

bert-as-service Documentation

bert-as-service is a sentence encoding service for mapping a variable-length sentence to a fixed-length vector.

[image: _images/demo.gif]

Installation

The best way to install the bert-as-service is via pip. Note that the server and client can be installed separately or even on different machines:

pip install -U bert-serving-server bert-serving-client

Note

The server MUST be running on Python >= 3.5 with Tensorflow >= 1.10 (one-point-ten). Again, the server does not support Python 2!

Note

The client can be running on both Python 2 and 3.

Table of Content

	What is it
	Preliminary

	Highlights

	Getting Start
	Installation

	Download a Pre-trained BERT Model

	Start the BERT service

	Use Client to Get Sentence Encodes

	Tutorials
	Building a QA semantic search engine in 3 minutes

	Serving a fine-tuned BERT model

	Getting ELMo-like contextual word embedding

	Using your own tokenizer

	Using BertClient with tf.data API

	Training a text classifier using BERT features and tf.estimator API

	Saving and loading with TFRecord data

	Asynchronous encoding

	Broadcasting to multiple clients

	Monitoring the service status in a dashboard

	Using bert-as-service to serve HTTP requests in JSON

	Using BertClient
	Installation

	Client-side API

	Using BertServer
	Installation

	Command Line Interface

	Server-side API

	Server-side Benchmark

	Frequently Asked Questions
	Where is the BERT code come from?

	How large is a sentence vector?

	How do you get the fixed representation? Did you do pooling or something?

	Are you suggesting using BERT without fine-tuning?

	Can I get a concatenation of several layers instead of a single layer ?

	What are the available pooling strategies?

	Why not use the hidden state of the first token as default strategy, i.e. the [CLS]?

	BERT has 12/24 layers, so which layer are you talking about?

	Why not the last hidden layer? Why second-to-last?

	So which layer and which pooling strategy is the best?

	Could I use other pooling techniques?

	Can I start multiple clients and send requests to one server simultaneously?

	How many requests can one service handle concurrently?

	So one request means one sentence?

	How about the speed? Is it fast enough for production?

	Did you benchmark the efficiency?

	What is backend based on?

	What is the parallel processing model behind the scene?

	Why does the server need two ports?

	Do I need Tensorflow on the client side?

	Can I use multilingual BERT model provided by Google?

	Can I use my own fine-tuned BERT model?

	Can I run it in python 2?

	Do I need to do segmentation for Chinese?

	Why my (English) word is tokenized to ##something?

	Can I use my own tokenizer?

	I encounter zmq.error.ZMQError: Operation cannot be accomplished in current state when using BertClient, what should I do?

	After running the server, I have several garbage tmpXXXX folders. How can I change this behavior ?

	The cosine similarity of two sentence vectors is unreasonably high (e.g. always > 0.8), what’s wrong?

	I’m getting bad performance, what should I do?

	Can I run the server side on CPU-only machine?

	How can I choose num_worker?

	Can I specify which GPU to use?

	Benchmark
	Speed wrt. max_seq_len

	Speed wrt. client_batch_size

	Speed wrt. num_client

	Speed wrt. max_batch_size

	Speed wrt. pooling_layer

Indices and tables

	Index

	Module Index

	Search Page

What is it

	Preliminary

	Highlights

Preliminary

BERT is a NLP model developed by Google [https://github.com/google-research/bert] for pre-training language representations. It leverages an enormous amount of plain text data publicly available on the web and is trained in an unsupervised manner. Pre-training a BERT model is a fairly expensive yet one-time procedure for each language. Fortunately, Google released several pre-trained models where you can download from here [https://github.com/google-research/bert#pre-trained-models].

Sentence Encoding/Embedding is a upstream task required in many NLP applications, e.g. sentiment analysis, text classification. The goal is to represent a variable length sentence into a fixed length vector, e.g. hello world to [0.1, 0.3, 0.9]. Each element of the vector should “encode” some semantics of the original sentence.

Finally, bert-as-service uses BERT as a sentence encoder and hosts it as a service via ZeroMQ, allowing you to map sentences into fixed-length representations in just two lines of code.

Highlights

	🔭 State-of-the-art: build on pretrained 12/24-layer BERT models released by Google AI, which is considered as a milestone in the NLP community.

	🐣 Easy-to-use: require only two lines of code to get sentence/token-level encodes.

	⚡️ Fast: 900 sentences/s on a single Tesla M40 24GB. Low latency, optimized for speed. See benchmark.

	🐙 Scalable: scale nicely and smoothly on multiple GPUs and multiple clients without worrying about concurrency. See benchmark.

More features: asynchronous encoding, multicasting, mix GPU & CPU workloads, graph optimization, tf.data friendly, customized tokenizer, pooling strategy and layer, XLA support etc.

Getting Start

	Installation

	Download a Pre-trained BERT Model

	Start the BERT service

	Start the Bert service in a docker container

	Use Client to Get Sentence Encodes

	Use BERT Service Remotely

Installation

The best way to install the bert-as-service is via pip. Note that the server and client can be installed separately or even on different machines:

pip install -U bert-serving-server bert-serving-client

Warning

The server MUST be running on Python >= 3.5 with Tensorflow >= 1.10 (one-point-ten). Again, the server does not support Python 2!

Note

The client can be running on both Python 2 and 3.

Download a Pre-trained BERT Model

Download a model listed below, then uncompress the zip file into some folder, say /tmp/english_L-12_H-768_A-12/

List of pretrained BERT models released by Google AI:

	BERT-Base, Uncased [https://storage.googleapis.com/bert_models/2018_10_18/uncased_L-12_H-768_A-12.zip]

	12-layer, 768-hidden, 12-heads, 110M parameters

	BERT-Large, Uncased [https://storage.googleapis.com/bert_models/2018_10_18/uncased_L-24_H-1024_A-16.zip]

	24-layer, 1024-hidden, 16-heads, 340M parameters

	BERT-Base, Cased [https://storage.googleapis.com/bert_models/2018_10_18/cased_L-12_H-768_A-12.zip]

	12-layer, 768-hidden, 12-heads , 110M parameters

	BERT-Large, Cased [https://storage.googleapis.com/bert_models/2018_10_18/cased_L-24_H-1024_A-16.zip]

	24-layer, 1024-hidden, 16-heads, 340M parameters

	BERT-Base, Multilingual Cased (New) [https://storage.googleapis.com/bert_models/2018_11_23/multi_cased_L-12_H-768_A-12.zip]

	104 languages, 12-layer, 768-hidden, 12-heads, 110M parameters

	BERT-Base, Multilingual Cased (Old) [https://storage.googleapis.com/bert_models/2018_11_03/multilingual_L-12_H-768_A-12.zip]

	102 languages, 12-layer, 768-hidden, 12-heads, 110M parameters

	BERT-Base, Chinese [https://storage.googleapis.com/bert_models/2018_11_03/chinese_L-12_H-768_A-12.zip]

	Chinese Simplified and Traditional, 12-layer, 768-hidden, 12-heads, 110M parameters

Note

As an optional step, you can also fine-tune the model on your downstream task.

Start the BERT service

After installing the server, you should be able to use bert-serving-start CLI as follows:

bert-serving-start -model_dir /tmp/english_L-12_H-768_A-12/ -num_worker=4

This will start a service with four workers, meaning that it can handle up to four concurrent requests. More concurrent requests will be queued in a load balancer.

Below shows what the server looks like when starting correctly:

[image: ../_images/server-demo.gif]

Start the Bert service in a docker container

Alternatively, one can start the BERT Service in a Docker Container:

docker build -t bert-as-service -f ./docker/Dockerfile .
NUM_WORKER=1
PATH_MODEL=/PATH_TO/_YOUR_MODEL/
docker run --runtime nvidia -dit -p 5555:5555 -p 5556:5556 -v $PATH_MODEL:/model -t bert-as-service $NUM_WORKER

Use Client to Get Sentence Encodes

Now you can encode sentences simply as follows:

from bert_serving.client import BertClient
bc = BertClient()
bc.encode(['First do it', 'then do it right', 'then do it better'])

It will return a ndarray, in which each row is the fixed representation of a sentence. You can also let it return a pure python object with type List[List[float]].

As a feature of BERT, you may get encodes of a pair of sentences by concatenating them with |||, e.g.

bc.encode(['First do it ||| then do it right'])

Below shows what the server looks like while encoding:

[image: ../_images/server-run-demo.gif]

Use BERT Service Remotely

One may also start the service on one (GPU) machine and call it from another (CPU) machine as follows:

on another CPU machine
from bert_serving.client import BertClient
bc = BertClient(ip='xx.xx.xx.xx') # ip address of the GPU machine
bc.encode(['First do it', 'then do it right', 'then do it better'])

Note

You only need pip install -U bert-serving-client in this case, the server side is not required.

Want to learn more? Checkout our tutorials below:

Tutorials

The full list of examples can be found in here [https://github.com/hanxiao/bert-as-service/tree/master/example]. You can run
each via python example/example-k.py. Most of examples require you
to start a BertServer first.

Note

Although BertClient works universally on both Python 2.x and 3.x, examples are only tested on Python 3.6.

	Building a QA semantic search engine in 3 minutes

	Serving a fine-tuned BERT model

	Getting ELMo-like contextual word embedding

	Using your own tokenizer

	Using BertClient with tf.data API

	Training a text classifier using BERT features and tf.estimator API

	Saving and loading with TFRecord data

	Asynchronous encoding

	Broadcasting to multiple clients

	Monitoring the service status in a dashboard

	Using bert-as-service to serve HTTP requests in JSON

Building a QA semantic search engine in 3 minutes

Note

The complete example can be found example8.py [https://github.com/hanxiao/bert-as-service/blob/master/example/example8.py].

As the first example, we will implement a simple QA search engine using
bert-as-service in just three minutes. No kidding! The goal is to
find similar questions to user’s input and return the corresponding
answer. To start, we need a list of question-answer pairs. Fortunately,
this README file already contains a list of FAQ, so I will just use
that to make this example perfectly self-contained. Let’s first load all
questions and show some statistics.

prefix_q = '##### **Q:** '
with open('README.md') as fp:
 questions = [v.replace(prefix_q, '').strip() for v in fp if v.strip() and v.startswith(prefix_q)]
 print('%d questions loaded, avg. len of %d' % (len(questions), np.mean([len(d.split()) for d in questions])))

This gives 33 questions loaded, avg. len of 9. So looks like we have
enough questions. Now start a BertServer with
uncased_L-12_H-768_A-12 pretrained BERT model:

bert-serving-start -num_worker=1 -model_dir=/data/cips/data/lab/data/model/uncased_L-12_H-768_A-12

Next, we need to encode our questions into vectors:

bc = BertClient(port=4000, port_out=4001)
doc_vecs = bc.encode(questions)

Finally, we are ready to receive new query and perform a simple “fuzzy”
search against the existing questions. To do that, every time a new
query is coming, we encode it as a vector and compute its dot product
with doc_vecs; sort the result descendingly; and return the top-k
similar questions as follows:

while True:
 query = input('your question: ')
 query_vec = bc.encode([query])[0]
 # compute normalized dot product as score
 score = np.sum(query_vec * doc_vecs, axis=1) / np.linalg.norm(doc_vecs, axis=1)
 topk_idx = np.argsort(score)[::-1][:topk]
 for idx in topk_idx:
 print('> %s\t%s' % (score[idx], questions[idx]))

That’s it! Now run the code and type your query, see how this search
engine handles fuzzy match:

[image: ../_images/qasearch-demo.gif]

Serving a fine-tuned BERT model

Pretrained BERT models often show quite “okayish” performance on many
tasks. However, to release the true power of BERT a fine-tuning on the
downstream task (or on domain-specific data) is necessary. In this
example, I will show you how to serve a fine-tuned BERT model.

We follow the instruction in “Sentence (and sentence-pair)
classification tasks” [https://github.com/google-research/bert#sentence-and-sentence-pair-classification-tasks] and use run_classifier.py to fine tune
uncased_L-12_H-768_A-12 model on MRPC task. The fine-tuned model is
stored at /tmp/mrpc_output/, which can be changed by specifying
--output_dir of run_classifier.py.

If you look into /tmp/mrpc_output/, it contains something like:

checkpoint 128
eval 4.0K
eval_results.txt 86
eval.tf_record 219K
events.out.tfevents.1545202214.TENCENT64.site 6.1M
events.out.tfevents.1545203242.TENCENT64.site 14M
graph.pbtxt 9.0M
model.ckpt-0.data-00000-of-00001 1.3G
model.ckpt-0.index 23K
model.ckpt-0.meta 3.9M
model.ckpt-343.data-00000-of-00001 1.3G
model.ckpt-343.index 23K
model.ckpt-343.meta 3.9M
train.tf_record 2.0M

Don’t be afraid of those mysterious files, as the only important one to
us is model.ckpt-343.data-00000-of-00001 (looks like my training
stops at the 343 step. One may get
model.ckpt-123.data-00000-of-00001 or
model.ckpt-9876.data-00000-of-00001 depending on the total training
steps). Now we have collected all three pieces of information that are
needed for serving this fine-tuned model:

	The pretrained model is downloaded to
/path/to/bert/uncased_L-12_H-768_A-12

	Our fine-tuned model is stored at /tmp/mrpc_output/;

	Our fine-tuned model checkpoint is named as model.ckpt-343
something something.

Now start a BertServer by putting three pieces together:

bert-serving-start -model_dir=/pretrained/uncased_L-12_H-768_A-12 -tuned_model_dir=/tmp/mrpc_output/ -ckpt_name=model.ckpt-343

After the server started, you should find this line in the log:

I:GRAPHOPT:[gra:opt: 50]:checkpoint (override by fine-tuned model): /tmp/mrpc_output/model.ckpt-343

Which means the BERT parameters is overrode and successfully loaded from
our fine-tuned /tmp/mrpc_output/model.ckpt-343. Done!

In short, find your fine-tuned model path and checkpoint name, then feed
them to -tuned_model_dir and -ckpt_name, respectively.

Getting ELMo-like contextual word embedding

Start the server with pooling_strategy set to NONE.

bert-serving-start -pooling_strategy NONE -model_dir /tmp/english_L-12_H-768_A-12/

To get the word embedding corresponds to every token, you can simply use
slice index as follows:

max_seq_len = 25
pooling_strategy = NONE

bc = BertClient()
vec = bc.encode(['hey you', 'whats up?'])

vec # [2, 25, 768]
vec[0] # [1, 25, 768], sentence embeddings for `hey you`
vec[0][0] # [1, 1, 768], word embedding for `[CLS]`
vec[0][1] # [1, 1, 768], word embedding for `hey`
vec[0][2] # [1, 1, 768], word embedding for `you`
vec[0][3] # [1, 1, 768], word embedding for `[SEP]`
vec[0][4] # [1, 1, 768], word embedding for padding symbol
vec[0][25] # error, out of index!

Note that no matter how long your original sequence is, the service will
always return a [max_seq_len, 768] matrix for every sequence. When
using slice index to get the word embedding, beware of the special
tokens padded to the sequence, i.e. [CLS], [SEP], 0_PAD.

Using your own tokenizer

Often you want to use your own tokenizer to segment sentences instead of
the default one from BERT. Simply call encode(is_tokenized=True) on
the client slide as follows:

texts = ['hello world!', 'good day']

a naive whitespace tokenizer
texts2 = [s.split() for s in texts]

vecs = bc.encode(texts2, is_tokenized=True)

This gives [2, 25, 768] tensor where the first [1, 25, 768]
corresponds to the token-level encoding of “hello world!”. If you look
into its values, you will find that only the first four elements, i.e.
[1, 0:3, 768] have values, all the others are zeros. This is due to
the fact that BERT considers “hello world!” as four tokens: [CLS]
hello world! [SEP], the rest are padding symbols and are
masked out before output.

Note

There is no need to start a separate server for handling tokenized/untokenized sentences. The server can tell and handle both cases automatically.

Warning

The pretrained BERT Chinese from Google is character-based, i.e. its vocabulary is made of single Chinese characters. Therefore it makes no sense if you use word-level segmentation algorithm to pre-process the data and feed to such model.

Using BertClient with tf.data API

Note

The complete example can be found example4.py [https://github.com/hanxiao/bert-as-service/blob/master/example/example4.py]. There is also an example in Keras [https://github.com/hanxiao/bert-as-service/issues/29#issuecomment-442362241].

The tf.data API [https://www.tensorflow.org/guide/datasets] enables you to build complex input pipelines from
simple, reusable pieces. One can also use BertClient to encode
sentences on-the-fly and use the vectors in a downstream model. Here is
an example:

batch_size = 256
num_parallel_calls = 4

start a thead-safe client to support num_parallel_calls in tf.data API
bc = ConcurrentBertClient(num_parallel_calls)

def get_encodes(x):
 # x is `batch_size` of lines, each of which is a json object
 samples = [json.loads(l) for l in x]
 text = [s['raw_text'] for s in samples] # List[List[str]]
 labels = [s['label'] for s in samples] # List[str]
 features = bc.encode(text)
 return features, labels

ds = (tf.data.TextLineDataset(train_fp).batch(batch_size)
 .map(lambda x: tf.py_func(get_encodes, [x], [tf.float32, tf.string]), num_parallel_calls=num_parallel_calls)
 .map(lambda x, y: {'feature': x, 'label': y})
 .make_one_shot_iterator().get_next())

The trick here is to start a pool of BertClient and reuse them one
by one. In this way, we can fully harness the power of
num_parallel_calls in Dataset.map() API.

Training a text classifier using BERT features and tf.estimator API

Note

The complete example can be found example5.py [https://github.com/hanxiao/bert-as-service/blob/master/example/example5.py], in which a simple MLP is built on BERT features for predicting the relevant articles according to the fact description in the law documents. The problem is a part of the Chinese AI and Law Challenge Competition [https://github.com/thunlp/CAIL/blob/master/README_en.md].

Following the last example, we can easily extend it to a full classifier
using tf.estimator API. One only need minor change on the input
function as follows:

estimator = DNNClassifier(
 hidden_units=[512],
 feature_columns=[tf.feature_column.numeric_column('feature', shape=(768,))],
 n_classes=len(laws),
 config=run_config,
 label_vocabulary=laws_str,
 dropout=0.1)

input_fn = lambda fp: (tf.data.TextLineDataset(fp)
 .apply(tf.contrib.data.shuffle_and_repeat(buffer_size=10000))
 .batch(batch_size)
 .map(lambda x: tf.py_func(get_encodes, [x], [tf.float32, tf.string]), num_parallel_calls=num_parallel_calls)
 .map(lambda x, y: ({'feature': x}, y))
 .prefetch(20))

train_spec = TrainSpec(input_fn=lambda: input_fn(train_fp))
eval_spec = EvalSpec(input_fn=lambda: input_fn(eval_fp), throttle_secs=0)
train_and_evaluate(estimator, train_spec, eval_spec)

Saving and loading with TFRecord data

Note

The complete example can be found example6.py [https://github.com/hanxiao/bert-as-service/blob/master/example/example6.py].

The TFRecord file format is a simple record-oriented binary format that
many TensorFlow applications use for training data. You can also
pre-encode all your sequences and store their encodings to a TFRecord
file, then later load it to build a tf.Dataset. For example, to
write encoding into a TFRecord file:

bc = BertClient()
list_vec = bc.encode(lst_str)
list_label = [0 for _ in lst_str] # a dummy list of all-zero labels

write to tfrecord
with tf.python_io.TFRecordWriter('tmp.tfrecord') as writer:
 def create_float_feature(values):
 return tf.train.Feature(float_list=tf.train.FloatList(value=values))

 def create_int_feature(values):
 return tf.train.Feature(int64_list=tf.train.Int64List(value=list(values)))

 for (vec, label) in zip(list_vec, list_label):
 features = {'features': create_float_feature(vec), 'labels': create_int_feature([label])}
 tf_example = tf.train.Example(features=tf.train.Features(feature=features))
 writer.write(tf_example.SerializeToString())

Now we can load from it and build a tf.Dataset:

def _decode_record(record):
 """Decodes a record to a TensorFlow example."""
 return tf.parse_single_example(record, {
 'features': tf.FixedLenFeature([768], tf.float32),
 'labels': tf.FixedLenFeature([], tf.int64),
 })

ds = (tf.data.TFRecordDataset('tmp.tfrecord').repeat().shuffle(buffer_size=100).apply(
 tf.contrib.data.map_and_batch(lambda record: _decode_record(record), batch_size=64))
 .make_one_shot_iterator().get_next())

To save word/token-level embedding to TFRecord, one needs to first
flatten [max_seq_len, num_hidden] tensor into an 1D array as
follows:

def create_float_feature(values):
 return tf.train.Feature(float_list=tf.train.FloatList(value=values.reshape(-1)))

And later reconstruct the shape when loading it:

name_to_features = {
 "feature": tf.FixedLenFeature([max_seq_length * num_hidden], tf.float32),
 "label_ids": tf.FixedLenFeature([], tf.int64),
}

def _decode_record(record, name_to_features):
 """Decodes a record to a TensorFlow example."""
 example = tf.parse_single_example(record, name_to_features)
 example['feature'] = tf.reshape(example['feature'], [max_seq_length, -1])
 return example

Be careful, this will generate a huge TFRecord file.

Asynchronous encoding

Note

The complete example can be found example2.py [https://github.com/hanxiao/bert-as-service/blob/master/example/example2.py].

BertClient.encode() offers a nice synchronous way to get sentence
encodes. However, sometimes we want to do it in an asynchronous manner
by feeding all textual data to the server first, fetching the encoded
results later. This can be easily done by:

an endless data stream, generating data in an extremely fast speed
def text_gen():
 while True:
 yield lst_str # yield a batch of text lines

bc = BertClient()

get encoded vectors
for j in bc.encode_async(text_gen(), max_num_batch=10):
 print('received %d x %d' % (j.shape[0], j.shape[1]))

Broadcasting to multiple clients

Note

The complete example can be found example3.py [https://github.com/hanxiao/bert-as-service/blob/master/example/example3.py].

The encoded result is routed to the client according to its identity. If
you have multiple clients with same identity, then they all receive the
results! You can use this multicast feature to do some cool things,
e.g. training multiple different models (some using scikit-learn
some using tensorflow) in multiple separated processes while only
call BertServer once. In the example below, bc and its two
clones will all receive encoded vector.

clone a client by reusing the identity
def client_clone(id, idx):
 bc = BertClient(identity=id)
 for j in bc.listen():
 print('clone-client-%d: received %d x %d' % (idx, j.shape[0], j.shape[1]))

bc = BertClient()
start two cloned clients sharing the same identity as bc
for j in range(2):
 threading.Thread(target=client_clone, args=(bc.identity, j)).start()

for _ in range(3):
 bc.encode(lst_str)

Monitoring the service status in a dashboard

Note

The complete example can be found in plugin/dashboard/ [https://github.com/hanxiao/bert-as-service/blob/master/plugin/dashboard].

As a part of the infrastructure, one may also want to monitor the service status and show it in a dashboard. To do that, we can use:

bc = BertClient(ip='server_ip')

json.dumps(bc.server_status, ensure_ascii=False)

This gives the current status of the server including number of requests, number of clients, etc. in JSON format. The only thing remained is to start a HTTP server for returning this JSON to the frontend that renders it.

plugin/dashboard/index.html shows a simple dashboard based on Bootstrap and Vue.js.

[image: ../_images/dashboard.png]

Using bert-as-service to serve HTTP requests in JSON

Besides calling bert-as-service from Python, one can also call it
via HTTP request in JSON. It is quite useful especially when low
transport layer is prohibited. Behind the scene, bert-as-service
spawns a Flask server in a separate process and then reuse a
BertClient instance as a proxy to communicate with the ventilator.

To enable this feature, we need to first install some Python
dependencies:

pip install -U bert-serving-client flask flask-compress flask-cors flask-json

Then simply start the server with:

bert-serving-start -model_dir=/YOUR_MODEL -http_port 8125

Your server is now listening HTTP and TCP requests at port 8125
simultaneously!

To send a HTTP request, first package payload in JSON as following:

{
 "id": 123,
 "texts": ["hello world", "good day!"],
 "is_tokenized": false
}

, where id is a unique identifier helping you to synchronize the
results; is_tokenized follows the meaning in `BertClient API`_
and false by default.

Then simply call the server via HTTP POST request. You can use
javascript or whatever, here is an example using curl:

curl -X POST http://xx.xx.xx.xx:8125/encode \
 -H 'content-type: application/json' \
 -d '{"id": 123,"texts": ["hello world"], "is_tokenized": false}'

, which returns a JSON:

{
 "id": 123,
 "results": [[768 float-list], [768 float-list]],
 "status": 200
}

To get the server’s status and client’s status, you can send GET requests at
/status/server and /status/client, respectively.

Finally, one may also config CORS to restrict the public access of the
server by specifying -cors when starting bert-serving-start. By
default -cors=*, meaning the server is public accessible.

Using BertClient

	Installation

	Client-side API

Installation

The best way to install the client is via pip. Note that the client can be installed separately from BertServer or even on a different machine:

pip install bert-serving-client

Note

The client can be running on both Python 2 and 3.

Client-side API

	
class client.BertClient(ip='localhost', port=5555, port_out=5556, output_fmt='ndarray', show_server_config=False, identity=None, check_version=True, check_length=True, check_token_info=True, ignore_all_checks=False, timeout=-1)

	Bases: object

A client object connected to a BertServer

Create a BertClient that connects to a BertServer.
Note, server must be ready at the moment you are calling this function.
If you are not sure whether the server is ready, then please set ignore_all_checks=True

You can also use it as a context manager:

with BertClient() as bc:
 bc.encode(...)

bc is automatically closed out of the context

	Parameters

	
	ip (str) – the ip address of the server

	port (int) – port for pushing data from client to server, must be consistent with the server side config

	port_out (int) – port for publishing results from server to client, must be consistent with the server side config

	output_fmt (str) – the output format of the sentence encodes, either in numpy array or python List[List[float]] (ndarray/list)

	show_server_config (bool) – whether to show server configs when first connected

	identity (str) – the UUID of this client

	check_version (bool) – check if server has the same version as client, raise AttributeError if not the same

	check_length (bool) – check if server max_seq_len is less than the sentence length before sent

	check_token_info (bool) – check if server can return tokenization

	ignore_all_checks (bool) – ignore all checks, set it to True if you are not sure whether the server is ready when constructing BertClient()

	timeout (int) – set the timeout (milliseconds) for receive operation on the client, -1 means no timeout and wait until result returns

	
close()

	Gently close all connections of the client. If you are using BertClient as context manager,
then this is not necessary.

	
encode(texts, blocking=True, is_tokenized=False, show_tokens=False)

	Encode a list of strings to a list of vectors

texts should be a list of strings, each of which represents a sentence.
If is_tokenized is set to True, then texts should be list[list[str]],
outer list represents sentence and inner list represent tokens in the sentence.
Note that if blocking is set to False, then you need to fetch the result manually afterwards.

with BertClient() as bc:
 # encode untokenized sentences
 bc.encode(['First do it',
 'then do it right',
 'then do it better'])

 # encode tokenized sentences
 bc.encode([['First', 'do', 'it'],
 ['then', 'do', 'it', 'right'],
 ['then', 'do', 'it', 'better']], is_tokenized=True)

	Parameters

	
	is_tokenized (bool) – whether the input texts is already tokenized

	show_tokens (bool) – whether to include tokenization result from the server. If true, the return of the function will be a tuple

	texts (list[str] or list[list[str]]) – list of sentence to be encoded. Larger list for better efficiency.

	blocking (bool) – wait until the encoded result is returned from the server. If false, will immediately return.

	timeout (bool) – throw a timeout error when the encoding takes longer than the predefined timeout.

	Returns

	encoded sentence/token-level embeddings, rows correspond to sentences

	Return type

	numpy.ndarray or list[list[float]]

	
encode_async(batch_generator, max_num_batch=None, delay=0.1, **kwargs)

	Async encode batches from a generator

	Parameters

	
	delay – delay in seconds and then run fetcher

	batch_generator – a generator that yields list[str] or list[list[str]] (for is_tokenized=True) every time

	max_num_batch – stop after encoding this number of batches

	**kwargs – the rest parameters please refer to encode()

	Returns

	a generator that yields encoded vectors in ndarray, where the request id can be used to determine the order

	Return type

	Iterator[tuple(int, numpy.ndarray)]

	
fetch(delay=0.0)

	Fetch the encoded vectors from server, use it with encode(blocking=False)

Use it after encode(texts, blocking=False). If there is no pending requests, will return None.
Note that fetch() does not preserve the order of the requests! Say you have two non-blocking requests,
R1 and R2, where R1 with 256 samples, R2 with 1 samples. It could be that R2 returns first.

To fetch all results in the original sending order, please use fetch_all(sort=True)

	Parameters

	delay (float) – delay in seconds and then run fetcher

	Returns

	a generator that yields request id and encoded vector in a tuple, where the request id can be used to determine the order

	Return type

	Iterator[tuple(int, numpy.ndarray)]

	
fetch_all(sort=True, concat=False)

	Fetch all encoded vectors from server, use it with encode(blocking=False)

Use it encode(texts, blocking=False). If there is no pending requests, it will return None.

	Parameters

	
	sort (bool) – sort results by their request ids. It should be True if you want to preserve the sending order

	concat (bool) – concatenate all results into one ndarray

	Returns

	encoded sentence/token-level embeddings in sending order

	Return type

	numpy.ndarray or list[list[float]]

	
server_config

	
Get the current configuration of the server connected to this client

	Returns

	a dictionary contains the current configuration of the server connected to this client

	Return type

	dict[str, str]

	
server_status

	
Get the current status of the server connected to this client

	Returns

	a dictionary contains the current status of the server connected to this client

	Return type

	dict[str, str]

	
status

	
Get the status of this BertClient instance

	Return type

	dict[str, str]

	Returns

	a dictionary contains the status of this BertClient instance

	
class client.ConcurrentBertClient(max_concurrency=10, **kwargs)

	Bases: client.BertClient

A thread-safe client object connected to a BertServer

Create a BertClient that connects to a BertServer.
Note, server must be ready at the moment you are calling this function.
If you are not sure whether the server is ready, then please set check_version=False and check_length=False

	Parameters

	max_concurrency (int) – the maximum number of concurrent connections allowed

	
close()

	Gently close all connections of the client. If you are using BertClient as context manager,
then this is not necessary.

	
encode(**kwargs)

	Encode a list of strings to a list of vectors

texts should be a list of strings, each of which represents a sentence.
If is_tokenized is set to True, then texts should be list[list[str]],
outer list represents sentence and inner list represent tokens in the sentence.
Note that if blocking is set to False, then you need to fetch the result manually afterwards.

with BertClient() as bc:
 # encode untokenized sentences
 bc.encode(['First do it',
 'then do it right',
 'then do it better'])

 # encode tokenized sentences
 bc.encode([['First', 'do', 'it'],
 ['then', 'do', 'it', 'right'],
 ['then', 'do', 'it', 'better']], is_tokenized=True)

	Parameters

	
	is_tokenized (bool) – whether the input texts is already tokenized

	show_tokens (bool) – whether to include tokenization result from the server. If true, the return of the function will be a tuple

	texts (list[str] or list[list[str]]) – list of sentence to be encoded. Larger list for better efficiency.

	blocking (bool) – wait until the encoded result is returned from the server. If false, will immediately return.

	timeout (bool) – throw a timeout error when the encoding takes longer than the predefined timeout.

	Returns

	encoded sentence/token-level embeddings, rows correspond to sentences

	Return type

	numpy.ndarray or list[list[float]]

	
encode_async(**kwargs)

	Async encode batches from a generator

	Parameters

	
	delay – delay in seconds and then run fetcher

	batch_generator – a generator that yields list[str] or list[list[str]] (for is_tokenized=True) every time

	max_num_batch – stop after encoding this number of batches

	**kwargs – the rest parameters please refer to encode()

	Returns

	a generator that yields encoded vectors in ndarray, where the request id can be used to determine the order

	Return type

	Iterator[tuple(int, numpy.ndarray)]

	
fetch(**kwargs)

	Fetch the encoded vectors from server, use it with encode(blocking=False)

Use it after encode(texts, blocking=False). If there is no pending requests, will return None.
Note that fetch() does not preserve the order of the requests! Say you have two non-blocking requests,
R1 and R2, where R1 with 256 samples, R2 with 1 samples. It could be that R2 returns first.

To fetch all results in the original sending order, please use fetch_all(sort=True)

	Parameters

	delay (float) – delay in seconds and then run fetcher

	Returns

	a generator that yields request id and encoded vector in a tuple, where the request id can be used to determine the order

	Return type

	Iterator[tuple(int, numpy.ndarray)]

	
fetch_all(**kwargs)

	Fetch all encoded vectors from server, use it with encode(blocking=False)

Use it encode(texts, blocking=False). If there is no pending requests, it will return None.

	Parameters

	
	sort (bool) – sort results by their request ids. It should be True if you want to preserve the sending order

	concat (bool) – concatenate all results into one ndarray

	Returns

	encoded sentence/token-level embeddings in sending order

	Return type

	numpy.ndarray or list[list[float]]

	
server_config

	Get the current configuration of the server connected to this client

	Returns

	a dictionary contains the current configuration of the server connected to this client

	Return type

	dict[str, str]

	
server_status

	Get the current status of the server connected to this client

	Returns

	a dictionary contains the current status of the server connected to this client

	Return type

	dict[str, str]

	
status

	Get the status of this BertClient instance

	Return type

	dict[str, str]

	Returns

	a dictionary contains the status of this BertClient instance

Using BertServer

	Installation

	Command Line Interface

	Server-side API

	Named Arguments

	File Paths

	BERT Parameters

	Serving Configs

	Server-side Benchmark

	Named Arguments

	File Paths

	BERT Parameters

	Serving Configs

	Benchmark parameters

Installation

The best way to install the server is via pip. Note that the server can be installed separately from BertClient or even on a different machine:

pip install bert-serving-server

Warning

The server MUST be running on Python >= 3.5 with Tensorflow >= 1.10 (one-point-ten). Again, the server does not support Python 2!

Command Line Interface

Once installed, you can use the command line interface to start a bert server:

bert-serving-server -model_dir /uncased_bert_model -num_worker 4

Server-side API

Server-side is a CLI bert-serving-start, you can get the latest
usage via:

bert-serving-start --help

Start a BertServer for serving

usage: bert-serving-server [-h] -model_dir MODEL_DIR
 [-tuned_model_dir TUNED_MODEL_DIR]
 [-ckpt_name CKPT_NAME] [-config_name CONFIG_NAME]
 [-graph_tmp_dir GRAPH_TMP_DIR]
 [-max_seq_len MAX_SEQ_LEN] [-cased_tokenization]
 [-pooling_layer POOLING_LAYER [POOLING_LAYER ...]]
 [-pooling_strategy {NONE,REDUCE_MAX,REDUCE_MEAN,REDUCE_MEAN_MAX,FIRST_TOKEN,LAST_TOKEN,CLS_POOLED}]
 [-mask_cls_sep] [-no_special_token]
 [-show_tokens_to_client] [-no_position_embeddings]
 [-port PORT] [-port_out PORT_OUT]
 [-http_port HTTP_PORT]
 [-http_max_connect HTTP_MAX_CONNECT] [-cors CORS]
 [-num_worker NUM_WORKER]
 [-max_batch_size MAX_BATCH_SIZE]
 [-priority_batch_size PRIORITY_BATCH_SIZE] [-cpu]
 [-xla] [-fp16]
 [-gpu_memory_fraction GPU_MEMORY_FRACTION]
 [-device_map DEVICE_MAP [DEVICE_MAP ...]]
 [-prefetch_size PREFETCH_SIZE]
 [-fixed_embed_length] [-verbose] [-version]

Named Arguments

	-verbose

	turn on tensorflow logging for debug

Default: False

	-version

	show program’s version number and exit

File Paths

config the path, checkpoint and filename of a pretrained/fine-tuned BERT model

	-model_dir

	directory of a pretrained BERT model

	-tuned_model_dir

	directory of a fine-tuned BERT model

	-ckpt_name

	filename of the checkpoint file. By default it is “bert_model.ckpt”, but for a fine-tuned model the name could be different.

Default: “bert_model.ckpt”

	-config_name

	filename of the JSON config file for BERT model.

Default: “bert_config.json”

	-graph_tmp_dir

	path to graph temp file

BERT Parameters

config how BERT model and pooling works

	-max_seq_len

	maximum length of a sequence, longer sequence will be trimmed on the right side. set it to NONE for dynamically using the longest sequence in a (mini)batch.

Default: 25

	-cased_tokenization

	Whether tokenizer should skip the default lowercasing and accent removal.Should be used for e.g. the multilingual cased pretrained BERT model.

Default: True

	-pooling_layer

	the encoder layer(s) that receives pooling. Give a list in order to concatenate several layers into one

Default: [-2]

	-pooling_strategy

	Possible choices: NONE, REDUCE_MAX, REDUCE_MEAN, REDUCE_MEAN_MAX, FIRST_TOKEN, LAST_TOKEN, CLS_POOLED

the pooling strategy for generating encoding vectors

Default: REDUCE_MEAN

	-mask_cls_sep

	masking the embedding on [CLS] and [SEP] with zero. When pooling_strategy is in {CLS_TOKEN, FIRST_TOKEN, SEP_TOKEN, LAST_TOKEN} then the embedding is preserved, otherwise the embedding is masked to zero before pooling

Default: False

	-no_special_token

	add [CLS] and [SEP] in every sequence, put sequence to the model without [CLS] and [SEP] when True and is_tokenized=True in Client

Default: False

	-show_tokens_to_client

	sending tokenization results to client

Default: False

	-no_position_embeddings

	Whether to add position embeddings for the position of each token in the sequence.

Default: False

Serving Configs

config how server utilizes GPU/CPU resources

	-port, -port_in, -port_data

	server port for receiving data from client

Default: 5555

	-port_out, -port_result

	server port for sending result to client

Default: 5556

	-http_port

	server port for receiving HTTP requests

	-http_max_connect

	maximum number of concurrent HTTP connections

Default: 10

	-cors

	setting “Access-Control-Allow-Origin” for HTTP requests

Default: “*”

	-num_worker

	number of server instances

Default: 1

	-max_batch_size

	maximum number of sequences handled by each worker

Default: 256

	-priority_batch_size

	batch smaller than this size will be labeled as high priority,and jumps forward in the job queue

Default: 16

	-cpu

	running on CPU (default on GPU)

Default: False

	-xla

	enable XLA compiler (experimental)

Default: False

	-fp16

	use float16 precision (experimental)

Default: False

	-gpu_memory_fraction

	determine the fraction of the overall amount of memory that each visible GPU should be allocated per worker. Should be in range [0.0, 1.0]

Default: 0.5

	-device_map

	specify the list of GPU device ids that will be used (id starts from 0). If num_worker > len(device_map), then device will be reused; if num_worker < len(device_map), then device_map[:num_worker] will be used

Default: []

	-prefetch_size

	the number of batches to prefetch on each worker. When running on a CPU-only machine, this is set to 0 for comparability

Default: 10

	-fixed_embed_length

	when “max_seq_len” is set to None, the server determines the “max_seq_len” according to the actual sequence lengths within each batch. When “pooling_strategy=NONE”, this may cause two “.encode()” from the same client results in different sizes [B, T, D].Turn this on to fix the “T” in [B, T, D] to “max_position_embeddings” in bert json config.

Default: False

Server-side Benchmark

If you want to benchmark the speed, you may use:

bert-serving-benchmark --help

Benchmark BertServer locally

usage: bert-serving-benchmark [-h] -model_dir MODEL_DIR
 [-tuned_model_dir TUNED_MODEL_DIR]
 [-ckpt_name CKPT_NAME]
 [-config_name CONFIG_NAME]
 [-graph_tmp_dir GRAPH_TMP_DIR]
 [-max_seq_len MAX_SEQ_LEN] [-cased_tokenization]
 [-pooling_layer POOLING_LAYER [POOLING_LAYER ...]]
 [-pooling_strategy {NONE,REDUCE_MAX,REDUCE_MEAN,REDUCE_MEAN_MAX,FIRST_TOKEN,LAST_TOKEN,CLS_POOLED}]
 [-mask_cls_sep] [-no_special_token]
 [-show_tokens_to_client]
 [-no_position_embeddings] [-port PORT]
 [-port_out PORT_OUT] [-http_port HTTP_PORT]
 [-http_max_connect HTTP_MAX_CONNECT]
 [-cors CORS] [-num_worker NUM_WORKER]
 [-max_batch_size MAX_BATCH_SIZE]
 [-priority_batch_size PRIORITY_BATCH_SIZE]
 [-cpu] [-xla] [-fp16]
 [-gpu_memory_fraction GPU_MEMORY_FRACTION]
 [-device_map DEVICE_MAP [DEVICE_MAP ...]]
 [-prefetch_size PREFETCH_SIZE]
 [-fixed_embed_length] [-verbose] [-version]
 [-test_client_batch_size [TEST_CLIENT_BATCH_SIZE [TEST_CLIENT_BATCH_SIZE ...]]]
 [-test_max_batch_size [TEST_MAX_BATCH_SIZE [TEST_MAX_BATCH_SIZE ...]]]
 [-test_max_seq_len [TEST_MAX_SEQ_LEN [TEST_MAX_SEQ_LEN ...]]]
 [-test_num_client [TEST_NUM_CLIENT [TEST_NUM_CLIENT ...]]]
 [-test_pooling_layer [TEST_POOLING_LAYER [TEST_POOLING_LAYER ...]]]
 [-wait_till_ready WAIT_TILL_READY]
 [-client_vocab_file CLIENT_VOCAB_FILE]
 [-num_repeat NUM_REPEAT]

Named Arguments

	-verbose

	turn on tensorflow logging for debug

Default: False

	-version

	show program’s version number and exit

File Paths

config the path, checkpoint and filename of a pretrained/fine-tuned BERT model

	-model_dir

	directory of a pretrained BERT model

	-tuned_model_dir

	directory of a fine-tuned BERT model

	-ckpt_name

	filename of the checkpoint file. By default it is “bert_model.ckpt”, but for a fine-tuned model the name could be different.

Default: “bert_model.ckpt”

	-config_name

	filename of the JSON config file for BERT model.

Default: “bert_config.json”

	-graph_tmp_dir

	path to graph temp file

BERT Parameters

config how BERT model and pooling works

	-max_seq_len

	maximum length of a sequence, longer sequence will be trimmed on the right side. set it to NONE for dynamically using the longest sequence in a (mini)batch.

Default: 25

	-cased_tokenization

	Whether tokenizer should skip the default lowercasing and accent removal.Should be used for e.g. the multilingual cased pretrained BERT model.

Default: True

	-pooling_layer

	the encoder layer(s) that receives pooling. Give a list in order to concatenate several layers into one

Default: [-2]

	-pooling_strategy

	Possible choices: NONE, REDUCE_MAX, REDUCE_MEAN, REDUCE_MEAN_MAX, FIRST_TOKEN, LAST_TOKEN, CLS_POOLED

the pooling strategy for generating encoding vectors

Default: REDUCE_MEAN

	-mask_cls_sep

	masking the embedding on [CLS] and [SEP] with zero. When pooling_strategy is in {CLS_TOKEN, FIRST_TOKEN, SEP_TOKEN, LAST_TOKEN} then the embedding is preserved, otherwise the embedding is masked to zero before pooling

Default: False

	-no_special_token

	add [CLS] and [SEP] in every sequence, put sequence to the model without [CLS] and [SEP] when True and is_tokenized=True in Client

Default: False

	-show_tokens_to_client

	sending tokenization results to client

Default: False

	-no_position_embeddings

	Whether to add position embeddings for the position of each token in the sequence.

Default: False

Serving Configs

config how server utilizes GPU/CPU resources

	-port, -port_in, -port_data

	server port for receiving data from client

Default: 5555

	-port_out, -port_result

	server port for sending result to client

Default: 5556

	-http_port

	server port for receiving HTTP requests

	-http_max_connect

	maximum number of concurrent HTTP connections

Default: 10

	-cors

	setting “Access-Control-Allow-Origin” for HTTP requests

Default: “*”

	-num_worker

	number of server instances

Default: 1

	-max_batch_size

	maximum number of sequences handled by each worker

Default: 256

	-priority_batch_size

	batch smaller than this size will be labeled as high priority,and jumps forward in the job queue

Default: 16

	-cpu

	running on CPU (default on GPU)

Default: False

	-xla

	enable XLA compiler (experimental)

Default: False

	-fp16

	use float16 precision (experimental)

Default: False

	-gpu_memory_fraction

	determine the fraction of the overall amount of memory that each visible GPU should be allocated per worker. Should be in range [0.0, 1.0]

Default: 0.5

	-device_map

	specify the list of GPU device ids that will be used (id starts from 0). If num_worker > len(device_map), then device will be reused; if num_worker < len(device_map), then device_map[:num_worker] will be used

Default: []

	-prefetch_size

	the number of batches to prefetch on each worker. When running on a CPU-only machine, this is set to 0 for comparability

Default: 10

	-fixed_embed_length

	when “max_seq_len” is set to None, the server determines the “max_seq_len” according to the actual sequence lengths within each batch. When “pooling_strategy=NONE”, this may cause two “.encode()” from the same client results in different sizes [B, T, D].Turn this on to fix the “T” in [B, T, D] to “max_position_embeddings” in bert json config.

Default: False

Benchmark parameters

config the experiments of the benchmark

	-test_client_batch_size

	Default: [1, 16, 256, 4096]

	-test_max_batch_size

	Default: [8, 32, 128, 512]

	-test_max_seq_len

	Default: [32, 64, 128, 256]

	-test_num_client

	Default: [1, 4, 16, 64]

	-test_pooling_layer

	Default: [[-1], [-2], [-3], [-4], [-5], [-6], [-7], [-8], [-9], [-10], [-11], [-12]]

	-wait_till_ready

	seconds to wait until server is ready to serve

Default: 30

	-client_vocab_file

	file path for building client vocabulary

Default: “README.md”

	-num_repeat

	number of repeats per experiment (must >2), as the first two results are omitted for warm-up effect

Default: 10

Frequently Asked Questions

	Where is the BERT code come from?

	How large is a sentence vector?

	How do you get the fixed representation? Did you do pooling or something?

	Are you suggesting using BERT without fine-tuning?

	Can I get a concatenation of several layers instead of a single layer ?

	What are the available pooling strategies?

	Why not use the hidden state of the first token as default strategy, i.e. the [CLS]?

	BERT has 12/24 layers, so which layer are you talking about?

	Why not the last hidden layer? Why second-to-last?

	So which layer and which pooling strategy is the best?

	Could I use other pooling techniques?

	Can I start multiple clients and send requests to one server simultaneously?

	How many requests can one service handle concurrently?

	So one request means one sentence?

	How about the speed? Is it fast enough for production?

	Did you benchmark the efficiency?

	What is backend based on?

	What is the parallel processing model behind the scene?

	Why does the server need two ports?

	Do I need Tensorflow on the client side?

	Can I use multilingual BERT model provided by Google?

	Can I use my own fine-tuned BERT model?

	Can I run it in python 2?

	Do I need to do segmentation for Chinese?

	Why my (English) word is tokenized to ##something?

	Can I use my own tokenizer?

	I encounter zmq.error.ZMQError: Operation cannot be accomplished in current state when using BertClient, what should I do?

	After running the server, I have several garbage tmpXXXX folders. How can I change this behavior ?

	The cosine similarity of two sentence vectors is unreasonably high (e.g. always > 0.8), what’s wrong?

	I’m getting bad performance, what should I do?

	Can I run the server side on CPU-only machine?

	How can I choose num_worker?

	Can I specify which GPU to use?

Where is the BERT code come from?

BERT code of this repo is forked from the original BERT
repo [https://github.com/google-research/bert] with necessary modification, especially in
extract_features.py.

How large is a sentence vector?

In general, each sentence is translated to a 768-dimensional vector.
Depending on the pretrained BERT you are using, pooling_strategy and
pooling_layer the dimensions of the output vector could be
different.

How do you get the fixed representation? Did you do pooling or something?

Yes, pooling is required to get a fixed representation of a
sentence. In the default strategy REDUCE_MEAN, I take the
second-to-last hidden layer of all of the tokens in the sentence and do
average pooling.

Are you suggesting using BERT without fine-tuning?

Yes and no. On the one hand, Google pretrained BERT on Wikipedia
data, thus should encode enough prior knowledge of the language into the
model. Having such feature is not a bad idea. On the other hand, these
prior knowledge is not specific to any particular domain. It should be
totally reasonable if the performance is not ideal if you are using it
on, for example, classifying legal cases. Nonetheless, you can always
first fine-tune your own BERT on the downstream task and then use
bert-as-service to extract the feature vectors efficiently. Keep in
mind that bert-as-service is just a feature extraction service based
on BERT. Nothing stops you from using a fine-tuned BERT.

Can I get a concatenation of several layers instead of a single layer ?

Sure! Just use a list of the layer you want to concatenate when
calling the server. Example:

bert-serving-start -pooling_layer -4 -3 -2 -1 -model_dir /tmp/english_L-12_H-768_A-12/

What are the available pooling strategies?

Here is a table summarizes all pooling strategies I implemented.
Choose your favorite one by specifying
bert-serving-start -pooling_strategy.

	Strategy

	Description

	NONE

	no pooling at all, useful when you want to use word embedding instead of sentence embedding. This will results in a [max_seq_len, 768] encode matrix for a sequence.

	REDUCE_MEAN

	take the average of the hidden state of encoding layer on the time axis

	REDUCE_MAX

	take the maximum of the hidden state of encoding layer on the time axis

	REDUCE_MEAN_MAX

	do REDUCE_MEAN and REDUCE_MAX separately and then concat them together on the last axis, resulting in 1536-dim sentence encodes

	CLS_TOKEN or FIRST_TOKEN

	get the hidden state corresponding to [CLS], i.e. the first token

	SEP_TOKEN or LAST_TOKEN

	get the hidden state corresponding to [SEP], i.e. the last token

Why not use the hidden state of the first token as default strategy, i.e. the [CLS]?

Because a pre-trained model is not fine-tuned on any downstream
tasks yet. In this case, the hidden state of [CLS] is not a good
sentence representation. If later you fine-tune the model, you may use
[CLS] as well.

BERT has 12/24 layers, so which layer are you talking about?

By default this service works on the second last layer, i.e.
pooling_layer=-2. You can change it by setting pooling_layer to
other negative values, e.g. -1 corresponds to the last layer.

Why not the last hidden layer? Why second-to-last?

The last layer is too closed to the target functions (i.e. masked
language model and next sentence prediction) during pre-training,
therefore may be biased to those targets. If you question about this
argument and want to use the last hidden layer anyway, please feel free
to set pooling_layer=-1.

So which layer and which pooling strategy is the best?

It depends. Keep in mind that different BERT layers capture
different information. To see that more clearly, here is a visualization
on UCI-News Aggregator Dataset [https://www.kaggle.com/uciml/news-aggregator-dataset], where I randomly sample 20K news
titles; get sentence encodes from different layers and with different
pooling strategies, finally reduce it to 2D via PCA (one can of course
do t-SNE as well, but that’s not my point). There are only four classes
of the data, illustrated in red, blue, yellow and green. To reproduce
the result, please run example7.py.

[image: ../_images/pool_mean.png]
[image: ../_images/pool_max.png]
Intuitively, pooling_layer=-1 is close to the training output, so it
may be biased to the training targets. If you don’t fine tune the model,
then this could lead to a bad representation. pooling_layer=-12 is
close to the word embedding, may preserve the very original word
information (with no fancy self-attention etc.). On the other hand, you
may achieve the very same performance by simply using a word-embedding
only. That said, anything in-between [-1, -12] is then a trade-off.

Could I use other pooling techniques?

For sure. But if you introduce new tf.variables to the graph,
then you need to train those variables before using the model. You may
also want to check some pooling techniques I mentioned in my blog
post [https://hanxiao.github.io/2018/06/24/4-Encoding-Blocks-You-Need-to-Know-Besides-LSTM-RNN-in-Tensorflow/#pooling-block].

Can I start multiple clients and send requests to one server simultaneously?

Yes! That’s the purpose of this repo. In fact you can start as
many clients as you want. One server can handle all of them (given
enough time).

How many requests can one service handle concurrently?

The maximum number of concurrent requests is determined by
num_worker in bert-serving-start. If you a sending more than
num_worker requests concurrently, the new requests will be
temporally stored in a queue until a free worker becomes available.

So one request means one sentence?

No. One request means a list of sentences sent from a client.
Think the size of a request as the batch size. A request may contain
256, 512 or 1024 sentences. The optimal size of a request is often
determined empirically. One large request can certainly improve the GPU
utilization, yet it also increases the overhead of transmission. You may
run python example/example1.py for a simple benchmark.

How about the speed? Is it fast enough for production?

It highly depends on the max_seq_len and the size of a
request. On a single Tesla M40 24GB with max_seq_len=40, you should
get about 470 samples per second using a 12-layer BERT. In general, I’d
suggest smaller max_seq_len (25) and larger request size (512/1024).

Did you benchmark the efficiency?

Yes. See Benchmark.

To reproduce the results, please run ``bert-serving-benchmark –help``.

What is backend based on?

ZeroMQ [http://zeromq.org/].

What is the parallel processing model behind the scene?

[image: ../_images/bert-parallel-pipeline.png]

Why does the server need two ports?

One port is for pushing text data into the server, the other port is for
publishing the encoded result to the client(s). In this way, we get rid
of back-chatter, meaning that at every level recipients never talk back
to senders. The overall message flow is strictly one-way, as depicted in
the above figure. Killing back-chatter is essential to real scalability,
allowing us to use BertClient in an asynchronous way.

Do I need Tensorflow on the client side?

No. Think of BertClient as a general feature extractor, whose
output can be fed to any ML models, e.g. scikit-learn,
pytorch, tensorflow.

Can I use multilingual BERT model provided by Google?

Yes.

Can I use my own fine-tuned BERT model?

Yes. In fact, this is suggested. Make sure you have the following
three items in model_dir:

	A TensorFlow checkpoint (bert_model.ckpt) containing the
pre-trained weights (which is actually 3 files).

	A vocab file (vocab.txt) to map WordPiece to word id.

	A config file (bert_config.json) which specifies the
hyperparameters of the model.

Can I run it in python 2?

Server side no, client side yes. This is based on the
consideration that python 2.x might still be a major piece in some tech
stack. Migrating the whole downstream stack to python 3 for supporting
bert-as-service can take quite some effort. On the other hand,
setting up BertServer is just a one-time thing, which can be even
run in a docker container. To ease the integration, we support python
2 on the client side so that you can directly use BertClient as a
part of your python 2 project, whereas the server side should always be
hosted with python 3.

Do I need to do segmentation for Chinese?

No, if you are using the pretrained Chinese BERT released by Google [https://github.com/google-research/bert#pre-trained-models]
you don’t need word segmentation. As this Chinese BERT is
character-based model. It won’t recognize word/phrase even if you
intentionally add space in-between. To see that more clearly, this is
what the BERT model actually receives after tokenization:

bc.encode(['hey you', 'whats up?', '你好么？', '我 还 可以'])

tokens: [CLS] hey you [SEP]
input_ids: 101 13153 8357 102 0
input_mask: 1 1 1 1 0

tokens: [CLS] what ##s up ? [SEP]
input_ids: 101 9100 8118 8644 136 102 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
input_mask: 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

tokens: [CLS] 你 好 么 ？ [SEP]
input_ids: 101 872 1962 720 8043 102 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
input_mask: 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

tokens: [CLS] 我 还 可 以 [SEP]
input_ids: 101 2769 6820 1377 809 102 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
input_mask: 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

That means the word embedding is actually the character embedding for
Chinese-BERT.

Why my (English) word is tokenized to ##something?

Because your word is out-of-vocabulary (OOV). The tokenizer from Google
uses a greedy longest-match-first algorithm to perform tokenization
using the given vocabulary.

For example:

input = "unaffable"
tokenizer_output = ["un", "##aff", "##able"]

Can I use my own tokenizer?

Yes. If you already tokenize the sentence on your own, simply send use
encode with List[List[Str]] as input and turn on
is_tokenized, i.e. bc.encode(texts, is_tokenized=True).

I encounter zmq.error.ZMQError: Operation cannot be accomplished in current state when using BertClient, what should I do?

This is often due to the misuse of BertClient in
multi-thread/process environment. Note that you can’t reuse one
BertClient among multiple threads/processes, you have to make a
separate instance for each thread/process. For example, the following
won’t work at all:

This is often due to the misuse of BertClient in
multi-thread/process environment. Note that you can’t reuse one
BertClient among multiple threads/processes, you have to make a
separate instance for each thread/process. For example, the following
won’t work at all:

BAD example
bc = BertClient()

in Proc1/Thread1 scope:
bc.encode(lst_str)

in Proc2/Thread2 scope:
bc.encode(lst_str)

Instead, please do:

in Proc1/Thread1 scope:
bc1 = BertClient()
bc1.encode(lst_str)

in Proc2/Thread2 scope:
bc2 = BertClient()
bc2.encode(lst_str)

After running the server, I have several garbage tmpXXXX folders. How can I change this behavior ?

These folders are used by ZeroMQ to store sockets. You can choose
a different location by setting the environment variable
ZEROMQ_SOCK_TMP_DIR : export ZEROMQ_SOCK_TMP_DIR=/tmp/

The cosine similarity of two sentence vectors is unreasonably high (e.g. always > 0.8), what’s wrong?

A decent representation for a downstream task doesn’t mean that
it will be meaningful in terms of cosine distance. Since cosine distance
is a linear space where all dimensions are weighted equally. if you want
to use cosine distance anyway, then please focus on the rank not the
absolute value. Namely, do not use:

if cosine(A, B) > 0.9, then A and B are similar

Please consider the following instead:

if cosine(A, B) > cosine(A, C), then A is more similar to B than C.

The graph below illustrates the pairwise similarity of 3000 Chinese
sentences randomly sampled from web (char. length < 25). We compute
cosine similarity based on the sentence vectors and Rouge-L [https://en.wikipedia.org/wiki/ROUGE_(metric)] based on
the raw text. The diagonal (self-correlation) is removed for the sake of
clarity. As one can see, there is some positive correlation between
these two metrics.

[image: ../_images/cosine-vs-rougel.png]

I’m getting bad performance, what should I do?

This often suggests that the pretrained BERT could not generate a
descent representation of your downstream task. Thus, you can fine-tune
the model on the downstream task and then use bert-as-service to
serve the fine-tuned BERT. Note that, bert-as-service is just a
feature extraction service based on BERT. Nothing stops you from using a
fine-tuned BERT.

Can I run the server side on CPU-only machine?

Yes, please run bert-serving-start -cpu -max_batch_size 16.
Note that, CPU does not scale as good as GPU on large batches, therefore
the max_batch_size on the server side needs to be smaller, e.g. 16
or 32.

How can I choose num_worker?

Generally, the number of workers should be less than or equal to
the number of GPU/CPU you have. Otherwise, multiple workers will be
allocated to one GPU/CPU, which may not scale well (and may cause
out-of-memory on GPU).

Can I specify which GPU to use?

Yes, you can specifying -device_map as follows:

bert-serving-start -device_map 0 1 4 -num_worker 4 -model_dir ...

This will start four workers and allocate them to GPU0, GPU1, GPU4 and
again GPU0, respectively. In general, if num_worker >
device_map, then devices will be reused and shared by the workers
(may scale suboptimally or cause OOM); if num_worker <
device_map, only device_map[:num_worker] will be used.

Note, device_map is ignored when running on CPU.

Benchmark

	Speed wrt. max_seq_len

	Speed wrt. client_batch_size

	Speed wrt. num_client

	Speed wrt. max_batch_size

	Speed wrt. pooling_layer

The primary goal of benchmarking is to test the scalability and the
speed of this service, which is crucial for using it in a dev/prod
environment. Benchmark was done on Tesla M40 24GB, experiments were
repeated 10 times and the average value is reported.

To reproduce the results, please run

bert-serving-benchmark --help

Common arguments across all experiments are:

	Parameter

	Value

	num_worker

	1,2,4

	max_seq_len

	40

	client_batch_size

	2048

	max_batch_size

	256

	num_client

	1

Speed wrt. max_seq_len

max_seq_len is a parameter on the server side, which controls the
maximum length of a sequence that a BERT model can handle. Sequences
larger than max_seq_len will be truncated on the left side. Thus, if
your client want to send long sequences to the model, please make sure
the server can handle them correctly.

Performance-wise, longer sequences means slower speed and more chance of
OOM, as the multi-head self-attention (the core unit of BERT) needs to
do dot products and matrix multiplications between every two symbols in
the sequence.

[image: ../_images/max_seq_len.png]

	max_seq_len

	1 GPU

	2 GPU

	4 GPU

	20

	903

	1774

	3254

	40

	473

	919

	1687

	80

	231

	435

	768

	160

	119

	237

	464

	320

	54

	108

	212

Speed wrt. client_batch_size

client_batch_size is the number of sequences from a client when
invoking encode(). For performance reason, please consider encoding
sequences in batch rather than encoding them one by one.

For example, do:

prepare your sent in advance
bc = BertClient()
my_sentences = [s for s in my_corpus.iter()]
doing encoding in one-shot
vec = bc.encode(my_sentences)

DON’T:

bc = BertClient()
vec = []
for s in my_corpus.iter():
 vec.append(bc.encode(s))

It’s even worse if you put BertClient() inside the loop. Don’t do
that.

[image: ../_images/client_batch_size.png]

	client_batch_size

	1 GPU

	2 GPU

	4 GPU

	1

	75

	74

	72

	4

	206

	205

	201

	8

	274

	270

	267

	16

	332

	329

	330

	64

	365

	365

	365

	256

	382

	383

	383

	512

	432

	766

	762

	1024

	459

	862

	1517

	2048

	473

	917

	1681

	4096

	481

	943

	1809

Speed wrt. num_client

num_client represents the number of concurrent clients connected to
the server at the same time.

[image: ../_images/num_clients.png]

	num_client

	1 GPU

	2 GPU

	4 GPU

	1

	473

	919

	1759

	2

	261

	512

	1028

	4

	133

	267

	533

	8

	67

	136

	270

	16

	34

	68

	136

	32

	17

	34

	68

As one can observe, 1 clients 1 GPU = 381 seqs/s, 2 clients 2 GPU 402
seqs/s, 4 clients 4 GPU 413 seqs/s. This shows the efficiency of our
parallel pipeline and job scheduling, as the service can leverage the
GPU time more exhaustively as concurrent requests increase.

Speed wrt. max_batch_size

max_batch_size is a parameter on the server side, which controls the
maximum number of samples per batch per worker. If a incoming batch from
client is larger than max_batch_size, the server will split it into
small batches so that each of them is less or equal than
max_batch_size before sending it to workers.

[image: ../_images/max_batch_size.png]

	max_batch_size

	1 GPU

	2 GPU

	4 GPU

	32

	450

	887

	1726

	64

	459

	897

	1759

	128

	473

	931

	1816

	256

	473

	919

	1688

	512

	464

	866

	1483

Speed wrt. pooling_layer

pooling_layer determines the encoding layer that pooling operates
on. For example, in a 12-layer BERT model, -1 represents the layer
closed to the output, -12 represents the layer closed to the
embedding layer. As one can observe below, the depth of the pooling
layer affects the speed.

[image: ../_images/pooling_layer.png]

	pooling_layer

	1 GPU

	2 GPU

	4 GPU

	[-1]

	438

	844

	1568

	[-2]

	475

	916

	1686

	[-3]

	516

	995

	1823

	[-4]

	569

	1076

	1986

	[-5]

	633

	1193

	2184

	[-6]

	711

	1340

	2430

	[-7]

	820

	1528

	2729

	[-8]

	945

	1772

	3104

	[-9]

	1128

	2047

	3622

	[-10]

	1392

	2542

	4241

	[-11]

	1523

	2737

	4752

	[-12]

	1568

	2985

	5303

 Python Module Index

 c

 		 	

 		
 c	

 	
 	
 client	

Index

 B
 | C
 | E
 | F
 | S

B

 	
 	BertClient (class in client)

C

 	
 	client (module)

 	close() (client.BertClient method)

 	(client.ConcurrentBertClient method)

 	
 	ConcurrentBertClient (class in client)

E

 	
 	encode() (client.BertClient method)

 	(client.ConcurrentBertClient method)

 	
 	encode_async() (client.BertClient method)

 	(client.ConcurrentBertClient method)

F

 	
 	fetch() (client.BertClient method)

 	(client.ConcurrentBertClient method)

 	
 	fetch_all() (client.BertClient method)

 	(client.ConcurrentBertClient method)

S

 	
 	server_config (client.BertClient attribute)

 	(client.ConcurrentBertClient attribute)

 	server_status (client.BertClient attribute)

 	(client.ConcurrentBertClient attribute)

 	
 	status (client.BertClient attribute)

 	(client.ConcurrentBertClient attribute)

 _images/pool_mean.png
PCA visualization of BERT layers using "bert-as-service" (-pool_strategy=REDUCE_MEAN)
pool_layer=-4 pool_layer=-5

_images/pooling_layer.png
Scalability on the depth of pooling layer

W 1GPU W 2GPU M 4GPU
6000

4000

2000

Sequences per second

DI I B I R R ¢ I I S SR)

pooling Jayer

_images/num_clients.png
Scalability on multiple clients

Sequences per second

2000

1500

1000

500

W 1GPU W 2GPU M 4GPU

|I|'|I-'|-'—-

Number of concurrent clients

32

_images/pool_max.png
PCA visualization of BERT layers using "bert-as-service" (-pool_strategy=REDUCE_MAX)

B3
pool_layer=-10

_images/server-run-demo.gif
I:WORKER-0: [__1i:gen:300] :ready and listening!

_static/ajax-loader.gif

_images/qasearch-demo.gif

_images/server-demo.gif

_static/comment-bright.png

_images/demo.gif
hanxiao~/alg/bert-as-service#

_images/max_batch_size.png
Scalability on the server parameter ‘max_batch_size"

Sequences per second

2000

1500

1000

500

W 1GPU W 2GPU M 4GPU

1d4di

max_bateh_size

_images/cosine-vs-rougel.png
Pairwise similarity of 3000 Random Chinese Sentences (len<25) from Web

200000
2z
S oe 150000
E =
@ 5
o 3
3 8
<)
o 100000
3
&
50000
0
02 04 06 08

cosine similarity from BERT

2000000

1500000

Count

1000000

500000

05

06

07 08 09
Cosine similarity from BERT

00

02

) 6
Rouge-L similarity

10

_images/dashboard.png
BERT-as-service = http://100.102.33.53:80

Data Req. Max RPS Max Req./Client Num clients

39596 23 18142 21

Min Req./Client Avg Req./Client Server version Running on Uptime Max seq len

1 2033 l.6.4 GPU 4 days.. 40

Requests in last 60 mins Clients in last 60 mins
s | i |
40 —_— —_— K
35
—
20
30
25
15
20
10
15
10
5
05
o o
13657 1a7:56 13856 13056 14056 141:56 14256 14356 14456 1:45:56 1:46:56 14756 14856 1:49:56 15056 | 113657 119786 113856 119956 114056 114156 114256 114356 114456 114556 114656 114756 114856 114956 11:5056
Requests in last 24 hours Clients in last 24 hours
s | s |
40 2
35
20
30
25
15
20
10
15
10
5
05

o o
1:36:57 1:37:56 1:38:56 1:39:56 1:40:56 1:41:56 1:42:56 1:43:56 1:44:56 1:45:56 1:46:56 1:47:56 1:48:56 1:49:56 1:50:56 | 11:36:57 11:37:56 11:38:56 11:39:56 11:4056 11:41:56 11:42:56 11:43:56 11:44:56 11:45:56 11:46:56 11:47:56 11:48:56 11:49:56 11:5056

_images/max_seq_len.png
Scalability on the server parameter ‘max_seq_len"

Sequences per second

4000

3000

2000

1000

W 1GPU W 2GPU M 4GPU

Illlll-'l-'

max_seq Jen

320

_static/comment-close.png

nav.xhtml

 Table of Contents

 		
 bert-as-service Documentation

 		
 What is it

 		
 Preliminary

 		
 Highlights

 		
 Getting Start

 		
 Installation

 		
 Download a Pre-trained BERT Model

 		
 Start the BERT service

 		
 Start the Bert service in a docker container

 		
 Use Client to Get Sentence Encodes

 		
 Use BERT Service Remotely

 		
 Tutorials

 		
 Building a QA semantic search engine in 3 minutes

 		
 Serving a fine-tuned BERT model

 		
 Getting ELMo-like contextual word embedding

 		
 Using your own tokenizer

 		
 Using BertClient with tf.data API

 		
 Training a text classifier using BERT features and tf.estimator API

 		
 Saving and loading with TFRecord data

 		
 Asynchronous encoding

 		
 Broadcasting to multiple clients

 		
 Monitoring the service status in a dashboard

 		
 Using bert-as-service to serve HTTP requests in JSON

 		
 Using BertClient

 		
 Installation

 		
 Client-side API

 		
 Using BertServer

 		
 Installation

 		
 Command Line Interface

 		
 Server-side API

 		
 Named Arguments

 		
 File Paths

 		
 BERT Parameters

 		
 Serving Configs

 		
 Server-side Benchmark

 		
 Named Arguments

 		
 File Paths

 		
 BERT Parameters

 		
 Serving Configs

 		
 Benchmark parameters

 		
 Frequently Asked Questions

 		
 Where is the BERT code come from?

 		
 How large is a sentence vector?

 		
 How do you get the fixed representation? Did you do pooling or something?

 		
 Are you suggesting using BERT without fine-tuning?

 		
 Can I get a concatenation of several layers instead of a single layer ?

 		
 What are the available pooling strategies?

 		
 Why not use the hidden state of the first token as default strategy, i.e. the [CLS]?

 		
 BERT has 12/24 layers, so which layer are you talking about?

 		
 Why not the last hidden layer? Why second-to-last?

 		
 So which layer and which pooling strategy is the best?

 		
 Could I use other pooling techniques?

 		
 Can I start multiple clients and send requests to one server simultaneously?

 		
 How many requests can one service handle concurrently?

 		
 So one request means one sentence?

 		
 How about the speed? Is it fast enough for production?

 		
 Did you benchmark the efficiency?

 		
 What is backend based on?

 		
 What is the parallel processing model behind the scene?

 		
 Why does the server need two ports?

 		
 Do I need Tensorflow on the client side?

 		
 Can I use multilingual BERT model provided by Google?

 		
 Can I use my own fine-tuned BERT model?

 		
 Can I run it in python 2?

 		
 Do I need to do segmentation for Chinese?

 		
 Why my (English) word is tokenized to ##something?

 		
 Can I use my own tokenizer?

 		
 I encounter zmq.error.ZMQError: Operation cannot be accomplished in current state when using BertClient, what should I do?

 		
 After running the server, I have several garbage tmpXXXX folders. How can I change this behavior ?

 		
 The cosine similarity of two sentence vectors is unreasonably high (e.g. always > 0.8), what’s wrong?

 		
 I’m getting bad performance, what should I do?

 		
 Can I run the server side on CPU-only machine?

 		
 How can I choose num_worker?

 		
 Can I specify which GPU to use?

 		
 Benchmark

 		
 Speed wrt. max_seq_len

 		
 Speed wrt. client_batch_size

 		
 Speed wrt. num_client

 		
 Speed wrt. max_batch_size

 		
 Speed wrt. pooling_layer

_images/bert-parallel-pipeline.png
Server

Client

Main Process
(0n CPU)

Separate Processes
(On GPU/CPU)

Separate Process
(On CPU)

Request Response

l t

ventilator

PUSH

PULL PULL PULL PULL

worker M worker M worker M worker

PULL

sink

_static/down.png

_images/client_batch_size.png
Scalability on the size of batch sent from client

W 1GPU W 2GPU M 4GPU

om0
-
Qg
!

F o

e WD

dlient batch_size

_static/comment.png

_static/down-pressed.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

