
REBAR Documentation
Release 0.1

Berkeley Architecture Research

Jun 24, 2019

Contents:

1 Getting Started 3
1.1 REBAR Basics . 3

1.1.1 Generators . 3
1.1.2 Tools . 4
1.1.3 Toolchains . 4
1.1.4 Sims . 4
1.1.5 VLSI . 5

1.2 Configs, Parameters, Mix-ins, and Everything In Between . 5
1.2.1 Parameters . 5
1.2.2 Configs . 5
1.2.3 Cake Pattern . 6
1.2.4 Mix-in . 6
1.2.5 Additional References . 6

1.3 Adding An Accelerator/Device . 7
1.3.1 Integrating into the Generator Build System . 7
1.3.2 MMIO Peripheral . 8
1.3.3 Adding a RoCC Accelerator . 10
1.3.4 Adding a DMA port . 11

1.4 Initial Repository Setup . 12
1.4.1 Checking out the sources . 12
1.4.2 Building a Toolchain . 12

1.5 Running A Simulation . 13
1.5.1 Software RTL Simulation . 13
1.5.2 FPGA Accelerated Simulation . 14

1.6 SoC Generator Config Mix-ins: . 14
1.6.1 Rocket Chip . 14
1.6.2 BOOM . 16
1.6.3 SiFive Blocks . 16
1.6.4 testchipip . 16
1.6.5 Icenet . 17
1.6.6 AWL . 17

2 Simulators 19
2.1 Open Source Software RTL Simulators . 19

2.1.1 Verilator . 19
2.2 Commercial Software RTL Simulators . 20

i

2.2.1 VCS . 20
2.3 FPGA-Based Simulators . 20

2.3.1 FireSim . 20

3 Generators 21
3.1 Rocket . 21
3.2 Berkeley Out-of-Order Machine (BOOM) . 21
3.3 Hwacha . 22

4 Tools 23
4.1 Chisel . 23
4.2 FIRRTL . 23
4.3 Barstools . 24

5 VLSI Production 25
5.1 HAMMER . 25

6 Indices and tables 27

ii

REBAR Documentation, Release 0.1

REBAR is a a framework for designing and evaluating full-system hardware using agile teams. It is composed of a
collection of tools and libraries designed to provide an intergration between open-source and commercial tools for the
development of systems-on-chip. New to REBAR? Jump to the Getting Started page for more info.

Contents: 1

REBAR Documentation, Release 0.1

2 Contents:

CHAPTER 1

Getting Started

These guides will walk you through the basics of the REBAR framework:

• First, we will go over the different configurations available.

• Then, we will walk through adding a custom accelerator.

Hit next to get started!

1.1 REBAR Basics

1.1.1 Generators

The REBAR Framework currently consists of the following RTL generators:

Processor Cores

Rocket An in-order RISC-V core. See Rocket for more information.

BOOM (Berkeley Out-of-Order Machine) An out-of-order RISC-V core. See Berkeley Out-of-Order Machine
(BOOM) for more information.

Accelerators

Hwacha A decoupled vector architecture co-processor. Hwacha currently implements a non-standard RISC-V exten-
sion, using a vector architecture programming model. Hwacha integrates with a Rocket or BOOM core using
the RoCC (Rocket Custom Co-processor) interface. See Hwacha for more information.

3

REBAR Documentation, Release 0.1

System Components:

icenet A Network Interface Controller (NIC) designed to achieve up to 200 Gbps.

sifive-blocks System components implemented by SiFive and used by SiFive projects, designed to be integrated with
the Rocket Chip generator. These system and peripheral components include UART, SPI, JTAG, I2C, PWM,
and other peripheral and interface devices.

AWL (Analog Widget Library) Digital components required for integration with high speed serial links.

testchipip A collection of utilities used for testing chips and interfacing them with larger test environments.

1.1.2 Tools

Chisel A hardware description library embedded in Scala. Chisel is used to write RTL generators using meta-
programming, by embedding hardware generation primitives in the Scala programming language. The Chisel
compiler elaborates the generator into a FIRRTL output. See Chisel for more information.

FIRRTL An intermediate representation library for RTL description of digital designs. FIRRTL is used as a formal-
ized digital circuit representation between Chisel and Verilog. FIRRTL enables digital circuits manipulation
between Chisel elaboration and Verilog generation. See FIRRTL for more information.

Barstools A collection of common FIRRTL transformations used to manipulate a digital circuit without changing the
generator source RTL. See Barstools for more information.

1.1.3 Toolchains

riscv-tools A collection of software toolchains used to develop and execute software on the RISC-V ISA. The include
compiler and assembler toolchains, functional ISA simulator (spike), the Berkeley Boot Loader (BBL) and proxy
kernel. The riscv-tools repository was previously required to run any RISC-V software, however, many of the
riscv-tools components have since been upstreamed to their respective open-source projects (Linux, GNU, etc.).
Nevertheless, for consistent versioning, as well as software design flexibility for custom hardware, we include
the riscv-tools repository and installation in the REBAR framework.

esp-tools A fork of riscv-tools, designed to work with the Hwacha non-standard RISC-V extension. This fork can
also be used as an example demonstrating how to add additional RoCC accelerators to the ISA-level simulation
(Spike) and the higher-level software toolchain (GNU binutils, riscv-opcodes, etc.)

1.1.4 Sims

verisim (Verilator wrapper) Verilator is an open source Verilog simulator. The verisim directory provides wrap-
pers which construct Verilator-based simulators from relevant generated RTL, allowing for execution of test
RISC-V programs on the simulator (including vcd waveform files). See Verilator for more information.

vsim (VCS wrapper) VCS is a proprietary Verilog simulator. Assuming the user has valid VCS licenses and instal-
lations, the vsim directory provides wrappers which construct VCS-based simulators from relevant generated
RTL, allowing for execution of test RISC-V programs on the simulator (including vcd/vpd waveform files). See
VCS for more information.

FireSim FireSim is an open-source FPGA-accelerated simulation platform, using Amazon Web Services (AWS) EC2
F1 instances on the public cloud. FireSim automatically transforms and instruments open-hardware designs into
fast (10s-100s MHz), deterministic, FPGA-based simulators that enable productive pre-silicon verification and
performance validation. To model I/O, FireSim includes synthesizeable and timing-accurate models for standard
interfaces like DRAM, Ethernet, UART, and others. The use of the elastic public cloud enable FireSim to scale

4 Chapter 1. Getting Started

REBAR Documentation, Release 0.1

simulations up to thousands of nodes. In order to use FireSim, the repository must be cloned and executed on
AWS instances. See FireSim for more information.

1.1.5 VLSI

HAMMER HAMMER is a VLSI flow designed to provide a layer of abstraction between general physical design con-
cepts to vendor-specific EDA tool commands. The HAMMER flow provide automated scripts which generate
relevant tool commands based on a higher level description of physical design constraints. The HAMMER flow
also allows for re-use of process technology knowledge by enabling the construction of process-technology-
specific plug-ins, which describe particular constraints relating to that process technology (obsolete standard
cells, metal layer routing constraints, etc.). The HAMMER flow requires access to proprietary EDA tools and
process technology libraries. See HAMMER for more information.

1.2 Configs, Parameters, Mix-ins, and Everything In Between

A significant portion of generators in the REBAR framework use the Rocket Chip parameter system. This parameter
system enables for the flexible configuration of the SoC without invasive RTL changes. In order to use the parameter
system correctly, we will use several terms and conventions:

1.2.1 Parameters

TODO: Need to explain up, site, field, and other stuff from Henry’s thesis.

It is important to note that a significant challenge with the Rocket parameter system is being able to identify the
correct parameter to use, and the impact that parameter has on the overall system. We are still investigating methods
to facilitate parameter exploration and discovery.

1.2.2 Configs

A Config is a collection of multiple generator parameters being set to specific values. Configs are additive, can
override each other, and can be composed of other Configs. The naming convention for an additive Config is
With<YourConfigName>, while the naming convention for a non-additive Config will be <YourConfig>. Con-
figs can take arguments which will in-turn set parameters in the design or reference other parameters in the design (see
Parameters).

basic-config-example shows a basic additive Config class that takes in zero arguments and instead uses hard-
coded values to set the RTL design parameters. In this example, MyAcceleratorConfig is a Scala case class that
defines a set of variables that the generator can use when referencing the MyAcceleratorKey in the design.

class WithMyAcceleratorParams extends Config((site, here, up) => {
case BusWidthBits => 128
case MyAcceleratorKey =>
MyAcceleratorConfig(

rows = 2,
rowBits = 64,
columns = 16,
hartId = 1,
someLength = 256)

})

This next example (complex-config-example) shows a “higher-level” additive Config that uses prior parame-
ters that were set to derive other parameters.

1.2. Configs, Parameters, Mix-ins, and Everything In Between 5

REBAR Documentation, Release 0.1

class WithMyMoreComplexAcceleratorConfig extends Config((site, here, up) => {
case BusWidthBits => 128
case MyAcceleratorKey =>
MyAcceleratorConfig(

Rows = 2,
rowBits = site(SystemBusKey).beatBits,
hartId = up(RocketTilesKey, site).length)

})

top-level-config shows a non-additive Config that combines the prior two additive Configs using ++. The
additive Configs are applied from the right to left in the list (or bottom to top in the example). Thus, the order of the
parameters being set will first start with the DefaultExampleConfig, then WithMyAcceleratorParams,
then WithMyMoreComplexAcceleratorConfig.

class SomeAdditiveConfig extends Config(
new WithMyMoreComplexAcceleratorConfig ++
new WithMyAcceleratorParams ++
new DefaultExampleConfig

)

1.2.3 Cake Pattern

A cake pattern is a Scala programming pattern, which enable “mixing” of multiple traits or interface definitions
(sometimes referred to as dependency injection). It is used in the Rocket Chip SoC library and REBAR framework in
merging multiple system components and IO interfaces into a large system component.

cake-example shows a Rocket Chip based SoC that merges multiple system components (BootROM, UART, etc)
into a single top-level design.

class MySoC(implicit p: Parameters) extends RocketSubsystem
with CanHaveMisalignedMasterAXI4MemPort
with HasPeripheryBootROM
with HasNoDebug
with HasPeripherySerial
with HasPeripheryUART
with HasPeripheryIceNIC

{
//Additional top-level specific instantiations or wiring

}

1.2.4 Mix-in

A mix-in is a Scala trait, which sets parameters for specific system components, as well as enabling instantiation
and wiring of the relevant system components to system buses. The naming convention for an additive mix-in is
Has<YourMixin>. This is show in cake-example where things such as HasPeripherySerial connect a
RTL component to a bus and expose signals to the top-level.

1.2.5 Additional References

A brief explanation of some of these topics is given in the following video: https://www.youtube.com/watch?v=
Eko86PGEoDY.

6 Chapter 1. Getting Started

https://www.youtube.com/watch?v=Eko86PGEoDY
https://www.youtube.com/watch?v=Eko86PGEoDY

REBAR Documentation, Release 0.1

1.3 Adding An Accelerator/Device

Accelerators or custom IO devices can be added to your SoC in several ways:

• MMIO Peripheral (a.k.a TileLink-Attached Accelerator)

• Tightly-Coupled RoCC Accelerator

These approaches differ in the method of the communication between the processor and the custom block.

With the TileLink-Attached approach, the processor communicates with MMIO peripherals through memory-mapped
registers.

In contrast, the processor communicates with a RoCC accelerators through a custom protocol and custom non-standard
ISA instructions reserved in the RISC-V ISA encoding space. Each core can have up to four accelerators that are
controlled by custom instructions and share resources with the CPU. RoCC coprocessor instructions have the following
form.

customX rd, rs1, rs2, funct

The X will be a number 0-3, and determines the opcode of the instruction, which controls which accelerator an
instruction will be routed to. The rd, rs1, and rs2 fields are the register numbers of the destination register and two
source registers. The funct field is a 7-bit integer that the accelerator can use to distinguish different instructions
from each other.

Note that communication through a RoCC interface requires a custom software toolchain, whereas MMIO peripherals
can use that standard toolchain with appropriate driver support.

1.3.1 Integrating into the Generator Build System

While developing, you want to include Chisel code in a submodule so that it can be shared by different projects. To
add a submodule to the REBAR framework, make sure that your project is organized as follows.

yourproject/
build.sbt
src/main/scala/

YourFile.scala

Put this in a git repository and make it accessible. Then add it as a submodule to under the following directory
hierarchy: generators/yourproject.

cd generators/
git submodule add https://git-repository.com/yourproject.git

Then add yourproject to the REBAR top-level build.sbt file.

lazy val yourproject = project.settings(commonSettings).dependsOn(rocketchip)

You can then import the classes defined in the submodule in a new project if you add it as a dependency. For instance,
if you want to use this code in the example project, change the final line in build.sbt to the following.

lazy val example = (project in file(".")).settings(commonSettings).
→˓dependsOn(testchipip, yourproject)

Finally, add yourproject to the PACKAGES variable in the common.mk file in the REBAR top level. This will
allow make to detect that your source files have changed when building the Verilog/FIRRTL files.

1.3. Adding An Accelerator/Device 7

REBAR Documentation, Release 0.1

1.3.2 MMIO Peripheral

The easiest way to create a TileLink peripheral is to use the TLRegisterRouter, which abstracts away the details
of handling the TileLink protocol and provides a convenient interface for specifying memory-mapped registers. To
create a RegisterRouter-based peripheral, you will need to specify a parameter case class for the configuration settings,
a bundle trait with the extra top-level ports, and a module implementation containing the actual RTL.

case class PWMParams(address: BigInt, beatBytes: Int)

trait PWMTLBundle extends Bundle {
val pwmout = Output(Bool())

}

trait PWMTLModule {
val io: PWMTLBundle
implicit val p: Parameters
def params: PWMParams

val w = params.beatBytes * 8
val period = Reg(UInt(w.W))
val duty = Reg(UInt(w.W))
val enable = RegInit(false.B)

// ... Use the registers to drive io.pwmout ...

regmap(
0x00 -> Seq(
RegField(w, period)),

0x04 -> Seq(
RegField(w, duty)),

0x08 -> Seq(
RegField(1, enable)))

}

Once you have these classes, you can construct the final peripheral by extending the TLRegisterRouter and
passing the proper arguments. The first set of arguments determines where the register router will be placed in the
global address map and what information will be put in its device tree entry. The second set of arguments is the IO
bundle constructor, which we create by extending TLRegBundle with our bundle trait. The final set of arguments is
the module constructor, which we create by extends TLRegModule with our module trait.

class PWMTL(c: PWMParams)(implicit p: Parameters)
extends TLRegisterRouter(
c.address, "pwm", Seq("ucbbar,pwm"),
beatBytes = c.beatBytes)(
new TLRegBundle(c, _) with PWMTLBundle)(
new TLRegModule(c, _, _) with PWMTLModule)

The full module code can be found in generators/example/src/main/scala/PWM.scala.

After creating the module, we need to hook it up to our SoC. Rocket Chip accomplishes this using the cake pat-
tern. This basically involves placing code inside traits. In the Rocket Chip cake, there are two kinds of traits: a
LazyModule trait and a module implementation trait.

The LazyModule trait runs setup code that must execute before all the hardware gets elaborated. For a simple
memory-mapped peripheral, this just involves connecting the peripheral’s TileLink node to the MMIO crossbar.

trait HasPeripheryPWM extends HasSystemNetworks {
implicit val p: Parameters

(continues on next page)

8 Chapter 1. Getting Started

REBAR Documentation, Release 0.1

(continued from previous page)

private val address = 0x2000

val pwm = LazyModule(new PWMTL(
PWMParams(address, peripheryBusConfig.beatBytes))(p))

pwm.node := TLFragmenter(
peripheryBusConfig.beatBytes, cacheBlockBytes)(peripheryBus.node)

}

Note that the PWMTL class we created from the register router is itself a LazyModule. Register routers have a
TileLink node simply named “node”, which we can hook up to the Rocket Chip bus. This will automatically add
address map and device tree entries for the peripheral.

The module implementation trait is where we instantiate our PWM module and connect it to the rest of the SoC. Since
this module has an extra pwmout output, we declare that in this trait, using Chisel’s multi-IO functionality. We then
connect the PWMTL’s pwmout to the pwmout we declared.

trait HasPeripheryPWMModuleImp extends LazyMultiIOModuleImp {
implicit val p: Parameters
val outer: HasPeripheryPWM

val pwmout = IO(Output(Bool()))

pwmout := outer.pwm.module.io.pwmout
}

Now we want to mix our traits into the system as a whole. This code is from generators/example/src/main/
scala/Top.scala.

class ExampleTopWithPWM(q: Parameters) extends ExampleTop(q)
with PeripheryPWM {

override lazy val module = Module(
new ExampleTopWithPWMModule(p, this))

}

class ExampleTopWithPWMModule(l: ExampleTopWithPWM)
extends ExampleTopModule(l) with HasPeripheryPWMModuleImp

Just as we need separate traits for LazyModule and module implementation, we need two classes to build the system.
The ExampleTop classes already have the basic peripherals included for us, so we will just extend those.

The ExampleTop class includes the pre-elaboration code and also a lazy val to produce the module implemen-
tation (hence LazyModule). The ExampleTopModule class is the actual RTL that gets synthesized.

Finally, we need to add a configuration class in generators/example/src/main/scala/Configs.scala
that tells the TestHarness to instantiate ExampleTopWithPWM instead of the default ExampleTop.

class WithPWM extends Config((site, here, up) => {
case BuildTop => (p: Parameters) =>
Module(LazyModule(new ExampleTopWithPWM()(p)).module)

})

class PWMConfig extends Config(new WithPWM ++ new BaseExampleConfig)

Now we can test that the PWM is working. The test program is in tests/pwm.c.

1.3. Adding An Accelerator/Device 9

REBAR Documentation, Release 0.1

#define PWM_PERIOD 0x2000
#define PWM_DUTY 0x2008
#define PWM_ENABLE 0x2010

static inline void write_reg(unsigned long addr, unsigned long data)
{

volatile unsigned long *ptr = (volatile unsigned long *) addr;

*ptr = data;
}

static inline unsigned long read_reg(unsigned long addr)
{

volatile unsigned long *ptr = (volatile unsigned long *) addr;
return *ptr;

}

int main(void)
{

write_reg(PWM_PERIOD, 20);
write_reg(PWM_DUTY, 5);
write_reg(PWM_ENABLE, 1);

}

This just writes out to the registers we defined earlier. The base of the module’s MMIO region is at 0x2000. This will
be printed out in the address map portion when you generated the verilog code.

Compiling this program with make produces a pwm.riscv executable.

Now with all of that done, we can go ahead and run our simulation.

cd verisim
make CONFIG=PWMConfig
./simulator-example-PWMConfig ../tests/pwm.riscv

1.3.3 Adding a RoCC Accelerator

RoCC accelerators are lazy modules that extend the LazyRoCC class. Their implementation should extends the
LazyRoCCModule class.

class CustomAccelerator(opcodes: OpcodeSet)
(implicit p: Parameters) extends LazyRoCC(opcodes) {

override lazy val module = new CustomAcceleratorModule(this)
}

class CustomAcceleratorModule(outer: CustomAccelerator)
extends LazyRoCCModuleImp(outer) {

val cmd = Queue(io.cmd)
// The parts of the command are as follows
// inst - the parts of the instruction itself
// opcode
// rd - destination register number
// rs1 - first source register number
// rs2 - second source register number
// funct
// xd - is the destination register being used?
// xs1 - is the first source register being used?

(continues on next page)

10 Chapter 1. Getting Started

REBAR Documentation, Release 0.1

(continued from previous page)

// xs2 - is the second source register being used?
// rs1 - the value of source register 1
// rs2 - the value of source register 2
...

}

The opcodes parameter for LazyRoCC is the set of custom opcodes that will map to this accelerator. More on this
in the next subsection.

The LazyRoCC class contains two TLOutputNode instances, atlNode and tlNode. The former connects into a
tile-local arbiter along with the backside of the L1 instruction cache. The latter connects directly to the L1-L2 crossbar.
The corresponding Tilelink ports in the module implementation’s IO bundle are atl and tl, respectively.

The other interfaces available to the accelerator are mem, which provides access to the L1 cache; ptw which provides
access to the page-table walker; the busy signal, which indicates when the accelerator is still handling an instruction;
and the interrupt signal, which can be used to interrupt the CPU.

Look at the examples in generators/rocket-chip/src/main/scala/tile/LazyRocc.scala for de-
tailed information on the different IOs.

Adding RoCC accelerator to Config

RoCC accelerators can be added to a core by overriding the BuildRoCC parameter in the configuration. This takes a
sequence of functions producing LazyRoCC objects, one for each accelerator you wish to add.

For instance, if we wanted to add the previously defined accelerator and route custom0 and custom1 instructions to it,
we could do the following.

class WithCustomAccelerator extends Config((site, here, up) => {
case BuildRoCC => Seq((p: Parameters) => LazyModule(
new CustomAccelerator(OpcodeSet.custom0 | OpcodeSet.custom1)(p)))

})

class CustomAcceleratorConfig extends Config(
new WithCustomAccelerator ++ new DefaultExampleConfig)

1.3.4 Adding a DMA port

IO devices or accelerators (like a disk or network driver), we may want to have the device write directly to the coherent
memory system instead. To add a device like that, you would do the following.

class DMADevice(implicit p: Parameters) extends LazyModule {
val node = TLClientNode(TLClientParameters(
name = "dma-device", sourceId = IdRange(0, 1)))

lazy val module = new DMADeviceModule(this)
}

class DMADeviceModule(outer: DMADevice) extends LazyModuleImp(outer) {
val io = IO(new Bundle {
val mem = outer.node.bundleOut
val ext = new ExtBundle

})

(continues on next page)

1.3. Adding An Accelerator/Device 11

REBAR Documentation, Release 0.1

(continued from previous page)

// ... rest of the code ...
}

trait HasPeripheryDMA extends HasSystemNetworks {
implicit val p: Parameters

val dma = LazyModule(new DMADevice)

fsb.node := dma.node
}

trait HasPeripheryDMAModuleImp extends LazyMultiIOModuleImp {
val ext = IO(new ExtBundle)
ext <> outer.dma.module.io.ext

}

The ExtBundle contains the signals we connect off-chip that we get data from. The DMADevice also has a Tilelink
client port that we connect into the L1-L2 crossbar through the front-side buffer (fsb). The sourceId variable given in
the TLClientNode instantiation determines the range of ids that can be used in acquire messages from this device.
Since we specified [0, 1) as our range, only the ID 0 can be used.

1.4 Initial Repository Setup

1.4.1 Checking out the sources

After cloning this repo, you will need to initialize all of the submodules.

git clone https://github.com/ucb-bar/project-template.git
cd project-template
./scripts/init-submodules-no-riscv-tools.sh

1.4.2 Building a Toolchain

The toolchains directory contains toolchains that include a cross-compiler toolchain, frontend server, and proxy kernel,
which you will need in order to compile code to RISC-V instructions and run them on your design. Currently there
are two toolchains, one for normal RISC-V programs, and another for Hwacha (esp-tools). There are detailed in-
structions at https://github.com/riscv/riscv-tools to install the riscv-tools toolchain, however, the instructions are
similar for the Hwacha esp-tools toolchain. But to get a basic installation, just the following steps are necessary.

./scripts/build-toolchains.sh riscv # for a normal risc-v toolchain

OR

./scripts/build-toolchains.sh hwacha # for a hwacha modified risc-v toolchain

Once the script is run, a env.sh file is emitted at sets the PATH, RISCV, and LD_LIBRARY_PATH environment
variables. You can put this in your .bashrc or equivalent environment setup file to get the proper variables. These
variables need to be set for the make system to work properly.

12 Chapter 1. Getting Started

https://github.com/riscv/riscv-tools

REBAR Documentation, Release 0.1

1.5 Running A Simulation

REBAR provides support and integration for multiple simulation flows, for various user levels and requirements. In
the majority of cases during a digital design development process, simple software RTL simulation is needed. When
more advanced full-system evaluation is required, with long running workloads, FPGA-accelerated simulation will
then become a preferable solution.

1.5.1 Software RTL Simulation

The REBAR framework provides wrappers for two common software RTL simulators: the open-source Verilator
simulator and the proprietary VCS simulator. For more information on either of these simulators, please refer to
Verilator or VCS. The following instructions assume at least one of these simulators is installed.

Verilator/VCS Flows

Verilator is an open-source RTL simulator. We run Verilator simulations from within the sims/verisim directory
which provides the necessary Makefile to both install and run Verilator simulations. On the other hand, VCS is
a proprietary RTL simulator. We run VCS simulations from within the sims/vsim directory. Assuming VCS is
already installed on the machine running simulations (and is found on our PATH), then this guide is the same for both
Verilator and VCS.

First, we will start by entering the Verilator or VCS directory:

Enter Verilator directory
cd sims/verisim

OR

Enter VCS directory
cd sims/vsim

In order to construct the simulator with our custom design, we run the following command within the simulator
directory:

make SBT_PROJECT=... MODEL=... VLOG_MODEL=... MODEL_PACKAGE=... CONFIG=... CONFIG_
→˓PACKAGE=... GENERATOR_PACKAGE=... TB=... TOP=...

Each of these make variables correspond to a particular part of the design/codebase and are needed so that the make
system can correctly build and make a RTL simulation. The SBT_PROJECT is the build.sbt project that holds
all of the source files and that will be run during the RTL build. The MODEL and VLOG_MODEL are the top-level
class names of the design. Normally, these are the same, but in some cases these can differ (if the Chisel class
differs than what is emitted in the Verilog). The MODEL_PACKAGE is the Scala package (in the Scala code that says
package ...) that holds the MODEL class. The CONFIG is the name of the class used for the parameter Config
while the CONFIG_PACKAGE is the Scala package it resides in. The GENERATOR_PACKAGE is the Scala package
that holds the Generator class that elaborates the design. The TB is the name of the Verilog wrapper that connects the
TestHarness to VCS/Verilator for simulation. Finally, the TOP variable is used to distinguish between the top-level
of the design and the TestHarness in our system. For example, in the normal case, the MODEL variable specifies
the TestHarness as the top-level of the design. However, the true top-level design, the SoC being simulated, is
pointed to by the TOP variable. This separation allows the infrastructure to separate files based on the harness or the
SoC top level.

Common configurations of all these variables are packaged using a SUB_PROJECT make variable. Therefore, in
order to simulate a simple Rocket-based example system we can use:

1.5. Running A Simulation 13

REBAR Documentation, Release 0.1

make SUB_PROJECT=example

Alternatively, if we would like to simulate a simple BOOM-based example system we can use:

make SUB_PROJECT=exampleboom

Once the simulator has been constructed, we would like to run RISC-V programs on it. In the simulation directory, we
will find an executable file called <...>-<package>-<config>. We run this executable with our target RISC-V
program as a command line argument in one of two ways. One, we can directly call the simulator binary or use make
to run the binary for us with extra simulation flags. For example:

directly calling the simulation binary
./<...>-<package>-<config> my_program_binary

using make to do it
make SUB_PROJECT=example BINARY=my_program_binary run-binary

Alternatively, we can run a pre-packaged suite of RISC-V assembly or benchmark tests, by adding the make target
run-asm-tests or run-bmark-tests. For example:

make SUB_PROJECT=example run-asm-tests
make SUB_PROJECT=example run-bmark-tests

Note: You need to specify all the make variables once again to match what the build gave to run the assembly tests or
the benchmarks or the binaries if you are using the make option.

Finally, in the generated-src/<...>-<package>-<config>/ directory resides all of the collateral and
Verilog source files for the build/simulation. Specifically, the SoC top-level (TOP) Verilog file is denoted with *.
top.v while the TestHarness file is denoted with *.harness.v.

1.5.2 FPGA Accelerated Simulation

FireSim enables simulations at 1000x-100000x the speed of standard software simulation. This is enabled using
FPGA-acceleration on F1 instances of the AWS (Amazon Web Services) public cloud. Therefore FireSim simulation
requires to be set-up on the AWS public cloud rather than on our local development machine.

To run an FPGA-accelerated simulation using FireSim, a we need to clone the REBAR repository (or our fork of
the REBAR repository) to an AWS EC2, and follow the setup instructions specified in the FireSim Initial Setup
documentation page.

After setting up the FireSim environment, we now need to generate a FireSim simulation around our selected digital
design. We will work from within the sims/firesim directory.

TODO: Continue from here

1.6 SoC Generator Config Mix-ins:

1.6.1 Rocket Chip

• System-on-Chip

– HasTiles

– HasClockDomainCrossing

14 Chapter 1. Getting Started

REBAR Documentation, Release 0.1

– HasResetVectorWire

– HasNoiseMakerIO

• Basic Core

– HasRocketTiles

– HasRocketCoreParameters

– HasCoreIO

• Branch Prediction

– HasBtbParameters

• Additional Compute

– HasFPUCtrlSigs

– HasFPUParameters

– HasLazyRoCC

– HasFpuOpt

• Memory System

– HasRegMap

– HasCoreMemOp

– HasHellaCache

– HasL1ICacheParameters

– HasICacheFrontendModule

– HasAXI4ControlRegMap

– HasTLControlRegMap

– HasTLBusParams

– HasTLXbarPhy

• Interrupts

– HasInterruptSources

– HasExtInterrupts

– HasAsyncExtInterrupts

– HasSyncExtInterrupts

• Periphery

– HasPeripheryDebug

– HasPeripheryBootROM

– HasBuiltInDeviceParams

1.6. SoC Generator Config Mix-ins: 15

REBAR Documentation, Release 0.1

1.6.2 BOOM

• Basic Core

– HasBoomTiles

– HasBoomCoreParameters

– HasBoomCoreIO

– HasBoomUOP

– HasRegisterFileIO

• Branch Prediction

– HasGShareParameters

– HasBoomBTBParameters

• Memory System

– HasL1ICacheBankedParameters

– HasBoomICacheFrontend

– HasBoomHellaCache

1.6.3 SiFive Blocks

• Peripherals

– HasPeripheryGPIO

– HasPeripheryI2C

– HasPeripheryMockAON

– HasPeripheryPWM

– HasPeripherySPI

– HasSPIProtocol

* HasSPIEndian

* HasSPILength

* HasSPICSMode

– HasPeripherySPIFlash

– HasPeripheryUART

1.6.4 testchipip

• Peripherals

– HasPeripheryBlockDevice

– HasPeripherySerial

– HasNoDebug

16 Chapter 1. Getting Started

REBAR Documentation, Release 0.1

1.6.5 Icenet

• Periphery Network Interface Controller

– HasPeripheryIceNIC

1.6.6 AWL

• IO

– HasEncoding8b10b

– HasTLBidirectionalPacketizer

– HasTLController

– HasGenericTransceiverSubsystem

• Debug/Testing

– HasBertDebug

– HasPatternMemDebug

– HasBitStufferDebug4Modes

– HasBitReversalDebug

1.6. SoC Generator Config Mix-ins: 17

REBAR Documentation, Release 0.1

18 Chapter 1. Getting Started

CHAPTER 2

Simulators

REBAR provides support and integration for multiple simulation flows, for various user levels and requirements. In the
majority of cases during a digital design development process, a simple software RTL simulation will do. When more
advanced full-system evaluation is required, with long running workloads, FPGA-accelerated simulation will then
become a preferable solution. The following pages provide detailed information about the simulation possibilities
within the REBAR framework.

2.1 Open Source Software RTL Simulators

2.1.1 Verilator

Verilator is an open-source LGPL-Licensed simulator maintained by Veripool. The REBAR framework can download,
build, and execute simulations using Verilator.

To run a simulation using Verilator, perform the following steps:

To compile the example design, run make in the sims/verisim directory. This will elaborate the
DefaultRocketConfig in the example project.

An executable called simulator-example-DefaultRocketConfig will be produced. This executable is a
simulator that has been compiled based on the design that was built. You can then use this executable to run any
compatible RV64 code. For instance, to run one of the riscv-tools assembly tests.

./simulator-example-DefaultRocketConfig $RISCV/riscv64-unknown-elf/share/riscv-tests/
→˓isa/rv64ui-p-simple

If you later create your own project, you can use environment variables to build an alternate configuration.

make SUB_PROJECT=yourproject
./simulator-<yourproject>-<yourconfig> ...

If you would like to extract waveforms from the simulation, run the command make debug instead of just make.
This will generate a vcd file (vcd is a standard waveform representation file format) that can be loaded to any common
waveform viewer. An open-source vcd-capable waveform viewer is GTKWave.

19

https://www.veripool.org/wiki/verilator
https://www.veripool.org/
http://gtkwave.sourceforge.net/

REBAR Documentation, Release 0.1

Please refer to Running A Simulation for a step by step tutorial on how to get a simulator up and running.

2.2 Commercial Software RTL Simulators

2.2.1 VCS

VCS is a commercial RTL simulator developed by Synopsys. It requires commercial licenses. The REBAR frame-
work can compile and execute simulations using VCS. VCS simulation will generally compile faster than Verilator
simulations.

To run a simulation using VCS, perform the following steps:

Make sure that the VCS simulator is on your PATH.

To compile the example design, run make in the sims/vsim directory. This will elaborate the
DefaultRocketConfig in the example project.

An executable called simulator-example-DefaultRocketConfig will be produced. This executable is a
simulator that has been compiled based on the design that was built. You can then use this executable to run any
compatible RV64 code. For instance, to run one of the riscv-tools assembly tests.

./simulator-example-DefaultRocketConfig $RISCV/riscv64-unknown-elf/share/riscv-tests/
→˓isa/rv64ui-p-simple

If you later create your own project, you can use environment variables to build an alternate configuration.

make SUB_PROJECT=yourproject
./simulator-<yourproject>-<yourconfig> ...

If you would like to extract waveforms from the simulation, run the command make debug instead of just make.
This will generate a vpd file (this is a proprietary waveform representation format used by Synopsys) that can be
loaded to vpd-supported waveform viewers. If you have Synopsys licenses, we recommend using the DVE waveform
viewer.

Please refer to Running A Simulation for a step by step tutorial on how to get a simulator up and running.

2.3 FPGA-Based Simulators

2.3.1 FireSim

FireSim is an open-source cycle-accurate FPGA-accelerated full-system hardware simulation platform that runs on
cloud FPGAs (Amazon EC2 F1). FireSim allows RTL-level simulation at orders-of-magnitude faster speeds than
software RTL simulators. FireSim also provides additional device models to allow full-system simulation, including
memory models and network models.

FireSim currently supports running only on Amazon EC2 F1 FPGA-enabled virtual instances on the public cloud. In
order to simulate your REBAR design using FireSim, you should follow the following steps:

Follow the initial EC2 setup instructions as detailed in the FireSim documentation. Then clone your full REBAR
repository onto your Amazon EC2 FireSim manager instance.

Enter the sims/FireSim directory, and follow the FireSim instructions for running a simulation.

20 Chapter 2. Simulators

https://www.synopsys.com/verification/simulation/vcs.html
https://fires.im/
http://docs.fires.im/en/latest/Initial-Setup/index.html
http://docs.fires.im/en/latest/Running-Simulations-Tutorial/index.html

CHAPTER 3

Generators

Generator can be thought of as a generalized RTL design, written using a mix of meta-programming and standard RTL.
This type of meta-programming is enabled by the Chisel hardware description language (see Chisel). A standard RTL
design is essentially just a single instance of a design coming from a generator. However, by using meta-programming
and parameter systems, generators can allow for integration of complex hardware designs in automated ways. The
following pages introduce the generators integrated with the REBAR framework.

3.1 Rocket

Rocket is a 5-stage in-order scalar core generator that is supported by SiFive. It supports the open source RV64GC
RISC-V instruction set and is written in the Chisel hardware construction language. It has an MMU that supports
page-based virtual memory, a non-blocking data cache, and a front-end with branch prediction. Branch prediction
is configurable and provided by a branch target buffer (BTB), branch history table (BHT), and a return address stack
(RAS). For floating-point, Rocket makes use of Berkeley’s Chisel implementations of floating-point units. Rocket also
supports the RISC-V machine, supervisor, and user privilege levels. A number of parameters are exposed, including
the optional support of some ISA extensions (M, A, F, D), the number of floating-point pipeline stages, and the cache
and TLB sizes.

For more information, please refer to the GitHub repository, technical report or to this Chisel Community Conference
video.

3.2 Berkeley Out-of-Order Machine (BOOM)

The Berkeley Out-of-Order Machine (BOOM) is a synthesizable and parameterizable open source RV64GC RISC-V
core written in the Chisel hardware construction language. It serves as a drop-in replacement to the Rocket core given
by Rocket Chip. BOOM is heavily inspired by the MIPS R10k and the Alpha 21264 out-of-order processors. Like
the R10k and the 21264, BOOM is a unified physical register file design (also known as “explicit register renaming”).
Conceptually, BOOM is broken up into 10 stages: Fetch, Decode, Register Rename, Dispatch, Issue, Register Read,

21

https://github.com/freechipsproject/rocket-chip
https://www.sifive.com/
https://github.com/freechipsproject/rocket-chip
https://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-17.html
https://youtu.be/Eko86PGEoDY
https://youtu.be/Eko86PGEoDY
https://boom-core.org/

REBAR Documentation, Release 0.1

Execute, Memory, Writeback and Commit. However, many of those stages are combined in the current implemen-
tation, yielding seven stages: Fetch, Decode/Rename, Rename/Dispatch, Issue/RegisterRead, Execute, Memory and
Writeback (Commit occurs asynchronously, so it is not counted as part of the “pipeline”).

Additional information about the BOOM micro-architecture can be found in the BOOM documentation pages.

3.3 Hwacha

The Hwacha project is developing a new vector architecture for future computer systems that are constrained in their
power and energy consumption. Inspired by traditional vector machines from the 70s and 80s, and lessons learned
from our previous vector-thread architectures Scale and Maven, we are bringing back elegant, performant, and energy-
efficient aspects of vector processing to modern data-parallel architectures. We propose a new vector-fetch architec-
tural paradigm, which focuses on the following aspects for higher performance, better energy efficiency, and lower
complexity.

For more information, please visit the Hwacha website.

22 Chapter 3. Generators

https://docs.boom-core.org/
http://hwacha.org/

CHAPTER 4

Tools

The REBAR framework relays heavily on a set of Scala-based tools. The following pages will introduce them, and
how we can use them in order to generate flexible designs.

4.1 Chisel

Chisel is an open-source hardware description language embedded in Scala. It supports advanced hardware design
using highly parameterized generators and supports things such as Rocket Chip and BOOM.

After writing Chisel, there are multiple steps before the Chisel source code “turns into” Verilog. First is the compilation
step. If Chisel is thought as a library within Scala, then these classes being built are just Scala classes which call Chisel
functions. Thus, any errors that you get in compiling the Scala/Chisel files are errors that you have violated the typing
system, messed up syntax, or more. After the compilation is complete, elaboration begins. The Chisel generator starts
elaboration using the module and configuration classes passed to it. This is where the Chisel “library functions” are
called with the parameters given and Chisel tries to construct a circuit based on the Chisel code. If a runtime error
happens here, Chisel is stating that it cannot “build” your circuit due to “violations” between your code and the Chisel
“library”. However, if that passes, the output of the generator gives you an FIRRTL file and other misc collateral! See
FIRRTL for more information on how to get a FIRRTL file to Verilog.

For an interactive tutorial on how to use Chisel and get started please visit the Chisel Bootcamp. Otherwise, for all
things Chisel related including API documentation, news, etc, visit their website.

4.2 FIRRTL

FIRRTL is an intermediate representation of your circuit. It is emitted by the Chisel compiler and is used to trans-
late Chisel source files into another representation such as Verilog. Without going into too much detail, FIRRTL is
consumed by a FIRRTL compiler (another Scala program) which passes the circuit through a series of circuit-level
transformations. An example of a FIRRTL pass (transformation) is one that optimizes out unused signals. Once the
transformations are done, a Verilog file is emitted and the build process is done.

For more information on please visit their website.

23

https://chisel.eecs.berkeley.edu/
https://github.com/freechipsproject/chisel-bootcamp
https://chisel.eecs.berkeley.edu/
https://github.com/freechipsproject/firrtl
https://freechipsproject.github.io/firrtl/

REBAR Documentation, Release 0.1

4.3 Barstools

Barstools is a collection of useful FIRRTL transformations and Compilers to help the build process. Included in
the tools are a MacroCompiler (used to map Chisel memory constructs to vendor SRAMs), FIRRTL transforms (to
separate harness and top-level SoC files), and more.

24 Chapter 4. Tools

CHAPTER 5

VLSI Production

The REBAR framework aim to provide wrappers to a general VLSI flow. In particular, we aim to support the HAM-
MER flow.

5.1 HAMMER

HAMMER is a physical design generator that wraps around vendor specific technologies and tools to provide a single
API to create ASICs. HAMMER allows for reusability in ASIC design while still providing the designers leeway to
make their own modifications.

For more information, read the HAMMER paper and see the GitHub repository.

25

https://github.com/ucb-bar/hammer
https://people.eecs.berkeley.edu/~edwardw/pubs/hammer-woset-2018.pdf
https://github.com/ucb-bar/hammer

REBAR Documentation, Release 0.1

26 Chapter 5. VLSI Production

CHAPTER 6

Indices and tables

• genindex

• modindex

• search

27

	Getting Started
	REBAR Basics
	Generators
	Tools
	Toolchains
	Sims
	VLSI

	Configs, Parameters, Mix-ins, and Everything In Between
	Parameters
	Configs
	Cake Pattern
	Mix-in
	Additional References

	Adding An Accelerator/Device
	Integrating into the Generator Build System
	MMIO Peripheral
	Adding a RoCC Accelerator
	Adding a DMA port

	Initial Repository Setup
	Checking out the sources
	Building a Toolchain

	Running A Simulation
	Software RTL Simulation
	FPGA Accelerated Simulation

	SoC Generator Config Mix-ins:
	Rocket Chip
	BOOM
	SiFive Blocks
	testchipip
	Icenet
	AWL

	Simulators
	Open Source Software RTL Simulators
	Verilator

	Commercial Software RTL Simulators
	VCS

	FPGA-Based Simulators
	FireSim

	Generators
	Rocket
	Berkeley Out-of-Order Machine (BOOM)
	Hwacha

	Tools
	Chisel
	FIRRTL
	Barstools

	VLSI Production
	HAMMER

	Indices and tables

