
bareon-dynamic-allocator
Documentation

Release

OpenStack Foundation

September 01, 2016

Contents

1 bareon-dynamic-allocator 3
1.1 Future Improvments . 3

2 Architecture 5
2.1 Problem description . 5
2.2 History . 5
2.3 List of terms . 5
2.4 High level architecture . 5
2.5 Dynamic schema parser . 6
2.6 Allocation solver . 7

3 Allocation Examples 15
3.1 ceph_ds_multiple_disk . 15
3.2 ceph_ds_single_disk . 16
3.3 simple_os_ds_multiple_disk . 17
3.4 simple_os_ds_single_disk . 19

4 Installation 21

5 Usage 23

6 Contributing 25

7 Indices and tables 27

i

ii

bareon-dynamic-allocator Documentation, Release

Contents:

Contents 1

bareon-dynamic-allocator Documentation, Release

2 Contents

CHAPTER 1

bareon-dynamic-allocator

A driver for Bareon for dynamic allocation of volumes

Please feel here a long description which must be at least 3 lines wrapped on 80 cols, so that distribution package
maintainers can use it in their packages. Note that this is a hard requirement.

• Free software: Apache license

• Documentation: http://docs.openstack.org/developer/bareon-dynamic-allocator

• Source: http://git.openstack.org/cgit/openstack/bareon-dynamic-allocator

• Bugs: http://bugs.launchpad.net/bareon

1.1 Future Improvments

• create special types, like lv_mirror with special policy to allocate volume of the same size over several disks

• implement less or equal instead of equal for disk size constraint in this case artificial Unallocated space is not
going to be required

3

http://docs.openstack.org/developer/bareon-dynamic-allocator
http://git.openstack.org/cgit/openstack/bareon-dynamic-allocator
http://bugs.launchpad.net/bareon

bareon-dynamic-allocator Documentation, Release

4 Chapter 1. bareon-dynamic-allocator

CHAPTER 2

Architecture

2.1 Problem description

User may have a variety of bare-metal nodes configuration, with different amount of disks, types of disks and their
sizes, there should be a way to store best practises on what is the best way to do partitioning, so they can be applied
for the most configuration cases without asking the end user to manually adjust the configuration of partitioning, with
posibility to do that, if user wants to.

2.2 History

First (and second) attempts to solve the problem has begun during development of Fuel project, special module Vol-
umeManager was created to solve the problem, it consumes hardware information and partitioning schema, as result
it generates sizes of spaces which should be allocated on the disks.

Current solution has plenty of problems, it’s hard and expensive to solve these problems in terms of old VolumeMan-
ager, because trivial algorithms and schema format don’t allow us to extend it easily, handle all complex cases is not a
trivial task to do if we try to solve the problem using brute-force.

2.3 List of terms

• Disk - a place where space can be allocated.

• Space - an entity which can be allocated on several disks at once, a good example of a space is a logical volume
for lvm, another one is partition.

• Dynamic schema - a schema without specific sizes, it’s a schema which is used by user to specify partitioning
schema without details.

• Static schema - a schema for Bareon which requires exact space, i.e. disk mapping with exact sizes for each
space.

2.4 High level architecture

+-------------------------+
| |
| Dynamic schema parser |
| |

5

https://wiki.openstack.org/wiki/Fuel
https://github.com/openstack/fuel-web/blob/7.0/nailgun/nailgun/extensions/volume_manager/manager.py
https://github.com/openstack/fuel-web/blob/7.0/nailgun/nailgun/extensions/volume_manager/manager.py
https://github.com/openstack/fuel-web/blob/7.0/nailgun/nailgun/fixtures/sample_environment.json#L195-L232
https://github.com/openstack/fuel-web/blob/7.0/nailgun/nailgun/fixtures/openstack.yaml#L444-L577
https://blueprints.launchpad.net/bareon/+spec/dynamic-allocation
https://en.wikipedia.org/wiki/Logical_Volume_Manager_(Linux)
https://wiki.openstack.org/wiki/Bareon

bareon-dynamic-allocator Documentation, Release

+------------+------------+
|
|

+------------v------------+
| |
| Allocation solver |
| |
+------------+------------+

|
|

+------------v-------------+
| |
| Solution convertor |
| |
+--------------------------+

• Dynamic schema parser - parses an input from the user and prepares the data which can be consumed by
Allocation solver.

• Allocation solver - algorithm which takes dynamic schema and produces a static schema.

• Solution convertor - a result which is produced by solver, should be parsed and converted into Bareon con-
sumable format, for example for Logical Volume Solution convertor should generate a physical volume for each
disk, where it’s allocated.

2.5 Dynamic schema parser

In the current version we use flat schema, it’s a list which consists of dictionaries.

2.5.1 Basic syntax

• id - id of a space.

• type - type of a space, for example Volume Group or Logical Volume.

• max_size - maximum size which is allowed for the space.

• min_size - minimal size which is allowed for the space.

• size - a static size, it’s similar as to set for min_size and max_size the same value.

• contains - is required for hierarchical spaces such as Volume Group.

Also there are couple of different attributes, such as mount, fs_type, which are self-explanatory. A list of such
attributes is not complete and may be easily extended in the future.

- id: os
type: vg
contains:
- id: swap
- id: root

- id: root
type: lv
max_size: 10000
min_size: 5000
mount: /
fs_type: ext4

6 Chapter 2. Architecture

https://wiki.openstack.org/wiki/Bareon
https://en.wikipedia.org/wiki/Logical_Volume_Manager_(Linux)

bareon-dynamic-allocator Documentation, Release

- id: swap
type: lv
size: 2000
fs_type: swap

2.5.2 Dynamic parameters

What if user wants to allocate a size of space based on some different parameter? As an example lets consider a size
of swap which has to be based on amount of RAM the node has.

ram: 2048
disks:

- id: /dev/disk/by-id/id-for-sda
path: /dev/disk/by-path/path-for-sda
dev: /dev/sda
type: hdd
vendor: Hitachi
size: 5000

From Hardware Information example we can see that the node has 2048 megabytes of RAM, according to best practises
on swap size allocation swap size has to be twice bigger than current RAM.

- id: swap
type: lv
fs_type: swap
size: |
yaql=let(ram => $.get(ram, 1024)) ->
selectCase(

$ram <= 2048,
$ram > 2048 and $ram < 8192,
$ram > 8192 and $ram < 65536).

switchCase(
$ram * 2,
$ram,
$ram / 2,
4096)

In order to implement algorithm of swap size calculation we use YAQL, which is a small but powerful enough query
language. Any value of the parameter which matches to yaql=yaql expression will be evaluated using YAQL, execu-
tion result will be passed as is to the solver.

2.6 Allocation solver

Lets try to generalize the problem of spaces allocation:

• There are constraints, for example sizes of a spaces cannot be bigger than size of all disks, or size of swap space
cannot be bigger or smaller than size of the space.

• There exists “the best allocation static schema”, it’s almost impossible to find out what “the best” is, what we
can do is to parse all constraint and find such an allocation which fits all the constraints, and at the same time
uses given resources (disks) by maximum.

Lets consider an example with two spaces and a single disk. Parameters which don’t affect allocation problem were
removed to reduce the amount of unnecessary information.

Two spaces root and swap, for swap there is static size which is 10, the size of root space must be 50 or greater.

2.6. Allocation solver 7

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Installation_Guide/s2-diskpartrecommend-ppc.html
https://github.com/openstack/yaql

bareon-dynamic-allocator Documentation, Release

- id: root
min_size: 50

- id: swap
size: 10

A single disk with size 100.

disks:
- id: sda
size: 100

Also we can describe the same problem as ⎧⎪⎨⎪⎩
𝑟𝑜𝑜𝑡+ 𝑠𝑤𝑎𝑝 ≤ 100

𝑟𝑜𝑜𝑡 ≥ 50

𝑠𝑤𝑎𝑝 = 10

On disks with bigger sizes we can get a lot of solutions.

Lets consider two corner case solutions

𝑟𝑜𝑜𝑡 = 50, 𝑠𝑤𝑎𝑝 = 10

and

𝑟𝑜𝑜𝑡 = 90, 𝑠𝑤𝑎𝑝 = 10

Second one is better since it uses more disks resources and doesn’t leave unallocated space. So we should find a way
to describe that second one is better.

It can be described with the next function.

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 : 𝑟𝑜𝑜𝑡+ 𝑠𝑤𝑎𝑝

2.6.1 Solver description

The problem is described in terms of Linear programming (note that “programming” is being used in not computer-
programming sense). The method is being widely used to solve optimal resources allocation problem which is exactly
what we are trying to achieve during the allocation.

𝑚𝑎𝑥
{︀
𝑐𝑇𝑥 : 𝐴𝑥 ≥ 𝑏

}︀
• cTx - is an objective function for maximization

• c - a vector of coefficients for the values to be found

• x - a vector of result values

• A - coefficients matrix

• b - a vector, when combined with a row from matrix A gives a constraint

Description of previous example in terms of Linear programming, is going to be pretty similar to what we did in
previous section.

𝑥1 = 𝑟𝑜𝑜𝑡

𝑥2 = 𝑠𝑤𝑎𝑝

8 Chapter 2. Architecture

https://en.wikipedia.org/wiki/Linear_programming

bareon-dynamic-allocator Documentation, Release

Coefficients for objective function.

𝑐 =
[︀
1 1

]︀𝑇
A vector of values to be found, i.e. sizes of spaces.

𝑥 =

[︂
𝑥1

𝑥2

]︂
System of linear inequalities. Inequalities which are “less or equal” multiplied by -1 to make them “greater or equal”.

𝐴𝑥 ≥ 𝑏 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

−𝑥1 − 𝑥2 ≥ −100

𝑥1 ≥ 50

−𝑥2 ≥ −10

𝑥2 ≥ 10

𝑥1 ≥ 0

𝑥2 ≥ 0

A and b written in matrix and vector form respectively.

𝐴 =

⎡⎢⎢⎢⎢⎢⎢⎣
−1 −1
1 0
0 −1
0 1
1 0
0 1

⎤⎥⎥⎥⎥⎥⎥⎦

𝑏 =

⎡⎢⎢⎢⎢⎢⎢⎣
−100
50
−10
10
0
0

⎤⎥⎥⎥⎥⎥⎥⎦
In order to solve the problem Scipy linprog module is being used. It uses Simplex algorithm to find the most feasible
solution.

So what allocator does, is builds a matrix and couple of vectors and using Simplex algorithm gets the result.

2.6.2 Two disks

If there are two spaces and two disks, there are going to be 4 unknown variables:

1. 1st space size for 1st disk.

2. 2nd space size for 1st disk.

3. 1st space size for 2nd disk.

4. 2nd space size for 2nd disk.

Lets take spaces definition which was used previously.

- id: root
min_size: 50

- id: swap
size: 10

2.6. Allocation solver 9

http://docs.scipy.org/doc/scipy-0.16.0/reference/generated/scipy.optimize.linprog.html
https://en.wikipedia.org/wiki/Simplex_algorithm

bareon-dynamic-allocator Documentation, Release

And two disks.

disks:
- id: sda
size: 100

- id: sdb
size: 200

Resulting system of linear inequalities. ⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑥1 + 𝑥2 ≤ 100

𝑥3 + 𝑥4 ≤ 200

𝑥1 + 𝑥3 ≥ 50

𝑥2 + 𝑥4 = 10

• 𝑥1 + 𝑥2 ≤ 100 inequality for root and swap on the 1st disk

• 𝑥3 + 𝑥4 ≤ 200 inequality for root and swap on the 2nd disk

• 𝑥1 + 𝑥3 ≥ 50 inequality for root space

• 𝑥2 + 𝑥4 = 10 equality for swap space

2.6.3 Integer solution

By default result vector provides rational number vector solution. Very naive way is being used to get integer soluton,
we round the number down, this solution may have problems because some of the constraints may be violated with
respect to one megabyte. Another side effect is we may get N megabytes unallocated in the worst case, where N is
an amount of spaces. For our application purposes all above drawbacks are not so big, considering a complexity of
proper solution.

Mixed integer programming can be used to get integer result, but solution for problems described in terms of Integer
programming may be NP-hard. So it should be considered carefully if it’s worth to be used.

2.6.4 Ordering

It would be really nice to have volumes allocated on disks in the order which was specified by the user.

Lets consider two spaces example.

- id: root
size: 100

- id: var
size: 100

With two disks.

disks:
- id: sda
size: 100

- id: sdb
size: 100

10 Chapter 2. Architecture

https://en.wikipedia.org/wiki/Integer_programming

bareon-dynamic-allocator Documentation, Release

Which can be represented as next inequality. ⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑥1 + 𝑥2 ≤ 100

𝑥3 + 𝑥4 ≤ 100

𝑥1 + 𝑥3 = 100

𝑥2 + 𝑥4 = 100

And objective function.

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 : 𝑥1 + 𝑥2 + 𝑥3 + 𝑥4

So we may have two obvious solutions here:

1. var for 1st disk, root for 2nd.

2. root for 1st disk, var for 2nd.

Objective function is being used by the algorithm to decide, which solution is “better”. Currently all elements in
coefficients vector are equal to 1

𝑐 =
[︀
1 1 1 1

]︀𝑇
We can change coefficients in a way that first volume has higher coefficient than the last one.

𝑐 =
[︀
4 3 2 1

]︀𝑇
Now Linear Programming solver will try to maximize the solution with respect to specified order of spaces.

But that is not so simple, if we take a closer look at the results we may get. Lets consider two solutions and calculate
the results of objective function.

𝑐𝑇𝑥 =
[︀
4 3 2 1

]︀ ⎡⎢⎢⎣
100
0
0
100

⎤⎥⎥⎦ = 𝑠𝑢𝑚

⎡⎢⎢⎣
400
0
0
100

⎤⎥⎥⎦ = 500

The result that objective function provides is 500, if root is allocated on the first disk and var on second one.

𝑐𝑇𝑥 =
[︀
4 3 2 1

]︀ ⎡⎢⎢⎣
50
50
50
50

⎤⎥⎥⎦ = 𝑠𝑢𝑚

⎡⎢⎢⎣
200
150
100
50

⎤⎥⎥⎦ = 500

The result that objective function provides is 500, if root and var are allocated equally on both disks.

So we need a different monolitically increasing sequence of integers, which is increasing as slow as possible.

Also sequence must not violate next requirements.

𝑛𝑖+1𝑛𝑖 (2.1)

𝑛𝑖 + 𝑛𝑗+1𝑛𝑖+1 + 𝑛𝑗 where 𝑖+ 1 < 𝑗(2.2)

If we apply it to our example with 4 coefficients, it means that a sum of bold elements must not be equal.

c1 𝑐2
𝑐3 c4

̸= 𝑐1 c2
c3 𝑐4

2.6. Allocation solver 11

bareon-dynamic-allocator Documentation, Release

In the example this requirement is violated

𝑖 = 1 (2.3)
𝑗 = 3(2.4)
1 + 4 = 2 + 3(2.5)

A sequence which doesn’t not violate these requirements has been found

1, 2, 4, 6, 9, 12, 16, 20, 25, 30, 36, 42 · · ·

there are many ways to caculate such sequence, in our implementation next one is being used

𝑎𝑛 = ⌊𝑛+ 1

2
⌋⌊𝑛+ 2

2
⌋

Lets use this sequence in our examples

𝑐𝑇𝑥 =
[︀
6 4 2 1

]︀ ⎡⎢⎢⎣
100
0
0
100

⎤⎥⎥⎦ = 𝑠𝑢𝑚

⎡⎢⎢⎣
600
0
0
100

⎤⎥⎥⎦ = 700

And when root and var are allocated on both disks equally

𝑐𝑇𝑥 =
[︀
6 4 2 1

]︀ ⎡⎢⎢⎣
50
50
50
50

⎤⎥⎥⎦ = 𝑠𝑢𝑚

⎡⎢⎢⎣
300
200
100
50

⎤⎥⎥⎦ = 650

So 700 > 650, first function has greater maximization value, that is exactly what we needed.

2.6.5 Weight

Two spaces, no exact size specified.

- id: root
min_size: 10

- id: var
min_size: 10

A single disk.

disks:
- id: sda
size: 100

According to coefficients of objective funciton with respect to ordering, we will have the next allocation.

• root - 90

• var - 10

Which is not so obvious result for the user, the expected result would be to have the next allocation.

• root - 50

• var - 50

12 Chapter 2. Architecture

http://math.stackexchange.com/questions/1596496/finding-a-monotonically-increasing-sequence-of-integers/1596812
https://oeis.org/A002620

bareon-dynamic-allocator Documentation, Release

So for those spaces, which have the same min_size, max_size (and best_with_disks see next section), allocator adds
special equality to make sure that there is a fair allocation between spaces with same requirements.

Each space can have weight variable specified (1 by default), which is used to make additional equality.⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

𝑥1 + 𝑥2 ≤ 100

𝑥3 + 𝑥4 ≤ 200

𝑥1 + 𝑥3 = 100

𝑥2 + 𝑥4 = 100

𝑥2 * (1/𝑤𝑒𝑖𝑔ℎ𝑡)− 𝑥4 * (1/𝑤𝑒𝑖𝑔ℎ𝑡) = 0

To satisfy last equality, spaces have to be equal in size. If it’s required to have one space twice smaller than the other
one, it can be done by setting the weight variable.

- id: root
size: 10
weight: 1

- id: var
size: 10
weight: 0.5

As result for var will be allocated twice smaller space on the disk.

2.6.6 Best with disks

User may want a space to be allocated on specific disk according to any attribute of a disk.

For example lets consider an example with ceph-journal which is better to allocate on ssd disks.

From user’s perspective each space can have a new parameter best_with_disks, in order to fill in this parameter YAQL
can be used.

- id: ceph-journal
best_with_disks: |
yaql=$.disks.where($.type = "ssd")

- id: root
min_size: 10

disks:
- id: sda
size: 100
type: hdd

- id: sdb
size: 10
type: ssd

So in solver we get a list of ssd disks, if there are any.

Lets adjust coefficients to make ceph-journal to be allocated on ssd, as a second priority ordering should be respected.

In order to do that lets make order coefficient 0 < order coefficient < 1.

𝑐 =

⎡⎢⎢⎣
0 + (1/2)
1 + (1/4)
1 + (1/6)
0 + (1/9)

⎤⎥⎥⎦

2.6. Allocation solver 13

https://github.com/openstack/yaql

bareon-dynamic-allocator Documentation, Release

or

𝑐𝑇𝑥 = 𝑥1 · (0 + 1/2) + 𝑥2 · (1 + 1/4) + 𝑥3 · (1 + 1/6) + 𝑥4 · (0 + 1/9)

1. Build sets according to selected disks, in our case we have two sets, hdd and ssd disks.

2. For spaces which belong to specific set of disks add 1 to a coefficient which represents this space on a disk from
the set.

3. Spaces which do not belong to any disks sets are assigned to set of disks which is left, in our case it is hdd disks
set.

To make sure that spaces are always (unless size constraints are not violated) allocated on the disks which they best
suited with, we automatically add a special artificial volume unallocated, whose coefficient is always 1, and in this
case we should change coefficient of space which belongs to the set of disks to 2.

𝑐 =

⎡⎢⎢⎢⎢⎢⎢⎣
0 + (1/2)
2 + (1/4)

1
2 + (1/9)
0 + (1/12)

1

⎤⎥⎥⎥⎥⎥⎥⎦
As the result if space has one or more best_with_disks, it will be allocated on specified disks only.

14 Chapter 2. Architecture

CHAPTER 3

Allocation Examples

3.1 ceph_ds_multiple_disk

3.1.1 Hardware information

ram: 1024

disks:

- id: sda
path: /dev/disk/by-path/path-for-sda
dev: /dev/sda
type: hdd
vendor: Hitachi
size: 10000

- id: sdb
path: /dev/disk/by-path/path-for-sdb
dev: /dev/sdb
type: hdd
vendor: Hitachi
size: 10000

- id: sdc
path: /dev/disk/by-path/path-for-sdc
dev: /dev/sdc
type: hdd
vendor: Hitachi
size: 10000

- id: sde
path: /dev/disk/by-path/path-for-sde
dev: /dev/sde
type: ssd
vendor: Hitachi
size: 2048

15

bareon-dynamic-allocator Documentation, Release

3.1.2 Dynamic schema

- id: ceph
type: partition
fs_type: ext4
min_size: 1000
best_with_disks: |
yaql=$.disks.where($.type = "hdd").skip(1)

- id: ceph-journal
type: partition
best_with_disks: |
yaql=$.disks.where($.type = "ssd")

- id: os
type: vg
contains:
- id: swap
- id: root

- id: swap
type: lv
size: |
yaql=let(ram => $.get(ram, 1024)) ->
selectCase(

$ram <= 2048,
$ram > 2048 and $ram < 8192,
$ram > 8192 and $ram < 65536).

switchCase(
$ram * 2,
$ram,
$ram / 2,
4096)

fs_type: swap

- id: root
type: lv
min_size: 5000
mount: /
fs_type: ext4

3.1.3 Allocation result

3.2 ceph_ds_single_disk

3.2.1 Hardware information

ram: 1024

disks:
- id: sda
path: /dev/disk/by-path/path-for-sda
dev: /dev/sda
type: hdd

16 Chapter 3. Allocation Examples

bareon-dynamic-allocator Documentation, Release

vendor: Hitachi
size: 10000

3.2.2 Dynamic schema

- id: ceph
type: partition
fs_type: ext4
min_size: 1000
best_with_disks: |
yaql=$.disks.where($.type = "hdd").skip(1)

- id: ceph-journal
type: partition
best_with_disks: |
yaql=$.disks.where($.type = "ssd")

- id: os
type: vg
contains:
- id: swap
- id: root

- id: swap
type: lv
size: |
yaql=let(ram => $.get(ram, 1024)) ->
selectCase(

$ram <= 2048,
$ram > 2048 and $ram < 8192,
$ram > 8192 and $ram < 65536).

switchCase(
$ram * 2,
$ram,
$ram / 2,
4096)

fs_type: swap

- id: root
type: lv
min_size: 5000
mount: /
fs_type: ext4

3.2.3 Allocation result

3.3 simple_os_ds_multiple_disk

3.3.1 Hardware information

ram: 1024

disks:

3.3. simple_os_ds_multiple_disk 17

bareon-dynamic-allocator Documentation, Release

- id: sda
path: /dev/disk/by-path/path-for-sda
dev: /dev/sda
type: hdd
vendor: Hitachi
size: 10000

- id: sdb
path: /dev/disk/by-path/path-for-sdb
dev: /dev/sdb
type: hdd
vendor: Hitachi
size: 10000

- id: sdc
path: /dev/disk/by-path/path-for-sdc
dev: /dev/sdc
type: hdd
vendor: Hitachi
size: 10000

- id: sde
path: /dev/disk/by-path/path-for-sde
dev: /dev/sde
type: ssd
vendor: Hitachi
size: 2048

3.3.2 Dynamic schema

- id: os
type: vg
contains:
- id: swap
- id: root

- id: root
type: lv
size: 5000
mount: /
fs_type: ext4

- id: swap
type: lv
size: |
yaql=let(ram => $.get(ram, 1024)) ->
selectCase(

$ram <= 2048,
$ram > 2048 and $ram < 8192,
$ram > 8192 and $ram < 65536).

switchCase(
$ram * 2,
$ram,
$ram / 2,
4096)

best_with_disks: |

18 Chapter 3. Allocation Examples

bareon-dynamic-allocator Documentation, Release

yaql=$.disks.where($.type = "ssd")
fs_type: swap

- id: logs
type: vg
contains:
- id: log

- id: log
type: lv
mount: /var/log
fs_type: ext4
size: 1000

- id: data
type: vg
contains:
- id: data_var_lib

- id: data_var
type: lv
fs_type: ext4
min: 1000
mount: /var

3.3.3 Allocation result

3.4 simple_os_ds_single_disk

3.4.1 Hardware information

ram: 1024

disks:
- id: sda
path: /dev/disk/by-path/path-for-sda
dev: /dev/sda
type: hdd
vendor: Hitachi
size: 10000

3.4.2 Dynamic schema

- id: os
type: vg
contains:
- id: swap
- id: root

- id: root
type: lv
size: 5000
mount: /

3.4. simple_os_ds_single_disk 19

bareon-dynamic-allocator Documentation, Release

fs_type: ext4

- id: swap
type: lv
size: |
yaql=let(ram => $.get(ram, 1024)) ->
selectCase(

$ram <= 2048,
$ram > 2048 and $ram < 8192,
$ram > 8192 and $ram < 65536).

switchCase(
$ram * 2,
$ram,
$ram / 2,
4096)

best_with_disks: |
yaql=$.disks.where($.type = "ssd")

fs_type: swap

- id: logs
type: vg
contains:
- id: log

- id: log
type: lv
mount: /var/log
fs_type: ext4
size: 1000

- id: data
type: vg
contains:
- id: data_var_lib

- id: data_var
type: lv
fs_type: ext4
min: 1000
mount: /var

3.4.3 Allocation result

20 Chapter 3. Allocation Examples

CHAPTER 4

Installation

At the command line:

$ pip install bareon-dynamic-allocator

Or, if you have virtualenvwrapper installed:

$ mkvirtualenv bareon-dynamic-allocator
$ pip install bareon-dynamic-allocator

21

bareon-dynamic-allocator Documentation, Release

22 Chapter 4. Installation

CHAPTER 5

Usage

Has not been released yet, see example of usage in run.sh file.

23

bareon-dynamic-allocator Documentation, Release

24 Chapter 5. Usage

CHAPTER 6

Contributing

If you would like to contribute to the development of OpenStack, you must follow the steps in this page:

http://docs.openstack.org/infra/manual/developers.html

If you already have a good understanding of how the system works and your OpenStack accounts are set up, you
can skip to the development workflow section of this documentation to learn how changes to OpenStack should be
submitted for review via the Gerrit tool:

http://docs.openstack.org/infra/manual/developers.html#development-workflow

Pull requests submitted through GitHub will be ignored.

Bugs should be filed on Launchpad, not GitHub:

https://bugs.launchpad.net/bareon-dynamic-allocator

25

http://docs.openstack.org/infra/manual/developers.html
http://docs.openstack.org/infra/manual/developers.html#development-workflow
https://bugs.launchpad.net/bareon-dynamic-allocator

bareon-dynamic-allocator Documentation, Release

26 Chapter 6. Contributing

CHAPTER 7

Indices and tables

• genindex

• modindex

• search

27

	bareon-dynamic-allocator
	Future Improvments

	Architecture
	Problem description
	History
	List of terms
	High level architecture
	Dynamic schema parser
	Allocation solver

	Allocation Examples
	ceph_ds_multiple_disk
	ceph_ds_single_disk
	simple_os_ds_multiple_disk
	simple_os_ds_single_disk

	Installation
	Usage
	Contributing
	Indices and tables

