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CHAPTER 1

Purpose

BIAS is an open source implementation of several Bayesian parametric and non-parametric hierarchical mixture mod-
els in julia. The implemented models include:

1. Bayesian Mixture Model (BMM)

2. Latent Dirichlet Allocation (LDA)

3. Dirichlet Process Mixture Model (DPM)

4. Hierarchical Dielectric Mixture Model (HDP)

5. dynamic Hierarchical Dirichelt Mixture Model (dHDP)

6. Recurrent Chinese Restaurant Process (RCRP) also known as Temporal Dirichelt Process Mixture model
(TDPM)
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CHAPTER 2

Getting Started

The following julia command will install the package:

julia> Pkg.clone("git://github.com/adham/BIAS.jl.git")
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CHAPTER 3

Contents

3.1 Introduction

A few sentences on

• mixture modeling

• Bayesian n treatment of mixture models

• why hierarchical mixture models

• why temporal

Mixture modelling is a probabilistic representations of subpopulations (or clusters) within a population. It provides a
flexible framework for statistical modeling and analysis.

3.1.1 Mixture Models

The pdf/pmf a mixture distributino is given by convex combination of the pdf/pmf of its individual components. We
say a distribution 𝑓 is a mixture of 𝐾 component distributions if

𝑓 (𝑥; Θ, 𝜋) =

𝐾∑︁
𝑘=1

𝜋𝑘𝑓 (𝑥; 𝜃𝑘)

A mixture model is characterized by a set of component parameters Θ = {𝜃1, . . . , 𝜃𝐾} and a prior distribution 𝜋 over
these components.

3.2 Distributions

All distributions provided in this package are organized in a type hierarchy as follows:

abstract Distribution
distribution <: Distribution

Here is the list of implemented distribution. This list will grow as I continue to develop this package.

• Gaussian1D

• Dirichlet

7
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3.2.1 Gaussian1D

Gaussian1D is the univariate Gaussian distribution. It is parametrized by its mean and variance.

julia> using BIAS
julia> srand(123)

julia> qq = Gaussian1D(5, 2)
Gaussian1D distribution
mean: mu=5.0, variance: vv=2.0

julia> sample(qq)
6.683292

julia> sample(qq, 100)
100-element Array{Float64, 1}:
7.89656
6.61595
...

julia> pdf(qq, 4.5)
0.265003

julia> logpdf(qq, 4.5)
-1.328012

3.2.2 Dirichlet

Dirichlet distribution is a probability distribution on a probability simplex where its draws are multinomial random
variables.

julia> qq = Dirichlet([0.2, 0.2, 0.2, 0.2])
Dirichlet distribution
cardinality = 4
alpha = [0.2,0.2,0.2,0.2]

julia> qq = Dirichlet(5, 4)
Dirichlet distribution
cardinality = 4
alpha = [1.25,1.25,1.25,1.25]

julia> mean(qq)
4-elemnt Array{Float64, 1}
0.25
0.25
0.25
0.25

Caution: pdf and logpdf need to be revised.

3.3 Conjugates

conjugates are types equivalent to likelihood-prior pairs in Bayesian paradigm. They comprise of a likelihood
distribution and a prior distribution where the parameters of the likelihood are drawn from the prior. Apart from the

8 Chapter 3. Contents
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parameters of the likelihood and the prior distributions, a conjugate component also contains the data points which are
associated with it.

All conjugates provided in this package are organized in a type hierarchy as follows:

abstract Conjugates
conjugate <: Conjugates

Conjugates names follow the convention of LikelihoodPrior. Therefore MultinomialDirichlet is a Bayesian conju-
gate component with a Multinomial likelihood where the Multinomial distribution parameter is drawn from Dirichelt
distribution.

3.3.1 Conjugate distributions

Here is a list of implemented conjugates. This list will grow as I continue to develop this package.

• Gaussian1DGaussian1D

• MultinomialDirichlet

Gaussian1DGaussian1D

It is a conjugate component with univariate Gaussian likelihood. The variance of the likelihood is known. The mean
parameter of the likelihood is drawn from another univariate Gaussian distribution.

𝜇|𝜇0, 𝜎
2
0 ∼ Gaussian

(︀
𝜇0, 𝜎

2
0

)︀
𝑥1, . . . , 𝑥𝑛|𝜇, 𝜎2 ∼ Gaussian

(︀
𝜇, 𝜎2

)︀
It is parametrized by the mean and variance of the prior, m0 and v0, and the variance of the likelihood vv.

julia> qq = Gaussian1DGaussian1D(m0, v0, vv)

julia> qq = Gaussian1DGaussian1D(2, 10, 0.5)
Gaussian1DGaussian1D conjugate component
likelihood parameters: mu=2.0, vv=0.5
prior parameters : m0=2.0, v0=10.0
number of data points: nn=0

MultinomialDirichlet

It is a conjugate component with Multinmomial likelihood where the likelihood parameter (i.e. Multinomial vector) is
drawn from a Dirichlet distirbution.

𝜃|𝛼 ∼ Dirichlet (𝛼)

𝑥1:𝑛|𝜃 ∼ Multinomial (𝜃)

where 𝜃 = [𝜃1, . . . , 𝜃𝐾 ] and 𝛼 = [𝛼1, . . . , 𝛼𝐾 ]. It is parametrized by the Dirichlet concentration parametr. You can
create a MultinomialDirichlet object by passing the cardinality and prior concentration parameter.

julia> qq = MultinomialDirichlet(5, 2.0)
MultinomialDirichlet component
cardinality: dd=5, Dirichlet prior parameter: aa=0.4
data: mm=0, nn=0

Note: write a few sentences about nn and mm and the two different forms that Multinomial Dirichelty can be used.

3.3. Conjugates 9
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3.3.2 Interface

In this section the functions that operate on conjugates are described.

Adding and removing data points

Note: Since these functions are not meant to be used directly by the user, they are not exported.

Use additem! or delitem! functions to add or delete a data point.

julia> qq = Gaussian1DGaussian1D(2, 10, 0.5)
Gaussian1DGaussian1D conjugate component
likelihood parameters: mu=2.0, vv=0.5
prior parameters : m0=2.0, v0=10.0
number of data points: nn=0

julia> BIAS.additem!(qq, 3.0)
julia> BIAS.additem!(qq, 3.5)
julia> BIAS.additem!(qq, 2.8)
likelihood parameters: mu=3.099999.0, vv=0.5
prior parameters : m0=2.0, v0=10.0
number of data points: nn=3

julia> BIAS.delitem!(qq, 2.8)
Gaussian1DGaussian1D conjugate component
likelihood parameters: mu=3.249999, vv=0.5
prior parameters : m0=2.0, v0=10.0
number of data points: nn=2

Posterior distribution

Use posterior to find the posterior probability distribution of the likelihood parameters given the observations.
Since we use conjugate priors, the posterior will have the same form as prior.

𝑝 (𝜃|𝑥1:𝑛) ∝ 𝑝 (𝜃) 𝑝 (𝑥1:𝑛|𝜃)

julia> qq = Gaussian1DGaussian1D(2, 10, 0.5)
julia> BIAS.additem!(qq, 3.0)
julia> BIAS.additem!(qq, 3.5)
julia> BIAS.additem!(qq, 2.8)
likelihood parameters: mu=3.099999.0, vv=0.5
prior parameters : m0=2.0, v0=10.0
number of data points: nn=3

julia> posterior(qq)
Gaussian1D distribution
mean: mu=3.081967, variance: vv=0.163934

Posterior predictive likelihood

10 Chapter 3. Contents
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Note: Since these functions are not meant to be used directly by the user, they are not exported.

Use logpredictive to compute the posterior predictive likelihood of a component given a data point.

𝑝 (�̃�|𝑥1:𝑛) =

∫︁
𝜃

𝑝 (�̃�|𝜃) 𝑝 (𝜃|𝑥1:𝑁 ) 𝑑𝜃

julia> qq = Gaussian1DGaussian1D(2, 10, 0.5)
julia> BIAS.additem!(qq, 3.0)
julia> BIAS.additem!(qq, 3.5)
julia> BIAS.additem!(qq, 2.8)
julia> posterior(qq)
Gaussian1D distribution
mean: mu=3.081967, variance: vv=0.163934

julia> BIAS.logpredictive(qq, 3.2)
-0.724644
julia> BIAS.logpredictive(qq, 4.2)
-1.655550

3.4 Models

3.4.1 Bayesian Finite Mixture Model

3.4.2 Latent Dirichlet Allocation

3.4.3 Dirichlet Process Mixture Model

3.4.4 Hierarchical Dirichlet Process Mixture Model

3.4.5 dynamic Hierarchical Dirichlet Process Mixture Model

3.4.6 Temporal Dirichlet Process Mixture Model

3.5 Examples

The following list shows several examples on how to use BIAS package:

3.5.1 Bayesian Mixture Model

BMM for univariate Gaussian likelihood

Here we look at the problem of fitting a Bayesian Mixture Model to a series of data points that are drawn from a
number of Gaussian distributions. We assume:

• the variance of these Gaussian components is fixed and known

• the mean of these Gaussian components are drawn from another Gaussian distribution

What we are looking for is the mean of inferred Gaussian components after observing the data.

3.4. Models 11
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Problem

We have 𝑁 data points generated by 𝐾 univariate Gaussian distributions with known variance and unknown means.
Infer the means from the data.

Model

𝜋|𝛼 ∼ Dirichlet (𝛼)

𝜇𝑘|𝜇0, 𝜎
2
0 ∼ 𝒩

(︀
𝜇0, 𝜎

2
0

)︀
𝑧𝑛|𝜋 ∼ 𝜋

𝑥𝑛|𝑧𝑛, 𝜇1:𝐾 , 𝜎2 ∼ 𝒩
(︀
𝜇𝑧𝑛 , 𝜎

2
)︀

Solution

Simulate the data First we need to simulate a dataset. For this, we have to specify the parameters of some “true”
clusters and use the generative process mentioned above to obtain the observations. Each cluster is specified with a
univariate Gaussian distribution. Below, we assume 5 Gaussian distributions with means [1, 2, 3, 4, 5] and variance
equal to 0.01. The total number of observations is 500.

using BIAS
srand(123)

true_KK = 5 # number of components
NN = 500 # number of data points

vv = 0.01 # fixed variance
true_atoms = [Gaussian1D(kk, vv) for kk = 1:true_KK]

mix = ones(Float64, true_KK)/true_KK
xx = ones(Float64, NN)
true_zz = ones(Int, NN)
true_nn = zeros(Int, true_KK)

for n=1:NN
kk = BIAS.sample(mix)
true_zz[n] = kk
xx[n] = sample(true_atoms[kk])
true_nn[kk] += 1

end

Let’s look at the true cluster parameters. true_nn[kk] shows the number of data points generate by cluster kk.

julia> true_atoms
5-element Array{BIAS.Gaussian1D,1}:
Gaussian1D distribution

mean: mu=1.0, variance: vv=0.1

Gaussian1D distribution
mean: mu=2.0, variance: vv=0.1

Gaussian1D distribution
mean: mu=3.0, variance: vv=0.1

12 Chapter 3. Contents
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Gaussian1D distribution
mean: mu=4.0, variance: vv=0.1

Gaussian1D distribution
mean: mu=5.0, variance: vv=0.1

julia> true_nn
5-elemet Array{Int64, 1}
102
88

116
99
95

Model construction The prior-likelihood pair of this model can be seen as a Gaussian1DGaussian1D compo-
nent.

m0 = mean(xx)
v0 = 2.0
q0 = Gaussian1DGaussian1D(m0, v0, vv)

Now we construct and instantiate the model:

KK = true_KK
bmm_aa = 1.0
bmm = BMM(q0, KK, bmm_aa)

zz = zeros(Int64, length(xx))
init_zz!(bmm, zz)

Inferecne Now it is time to run the inference routine:

n_burnins = 100
n_lags = 2
n_samples = 200
store_every = 100
filename = "demo_BMM_Gaussian1DGaussian1D_"

collapsed_gibbs_sampler!(bmm, xx, zz, n_burnins, n_lags, n_samples, store_every, filename)

to obtain the posterior distributions:

julia> posterior_components, nn = posterior(bmm, xx, zz)
julia> posterior_components
5-element Array{BIAS.Gaussian1D,1}:
Gaussian1D distribution

mean: mu=4.990567102836185, variance: vv=0.00010525761802010421

Gaussian1D distribution
mean: mu=3.00416499910953, variance: vv=8.620318089737512e-5

Gaussian1D distribution
mean: mu=1.9939209647504217, variance: vv=0.00011362990739162548

Gaussian1D distribution
mean: mu=1.0153304673990435, variance: vv=9.803441007793736e-5

3.5. Examples 13
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Gaussian1D distribution
mean: mu=4.000720712951586, variance: vv=0.00010100499974748751

julia> nn
5-element Array{Int64,1}:
95

116
88

102
99

As it is readily seen nn is equal to true_nn by permutation and the posterior distribution of clusters are very close
to true_atoms.

BMM for Multinomial likelihood

Here we look at the problem of fitting a Bayesian mixture model to a series of observations made from Multinomial
distributions.

Here we assume:

• the probability vector of the Multinomial distribution is drawn from a Dirichlet distribution

Problem

We have 𝑁 observation generated by 𝐾 Multinomial distributions (i.e. topics). Infer the topics from the data.

Model

𝜋|𝛼 ∼ Dirichlet (𝛼)

𝜑𝑘|𝛽 ∼ Dirichlet (𝛽)

𝑧𝑛|𝜋 ∼ 𝜋

𝑥𝑛|𝑧𝑛, 𝜑1:𝐾 ∼ 𝜑𝑧𝑛

Solution

Simulate the data First we need to simulate a dataset. For this, we have to specify the parameters of some “true”
mixture components and use the generative process mentioned above, to obtain the observations. Each component is
a Multinomial distribution over a vocabulary that we call it a topic. Below, we create 4 topics over 25 words.

using BIAS
srand(123)

true_KK = 4
vocab_size = 25

true_topics = BIAS.gen_bars(true_KK, vocab_size, 0.0)
4x25 Array{Float64,2}:
0.2 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0
0.0 0.2 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0
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0.2 0.2 0.2 0.2 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.2 0.2 0.2 0.2 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Looking at the numerical values of the topics is not very convenient. Instead we can think of each topic as a 5x5 image
and plot it.

Fig. 3.1: true topics

Now we are ready to draw observations from the simulated topics. We assume each observation is a sentence with 15
words. We have 200 observations in total.

n_sentences = 200
n_tokens = 15

mix = ones(true_KK) / true_KK
xx = Array(Sent, n_sentences)
true_zz = zeros(Int, n_sentences)
true_nn = zeros(Int, true_KK)
for ii = 1:n_sentences

kk = sample(mix)
true_zz[ii] = kk
true_nn[kk] += 1
sentence = sample(true_topics[kk, :][:], n_tokens)
xx[ii] = BIAS.sparsify_sentence(sentence)

end

xx is a vector of type Sent.

julia> xx[1]
BIAS.Sent([10,9,7,8,6],[2,3,4,3,3])

Model construction The prior-likelihood pair of this model can be seen as a MultinomialDirichlet compo-
nent.

d = vocab_size
aa = 1.0
q0 = MultinomialDirichlet(dd, aa)

Now we construct and instantiate the model:

bmm_KK = true_KK
bmm_aa = 0.1
bmm = BMM(q0, bmm_KK, bmm_aa)

3.5. Examples 15
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# Sampling
zz = zeros(Int, length(xx))
init_zz!(bmm, zz)

Inferecne Now it is time to run the inference routine:

n_burnins = 100
n_lags = 2
n_samples = 200
store_every = 100
filename = "demo_BMM_MultinomialDirichlet_"

collapsed_gibbs_sampler!(bmm, xx, zz, n_burnins, n_lags, n_samples, store_every, filename)

to obtain the posterior distributions:

posterior_components, nn = posterior(bmm, xx, zz)
inferred_topics = zeros(Float64, bmm.K, vocab_size)
for kk = 1:length(posterior_components)

inferred_topics[kk, :] = mean(posterior_components[kk])
end

visualize_bartopics(inferred_topics)

Fig. 3.2: inferred topics

As it is readily seen from two figures, the model has successfully inferred the topics. Also:

julia> true_nn
4-element Array{Int64, 1}
51
55
49
45

julia> nn
4-element Array{Int64, 1}
49
51
55
45

16 Chapter 3. Contents



BIAS.jl Documentation, Release 0.1.1

3.5.2 Latent Dirichlet Allocation

LDA for univariate Gaussian likelihood

We have already looked at the problem of modeling a group of data points that are drawn from a mixture of Gaussian
distributions in BMM for univariate Gaussian likelihood. This is the simplest case of Bayesian mixture modeling. Now
what if instead of one group of data points, we have J groups? This adds one level of hierarchy on the representation
of the data that needs to be addressed in the model as well. LDA was proposed to solve this problem.

Here we Here we look at the problem of modeling J groups of data points where each grouop is generated by a mixture
of Gaussian distributions where it is desired that groups share their mixing components.

We assume:

• the variance of these Gaussian components is fixed and known

• the mean of these Gaussian components are drawn from another Gaussian distribution

What we are looking for is the mean of inferred Gaussian components after observing the data.

Problem

We have 𝐽 groups of data points. Each group is generated by a mixture of 𝐾 univariate Gaussian distributions with
known variance and unknown means. Assuming J groups share their mixing components, infer the unknown means
from the data.

Model

𝜋𝑗 |𝛼 ∼ Dirichlet (𝛼)

𝜇𝑘|𝜇0, 𝜎
2
0 ∼ 𝒩

(︀
𝜇0, 𝜎

2
0

)︀
𝑧𝑗𝑖|𝜋 ∼ 𝜋

𝑥𝑗𝑖|𝑧𝑗𝑖, 𝜇1:𝐾 , 𝜎2 ∼ 𝒩
(︀
𝜇𝑧𝑗𝑖 , 𝜎

2
)︀

Solution

Simulate the data First we need to simulate a dataset. For this, we have to specify the parameters of some “true”
mixture components and then use the generative process mentioned above to obtain the observations. Each component
is a univariate Gaussian distribution. Below, we assume 5 Gaussian distributions with means [1, 2, 3, 4, 5] and variance
equal to 0.01.

using BIAS
srand(123)

true_KK = 5 # number of components
vv = 0.01 # fixed variance
true_atoms = [Gaussian1D(kk, vv) for kk = 1:true_KK]

Now we simualte the observtaioas from the components.

n_groups = 1000 # number of groups in the corpus, J
n_group_j = 100 * ones(Int, n_groups) # number of observations in each group

3.5. Examples 17
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alpha = 0.1
xx = Array(Vector{Float64}, n_groups)
true_zz = Array(Vector{Int}, n_groups)
true_nn = zeros(Int, n_groups, true_KK)
for jj = 1:n_groups

xx[jj] = zeros(Float64, n_group_j[jj])
true_zz[jj] = ones(Int, n_group_j[jj])
theta = BIAS.rand_Dirichlet(alpha .* ones(Float64, true_KK))
for ii = 1:n_group_j[jj]

kk = sample(theta)
true_zz[jj][ii] = kk
true_nn[jj, kk] += 1

xx[jj][ii] = sample(true_atoms[kk])
end

end

Therefore we have 1000 groups, each consisting of 100 data points drawn from 5 univariate Gaussian distributions.

Model construction The prior-likelihood pair of this model is a Gaussian1DGaussian1D component.

m0 = mean(mean(xx))
v0 = 10.0
q0 = Gaussian1DGaussian1D(m0, v0, vv)

Now we construct and instantiate the model:

KK = true_KK
lda_aa = 1.0
lda = LDA(q0, KK, lda_aa)

zz = Array(Vector{Int}, n_groups)
for jj = 1:n_groups

zz[jj] = ones(Int, n_group_j[jj])
end
init_zz!(lda, zz)

Inferecne Now it is time to run the inference routine:

# posterior distributions posterior_components, nn = posterior(lda, xx, zz)

n_burnins = 100
n_lags = 2
n_samples = 200
store_every = 100
filename = "demo_LDA_Gaussian1DGaussian1D_"

collapsed_gibbs_sampler!(lda, xx, zz, n_burnins, n_lags, n_samples, store_every, filename)

to obtain the posterior distributions:

julia> posterior_components, nn = posterior(lda, xx, zz)
julia> posterior_components
5-element Array{BIAS.Gaussian1D,1}:
Gaussian1D distribution

mean: mu=0.9997691504265703, variance: vv=4.827884703354245e-7

Gaussian1D distribution
mean: mu=4.45205906026365, variance: vv=2.632063454838595e-7

18 Chapter 3. Contents
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Gaussian1D distribution
mean: mu=3.009697893083578, variance: vv=9.67585405135266e-7

Gaussian1D distribution
mean: mu=2.990988787760691, variance: vv=9.2712732842234e-7

Gaussian1D distribution
mean: mu=2.000400973353594, variance: vv=4.957119675526774e-7

As it is seen, posterior_components are very close to ‘’true” components.

LDA for Multinomial likelihood

We have already looked at modeling one group of data points that are drawn from a mixture Multinomial distribution
in BMM for Multinomial likelihood. Now we aim to look at the modeling J groups of data where each group is drawn
from a mixture of Multinomial distributions while it is desired for these groups to share their mixture components.

Here we assume:

• the probability vector of the Multinomial distribution is drawn from a Dirichlet distribution

Since usually MultinomialDirichlet conjugate is used in the context of text processing, we also adopt the same
jargon. In this context, each mixing component is called a topic as it is a multinomial distribution over a vocabulary.
There is a subtle difference in how a sample is drawn from these sentences in different papers. Some works assume
that each word in a sentence is drawn from a different topic and draw one word at a time from a topic. Some other
assume each sentence is drawn from one topic, and draw a sentence (i.e. n words) at a time from a topic.

Both methods are implemented in BIAS package and the relevant examples are given in the following sections.

Problem

We have 𝐽 groups of data points. Each group is generated by a mixture of 𝐾 topics. Assuming J groups share the
topics, infer them from the data.

Model

𝜋|𝛼 ∼ Dirichlet (𝛼)

𝜑𝑘|𝛽 ∼ Dirichlet (𝛽)

𝑧𝑗𝑖|𝜋𝑗 ∼ 𝜋𝑗

𝑥𝑗𝑖|𝑧𝑗𝑖, 𝜑1:𝐾 ∼ 𝜑𝑧𝑗𝑖

Simulated data

First we need to specify the parameters of some “true” topics. Below, we create 10 topics over 25 words.

using BIAS
srand(123)

true_KK = 10
vocab_size = 25

3.5. Examples 19
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true_topics = BIAS.gen_bars(true_KK, vocab_size, 0)
visualize_bartopics(true_topics)

Fig. 3.3: true topics

Scenario 1: MultinomialDirichelt with single observations Now we are ready to simulate the corpus. In this sec-
tion, we assume the observations are single words. We construct a corpus of 100 documents (groups), each document
consisting of 50 words (observations).

n_groups = 100
n_group_j = 50 * ones(Int, n_groups)
max_n_topic_doc = 4
n_groups = 100

xx = Array(Vector{Int}, n_groups)
true_zz = Array(Vector{Int}, n_groups)
true_nn = zeros(Int, n_groups, true_KK)
n_topic_doc_p = cumsum(fill(1/max_n_topic_doc, max_n_topic_doc))

for jj = 1:n_groups
n_topic_doc = sum(rand() .< n_topic_doc_p)
topic_doc = randperm(true_KK)[1:n_topic_doc]

xx[jj] = zeros(Int, n_group_j[jj])
true_zz[jj] = ones(Int, n_group_j[jj])
for ii = 1:n_group_j[jj]
kk = topic_doc[rand(1:n_topic_doc)]
true_zz[jj][ii] = kk
xx[jj][ii] = BIAS.sample(true_topics[kk, :][:])
true_nn[jj, kk] += 1

end
end

Model construction The prior-likelihood pair of this model can be seen as a MultinomialDirichlet compo-
nent.

dd = vocab_size
aa = 0.1 * dd
q0 = MultinomialDirichlet(dd, aa)

Now we construct and instantiate the model:

lda_KK = true_KK
lda_aa = 0.1
lda = LDA(q0, lda_KK, lda_aa)

zz = Array(Vector{Int}, n_groups)
for jj = 1:n_groups

zz[jj] = ones(Int, n_group_j[jj])
end
init_zz!(lda, zz)
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Inference Now it is time to run the inference routine:

n_burnins = 100
n_lags = 2
n_samples = 400
store_every = 100
filename = "demo_LDA_Multinomial_Dirichlet"

collapsed_gibbs_sampler!(lda, xx, zz, n_burnins, n_lags, n_samples, store_every, filename)

# posterior distributions
posterior_components, nn = posterior(lda, xx, zz)

to obtain the posterior distributions:

inferred_topics = zeros(Float64, length(posterior_components), vocab_size)
for kk = 1:length(posterior_components)

inferred_topics[kk, :] = mean(posterior_components[kk])
end

visualize_bartopics(inferred_topics)

Fig. 3.4: inferred topics

As it is readily seen from two figures, the model has successfully inferred the topics. Also:

Scenario 2: MultinomialDirichelt with multiple observations In this section we assume instead of drawing one
word at a time form a topic, we draw a sentence i.e. n words. We construct a corpus of 25 documents (groups), each
document consisting of 100 sentences, and each sentence consisting of 230 words.

n_groups = 25
n_group_j = 100 * ones(Int, n_groups)
n_tokens = 20

alpha = 0.1
xx = Array(Vector{Sent}, n_groups)
true_zz = Array(Vector{Int}, n_groups)
true_nn = zeros(Int, n_groups, true_KK)
for jj = 1:n_groups

xx[jj] = Array(Sent, n_group_j[jj])
true_zz[jj] = ones(Int, n_group_j[jj])
theta = BIAS.rand_Dirichlet(fill(alpha, true_KK))
for ii = 1:n_group_j[jj]

kk = sample(theta)
sentence = sample(true_topics[kk, :][:], n_tokens)
xx[jj][ii] = BIAS.sparsify_sentence(sentence)
true_zz[jj][ii] = kk
true_nn[jj, kk] += 1

end
end

Model construction Similar to scenario 1, we construct the conjugate object.
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dd = vocab_size
aa = 0.1 * dd
q0 = MultinomialDirichlet(dd, aa)

Now we construct and instantiate the model:

lda_KK = true_KK
lda_aa = 0.1
lda = LDA(q0, lda_KK, lda_aa)

zz = Array(Vector{Int}, n_groups)
for jj = 1:n_groups

zz[jj] = ones(Int, n_group_j[jj])
end
init_zz!(lda, zz)

Inference Now it is time to run the inference routine:

n_burnins = 100
n_lags = 2
n_samples = 100
store_every = 100
filename = "demo_LDA_Multinomial_Dirichlet"

collapsed_gibbs_sampler!(lda, xx, zz, n_burnins, n_lags, n_samples, store_every, filename)

# posterior distributions
posterior_components, nn = posterior(lda, xx, zz)

to obtain the posterior distributions:

inferred_topics = zeros(Float64, length(posterior_components), vocab_size)
for kk = 1:length(posterior_components)

inferred_topics[kk, :] = mean(posterior_components[kk])
end

visualize_bartopics(inferred_topics)

Fig. 3.5: inferred topics

As it is readily seen from two figures, the model has successfully inferred the topics. Also:

Real data

In this section we fit LDA to a corpus of nematode biology abstracts (see
https://web.archive.org/web/20040328153507/http://elegans.swmed.edu/wli/cgcbib). Yee Why Teh has used
this dataset to validate HDP and showed that a model with 50 to 80 topics has the least perplexity [1]. We choose
to fit a model with 70 topics on this dataset. The provided data, it taken from the link above and preprocessed. It
consists of 5957 abstracts and the vocabulary size is 3793. Please consider that we are using the first representation of
a MultinomialDirichelt object for this example.
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First we read the dataset.

f = open("datasets\\cgcbib\\cgcbib_abs_bow.txt")
lines = readlines(f)
close(f)

n_lines = length(lines)
n_groups = 5957
n_group_j = zeros(Int, n_groups)
n_vocab = 3793

lines_mat = zeros(Int, n_lines, 4)
for i = 1:n_lines
line = split(strip(lines[i]))
line = [parse(Int, s) for s = line]
lines_mat[i, :] = line

end

xx = Array(Vector{Int}, n_groups)

for jj = 1:n_groups
print("$jj ")
mask = lines_mat[:, 1] .== jj-1
xx_jj_mat = lines_mat[mask, :]
xx_jj = Int[]

for ii=1:size(xx_jj_mat, 1)
for rr=1:xx_jj_mat[ii, 4]

push!(xx_jj, xx_jj_mat[ii, 3]+1)
end

end
xx[jj] = xx_jj

end

n_group_j = zeros(Int, n_groups)
for jj = 1:n_groups
n_group_j[jj] = length(xx[jj])

end

The rest is similar to previous exampes.

dd = n_vocab
aa = 0.5 * n_vocab
q0 = MultinomialDirichlet(dd, aa)

# constructing the model
lda_KK = 70
lda_aa = 1.5
lda = LDA(q0, lda_KK, lda_aa)

# sampling
zz = Array(Vector{Int}, n_groups)
for jj = 1:n_groups

zz[jj] = ones(Int, n_group_j[jj])
end

init_zz!(lda, zz)

n_burnins = 200
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n_lags = 1
n_samples = 300
sample_hyperparam = true
store_every = 1000
filename = "cgc_LDA_results_"
collapsed_gibbs_sampler!(lda, xx, zz, n_burnins, n_lags, n_samples, store_every, filename)
posterior_components, nn = posterior(lda, xx, zz)

Looking at the numerical values of a topic with cardinality of 3793 is not very informative. One better way is plotting
the wordcloud of the topic. A wordcloud is a graphical representation of the topic where the font size of each word is
linearly related to its weight in the probability vector.

The following code will create a directory and saves the topics as csv files and wordclouds in it.

f = open("datasets\\cgcbib\\cgcbib_abs_vocab.txt")
vocab = readlines(f)
close(f)
vocab = [strip(vv) for vv in vocab]

dirname = "datasets\\cgcbib\\LDA_results"
mkdir(dirname)

for kk = 1:length(posterior_components)

filename = join([dirname, "topic$(kk).csv"], "/")
topic2csv(filename, vocab, posterior_components[kk].alpha)

filename = join([dirname, "topic$(kk).png"], "/")
topic2png(filename, vocab, posterior_components[kk].alpha)

end

One of the topics inferred from the data is shown here:

Fig. 3.6: a topic inferred from cgcbib dataset using LDA
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3.5.3 Recurrent Chinese Restaurant Process

RCRP for univariate Gaussian likelihood

Scenario

k = 1 k = 2 k = 3 k = 4 k = 5 k = 6
Epoch 1 O O O
Epoch 2 O O O O
Epoch 3 O O O O
Epoch 4 O O O O
Epoch 5 O O O O

true_KK = 6
TT = 5
N_t = fill(300, TT)

vv = 0.01
true_atoms = [Gaussian1D(kk, vv) for kk = 1:true_KK]

xx = Array(Vector{Float64}, TT)
true_zz = Array(Vector{Int64}, TT)
true_nn = zeros(Int, TT, true_KK)

epoch_chains = Array(Vector{Int}, TT)
epoch_chains[1] = [1, 2, 3]
epoch_chains[2] = [1, 2, 3, 4]
epoch_chains[3] = [2, 3, 4, 5]
epoch_chains[4] = [3, 4, 5, 6]
epoch_chains[5] = [3, 4, 5, 6]

for tt = 1:TT
n_chains = length(epoch_chains[tt])
mix = ones(Float64, n_chains)/n_chains
xx_ = ones(Float64, N_t[tt])
true_zz_ = ones(Int64, N_t[tt])

for n = 1:N_t[tt]
kk = sample(mix)
kk = epoch_chains[tt][kk]
true_zz_[n] = kk
xx_[n] = sample(true_atoms[kk])
true_nn[tt, kk] += 1

end

xx[tt] = xx_
true_zz[tt] = true_zz_

end

m0= mean(xx[1])
v0 = 2
q0 = Gaussian1DGaussian1D(m0, v0, vv)

init_KK = 3
rcrp_aa = 1
rcrp_a1 = 1
rcrp_a2 = 1
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rcrp = RCRP(q0, init_KK, rcrp_aa, TT, rcrp_a1, rcrp_a2)

# sampling
zz = Array(Vector{Int64}, TT)
for tt = 1:TT
zz[tt] = rand(1:rcrp.K, N_t[tt])

end

n_burnins = 100
n_lags = 1
n_samples = 400
sample_hyperparam = true
n_internals = 10
store_every = 10000
filename = "demo_RCRP_Gaussian1DGaussian1D_"
nn, components, zz2table = collapsed_gibbs_sampler!(rcrp, xx, zz,

n_burnins, n_lags, n_samples, sample_hyperparam, n_internals, store_every, filename)

Result

julia> nn
5x12 Array{Int64,2}:
106 93 100 0 0 0 0 1 0 0 0 0
76 70 75 78 0 0 0 0 1 0 0 0
73 1 84 74 64 0 2 0 0 1 1 0
1 0 67 80 84 68 0 0 0 0 0 0
0 0 77 69 81 72 0 0 0 0 0 1

julia> true_nn
5x6 Array{Int64,2}:
93 106 101 0 0 0
70 76 75 79 0 0
0 77 84 75 64 0
0 0 68 80 84 68
0 0 77 70 81 72

julia> zz2table
5x12 Array{Int64,2}:
1 2 3 0 0 0 0 4 0 0 0 0
1 2 3 5 0 0 0 0 6 0 0 0
1 6 3 2 4 0 5 0 0 7 8 0
6 0 4 1 3 2 0 0 0 0 0 0
0 0 8 4 9 3 0 0 0 0 0 10

RCRP for Multinomial likelihood

Scenario

k = 1 k = 2 k = 3 k = 4 k = 5 k = 6
Epoch 1 O O O
Epoch 2 O O O O
Epoch 3 O O O O
Epoch 4 O O O O
Epoch 5 O O O O
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true_KK = 6
TT = 5

N_t = fill(500, TT)
n_tokens = 25
vocab_size = 9

true_topics = BIAS.gen_bars(true_KK, vocab_size, 0.0)

xx = Array(Vector{Sent}, TT)
true_zz = Array(Vector{Int}, TT)
true_nn = zeros(Int, TT, true_KK)

epoch_chains = Array(Vector{Int}, TT)
epoch_chains[1] = [1, 2, 3]
epoch_chains[2] = [1, 2, 3, 4]
epoch_chains[3] = [2, 3, 4, 5]
epoch_chains[4] = [3, 4, 5, 6]
epoch_chains[5] = [3, 4, 5, 6]

for tt = 1:TT
n_chains = length(epoch_chains[tt])
mix = ones(Float64, n_chains)/n_chains
xx_ = Array(Sent, N_t[tt])
true_zz_ = ones(Int64, N_t[tt])

for n = 1:N_t[tt]
kk = sample(mix)
kk = epoch_chains[tt][kk]
true_zz_[n] = kk
sentence = sample(true_topics[kk, :][:], n_tokens)
xx_[n] = BIAS.sparsify_sentence(sentence)
true_nn[tt, kk] += 1

end

xx[tt] = xx_
true_zz[tt] = true_zz_

end

dd = vocab_size
aa = 1.0
q0 = MultinomialDirichlet(dd, aa)

init_KK = 3
rcrp_aa = 1
rcrp_a1 = 1
rcrp_a2 = 1
rcrp = RCRP(q0, init_KK, rcrp_aa, TT, rcrp_a1, rcrp_a2)

# sampling
zz = Array(Vector{Int64}, TT)
for tt = 1:TT
zz[tt] = rand(1:rcrp.K, N_t[tt])
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end

n_burnins = 100
n_lags = 3
n_samples = 400
sample_hyperparam = true
n_internals = 10
store_every = 10000
filename = "demo_RCRP_MultinomialDirichlet"
nn, components, zz2table = collapsed_gibbs_sampler!(rcrp, xx, zz,

n_burnins, n_lags, n_samples, sample_hyperparam, n_internals, store_every, filename)

Result

julia> z2table 5x8 Array{Int64,2}:

0 1 2 3 0 0 0 0 0 1 2 3 4 0 0 0 0 1 2 0 3 4 0 0 0 0 1 0 2 3 4 0 1 0 4 0 2 6 3 5)

julia> nn 5x8 Array{Int64,2}:

0 162 170 168 0 0 0 0 0 136 123 120 121 0 0 0 0 122 127 0 108 143 0 0 0 0 133 0 125 131 111
0

126 0 115 0 118 6 133 2

julia> true_nn 5x6 Array{Int64,2}:

168 162 170 0 0 0 120 136 123 121 0 0

0 122 127 108 143 0 0 0 133 125 131 111 0 0 115 118 132 135

3.6 References

3.7 Indices

• genindex
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