

Table of Contents

	Quickstart
	Install the python client

	Embed some sentences

	Get an API key

	What next?

	Basilica Python Client

Quickstart

Install the python client

First, install the Python client.

$ pip install basilica

Embed some sentences

Let’s embed some sentences to make sure the client is working.

import basilica
sentences = [
 "This is a sentence!",
 "This is a similar sentence!",
 "I don't think this sentence is very similar at all...",
]
with basilica.Connection('SLOW_DEMO_KEY') as c:
 embeddings = list(c.embed_sentences(sentences))
print(embeddings)

[[0.8556405305862427, ...], ...]

Let’s also make sure these embeddings make sense, by checking that the
cosine distance between the two similar sentences is smaller:

from scipy import spatial
print(spatial.distance.cosine(embeddings[0], embeddings[1]))
print(spatial.distance.cosine(embeddings[0], embeddings[2]))

0.024854343247535327
0.25084750542635814

Great!

Get an API key

The example above uses the slow demo key. You can get an API key of
your own by signing up at https://www.basilica.ai/accounts/register .
(If you already have an account, you can view your API keys at
https://www.basilica.ai/api-keys .)

What next?

	Read the documentation for the python client: Basilica Python Client

	See an in-depth tutorial on training an image model: How To Train
An Image Model With Basilica [https://www.basilica.ai/tutorials/how-to-train-an-image-model/]

Basilica Python Client

	
class basilica.Connection(auth_key, server='https://api.basilica.ai', retries=2, backoff_factor=0.1, status_forcelist=500)

	A connection to basilica.ai that can be used to generate embeddings.

	Parameters

	
	auth_key (str) – Your auth key. You can view your auth keys at https://basilica.ai/api-keys/.

	server (str) – What URL to use to connect to the server.

	retries (int) – Number of times to retry failed connections and requests.

	backoff_factor (float) – See urllib3.util.retry.Retry.backoff_factor .

	status_forcelist (Tuple[int]) – What HTTP response codes trigger a retry.

>>> with basilica.Connection('SLOW_DEMO_KEY') as c:
... print(c.embed_sentence('A sentence.'))
[0.6246702671051025, ..., -0.03025037609040737]

	
embed_image(image, model='generic', version='default', opts={}, timeout=10)

	Generate the embedding for a JPEG image. The image should be passed as a byte string.

	Parameters

	
	image (str) – The image to embed.

	model (str) – What model to use (i.e. the kind of image being embedded).

	version (str) – What version of that model to use.

	opts (Dict[str, Any]) – Options specific to the model/version you chose.

	opts["dimensions"] (int) – Number of dimensions to return. PCA will be used to reduce the number of dimensions with minimal information loss.

	opts["normalize_l2"] (bool) – Whether or not each instance should be scaled to have unit L2 norm. (This is sometimes useful for instance retrieval tasks.) Defaults to False.

	opts["normalize_mean"] (bool) – Whether or not to normalize each feature in the embedding to have mean 0 across our sample dataset. Defaults to True when dimensions is set, or False otherwise.

	opts["normalize_variance"] (bool) – Whether or not to normalize each feature in the embedding to have unit variance across our sample dataset. Defaults to True when dimensions is set, or False otherwise.

	timeout (int) – HTTP timeout for request.

	Returns

	An embedding.

	Return type

	List[float]

>>> with basilica.Connection('SLOW_DEMO_KEY') as c:
... with open('img.jpg', 'rb') as f:
... print(c.embed_image(f.read()))
[0.6246702671051025, ...]

	
embed_image_file(image_file, model='generic', version='default', opts={}, timeout=10)

	Generate the embedding for a JPEG image file. The file name should be passed as a path that can be understood by open.

	Parameters

	
	image_file (str) – Path to the image to embed.

	model (str) – What model to use (i.e. the kind of image being embedded).

	version (str) – What version of that model to use.

	opts (Dict[str, Any]) – Options specific to the model/version you chose.

	opts["dimensions"] (int) – Number of dimensions to return. PCA will be used to reduce the number of dimensions with minimal information loss.

	opts["normalize_l2"] (bool) – Whether or not each instance should be scaled to have unit L2 norm. (This is sometimes useful for instance retrieval tasks.) Defaults to False.

	opts["normalize_mean"] (bool) – Whether or not to normalize each feature in the embedding to have mean 0 across our sample dataset. Defaults to True when dimensions is set, or False otherwise.

	opts["normalize_variance"] (bool) – Whether or not to normalize each feature in the embedding to have unit variance across our sample dataset. Defaults to True when dimensions is set, or False otherwise.

	timeout (int) – HTTP timeout for request.

	Returns

	An embedding.

	Return type

	List[float]

>>> with basilica.Connection('SLOW_DEMO_KEY') as c:
... print(c.embed_image_file('img.jpg')
[0.6246702671051025, ...]

	
embed_image_files(image_files, model='generic', version='default', batch_size=32, opts={}, timeout=30)

	Generate embeddings for JPEG image files. The file names should be passed as paths that can be understood by open.

	Parameters

	
	image_files (Iterable[str]) – An iterable (such as a list) of paths to the images to embed.

	model (str) – What model to use (i.e. the kind of image being embedded).

	version (str) – What version of that model to use.

	batch_size (int) – How many instances to send to the server at a time.

	opts (Dict[str, Any]) – Options specific to the model/version you chose.

	opts["dimensions"] (int) – Number of dimensions to return. PCA will be used to reduce the number of dimensions with minimal information loss.

	opts["normalize_l2"] (bool) – Whether or not each instance should be scaled to have unit L2 norm. (This is sometimes useful for instance retrieval tasks.) Defaults to False.

	opts["normalize_mean"] (bool) – Whether or not to normalize each feature in the embedding to have mean 0 across our sample dataset. Defaults to True when dimensions is set, or False otherwise.

	opts["normalize_variance"] (bool) – Whether or not to normalize each feature in the embedding to have unit variance across our sample dataset. Defaults to True when dimensions is set, or False otherwise.

	timeout (int) – HTTP timeout for request.

	Returns

	A generator of embeddings.

	Return type

	Generator[List[float]]

>>> with basilica.Connection('SLOW_DEMO_KEY') as c:
... for embedding in c.embed_image_files(['img1.jpg', 'img2.jpg']):
... print(embedding)
[0.6246702671051025, ...]
[-0.03025037609040737, ...]

	
embed_images(images, model='generic', version='default', batch_size=32, opts={}, timeout=30)

	Generate embeddings for JPEG images. Images should be passed as byte strings, and will be sent to the server in batches to be embedded.

	Parameters

	
	images (Iterable[str]) – An iterable (such as a list) of the images to embed.

	model (str) – What model to use (i.e. the kind of image being embedded).

	version (str) – What version of that model to use.

	batch_size (int) – How many instances to send to the server at a time.

	opts (Dict[str, Any]) – Options specific to the model/version you chose.

	opts["dimensions"] (int) – Number of dimensions to return. PCA will be used to reduce the number of dimensions with minimal information loss.

	opts["normalize_l2"] (bool) – Whether or not each instance should be scaled to have unit L2 norm. (This is sometimes useful for instance retrieval tasks.) Defaults to False.

	opts["normalize_mean"] (bool) – Whether or not to normalize each feature in the embedding to have mean 0 across our sample dataset. Defaults to True when dimensions is set, or False otherwise.

	opts["normalize_variance"] (bool) – Whether or not to normalize each feature in the embedding to have unit variance across our sample dataset. Defaults to True when dimensions is set, or False otherwise.

	timeout (int) – HTTP timeout for request.

	Returns

	A generator of embeddings.

	Return type

	Generator[List[float]]

>>> with basilica.Connection('SLOW_DEMO_KEY') as c:
... images = []
... for filename in ['img1.jpg', 'img2.jpg']:
... with open(filename, 'rb') as f:
... images.append(f.read())
... for embedding in c.embed_images(images):
... print(embedding)
[0.6246702671051025, ...]
[-0.03025037609040737, ...]

	
embed_sentence(sentence, model='english', version='default', opts={}, timeout=5)

	Generate the embedding for a sentence.

	Parameters

	
	sentence (str) – The sentence to embed.

	model (str) – What model to use (i.e. the kind of sentence being embedded).

	generic: Generic English text embedding (the default.)

	reddit: Text embedding specialized for English Reddit posts.

	twitter: Text embedding specialized for English tweets.

	email: Text embedding specialized for English emails.

	product-reviews: Text embedding specialized for English product reviews.

	version (str) – What version of that model to use.

	opts (Dict[str, Any]) – Options specific to the model/version you chose.

	opts["dimensions"] (int) – Number of dimensions to return. PCA will be used to reduce the number of dimensions with minimal information loss.

	opts["normalize_l2"] (bool) – Whether or not each instance should be scaled to have unit L2 norm. (This is sometimes useful for instance retrieval tasks.) Defaults to False.

	opts["normalize_mean"] (bool) – Whether or not to normalize each feature in the embedding to have mean 0 across our sample dataset. Defaults to True when dimensions is set, or False otherwise.

	opts["normalize_variance"] (bool) – Whether or not to normalize each feature in the embedding to have unit variance across our sample dataset. Defaults to True when dimensions is set, or False otherwise.

	timeout (int) – HTTP timeout for request.

	Returns

	An embedding.

	Return type

	List[float]

>>> with basilica.Connection('SLOW_DEMO_KEY') as c:
... print(c.embed_sentence('This is a sentence.')
[0.6246702671051025, ...]

	
embed_sentences(sentences, model='english', version='default', batch_size=64, opts={}, timeout=15)

	Generate embeddings for sentences.

	Parameters

	
	sentences (Iterable[str]) – An iterable (such as a list) of sentences to embed.

	model (str) – What model to use (i.e. the kind of sentence being embedded).

	generic: Generic English text embedding (the default.)

	reddit: Text embedding specialized for English Reddit posts.

	twitter: Text embedding specialized for English tweets.

	email: Text embedding specialized for English emails.

	product-reviews: Text embedding specialized for English product reviews.

	version (str) – What version of that model to use.

	batch_size (int) – How many instances to send to the server at a time.

	opts (Dict[str, Any]) – Options specific to the model/version you chose.

	opts["dimensions"] (int) – Number of dimensions to return. PCA will be used to reduce the number of dimensions with minimal information loss.

	opts["normalize_l2"] (bool) – Whether or not each instance should be scaled to have unit L2 norm. (This is sometimes useful for instance retrieval tasks.) Defaults to False.

	opts["normalize_mean"] (bool) – Whether or not to normalize each feature in the embedding to have mean 0 across our sample dataset. Defaults to True when dimensions is set, or False otherwise.

	opts["normalize_variance"] (bool) – Whether or not to normalize each feature in the embedding to have unit variance across our sample dataset. Defaults to True when dimensions is set, or False otherwise.

	timeout (int) – HTTP timeout for request.

	Returns

	A generator of embeddings.

	Return type

	Generator[List[float]]

>>> with basilica.Connection('SLOW_DEMO_KEY') as c:
... for embedding in c.embed_sentences(['Sentence one.', 'Sentence two.']):
... print(embedding)
[0.6246702671051025, ...]
[-0.03025037609040737, ...]

Index

 C
 | E

C

 	
 	Connection (class in basilica)

E

 	
 	embed_image() (basilica.Connection method)

 	embed_image_file() (basilica.Connection method)

 	embed_image_files() (basilica.Connection method)

 	
 	embed_images() (basilica.Connection method)

 	embed_sentence() (basilica.Connection method)

 	embed_sentences() (basilica.Connection method)

 _static/file.png

_static/minus.png

_static/down.png

_static/pyton-bw.png

_static/pyton-original.png

_static/plus.png

_static/pyton.png

_static/r-bw.png

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/down-pressed.png

_static/r-original.png

nav.xhtml

 Table of Contents

 		
 Table of Contents

 		
 Quickstart

 		
 Install the python client

 		
 Embed some sentences

 		
 Get an API key

 		
 What next?

 		
 Basilica Python Client

_static/up.png

_static/ajax-loader.gif

_static/r.png

_static/up-pressed.png

