
baldrick Documentation
Release 0.2

Stuart Mumford and Thomas Robitaille

Nov 22, 2018

Contents

1 Getting started with building your bot 3

2 Available plugins and configuration 5

3 Setting up an app on Heroku 9

4 Registering and installing a GitHub app 11

5 Trying out components of the bot locally 13

6 API documentation 15

Python Module Index 21

i

ii

baldrick Documentation, Release 0.2

Baldrick is a Python package that provides a framework to set up a GitHub bot with minimal code and effort. If you
run into any issues, have requests for improvement, or would like to contribute, our GitHub repository is here

Contents 1

https://github.com/OpenAstronomy/baldrick

baldrick Documentation, Release 0.2

2 Contents

CHAPTER 1

Getting started with building your bot

We provide a simple template for the files needed to set up your bot at https://github.com/OpenAstronomy/baldrick/
tree/master/template. We take a look here at the minimal set of files required:

1.1 run.py

This is the main file that defines how you want your bot to behave. First, set up the bot using:

from baldrick import create_app
app = create_app('<your-bot-name>')

Then, optionally import any plugins you want to have available, including custom plugins if you have developed any
additional ones. The available plugins are:

import baldrick.plugins.circleci_artifacts
import baldrick.plugins.github_milestones
import baldrick.plugins.github_pull_requests
import baldrick.plugins.github_towncrier_changelog

And finally use the following to start up the bot:

import os
port = int(os.environ.get('PORT', 5000))
app.run(host='0.0.0.0', port=port, debug=False)

1.2 pyproject.toml

This file can be used to enable/disable any of the plugins that are available by default. See Available plugins and
configuration for more details.

3

https://github.com/OpenAstronomy/baldrick/tree/master/template
https://github.com/OpenAstronomy/baldrick/tree/master/template

baldrick Documentation, Release 0.2

1.3 Procfile

This should simply contain:

web: python -m run

and shouldn’t need to be modified further.

1.4 runtime.txt

This file specifies the Python runtime to use for your bot, for example:

python-3.6.5

Note that this should be Python 3.6 or later.

1.5 requirements.txt

This provides a list of packages required for your bot, and should include at the very least:

baldrick

1.6 Other files

Of course, don’t forget to include a README file and a LICENSE!

4 Chapter 1. Getting started with building your bot

CHAPTER 2

Available plugins and configuration

This page lists the available plugins. Note that to enable a plugin, your bot app should include an enabled = true
entry in the pyproject.toml file under the section for the specific plugin.

2.1 CircleCI Artifacts

The CircleCI service provides the option of storing build artifacts. The baldrick plugin will automatically post the link
to the artifacts as a status check in a GitHub pull request to avoid having to click through multiple pages to find the
link to the artifacts. To enable this plugin, include the following in your pyproject.toml file:

[tool.<your-bot-name>.circleci_artifacts]
enabled = true

You can then include additional sub-sections in the configuration for each set of artifacts, for example:

[tool.<your-bot-name>.circleci_artifacts.sphinx]
url = "html/index.html"
message = "This is the documentation"

The url item should be set to the file path of the artifacts, and the message is what will be shown in the status check.

2.2 Pull request handlers

We provide a plugin that will perform checks on a pull request and report the results back to the pull request, either as
a comment and a single status check, or individual status checks. Which checks are done are themselves plugins and
will be described in subsequent sections.

To enable pull request handlers, include the following in your pyproject.toml file:

[tool.<your-bot-name>.pull_requests]
enabled = true

5

https://circleci.com/docs/2.0/artifacts/

baldrick Documentation, Release 0.2

In addition, you can use the following configuration items if you wish to change the default behavior:

• post_pr_comment = false/true: if true, the results of the checks will be summarized in a comment,
and a single overall status check will be reported. If false, each check will be reported as a separate status
check. The default is false.

• skip_labels = []: this can be set to a list of GitHub labels which, if present, will cause the checks to be
skipped. Note that labels are case-sensitive. The default is an empty list.

• skip_fails = false/true: if true, if the checks are skipped due to skip_labels, then a failed
status check will be posted to the pull request. If false, the checks will be silently skipped. The default is
true.

By default, the comment/statuses posted by the bot should be informative, but if you wish to change the word-
ing of these messages, you can override them with the following parameters - note that all these only apply when
post_pr_comment is true:

• skip_message = "...": the message to display in a comment if the checks are skipped due to
skip_labels

• fail_prologue = "..." and fail_epilogue = "...": the text to include before and after the
results of the checks in the comment.

• fail_status = "..." and pass_status = "...": the message to show in the overall status check.

• all_passed_message = "...": the message to show in a comment if all checks passed.

• pull_request_substring: a string that can be used to identify previous comments posted by the bot.
This should be a string common to all_passed_message, and fail_prologue or fail_epilogue.

2.2.1 GitHub milestone checker

This pull request handler plugin checks whether the milestone has been set. To enable this plugin, include the following
in your pyproject.toml file:

[tool.<your-bot-name>.milestones]
enabled = true

If you wish to customize the message shown in the results of the check, you can use the missing_message =
"..." and present_message = "..." configuration items.

2.2.2 Towncrier changelog checker

Another built-in pull request handler plugin can be used to check that towncrier changelog changes in a pull request
are consistent with other details about the pull request (e.g. the pull request number). To enable this plugin, include
the following in your pyproject.toml file:

[tool.<your-bot-name>.towncrier_changelog]
enabled = true

This plugin has the following additional configuration items:

• verify_pr_number = true: whether to check that the name of the towncrier file added is consistent with
the pull request number.

• changelog_skip_label = "...": the name of a GitHub label which, if present, causes the towncrier
changelog checks to be skipped.

6 Chapter 2. Available plugins and configuration

https://github.com/hawkowl/towncrier

baldrick Documentation, Release 0.2

• help_url = "...": this can be set to the URL to use for the status check ‘Details’ link - you can set this
to a URL explaining how to use towncrier for example.

By default, the comment/statuses posted by the bot should be informative, but if you wish to change the wording of
these messages, you can override them with the following parameters:

• changelog_exists = "..." and changelog_missing = "...": the messages to use when a
changelog entry exists or is missing.

• number_correct = "..." and number_incorrect = "...": the messages to use when a
changelog entry has the correct or incorrect pull request number.

• type_correct = "..." and type_incorrect = "...": the messages to use when a changelog
entry is not of the right type.

2.2.3 Custom plugin

If you want to write your own pull request checker, import pull_request_handler from baldrick as follows:

from baldrick.plugins.github_pull_requests import pull_request_handler

then use it to decorate a function of the form:

@pull_request_handler
def check_changelog_consistency(pr_handler, repo_handler):

...

This function will be called with pr_handler, an instance of PullRequestHandler, and repo_handler, an
instance of RepoHandler (click on the class names to find out the available properties/methods).

Your function should then return either None (no check results), or a dictionary where each key is the code name for
one of the checks (this will be used to match checks with previous checks, so make sure this is consistent across calls),
and the value should be a dictionary with two entries: state, which can be set to 'failure' or 'success', and
description, which gives a description of the check results.

2.2. Pull request handlers 7

baldrick Documentation, Release 0.2

8 Chapter 2. Available plugins and configuration

CHAPTER 3

Setting up an app on Heroku

Once you have an app ready to go using baldrick, you can deploy it to any server you want. Here we provide
instructions on setting it up on Heroku.

To start off, create a free account on Heroku if you don’t already have one. When you see the option to create a new
app, select it (ignore the “add to pipeline” option). Give a name to your app; You need to select a name that is not
already taken and it does not have to be the same as the bot’s name here.

You should now be on the “Deploy” section. Again, ignore the pipeline option. Select Github as “Deployment
Method”. Enter the relevant GitHub organization or account that the bot resides in (this should be automatically
populated if you have given Heroku access to your GitHub account) and type in the bot’s repository name (either this
bot or a forked version of it).

If you want to enable automatic deployment from a selected branch of the repository, click the “Enable Automatic
Deploys” button. This will pick up changes to the given branch and re-deploy the bot as needed. For most cases, you
don’t need the “wait for CI to pass before deploy” option as the bot is already tested here.

For the first time, you also need to manually deploy the bot by clicking “Deploy Branch”.

Once it is successfully deployed, and once you have followed the instructions to add the app to GitHub (see Registering
and installing a GitHub app) go to “Settings” tab of the app on Heroku and you can customize its behavior using
“Config Vars”. This is the only custom configuration on Heroku and can be set through the Heroku admin interface,
as mentioned. The main required environment variables (also see “Authentication” section below) are:

• GITHUB_APP_INTEGRATION_ID, which should be set to the integration ID provided by GitHub app (see
“GitHub settings” section below) under “General Settings”, specifically “About. . . ID”. This is a numerical
integer value.

• GITHUB_APP_PRIVATE_KEY, which is generated by the GitHub app (see “GitHub settings” section below).
This private key should look like:

` -----BEGIN RSA PRIVATE KEY----- <some random characters> -----END RSA
PRIVATE KEY----- `

The whole key, including the BEGIN and END header and footer should be pasted into the field.

9

baldrick Documentation, Release 0.2

10 Chapter 3. Setting up an app on Heroku

CHAPTER 4

Registering and installing a GitHub app

4.1 Registering the app

Once you have set up the bot on a server (e.g. Setting up an app on Heroku), you will need to tell GitHub about the
app. To add the bot to your own organization or account, go to your GitHub organization or account URL (not the
repository) and then its settings. Then, click on “Developer settings” at the very bottom of the left navigation bar and
the “New GitHub App” button on top right.

Give your bot a “GitHub App name” as you want it to appear on GitHub activities. Under “Homepage URL”, enter
the GitHub repository URL where the bot code resides (either here or your fork, as appropriate).

For the User authorization callback URL, it should be in the format of http://<heroku-bot-name>.
herokuapp.com/installation_authorized.

For the Webhook URL, it should be in the format of http://<heroku-bot-name>.herokuapp.com/
github.

You can ignore “Setup URL” and “Webhook secret”. It would be useful to provide a description of what your bot
intends to do but not required.

The permissions of the app should be read/write access to Commit statuses, Issues, and Pull requests. Once you
have checked these options, you will see extra “Subscribe to events” entries that you can check as well. For the events,
it should be sufficient to only check Status, Issue comment, Issues, Pull request, Pull request review, and Pull
request review comment.

It is up to you to choose whether you want to allow your GitHub app here to be installed only on your account or by
any user or organization.

Once you have clicked “Create GitHub App” button, you can go back to the app’s “General” settings and upload a
logo, which is basically a profile picture of your bot.

11

baldrick Documentation, Release 0.2

4.2 Install the bot

Go to https://github.com/apps/<github-app-name>. Then, click on the big green “Install” button.
You can choose to install the bot on all or select repositories under your account or organization. It is recommended
to only install it for select repositories by start typing a repository name and let auto-completion do the hard work for
you (repeat this once per repository). Once you are done, click “Install”.

After a successfull installation, you will be taken to a https://github.com/settings/installations/
<installation-number> page. This page is also accessible from your account or organization settings in “Ap-
plications”, specifically under “Installed GitHub Apps”. You can change the installation settings by clicking the
“Configure” button next to the listed app, if desired.

12 Chapter 4. Registering and installing a GitHub app

CHAPTER 5

Trying out components of the bot locally

5.1 GitHub API

The different components of the bot interact with GitHub via a set of helper classes that live in baldrick.github.
These classes are RepoHandler, IssueHandler, and PullRequestHandler. It is possible to try these out
locally, at least for the parts of the GitHub API that do not require authentication. For example, the following should
work:

>>> from baldrick.github.github_api import RepoHandler, IssueHandler,
→˓PullRequestHandler
>>> repo = RepoHandler('astropy/astropy')
>>> repo.get_issues('open', 'Close?')
[6025, 5193, 4842, 4549, 4058, 3951, 3845, 2603, 2232, 1920, 1024, 435, 383, 282]
>>> issue = IssueHandler('astropy/astropy', 6597)
>>> issue.labels
['Bug', 'coordinates']
>>> pr = PullRequestHandler('astropy/astropy', 6606)
>>> pr.labels
['Enhancement', 'Refactoring', 'testing', 'Work in progress']
>>> pr.last_commit_date
1506374526.0

However since these are being run un-authenticated, you may quickly run into the GitHub public API limits. If you
are interested in authenticating locally, see the Authenticating locally section below.

5.2 Authenticating locally

In some cases, you may want to test the bot locally as if it was running on Heroku. In order to do this you will need to
make sure you have all the environment variables described above set correctly.

The main ones to get right as far as authentication is concerned are as follows (see Setting up an app on Heroku for
further details):

13

baldrick Documentation, Release 0.2

• GITHUB_APP_INTEGRATION_ID

• GITHUB_APP_PRIVATE_KEY

The last thing you will need is an Installation ID - a GitHub app can be linked to different GitHub accounts, and for
each account or organization, it has a unique ID. You can find out this ID by going to Your installations and then
clicking on the settings box next to the account where you have a test repository you want to interact with. The URL
of the page you go to will contain the Installation ID and look like:

https://github.com/settings/installations/36238

In this case, 36238 is the installation ID. Provided you set the environment variables correctly, you should then be able
to do e.g.:

>>> from baldrick.github.github_api import IssueHandler
>>> issue = IssueHandler('astrofrog/test-bot', 5, installation=36238)
>>> issue.submit_comment('I am alive!')

Note: Authentication will not work properly if you have a .netrc file in your home directory, so you will need to
rename this file temporarily.

14 Chapter 5. Trying out components of the bot locally

https://github.com/settings/installations/36238

CHAPTER 6

API documentation

6.1 baldrick.github.github_api Module

Module to handle GitHub API.

6.1.1 Classes

GitHubHandler(repo[, installation]) A base class for things that represent things the github
app can operate on.

RepoHandler(repo[, branch, installation])
PullRequestHandler(repo, number[, installa-
tion])

GitHubHandler

class baldrick.github.github_api.GitHubHandler(repo, installation=None)
Bases: object

A base class for things that represent things the github app can operate on.

Methods Summary

get_config_value(cfg_key[, cfg_default,
branch])

Convenience method to extract user configuration
values.

get_file_contents(path_to_file[, branch])
get_repo_config([branch, path_to_file, . . .]) Load configuration from the repository.
invalidate_cache()
list_statuses(commit_hash) List status messages on a commit on GitHub.

Continued on next page

15

baldrick Documentation, Release 0.2

Table 2 – continued from previous page
set_status(state, description, context, . . .) Set status message on a commit on GitHub.

Methods Documentation

get_config_value(cfg_key, cfg_default=None, branch=None)
Convenience method to extract user configuration values.

Values are extracted from the repository configuration, and if not defined, they are extracted from the
global app configuration. If this does not exist either, the value is set to the cfg_default argument.

get_file_contents(path_to_file, branch=None)

get_repo_config(branch=None, path_to_file=’pyproject.toml’, warn_on_failure=True)
Load configuration from the repository.

Parameters

• branch (str) – The branch to read the config file from. (Will default to ‘master’)

• path_to_file (str) – Path to the pyproject.toml file in the repository. Will de-
fault to the root of the repository.

• warn_on_failure (bool) – Emit warning on failure to load the pyproject file.

Returns cfg – Configuration parameters.

Return type baldrick.config.Config

invalidate_cache()

list_statuses(commit_hash)
List status messages on a commit on GitHub.

Parameters commit_hash (str) – The commit has to get the statuses for

set_status(state, description, context, commit_hash, target_url=None)
Set status message on a commit on GitHub.

Parameters

• state ({ 'pending' | 'success' | 'error' | 'failure' }) – The
state to set for the pull request.

• description (str) – The message that appears in the status line.

• context (str) – A string used to identify the status line.

• commit_hash (str) – The commit hash to set the status on.

• target_url (str or None) – Link to bot comment that is relevant to this status, if given.

RepoHandler

class baldrick.github.github_api.RepoHandler(repo, branch=’master’, installa-
tion=None)

Bases: baldrick.github.github_api.GitHubHandler

Methods Summary

16 Chapter 6. API documentation

baldrick Documentation, Release 0.2

get_all_labels() Get all label options for this repo
get_file_contents(path_to_file[, branch])
get_issues(state, labels[, exclude_pr]) Get a list of issues.
open_pull_requests()

Methods Documentation

get_all_labels()
Get all label options for this repo

get_file_contents(path_to_file, branch=None)

get_issues(state, labels, exclude_pr=True)
Get a list of issues.

Parameters

• state ({'open', ..}) – Status of the issues.

• labels (str) – List of comma-separated labels; e.g., Closed?.

• exclude_pr (bool) – Exclude pull requests from result.

Returns issue_list – A list of matching issue numbers.

Return type list

open_pull_requests()

PullRequestHandler

class baldrick.github.github_api.PullRequestHandler(repo, number, installa-
tion=None)

Bases: baldrick.github.github_api.IssueHandler

Attributes Summary

base_branch
base_sha
head_branch
head_repo_name
head_sha
json
last_commit_date
milestone
user

Methods Summary

get_file_contents(path_to_file[, branch]) Get the contents of a file.
get_modified_files() Get all the filenames of the files modified by this PR.
get_repo_config([branch, path_to_file, . . .]) Load user configuration for bot.

Continued on next page

6.1. baldrick.github.github_api Module 17

baldrick Documentation, Release 0.2

Table 5 – continued from previous page
has_modified(filelist) Check if PR has modified any of the given list of

filename(s).
list_statuses([commit_hash]) List status messages on a commit on GitHub.
set_status(state, description, context[, . . .]) Set status message on a commit on GitHub.
submit_review(decision, body) Submit a review comment to the pull request

Attributes Documentation

base_branch

base_sha

head_branch

head_repo_name

head_sha

json

last_commit_date

milestone

user

Methods Documentation

get_file_contents(path_to_file, branch=None)
Get the contents of a file.

This will get the file from the head branch of the PR by default.

get_modified_files()
Get all the filenames of the files modified by this PR.

get_repo_config(branch=None, path_to_file=’pyproject.toml’, warn_on_failure=True)
Load user configuration for bot.

Parameters

• branch (str) – The branch to read the config file from. (Will default to the base branch
of the PR i.e. the one the PR is opened against.)

• path_to_file (str) – Path to the pyproject.toml file in the repository. Will de-
fault to the root of the repository.

• warn_on_failure (bool) – Emit warning on failure to load the pyproject file.

Returns cfg – Configuration parameters.

Return type dict

has_modified(filelist)
Check if PR has modified any of the given list of filename(s).

list_statuses(commit_hash=’head’)
List status messages on a commit on GitHub.

Parameters commit_hash (str, optional) – The commit hash to set the status on. De-
faults to “head” can also be “base”.

18 Chapter 6. API documentation

baldrick Documentation, Release 0.2

set_status(state, description, context, commit_hash=’head’, target_url=None)
Set status message on a commit on GitHub.

Parameters

• state ({ 'pending' | 'success' | 'error' | 'failure' }) – The
state to set for the pull request.

• description (str) – The message that appears in the status line.

• context (str) – A string used to identify the status line.

• commit_hash (str) – The commit hash to set the status on. Defaults to “head” can also
be “base”.

• target_url (str or None) – Link to bot comment that is relevant to this status, if given.

submit_review(decision, body)
Submit a review comment to the pull request

Parameters

• decision ({ 'approve' | 'request_changes' | 'comment' }) – The
decision as to whether to aprove or reject the changes so far.

• body (str) – The body of the review comment

6.2 baldrick.github.github_auth Module

6.2.1 Functions

get_app_name() Return the login name of the authenticated app.
get_installation_token(installation) Get access token for installation
get_json_web_token() Prepares the JSON Web Token (JWT) based on the pri-

vate key.
github_request_headers(installation)
netrc_exists()
repo_to_installation_id(repository) Return the installation ID for a repository.
repo_to_installation_id_mapping() Returns a dictionary mapping full repository name to

installation id.

get_app_name

baldrick.github.github_auth.get_app_name()
Return the login name of the authenticated app.

get_installation_token

baldrick.github.github_auth.get_installation_token(installation)
Get access token for installation

6.2. baldrick.github.github_auth Module 19

baldrick Documentation, Release 0.2

get_json_web_token

baldrick.github.github_auth.get_json_web_token()
Prepares the JSON Web Token (JWT) based on the private key.

github_request_headers

baldrick.github.github_auth.github_request_headers(installation)

netrc_exists

baldrick.github.github_auth.netrc_exists()

repo_to_installation_id

baldrick.github.github_auth.repo_to_installation_id(repository)
Return the installation ID for a repository.

repo_to_installation_id_mapping

baldrick.github.github_auth.repo_to_installation_id_mapping()
Returns a dictionary mapping full repository name to installation id.

20 Chapter 6. API documentation

Python Module Index

b
baldrick.github.github_api, 15
baldrick.github.github_auth, 19

21

baldrick Documentation, Release 0.2

22 Python Module Index

Index

B
baldrick.github.github_api (module), 15
baldrick.github.github_auth (module), 19
base_branch (baldrick.github.github_api.PullRequestHandler

attribute), 18
base_sha (baldrick.github.github_api.PullRequestHandler

attribute), 18

G
get_all_labels() (baldrick.github.github_api.RepoHandler

method), 17
get_app_name() (in module

baldrick.github.github_auth), 19
get_config_value()

(baldrick.github.github_api.GitHubHandler
method), 16

get_file_contents()
(baldrick.github.github_api.GitHubHandler
method), 16

get_file_contents()
(baldrick.github.github_api.PullRequestHandler
method), 18

get_file_contents()
(baldrick.github.github_api.RepoHandler
method), 17

get_installation_token() (in module
baldrick.github.github_auth), 19

get_issues() (baldrick.github.github_api.RepoHandler
method), 17

get_json_web_token() (in module
baldrick.github.github_auth), 20

get_modified_files()
(baldrick.github.github_api.PullRequestHandler
method), 18

get_repo_config()
(baldrick.github.github_api.GitHubHandler
method), 16

get_repo_config()
(baldrick.github.github_api.PullRequestHandler

method), 18
github_request_headers() (in module

baldrick.github.github_auth), 20
GitHubHandler (class in baldrick.github.github_api),

15

H
has_modified() (baldrick.github.github_api.PullRequestHandler

method), 18
head_branch (baldrick.github.github_api.PullRequestHandler

attribute), 18
head_repo_name (baldrick.github.github_api.PullRequestHandler

attribute), 18
head_sha (baldrick.github.github_api.PullRequestHandler

attribute), 18

I
invalidate_cache()

(baldrick.github.github_api.GitHubHandler
method), 16

J
json (baldrick.github.github_api.PullRequestHandler

attribute), 18

L
last_commit_date (baldrick.github.github_api.PullRequestHandler

attribute), 18
list_statuses() (baldrick.github.github_api.GitHubHandler

method), 16
list_statuses() (baldrick.github.github_api.PullRequestHandler

method), 18

M
milestone (baldrick.github.github_api.PullRequestHandler

attribute), 18

N
netrc_exists() (in module

baldrick.github.github_auth), 20

23

baldrick Documentation, Release 0.2

O
open_pull_requests()

(baldrick.github.github_api.RepoHandler
method), 17

P
PullRequestHandler (class in

baldrick.github.github_api), 17

R
repo_to_installation_id() (in module

baldrick.github.github_auth), 20
repo_to_installation_id_mapping() (in

module baldrick.github.github_auth), 20
RepoHandler (class in baldrick.github.github_api), 16

S
set_status() (baldrick.github.github_api.GitHubHandler

method), 16
set_status() (baldrick.github.github_api.PullRequestHandler

method), 18
submit_review() (baldrick.github.github_api.PullRequestHandler

method), 19

U
user (baldrick.github.github_api.PullRequestHandler

attribute), 18

24 Index

	Getting started with building your bot
	Available plugins and configuration
	Setting up an app on Heroku
	Registering and installing a GitHub app
	Trying out components of the bot locally
	API documentation
	Python Module Index

