

    
      
          
            
  
AWS IR

Python installable command line utility for mitigation of host and key compromises.



	Quickstart
	Installation

	AWS Credentials

	Setup Roles with Cloudformation

	Key Compromise

	Instance Compromise





	Installation
	System Requirements

	Installing from PyPi

	Installing From Github

	Local Build and Install

	Local Execution

	Using Docker

	AWS Credentials Using MFA and AssumeRole

	Some Linux distributions require additional system packages





	Development
	Types of Development

	Plugins

	CLI Development





	About
	License













          

      

      

    

  

    
      
          
            
  
Quickstart

First, Install aws_ir.


Installation

$ python3 -m virtualenv env
$ source/env/bin/activate
$ pip install aws_ir





For other installation options see: installing [https://aws_ir.readthedocs.io/en/latest/installing.html].




AWS Credentials

Ensure aws credentials are configured under the user running aws_ir as documented by amazon [https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html].




Setup Roles with Cloudformation

A cloudformation stack has been provided to setup a group and a responder role.

Simply create the stack available at:

https://github.com/ThreatResponse/aws_ir/blob/master/cloudformation/responder-role.yml.

Then add all your users to the IncidentResponders group.  After that you’re good to go!

Note that this roles has a constraint that all your responders use MFA.
.. code-block:: bash


aws:MultiFactorAuthPresent: ‘true’







Key Compromise

The aws_ir subcommand key-compromise disables access keys in the case of a key compromise.
It’s single argument is the access key id, he compromised key is disabled via the AWS api.

usage: aws_ir key-compromise [-h] --access-key-id ACCESS_KEY_ID
                             [--plugins PLUGINS]

optional arguments:
  -h, --help            show this help message and exit
  --access-key-id ACCESS_KEY_ID
  --plugins PLUGINS     Run some or all of the plugins in a custom order.
                        Provided as a comma separated listSupported plugins:
                        disableaccess_key,revokests_key





Below is the output of running the key-compromise subcommand.

$ aws_ir key-compromise --access-key-id AKIAINLHPIG64YJXPK5A
2017-07-20T21:04:01 - aws_ir.cli - INFO - Initialization successful proceeding to incident plan.
2017-07-20T21:04:01 - aws_ir.plans.key - INFO - Attempting key disable.
2017-07-20T21:04:03 - aws_ir.plans.key - INFO - STS Tokens revoked issued prior to NOW.
2017-07-20T21:04:03 - aws_ir.plans.key - INFO - Disable complete.  Uploading results.
Processing complete for cr-17-072104-7d5f
Artifacts stored in s3://cloud-response-9cabd252416b4e5a893395c533f340b7








Instance Compromise

The aws_ir subcommand instance-compromise preserves forensic artifacts from a compromised instance after isolating the instance.
Once all artifacts are collected and tagged the compromised instance is powered off.
The instance-compromise subcommand takes three arguments, the instance-ip of the compromised instance, a user with ssh access to the target instance, and the ssh-key used for authentication.

Currently user must be capable of passwordless sudo for memory capture to complete.  If user does not have passwordless sudo capabilities all artifiacts save for the memory capture will be gathered.


Note

AWS IR saves all forensic artifacts except for disk snapshots in an s3 bucket created for each case.  Disk snapshots are tagged with the same case number as the rest of the rest of the artifacts.



Below is the output of running the instance-compromise subcommand.

$  aws_ir --examiner-cidr-range '4.4.4.4/32' instance-compromise --target 52.40.162.126 --user ec2-user --ssh-key ~/Downloads/testing-041.pem
   2017-07-20T21:10:50 - aws_ir.cli - INFO - Initialization successful proceeding to incident plan.
   2017-07-20T21:10:50 - aws_ir.libs.case - INFO - Initial connection to AmazonWebServices made.
   2017-07-20T21:11:03 - aws_ir.libs.case - INFO - Inventory AWS Regions Complete 14 found.
   2017-07-20T21:11:03 - aws_ir.libs.case - INFO - Inventory Availability Zones Complete 37 found.
   2017-07-20T21:11:03 - aws_ir.libs.case - INFO - Beginning inventory of resources world wide.  This might take a minute...
   2017-07-20T21:11:03 - aws_ir.libs.inventory - INFO - Searching ap-south-1 for instance.
   2017-07-20T21:11:05 - aws_ir.libs.inventory - INFO - Searching eu-west-2 for instance.
   2017-07-20T21:11:05 - aws_ir.libs.inventory - INFO - Searching eu-west-1 for instance.
   2017-07-20T21:11:06 - aws_ir.libs.inventory - INFO - Searching ap-northeast-2 for instance.
   2017-07-20T21:11:07 - aws_ir.libs.inventory - INFO - Searching ap-northeast-1 for instance.
   2017-07-20T21:11:08 - aws_ir.libs.inventory - INFO - Searching sa-east-1 for instance.
   2017-07-20T21:11:09 - aws_ir.libs.inventory - INFO - Searching ca-central-1 for instance.
   2017-07-20T21:11:09 - aws_ir.libs.inventory - INFO - Searching ap-southeast-1 for instance.
   2017-07-20T21:11:10 - aws_ir.libs.inventory - INFO - Searching ap-southeast-2 for instance.
   2017-07-20T21:11:11 - aws_ir.libs.inventory - INFO - Searching eu-central-1 for instance.
   2017-07-20T21:11:12 - aws_ir.libs.inventory - INFO - Searching us-east-1 for instance.
   2017-07-20T21:11:13 - aws_ir.libs.inventory - INFO - Searching us-east-2 for instance.
   2017-07-20T21:11:13 - aws_ir.libs.inventory - INFO - Searching us-west-1 for instance.
   2017-07-20T21:11:13 - aws_ir.libs.inventory - INFO - Searching us-west-2 for instance.
   2017-07-20T21:11:14 - aws_ir.libs.case - INFO - Inventory complete.  Proceeding to resource identification.
   2017-07-20T21:11:14 - aws_ir.plans.host - INFO - Proceeding with incident plan steps included are ['gather_host', 'isolate_host', 'tag_host', 'snapshotdisks_host', 'examineracl_host', 'get_memory', 'stop_host']
   2017-07-20T21:11:14 - aws_ir.plans.host - INFO - Executing step gather_host.
   2017-07-20T21:11:15 - aws_ir.plans.host - INFO - Executing step isolate_host.
   2017-07-20T21:11:16 - aws_ir.plans.host - INFO - Executing step tag_host.
   2017-07-20T21:11:17 - aws_ir.plans.host - INFO - Executing step snapshotdisks_host.
   2017-07-20T21:11:17 - aws_ir.plans.host - INFO - Executing step examineracl_host.
   2017-07-20T21:11:19 - aws_ir.plans.host - INFO - Executing step get_memory.
   2017-07-20T21:11:19 - aws_ir.plans.host - INFO - attempting memory run
   2017-07-20T21:11:19 - aws_ir.plans.host - INFO - Attempting run margarita shotgun for ec2-user on 52.40.162.126 with /Users/akrug/Downloads/testing-041.pem
   2017-07-20T21:11:21 - margaritashotgun.repository - INFO - downloading https://threatresponse-lime-modules.s3.amazonaws.com/modules/lime-4.9.32-15.41.amzn1.x86_64.ko as lime-2017-07-21T04:11:21-4.9.32-15.41.amzn1.x86_64.ko
   2017-07-20T21:11:25 - margaritashotgun.memory - INFO - 52.40.162.126: dumping memory to s3://cloud-response-a0f2d7e68ef44c36a79ccfe4dcef205a/52.40.162.126-2017-07-21T04:11:19-mem.lime
   2017-07-20T21:15:43 - margaritashotgun.memory - INFO - 52.40.162.126: capture 10% complete
   2017-07-20T21:19:37 - margaritashotgun.memory - INFO - 52.40.162.126: capture 20% complete
   2017-07-20T21:23:41 - margaritashotgun.memory - INFO - 52.40.162.126: capture 30% complete
   2017-07-20T21:28:17 - margaritashotgun.memory - INFO - 52.40.162.126: capture 40% complete
   2017-07-20T21:32:42 - margaritashotgun.memory - INFO - 52.40.162.126: capture 50% complete
   2017-07-20T21:37:18 - margaritashotgun.memory - INFO - 52.40.162.126: capture 60% complete
   2017-07-20T21:39:18 - margaritashotgun.memory - INFO - 52.40.162.126: capture 70% complete
   2017-07-20T22:00:13 - margaritashotgun.memory - INFO - 52.40.162.126: capture 80% complete
   2017-07-20T22:04:19 - margaritashotgun.memory - INFO - 52.40.162.126: capture 90% complete
   2017-07-20T22:17:32 - margaritashotgun.memory - INFO - 52.40.162.126: capture 100% complete
   2017-07-20T21:41:52 - aws_ir.plans.host - INFO - memory capture completed for: ['52.40.162.126'], failed for: []
   2017-07-20T21:41:52 - aws_ir.plans.host - INFO - Executing step stop_host.

Processing complete for cr-17-072104-7d5f
Artifacts stored in s3://cloud-response-a0f2d7e68ef44c36a79ccfe4dcef205a





Note that aws_ir instance-compromise installs margarita shotgun [https://margaritashotgun.readthedocs.io/en/latest/] on your local machine to perform memory capture. Doing so requires trusting the GPG key of security@threatresponse.cloud, which can be done with the command:

$ curl -s https://threatresponse-lime-modules.s3.amazonaws.com/REPO_SIGNING_KEY.asc | gpg --import -
gpg: key 67172B17: public key "Lime Signing Key (Threat Response Official Lime Signing Key) <security@threatresponse.cloud>" imported
gpg: Total number processed: 1
gpg:               imported: 1  (RSA: 1)











          

      

      

    

  

    
      
          
            
  
Installation


System Requirements

ThreatResponse requires python >= 3.4.




Installing from PyPi




Installing From Github

$ python3 -m virtualenv env
$ source/env/bin/activate
$ pip install git+ssh://git@github.com/ThreatResponse/aws_ir.git@master
$ aws_ir -h








Local Build and Install

$ git clone https://github.com/ThreatResponse/aws_ir.git
$ cd aws_ir
$ python3 -m virtualenv env
$ source/env/bin/activate
$ pip install .
$ aws_ir -h








Local Execution

In the previous two example dependencies are automatically resolved, if you simply want to run aws_ir using the script bin/aws_ir you will have to manually install dependencies

$ git clone https://github.com/ThreatResponse/aws_ir.git
$ cd aws_ir
$ python3 -m virtualenv env
$ source/env/bin/activate
$ pip install -r requirements.txt
$ ./bin/aws_ir -h








Using Docker

$ git clone https://github.com/ThreatResponse/aws_ir.git
$ cd aws_ir
$ docker-compose build aws_ir
$ docker-compose run aws_ir bash
$ pip install .








AWS Credentials Using MFA and AssumeRole

Many users of aws_ir have requested the ability to use the tooling with mfa and
assumeRole functionality.  While we don’t natively support this yet v0.3.0 sets
the stage to do this natively by switching to boto-session instead of thick clients.

For now if you need to use the tool with MFA we recommend:

https://pypi.python.org/pypi/awsmfa/0.2.4.

aws-mfa \
--device arn:aws:iam::12345678:mfa/bobert \
-assume-role arn:aws:iam::12345678:role/ResponderRole \
--role-session-name \"bobert-ir-session\"





awsmfa takes a set of long lived access keys from a boto profile called [default-long-lived]
and uses those to generate temporary session tokens that are automatically put into
the default boto profile.  This ensures that any native tooling that doesn’t support
MFA + AssumeRole can still leverage MFA and short lived credentials for access.




Some Linux distributions require additional system packages


Fedora / RHEL Distributions


	python-devel (Python 3.4+)


	python-pip


	libffi-devel


	libssl-devel







Debian Distributions


	python-dev (Python 3.4+)


	python-pip


	libffi-dev


	libssl-dev












          

      

      

    

  

    
      
          
            
  
Development

Congratulations on taking the first step to become a developer on aws_ir!
We’re a very un-opinionated and forgiving community to work in.  This
guide will cover two different types of development for the aws_ir command
line interface.


Types of Development


	Plugins ( These are the actual incident steps. )


	The CLI itself







Plugins

Plugins are probably the easiest way to get started as a developer.
Since v0.3.0 the command line interface now supports dynamically loading
plugins from source using a python module called PluginBase.


Getting Started


First create a folder in your home directory called .awsir.  This is
automatically searched each time awsir is run.  Warning: If you put
python code in here that can not be executed it will prevent your
command line from running.




$ mkdir ~/.awsir





Excellent!  You are well on your way to creating you first plugin.




Naming your plugin


We prefer descriptive names based on the type of resource that will be
interacted with.  Currently aws_ir supports:


	Host Compromises


	Key Compromises


	Lambda Compromises ( Coming Soon )


	Role Compromises ( Coming Soon )




The TLDR here is to name your plugin following the standard:


	THETHINGITDOES_key.py


	THETHINGITDOES_host.py


	THETHINGITDOES_lambda.py


	THETHINGITDOES_role.py




Let’s start a new plugin and we’ll call it foo_key.py.

$ touch ~/.awsir/foo_key.py











Plugin Boilerplate


Inside of that file foo_key.py there is some minimum content that has to
exist just to get started.  All plugins follow a standard object pattern
or they would not be plugins.

import logging

# Initializing the stream logger here ensures that any logger messages
# bubble up into the case logs from the plugin.

logger = logging.getLogger(__name__)

class Plugin(object):
  def __init__(
      self,
      boto_session,
      compromised_resource,
      dry_run
  ):

      # AWS_IR generates a boto session that is handed off to each plugin.
      # This ensures as a developer you can create boto3 resource or client.
      self.session = boto_session

      # The compromised resource also gets handed of to the plugin.
      # This is slightly different depending on whether this is a
      # host of key resource.
      # See: https://github.com/ThreatResponse/aws_ir/blob/master/aws_ir/libs/compromised.py
      self.compromised_resource = compromised_resource

      # Each incident plan also sends through the type of compromise.
      # key, host, lambda, etc.
      self.compromise_type = compromised_resource['compromise_type']
      self.dry_run = dry_run

      self.access_key_id = self.compromised_resource['access_key_id']

      # The setup function should call any other private methods on the
      # object in order to achieve your IR step.  This facilitates easy
      # testing using PyUnit or PyTest.
      self.setup()

  def setup(self):
      """Method runs the plugin."""
      if self.dry_run is not True:
        # The stuff we can not dry run goes here.
        self._your_private_step()
        self._your_other_private_step()
      else:
        pass

  def validate(self):
      """Returns whether this plugin does what it claims to have done"""
      pass

  def output(self):
      """
      Future function that will be required of all plugins.  Will be
      required to contain a json schema validated payload to report on
      steps taken and assets generated.
      """
      pass

  def _your_private_step(self):
      """Something you might do as part of IR."""

      # This is how to log a status message.
      logger.info("I just secured all the things!.")
      pass

  def _your_other_private_step(self):
    """Something other thing you might do as part of IR."""
      pass








Those are the minimum required methods.  Everything you decide to do after that
in your aws_ir plugin is up to you.  As log as Plugin() is initalized, validate
is called, and output can be called the plugin will execute in the pipeline.




Considerations

You may want to get familiar with how boto sessions become boto3 resources and
clients as a part of your training. This is well documented.

https://boto3.readthedocs.io/en/latest/reference/core/session.html.

You might also want to borrow our code or pull request an aws_ir core plugin into mainstream.  We would love it if you were excited enough to do
that.

All of our plugins install from this repository: https://github.com/ThreatResponse/aws_ir_plugins.




Host Compromised Resource

The host compromised resource is a little bigger than an access key since we need to store more information to do things like interact with the VPC.
It’s dictionary looks like this:


"compromised_resource" : {
  "public_ip_address": "4.2.2.2",
  "private_ip_address": "10.10.10.1",
  "instance_id": "i-xxxxxxxxxxxxx",
  "launch_time": "DATETIME",
  "platform": "windows",
  "vpc_id": "vpc-xxxxxxx",
  "ami_id": "ami-xxxxxxx",
  "volume_ids": [
    "BlockDeviceMappings": []
  ],
  "region": "region"
}








Of course your can always just print(compromised_resource) while you’re developing.




Testing your plugin

There are two primary ways to test your plugin.  You can use the cli and actually
run it against an instance or key.  Or you can write a pyUnit test.

Testing with the CLI


	Run the aws_ir cli help to see if your plugin is loading.




$ aws_ir instance-compromise --help
usage: aws_ir instance-compromise [-h] [--target TARGET] [--targets TARGETS]
                                  [--user USER] [--ssh-key SSH_KEY]
                                  [--plugins PLUGINS]

optional arguments:
  -h, --help         show this help message and exit
  --target TARGET    instance-id|instance-ip
  --targets TARGETS  File of resources to process instance-id or ip-address.
  --user USER        this is the privileged ssh user for acquiring memory from
                     the instance. Required for memory only.
  --ssh-key SSH_KEY  provide the path to the ssh private key for the user.
                     Required for memory only.
  --plugins PLUGINS  Run some or all of the plugins in a custom order.
                     Provided as a comma separated list of supported plugins:
                     examineracl_host,foo_host,gather_host,isolate_host,snapsh
                     otdisks_host,stop_host,tag_host,get_memory





If you see it in the list of plugins then it’s getting picked up by the plugin
loader and you can tell the cli to run only that plugin instead of a standard incident
plan. Note: foo_host in the above output.

Testing with PyUnit

If you’re familiar with PyUnit you can use spulec/moto and pyUnit to test your
plugin prior to running in the CLI.  We do this for aws_ir_plugins using TravisCI.

# Test boilerplate for an EC2 plugin
import boto3
import unittest

from aws_ir_plugins import sample_host
from moto import mock_ec2


class BoilerPlateTest(unittest.TestCase):
    # Begin mocking
    @mock_ec2
    def test_tag_host(self):
        # Create fake EC2 clients and sessions
        self.ec2 = boto3.client('ec2', region_name='us-west-2')
        session = boto3.Session(region_name='us-west-2')

        # Create a fake instance to process
        ec2_resource = session.resource('ec2')

        instance = ec2_resource.create_instances(
            ImageId='foo',
            MinCount=1,
            MaxCount=1,
            InstanceType='t2.medium',
            KeyName='akrug-key',
        )

        # Fake a compromised resource with the minimum set of fields needed
        self.compromised_resource = {
            'case_number': '123456',
            'instance_id': instance[0].id,
            'compromise_type': 'host'
        }

        # Execute the plugin
        plugin = sample_host.Plugin(
            boto_session=session,
            compromised_resource=self.compromised_resource,
            dry_run=False
        )

        result = plugin.validate()

        # Your test assertions

        assert result is True





I prefer to run these using nose and nose-watch during active development.
Moto ensures that you’re mocking all the EC2 calls so you can develop the plugin
without effecting your AWS environment.

Example

nosetest --with-watch tests/test_sample.py





This is like guard in rails.  It watches the file system and re-runs the test
each time you write some code and save.






CLI Development

We are currently accepting pull requests for the aws_ir cli for features and
bug fixes.

In order to develop the cli you will need to setup a python3 virtual environment.
However, you’ll need to start by cloning the code.


Pulling down the code and getting started

Step 1. Fork us on Github.

# Clone your fork

# 1. git clone
git@github.com:<your github here>/aws_ir.git





Step 2. Setup


# 2. setup a virtualenv (must be python3)
cd aws_ir
python3 -m virtualenv env

# 3. activate the virtualenv
source env/bin/activate

# 4a. with setuptools
pip install -e .
python setup.py test
python setup.py pytest –addopts=’tests/test_cli.py’

—or –





# 4b. with local plugins and pytest-watch
point requirements.txt to the local version of aws_ir_plugins -e ../aws_ir_plugins
.. code-block:: bash


pip3 install -r requirements.txt
./bin/aws_ir -h
ptw –runner “python setup.py test”




—or –





#4c. Use the docker container
.. code-block:: bash


docker-compose build aws_ir
docker-compose run aws_ir bash
pip install -e .







Step 3. Develop!

Note: There is a helper script in bin/aws_ir that can be called to execute aws_ir.

When your feature is finished simply open a PR back to us.

If you have any questions please do file a github issue
or e-mail info@threatresponse.cloud .




Using testpypi


	To use a test build of aws_ir_plugins:

	in setup.py:
- point the required version at aws_ir_plugins==0.0.3b123 (substitute the build you want)
- add: dependency_links=[‘https://test.pypi.org/simple/aws-ir-plugins/’]













          

      

      

    

  

    
      
          
            
  
About

AWS IR is a part of the Threat Response project [http://www.threatresponse.cloud].


License

AWS IR is distributed under the MIT License (MIT) [https://github.com/ThreatResponse/aws_ir/blob/master/LICENSE].

[image: _images/threatresponse_logo.png]






          

      

      

    

  

    
      
          
            

Index



 




          

      

      

    

  _static/up-pressed.png





nav.xhtml

    
      Table of Contents


      
        		
          AWS IR
        


        		
          Quickstart
          
            		
              Installation
            


            		
              AWS Credentials
            


            		
              Setup Roles with Cloudformation
            


            		
              Key Compromise
            


            		
              Instance Compromise
            


          


        


        		
          Installation
          
            		
              System Requirements
            


            		
              Installing from PyPi
            


            		
              Installing From Github
            


            		
              Local Build and Install
            


            		
              Local Execution
            


            		
              Using Docker
            


            		
              AWS Credentials Using MFA and AssumeRole
            


            		
              Some Linux distributions require additional system packages
              
                		
                  Fedora / RHEL Distributions
                


                		
                  Debian Distributions
                


              


            


          


        


        		
          Development
          
            		
              Types of Development
            


            		
              Plugins
              
                		
                  Getting Started
                


                		
                  Naming your plugin
                


                		
                  Plugin Boilerplate
                


                		
                  Considerations
                


                		
                  Host Compromised Resource
                


                		
                  Testing your plugin
                


              


            


            		
              CLI Development
              
                		
                  Pulling down the code and getting started
                


                		
                  Using testpypi
                


              


            


          


        


        		
          About
          
            		
              License
            


          


        


      


    
  

_static/down-pressed.png





_static/down.png





_static/comment-close.png





_static/up.png





_static/comment.png





_static/minus.png





_static/plus.png





_static/file.png





_static/threatresponse_logo.png
uuuuuuuuuuuuu





_static/ajax-loader.gif





_images/threatresponse_logo.png
uuuuuuuuuuuuu





_static/comment-bright.png





