
bcompiler Documentation
Release 1.3.15

Matthew Lemon

Feb 15, 2018

Contents:

1 Introduction 3
1.1 Quick Start . 3
1.2 Concept . 3

2 Installation 7
2.1 Install Python . 7
2.2 Update pip (if required) . 7
2.3 Install git . 7
2.4 Install bcompiler . 8

3 Initialise bcompiler 9
3.1 Auxiliary files . 9
3.2 Other options . 10

4 Populating templates based on a master spreadsheet 11
4.1 Handling RAG-colour and Data Validation macros . 11

5 Creating a master spreadsheet from populated templates 13

6 Check integrity of populated template files 15

7 Extending bcompiler 17
7.1 Examples . 17
7.2 API Reference . 20

8 Analysers 23
8.1 Introduction . 23
8.2 Built-in Analysers . 24

9 Roadmap 29
9.1 2.0 - Plugins . 29
9.2 1.0 - Analysers . 29
9.3 0.0 - Stability . 30

10 Changes 31
10.1 v1.3.19 . 31
10.2 v1.3.18 . 31
10.3 v1.3.17 . 31

i

10.4 v1.3.16 . 31
10.5 v1.3.15 . 31
10.6 v1.3.14 . 32
10.7 v1.3.13 . 32
10.8 v1.3.12 . 32
10.9 v1.3.11 . 32
10.10 v1.3.10 . 32
10.11 v1.3.9 . 32
10.12 v1.3.8 . 32
10.13 v1.3.7 . 33
10.14 v1.3.6 . 33
10.15 v1.3.5 . 33
10.16 v1.3.4 . 33
10.17 v1.3.3 . 33
10.18 v1.3.2 . 33
10.19 v1.3.1 . 33
10.20 v1.3.0 . 33
10.21 v1.2.2 . 34
10.22 v1.2.1 . 34
10.23 30 October 2017 . 34
10.24 17 October 2017 . 34
10.25 16 October 2017 . 34
10.26 11 October 2017 . 34
10.27 10 October 2017 . 34

11 Indices and tables 35

ii

bcompiler Documentation, Release 1.3.15

A tool for managing DfT BICC data.

Contents: 1

bcompiler Documentation, Release 1.3.15

2 Contents:

CHAPTER 1

Introduction

bcompiler is a tool to manage data involved in the BICC reporting process at the UK Department for Transport.

It is developed and maintained by Matthew Lemon and licensed under MIT. Source code is available at Bitbucket.

bcompiler processes data held in Excel files, either compiling similar data from many Excel files into a single
master spreadsheet, or populating many Excel files using the data from a master spreadsheet.

“Auxiliary” files (see Auxiliary files) are required to map data in each direction, and to templates. These files are
contained in a DfT reporitory on GitHub. bcompiler can be used to obtain/update these files.

1.1 Quick Start

• Ensure Python 3.6.2 or later is installed on your system.

• Ensure git is installed on your system.

• pip install bcompiler

• bcompiler-init

• Refer to Check integrity of populated template files.

1.2 Concept

1.2.1 Template and master

The primary function of bcompiler is very simple: it extracts data from one Excel spreadsheet and puts it into
another spreadsheet. More specifically, it extracts data from a spreadsheet which has an ad hoc layout, and multiple
sheets (which we call a template), and puts it into a simple database-like table on a single sheet (which we call a
master). The template is a controlled document which is intended to be completed as a form by some stakeholder and
the master is a document store which holds data from multiple templates. It could therefore be said bcompiler is a

3

https://twitter.com/matthewlemon
https://opensource.org/licenses/MIT
https://bitbucket.org/mrlemon/bcompiler/overview

bcompiler Documentation, Release 1.3.15

collection tool that gathers data from a controlled, Excel-based, user interface and “compiles” it into a central point,
allowing for storage or further interrogation by other tools, such as Excel or even bcompiler itself, as we shall see.

This process can also be operated in reverse, i.e. data can be transferred from a master to a set of templates.

1.2.2 Datamap

A template is intended to be used as a form to collect data. It’s design is free-form and should facilitate data-entry in
a user-friendly way, therefore it is likely to contain:

• empty cells, for the user to complete

• locked cells, containing formulae

• locked cells, for spacing or other aesthetic purposes

• cells controlled by data verification, such as drop-down lists

• styled cells and various formatting

• any other plausible design element which facilitates successful data-entry

When seeking to extract data from a template which has been populated by a user, the task is therefore to know which
cells in the template contain the data entered and which can be ignored as cells used for aesthetics, user information,
spacing, design, etc. This is achieved in bcompiler using a datamap.

The datamap is a simple CSV file which maps keys to values. The key is the arbitary name, or descriptor of some piece
of data you want to capture, and the value is the data contained in the cell which represents that piece of data. The job
of the datamap is to tell bcompiler which cell in the template contains that piece of data you want to capture.

An extract from a datamap:

First Name,Summary,F10,
Last Name,Summary,F11
Date of Birth,Summary,G10,
Nickname,Summary,G11

4 Chapter 1. Introduction

bcompiler Documentation, Release 1.3.15

Here, “First Name” is a key, whose value can be found in cell F10 of the Summary sheet in the target template.
Likewise for “Last Name”, “Date of Birth”, etc.

Note: The datamap (called datamap.csv) is an auxiliary file (see Auxiliary files), created by bcompiler in a
special location inside the the Documents folder of your computer. An auxiliary file is simply a file whose contents
help bcompiler do its job and can be amended by any user of the program.

Warning: Without a correctly populated datamap, bcompiler has no way of finding or placing data, so it is an
essential component of the process and can be the source errors and unexpected values.

1.2.3 Designing or amending a template

The process of designing a new template (or amending and existing one) is therefore very straightforward.

The template is laid-out according to whatever design/principles are suitable. Cell-locking and other security measures
are inacted within the Excel file to control where data can be entered by the user and to protect formulas, adding or
deleted rows/columns, etc.

A datamap.csv file is then created (or amended if changing an existing template), using Excel or Notepad or any
other text editing application, and each cell in the template intended to be populated by the user and/or captured by
bcompiler is listed on a single line, in CSV (comma-seperated) format:

First Name,Summary,F10,
Last Name,Summary,F11
Date of Birth,Summary,G10,
Nickname,Summary,G11
Data Field 1,Finance,A3
Data Field 2,Finance,A4
...

The datamap.csv file is saved and placed in the bcompiler/source/ directory in the computer’s Documents
directory (the name of which differs depending on whether using Windows, Mac OS X or Linux).

1.2. Concept 5

bcompiler Documentation, Release 1.3.15

6 Chapter 1. Introduction

CHAPTER 2

Installation

Note: This guide refers specifically to installing on a Windows system as that is anticipated to be the primary operating
system for typical bcompiler users. However, bcompiler is installable on Linux and Mac using the same pip
commands. The only difference is how Python and git are installed on those systems. Please refer to python.org and
git-scm.com.

2.1 Install Python

1. To install Python, download installer file from http://www.python.org/ftp/python/3.6.2/python-3.6.3.exe.
Choose to save it to a location on your harddrive, such as your Desktop or Downloads folder.

2. Run the installer. On the Install Python Setup screen, ensure “Add Python 3.6 to PATH” and “Install launcher
for all users (recommended)” is checked. Click “Install Now”.

3. Open a new command window (Start -> type “cmd” in Search box and hit enter).

2.2 Update pip (if required)

• In command window, type python -m pip install -U pip.

2.3 Install git

1. Go to https://git-scm.com/download/win. The download will begin automatically. Save it to a location on your
hardrive, such as your Desktop or Downloads folder.

2. Run the installer, accepting all default options. If you get a message saying that you cannot run the 64-bit
installer, choose the 32-bit installer from the above page.

7

https://www.python.org/downloads/mac-osx/
https://git-scm.com/
http://www.python.org/ftp/python/3.6.2/python-3.6.3.exe
https://git-scm.com/download/win

bcompiler Documentation, Release 1.3.15

2.4 Install bcompiler

• If you do not already have bcompiler installed, in the command window, type pip install
bcompiler.

• If you have bcompiler installed, it is a good idea to update to the latest version. In the command window,
type pip install -U bcompiler.

Note: Use the latest version of bcompiler. You can find out what the latest version of bcompiler is by doing
pip search bcompiler. If you can see that there is a later version, but pip install -U bcompiler
does not install the latest version for some reason, try uninstalling bcompiler pip uninstall bcompiler first,
then installing with pip install bcompiler. You can also specify which version of bcompiler you want to
download with pip install bcompiler==1.1.0a1 - make sure that version is listed as the latest doing pip
search bcompiler.

8 Chapter 2. Installation

CHAPTER 3

Initialise bcompiler

bcompiler needs auxiliary files to run, including a datamap.csv and config.ini files. These files are stored
in a directory called bcompiler in your Documents directory. Before running bcompiler, this directory struc-
ture needs to be set up. The auxiliary files also need to be downloaded from a git repository on Github. bcompiler
can do the necessary work to set this up.

• In the command window, type bcompiler-init.

Changing settings for various things in bcompiler is done using a config.ini file.

3.1 Auxiliary files

bcompiler requires three files to be present in the auxiliary directory, created during bcompiler-init:

• config.ini

• datamap.csv

• bicc_template.xlsm

3.1.1 config.ini

This is a text file in Documents/bcompiler/source that allows allows the user to set basic configuration op-
tions.

INI files are an informal standard for configuration files. The basic element contained in an INI file is the key or
property. Every key has a name and value, delimted by an equals sign (=). The name appears to the left of the equals
sign.

Keys may be grouped into sections (this is the case for bcompiler). The section name appears on a line by itself in
square brackets ([and]). All keys declared after the section declaration are associated with that section.

Example:

9

https://github.com/departmentfortransport/bcompiler_datamap_files
https://en.wikipedia.org/wiki/INI_file

bcompiler Documentation, Release 1.3.15

[QuarterData]
CurrentQuarter = Q2 Jul - Oct 2017

The options available to set for bcompiler are:

Purpose Description
QuarterData In Q2 Jul - Oct 2017. Appears in appropriate field in template.
TemplateSheets The names of each relevant sheet in the template must be set here
BlankTemplate Set the name of the template kept in the Documents/bcompiler/source directory
Datamap Set the name of the datamap kept in the Documents/bcompiler/source directory
Master Set the name of the master file kept in the Documents/bcompiler/source directory

Note that sensible values are set by default. The option you will most likely need to change is Master as this is most
often renamed by the user ourside of bcompiler use.

3.1.2 datamap.csv

In order for bcompiler to retrieve data from cells in an Excel spreadsheet, it requires a mapping between the master
to the template. This is achieved in a CSV file with the following headers:

• cell_key: The name of the value as it appears in Column A of the master

• template_sheet: The name of the sheet in the template

• cell_reference: The cell reference of the cell where data lives in the template

• verification_list: LEGACY Not currently implemented

3.1.3 bicc_template.xlsm

The Excel file that is populated by bcompiler and sent to project teams and subsquently queried by bcompiler
when populating the master spreadsheet. Contains macros to handle cell verification so must be saved in .xlsm
format.

3.2 Other options

• In a command window, run bcompiler --help to see other options. Please note: some of these are legacy
options and will be changed or removed in future versions of bcompiler.

10 Chapter 3. Initialise bcompiler

CHAPTER 4

Populating templates based on a master spreadsheet

Attention: The macros explained in the Handling RAG-colour and Data Validation macros section below have
been replaced with a single macro calledd UniversalMacro which will unlock all worksheets in the template,
run both formatting macros and re-lock sheets Use this unless you need to debug a particular step, or you’re a
maschocist. . .

• Ensure the master spreadsheet is in the Documents/bcompiler directory.

• Ensure the filename of the master spreadsheet is included in the [Master] section in config.ini.

• In a command window, run bcompiler -a.

• The resulting files will be created in Documents/bcompiler/output.

• Carry out RAG-colour and Data Validation handling as described.

• Ensure each sheet and each workbook is protected using a password (either View, Protect Sheet and View, Protect
Workbook, or by running the macro Protect_All_Sheets).

• Save the workbook

Warning: Make sure the password is retained by all admin users. You will not be able to amend the worksheet or
workbook if the password is forgotten.

4.1 Handling RAG-colour and Data Validation macros

The BICC data collection process requires that ‘blank’ templates are sent to project teams using a number of data
validation rules. For example, certain cells must only be populated by dates or by one a restricted list of options. This
is handled by standard Excel data validation which is mostly set within the bicc_template.xlsm form.

However, currently the form contains two macros which must be run following a bcompiler -a operation to
populate all templates from a master spreadsheet:

11

bcompiler Documentation, Release 1.3.15

• DataVerification

• RAG_Conditional

which provide the template with dropdown choices on certain cells and conditional formatting on all cells whose value
relates to a RAG rating. These macros are required due to limitations in creating data validation within bcompiler
and its underlying libraries.

Unfortunately, the macros have to be run on each individual file.

To apply data validation and RAG conditional formatting, do the following:

1. Run bcompiler -a, as explained above.

Ensure no other Excel files are open on your machine to prevent additional macros being listed. Then, open each
exported populated template in turn, and:

2. Unprotect each sheet (either Review, Unprotect Sheet, or run the Unprotect_All_Sheets macro)

3. Run the DataVerification macro (View, Macros, highlight DataVerification, click Run)

4. Run the RAG_Conditional macro (View, Macros, highlight RAG_Conditional, click Run)

Warning: You must unlock each worksheet before running the macros, otherwise you will encounter a
Run-time error '1004' message in Excel.

12 Chapter 4. Populating templates based on a master spreadsheet

CHAPTER 5

Creating a master spreadsheet from populated templates

• Ensure all populated returns are copied to the Documents/bcompiler/source/returns directory. En-
sure no other files are present in this directory.

• In a command window, run bcompiler (no arguments are required).

• The resulting master file will be created in Documents/bcompiler/output directory.

• To compare values from a previous master, run bcompiler --compare
<PATH-TO-MASTER-TO-COMPARE>

13

bcompiler Documentation, Release 1.3.15

14 Chapter 5. Creating a master spreadsheet from populated templates

CHAPTER 6

Check integrity of populated template files

The template used to collect data should not be changed by the user; allowing the user to add rows or columns will
cause a world of problems for bcompiler. To ensure the integrity of the template, sheets in bicc_template.
xlsm are locked to prevent rows being added or deleted.

However, bcompiler is able to check the validity of all returned templates if required, by comparing the number of
rows in each sheet with what it expects from bicc_template.xlsm.

• Ensure all populated returns are copied to Documents/bcompiler/source/returns.

• In a command window, run bcompiler -r

This will print the count of rows in each sheet in each template file. Any row count that differs from the equivalent
sheet in bicc_template.xlsm will be marked with a *.

• To output this data to the Documents/bcompiler/output directory, run bcompiler -r --csv.

• To only show differences between the file and bicc_template.xlsm, run bcompiler -r --quiet.

15

bcompiler Documentation, Release 1.3.15

16 Chapter 6. Check integrity of populated template files

CHAPTER 7

Extending bcompiler

The main functionality of bcompiler is obtained via the command line, e.g:

bcompiler -h

is used to obtain the basic help menu.

In addition, bcompiler allows anyone with a knowledge of basic Python to be able to interact with the program
and to generate their own output. Some parts of bcompiler are ‘exposed’ to the user via an API (Application
Programming Interface) which is designed to be easy to use and useful as a component to building new functionality.

In this version of bcompiler (1.3 series), the API is very limited, however it allows you to interrogate the data held
in an master xlsx file and do things with the data. Essentially bcompiler does the hard work of pulling the data out
of a master, formatting it in some way, and presenting it to you in a format for doing something else with, e.g. writing
it to another file, such as an Excel or a Word document.

The key API objects documented here are:

• Master

• Quarter

• FinancialYear

• Row

7.1 Examples

7.1.1 Filtering project data

One of the most simple tasks might be to list the projects contained with a particular master file:

from bcompiler.api import project_data_from_master
m = project_data_from_master('/tmp/master_1_2017.xlsx', 1, 2017)
m.projects

17

bcompiler Documentation, Release 1.3.15

output: ['Project Name 1', 'Project Name 2', ...]

Say you wish to interrogate a master file and output all values from keys which contain the word “Total” in a project
whose title is “Project Name 1”. Here’s what you could do:

from bcompiler.api import project_data_from_master
m = project_data_from_master('/tmp/master_1_2017.xlsx', 1, 2017)
p = m['Project Name 1']
totals = p.key_filter("Total")

output: [('Import Total Budget/BL', 10), ('Another Total Budget/BL', 199.1),` . . .

7.1.2 Checking for duplicate keys in a master

A master file containing duplicate keys will not function correctly. bcompiler will test for this during its normal
operation, but if you wish to check a master file yourself, you can do this very easily once you have a bcompiler.
api.Master object, obtained using the project_data_from_master function as demonstrated above, or by
directly creating a bcompiler.api.Master object (see Master):

from bcompiler.api import project_data_from_master
m = project_data_from_master('/tmp/master_1_2017.xlsx', 1, 2017)
m.duplicate_keys()

output: False if there are no duplicate keys, True otherwise.

7.1.3 Computing financial quarter/year dates

You’re writing a script that requires computation involved with financial years. . . :

from bcompiler.api import FinancialYear
fy = FinancialYear(2016)
fy.start_date

output: datetime.date(2016, 4, 1):

fy.end_date

output: datetime.date(2017, 3, 31):

quarter1_2016 = fy.q1

output: Quarter(1, 2016):

quarter1_2016.fy

output: 2016:

quarter1_2016.end_date

output: datetime.date(2016, 6, 30)

7.1.4 Writing data to a new Excel file

You are writing a program that exports data from a master file to another workbook, in the same way that bcompiler
analysers work.

18 Chapter 7. Extending bcompiler

bcompiler Documentation, Release 1.3.15

To write data into a row in your workbook, bcompiler will do the hard work for you - you don’t have to write data
into individual cells. Use the bcompiler.api.Row object:

from openpyxl import Workbook

from bcompiler.api import Row

data = [1, 2, 3, 4]

wb = Worbook()
ws = wb.active

r = Row(1, 1, data)
r.bind(ws)

wb.save('/tmp/test.xlsx')

output: an Excel file at /tmp/test.xlsx whose default sheet contains a row of values: 1 2 3 4, starting at cell
A1 (or 1, 1).

This could be combined with other elements of the API, for example to write the list of project titles from a master file
to a new Excel file:

from openpyxl import Workbook

from bcompiler.api import Row
from bcompiler.api import project_data_from_master

m = project_data_from_master('/tmp/master_1_2017.xlsx', 1, 2017)
projects = m.projects

wb = Worbook()
ws = wb.active

r = Row(1, 1, projects)
r.bind(ws)

wb.save('/tmp/test.xlsx')

7.1. Examples 19

bcompiler Documentation, Release 1.3.15

You can also use the column letter as the first parameter in the Row() function:

r = Row('A', 1, projects)

and the effect will be the same.

7.2 API Reference

7.2.1 Master

project_data_from_master

As well as dealing with Master objects directly, the bcompiler.api.project_data_from_master()
function does exactly the same job.

Note: This function is not the same as bcompiler.utils.project_data_from_master(). That function
produces a complex data structure containing a dictionary of collections.OrderedDict objects, whilst this
one returns a bcompiler.api.Master object, which is more user-friendly to work with.

7.2.2 Quarter

class bcompiler.api.Quarter(quarter: int, year: int)

A Quarter object enapsulates data about a financial quarter in bcompiler. Because it contains data about dates (start
dates and end dates for a particular quarter, for instance), it can be used for calculating differences between dates and
ordering objects which are associated with it. A good example is a bcompiler.api.Master object, which is
a composition of an Excel file (providing the data) and a bcompiler.api.Quarter object (providing temporal
data). This allows bcompiler and anyone using a bcompiler.api.Master object to order data by date.

To create a Quarter object is very easy:

from bcompiler.api import Quarter
q1 = Quarter(2, 2015)

The following attributes of the resulting object are available:

year

An integer representing the calendar year.

quarter

An integer representing the quarter (1, 2, 3 or 4)

start_date

A datetime.date object

end_date

A datetime.date object

fy

A bcompiler.api.FinancialYear object

20 Chapter 7. Extending bcompiler

https://docs.python.org/3/library/collections.html#collections.OrderedDict
https://docs.python.org/3/library/datetime.html#datetime.date
https://docs.python.org/3/library/datetime.html#datetime.date

bcompiler Documentation, Release 1.3.15

7.2.3 FinancialYear

7.2.4 Row

See an example of Row in use: Writing data to a new Excel file

7.2. API Reference 21

bcompiler Documentation, Release 1.3.15

22 Chapter 7. Extending bcompiler

CHAPTER 8

Analysers

8.1 Introduction

bcompiler is able to conduct basic analysis on spreadsheets. An analyser will usually process some data in a master
spreadsheet and produce another spreadsheet (CSV, Excel), an Excel chart, commandline output, or some other data
type.

Built-in analysers can be used in two ways:

• from the command line

• importing into your own Python programs

Analysers available from the commandline use mostly default options and are relatively limited. More extensive
configuration can be gained by writing your own scripts and importing bcompiler analyser code into your project to
help you. See Importing analyser code into your own projects for more details.

8.1.1 Running from the commandline

Basic command

>> bcompiler --analyser ANALYSER OPTIONS

Available options

Available to all analysers

• --master PATH_TO_DIRECTORY_CONTAINING_MASTER

23

bcompiler Documentation, Release 1.3.15

Available to swimlane_milestones analyser

The default is chart milestones within a range of 365 days from today. However, the following options are available to
give greater control to this band:

• --output PATH_TO_OUTPUT_DIRECTORY

• --start_date DATE (dd/mm/yyyy)

• --end_date DATE (dd/mm/yyyy)

8.1.2 Importing analyser code into your own projects

Warning: This functionality is not yet implemented.

from bcompiler.analysers import Swimlane

s = SwimlaneMilestones()
s.output('/home/user/Desktop/swimlane_milestones.xlsx')
s.add_to_worksheet(worksheet)
workbook.save()

8.2 Built-in Analysers

8.2.1 rcf

Perform Reference Class Forecasting on selected master files. Target master files must be named according to this
pattern: *_N_YYYY.xlsx where N represents a number between 1 and 4 and YYY represents a year. This file
therefore represents the Nth quarter of year Financial Year YYYY.

Default >> bcompiler --analyser rcf

Default options require master files to be referenced in Documents/bcompiler directory A single workbook
for each project is output to the Documents/bcompiler directory.

Output files to a different directory >> bcompiler --analyser rcf --output
C:\Users\jim\Desktop

This options requires the master files to be present in the Documents/bcompiler directory. The data is output
to the directory specified after the --output flag, in this case C:\Users\jim\Desktop.

Set target master directory manually

>> bcompiler --analyser rcf --master C:\Users\jim\Downloads

24 Chapter 8. Analysers

bcompiler Documentation, Release 1.3.15

This options requires a master files to be present in the C:\Users\jim\Downloads directory, named
q1_master.xlsx. The files are output to Documents/bcompiler/output directory.

8.2.2 financial analysis

Output a workbook containing a single worksheet which includes a graph mapping change in certain financial data
from designated quarters. Must include four quarters, named correctly in config.ini file.

Default >> bcompiler --analyser financial

Default options require master files to be referenced in config.ini file and present in Documents/
bcompiler directory. A single workbook for each project is output to the Documents/bcompiler directory.

Output files to a different directory >> bcompiler --analyser financial --output
C:\Users\jim\Desktop

This options requires the master files to be present in the Documents/bcompiler directory, and referenced
in the config.ini file. The data is output to the directory specified after the --output flag, in this case
C:\Users\jim\Desktop.

8.2.3 keyword

Search for a keyword in the master key column (Column A) (e.g. RAG, or SRO). By default, outputs to terminal.

Default

>> bcompiler --analyser keyword "RAG"

Default options require a master file to be present in the Documents/bcompiler directory, named
target_master.xlsx as per the config.ini file.

Output is sent to your terminal.

Warning: Terminal output will exceed 80 characters. If you are using Windows, you should go to Preferences
in cmd application and increase the width of the terminal window to something like 150 characters.

Output to xlsx (Excel) file

>> bcompiler --analyser keyword "RAG" --xlsx C:\Users\jim\Desktop\rag.xlsx

This options requires a master file to be present in the Documents/bcompiler directory, named
target_master.xlsx as per the config.ini file. The data is output to the file specified after the --xlsx
flag, in this case C:\Users\jim\Desktop\rag.xlsx.

8.2. Built-in Analysers 25

bcompiler Documentation, Release 1.3.15

Output to xlsx (Excel) and get data from a specific master

>> bcompiler --analyser keyword "RAG" --xlsx C:\Users\jim\Desktop\rag.xlsx
--master C:\Users\jim\Downloads\q1_master.xlsx

This options requires a master file to be present in the C:\Users\jim\Downloads directory, named
q1_master.xlsx. The data is output to the directory specified after the --output flag, in this case
C:\Users\jim\Desktop\rag.xlsx.

8.2.4 annex

Creates individual project spreadsheets pulling out pertinent headline and textual data from a master. Intended to be
used a Annex to BICC report. The analyser relies on two master files to be present: a master representing current data
and one representing historical data. This is to allow for annex to report a “DCA Last Quarter” value.

Default

>> bcompiler --analyser annex

Default options require a master file to be present in the Documents/bcompiler directory, named
target_master.xlsx as per the config.ini file, and a second master file, perhaps representing the pre-
vious quarter, named compare_master.xlsx in the same directory. You can use different filenames but this
must be reflected in [MasterForAnalysis] and [AnalyserAnnex] in config.ini.

Set compare master manually (overriding value in config.ini)

>> bcompiler --analyser annex --compare C:\Users\jim\Desktop\q1_master.xlsx

Set output directory manually (overriding default of Documents/bcompiler/output

>> bcompiler --analyser annex --output C:\Users\jim\Desktop

This options requires a master file to be present in the Documents/bcompiler directory, named
target_master.xlsx as per the config.ini file. The files are output to the directory specified after the
--output flag, in this case C:\Users\jim\Desktop.

Set output directory manually (overriding default output directory of Documents/bcompiler/output and mas-
ter set in config.ini

>> bcompiler --analyser annex --output C:\Users\jim\Desktop --master
C:\Users\jim\Downloads\q1_master.xlsx

This options requires a master file to be present in the C:\Users\jim\Downloads directory, named
q1_master.xlsx. The files are output to the directory specified after the --output flag, in this case
C:\Users\jim\Desktop.

26 Chapter 8. Analysers

bcompiler Documentation, Release 1.3.15

Set target master manually (overriding default set in config.ini)

>> bcompiler --analyser annex --master C:\Users\jim\Downloads\q1_master.xlsx

This options requires a master file to be present in the C:\Users\jim\Downloads directory, named
q1_master.xlsx. The files are output to Documents/bcompiler/output directory.

8.2.5 swimlane_milestones

Specific analyser uses project data from a master file and creates a new Excel scatter chart, showing a timeline of
major approval milestones horizontally in swimlane fashion.

Note: By default, the swimlane chart will be produced with multi-coloured markers. If you wish all markers to be
grey, ensure the following setting is present in config.ini:

[AnalyserSwimlane]
grey_markers = true

Note: Basic configuration for milestones analysers is done in config.ini. Documentation for these is contained
in comments in the file.

Default options

>> bcompiler --analyser swimlane_milestones

Default options require a master file to be present in the Documents/bcompiler directory, named
target_master.xlsx as per the config.ini file. The chart is output in a file called
swimlane_milestones.xlsx in the Documents/bcompiler/output directory.

By default, the analyser will chart only those milestones that fall within 365 days of today. This can be changed in
config.ini by changing the range value in the ['AnalyserSwimlane'] section.

Set output directory manually (overriding default of Documents/bcompiler/output

>> bcompiler --analyser swimlane_milestones --output C:\Users\jim\Desktop

This options requires a master file to be present in the Documents/bcompiler directory, named
target_master.xlsx as per the config.ini file. The chart is output to the directory specified after the
--output flag, in this case C:\Users\jim\Desktop.

Set output directory manually (overriding default output directory of Documents/bcompiler/output and mas-
ter set in config.ini

>> bcompiler --analyser swimlane_milestones --output C:\Users\jim\Desktop
--master C:\Users\jim\Downloads\q1_master.xlsx

8.2. Built-in Analysers 27

bcompiler Documentation, Release 1.3.15

This options requires a master file to be present in the C:\Users\jim\Downloads directory, named
q1_master.xlsx. The chart is output to the directory specified after the --output flag, in this case
C:\Users\jim\Desktop.

Set target master manually (overriding default set in config.ini)

>> bcompiler --analyser swimlane_milestones --master C:\Users\jim\Downloads\q1_master.
xlsx

This options requires a master file to be present in the C:\Users\jim\Downloads directory, named
q1_master.xlsx. The chart is output to Documents/bcompiler/output directory.

Set start and end date

>> bcompiler --analyser swimlane_milestones --start_date 20/1/2016
--end_date 20/1/2017

8.2.6 swimlane_assurance_milestones

As swimlane_milestones but showing assurance milestones.

28 Chapter 8. Analysers

CHAPTER 9

Roadmap

bcompiler makes use of semantic versioning and therefore follows the MAJOR.MINOR.PATH version pattern.

9.1 2.0 - Plugins

• Allow integration of own analysers written in Python

• Simple plugin management interface through commandline

9.2 1.0 - Analysers

• Commandline analysers for simple features

• API for analysers to be customised and used outside bcompiler

• bcompiler-init wrapper for auxiliary files repository so user doesn’t have to push, pull and merge in git

9.2.1 Commandline analysers

Analyser Product Status
swimlane_milestones Excel chart Implemented
financial_analysis Excel spreadsheet
report_annex Excel spreadsheet
project_list terminal output
sro_list terminal output
rag_ratings terminal output

29

http://semver.org/

bcompiler Documentation, Release 1.3.15

9.2.2 API

Analyser Product Status
swimlane_milestones SwimlaneChart()
others. . .

9.3 0.0 - Stability

• Compile master from populated templates

• Populate templates from master

• Commandline interface

• Test suite

• Clean data in both directions

• Integrate with auxiliary files repository

• bcompiler-init to set up project

• Documentation

30 Chapter 9. Roadmap

CHAPTER 10

Changes

10.1 v1.3.19

• annex analyser fixes

10.2 v1.3.18

• change to require openpyxl 2.4.9

10.3 v1.3.17

• date fix

10.4 v1.3.16

• introduced the bcompiler.api module

• updated docs to cover basic API and give examples of use

10.5 v1.3.15

• fixed encoding bug that was preventing running of –compare function

31

bcompiler Documentation, Release 1.3.15

10.6 v1.3.14

• provisional fix Windows character encoding bug

• provisional fix Excel file corruption

10.7 v1.3.13

• small change to financial analyser to allow additional keys to be collected in certain circumstances

• improved date handling

• improved string cleaning of master keys

• various bug fixes

10.8 v1.3.12

• improvements to bcompiler-init bootstrapping functionality

10.9 v1.3.11

• significant speed optimisation when using bcompiler -a option

• when doing bcompiler -a will warn if master contains duplicate keys, which aren’t allowed

10.10 v1.3.10

• Fixed bug where rcf analyser wouldn’t run with no arguments

• Removed necessity to have to stipulate different keys for Q3 and Q4 in financial analysis

• Improved test speed; better test coverage

• Feneral improvements and rationalisations in template population code

• Bug fixes

10.11 v1.3.9

• ability to output only grey markers on the swimlane analyser charts

10.12 v1.3.8

• new Reference Class Forecasting analyser

32 Chapter 10. Changes

bcompiler Documentation, Release 1.3.15

10.13 v1.3.7

• new financial analysis analyser

10.14 v1.3.6

• Chart is based on start_date option when using swimlane analysers, rather than today’s date.

• swimlane charts use 30 as main x axis unit rather than 50 to approximate months.

10.15 v1.3.5

• Bug fixes

10.16 v1.3.4

• Fixed bug whereby creating an annex from a master containing a project not in the compare master threw an
error

• Fixes for annex analyser

10.17 v1.3.3

• new swimlane assurance milestones analyser

• annex analyser now does comparison with previous master document

• fix issues in annex analyser

10.18 v1.3.2

• Partial fix for final project milestone not ending up on swimlane chart.

10.19 v1.3.1

• Fixed bug which prevented setting the title of the output sheet from the keyword analyser with xlsx output
option, to a disallowed character.

10.20 v1.3.0

• Added keyword analsyer. Search fields in a master file and return the values for each field, for each project in
the terminal or optionally to an xlsx file.

10.13. v1.3.7 33

bcompiler Documentation, Release 1.3.15

10.21 v1.2.2

• Ability to set --start_date and --end_date parameters for swimlane_milestones analyser.

• Fix bug where date differences not being calculated correctly in swimlane_milestones analyser.

• Fix bug where wrong milestone type was being charted by swimlane_milestones analyser.

• Many more configurations available in config.ini file relating to swimlane_analyser.

• Better logging to bcompiler.log during swimlane_milestones analyser.

• Better handling of date objects.

• Various bug fixes

10.22 v1.2.1

• Added annex analyser, allowing for easy summarise by project from master.

• Added ASCII art to bcompiler --help!

• Various bug fixes

10.23 30 October 2017

• Fix bug where not all columns in master are being processed during swimlane analyser.

10.24 17 October 2017

• Changed ERROR log message to WARNING to accommodate dates mixed with free text.

10.25 16 October 2017

• Fix bug where cell value in string and datetime value would try to compare arithmetically.

10.26 11 October 2017

• Fix bug where .xlsx files not being picked up.

• Improved exception handling and bug fixes.

10.27 10 October 2017

• Handling cp1252 encoding coming through from Windows

• Added CHANGES.txt

• Minor bugfixes

34 Chapter 10. Changes

CHAPTER 11

Indices and tables

• genindex

• modindex

• search

35

bcompiler Documentation, Release 1.3.15

36 Chapter 11. Indices and tables

Index

B
bcompiler.api.Quarter (built-in class), 20

E
end_date, 20

F
fy, 20

Q
quarter, 20

S
start_date, 20

Y
year, 20

37

	Introduction
	Quick Start
	Concept

	Installation
	Install Python
	Update pip (if required)
	Install git
	Install bcompiler

	Initialise bcompiler
	Auxiliary files
	Other options

	Populating templates based on a master spreadsheet
	Handling RAG-colour and Data Validation macros

	Creating a master spreadsheet from populated templates
	Check integrity of populated template files
	Extending bcompiler
	Examples
	API Reference

	Analysers
	Introduction
	Built-in Analysers

	Roadmap
	2.0 - Plugins
	1.0 - Analysers
	0.0 - Stability

	Changes
	v1.3.19
	v1.3.18
	v1.3.17
	v1.3.16
	v1.3.15
	v1.3.14
	v1.3.13
	v1.3.12
	v1.3.11
	v1.3.10
	v1.3.9
	v1.3.8
	v1.3.7
	v1.3.6
	v1.3.5
	v1.3.4
	v1.3.3
	v1.3.2
	v1.3.1
	v1.3.0
	v1.2.2
	v1.2.1
	30 October 2017
	17 October 2017
	16 October 2017
	11 October 2017
	10 October 2017

	Indices and tables

