

beanstalkc

beanstalkc is a simple beanstalkd client library for Python.
beanstalkd [http://kr.github.com/beanstalkd/] is a simple, fast work queue service.

beanstalkc depends on PyYAML [http://pyyaml.org/], but there are ways to avoid this dependency.
See Appendix A of the tutorial for details.

beanstalkc is pure Python, and is compatible with eventlet [http://eventlet.net/] and gevent [http://www.gevent.org/].

Contents

	beanstalkc Tutorial
	Getting Started

	Basic Operation

	Tube Management

	Statistics

	Advanced Operation

	Inspecting Jobs

	Job Priorities

	Fin!

	Appendix A: beanstalkc and YAML

	Reference
	Core Classes

	Exceptions

Usage

Here is a short example, to illustrate the flavour of beanstalkc:

>>> import beanstalkc
>>> beanstalk = beanstalkc.Connection(host='localhost', port=11300)
>>> beanstalk.put('hey!')
1
>>> job = beanstalk.reserve()
>>> job.body
'hey!'
>>> job.delete()

License

Copyright © 2008-2011, Andreas Bolka. Licensed under the Apache License,
Version 2.0 [http://www.apache.org/licenses/LICENSE-2.0]:

Copyright 2008-2011 Andreas Bolka

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing,
software distributed under the License is distributed on an "AS
IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
express or implied. See the License for the specific language
governing permissions and limitations under the License.

beanstalkc Tutorial

Welcome, dear stranger, to a tour de force through beanstalkd’s capabilities.
Say hello to your fellow travel companion, the beanstalkc client library for
Python. You’ll get to know each other fairly well during this trip, so better
start off on a friendly note. And now, let’s go!

Getting Started

You’ll need beanstalkd listening at port 14711 to follow along. So simply start
it using:

beanstalkd -l 127.0.0.1 -p 14711

Besides having beanstalkc installed, you’ll typically also need PyYAML. If you
insist, you can also use beanstalkc without PyYAML. For more details see
Appendix A of this tutorial.

To use beanstalkc we have to import the library and set up a connection to an
(already running) beanstalkd server:

>>> import beanstalkc
>>> beanstalk = beanstalkc.Connection(host='localhost', port=14711)

If we leave out the host and/or port parameters, 'localhost' and
11300 would be used as defaults, respectively. There is also a
connect_timeout parameter which determines how long, in seconds, the socket
will wait for the server to respond to its initial connection attempt. If it is
None then there will be no timeout; it defaults to 1.

Basic Operation

Now that we have a connection set up, we can enqueue jobs:

>>> beanstalk.put('hey!')
1

Or we can request jobs:

>>> job = beanstalk.reserve()
>>> job.body
'hey!'

Once we are done with processing a job, we have to mark it as done, otherwise
jobs are re-queued by beanstalkd after a “time to run” (120 seconds, per
default) is surpassed. A job is marked as done, by calling delete:

>>> job.delete()

reserve blocks until a job is ready, possibly forever. If that is not
desired, we can invoke reserve with a timeout (in seconds) how long we want
to wait to receive a job. If such a reserve times out, it will return
None:

>>> beanstalk.reserve(timeout=0) is None
True

If you use a timeout of 0, reserve will immediately return either a job or
None.

Note that beanstalkc requires job bodies to be strings, conversion to/from
strings is left up to you:

>>> beanstalk.put(42)
Traceback (most recent call last):
...
AssertionError: Job body must be a str instance

There is no restriction on what characters you can put in a job body, so they
can be used to hold arbitrary binary data. If you want to send images, just
put the image data as a string. If you want to send Unicode text, just use
unicode.encode to convert it to a string with some encoding.

Tube Management

A single beanstalkd server can provide many different queues, called “tubes” in
beanstalkd. To see all available tubes:

>>> beanstalk.tubes()
['default']

A beanstalkd client can choose one tube into which its job are put. This is the
tube “used” by the client. To see what tube you are currently using:

>>> beanstalk.using()
'default'

Unless told otherwise, a client uses the ‘default’ tube. If you want to use a
different tube:

>>> beanstalk.use('foo')
'foo'
>>> beanstalk.using()
'foo'

If you decide to use a tube, that does not yet exist, the tube is automatically
created by beanstalkd:

>>> beanstalk.tubes()
['default', 'foo']

Of course, you can always switch back to the default tube. Tubes that don’t have
any client using or watching, vanish automatically:

>>> beanstalk.use('default')
'default'
>>> beanstalk.using()
'default'
>>> beanstalk.tubes()
['default']

Further, a beanstalkd client can choose many tubes to reserve jobs from. These
tubes are “watched” by the client. To see what tubes you are currently
watching:

>>> beanstalk.watching()
['default']

To watch an additional tube:

>>> beanstalk.watch('bar')
2
>>> beanstalk.watching()
['default', 'bar']

As before, tubes that do not yet exist are created automatically once you start
watching them:

>>> beanstalk.tubes()
['default', 'bar']

To stop watching a tube:

>>> beanstalk.ignore('bar')
1
>>> beanstalk.watching()
['default']

You can’t watch zero tubes. So if you try to ignore the last tube you are
watching, this is silently ignored:

>>> beanstalk.ignore('default')
1
>>> beanstalk.watching()
['default']

To recap: each beanstalkd client manages two separate concerns: which tube
newly created jobs are put into, and which tube(s) jobs are reserved from.
Accordingly, there are two separate sets of functions for these concerns:

	use and using affect where put places jobs;

	watch and watching control where reserve takes jobs from.

Note that these concerns are fully orthogonal: for example, when you use a
tube, it is not automatically watch-ed. Neither does watch-ing a tube
affect the tube you are using.

Statistics

Beanstalkd accumulates various statistics at the server, tube and job level.
Statistical details for a job can only be retrieved during the job’s lifecycle.
So let’s create another job:

>>> beanstalk.put('ho?')
2

>>> job = beanstalk.reserve()

Now we retrieve job-level statistics:

>>> from pprint import pprint
>>> pprint(job.stats())
{'age': 0,
 ...
 'id': 2,
 ...
 'state': 'reserved',
 ...
 'tube': 'default'}

If you try to access job stats after the job was deleted, you’ll get a
CommandFailed exception:

>>> job.delete()
>>> job.stats()
Traceback (most recent call last):
...
CommandFailed: ('stats-job', 'NOT_FOUND', [])

Let’s have a look at some numbers for the 'default' tube:

>>> pprint(beanstalk.stats_tube('default'))
{...
 'current-jobs-ready': 0,
 'current-jobs-reserved': 0,
 'current-jobs-urgent': 0,
 ...
 'name': 'default',
 ...}

Finally, there’s an abundant amount of server-level statistics accessible via
the Connection’s stats method. We won’t go into details here, but:

>>> pprint(beanstalk.stats())
{...
 'current-connections': 1,
 'current-jobs-buried': 0,
 'current-jobs-delayed': 0,
 'current-jobs-ready': 0,
 'current-jobs-reserved': 0,
 'current-jobs-urgent': 0,
 ...}

Advanced Operation

In “Basic Operation” above, we discussed the typical lifecycle of a job:

 put reserve delete
 -----> [READY] ---------> [RESERVED] --------> *poof*

(This illustration was taken from beanstalkd's protocol
documentation. It is originally contained in ``protocol.txt``,
part of the beanstalkd distribution.) #doctest:+SKIP

But besides ready and reserved, a job can also be delayed or
buried. Along with those states come a few transitions, so the full picture
looks like the following:

 put with delay release with delay
 ----------------> [DELAYED] <------------.
 | |
 | (time passes) |
 | |
 put v reserve | delete
 -----------------> [READY] ---------> [RESERVED] --------> *poof*
 ^ ^ | |
 | \ release | |
 | ``-------------' |
 | |
 | kick |
 | |
 | bury |
 [BURIED] <---------------'
 |
 | delete
 ``--------> *poof*

(This illustration was taken from beanstalkd's protocol
documentation. It is originally contained in ``protocol.txt``,
part of the beanstalkd distribution.) #doctest:+SKIP

Now let’s have a practical look at those new possibilities. For a start, we can
create a job with a delay. Such a job will only be available for reservation
once this delay passes:

>>> beanstalk.put('yes!', delay=1)
3

>>> beanstalk.reserve(timeout=0) is None
True

>>> job = beanstalk.reserve(timeout=1)
>>> job.body
'yes!'

If we are not interested in a job anymore (e.g. after we failed to process it),
we can simply release the job back to the tube it came from:

>>> job.release()
>>> job.stats()['state']
'ready'

Want to get rid of a job? Well, just “bury” it! A buried job is put aside and
is therefore not available for reservation anymore:

>>> job = beanstalk.reserve()
>>> job.bury()
>>> job.stats()['state']
'buried'

>>> beanstalk.reserve(timeout=0) is None
True

Buried jobs are maintained in a special FIFO-queue outside of the normal job
processing lifecycle until they are kicked alive again:

>>> beanstalk.kick()
1

You can request many jobs to be kicked alive at once, kick’s return value
will tell you how many jobs were actually kicked alive again:

>>> beanstalk.kick(42)
0

Inspecting Jobs

Besides reserving jobs, a client can also “peek” at jobs. This allows to
inspect jobs without modifying their state. If you know the id of a job
you’re interested, you can directly peek at the job. We still have job #3
hanging around from our previous examples, so:

>>> job = beanstalk.peek(3)
>>> job.body
'yes!'

Note that this peek did not reserve the job:

>>> job.stats()['state']
'ready'

If you try to peek at a non-existing job, you’ll simply see nothing:

>>> beanstalk.peek(42) is None
True

If you are not interested in a particular job, but want to see jobs according
to their state, beanstalkd also provides a few commands. To peek at the same
job that would be returned by reserve (i.e. the next ready job) use
peek-ready:

>>> job = beanstalk.peek_ready()
>>> job.body
'yes!'

Note that you can’t release, or bury a job that was not reserved by you. Those
requests on unreserved jobs are silently ignored:

>>> job.release()
>>> job.bury()

>>> job.stats()['state']
'ready'

You can, though, delete a job that was not reserved by you:

>>> job.delete()
>>> job.stats()
Traceback (most recent call last):
...
CommandFailed: ('stats-job', 'NOT_FOUND', [])

Finally, you can also peek into the special queues for jobs that are delayed:

>>> beanstalk.put('o tempores', delay=120)
4
>>> job = beanstalk.peek_delayed()
>>> job.stats()['state']
'delayed'

… or buried:

>>> beanstalk.put('o mores!')
5
>>> job = beanstalk.reserve()
>>> job.bury()

>>> job = beanstalk.peek_buried()
>>> job.stats()['state']
'buried'

Job Priorities

Without job priorities, beanstalkd operates as a FIFO queue:

>>> _ = beanstalk.put('1')
>>> _ = beanstalk.put('2')

>>> job = beanstalk.reserve() ; print job.body ; job.delete()
1
>>> job = beanstalk.reserve() ; print job.body ; job.delete()
2

If need arises, you can override this behaviour by giving different jobs
different priorities. There are three hard facts to know about job priorities:

	Jobs with lower priority numbers are reserved before jobs with higher
priority numbers.

	beanstalkd priorities are 32-bit unsigned integers (they range from 0 to
2**32 - 1).

	beanstalkc uses 2**31 as default job priority
(beanstalkc.DEFAULT_PRIORITY).

To create a job with a custom priority, use the keyword-argument priority:

>>> _ = beanstalk.put('foo', priority=42)
>>> _ = beanstalk.put('bar', priority=21)
>>> _ = beanstalk.put('qux', priority=21)

>>> job = beanstalk.reserve() ; print job.body ; job.delete()
bar
>>> job = beanstalk.reserve() ; print job.body ; job.delete()
qux
>>> job = beanstalk.reserve() ; print job.body ; job.delete()
foo

Note how 'bar' and 'qux' left the queue before 'foo', even though
they were enqueued well after 'foo'. Note also that within the same
priority jobs are still handled in a FIFO manner.

Fin!

>>> beanstalk.close()

That’s it, for now. We’ve left a few capabilities untouched (touch and
time-to-run). But if you’ve really read through all of the above, send me a
message and tell me what you think of it. And then go get yourself a treat. You
certainly deserve it.

Appendix A: beanstalkc and YAML

As beanstalkd uses YAML for diagnostic information (like the results of
stats() or tubes()), you’ll typically need PyYAML [http://pyyaml.org/]. Depending on your
performance needs, you may want to supplement that with the libyaml [http://pyyaml.org/wiki/LibYAML] C
extension.

If, for whatever reason, you cannot use PyYAML, you can still use beanstalkc
and just leave the YAML responses unparsed. To do that, pass
parse_yaml=False when creating the Connection:

>>> beanstalk = beanstalkc.Connection(host='localhost',
... port=14711,
... parse_yaml=False)

>>> beanstalk.tubes()
'---\n- default\n'

>>> beanstalk.stats_tube('default')
'---\nname: default\ncurrent-jobs-urgent: 0\n...'

>>> beanstalk.close()

This possibility is mostly useful if you don’t use the introspective
capabilities of beanstalkd (Connection#tubes, Connection#watching,
Connection#stats, Connection#stats_tube, and Job#stats).

Alternatively, you can also pass a function to be used as YAML parser:

>>> beanstalk = beanstalkc.Connection(host='localhost',
... port=14711,
... parse_yaml=lambda x: x.split('\n'))

>>> beanstalk.tubes()
['---', '- default', '']

>>> beanstalk.stats_tube('default')
['---', 'name: default', 'current-jobs-urgent: 0', ...]

>>> beanstalk.close()

This should come in handy if PyYAML simply does not fit your needs.

Reference

beanstalkc - A beanstalkd Client Library for Python

Core Classes

	
class beanstalkc.Connection(host='localhost', port=11300, parse_yaml=True, connect_timeout=None)

	
	
bury(jid, priority=2147483648)

	Bury a job, by job id.

	
close()

	Close connection to server.

	
connect()

	Connect to beanstalkd server.

	
delete(jid)

	Delete a job, by job id.

	
ignore(name)

	Stop watching a given tube.

	
kick(bound=1)

	Kick at most bound jobs into the ready queue.

	
pause_tube(name, delay)

	Pause a tube for a given delay time, in seconds.

	
peek(jid)

	Peek at a job. Returns a Job, or None.

	
peek_buried()

	Peek at next buried job. Returns a Job, or None.

	
peek_delayed()

	Peek at next delayed job. Returns a Job, or None.

	
peek_ready()

	Peek at next ready job. Returns a Job, or None.

	
put(body, priority=2147483648, delay=0, ttr=120)

	Put a job into the current tube. Returns job id.

	
release(jid, priority=2147483648, delay=0)

	Release a reserved job back into the ready queue.

	
reserve(timeout=None)

	Reserve a job from one of the watched tubes, with optional timeout
in seconds. Returns a Job object, or None if the request times out.

	
stats()

	Return a dict of beanstalkd statistics.

	
stats_job(jid)

	Return a dict of stats about a job, by job id.

	
stats_tube(name)

	Return a dict of stats about a given tube.

	
touch(jid)

	Touch a job, by job id, requesting more time to work on a reserved
job before it expires.

	
tubes()

	Return a list of all existing tubes.

	
use(name)

	Use a given tube.

	
using()

	Return a list of all tubes currently being used.

	
watch(name)

	Watch a given tube.

	
watching()

	Return a list of all tubes being watched.

	
class beanstalkc.Job(conn, jid, body, reserved=True)

	
	
bury(priority=None)

	Bury this job.

	
delete()

	Delete this job.

	
release(priority=None, delay=0)

	Release this job back into the ready queue.

	
stats()

	Return a dict of stats about this job.

	
touch()

	Touch this reserved job, requesting more time to work on it before
it expires.

Exceptions

	
class beanstalkc.BeanstalkcException

	

	
class beanstalkc.UnexpectedResponse

	

	
class beanstalkc.CommandFailed

	

	
class beanstalkc.DeadlineSoon

	

	
class beanstalkc.SocketError

	

 Python Module Index

 b

 		 	

 		
 b	

 	
 	
 beanstalkc	

Index

 B
 | C
 | D
 | I
 | J
 | K
 | P
 | R
 | S
 | T
 | U
 | W

B

 	
 	beanstalkc (module)

 	BeanstalkcException (class in beanstalkc)

 	
 	bury() (beanstalkc.Connection method)

 	(beanstalkc.Job method)

C

 	
 	close() (beanstalkc.Connection method)

 	CommandFailed (class in beanstalkc)

 	
 	connect() (beanstalkc.Connection method)

 	Connection (class in beanstalkc)

D

 	
 	DeadlineSoon (class in beanstalkc)

 	
 	delete() (beanstalkc.Connection method)

 	(beanstalkc.Job method)

I

 	
 	ignore() (beanstalkc.Connection method)

J

 	
 	Job (class in beanstalkc)

K

 	
 	kick() (beanstalkc.Connection method)

P

 	
 	pause_tube() (beanstalkc.Connection method)

 	peek() (beanstalkc.Connection method)

 	peek_buried() (beanstalkc.Connection method)

 	
 	peek_delayed() (beanstalkc.Connection method)

 	peek_ready() (beanstalkc.Connection method)

 	put() (beanstalkc.Connection method)

R

 	
 	release() (beanstalkc.Connection method)

 	(beanstalkc.Job method)

 	
 	reserve() (beanstalkc.Connection method)

S

 	
 	SocketError (class in beanstalkc)

 	stats() (beanstalkc.Connection method)

 	(beanstalkc.Job method)

 	
 	stats_job() (beanstalkc.Connection method)

 	stats_tube() (beanstalkc.Connection method)

T

 	
 	touch() (beanstalkc.Connection method)

 	(beanstalkc.Job method)

 	
 	tubes() (beanstalkc.Connection method)

U

 	
 	UnexpectedResponse (class in beanstalkc)

 	
 	use() (beanstalkc.Connection method)

 	using() (beanstalkc.Connection method)

W

 	
 	watch() (beanstalkc.Connection method)

 	
 	watching() (beanstalkc.Connection method)

 nav.xhtml

 Table of Contents

 		
 beanstalkc

 		
 beanstalkc Tutorial

 		
 Getting Started

 		
 Basic Operation

 		
 Tube Management

 		
 Statistics

 		
 Advanced Operation

 		
 Inspecting Jobs

 		
 Job Priorities

 		
 Fin!

 		
 Appendix A: beanstalkc and YAML

 		
 Reference

 		
 Core Classes

 		
 Exceptions

_static/file.png

_static/down-pressed.png

_static/down.png

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/comment.png

