
AXEMAS Documentation
Release 1.0

AXANT

Sep 27, 2017

Contents

1 Getting Started 3
1.1 Basic Project Introduction . 3
1.2 Binding to Native Code . 3

i

ii

AXEMAS Documentation, Release 1.0

Development Framework for MultiPlatform hybrid mobile applications.

AXEMAS handles the whole navigation of the application and transition between views, while it permits to implement
the views content in HTML itself.

AXEMAS works using sections, each Section represents the content of the view and is loaded from an HTML
file or from an external URL.

Whenever native code requires to be attached to a section, it is possible to attach a SectionController to a
Section itself.

Contents 1

AXEMAS Documentation, Release 1.0

2 Contents

CHAPTER 1

Getting Started

To Install AXEMAS you need Python 2.7 with the pip package manager installed as AXEMAS uses Python to
generate project skeletons. To install pip follow the Pip Install Guidelines. Then you can install AXEMAS toolkit
using:

$ pip install axemas

To create a new AXEMAS project you can then use the axemas-quickstart command, it will automatically
create a new AXEMAS project:

$ gearbox axemas-quickstart -n ProjectName -p com.company.example

See Quickstarting a New Application for additional details on the gearbox command.

Basic Project Introduction

By default AXEMAS will create for you a basic application for iOS and Android. Content of the application will be
available inside www directory and the application will load www/sections/index/index.html on startup.

The application can be run by simply opening in Android Studio or XCode the android and ios projects inside the
newly created application directory and then pressing the Run button inside the IDE.

To start customizing the application and providing your own code, you can open the www directory in your favourite
editor and start editing sections.

From the index.html section, you can then use the JavaScript API to push and pop additional sections and implement
your whole Application.

Binding to Native Code

The previous code shows how to load HTML based sections and rely on the JavaScript API to implement your web
application. When more advanced features or interaction with the hardware is needed you might need to get to native

3

https://pip.pypa.io/en/latest/installing.html

AXEMAS Documentation, Release 1.0

code level. AXEMAS has been designed specifically to make it as easy as possible to work with native code, the main
difference with frameworks like Cordova is explicitly that AXEMAS makes native a first citizen of your application.

HTML sections loaded by your application are explicitly declared inside the application code itself
and the application window is explicitly create using makeApplicationRootController from the
NavigationSectionsManager

Inside your AppDelegate for iOS:

@implementation AppDelegate

- (BOOL)application:(UIApplication *)application
→˓didFinishLaunchingWithOptions:(NSDictionary *)launchOptions {

self.window.rootViewController = [NavigationSectionsManager
→˓makeApplicationRootController:@[@{

@"title": @"Home",
@"url": @"www/home.html",

}]];

[self.window makeKeyAndVisible];
return YES;

}

@end

Or in your AXMActivity subclass onCreate() method for Android:

public class MainActivity extends AXMActivity {
@Override
protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

if (savedInstanceState == null) {
JSONObject data = new JSONObject();
try {

data.put("url", "www/home.html");
data.put("title", "Home");

} catch (JSONException e) {
e.printStackTrace();

}

NavigationSectionsManager.makeApplicationRootController(this, data);
}

}
}

The binding between the HTML Sections and native code is performed using SectionControllers, to link a
section to a section controller is as easy as registering the controller class for the specified route:

[NavigationSectionsManager registerController:[MySecionController class] forRoute:@
→˓"www/mysection.html"];

NavigationSectionsManager.registerController(this, MySecionController.class, "www/
→˓mysection.html");

To get started using SectionControllers read the iOS API and Android API.

Contents:

4 Chapter 1. Getting Started

AXEMAS Documentation, Release 1.0

iOS API

Declaring Sections

The main application controller (window.rootViewController) must be created using
[NavigationSectionsManager makeApplicationRootController].

makeApplicationRootController accepts an array of section data, each data will be used to create a tab with
a section inside.

To create an application with a stack of sections (using a Navigation Controller), and not tabs, just pass data for a
single section data:

[NavigationSectionsManager makeApplicationRootController:@[@{
@"url":@"www/index.html",
@"title":@"Home",

}]
];

The created section will contain content of www/index.html and will be titled Home. Further sections can be
pushed onto the navigation stack using axemas.goto(dictionary) from Javascript.

To create an application with a TabBar just pass data for multiple sections into the
makeApplicationRootController array, each section must have an url pointing to the section path
and can have a title and icon which will be used as title and icon for the TabBar tabs.

An application with sidebar can also be created by passing a section data as sidebar to the
makeApplicationRootController:

[NavigationSectionsManager
makeApplicationRootController:@[@{

@"url":@"www/index.html",
@"title":@"Home",
@"toggleSidebarIcon":@"reveal-icon"}]

withSidebar:@{@"url":@"www/sidebar.html"}
];

The sidebar will be created with content from the section data passed in withSidebar parameter, sections that have
a toggleSidebarIcon value in section data will provide a button to open and close the sidebar with the given
icon. If the value is omitted, even when the sidebar is enabled, there will be no button to show it.

Section Controllers

Section controllers permit to attach native code to each section, doing so is as simple as subclassing section controllers
and providing sectionWillLoad and sectionDidLoad methods.

Inside those methods it is possible to register additional native functions on the javascript bridge.

Inside viewWillLoad method of SectionController subclass it is possible to register handlers which will be
available in Javascript using axemas.call:

@implementation HomeSectionController

- (void)sectionWillLoad {
[self.section.bridge registerHandler:@"openMap" handler:^(id data,

→˓WVJBResponseCallback responseCallback) {
UINavigationController *navController = [NavigationSectionsManager

→˓activeNavigationController];

1.2. Binding to Native Code 5

AXEMAS Documentation, Release 1.0

[navController pushViewController:[[MapViewController alloc] init]
→˓animated:YES];

if (responseCallback) {
responseCallback(nil);

}
}];

}

@end

Registering the SectionController for a section can be done using the NavigationSectionsManager:

[NavigationSectionsManager registerController:[HomeSectionController class] forRoute:@
→˓"www/index.html"];

Calling JS from native code is also possible using the section bridge, after you registered your handlers in JavaScript
with axemas.register:

axemas.register("handler_name", function(data, callback) {
callback({data: data});

});

Calling handler_name from native code from a SectionController is possibile using the javascript bridge
callHandler:

[self.section.bridge callHandler:@"handler_name"
data:@{@"key": @"value"}

responseCallback:^(id responseData) {
NSLog(@"Callback with responseData: %@", responseData);

}];

SectionController available callbacks:

• sectionDidLoad triggered when the webpage finished loading

• sectionWillLoad just before the webpage will start to load

• sectionViewWillAppear when the section is going to be displayed to the user.

• sectionViewWillDisappear when the section is going to disappear to the user.

• sectionOnViewCreate:(UIView)view* when the section view is first created.

• (BOOL)isInsideWebView:(CGPoint)point withEvent:(UIEvent)event* whenever a touch event for the webview
happens, can be used to return block events to be trapped by webview.

• navigationbarRightButtonAction Triggered whenever the right button in the navigationBar is pressed.

NavigationSectionsManager

The NavigationSectionsManager manages the whole AXEMAS navigation system, creates the sections and
keeps track of the current Navigation Controller, TabBar Controller and Sidebar Controller which are exposed through
NavigationSectionsManager.

(void)registerDefaultController:(Class)controllerClass
Registers a given Section Controllers for the specified route (html file).

6 Chapter 1. Getting Started

AXEMAS Documentation, Release 1.0

(void)registerController:(Class)controllerClass forRoute:(NSString*)path
Registers a given Section Controllers as the default controller which is used for all the sections that do not
provide a specific section controller.

(UIViewController*)makeApplicationRootController:(NSArray*)tabs
Creates one or more Section Controllers. The first controller specified in the array is considered the root con-
troller. If more than one controller is provided a TabBar is created with each controller being a Tab.

The tabs list should contain dictionaries in the format:

@{
@"url": @"www/index.html",
@"title": @"Home",
@"toggleSidebarIcon": @"reveal-icon"

}

(UIViewController*)makeApplicationRootController:(NSArray*)tabs withSidebar:(NSDictionary*)sidebarData
Creates one or more Section Controllers. The first controller specified in the array is considered the root con-
troller. If more than one controller is provided a TabBar is created with each controller being a Tab.

This also creates a SideBar with the Section Controllers described by sidebarData as the sidebar content.

The tabs list and sidebarData should contain dictionaries in the format:

@{
@"url": @"www/index.html",
@"title": @"Home",
@"toggleSidebarIcon": @"reveal-icon"

}

(UINavigationController*)activeNavigationController
Returns the UINavigationController of the application. This is the object that manages the navigation stack
(pushing and popping section controllers). See reference for a list of provided methods.

(UIViewController*)activeController
Returns the current Section Controllers on top of the navigation stack. This is usually the view that the user is
currently looking at.

(id)activeSidebarController
Returns the AXMSidebarController of the application. This is the object that manages the sidebar of the
application if available. It also provides the following methods to manage the sidebar:

•(IBAction)revealToggle:(id)sender

•UIViewController *rearViewController

•FrontViewPosition frontViewPosition

•(void)setFrontViewPosition:(FrontViewPosition)frontViewPosition
animated:(BOOL)animated

(void)setSidebarButtonVisibility:(BOOL)visible
Hides/Shows the sidebar button in the navigationbar

(void)goto:(NSDictionary*)data animated:(BOOL)animated
Pushes on the view navigation stack the given Section Controllers. This works like goto and accepts data as
NSDictionary with the same data as the related Javascript Object.

(void)showProgressDialog
Displays a spinner on top of the application. This is automatically called whenever a new section is loaded.

1.2. Binding to Native Code 7

https://developer.apple.com/library/ios/documentation/UIKit/Reference/UINavigationController_Class/

AXEMAS Documentation, Release 1.0

(void)hideProgressDialog
Hides the currently displayed spinner.

(void)store:(NSString*)value withKey:(NSString *)key
Stores a new value in the application persistent storage.

(NSString *)getValueFrom:(NSString*)key
Retrieves a previously stored value from the application persistent storage.

(void)removeValueFrom:(NSString*)key
Deletes a value from the application persistent storage.

Android API

Declaring Sections

The application MainActivity must extend AXMActivity which creates the application main structure. In the
onCreate of your MainActivity initialize the root section by calling NavigationSectionsManager.
makeApplicationRootController() The makeApplicationRootController() accepts a
JSONObject containing the section data:

JSONObject data = new JSONObject();
try {

data.put("url", "www/index.html");
data.put("title", "Home");

} catch (JSONException e) {
e.printStackTrace();

}
NavigationSectionsManager

.makeApplicationRootController(this, data);

The created section will contain content of www/index.html and will be titled Home. Further sections can be
pushed onto the navigation stack using axemas.goto(dictionary) from Javascript.

An application with sidebar can also be created by passing a section data as sidebar to the
makeApplicationRootController:

JSONObject data = new JSONObject();
try {

data.put("url", "www/index.html");
data.put("toggleSidebarIcon", "reveal-icon");
data.put("title", "Home");

} catch (JSONException e) {
e.printStackTrace();

}
NavigationSectionsManager

.makeApplicationRootController(this, data, "www/sidebar.html");

The sidebar will be created with content from the section data passed as sidebarURL`` parameter,
sections that have a ``toggleSidebarIcon value in section data will provide a button to open and
close the sidebar with the given icon. If the value is omitted, even when the sidebar is enabled, there will be no button
to show it.

8 Chapter 1. Getting Started

AXEMAS Documentation, Release 1.0

Section Controllers

Section controllers permit to attach native code to each section, doing so is as simple as subclassing section controllers
and providing sectionWillLoad and sectionDidLoad methods.

Inside those methods it is possible to register additional native functions on the javascript bridge.

Inside sectionWillLoad method of SectionController subclass it is possible to register handlers which
will be available in Javascript using axemas.call:

this.getSection().getJSBridge().registerHandler("openMap", new JavascriptBridge.
→˓Handler() {

@Override
public void call(Object data, JavascriptBridge.Callback callback) {

String uri = "https://maps.google.com/maps";
Intent i = new Intent(Intent.ACTION_VIEW, Uri.parse(uri));
section.startActivity(i);

}
});

Registering the SectionController for a section can be done using the NavigationSectionsManager:

NavigationSectionsManager
.registerController(this,HomeSectionController.class, "www/index.html");

Calling JS from native code is also possible using the section bridge, after you registered your handlers in JavaScript
with axemas.register:

axemas.register("handler_name", function(data, callback) {
callback({data: data});

});

Calling handler_name from native code from a SectionController is possibile using the javascript bridge
callHandler:

this.getSection().getJSBridge().callJS("send-passenger-count", data, new
→˓JavascriptBridge.AndroidCallback() {

@Override
public void call(JSONObject data) {

Log.d("axemas", "Callback with responseData: "+ data.toString());
}

});

SectionController available callbacks:

• sectionDidLoad triggered when the webpage finished loading

• sectionWillLoad just before the webpage will start to load

• sectionOnViewCreate(ViewGroup view) when the fragment is first created

• boolean isInsideWebView(MotionEvent ev) whenever a touch event for the webview happens, can be used to
return block events to be trapped by webview.

• sectionFragmentWillPause triggered by fragment’s onPause

• sectionFragmentWillResume triggered by fragment’s onResume

• sectionFragmentOnActivityResult triggered by fragment’s onActivityResult

1.2. Binding to Native Code 9

AXEMAS Documentation, Release 1.0

• sectionFragmentOnSaveInstanceState triggered by fragment onSaveInstanceState

• sectionFragmentOnCreateView triggered by fragment View Creation during inflation

• actionbarRightButtonAction triggered whenever the right button is pressed in the actionbar

NavigationSectionsManager

The NavigationSectionsManager manages the whole AXEMAS navigation system, creates the sec-
tions and keeps track of the current Fragment Stack, Action Bar and Sidebar which are exposed through
NavigationSectionsManager methods.

public static void registerController(Context context, Class controllerClass, String route)
Registers a given Section Controllers for the specified route (html file).

public static void registerDefaultController(Context context, Class controllerClass)
Registers a given Section Controllers as the default controller which is used for all the setions that do not provide
a specific section controller.

public static void makeApplicationRootController(Context context, JSONObject data)
Creates a new application root Section Controllers (must be called from MainActivity.onCreate). data
is the details of the section controller as you would pass them to goTo.

public static void makeApplicationRootController(Context context, JSONObject data, String side-
barUrl)

Creates a new application root Section Controllers (must be called from MainActivity.onCreate). data
is the details of the section controller as you would pass them to goTo. This method also adds a sidebar,
sidebarUrl is the path of the section html file that should be loaded inside the sidebar.

public static void makeApplicationRootController(Context context, JSONObject data, JSONOb-
ject... tabs)

Creates a new application root Section Controllers (must be called from MainActivity.onCreate). data
is the details of the section controller as you would pass them to goTo. This method also provides additional
tabs to the application, the root section controller is placed in the first tab, while the other tabs are also
additional section controllers data used to fill additional tabs in the tabbar.

public static void makeApplicationRootController(Context context, JSONObject data, String side-
barUrl, JSONObject... tabs)

Creates a new application root Section Controllers (must be called from MainActivity.onCreate). data
is the details of the section controller as you would pass them to goTo. This method also adds a sidebar,
sidebarUrl is the path of the section html file that should be loaded inside the sidebar. This method also
provides additional tabs to the application, the root section controller is placed in the first tab, while the other
tabs are also additional section controllers data used to fill additional tabs in the tabbar.

public static void goTo(Context context, JSONObject data)
Pushes on the view navigation stack the given Section Controllers. This works like goto and accepts data as
JSONObject with the same data as the related Javascript Object.

public static AXMNavigationController getActiveNavigationController(AXMActivity activity)
Returns the AXMNavigationController of the application. This is the object that manages the navigation
stack (pushing and popping section controllers) and provides the following methods to manage the navigation
stack:

•void popFragments(final int fragmentsToPop) -> Pops up to fragmentsToPop frag-
ments (sections) from the navigation stack.

•void popFragmentsAndMaintain(final int maintainedFragmentsArg) -> Pops un-
til only maintainedFragmentsArg fragments (sections) are left on the stack.

10 Chapter 1. Getting Started

http://d.android.com/reference/android/content/Context.html
http://docs.oracle.com/javase/8/docs/api/java/lang/Class.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://d.android.com/reference/android/content/Context.html
http://docs.oracle.com/javase/8/docs/api/java/lang/Class.html
http://d.android.com/reference/android/content/Context.html
http://d.android.com/reference/android/content/Context.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://d.android.com/reference/android/content/Context.html
http://d.android.com/reference/android/content/Context.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://d.android.com/reference/android/content/Context.html

AXEMAS Documentation, Release 1.0

•void pushFragment(final Fragment fragment, final String tag) -> Pushes a
new Fragment on the navigation stack.

public static SectionFragment getActiveFragment(Context context)
Returns the current Section Controllers on top of the navigation stack. This is usually the view that the user is
currently looking at.

public static AXMTabBarController getTabBarController(AXMActivity activity)
Returns the AXMTabBarController of the application. This is the object that manages the application tabs
if available. It also provides the following methods to manage the tabs:

•int getSelectedTab() -> gets the index of the currently selected tab.

•void setSelectedTab(int idx) -> sets the currently selected tab.

public static AXMSidebarController getSidebarController(AXMActivity activity)
Returns the AXMSidebarController of the application. This is the object that manages the sidebar of the
application if available. It also provides the following methods to manage the sidebar:

•AXMSectionController getSidebarSectionController() -> Retrieves the Section Con-
trollers bound to the section loaded into the sidebar.

•void setSidebarButtonVisibility(boolean visible) -> Hides/Shows the sidebar but-
ton in the actionbar

•void setSideBarButtonIcon(String resourceName) -> Sets the sidebar button icon from
a project resource

•void setSidebarAnimationConfiguration(float alpha, int duration,
String hexColor) -> change the sidebar animation configuration.

•View enableFullSizeSidebar() -> Switches to full size sidebar mode. This moves the actionbar
inside the sidebar instead of being on top of both the sidebar and the content. It returns the actionbar View.

•boolean isOpening() -> Whenever the sidebar is open or not.

•void toggleSidebar(boolean visible) -> Sets sidebar visibility.

•void toggleSidebar() -> Toggles sidebar visibility.

public static void showProgressDialog(Context context)
Displays a spinner on top of the application. This is automatically called whenever a new section is loaded.

public static void hideProgressDialog(Context context)
Hides the currently displayed spinner.

public static void showDismissibleAlertDialog(Context context, String title, String message)
Displays an alert message with the specified title and message. By default only a dismiss button is pro-
vided.

public static void showDismissibleAlertDialog(Context context, AlertDialog.Builder builder)
New alert message built with the user provided AlertDialog.Builder dialog builder.

public static void enableBackButton(Context context, boolean toggle)
Enables/disables the back button in the application.

public static void store(Context context, String key, String value)
Stores a new value in the application persistent storage.

public static String getValueForKey(Context context, String key)
Retrieves a previously stored value from the application persistent storage.

public static void removeValue(Context context, String key)
Deletes a value from the application persistent storage.

1.2. Binding to Native Code 11

http://d.android.com/reference/android/app/Fragment.html
http://d.android.com/reference/android/content/Context.html
http://d.android.com/reference/android/content/Context.html
http://d.android.com/reference/android/content/Context.html
http://d.android.com/reference/android/content/Context.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://d.android.com/reference/android/content/Context.html
http://d.android.com/reference/android/app/AlertDialog.html
http://d.android.com/reference/android/content/Context.html
http://d.android.com/reference/android/content/Context.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://d.android.com/reference/android/content/Context.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://d.android.com/reference/android/content/Context.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html

AXEMAS Documentation, Release 1.0

JavaScript API

The JavaScript module axemas.js permits interaction with the native code of the application:

• goto

• gotoFromSidebar

• call

• alert

• dialog

• showProgressHUD

• hideProgressHUD

• getPlatform

• platformDetails

• storeData

• fetchData

• removeData

• log

goto

Pushes new section on the navigation stack. It is the equivalent of the iOS [NavigationSectionsManager
goto] and Android’s NavigationSectionsManager.goTo(). All three functions accept a dictionary as
payload which defines the extra actions the goto call must execute:

axemas.goto(
{"url":"www/home.html",
"title":"HOME",
"toggleSidebarIcon":"slide_icon",
"stackMaintainedElements": 0,
"stackPopElements": 0}

);

The payload structure is shared between JavaScript, Objective C and Java, and accepts the following parameters:

• url contains the local or remote address from which the WebView must load the content

• title (optional) is the tile show in the application’s ViewController / Action Bar.

• toggleSidebarIcon (optional) is the sidebar’s icon to be displayed and if missing a button to open the
sidebar will not be created

• actionbarRightIcon (optional) icon to display as a button on the right of the actionbar inside the tar-
get section, pressing the button triggers the navigationbarRightButtonAction event on section con-
trollers.

• stackMaintainedElements (optional) instructs the navigation stack to pop all views and maintain
the last X sections indicated on the bottom of the stack; it is ill advised to use in conjunction with
stackPopElements

• stackPopElements (optional) instructs the navigation stack to pop the first X sections; it is ill advised
to use in conjunction with stackMaintainedElements

12 Chapter 1. Getting Started

AXEMAS Documentation, Release 1.0

• animation (optional) only supported on iOS platform, can be used to change the default push/pop animation
in one of "fade" or "slidein" values

gotoFromSidebar

Same as goto but closes the sidebar and must be used only inside the sidebar section. Refer to goto:

axemas.gotoFromSidebar(
{"url":"www/home.html",
"title":"HOME",
"toggleSidebarIcon":"slide_icon",
"stackMaintainedElements": 0,
"stackPopElements": 0}

);

call

The call enables JavaScript to execute a native registered handler inside a SectionController:

axemas.call('openNativeController');

axemas.call('execute-and-return', '{"payload": "something"}', function(result) {
alert(JSON.strgify(result));

});

alert

Creates a native dismissible alert dialog with a title and a message:

axemas.alert('Alert title', "Alert message");

dialog

Generates a native dialog with a title, a message and a maximum of three buttons. When pressing a button a callback
returns the button’s value as integer, range [0-3]:

axemas.dialog('Dialog title', 'Dialog display message', ['Cancel', 'Ok'],
→˓function(data) {

axemas.alert('Pressed button', data.button);
});

showProgressHUD

Locks interface interaction by displaying a spinner on the screen. The same spinner is always displayed when lading
the contents of a page inside a section:

axemas.showProgressHUD();

1.2. Binding to Native Code 13

AXEMAS Documentation, Release 1.0

hideProgressHUD

Used to dismiss a previously displayed progressHUD:

axemas.hideProgressHUD();

getPlatform

Uses the navigator.userAgent object to determine if the current platform. Returns Android, iOS or
unsupported:

if (axemas.getPlatform() == 'your_platform') {
//do something

}

platformDetails

Getting information about device: model, systemName and systemVersion.

For example:

axemas.platformDetails(function(device_info) {
console.log(device_info);

});

// Example of the device_infor

//iOS Device
{model: "iPhone", systemVersion: "9.3", systemName: "iPhone OS"}

//Android Device
{model: "Nexus 5", systemName: "Android", systemVersion: "6.0.1"}

storeData

Uses the Native/WebView’s localSotrage for key/value storing. Data stored will be available next time the appli-
cation is launched:

axemas.storeData("key","only_string_values");

fetchData

Returns a previously stored value providing a key:

var value = axemas.fetchData("key");

removeData

Permanently removes the previously saved data from the locationStorage:

14 Chapter 1. Getting Started

AXEMAS Documentation, Release 1.0

axemas.removeData("key")

log

Utility for use native and javascript log system:

axemas.log("Hello World");

or:

axemas.log({'tag': 'CustomTAG', 'message': "Hello World"});

• tag is the tag for Android, default is AXEMAS_LOG

• message is the message of the log as String

Utilities

Crash Logging

Android

Splunk MINT is used to log crash reports. To enable it, it’s necessary to be registered on their service (https://mint.
splunk.com/) Next to the app creation on their portal initiate this code inside the Activity wich extends AXMActivity
with:

this.startCrashReporter();

The next step is to add this config string inside strings.xml file inside res/values folder inside your Android project.
This String resource contains the api-key got by Splunk MINT Portal for your application.

<string name=’splunk_api_key’></string>

In the end you have to configure gradle to work with the new Mint dependency required. Add this code to your
build.gradle project file:

repositories {
maven {

url "https://mint.splunk.com/gradle/"
}

}

dependencies {
compile 'com.splunk.mint:mint:4.2'

}

Once these 3 steps are done you have a fully implemented crash reporter on your Axemas Application.

AXEMAS CookBook

Updating Sidebar Whenever it appears

By default content of a section is only loaded once, the first time the section itself appears. The Sidebar specifically is
only loaded when the application starts, and is never reloaded again.

1.2. Binding to Native Code 15

https://mint.splunk.com/
https://mint.splunk.com/

AXEMAS Documentation, Release 1.0

In case you need to display content that might change during the application lifetime, you will need to somehow
receive a notification each time the sidebar appears so that you can actually force its update.

IOS

On iOS you can easily achieve this, by calling a custom handler from your sidebar AXMSectionController each
time the sectionViewWillAppear is performed:

[NavigationSectionsManager registerController:[SidebarSectionController class]
→˓forRoute:@"www/sidebar.html"];

@implementation SidebarSectionController
- (void)sectionViewWillAppear {

[self.section.bridge callHandler:@"on-sidebar-appears"];
}

@end

This will correctly call the on-sidebar-appears handler on Javascript both when the sidebar is displayed the
first time and each time its opened/closed by the user.

Android

On Android you can achieve a similar result by relying on the sectionFragmentWillResume method:

NavigationSectionsManager.registerController(this, SidebarSectionController.class,
→˓"www/sidebar.html");

public class SidebarSectionController extends AXMSectionController {
@Override
public void sectionFragmentWillResume() {

super.sectionFragmentWillResume();
section.getJSBridge().callJS("on-sidebar-appears", new JSONObject(), null);

}
}

While this is enough to update the sidebar each time the user switched the application in/out of background, it won’t
update it when the sidebar is opened/closed through the sidebar button. So to achieve the same behaviour we had on
iOS it is required to also @Override the onSidebarOpened method inside the MainActivity and forcefully
trigger a sectionFragmentWillResume each time the sidebar is opened/closed:

public class MainActivity extends AXMActivity {
@Override
public void onSidebarOpened() {

SectionFragment sidebarFragment = (SectionFragment)getFragmentManager().
→˓findFragmentByTag("sidebar_fragment");

((SidebarSectionController)sidebarFragment.getRegisteredSectionController()).
→˓sectionFragmentWillResume();

}
}

Disabling Sidebar current menu to reload view

16 Chapter 1. Getting Started

AXEMAS Documentation, Release 1.0

Js

In order to disable view reloading when click on sidebar menù you must do the check section side, you can achieve
using html tag attribute and check the attribute when you click the menù item:

<div class="menu-item" active="true" id="dashboard-menu-item">Dashboard</div>
<div class="menu-item" id="profile-menu-item">Profile</div>
<div class="menu-item" id="contacts-menu-item">Contacts</div>

<script>
var dashboardMenuItem = $('#dashboard-menu-item')
dashboardMenuItem.on('singletap', function () {

if (! dashboardMenuItem.attr("active")) {
axemas.goto({

'url': 'www/sections/dashboard/section.html',
'title': 'Dashboard'

});
$(".menu-item").removeAttr("active");
dashboardMenuItem.attr("active", "true");

}
});

</script>

Quickstarting a New Application

AXEMAS provides a Gearbox extension that will generate a new Axemas project. Gearbox is a skeleton generation
tool for Python

Installaton

Create a new virtual environment and install axemas with pip. This will include all needed dependencies like
gearbox:

$ virtualenv --no-site-packages axemas_builder
$. axemas_builder/bin/activate
(axemas_builder)$ pip install axemas

Usage

Run the following command to generate a project called new_project inside the directory where you want to create
the new project:

(axemas_builder)$ gearbox axemas-quickstart -n ProjectName -p com.company.example

Project structure

The resulting project structure will be as follows:

/ root of the project
----/android Axemas Android native Java code
----/axemas-js Axemas library JavaScript code imported by www

1.2. Binding to Native Code 17

AXEMAS Documentation, Release 1.0

----/ios Axemas iOS native Objective-C code
----/www common share html/css/js/resource files

Maintain AXEMAS

AXEMAS framework

Repositories Structure

The project is divided into 5 repositories:

website
examples
framework
releases
doc

Inside framework repo (https://github.com/AXEMAS/framework) you will find the AXEMAS base library, composed
by:

• Android library project

• iOS library project

• HTML library project

When you are done modifing the library please remember to update the debug projects and the release repository with
the following commands.

Debug Projects Update

To update the Android and the iOS demo projects use the following command (examples folder must be in the same
parent folder or will be cloned inside ../examples):

./update_debug

Il will delete all the old files in the iOS and Android projects and copy the new library files; native binaries and HTML.
If you want to release demo apps remember to make necessary fixes, tag version and push everything.

Release Repository Update

Same as for the Debug Project Update, this will update the repository that the gearbox axemas-quickstart
command needs to clone in order to quickstart a new project (releases folder must be in the same parent folder or will
be cloned inside ../releases, be careful if you have pending changes):

./update_release

If you want to release new version remember to commit, tag version and push everything.

Android AXEMAS library

This library project is used to build the axemas.aar used inside the Android application.

18 Chapter 1. Getting Started

https://github.com/AXEMAS/framework

AXEMAS Documentation, Release 1.0

How to use

After modifiying the library please inside this project’s root folder:

./gradlew clean assemble

You will find the app-release.aar inside the app/build/outputs/aar/ folder. Copy this file inside the
axemas-android project in the libs folder.

iOS AXEMAS library

This project is used to build the axemas iOS library. Please use the following instructions to make a new release.

Setup

Install the command line tools, following the instructions at this link:

https://developer.apple.com/library/ios/technotes/tn2339/_index.html

New Release

Use the following command in the :: cp ios ./build_libaxemas

In the release directory you will find all the neccessary files to import the project in Xcode.

Indices and tables

• genindex

• modindex

• search

1.2. Binding to Native Code 19

AXEMAS Documentation, Release 1.0

20 Chapter 1. Getting Started

Index

E
enableBackButton(Context, boolean) (Java method), 11

G
getActiveFragment(Context) (Java method), 11
getActiveNavigationController(AXMActivity) (Java

method), 10
getSidebarController(AXMActivity) (Java method), 11
getTabBarController(AXMActivity) (Java method), 11
getValueForKey(Context, String) (Java method), 11
goTo(Context, JSONObject) (Java method), 10

H
hideProgressDialog(Context) (Java method), 11

M
makeApplicationRootController(Context, JSONObject)

(Java method), 10
makeApplicationRootController(Context, JSONObject,

JSONObject) (Java method), 10
makeApplicationRootController(Context, JSONObject,

String) (Java method), 10
makeApplicationRootController(Context, JSONObject,

String, JSONObject) (Java method), 10

R
registerController(Context, Class, String) (Java method),

10
registerDefaultController(Context, Class) (Java method),

10
removeValue(Context, String) (Java method), 11

S
showDismissibleAlertDialog(Context, AlertDia-

log.Builder) (Java method), 11
showDismissibleAlertDialog(Context, String, String)

(Java method), 11
showProgressDialog(Context) (Java method), 11
store(Context, String, String) (Java method), 11

21

	Getting Started
	Basic Project Introduction
	Binding to Native Code

