.2 Functions

10.2.1 setPaymentContract

Set the address of the FreelancerPayment contract. Only invoked by owner.

function setPaymentContract(address paymentAddress) onlyOwner public

10.2.2 createBid

Allow the freelancer to create new bid for job hash.

function createBid(bytes jobHash, uint256 bid, uint bidTime) public isNotOwnerJob(jobHash) isNot-
Canceled(jobHash) jobNotStarted(jobHash)

Modifiers: isNotOwnerJob, isNotCanceled, jobNotStarted

10.2.3 cancelBid

Allow the freelancer to cancel the bid by job hash.

function cancelBid(bytes jobHash) public isNotOwnerJob(jobHash)

Modifiers: isNotOwnerJob

10.2.4 acceptBid

Allow the hirer to accept the bid for job hash.

function acceptBid(bytes jobHash, address freelancer) public

32 Chapter 10. BBFreelancerBid

CHAPTER 11

BBFreelancerPayment

Contract BBFreelancerPayment is BBFreelancer

imports: BBFreelancer.sol, BBLib.sol

Source: BBFreelancerPayment.sol

BBFreelancerPayment is the contract control the payment for Freelancer app

• BBFreelancerPayment

– Events

* PaymentClaimed

* PaymentClaimed

* PaymentRejected

* DisputeFinalized

– Functions

* acceptPayment

* rejectPayment

* claimePayment

* checkPayment

* finalizeDispute

* refundBBO

33

../../src/contracts/BBFreelancer.sol
../../src/contracts/BBLib.sol
../../src/contracts/BBFreelancerPayment.sol

Bigbom Digital Contracts Documentation, Release 9/2018

11.1 Events

11.1.1 PaymentClaimed

Event for loging payment claimed.

event PaymentClaimed(bytes jobHash, address indexed sender);

11.1.2 PaymentClaimed

Event for loging payment accepted.

event PaymentAccepted(bytes jobHash, address indexed sender);

11.1.3 PaymentRejected

Event for loging payment rejected.

event PaymentRejected(bytes jobHash, address indexed sender);

11.1.4 DisputeFinalized

Event for loging payment claim.

event DisputeFinalized(bytes jobHash, address indexed winner);

11.2 Functions

11.2.1 acceptPayment

Hirer accept the payment when the freelancer done the job

function acceptPayment(bytes jobHash) public isOwnerJob(jobHash)

Modifiers: isOwnerJob

11.2.2 rejectPayment

Hirer reject the payment when the freelancer done the job

function rejectPayment(bytes jobHash) public isOwnerJob(jobHash)

Modifiers: isOwnerJob

34 Chapter 11. BBFreelancerPayment

Bigbom Digital Contracts Documentation, Release 9/2018

11.2.3 claimePayment

The freelancer can claim the payment if the hirer does not accept/reject after X duration.

function claimePayment(bytes jobHash) public isFreelancerOfJob(jobHash)

Modifiers: isFreelancerOfJob

11.2.4 checkPayment

The freelancer can check the payment of this job for ready claim

function checkPayment(bytes jobHash) public view returns(uint256, uint256)

Returns:

11.2.5 finalizeDispute

Finalize dispute job and send payment for the winer

function finalizeDispute(bytes jobHash) public returns(bool)

11.2.6 refundBBO

refund token to hirer if canceled

function refundBBO(bytes jobHash) public returns(bool) {

11.2. Functions 35

Bigbom Digital Contracts Documentation, Release 9/2018

36 Chapter 11. BBFreelancerPayment

CHAPTER 12

BBStorage

Contract BBStorage is Ownable

imports: Ownable.sol

Source: BBStorage.sol

BBStorage is key-value type storage:

mapping(bytes32 => uint256) private uIntStorage;
mapping(bytes32 => string) private stringStorage;
mapping(bytes32 => address) private addressStorage;
mapping(bytes32 => bytes) private bytesStorage;
mapping(bytes32 => bool) private boolStorage;
mapping(bytes32 => int256) private intStorage;

• Modifiers

– onlyAdminStorage

• Events

– AdminAdded

• Functions

– addAdmin

– getAddress

– getUint

– getString

– getBytes

– getBool

– getInt

– setAddress

37

../../src/contracts/zeppelin/ownership/Ownable.sol
../../src/contracts/BBStorage.sol

Bigbom Digital Contracts Documentation, Release 9/2018

– setUint

– setString

– setBytes

– setBool

– setInt

– deleteAddress

– deleteUint

– deleteString

– deleteBytes

– deleteBool

– deleteInt

12.1 Modifiers

12.1.1 onlyAdminStorage

Only allow access from the admin storage mapping, use for write/delete data

modifier onlyAdminStorage()

12.2 Events

12.2.1 AdminAdded

Event for logging admin additions or removals from the storage contract.

event AdminAdded(address indexed admin, bool add)

12.3 Functions

12.3.1 addAdmin

add/delete admin to allow write/delete storage object. Only owner can invoke.

function addAdmin(address admin, bool add) public onlyOwner

modifier: onlyOwner

38 Chapter 12. BBStorage

../../src/contracts/zeppelin/ownership/Ownable.sol#L31-L35

Bigbom Digital Contracts Documentation, Release 9/2018

12.3.2 getAddress

Get address value from storage mapping by key

function getAddress(bytes32 _key) external view returns (address)

Returns: address value

12.3.3 getUint

Get uint256 value from storage mapping by key

function getUint(bytes32 _key) external view returns (uint256)

Returns: uint256 value

12.3.4 getString

Get string value from storage mapping by key

function getString(bytes32 _key) external view returns (string)

Returns: string value

12.3.5 getBytes

Get bytes value from storage mapping by key

function getBytes(bytes32 _key) external view returns (bytes)

Returns: bytes value

12.3.6 getBool

Get bool value from storage mapping by key

function getBool(bytes32 _key) external view returns (bool)

Returns: bool value

12.3.7 getInt

Get int value from storage mapping by key

function getInt(bytes32 _key) external view returns (int)

Returns: int value

12.3. Functions 39

Bigbom Digital Contracts Documentation, Release 9/2018

12.3.8 setAddress

Set address value to storage mapping by key

function setAddress(bytes32 _key, address _value) onlyAdminStorage external

Modifier: onlyAdminStorage

12.3.9 setUint

Set uint256 value to storage mapping by key

function setUint(bytes32 _key, uint256 _value) onlyAdminStorage external

Modifier: onlyAdminStorage

12.3.10 setString

Set string value to storage mapping by key

function setString(bytes32 _key, string _value) onlyAdminStorage external

Modifier: onlyAdminStorage

12.3.11 setBytes

Set bytes value to storage mapping by key

function setBytes(bytes32 _key, bytes _value) onlyAdminStorage external

Modifier: onlyAdminStorage

12.3.12 setBool

Set bool value to storage mapping by key

function setBool(bytes32 _key, bool _value) onlyAdminStorage external

Modifier: onlyAdminStorage

12.3.13 setInt

Set int value to storage mapping by key

function setInt(bytes32 _key, int _value) onlyAdminStorage external

Modifier: onlyAdminStorage

40 Chapter 12. BBStorage

Bigbom Digital Contracts Documentation, Release 9/2018

12.3.14 deleteAddress

delete address value from storage mapping by key

function deleteAddress(bytes32 _key) onlyAdminStorage external

Modifier: onlyAdminStorage

12.3.15 deleteUint

delete unit256 value from storage mapping by key

function deleteUint(bytes32 _key) onlyAdminStorage external

Modifier: onlyAdminStorage

12.3.16 deleteString

delete string value from storage mapping by key

function deleteString(bytes32 _key) onlyAdminStorage external

Modifier: onlyAdminStorage

12.3.17 deleteBytes

delete bytes value from storage mapping by key

function deleteBytes(bytes32 _key) onlyAdminStorage external

Modifier: onlyAdminStorage

12.3.18 deleteBool

delete bool value from storage mapping by key

function deleteBool(bytes32 _key) onlyAdminStorage external

Modifier: onlyAdminStorage

12.3.19 deleteInt

delete int value from storage mapping by key

function deleteInt(bytes32 _key) onlyAdminStorage external

Modifier: onlyAdminStorage

12.3. Functions 41

Bigbom Digital Contracts Documentation, Release 9/2018

42 Chapter 12. BBStorage

CHAPTER 13

BBDocumentSign

43

Bigbom Digital Contracts Documentation, Release 9/2018

44 Chapter 13. BBDocumentSign

CHAPTER 14

BBLib

45

Bigbom Digital Contracts Documentation, Release 9/2018

46 Chapter 14. BBLib

CHAPTER 15

BBStandard

Contract BBStandard is Ownable

imports: Ownable.sol, SafeMath.sol, BBStorage.sol, ERC20.sol

Source: BBStandard.sol

BBStandard is standard contract implements the key-value storage from BBStorage, and use BBO ERC20 token
for payment

• BBStandard

– Functions

* setStorage

* setBBO

* withdrawTokens

15.1 Functions

15.1.1 setStorage

set Storage contract address. Only owner can invoke.

function setStorage(address storageAddress) onlyOwner public

modifier: onlyOwner

47

../../src/contracts/zeppelin/ownership/Ownable.sol
../../src/contracts/zeppelin/math/SafeMath.sol
../../src/contracts/BBStorage.sol
../../src/contracts/zeppelin/token/ERC20/ERC20.sol
../../src/contracts/BBStandard.sol
../../src/contracts/zeppelin/ownership/Ownable.sol#L31-L35

Bigbom Digital Contracts Documentation, Release 9/2018

15.1.2 setBBO

set BBO token contract address. Only owner can invoke.

function setBBO(address BBOAddress) onlyOwner public

modifier: onlyOwner

15.1.3 withdrawTokens

withdraw any token in the contract. Only owner can invoke.

function withdrawTokens(ERC20 anyToken) public onlyOwner

modifier: onlyOwner

48 Chapter 15. BBStandard

../../src/contracts/zeppelin/ownership/Ownable.sol#L31-L35
../../src/contracts/zeppelin/ownership/Ownable.sol#L31-L35

CHAPTER 16

BBParams

49

Bigbom Digital Contracts Documentation, Release 9/2018

50 Chapter 16. BBParams

CHAPTER 17

BBDispute

Contract BBDispute is BBStandard

imports: BBStandard.sol, BBLib.sol, BBFreelancerPayment.sol

Source: BBDispute.sol

BBDispute is the contract implements Poll creation actions for creating dispute in Freelancer app

• Events

– PollStarted

– PollAgainsted

– PollFinalized

• Functions

– setPayment

– isAgaintsPoll

– startPoll

– againstPoll

– getPoll

– finalizePoll

17.1 Events

17.1.1 PollStarted

Event for logging start new poll.

event PollStarted(bytes jobHash, address indexed creator);

51

../../src/contracts/BBStandard.sol
../../src/contracts/BBLib.sol
../../src/contracts/BBFreelancerPayment.sol
../../src/contracts/BBDispute.sol

Bigbom Digital Contracts Documentation, Release 9/2018

17.1.2 PollAgainsted

Event for logging against the exist poll.

event PollAgainsted(bytes jobHash, address indexed creator);

17.1.3 PollFinalized

Event for logging against the exist poll.

event PollFinalized(bytes jobHash, uint256 jobOwnerVotes, uint256 freelancerVotes, bool isPass);

17.2 Functions

17.2.1 setPayment

set Payment contract address. Only owner can invoke.

function setPayment(address p) onlyOwner public

modifier: onlyOwner

17.2.2 isAgaintsPoll

Check this Poll started for the job Hash has againts or not

function isAgaintsPoll(bytes jobHash) public constant returns(bool)

Return: (Bool)

17.2.3 startPoll

Create a Poll to start Dispute by provide the evident proofHash

function startPoll(bytes jobHash, bytes proofHash) public

17.2.4 againstPoll

Against a Poll to start Dispute by provide the evident proofHash.

function againstPoll(bytes jobHash, bytes againstProofHash) public

52 Chapter 17. BBDispute

../../src/contracts/zeppelin/ownership/Ownable.sol#L31-L35

Bigbom Digital Contracts Documentation, Release 9/2018

17.2.5 getPoll

Get Poll detail

function getPoll(bytes jobHash) public constant returns (uint256, uint256, bool)

Returns:

17.2.6 finalizePoll

Finalize a Poll

function finalizePoll(bytes jobHash) public

17.2. Functions 53

Bigbom Digital Contracts Documentation, Release 9/2018

54 Chapter 17. BBDispute

CHAPTER 18

BBVoting

Contract BBVoting is BBStandard

imports: BBStandard.sol, BBLib.sol

Source: BBVoting.sol

BBVoting is the contract implements Partial-Lock Commit-Reveal Voting for allow voter can help to reslove the
dispute in Freelancer app

• Events

– VotingRightsGranted

– VotingRightsWithdrawn

– VoteCommitted

– VoteRevealed

• Modifiers

– isDisputeJob

• Functions

– isAgaintsPoll

– setBBOReward

– requestVotingRights

– withdrawVotingRights

– checkBalance

– commitVote

– revealVote

– checkHash

– claimReward

55

../../src/contracts/BBStandard.sol
../../src/contracts/BBLib.sol
../../src/contracts/BBVoting.sol

Bigbom Digital Contracts Documentation, Release 9/2018

– calcReward

18.1 Events

18.1.1 VotingRightsGranted

Event for logging the voter request the voting rights.

event VotingRightsGranted(address indexed voter, uint256 numTokens);

18.1.2 VotingRightsWithdrawn

Event for logging the voter withdraw voting rights

event VotingRightsWithdrawn(address indexed voter, uint256 numTokens);

18.1.3 VoteCommitted

Event for logging the voter commit vote for job hash

event VoteCommitted(address indexed voter, bytes jobHash);

18.1.4 VoteRevealed

Event for logging the voter reveal the commit vote

event VoteRevealed(address indexed voter, bytes jobHash, bytes32 secretHash);

18.2 Modifiers

18.2.1 isDisputeJob

Check the job hash is the dispute job

modifier isDisputeJob(bytes jobHash){
uint256 jobStatus = bbs.getUint(BBLib.toB32(jobHash,'STATUS'));
require(jobStatus == 4);
require(bbs.getAddress(BBLib.toB32(jobHash, 'DISPUTE_WINNER'))==address(0x0));
_;

}

56 Chapter 18. BBVoting

Bigbom Digital Contracts Documentation, Release 9/2018

18.3 Functions

18.3.1 isAgaintsPoll

Check this Poll started for the job Hash has againts or not

function isAgaintsPoll(bytes jobHash) public constant returns(bool)

Return: (Bool)

18.3.2 setBBOReward

Set bbo reward address, use for send reward to the voter. Only owner can invoke

function setBBOReward(address rewardAddress) onlyOwner public

18.3.3 requestVotingRights

The voter request voting rights by lock the number token, each locked token is 1 vote

function requestVotingRights(uint256 numTokens) public

18.3.4 withdrawVotingRights

The voter withdraw the locked token

function withdrawVotingRights(uint256 numTokens) public

18.3.5 checkBalance

check the locked token balance

function checkBalance() public view returns(uint256 tokens)

Return:

18.3.6 commitVote

Voter commit vote for the dispute job

function commitVote(bytes jobHash, bytes32 secretHash, uint256 tokens) public isDisputeJob(jobHash)

Modifiers: isDisputeJob

18.3. Functions 57

Bigbom Digital Contracts Documentation, Release 9/2018

18.3.7 revealVote

Voter reveal vote for the dispute job

function revealVote(bytes jobHash, address choice, uint salt) public isDisputeJob(jobHash)

Modifiers: isDisputeJob

18.3.8 checkHash

Voter can check the secretHash

function checkHash(bytes jobHash, address choice, uint salt) public view returns(bool)

18.3.9 claimReward

Voter claim reward

function claimReward(bytes jobHash) public

18.3.10 calcReward

Calculate the reward of the dispute job hash

function calcReward(bytes jobHash) constant public returns(uint256 numReward)

Return: Number of reward.

58 Chapter 18. BBVoting

CHAPTER 19

AdminUpgradeabilityProxy

59

	Bigbom Digital Contract Platform Technical Paper
	A brief history on contract signing
	The introduction of Bigbom Digital Contract

	Freelancer Smart Contract Architecture
	Introduction
	High-level Overview
	Detailed Hirer Flow
	Detailed Freelancer Flow
	Stack
	Permissions

	How to work with Bigbom Freelancer DApp
	Ropsten Contract Information
	Example
	Event lists:

	Ethereum Mainnet
	Ropsten Testnet
	Tomochain
	DApps Integration Guide
	BBFreelancer
	Modifiers

	BBFreelancerJob
	Events
	Functions

	BBFreelancerBid
	Events
	Functions

	BBFreelancerPayment
	Events
	Functions

	BBStorage
	Modifiers
	Events
	Functions

	BBDocumentSign
	BBLib
	BBStandard
	Functions

	BBParams
	BBDispute
	Events
	Functions

	BBVoting
	Events
	Modifiers
	Functions

	AdminUpgradeabilityProxy

