

 Navigation

 	
 index

 	
 next |

 	Avocado Virt 0 documentation

Avocado Virtualization Testing Plugin

Contents:

	Introduction

	Getting Started
	Installing Avocado

	Installing Avocado-Virt

	Guest Configuration

	Guest Requirements

	Using your own image

	Writing Avocado Virt Tests
	Basic example: Boot test

	Basic example: Migrate test

	More to come

	Reference Guide
	Basic avocado-virt params

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2014, Red Hat.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Avocado Virt 0 documentation

Introduction

Avocado-virt is a plugin for the Avocado Test Framework. It aims to provide
libraries and extra functionality necessary to run virtualization tests on
Linux. We started with KVM/QEMU, but we’re certainly open to expand the coverage
to things like Xen and libvirt.

 Copyright 2014, Red Hat.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Avocado Virt 0 documentation

Getting Started

The first step towards using Avocado-Virt is, quite obviously, installing it.

Installing Avocado

Start by following the instructions on this link [http://avocado-framework.readthedocs.io/en/latest/GetStartedGuide.html#installing-avocado].

Installing Avocado-Virt

The official source for avocado-virt is the GIT repository host at `GitHub <https://gitub.com/avocado-framework/avocado-virt`_. You can clone it by running:

$ git clone https://gitub.com/avocado-framework/avocado-virt

Then install avocado-virt itself with:

$ cd avocado-virt
$ python setup.py install

You may want to use python setup.py install --user to install
locally or even python setup.py develop --user to run from the
source tree.

Bootstrapping Avocado-Virt

After the package, a bootstrap process must be run wit the vt-bootstrap
command. Example:

$ avocado virt-bootstrap

The output should be similar to:

Probing your system for test requirements
7zip present
Verifying expected SHA1 sum from http://assets-avocadoproject.rhcloud.com/static/SHA1SUM_JEOS23
Expected SHA1 sum: 177468b8e5fcb7b9c5982a6bc21ff45df6d80b2f
Compressed JeOS image found in /home/<user>/avocado/data/images/jeos-23-64.qcow2.7z, with proper SHA1
Uncompressing the JeOS image to restore pristine state. Please wait...
Successfully uncompressed the image
Your system appears to be all set to execute tests

Another addition you’ll notice is that the avocado subcommand run now has
extra parameters that you can pass:

$ avocado run -h
...
virtualization testing arguments:
 --qemu-bin QEMU_BIN Path to a custom qemu binary to be tested. Current
 path: /bin/qemu-kvm
 --qemu-dst-bin QEMU_DST_BIN
 Path to a destination qemu binary to be tested. Used
 as incoming qemu in migration tests. Current path:
 /bin/qemu-kvm
 --qemu-img-bin QEMU_IMG_BIN
 Path to a custom qemu-img binary to be tested. Current
 path: /bin/qemu-img
 --qemu-io-bin QEMU_IO_BIN
 Path to a custom qemu-io binary to be tested. Current
 path: /bin/qemu-io
 --guest-image-path GUEST_IMAGE_PATH
 Path to a guest image to be used in tests. Current
 path: /home/<user>/avocado/data/images/jeos-23-64.qcow2
 --guest-user GUEST_USER
 User that avocado should use for remote logins.
 Current: root
 --guest-password GUEST_PASSWORD
 Password for the user avocado should use for remote
 logins. You may omit this if SSH keys are setup in the
 guest. Current: 123456
 --take-screendumps Take regular QEMU screendumps (PPMs) from VMs under
 test. Current: False
 --record-videos Encode videos from VMs under test. Implies --take-
 screendumps. Current: False
 --qemu-template [QEMU_TEMPLATE]
 Create qemu command line from a template

That’s right, the virt plugin gives you new options on the runner specific to
the QEMU related tests. For example, you can provide --qemu-bin to tell your
tests that you want a specific QEMU binary instead of whatever the runner could
find looking in the system PATH or environment variables.

Now, after you bootstrapped your tests, you may want to look for some examples on
how to build your tests. We have a repo with example virtualization tests
in https://github.com/avocado-framework/avocado-virt-tests.git. Cloning this
repo will allow you to run the example tests and study them:

$ git clone https://github.com/avocado-framework/avocado-virt-tests.git
Cloning into 'avocado-virt-tests'...
remote: Counting objects: 15, done.
remote: Total 15 (delta 0), reused 0 (delta 0)
Unpacking objects: 100% (15/15), done.
Checking connectivity... done.
$ cd avocado-virt-tests/
$ avocado run qemu/boot.py
JOB ID : <id>
JOB LOG : /home/<user>/avocado/job-results/job-<timestamp-shortid>/job.log
TESTS : 1
(1/1) qemu/boot.py:BootTest.test_boot: PASS (23.13 s)
RESULTS : PASS 1 | ERROR 0 | FAIL 0 | SKIP 0 | WARN 0 | INTERRUPT 0
JOB HTML : /home/<user>/avocado/job-results/job-<timestamp-shortid>/html/results.html
TIME : 23.13 s

With this info, we are covering the basics. We’ll cover setup details and the
available test API in later sessions.

 Copyright 2014, Red Hat.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Avocado Virt 0 documentation

Guest Configuration

By default, avocado-virt uses an x86_64 minimal guest image based on the latest
stable version of Fedora available at a given time. The image file is a
compressed qcow2 image located on my image repository that is downloaded,
should you choose to run the sub command virt-bootstrap.

If you use avocado with default settings, the test runner is going to uncompress
the pristine image of this so-called JeOS before each test. You might change
this behavior in config virt.restore.disable_for_{test|job}
(/etc/avocado/conf.d/virt.conf) or via multiplexer params
disable_restore_image_{test|job} in /plugins/virt/guest/ namespace if
you want to completely skip the backup restore process.

Or, you may opt for using your own guest image in your tests.

Guest Requirements

The JeOS is a fairly small guest, so your guest should be generally fine, as
long as it does have open SSH running on port 22 after boot, for all the
tests that require SSH connections (that is, tests that at some point call the
VM method .login_remote(). That said, it is hard to keep requirements
documented with precision, given that the tests and the plugin are going to
evolve in scope and features. Please feel free to send us patches to this
documentation file to correct any inaccuracies.

Using your own image

You can use your own image by specifying the following options:

	--guest-image-path - You can provide this option with an arbitrary path
to a QEMU disk image file with your guest. You can use any of the file formats
specified, such as qcow2, qed or even raw image formats.

	--guest-user - If your image has a specific user set up previously that
you want avocado to use when logging into the remote guest, please provide
this option. Avocado will inform the default values used in the
avocado run --help output.

	--guest-password - If your image has a specific password for the user set
up previously that you want avocado to use when logging into the remote guest,
please provide this option. Avocado will inform the default values used in the
avocado run --help output. Note that a previous setup of ssh keys on that
guest can let you ignore that option entirely.

Next, we’ll learn how to write a simple test, using the avocado basic APIs.

 Copyright 2014, Red Hat.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Avocado Virt 0 documentation

Writing Avocado Virt Tests

Basic example: Boot test

Avocado virt tests are similar to non-virt ones, they only differ on that
they use some specialized libraries, that let you use special virt features.

Here’s an example of a basic virt testing, a test that starts QEMU with a
guest image, then it’ll try to establish an ssh connection to this guest:

from avocado.virt import test

class BootTest(test.VirtTest):

 def test_boot(self):
 self.vm.power_on()
 self.vm.login_remote()

 def tearDown(self):
 if self.vm:
 self.vm.power_off()

The base class for the test is avocado.virt.test.VirtTest instead of the
base avocado.test. The reason for this is that the VirtTest class can
make the params from the test runner available for tests, and provide other
convenience methods for your tests.

If you chose to not override or extend the default virt test setUp() method,
you’ll have at your disposal a basic vm object in self.vm. The VM is not
started (powered on) yet, and you need to start it yourself. Calling
self.vm.power_on starts the QEMU process, then from that point forwards
we are just waiting for the VM to be active. The proof that the VM started and
the guest OS is healthy is that we can establish a remote session (SSH on linux
guests) to it, by using the login_remote method. That method is going to wait
for a default 60 seconds until the SSH connection is established, and fail in
case the connection can’t be established.

If we have an SSH connection, all is good, the test passed, and we’re going to
clean things up as a good practice. The cleanup method is going to run a
shutdown command in the remote connection, and then we proceed to shutting
down the VM (end the QEMU process), through the power_off method.

If that goes fine as well, the test passed and everybody is happy. We ended
our test with PASS. If any of the operations described above FAIL, avocado is
going to proceed accordingly and FAIL the test.

Basic example: Migrate test

Now, what if I want to migrate the state of a QEMU VM to another QEMU process
on that very same machine? Here’s what a live migration test looks like:

from avocado.virt import test

class MigrationTest(test.VirtTest):

 def test_migrate(self):
 self.vm.power_on()
 migration_mode = self.params.get('migration_mode', 'tcp')
 for _ in xrange(self.params.get('migration_iterations', 4)):
 self.vm.migrate(migration_mode)
 self.vm.login_remote()

 def cleanup(self):
 if self.vm:
 self.vm.power_off()

Fortunately, most of the migration logic is wrapped up
in the method vm.migrate. Here we modeled things after the concept of live
migration, so you have a single vm object, that when migrated keeps working just
as it did work before, with no service interruption (it doesn’t care that the
VM state was passed on to another QEMU process). The method will clone the
command line of the current VM, add the appropriate snippets for incoming
migration, start the new process, and call the appropriate migrate command in
the QMP monitor of the source VM. After it detects the migration is over, we
might repeat the process again migration_iteration times (here it has the
default value of 4).

More to come

This is a basic guide, as the plugin is in heavy developmemt. Soon we’ll
have more APIs and cover more cases.

 Copyright 2014, Red Hat.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	Avocado Virt 0 documentation

Reference Guide

This guide presents information on the Avocado-virt basic design and its internals.

Basic avocado-virt params

Avocado-virt uses test params to affect the environment independently on the
test code. This can be used to reproduce the same steps on different setup,
for example various disk drivers. You can set these via multiplex YAML
file.

Table of supported params:

	Params path
	Params key
	Description

	/plugins/virt/guest/*
	disable_restore_image_test
	Don’t restore the image after each test

	/plugins/virt/guest/*
	image_path
	Path to the guest image

	/plugins/virt/guest/*
	password
	Guest remote login password

	/plugins/virt/guest/*
	shell_prompt
	Regexp of the guest remote command line

	/plugins/virt/guest/*
	user
	Guest remote login name

	/plugins/virt/qemu/migrate/*
	timeout
	Migration timeout

	/plugins/virt/qemu/paths/*
	qemu_bin
	Path to the QEMU executable file

	/plugins/virt/qemu/paths/*
	qemu_img_bin
	Path to the qemu-img executable file

	/plugins/virt/qemu/paths/*
	qemu_io_bin
	Path to the qemu-io executable file

	/plugins/virt/qemu/template/*
	contents
	Template of the QEMU command to be run instead of autogenerated one

	/plugins/virt/screendumps/*
	enable
	Enable screendump service

	/plugins/virt/screendumps/*
	interval
	Interval between screendumps

	/plugins/virt/videos/*
	enable
	Encode screendumps into video after the test

	/plugins/virt/videos/*
	jpeg_quality
	Quality of the screendump image postprocessing

Note

Some of these values can be modified in config files and/or
overridden on the command line. To view the setting on your system run
avocado multiplex -s -c with avocado-virt enabled.

Note

Not all params are used in every run, some of them depends on each
other or on features touched in the test (for example when your test
doesn’t use qemu-io executing the test with various values makes no sense.
Changing the qemu_bin on the other hand makes the test executed on
different QEMU versions.)

 Copyright 2014, Red Hat.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	Avocado Virt 0 documentation

Index

 Copyright 2014, Red Hat.
 Created using Sphinx 1.3.5.

 _static/up.png

search.html

 Navigation

 		
 index

 		Avocado Virt 0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2014, Red Hat.
 Created using Sphinx 1.3.5.

_static/minus.png

_static/comment.png

_static/comment-bright.png

_static/up-pressed.png

_static/plus.png

_static/ajax-loader.gif

_static/file.png

_static/down-pressed.png

_static/down.png

_static/comment-close.png

