

 Navigation

 	
 index

 	
 next |

 	BCIM 0.1 documentation

Welcome to BCIM’s documentation!

Contents:

	Installation

	Examples

	Types

 Copyright 2015, Dan Kolbman.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	BCIM 0.1 documentation

Installation

BCIM’s simulation portion is written in the Julia [http://julialang.org/] programming language.
It is built using a relatively recent release of the development build (0.4).
It may work on the current stable release (0.3.6), though it has not been tested.

Intstalling Julia

The nightly build is recommended as development on BCIM is done on the developmental
release branch. Nightlies can be found on the Julia download page [http://julialang.org/downloads/]. Better yet,
build julia from source using the directions on the Julia github [https://github.com/JuliaLang/julia#source-download-and-compilation].

Python

Post processing is done in python 3.6, though any release of python 3
should work.
Follow a guide online on how to install python 3 for your environment.

Matplotlib and Numpy

BCIM uses Matplotlib for graphics and Numpy for numerical work.
Both can be installed using pip:

pip install numpy matplotlib

BCIM

BCIM can be installed by cloning into the git repository on github:

git clone https://github.com/dankolbman/BCIM
cd BCIM

The src directory will have to be added to your shell path or the
src/julia/BCIM.jl module can be inculeded by absolute reference inside
your run files.

 Copyright 2015, Dan Kolbman.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	BCIM 0.1 documentation

Examples

Running

To run a simulation like the example below, Julia must be invoked from the top
level directory of the repository (where the src folder resides), a from
a directory that is appropriate for the include statement to find the source
files. The simulation can then be run by passing the script to Julia:

julia examples/num_part.jl

Running on a Cluster

Using slurm, many identical simulations can be run at once. The following will
run the adh.jl script on 10 different cores with 2048Mb allocated on each.

srun -N 10 -t 2000 –mem-per-cpu=2048 julia runs/vary_params/adh.jl

Quick Example

The following can be found in examples/num_parts.jl in the source.
It creates an experiment with three trials and runs each one. It then
modifies the parameters and creates a new experiment with a different number
of particles. It repeats this three times for three different experiments each
with three identical trials.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

	## Runs a experiments for diffrent numbers of particles
Each experiment consists of three trials
Saves data to data/numparts/ relative to run path

include("../src/julia/BCIM.jl")
#using BCIM

Hack to allow asynchronous experiment runs
sleep(rand()*10)

Our physical constants
pc = BCIM.PhysicalConst(1.0e-5, # dt
 # Packing fraction
 0.60,
 # Eta
 0.01,
 # Temperature (K)
 298.0,
 # Boltzmann constant
 1.38e-16,
 # Propulsisions [sp1, sp2]
 [0.0,1.0e3],
 # Repulsions [sp1, sp2]
 [1.5e4,1.5e3],
 # Adhesions [sp1, sp2, sp1-sp2]
 [1.5e3, 0.0, 0.0],
 # Cell division time (0 = no division)
 [0.01, 0.01],
 # Efective adhesive contact distance
 0.1,
 # Cell diameter
 15.0e-4,
 # Number of particles [sp1, sp2]
 [256,256])

256 particles total
pc.npart = [128, 128]
Initialize experiment with 3 trials in given directory with desired constants
exp = BCIM.Experiment("data/ex/256", 3, pc, false)

Run the experiment
Equilibriate for 1000 steps
Collect every 1000 steps
Run for 100000 steps
BCIM.run(exp, 1000:1000:100000)

Run again for 512 particles total
pc.npart = [256, 256]
exp = BCIM.Experiment("data/ex/512", 3, pc, false)
BCIM.run(exp, 1000:1000:100000)

1024 particles total
pc.npart = [512, 512]
exp = BCIM.Experiment("data/ex/1024", 3, pc, false)
BCIM.run(exp, 1000:1000:100000)

 Copyright 2015, Dan Kolbman.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 previous |

 	BCIM 0.1 documentation

Types

Experiment

The experiment type is used to handle several trials of a simulation. It is
responsible for creating paths for the trial simulations and saving parameters
for them.

Functions

	
Experiment(path, ntrials, pc, timestamp=false)

	

	Parameters:	
	path – the path to save the experiment directory in

	ntrials – nuber of identical simulations to run

	pc – the physical constants for the simulation systems

	timestamp – whether or not to append current time to the end of the
experiment directory. Useful for avoiding name conflicts and over writing data.

Creates an experiment. Saves the pysical constants, pc, and dimensionless
constants calculated from pc, to the path in .dat format. It
creates ntrials number of simulations with parameters deteremined from
pc and paths within the path directory. If timestamp is true,
the date is append to the path name.

	
run(exp, r)

	

	Parameters:	
	path – the experiment to run

	r – the step values to run each simulation for

Runs an experiment, exp, by invoking run on each trial simulation.
r is the range to run each simulation and is of the format:
equilibrium:frequency:steps where equilibrium is the number of
steps to equilibriate the system for, frequency is how often to save
the system state, and steps is how many steps to run for after
equilibrium steps have been taken.

Simulation

The simulation type is used to contstruct a simulation system and run it for a
desired amount of steps. It is responsible for steping the system and performing
scheduled analysis of the system state, including writing the state to disk and
calculating statistical quantities for the system.

Functions

	
Simulation(dir, dc, log)

	

	Parameters:	
	dir – the directory path where a simulation directory will be created

	dc – Dimensionless constants to be used for the simulation

	log – The log to use for the simulation

Create a simulation. An id is assigned based on the next available
directory in dir folling the convention: dir/trial$id. dc is
a dimensionless contant object that is used to initialize the simulation
system. log is a log object for the system to use for logging.

	
Simulation(id, path, dc, log)

	

	Parameters:	
	id – a unique integer identifier for the simulation

	path – the directory where the simulation files will be stored

	dc – the dimensionless constants for the simulation

	log – the log to use for the simulation

Creates a simulation. id is a unique identifier for the simulation.
path is where the simulation will place output files. dc is a
dimensienless constant object for creating the system with. log is
used to log simulation messages.

	
run(sim, r)

	

	Parameters:	
	sim – the simulation to be run

	r – the step parameters to run for

Runs simulation, sim, for range r. r is of the format:
equilibrium:frequency:steps where equilibrium is the number of
steps to equilibriate the system for, frequency is how often to save
the system state, and steps is how many steps to run for after
equilibrium steps have been taken.

Example

initialize sim for 100 steps, then run for 5000 steps
and take measurements every 1000 steps
run(sim, 100:1000:5000)

Physical Constants

The PhysicalConst type has many fields describing the physical (dimensional)
parameters of the system:

	
PhysicalConst(dt, phi, eta, temp, boltz, prop, rep, adh, contact, dia, npart, diff, rotdiff)

	

	Parameters:	
	dt – the time constant

	phi – the packing fration

	eta – the viscosity

	temp – the system temperature

	boltz – boltzmann’s constant

	prop – the propulsion for each species

	rep – the repulsion for each species

	adh – the adhesion for each species

	contact – the contact distance as a fraction of the diameter

	dia – the diameter of each particle

	npart – the number of particles of each species

	diff – the diffusion

	rotdiff – the rotational diffusion

Dimensionless Constants

The DimensionlessConst type has many fields corresponding to dimensionless
parameters of the system. A dimensionless type can be invoked by passing it
a PhysicalConst type from which it will produce dimensionless parameters
by scaling appropriatly.

	
DimensionlessConst(dt, phi, eta, temp, boltz, prop, rep, adh, contact, dia, npart, diff, rotdiff, pretrad, prerotd)

	

	Parameters:	
	dt – the time constant

	phi – the packing fration

	eta – the viscosity

	temp – the system temperature

	boltz – boltzmann’s constant

	prop – the propulsion for each species

	rep – the repulsion for each species

	adh – the adhesion for each species

	contact – the contact distance as a fraction of the diameter

	dia – the diameter of each particle

	npart – the number of particles of each species

	diff – the diffusion

	rotdiff – the rotational diffusion

	pretrad – the prefactor for translational diffusion

	prerotd – the prefactor for rotational diffusion

System

The System type is used to represent a physical system. It holds a list of
particles which it is simulating, the dimensionless parameters of the system,
and a CellGrid which is used to efficiently sort and simulate the particles.

	
System(dc)

	

	Parameters:	dc – the dimensionless contstants for the system

Initializes a system using the dimensionless parameters dc. Constructs
a cell grid and particles based on the specification of the parameters.

	
uniformSphere(dc)

	

	Parameters:	dc – the dimensionless contstants for the system

Creates a list of particles, the number of which are specified by the npart
field of dc, that have been randomly distributed in a sphere.

	
step(s)

	

	Parameters:	s – the system to make a step on

Steps a system s by one step by calling the force calculation function.

	
assignParts(s)

	

	Parameters:	s – the system to assign particles in

Assigns particles in a system into Cells in the system’s CellGrid. Called
by Simulation during a run periodically so collision checks can be made
efficiently using the cell grid.

Part

The Part type is used to represent a particle in the system.

	
Part(id, sp, pos, vel, ang)

	

	Parameters:	
	id – the particle id

	sp – the particle species

	pos – the position vector of the particle

	vel – the velocity vector of the particle

	ang – the angle vector of the particle

Log

	
Log(path, verbose=false)

	

	Parameters:	
	path – the file to output logs to

	verbose – whether or not to pipe log to STDIN in addition to the file

	
log(l, output)

	

	Parameters:	
	l – the log instance being logged to

	output – the output string to write

 Copyright 2015, Dan Kolbman.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	BCIM 0.1 documentation

Index

 A
 | D
 | E
 | L
 | P
 | R
 | S
 | U

A

 	

 	assignParts() (built-in function)

D

 	

 	DimensionlessConst() (built-in function)

E

 	

 	Experiment() (built-in function)

L

 	

 	Log() (built-in function)

 	

 	log() (built-in function)

P

 	

 	Part() (built-in function)

 	

 	PhysicalConst() (built-in function)

R

 	

 	run() (built-in function), [1]

S

 	

 	Simulation() (built-in function), [1]

 	step() (built-in function)

 	

 	System() (built-in function)

U

 	

 	uniformSphere() (built-in function)

 Copyright 2015, Dan Kolbman.
 Created using Sphinx 1.3.1.

 _static/up-pressed.png

_static/comment.png

_static/comment-bright.png

search.html

 Navigation

 		
 index

 		BCIM 0.1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2015, Dan Kolbman.
 Created using Sphinx 1.3.1.

_static/up.png

_static/ajax-loader.gif

_static/down.png

_static/plus.png

_static/file.png

_static/minus.png

_static/down-pressed.png

_static/comment-close.png

