

    
      
          
            
  
Welcome to Axelrod-dojo’s documentation!

This library is a companion library to the Axelrod [http://axelrod.readthedocs.io/en/stable/] library: a research tool for the
study of the iterated prisoners dilemma. The Axelrod-dojo is used to train
strategies.

This is done using implementations of:


	Strategy archetypes Parameters


	Algorithms
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Tutorial

In this tutorial we will aim to find the best Finite State Machine against a
collection of other strategies from the Axelrod library [Harper2017].

First let us get the collection of opponents against which we aim to train:

>>> import axelrod as axl
>>> opponents = [axl.TitForTat(), axl.Alternator(), axl.Defector()]
>>> opponents
[Tit For Tat, Alternator, Defector]





We are now going to prepare the training algorithm. First of all, we need to
prepare the objective of our strategy. In this case we will aim to maximise
score in a match with 10 turns over 1 repetition:

>>> import axelrod_dojo as dojo
>>> objective = dojo.prepare_objective(name="score", turns=10, repetitions=1)





The algorithm we are going to use is a genetic algorithm which requires a
population of individuals. Let us set up the inputs:

>>> params_class = dojo.FSMParams
>>> params_kwargs = {"num_states": 2}





Using this we can now create our Population (with 20 individuals) for a
genetic algorithm:

>>> axl.seed(1)
>>> population = dojo.Population(params_class=params_class,
...                              params_kwargs=params_kwargs,
...                              size=20,
...                              objective=objective,
...                              output_filename="training_output.csv",
...                              opponents=opponents,
...                              bottleneck=2,
...                              mutation_probability=.1)





We can now evolve our population:

>>> generations = 4
>>> population.run(generations)
Scoring Generation 1
Generation 1 | Best Score: 2.1 0:C:0_C_0_C:0_D_1_C:1_C_1_D:1_D_1_D
Scoring Generation 2
Generation 2 | Best Score: 2.1 0:C:0_C_0_C:0_D_1_C:1_C_1_D:1_D_1_D
Scoring Generation 3
Generation 3 | Best Score: 2.1 0:C:0_C_0_C:0_D_1_C:1_C_1_D:1_D_1_D
Scoring Generation 4
Generation 4 | Best Score: 2.1 0:C:0_C_0_C:0_D_1_C:1_C_1_D:1_D_1_D





The run command prints out the progress of the algorithm and this is
also written to the output file (we passed output_filename as an
argument earlier). The printing can be turned off to keep logging to a minimum
by passing print_output=False to the run.

The last best score is a finite state machine with representation
0:C:0_C_0_C:0_D_1_D:1_C_1_D:1_D_1_D which corresponds to a strategy that
stays in state 0 as long as the opponent cooperates but otherwise goes
to state 1 and defects forever. Indeed, if the strategy is playing
Defector or Alternator then it should just defect, otherwise it
should cooperate.





          

      

      

    

  

    
      
          
            
  
How to



	Use different objective functions

	Train using the genetic algorithm

	Train using the particle swarm algorithm









          

      

      

    

  

    
      
          
            
  
Use different objective functions

It is currently possible to optimise players for 3 different objectives:


	Score;


	Score difference;


	Probability of fixation in a Moran process.




This is done by passing a different objective name to the
prepare_objective function:

>>> import axelrod_dojo as dojo
>>> score_objective = dojo.prepare_objective(name="score", turns=10, repetitions=1)
>>> diff_objective = dojo.prepare_objective(name="score_diff", turns=10, repetitions=1)
>>> moran_objective = dojo.prepare_objective(name="moran", turns=10, repetitions=1)









          

      

      

    

  

    
      
          
            
  
Train using the genetic algorithm

WIP: include all details for training with genetic algorithm.





          

      

      

    

  

    
      
          
            
  
Train using the particle swarm algorithm

WIP: include all details for training with PSO





          

      

      

    

  

    
      
          
            
  
Background

Note that there are currently two algorithms implemented:


	Genetic algorithm


	Particle swam optimisation




Note that these two algorithms are not equally suited to each archetype. For
example the Genetic algorithm is believed to be better suited to discrete space
strategies such as the finite state machines whilst the Particle swarm algorithm
would be better suited to a continuous space strategy such as the Gambler.

For more information on these algorithms and their implementations see:



	Genetic Algorithm
	Finite state machines

	Hidden Markov models

	Cycler Sequence Calculator













          

      

      

    

  

    
      
          
            
  
Genetic Algorithm

A genetic algorithm aims to mimic evolutionary processes so as to optimise a
particular function on some space of candidate solutions.

The process can be described by assuming that there is a function
\(f:V\to \mathbb{R}\), where \(V\) is some vector space.
In the case of the Prisoner’s dilemma,
the vector space \(V\) corresponds to some representation of a
particular archetype (which might not actually be a numeric vector space) and
the function \(f\) corresponds to some measure of performance/fitness of the
strategy in question.

In this setting a candidate solution \(x\in\mathbb{R}^m\) corresponds to a
chromosome with each \(x_i\) corresponding to a gene.

The genetic algorithm has three essential parameters:


	The population size: the algorithm makes use of a number of candidate
solutions at each stage.


	The bottle neck parameter: at every stage the candidates in the population are
ranked according to their fitness, only a certain number are kept (the best
performing ones) from one generation to the next. This number is referred to
as the bottle neck.


	The mutation probability: from one stage to the next when new individuals are
added to the population (more about this process shortly) there is a
probability with which each gene randomly mutates.




New individuals are added to the population (so as to ensure that the population
size stays constant from one stage to the next) using a process of “crossover”.
Two high performing individuals are paired and according to some predefined
procedure, genes from both these individuals are combined to create a new
individual.

For each strategy archetype, this library thus defines a process for mutation as
well as for crossover.


Finite state machines

A finite state machine is made up of the following:


	a mapping from a state/action pair to another target state/action pair


	an initial state/action pair.




(See [Harper2017] for more details.)

The crossover and mutation are implemented in the following way:


	Crossover: this is done by taking a randomly selected number of target
state/actions
pairs from one individual and the rest from the other.


	Mutation: given a mutation probability \(\delta\) each target state/action
has a probability \(\delta\) of being randomly changed to one of the other
states or actions. Furthermore the initial action has a probability of
being swapped of \(\delta\times 10^{-1}\) and the initial state has a
probability of being changed to another random state of \(\delta \times
10^{-1} \times N\) (where \(N\) is the number of states).







Hidden Markov models

A hidden Markov model is made up of the following:


	a mapping from a state/action pair to a probability of defect or cooperation.


	a cooperation transition matrix, the probability of transitioning to each
state, given current state and an opponent cooperation.


	a defection transition matrix, the probability of transitioning to each
state, given current state and an opponent defection.


	an initial state/action pair.




(See [Harper2017] for more details.)

The crossover and mutation are implemented in the following way:


	Crossover: this is done by taking a randomly selected number of rows from
one cooperation transition matrix and the rest from the other to form a target
cooperation transition matrix; then a different number of randomly selected
rows from one defection transition matrix and the rest from the other; and
then a randomly select number of entries from one state/part -> probability
mapping and the rest from the other.


	Mutation: given a mutation probability \(delta\) each cell of both
transition matrices and the state/part -> probability mapping have probability
\(delta\) of being increased by \(varepsilon\), where
\(varepsilon\) is randomly drawn uniformly from \([-0.25, 0.25]\)
(A negative number would decrease.)  Then the transition matrices and mapping
are adjusted so that no cell is outside \([0, 1]\) and the transition
matrices are normalized so that each row adds to 1. Furthermore the
initial action has a probability of being swapped of
\(\delta\times 10^{-1}\) and the initial state has a probability of
being changed to another random state of
\(\delta \times 10^{-1} \times N\) (where \(N\) is the number of
states).







Cycler Sequence Calculator

A Cycler Sequence is the sequence of C & D actions that are passed to the cycler player to follow when playing their
tournament games.

the sequence is found using genetic feature selection:


	Crossover: By working with another cycler player, we take sections of each player and create a new cycler sequence





	from the following formula:

	
	let our two player being crossed be called p1 and p2 respectively. we then find the midpoint of both the sequences

	and take the first half from p1 and the second half from p2 to combine into the new cycler sequence.










	Mutation: we use a predictor :math:`delta`to determine if we are going to mutate a




single element in the current sequence. The element, or gene, we change in the sequence is uniformly selected using
the random package.







          

      

      

    

  

    
      
          
            
  
Reference

This section is the reference guide for the various components of the library.



	Bibliography









          

      

      

    

  

    
      
          
            
  
Bibliography

This is a collection of various bibliographic items referenced in the
documentation.


	Harper2017

	Marc Harper, Vincent Knight, Martin Jones, Georgios Koutsovoulo, Nikoleta E. Glynatsi and Owen Campbell (2017) Reinforcement Learning Produces Dominant Strategies for the Iterated Prisoner’s Dilemma. Arxiv. http://arxiv.org/abs/1707.06307









          

      

      

    

  

    
      
          
            

Index



 




          

      

      

    

  _static/plus.png





_static/file.png





_static/minus.png





_static/up-pressed.png





_static/up.png





_static/down-pressed.png





_static/down.png





_static/comment-close.png





_static/comment.png





nav.xhtml

    
      Table of Contents


      
        		
          Welcome to Axelrod-dojo’s documentation!
        


        		
          Tutorial
        


        		
          How to
          
            		
              Use different objective functions
            


            		
              Train using the genetic algorithm
            


            		
              Train using the particle swarm algorithm
            


          


        


        		
          Background
          
            		
              Genetic Algorithm
              
                		
                  Finite state machines
                


                		
                  Hidden Markov models
                


                		
                  Cycler Sequence Calculator
                


              


            


          


        


        		
          Reference
          
            		
              Bibliography
            


          


        


      


    
  

_static/comment-bright.png





_static/ajax-loader.gif





