Automation notes Documentation
Release 0.9.0

Abed

2019-06-26 13:22:58

Automation notes

Basics 3
Siemens PLC 9
CoDeSys 65

S7 Library 67

Automation notes Documentation, Release 0.9.0

Siemens PLC (TIA Portal), CoDeSys, Beremiz, IEC 61131-3, ABB Robot

Warning: 2019-06-26 13:22:58

Note: Scientia potentia est

Warning: Work in progress

Automation notes 1

Automation notes Documentation, Release 0.9.0

2 Automation notes

CHAPTER 1

Basics

Warning: Work in progress

1.1 Basics

In any automatic industrial line the following are present:
* Sensors
* Actuators
* Controller
* SCADA
Other components maybe are available, but the first 3 components are the heart of automation.

This system can be compared to human beings. Usually a human have one actuator, one controller and five senosrs (ac-
tually the human being sensors are more than 5). This system acquire information from outside via sensors (eye, nose,
skin, ears, tongue,. ..). The brain, controller, elaborate these information and send commands to muscles (actuators).

1.1.1 Sensors and actuators

Industrial Sensors are those devices that acquire information from the field. Typically the signals are digital (e.g.
switch, proximity sensor) or analog (e.g. height sensors, pressure gauge). Also a camera (vision system) can be
classified as a sensor.

Actuators are mainly driven by electric, pneumatic and oleo-dynamic power. These actuators are mainly motors and
valves.

Automation notes Documentation, Release 0.9.0

1.1.2 Programmable logic controller: PLC
In this era, hard wiring is not any more necessary. Sensors and actuators can be interfaced to a controller, via cables,
fieldbuses or any other communication protocol. PLC and microcontroller based solutions are the main controllers in

industrial fields. PLC are programmed Usually in Ladder or in ST. Microcontrollers are programmed in C language.
At the heart of a PLC, ther is a microcontroller, where is present a firmware to facilitate to programming.

1.2 Programming

1.2.1 Programming principles

Boolean algebra

Any CPU or microcontroller basically understand only logic operations. Main logic operations are AND, OR, and NOT.
The following table resume the operations of these operators.

Input | Output Inputs Qutput

in out I F LDL A |B F

oo B i

NOT - AND 0_[1] ©

1 1 1

Inputs Cutput

A_D:)i ‘;‘ E :: A Inputs Cutput

F A B F

BB a ? 1 o ol o

NAND T 1] 0 °® OR R

1 1 1

Inputs Output

é“

S| == T

B
0
0
1
1

Fig. 1: Truth table and logic gates
In PLC ladder language is based on logic operations. More on this argument later.
1.3 C language

1.3.1 C++ shell

C language is chosen for different reasons. It is the king of all programming languages.

4 Chapter 1. Basics

Automation notes Documentation, Release 0.9.0

In order to try the examples, you can use the online shell: http://www.cpp.sh/. These shell is mainly a C++ compiler.
Since C++ is compatible with C, we will use it in order to avoid you to install the compiler on your computer.
Fig. 2: C++ online shell

The following code is the main function, the entry point of any C program. For now we are interested in the main
function.

Listing 1: C program

#include <stdio.h>
int main ()
{

return 0;

}

Basic syntax

Any programming language borrow some concepts from mathematics: operations, variables, values and functions.
Operations are:
¢ Addition
* Subtraction
* Multiplications
* Division
Values can be:
e Integers: 1, 2, 50, -10,
¢ Real numbers: 0.2,1.5,2.5
Variables are like in mathematics, can hold numeric and non numeric values.

In C and other languages (not all), we must declare a variable before using it.

Listing 2: C program

#include <stdio.h>
int main ()
{

int a=10;

int sum;

sum

= at+ 12;
printf ("the sum = %d",sum);

return 0O;

C language have different types of numeric variables:

e int

1.3. C language 5

http://www.cpp.sh/

Automation notes Documentation, Release 0.9.0

¢ double

¢ float

Flow control

The execution of a program is usually sequential, It begin from the first instruction until the last one. Sometime we
need to change the flow of execution. In C we have different contructs for flow control:

e ifelse

¢ switch case
e for

e while

Following a simple program than compare 2 variables.

Listing 3: If statement

#include <stdio.h>
int main ()
{

int a=10;

int b=30;

printf("a is equal to b");
}
else if (a > b)
{
printf("a is bigger than b");
}
else
{

printf("a is smaller than b");

return O;

An equivalent to i f is the switch.

Listing 4: Switch statement

#include <stdio.h>
int main ()
{

int a=10;

switch(a) {
case 0O:
printf("a is %d", 0);
break;
case 10:
printf("a is %d", 10);
break;

(continues on next page)

6 Chapter 1. Basics

Automation notes Documentation, Release 0.9.0

(continued from previous page)

default:
printf ("Value not present");

}

return 0;

Functions

Functions are useful to group instructions that can be used more than one time and to make the program more readable.
In the follwing example, a function called max is created.

Listing 5: Fucntion

#include <stdio.h>

int max (int a, int b)

{

if (a> b)
return a;
else
return b;

int main ()

int num =10, num2=20;

int m;
m = max (num , num?2);
printf ("the maximum is %d", m);

return 0O;

1.4 Operating systems and firmwares

1.4. Operating systems and firmwares 7

Automation notes Documentation, Release 0.9.0

8 Chapter 1. Basics

CHAPTER 2

Siemens PLC

Warning: Work in progress

2.1 Siemens PLC first steps

Note: All project are written in TIA portal v15. The exercise can be in any version, also in step 7.

2.1.1 S7-1200 Overview

We will use S7-1200 PLC. The model that we will be using is 1215C direct current (DC). The advantage of S7-1200
is the price and the integrated I10O.

As shown in the image this PLC have 14 digital inputs (DI) and 10 digital outputs (DQ) and 2 analog inputs (AI) and
2 analog outputs (AQ). It have also High speed counters (HSC) and Pulse generators (PWM).

2.1.2 New Tia Portal project

In this section we will create a new Tia Portal project and create a new device. The new device will be the PLC we see
in the previous section.

Set Ip Address

After creating a new PLC, the first step is to set its IP address. To set the Ip address, you need to open the property di-
alog of the PLC. If you click on the PLC image you need to go to PROFINET interface [X1], Ethernet
addresses. If you click on the Ethernet ports on the PLC image you can see directly the entry Ethernet
addresses.

Automation notes Documentation, Release 0.9.0

SIEMENS! =

Fig. 1: Siemens S7-1200 PLC

10 Chapter 2. Siemens PLC

Automation notes Documentation, Release 0.9.0

/"/-_—r
SIEMENS

SIMATIC §7-1200

CPU 1215C DC/DC/DE
BEST 215 EAGMJ-UXBU
S C-JTPN9918 2017
FS: 05

| SUPPLY 24VDC 1.5A

LDl - 1424V 0C BmA/pt

Do T0x24VDC 05A/pt

Al 2¢10BIT 0-10VDC

AQ 2%10BIT 0-20mA

. 55C,45C forz/Vert Mount |
BOCS0C Horz/Mert Mount
{No Adj, Pts. On} -

Patent F'-nd| |

548~

T3C, Ta; -20°C... +60°C
T3, Ta: -20°C... +60°C

hiade in
Germany

Fig. 2: CPU 1215C DC/DC/DC 6ES7 215-1AG40-0XB0

. Siemens PLC first steps

Automation notes Documentation, Release 0.9.0

Fig. 3: New TIA portal project
Create a new project and add S7-1200 PLC

Fig. 4: Set IP address

System and Clock memory

A clock in any CPU is necessary to provide timing. Select the PLC and in the property dialog check the 2 check boxes:
System memory bitsand Clock memory bits.

Fig. 5: System and Clock memory
Once these flags are checked, the PLC provide different system variables. For example AlwaysTrue is a variable

that is always t rue i.e. have always value 1. The variable Clock_1Hz is a variable that have the form of a square
wave, where it is for 0. 5s is high and for 0. 5s low.

Tia portal navigation

Tia portal main windows is a dockable user interface. The following animation show how to navigate the main window.

Download configuration

Online and diagnostics

2.1.3 Simple Program

Lets suppose we wire a lamp to the first digital output of the PLC, labeled DQa .0 on the PLC chassis. In the

configuration of the PLC we give that output a name or a tag. The name can also be given in the PLC tags table. The
following animation illustrate how to create a tag and write a small program in order to blink the lamp.

In this example we use the tag or variable Clock_1Hz in order to turn on and off the lamp, output, with a frequency
of 1Hz. Remember, the clock have a wave square shape. If we want to blink the output with different timing, for
example with a period of 2 seconds, the frequency that should be used is 1/2=0.5Hz. So clock_0. 5Hz can be used.

Download S7-1200 project

2.1.4 S7-PLCSIM

2.1.5 Exercise S7-1500 HW configuration

Download S7-1500 project

2.2 Fundamental concepts

2.2.1 Memory Overview

12 Chapter 2. Siemens PLC

Automation notes Documentation, Release 0.9.0

Fig. 6: CPU Clock

Remember that the time = 1/frequency

Fig. 7: TIA portal windows navigation

Fig. 8: Download configuration

Fig. 9: Online and diagnostics

Fig. 10: Blink an output with a frequency of 1Hz

%"S'EM__ENS-‘, L CPU 1512SP F-{ P

RIS ERMT

2.2. Fundamental concepts 13

Automation notes Documentation, Release 0.9.0

Bit

Bytes

B6.3

oclodaoA&AWIN|IE|O

wW1l4

Fig. 11: Memory layout and addressing

14 Chapter 2. Siemens PLC

Automation notes Documentation, Release 0.9.0

Input and Output

Ex02 » PLC_1 [CPU 1215C DUDUDC]

|; Topology view "bﬂ'h Network view
d [Rcicvimsd [@ B (4]
ECPU 1215C (600 215-1300:x4B0)
| <] [[>][100% v
|§.Prnperties ||"_i.‘,lnfo y"ﬂ Diagnostics |
‘ General ” 10 tags ” System constants ” Texts
Name Type Address | Tag table Comment
Bool %I0.0
Bool %101
Bool %102
Bool %03
Bool %104
Bool %10.5
Bool %106
Bool %107
Bool %I11.0 =
Bool %I1.1
Bool %I1.2
Bool %13
Bool %I1.4
Bool %I1.5 =
@ olamp Bool %Q0.0 Default tag table Lamp
Bool %Q0.1
Bool %Q0.2
Bool %Q0.3 B
Bool %Q0.4
Bool %Q0.5
Bool %Q0.6
Bool %Q0.7
Bool %Q1.0
Bool %Q1.1
Fig. 12: S7-1200 integrated 10 mapping
Fig. 13: PLC tags organization
Merker
Data Block

2.2.2 POU: Program Organization Unit
Organization Block

Function

Function Block

2.2.3 PLC programming languages

The standard IEC 61131-3 define 5 programming languages for PLC:

2.2. Fundamental concepts 15

Automation notes Documentation, Release 0.9.0

LA AELERE S

MName Data type Address
System_Byte .|Eij,-te MB 1 |E|
FirstScan Bool %M1 .0
DiagStatusUpdate Bool Fhi1.1
AlwaysTRUE Bool %M1 2
AlwaysFALSE Bool %h1.3
Clock_Byte Byte %MBED
Clock_10Hz Bool %M0.0
Clock_5Hz Bool M0 1
Clock_2 5Hz Bool %002
Clock_2Hz Bool %M0.3
Clock_1.25Hz Bool %M0 .4
Clock_1Hz Bool %M0.5
Clock_0.625Hz Bool %M0.6
Clock_0.5Hz Bool %M0.T

<H00d News

m

Fig. 14: Merker

Fig. 15: Create new Data Block

Fig. 16: Using DB variables

Fig. 17: Organization Blocks

Fig. 18: Create and use a function as code organization

16

Chapter 2. Siemens PLC

Automation notes Documentation, Release 0.9.0

e IL: Instruction List (STL in Step7)
LD: Ladder Diagram (LAD in step7)
e ST: Strucured Text (SCL in Siemens)

* SFC : Sequential Fucntion Chart

FBD: Fucntion Block Diagram

Instruction List Structured Text Sequential Function Chart

LD A

ANDN B C:=A AND NOTB Step 1 N | FILL

ST ¢ Transition 1

Function Block Diagram Ladder Diagram Step 2 Empt
AND A B C Transition 2

2 T A =N —() ’Tt&pE—‘

2.3 Programming

Download project Exercises.zip

2.3.1 Basic operations
Contact and Coils

Trigger

Timers

Set Reset

2.3.2 SCL

If statement

Think about the if statement as you think in daily life. For example:
* If today is raining I take umbrella

e Ifitis cold I put a coat

2.3. Programming 17

Automation notes Documentation, Release 0.9.0

- Ithel:\.ﬁ.u{:-rk 1:

] 1] Iol | 1
1| /1 1P| 1M { —
* .4 Network 2:
<77 P R_TRIG < T F_TRIG <7 P
| | EN END {R} EN END {5}
— CLK Q—-- = CLK Q—--
- i.4 Network 3:
TON TOF
Time Time
I Q IN QF—
PT ET =77 PT ET

Fig. 19: Contact-Coil in ladder and its equivalent in SCL

0
A
R_TRIG.CLK
0
A
R_TRIG.Q
0 1 0

18

Chapter 2. Siemens PLC

Automation notes Documentation, Release 0.9.0

ET
PT

1y

0 F_TRIG.CLK

A

F_TRIG.Q

Fig. 20: R_TRIG positive signal edge in ladder

Fig. 21: R_TRIG positive signal edge in SCL

FT

1/

Fig. 22: TON (On delay) in ladder

2.3. Programming

19

Automation notes Documentation, Release 0.9.0

IM
o
‘ PT ‘ PT

ET
PT

Fig. 23: TOF (Off delay) in ladder

Fig. 24: TON (On delay) in SCL

Fig. 25: Set Reset a signal
Fig. 26: Why the output didn’t change value?
20 Chapter 2. Siemens PLC

Automation notes Documentation, Release 0.9.0

* Metwork 9: setlamp 10

Comment
#ririglamp %00 5
R_TRIG #ririglamp.Q "oLamp10®
EN ENO | Fm— e 1S pmm—n
TREUE Q
"dbTest".
turnOnlamp — CLK

- MNetwork 11: What is wrong here???7732227777

Comment
"dbTest". W0 5
testlampl0 “oLamp10"
B 4 pm--

Fig. 27: What is wrong in this code ?7??

2.3. Programming 21

Automation notes Documentation, Release 0.9.0

* I you find orange then buy, otherwise buy apple.

1 EIF #a=5% THEN

3 | END _IF;:

4

5

T EIF #a = 10 THEHN
9 | ELSE

10 H

11 _EI-D_IF:

e

13 EHIF #a=11 THEN
14 H

15 | ELSIF #a=12 THEN
1a 4
17 | ELSE
14 _EH:I_IF.'
n

Fig. 28: If statement

Case statement

Case is like if, it check if the numerical value of the variable is present in the list, and execute the instruction corre-
sponding to that value. For example let create a variable day of type int. The first day of the week is one the last
day is seven. So If I want to make a decision tree, I list in the case statement days from 1 to 7, and for every value |
do something:

 If day is 1 (Monday), I go to work
* If day is 2, I do something else
« If day is 6, I stay at home.
Remember that a case can be written also as an if.

The Case statement is more suitable in state machine. In Siemens there is no enumeration data type. In Tia
portal siemens introduce CONSTANTS, so we can emulate an enumeration. It is more clear to have name than
numbers. For example, is more clear to say Monday than day 1. And if Day 1 for me is Sunday? So is better to create
a set of CONSTANTS with unique value and use them.

22 Chapter 2. Siemens PLC

Automation notes Documentation, Release 0.9.0

7 400 T Static

E |4 = a Dint 0 Mon-retain

8 I = day Dint |0 Mon-ret... [:]
10 g <Add news

CASE... FDR... WHILE..

IF- "oF. ToDC.. DO..

(*...*) REGION

EICASE #day OF
1l: J/ Monday

2: S/ tuesday

= La pa

[y]
[

(=31

ELSE

-1

oo
s

| END_CRSE;

=
L -

Fig. 29: Switch Case statement

int today;

const int MONDAY := 1
const int TUESDAY
const int WEDNESDAY := 3;
const int THURSDAY := 4;
const int FRIDAY := 5;
const int SATURDAY :=
const int SUNDAY := 7;

6;

CASE today OF
MONDAY :
I go to work;

SATURDAY :
I sleep more;

ELSE:
Error day is not recognized;

END_CASE;

Loop

Try to avoid for and while in PLC programming if you don’t know what are you doing. Infinite loops stop the plc.

2.3. Programming 23

Automation notes Documentation, Release 0.9.0

2.4 Style guide

2.4.1 Project organization

Every project should have:
« README.md
* CHANGELOG.md
* Flowchart with yed, and converted in image(png or jpg)
The backup is projectName-Type-year-month-day-version-ProgrammerName.zip For example :
* Excersice01-PLC-2019-05-09-v0.0.1-Abed.zip
* A-JC-18-003-PLC-2019-05-09-v0.0.1-Abed.zip
* A-JC-18-003-ROBOT-2019-05-09-v0.0.1-Abed.zip
If in the same line have more than one robot, the robot id number should be the same as electrical drawings:
* A-JC-18-003-ROBOT01-2019-05-09-v0.0.1-Abed.zip
* A-JC-18-003-ROBOT02-2019-05-09-v0.0.1-Abed.zip
* A-JC-18-003-ROBOT03-2019-05-09-v0.0.1-Abed.zip
* A-JC-18-003-ROBOT04-2019-05-09-v0.0.1-Abed.zip

README

General informations about the project.
References
Special equipments

Short description about the workflow

CHANGELOG

The version is : major.minor.patch
The date is year-mont-day

[X.Y.Z] - aaaa-mm-dd Name(who) ### Added for new features. ### Changed for changes in existing functionality.
#i## Deprecated for soon-to-be removed features. ### Removed for now removed features. ### Fixed for any bug
fixes. ### Security in case of vulnerabilities.

Flowchart or UML

Software used: https://www.yworks.com/products/yed/download

Every state machine should be illustrated in a chart (flowchart, uml,...).

24 Chapter 2. Siemens PLC

https://www.yworks.com/products/yed/download

Automation notes Documentation, Release 0.9.0

2.4.2 Abbreviations

* Push button : pb, btn
e Lamp : Imp

* Limit switch : Isw
e Command : cmd
 Cylinder: cyl
 Table : tab

e Rotate : rot

* Robot : rob

¢ Machine : mach

* Panel view : hmi
e Actual : act

* Previous : prev

* Emergency : emrg, emr

Prefixes

e Input: i

* Qutput: qoro

* Analog input : ai

* Analog output : ao or aq
* Ethernet : eth

* Function block : FB

* Function : FC

» User data type: udt

¢ Structure: st

2.4.3 Names

S7 plc languages are not case sensitive, Button and button are the same variable.

Use camelCase for primitive data types: bool, word, dword, int, dint, real.
Use PascalCase for complex data types, and prefix them with the type:

* User defined data (udt, structures): udtConveyor, stConveyor

e AOI: AOI_Conveyor, AOI_Cylinder

* Function Block : FB_Conveyor, FB_Conveyor

2.4. Style guide

25

Automation notes Documentation, Release 0.9.0

The name of a variable should begin with the machine name, station name, component then function. For example:
conveyorMotorRun, conveyorMotorStop, conveyorLswPartPresent.

CONSTANT variables in capital letters

Data blocks:
* Global data block: dbConveyor, dbRobot, dbCylinder
* Instance data block: idbConveyor, idbCylinder.

2.4.4 Rules

Rungs or segments must have a title
Rungs or segments should be commented in English, no Chinese nor other languages.
Every variable should have:

* Clear name

¢ Clear description

« If the variable is a signal, it should have the signal number as electrical drawing.
Every station have its own Function block, or own program in case of ControlLogix PLC.
Use state machine:

* Make state chart using OpenOffice draw or Yed software..

» Use unique numbers for states, use enumerations not numbers directly.
Cylinder:

Cylinder states are: Opened, Closed. Cylinder commands are: Open, close. Don’t use Forward, backward,
up, down, left, right,. ..

2.4.5 Software organization

Functions (FB, FC) are the main building block of any program. The start point of S7 PLC is OB1, in OB1 we should
find only function calls. In OB1 There is no business logic.

Every station should have is own main FB and global DB and instance DB. If the station have more then one component,
every component should have its own FB. The components’s FB should be instantiated in the STAT section of the
parent FB. All functions and DBs of a station should be grouped in a folder.

FB that can be reused in different projects, should be placed in the _Library folder. A library with FB should be
used.

Note: Follow example after training

2.5 Bad code

PLC programs usually are not structured well, neither follow best practice in software engineering. I notice that more
than 95% of PLC programs are written in a horrible way, those are called bad code.

26 Chapter 2. Siemens PLC

Automation notes Documentation, Release 0.9.0

More experience a traditional PLC programmers have, more bad code he write. Reasons can vary from the leak of
academic formation to other reasons. Even computer engineers write too bad code.

The main reason of bad code in PLC are come from the 2 dominant platforms: Siemens S7 and Allen Bradley PLCs.
These platforms have a bad IDE and program organization. Even with Siemens new platform, TIA Portal, few things
changed.

When someone begin to learn with these platforms, bad habits will accompany him for all his career. Using only one
language or similar platform, is always a penalty.

A more advanced PLC based on CoDeSys and the standard IEC-61131, let you program a PLC like programming in
C++. The IEC-61131 ST language have more features than Siemens and Allen Bradley PLCs. It support enumerations,
classes, inheritances. Languages are variable name based, not address based like Siemens.

Tia portal become variable based, compared to the old Step 7. But Siemens keep function and data block numbers for
an unknown reason. The reason can’t be retro compatibility, if you open a project in Tia Portal 15, you can anymore
open it in TIA portal 14.

2.5.1 Naming

2.5.2 Code reuse

A project have three cells, every cell have two rotating tables. The following snippet shown two function blocks
without local variables for two tables in the same cell.

For the project the same logic was written six times at the beginning. During debugging a lot of malfunctioning were
found. The six function blocks was modified again six times.

Another project have similar tables, the logic was written also 2 times for the 2 tables. In this project we can see also
some difference in the program, even if the two tables should have the same logic.

At the end the logic of the turntable was written 8 times, and debugged more than 100 times. You can imagine how
much time were wasted.

The logic of the same device in two different projects was written 2 times. If a function block with local variable was
used, code duplication were avoided and time were saved.

2.5.3 General

In the following picture, a variable was assigned to other different variables, in different functions, before arriving to
the output. During debugging is difficult to find any bug. Anyway this have no meaning.

When transferring data, e.g. from a recipe, group the variables in a st ruct and use block transfer. When dealing
with assignments, it is better to use ST language than Ladder.

Two much conditions are present in this rung. When a rung become big, bigger than the screen it become difficult to
debug.

2.6 Exercises

Note: We mean by function either FC or FB. Remember that an FC is a function without memory, it have only
temporary variables. An FB is a function with memory, it have stat ic variables.

2.6. Exercises 27

Automation notes Documentation, Release 0.9.0

= -

* [{;] Station1
3 10 ABIL STN1 [FB19]
& 10 MAIN STN1 [FE10]
4 10 STATUS STN1 [FB11]
@ 10DESTN1 [DB11]
@ Ist_FE10 [DE10]
i st FB11 [DB12]
g st FBE19 [DB19]

* [{;] Station2
48 20 ABIL 5TNZ [FB29]
48 20 CYCLE STN2 [FB23]
48 20 MAIN 5TNZ [FB20]
& 20 STATUS STN2 [FB21]
@ 20DE SN2 [DB21]
g |st_FE20 [DB20]
@ Ist_FE21 [DB22]
@ Ist_FE23 [DB23]

v 5] Stationd
4 40 STN4 [FB40]
g 40 DB STN4 [DB41]
i st _FB40 [DB40]
@ 1st_FB710_Stnd [DB42]

Fig. 30: Groups and functions without a good name

28

Chapter 2. Siemens PLC

Automation notes Documentation, Release 0.9.0

36 <@ Tags Boal %M192.6 =) =
37 4@ Tag_10 Bool %1927 =] =]
38 @ Tag_11 Boal %M192.5 = =]
39 @ Teg_12 | Bool H| wmioza [+])] ™
40 @ Tag_13 Bool %N193.0 =] =]
41 @ Tag_14 Boal EANEER =) =]
42 @ Tag_15 Boal %M193.2 v v
43 @ Tag_19 Bool %1933 =] =]
44 @ Tag_20 Boal BM193 4 =) =]
45 @ Tag_21 Boal %M193.5 v v
46 @ Tag_22 Bool %1946 =] =]
47 @ Tag_23 Boal %M194.7 ™ =]
48 <@ Tag_24 Byte %IBZ3 v v
49 @ Tag_27 Bool %N194.0 =] =]
50 @ Tag_30 Boal BN194.1 ™ =]
51 @ Tag_31 Boal %h194 .2 v v
52 @ Tag_32 Bool %1943 =] =]
53 @ Tag_33 Bool %I51.5 =] =]
54 <@ Tag_35 Bool %0511 = =
55 @ Tag_36 Bool %Q51.0 =] =]
56 @ Tag_37 Bool %MZ00.0 =] =]
57 @ Tag_41 Bool %Q39.7 = =
58 @ Tag_42 Bool %1957 =] =]
59 @ Tag_45 Bool %M5000.1 =] =]
B0 @@ Tag_49 Bool FBMT111.1 =l =
61 <@ Tag_50 Timer %71 =] =]

Fig. 31: Variables without name neither comment

2.6.1 Line equation
Analog signal need to be scaled to a physical unit in order to be understood. Usually analog sensors and actuators are
modeled as linear systems. Write a function that map the value of an analog signal to a physical one (or from physical

signal to analog one). For example, to map voltage to temperature, or to map current to pressure value, or to map a
speed to voltage.

2.6.2 Rising edge

Write a function the detect the transition of a signal from O to 1. This function have the same functioning of the
standard one R_TRIG.

2.6.3 Falling Edge

Write a function the detect the transition of a signal from 1 to 0. This function have the same functioning of the
standard one F_TRIG.

2.6.4 Retentive TON

Write a function that count the time if a signal is 1. If the signal go to zero the function should stop counting. If
the signal return to one, the function should continue to count from the previous value. Refer to the following timing
diagram.

2.6.5 Blink

Write a function that toggle an output, with a determined frequency. The duty cycle of the signal can be tuned.
Remember the duty cycle is the time (or percentage) of the time when the signal is high. In this exercise use time not

2.6. Exercises 29

Automation notes Documentation, Release 0.9.0

02
"AlwaysTRUE" MOVE
| | EN
w308
"Tag_16" — N 3¢ OUT
MOVE
EM
w314
"Tag_46" IMN 3 OUTl
MOVE
EM
W3 12
"Tag_45" N 3 OUuTi
MOVE
EM
IWE 10 ¥ 0um
‘Tag_44” IM
MOVE
EM
“UB317 ¥ OUTI
"Tag_s0" M

AW 20
"Tag_15"

—ei

i
Ak

gelectricity

——

e

Fmoment

—_—

" INVT speed”

—_—

&"INVT POS”

Fig. 32: How can remember the meaning of the variables?

30

Chapter 2. Siemens PLC

Automation notes Documentation, Release 0.9.0

YDB34.DBX0 2
" TSR
%MO 2 - ”gg, “alarm HMI".
*Always TRUE" 20 ALARMI2]
[| == | [y
1 I | word | LI
w1065
INVT ermor
.H"HH&DQ. "toRobot®.
Tag S0 spindleMoAlarm
| == | I
| word | LI
%1064
INVTSTOP
. 4 "toRobot®.
INVTspee spindlefdotorStop
| == | [y
| word | LI
0
Fig. 33: How can remember the meaning of the variables?
L o n n = B
Ty Tar —w oum Ty TE w4 oum Ty or Tt Ty 17w oun T 185
V;MI?IEDZ th‘::zn::uic‘lﬁamn T'(JJOQJE;
— ¢ 't { —

: No significant name

2.6. Exercises

31

Automation notes Documentation, Release 0.9.0

Mame Data type Offset Default value Visiblein ... | Setpoint Comment
7 @ . FOOOO Boal 30.2 false [+ A
74 g FOOO4 Bool 303 false v [l
75 @ . FOOOS Boal 304 e [+ =
76 G = FOO10 Bool 305 false v =
77 @ FOO11 Bool 306 false = =
78 4 - FOO12 Bool 30.7 Il A
79 = FOO15 Bool 310 ¥ =
80 4@ = FOO20 Boal 311 [+ =
81 4= FOOZ4 Bool 312 v [l
82 @ = FOO25 Boal 313 [+ [
83 |40 = F0O030 Boal 314 il A

3
4

B e — J

* Network 15: Bool

Comment

| #FODOO #FOD04 #FODO5 #FOO10 #FO011 #FOD12 #FOD15 #FOO020 #FO024

| i/t i1 i1 i1 1 i/ i1 i1 i1

* Network 16: ..

Comment

| #vNoFasel #FO035 #F0040 #FO043 #FO044 #FOD45 #FO050 #F0O55 #FOOG0

| i | /1 i/ i/t 1 /1 /1 i i/t

Fig. 35: State machine without state name neither comment

percentage.

2.6.6 Bi-stable cylinder

Write a function that control a cylinder. Imagine all digital input and outputs that are necessary to the correct func-
tioning of the cylinder, as also any other signal or variable (not only physical input or output).

2.7 Solutions

Note: Complete and tested solution can be found in the OpenLib Library

Download Exercises solutions TIA Portal 15
Functions written in SCL can be exported and imported.

You can copy the code of the solution to a text file, save it with extension . sc1 then import it to TIA. Otherwise check
the project file if you have Tia Portal version greater than 15.

2.7.1 Line equation

32 Chapter 2. Siemens PLC

Automation notes Documentation, Release 0.9.0

oPos(Tool 20pe

#ioEmptyCede n

1
-
=]
CLa
5
]
ETS
I=
[=
—
(=]

/1

.=
—
—
]
e

1
-
=]
=]

&
b

1
-n
=
=}

&
i

L4 Cncn

Fig. 36: State machine without state name neither comment

. Solutions 33

Automation notes Documentation, Release 0.9.0

Devices

» Servo » 4 2 » SERVO 2 [FB4]

» [i3] rolling door

-
~
- SERVOT [FE13)

servo

@ Axs1 [pB14]

)
»
»

= System blocks
[Technology objects
External source files
[Pictags
(g PLC data types
[Watch and force tables
(&) Online backups
s e
i Device proxydata
Frogram info
PLCalarm texelists

» (@ Local modules.

» [Distibuted 10
» [PCSystem_1 [SIMATIC PC station]
e
» 5§ Security setings
» (34 Common data

Documentation s ettings
b oS s

» [jgp Online access

¥ [Card ReaderlUSE memory.

Data type.

&

G

g

CaEB =

Accessible f... Writa... |Visible in

=]

Default value | Retain

e]
=g

Data type

e @Y

Retain

Default value

=]

Accessible f... Writa

G el

isib

<]

[<]

3
&

b i O

~ Block title:

~ Network 1

nt

o2
“AlwaysTRUE®
I

*SYSTEM DE"
“ALL alarm OK"
1t

~ Block title:

*AXIS 2" AUTO. 0.2
ready *AlwaysTRUE®

T A

*SYSTEM DE'
“ALLalarm OK' *SYSTEM DB’
1t 1t

“up

*Robot signal”

“Oil Cyinderrise™ “robotstar”
I A
N

AN It (

 — f=—o }

i/ ; {

%07
“Seno brake
pen 1°

{ —

Network 2;

SYSTEM DE
RESET

~ Network 2:

s}
*Senoalam LY
e “HlwaysTRUE®

Q11
“Semobrake
open 2*

{ —

SYSTEM DE
RESET

et
*Senoalarm
reset 1"

{ —

—

~ Network 3:

~ Network 3:

Fig. 37: Two tables in Project 1

Devices

1000A10 [CPU 1215C DUDCIDC] » Program bloc

» Servo » 4 1 » SERVO1 [FB13]

» [i3] rolling door
~ il seo
-
= sewo1 [ra13]
@ st [oeta]
2
& SERVO 2[FB4]
A=
» SR
» [tz Teol

» [System blocks
@ Technology objects
External source files
[PLCags

() PLCdata tpes

(5 Watch and force tables.
[Online backups

[Traces

Device proxy data

Program info
= FLCalm textlists

» (@ Local modules

» [Distributed 0
» [PCSystem_1 [SIMATIC PC station]
» i Ungrouped devices
Security settings

Documentation settings
N

DI G s

b (8 Card Reader/USE memory

Datatype.

g @t

CaaP i aa’

Accessiblef... | Writa... |Visiblein

&

Defaultvalue | Retain

Datatype.

W

3G o868 T G !
Accesible .

2]

Defaultvalue | Retain

G et

Wirita...

B30
& 2

Visiblein .

“AXISZ AUTO.
ready

—

0.2
*Always TRUE®

D82
o

“Servo alarm
recet2”

En
%082
e
“SYSTEM DB
*STOP OK™

———Enable

P

Starthiode
0— Stophode

SNC_Reset_
Instance

MC_Reset

s

— Execute -

MC_Power

o ———1
“AXIS2" AUTO.
Status —"powersatus”
“AXIS2" AUTO.
Error —i " powerEmor”

0.2
*AlwaysTRUE®

~ Network4:

No————
“AXIS2" AUTO

Done —i"RESET DONE™
“AXIST” AUTO

Error —i" RESET Error®

~

Fig. 38: Two tables in Project 1

“senvoalam
reset1”

1

%081
el
“SYSTEM DB"
“STOP OK”

———Enable

s

MC_Power

o ———1
AXIS1 AUTO.
Status —"power status”
“AXIST® AUTO.
Error —i"powerEmor”

Startode
0— stopMode

SMC_Reset_
Instance

MC_Reset

%81
BT s

— Execute -

BN —————
“AXIS1* AUTO

Done —t"RESETDONE"
“AXIS1” AUTO

Error —"RESETErmor®

34

Chapter 2. Siemens PLC

Automation notes Documentation, Release 0.9.0

PN] » Program block:

» 10Servo » 420E1Servo SMALL » 420E1Servo [FB10]

] CdEP =z G &7 G Qa2 6, =020 6 8T 6= aea’ o
420E1Servo SERVOR
| Neme Data type Defoultvalue Retain Accessible f. Writa.. Visiblein .. Setpoint Neme Data type Defoultvalue Retain Accessiblef... Write... | Visible in
i@~ mput @~ mput [~
2] = o [~ D > =] v
<] I] Al i
4 rolling door [FC4] T T
» [i] 09irCylinderavalve H4F ik —o— {7 > A
~ [iz] 10senvo '
& servo [Fes] I =
-l = = v Network3: FREWARE (EX)
[l 410E1Servo BIG Network 3 FHBWARE (1A - (BT
& SERVOB [FB13] comment
@ D501 [DES)
@ 08601 [0B17]
@ sevomps oezs) S %08500.08W10 wB17.08%9.0
~ [420E15ervo SMALL . . DBS00". “DB601".
e o pesol a2 SENVOASWISPD_ W63 W62 SeroACHLCH.
- - SeroASWSPD, * .
= a2 SystemDe’ 63 62 ok a4 “AweysTRUE' “SystemDE" Auto FeK Tl LS SERVO_DI_INH
“AwsysRUE' StateOKNoStop FREEIE" _EHEI i T |- | o i h
I 1t I} P = I k 1 vhord | it { —
k 1 1 it vor ;s
o
w12 “DB17.DBX9.1
- Awaye TUE" DB600 DBYS. “oms0r+
B500". SenvoACHCH
_ SenoACHW. 0.0N
+ I systemblocks { —
» [Technology objects
» i External source files.
» [Q PLCtags §
- s HMARSRIERS
» [PLC dota types Network 4: Network: Hi s SREER
» [Wetch and force tables T
» [Online backups.
» [Traces “DB17.DBX9 0 %DB17.DBX9.1
y DBE00.DBD0 WDBE00.009.1 o601 “oBe01 ey
s pas00 0B600". w2 SenoACWCML ServoACHCW, HmidigsenvoEnab
g . ServeACH.CW. HmiSmallservoEn ey RUE* SERVO_DLINH SERVO_ON e
P FLC supenisions & alarms. SERVO_ON i .)
PLCalarm text fists 1} { — f 1r N
» [Local modules
» [Distibuted io
=
my"—‘:"“"”mmm‘“m—‘m, S [100% 2 Al [100% -

Fig. 39: Two tables in Project 2

» rolling door » rolling door [FC4]

Devices
. n
| @D el g &7 &
= - T T P
* [&] rolling door ~ N
& rolling door [FC4] =i (==
7 E Servo
v [&]#H 1 %07 s
- SR [[FRS] "SYSTEM DE". “SYSTEM DE". w11 “right”
@ ~0s1 [DB14] AUTO *ALL alarm OK” *Fault feedback” SR
5]
T2 | | i | | 5 Q—
4 SERVO 2 [FB4]
@ AXIS2 [DB6] w113
SICAR “rolling door(2)"
b [E] Tool | | | R1
» | System blocks
» Eﬂ Technology objects w111
> External source files “Fault feedback”
» @ PLCtags 1/t
» (i) PLC data types
» .zl Watch and force tables
» [ig Online backups
» [Traces * Network 3:
» i Device proxydata Comment
=5 Program info
PLC alarm text lists W7 6
» [l Local modules "SYSTEM DE". "SYSTEM DB". w112 w11 “left”
3 h Distributed 110 AUTO "ALL alarm OK" “rolling door(1}” “Fault feedback" SR
» [Q PCsystem_1 [SIMATIC PC station] L | | {1 | | s Q—
3 % Ungrouped devices
» Security settings W2
3 ;’ Common data “relling deer(1)”
» Documentation settings | | R1
3 r\'@ Languages & resources
v g Online access Wia
v (i3 Card Reader/USB memory *Fault feedback”
A
r

Fig. 40: Rolling shutter in Project 1

2.7. Solutions

35

Automation notes Documentation, Release 0.9.0

|tz] O5Alarm

z| O6Converter
07Hydraulic
08RollingDoor

(v~
7 &7 [&7

3& rolling door [FC4]

09AIrCylinder&valve
105ervo

11Robot

12Cooling

13Tool Storage
Library

remote comand to robots

a7 [

System blocks
chnology objects
xternal source files
LCtags

=l
oom oo

]| PLC data types

[52 watch and force tables

[online backups

.
g Traces

v T v v woww

i Device proxydata

ﬂ'i Program info

g PLC supervisions & alarms
E] PLC alarm text lists

[Local madules

» [Distributed li0

[=3 HMI [TP1200 Comfort]

[t Ungrouped devices

5§ Securitysettings

[g§ comman data

r:j]] Documentation settings

-

- v v v v

» '::; Languages & resources
1@ Online access
h Card Reader/USE memory

- - = — £

W83
“SystemDE"."All Limit switch high
"SystemDBE" Auto Alarm 0K "i_FRET
| { | 1
48 3
Limit switch high
“i_PFEr
1|
11
48 2
Fault feedback
i
BRI
VI
68 .4
“SystemDE"."All Limit switch low
"SystemDE" Auto Alarm 0K “i_FRAE"

s 4
Limit switch low
“i_FRIE"

1

oug 7

Fig. 41: Rolling shutter in Project 2

%Q5.1
Rise
o b
SR
Q—i

%Q5.2

Down
“o_TFE
SR
Q —

36

Chapter 2. Siemens PLC

Automation notes Documentation, Release 0.9.0

“DEBE211.DBX244

608 .4 Spindle Clean
FromRbiB : from robot
Spindle - *30_DE_Robot
Clean B"._1.rAuto._
- CiRobB_o068" 04
| 1 ;3
1 | 1}
YDB211.DBX24.4
Spindle Clean
from robot (YDBE211.DBX30.5
Sottostazione 1. Clean {
Richieste da Sottostazione 1.
Ciclo Comandi di
Automatico) stazione)
"30_DEBE_Robot
B"_1.cStz_
05
T
1!
%WB211.DEX30.4
Oil lubrication
Sottostazione 1.
Comandi di
UG O stazione)
SystemCiclo *30_DE_Robot
TMZ2101 Automatico B* _1.c5tz_
"m210.1" "sAuto” 04
] |] | I 1
1 1| 1 1| 1
UMD A UME A
Flag Abways Off SystemCiclo
temporaneo Manuale
"sOffTernp” "shanuale”
] |] |
1 1| 1 1|
YDBE211.DBX30.5
Clean {
Sottostazione 1.
Comandi di
stazione)
"30_DB_Robot
B"_1.c5tz_
05
YWB211.DBX30 4
Oil lubrication (
[Softostazione 1.
2.7. DO:IU(-E'!:'a_m.I‘j_ﬂdi di %0301 37
stazione) WE00.4 HEG03 206.5 RBTB
%DE300.DEXE.0 FromRbiB: SYS FromRbtB : : Cmd Lubrifica
"DE Frogram_ - CycleOn ﬁlﬂl‘l‘l‘lf’ﬂ"ﬂl‘l‘lll‘llg "oBRbECrdLubrif

Automation notes Documentation, Release 0.9.0

P_TRIG MOVE MOVE MOVE MOVE
ak Q EN ENO EN ENO EN EN ENO
- *16 DB MGU". - .
16 DB MGU". sint_012 16 DB MG’ 16 DB HMI 16 DB MG’ 16 DB HMI 16 DB MG’ 16 DB HMI 16 DE MG 16 DB HI
ar."Fosition(= Par."Diameter(DATIUT.Ut5. Par."Lenght(DATIUT.Ut5. Par."RPWI DATIUT.Ut5. Par." Type(DATIUT.|
Receipe)” Receipe)” — 1y 3t oum — Diametro Receipe)” — 1y st oum — Lunghezzs Receipe)’ — |y st ouT — RPM Receipe)’ — |y st ouT — Tipo
*16 DB HMI
DATIUT SoR_
04
Int 5!
*16 DB MGU".
Far.
“RotationDirection
(Receipe)”
#iRbtE #ioPosOPertiStat #ioFosOPanBStat ProductionNumbe #ioFos180PartASt #ioPos180FartBst
. . - r
#iAuto #F00S0 #iRbtB_FartBGood FanBscrap | e | | € | |m| |m| #FO055
11 11]] == == —— - f
L L i/ Jint Jint | Jint | Jint {5}
#F0O050
—fRF—

#ioPosOPartBStat

e
|
I

#ioPosOPartAStat

#ioEmpryCycle

ni

e —:

#ioPosOPartBStat

#ioPosOPsrAStat
€ #icEmptyCycle

2 5

#ioPosOPartBStat

J==1 |
i A
0
#RbtB_
WM192.0 Fmduttiﬂr"Numbe #ioPosOPartAStat #ioPosOFsrtBStat
"HK_TEST e e
1| | == | |==| |=
t |Byte | Jint | |int

{R }—

#ioPosOPartAStat
#ioEmpryCycle ¢ ¢ #ioEmpryCycle
11 1==1 =1
L Jint | Jint | |

Chapter 2. Siemens PLC

38

Automation notes Documentation, Release 0.9.0

IN
R
Q

PT

tHigh

tLow

Fig. 42: Preset times tHigh (on) and tLow (off) can be set as desired

2.7. Solutions 39

Automation notes Documentation, Release 0.9.0

Double-acting Cylinder

Iswclosed, IswOpened

Directional
Control
Valve Al s

a%ﬂ b emdclose

Ccmdopen Pl |T

P

A foed- 1
displacement
Pump

N

Fig. 43: Double acting cylinder

Fig. 44: Export a function (FB or FC) written in SCL to a file

FUNCTION "LineEquation" : Void
{ S7_Optimized_Access := 'TRUE' }
VERSION : 0.1
VAR_INPUT
X : Real;
xA : Real;
vA : Real;
xB : Real;
yB : Real;
END_VAR

VAR_OUTPUT
y : Real;
END_VAR

VAR_TEMP
m : Real;
END_VAR

BEGIN
// Analog input
// % is Analog input (INT)
// y is the physical meausre (REAL) (temperature, pressure,speed,....)

// Analog output
// x is the physical meausre (REAL) (temperature, pressure,speed,....)
// y is Analog output (INT)

#m := (#yA - #yB) / (#xA - #yA);

#y = #m » (#x — #xA) + #yA;
END_FUNCTION

(continues on next page)

Fig. 45: Import an external source and generate the function

40 Chapter 2. Siemens PLC

Automation notes Documentation, Release 0.9.0

(continued from previous page)

Suppose we have a temperature sensor connected to the analog input of the PLC. The analog input read an int, 16-bit
signed value between -32768 (-2*15) and 32767 (2715 - 1).

Table A- 190 Analog input representation for voltage

System Voltage Measuring Range

Decimal |Hexadecimal |10V 5V +#25V | +1.25V Oto10V

32767 7FFF 11851V | 5926V 2963V [1.481V Overflow 11.851V | Overflow
32512 7F00

32511 7EFF 11759V | 5879V 2940V |1470V Overshoot 11759V | Overshoot
27649 6CO01 range range
27648 6C00 10V 5V 25V 1250 V Rated range 10V Rated
20736 5100 75V 375V 1875V |0938V 75V range

1 1 361.7uV |180.8 VvV | 9044V |452V 361.7 UV

0 0 oV oV oV oV ov

-1 FFFF Negative

-20736 | AF00 75V 3.75V -1.875V |-0.938V values are

27648 | 9400 -0V |5V 25V |-1250V 23:)p0ned

-27649 93FF Undershoot

-32512 | 8100 -11.759 V| -5.879 V 2940V |-1470v |Ma@nge

-32513 | 80FF Underflow

-32768 | 8000 -11.851V|-5.926 V 2963V |-1.481V

The s7-1200 AI data sheet show the mapping between tension (voltage) and corresponding numerical value.

The temperature sensor datasheet, will show the mapping between the tension and the temperature. In the PLC
program we have to map from Al numerical value to tension, than from tension to temperature.

* MNetwork 1: Temperature analog sensor

- Siemens Al:
0 —=0v
27648 —= 10V

Temperature data sheet:
4y —= 0 degree
10V —=100 degree

WFCcl Wl
“LineEquation” “LineEquation™
EM ENO EN END —
LW 4 y — #volt #volt— x “dbTest".
x 40— A y — temperature

0.0 x 0.0 yA
0.0—ya 100 —xB

27648.0— B 1000 —yB
0.0 yB

Fig. 46: Use example of linear function

2.7. Solutions a1

Automation notes Documentation, Release 0.9.0

2.7.2 Rising edge
2.7.3 Falling Edge
2.7.4 Retentive TON

2.7.5 Blink

FUNCTION_BLOCK "Blink"
{ S7_Optimized_Access := 'TRUE' }
VERSION : 0.1
VAR_INPUT
enableDI : Bool;
timeHigh : Time;
timeLow : Time;
END_VAR

VAR_OUTPUT

Q : Bool;
END_VAR
VAR
timer_High {InstructionName := 'TON_TIME'; LibVersion := '1.0'} : TON_TIME;
timer_Low {InstructionName := 'TON_TIME'; LibVersion := '1.0'} : TON_TIME;
bOn {InstructionName := 'TON_TIME'; LibVersion := '1.0'} : TON_TIME;
bOff {InstructionName := 'TON_TIME'; LibVersion := '1.0'} : TON_TIME;
END_VAR
BEGIN
#timer_High (IN := (#enableDI AND NOT #timer. Low.Q),
PT := #timeHigh);
#timer_Low (IN := #timer High.Q,
PT := #timeLow);
#0 := #timer High.Q;

END_FUNCTION_BLOCK

2.7.6 Bi-stable cylinder

A simple and functional solution in ladder is presented. A complete solution can be found in the library, and a state
machine implementation can be found in the state machine chapter.

Physical I0 may be:
» Two digital inputs: proximity sensors
* Two digital outputs: valve solenoid

Interaction with operators may be via physical push buttons, or software buttons (from HMI). The interaction may be
with other devices like robots or the PLC itself depending on the plant. But from our point of view they are all the
same, and we summarize them as open and close requests.

We can add also a stop request, and other things. But for now, we keep the solution simple.

The cylinder in normal operations, at rest, can be in a single state, or opened or closed.

42 Chapter 2. Siemens PLC

Automation notes Documentation, Release 0.9.0

Cylinder_LD
Name Data type Default value Retain Accessible f__ | Writs_. Visible in __ | Setpoint Comment

1 41 > Input
2 Q- iLswOpened Bool Non-retain 2] 2] =] Limit switch cylinder opened
3 4@an- iLswClosed Bool Non-retain [[[Limit switch cylinder closed
4 4= iReqOpen Bool MNon-retain =] =] =] Open request (from HMI, or push button, or Robot,....}
5 an IReqClose Bool MNon-retain @ @ @ Close request (from HML or push button, or Robot.....}
6 40 = icondok Bool Non-retain v v [Condition ok (Emergency, Air, doors,...})
;i an ilimeCpen Time T#10: MNon-retain =] =] =] Time for openning time-out
8 4= iMmeClose Tirne T#10s MNon-retain E E B Time for closing time-out
9 40 v Output
10 a1 = o0pened Bool Non-retain @ @ @ Opened state
11 @@= oClosed Bool Non-retain v v ™ Closed state
12 €1 = oCmdOpen Bool MNon-retain =] =] =] outputvalve : Command close cylinder
=S] oCmdClose Bool false Mon-retain E E E output valve : Command open cylinder
14 <@ ¥ InOut
15 L] <Add news
16 401 ¥ Static
17 <@ = » timeQutOpenning TON_TIME MNon-retain =] =] = openning timer
18 @l = » timeQutClosing TON_TIME Non-retain @ @ @ closing timer
19 41 = alarm Bool false Non-retain v v ™ =] generic alarm
20 L] <Add news
21 @ ~ Temp
22 L] <Add new=>
23 41 ¥ Constant B

Fig. 47: Variables and interface

¥ Block title: .
w Bistable cylinder: 2 limit switch for openediclosed states. And two ocutput to control & 3 stage

electropneumatic valve.
* Network 1: Opened/closed states

w The oylinder can't be opened and closed at the same time. So | ensure that only one sensor [limit
switch is reading

#iLswOpened #ilswClosed #o0pened

| | /1 { —

#iLswOpened #ilswClosed #oClosed

/1 | | { —

Fig. 48: States: Opened and closed

2.7. Solutions 43

Automation notes Documentation, Release 0.9.0

The cylinder can be opened, if it is not opened and receive a request to open. What if someone send the request to
open and close in the same time? So we need to be sure to receive only one request.

¥ Network 2: outputvalve : Command open cylinder

w | open the cylinder, when | receive only the open request (#iReqOpen AMD MOT #iReqClose) and the cyinder ins not
opened and there is no alarm.

| #iReqOpen #iRegCloze #alarm #oCmdClose #oCmdOpen

| | /1 /1 /1 (R} {s}

* Network 3: outputvalve : Command close cylinder

| #iReqClose #iRegOpen galarm #oCmdOpen #oCmdClose

] | | /1 1 /1 (R} (s}

Fig. 49: Commands: open and close

The cylinder may not respond to our requests, maybe there is no compressed air. Or the command execution was
interrupted, e.g. heavy load, or someone leave some object in middle of the way. The execution time for opening and
closing may be different, e.g. the cylinder take more time to open because it push some heavy object, but while closing
is free from any load.

When we send the opening request and we didn’t get the opened state for a predefined time, we have an abnormal
situation. Keep in mind, the predefined time is greater than the normal operating time, and it differ from application to
application. For example, if the cylinder takes normally 5 seconds to open, we set the time to 7 seconds or 8 seconds
for the time out.

When we get the time out signal, the commands should be resetted

2.8 State machine

Note: State machine diagram are drawing in yEd Graph editor from yWorks.

Download Exercises solutions

2.8.1 Concepts

A state machine have 2 componets:
* State represented as a circle.
* Transition represented as an arrow. The transition is the condition to change state.
For example a lamp may have 2 states: ON or OFF. The transition from one state to another is determined by a switch.

When writing software, first we begin with normal operations i.e. how the device should work, then we add abnormal
situations. For example, we say a lamp may have only two states, in normal operations. But a lamp may be broken.

44 Chapter 2. Siemens PLC

https://www.yworks.com/products/yed/download
https://www.yworks.com/

Automation notes Documentation, Release 0.9.0

MNetwork 4: Time ocut openning
#timeOutOpenni
ng
TOM
Time
| | /1 IN Q
#iTimeOpen — FT ET
Network 5: time cutclosing

#timeOutClosing

TON
Time

/1 IN Q

Network 6:

#FtimeOutOpenni

#iMmeClose PT ET

Fig. 50: Time outs: opening and closing

Generic alarm and output reset

ng.Q | #alarm #oCmdOpen #oCmdClose
| | i 3 iR iR
1 | LI iR} iR}

#timeOutClosing.
Q

Fig. 51: Time outs: reset commands

2.8.

State machine

45

Automation notes Documentation, Release 0.9.0

Transition 1

ransition 3

Transitio

state 4

Fig. 52: State machine: States and Transitions

46 Chapter 2. Siemens PLC

Automation notes Documentation, Release 0.9.0

Bian =0 Switch = 1

Fig. 53: Lamp states: ON or OFF

Now a simple lamp have three states. If we have a smart lamp (with internal diagnostic and MCU) the number of
states may become more than three.

For example a pneumatic cylinder, can be opened or closed. It may also move in 2 directions, so it may have other
2 states, opening and closing. The cylinder may also be in a middle position, in our case we consider it as unknown
position, it is in an alarm state.

The diagram show the states and transition from one state to another. As we can see, the cylinder can’t go from
closed to opened directly. To the alarm state we can arrive from any state.

We can make a transition from opening to closing directly. Suppose I was opening, but before to open completely I
change idea, and want o close. But usually this is not the case when dealing, for example with a gripper that need to
hold or leave an object. Anyway, depending on the application, transitions from one state to another can be considered
or not.

2.8.2 Implementation

Siemens doesn’t implement the enumeration data type. For better readability we emulate the enumeration data
types by creating CONSTANTS with the name of the state.

Compare the following two implementations:

Both implementations are valid and work. But one is more clear than the other, especially during debugging.

Every state should have a unique number. In the implementation the CONSTANTS variable will be used instead of its
numeric value. Technically we don’t care about the numeric value. It is enough that it is unique.

Implementation in ST

A code snippet is shown in this section, a complete and tested solution will be in the Library documentation. Note
anyway that this version of code is already functional.

2.8. State machine 47

Automation notes Documentation, Release 0.9.0

Closed

Opening

Mame Data type Default value Retain Accessible f.. Writa... Visiblein .. Setpoint Comment
1 & ~ Input
2 4= iOpened Bool Non-retain =] = =] sensor cylinder opened
B - iClosed Bool Non-retain E B E sensor cylinder closed
4 |an- iReqOpen Bool Non-retain E B E Open request (from HM, or push button, or Robot,....}
5 4= iReqClose Bool Non-retain E B E Close request (from HM, or push button, or Robot,....}
6 4" iCondOk Bool Non-retain E B E Condition ok (Emergency, Air, doors,....)
7 |alm= MmeOpen Time T#10s MNon-retain E E E Time for openning time-out
8 4= MmeClose Time T#10s MNon-retain E E E Time for closing time-out
8 4@ v Output
10 4@ = oCmdOpen Bool Mon-retain E B E output valve : Command close cylinder
114 . oCmdClose Bool Mon-retain E B E output valve : Command open cylinder
12 |qn = oActState Int 0 Non-retain [[=] Acutal state
13 |a0 = oPrevState Int 0 Non-retain [[=] Previous stae
14 4@ - InDut
15 = v
16 |40 ~ Static
17 <40 = » timeOutOpenning TON_TIME Non-retain [v =] openning timer
18 4@ = » timeOutClosing TON_TIME Non-retain [v =] closing timer
LERE 1 i
20 = 5, Ve
21 4@ v Constant
22 g0 m sIDLE Int 1 Idle State
23 |4qm = SALARM Int 2
24 |4qQ = SREADY Int 10
25 |4q@ = sCLOSED Int 20
26 4@ » sOFENING Int openning: during motion
27 @ = sOPENED Int openned: already opened
gEl@m = scosinG Int =] \

Fig. 54: State declared as CONSTANT variables with unique number or identifier. This interface is valid for imple-
mentation in SCL and in Ladder.

48 Chapter 2. Siemens PLC

Automation notes Documentation, Release 0.9.0

17
18

=
[T e B e RN &

L

(= I

R I L R T D % DO % T L T L B L I I
[T L T S T e e ¥ I | e

35

14 EICASE #olkctState OF

#3IDLE:
#olmdClose := FALSE;
#oCmdCpen := FALSE;
IF #i0pened THEN
#oPrevitate := #ohctitate;
#ochctState := #30PENED;
ELSIF #iClocsed THEN

#oPrevitate := #Folhctitate;
#gohctitate 1= §3CLOSED;

ELSE
#oPrevitate := #ohctitate;
#ohctitate = #sALABM;

END IF;

#F3LLAEM:

IF #iBegClcse THEN

#oPrevitate = #olhctitate;

#ohctitate := #3CLOSING:
ELSIF #iRegOpen THEN

#ocPrevitate := fohctitater
#gohctitate 1= #$30FENING;
END IF:
#3CLOSED:
IF #iReglpen THEN
#ocPrevitate := fFolActitater
#gohctitate 1= #$30FENING;
END IF:
sOPENIHG:

#oCmdOpen:=IRIE;

#olmdClose := FALSE;

IF #iCpened THEN
#oPrevitate := #Folhctitate;
#gohctitate 1= #30PEHED;

Fig. 55: States are represented by CONSTANT variables.

2.8. State machine

49

Automation notes Documentation, Release 0.9.0

[BN & [T e T T T O ¢ B
= L RO O ud ol =] &y R

a5

116
117
118

FICASE #ofctState OF

1:

10:

#olmdClose := FALSE;
#oCmdCpen := FALIE;
IF #iCpened THEHN
#oPrevitate := #olhctitate;
#gobhctitate 1= #30PEHED;
ELSIF #iClcsed THEN

#oPrevitate := fFolhctitater
gohctitate = #F3CLOSED;
ELSE
#oPrevitate := #olhctitate;
#gobhctitate 1= #sALREM;
END IF;

IF #iBegClcse THEN
#oPrevitate := #ohctitate;
#gohctitate 1= #3CLOSIHG:

ELSIF #iReqUpen THEN

#oPrevState := #ohctState:
#goloctState 1= #30PENING:
END IF;

IF #iReqglpen THEN

#oPrevState :@:= #ohctState:
#goloctState 1= #30PENING:
END IF;

#oCmdCpen := TRUE;

#oClmdClose 1= FALSE;

IF #i0pened THEN
#oPrevitate := fFolhctitater
#ohctitate = #30PEHED;

Fig. 56: States are represented by numeric value. A number by it self doesn’t have any meaning.

50

Chapter 2. Siemens PLC

Automation notes Documentation, Release 0.9.0

State machine can be implemented using and if statement. But a Switch—-Case statement is more suitable and more
readable than an if statement.

For example when the cylinder is closed, it is in the closed state. So the variable oAct St ate have the numeric value
store in the constant sCLOSED. Using a CASE statement we can assign the logic depending on that state. For example,
if the cylinder is in sCLOSED and receive the signal to open, a transition to the opening sOPENING state should be
done

#sCLOSED:
IF #iRegOpen THEN
#oPrevState := #oActState;
#oActState := #sOPENING;
END_TIF;

The previous code snippet change the value of oActState to sOPENING if the iRegOpen is true. So now the
cylinder is in the opening state, where the cylinder should begin to move, so a command to the valve should be send

sOPENING:
#oCmdOpen : =TRUE;
#oCmdClose := FALSE;
IF #iOpened THEN
#oPrevState := #oActState;
#oActState := #sOPENED;
END_IF;

The cylinder begin to move, the output oCmdOpen to the valve is true. The cylinder still in this state until the signal
iOpened became true.

A complete code snippet is shown here:

// Cylinder state machine
// best way to implement a state machine is using CASE statement

//
// Not complete

#timeOutOpenning (IN:= (#oActState = #sOPENING),
PT:=#1TimeOpen) ;

#timeOutClosing (IN:=#0ActState = #sCLOSING,
PT:=#iTimeClose) ;

IF #timeOutClosing.Q OR #timeOutOpenning.Q OR #iCondOk=FALSE THEN
#oActState := #sALARM;
END_IF;

CASE #oActState OF

#sIDLE:

#oCmdClose := FALSE;

#oCmdOpen := FALSE;

IF #iOpened THEN
#oPrevState := #oActState;
#foActState := #sOPENED;

ELSIF #iClosed THEN
#oPrevState := #oActState;
foActState := #sCLOSED;

ELSE
#oPrevState := #oActState;
foActState := #sALARM;

(continues on next page)

2.8. State machine 51

Automation notes Documentation, Release 0.9.0

(continued from previous page)

END_TIF;

#sALARM:

IF #iReqgClose THEN
#oPrevState := #oActState;
#oActState := #sCLOSING;

ELSIF #iReqgOpen THEN
#oPrevState := #oActState;
#oActState := #sOPENING;

END_IF;

#sCLOSED:

IF #iReqgOpen THEN
#oPrevState := #oActState;
#oActState := #sOPENING;

END_IF;

#sOPENING:

#oCmdOpen : =TRUE;

#oCmdClose := FALSE;

IF #iOpened THEN
#oPrevState := #oActState;
#foActState := #sOPENED;

END_TIF;

#sOPENED :

IF #iReqgClose THEN
#oPrevState := #oActState;
#oActState := #sCLOSING;

END_IF;

#sCLOSING:

#oCmdOpen : =FALSE;

#oCmdClose := TRUE;

IF #iClosed THEN
#oPrevState := #oActState;
foActState := #sCLOSED;

END_TIF;

ELSE // Statement section ELSE
#oPrevState := #sIDLE;
#oActState:= #sIDLE;

END_CASE;

Time out are added for diagnostic purposes. When the cylinder still in the opening or closing state for more than the
necessary time, the cylinder go to alarm state.

Of course the cylinder may stay in opened or closed state for indefinite time.

As you note, there is more code to write than the normal solution presented in the exercises chapter. Depending on
the device we are controlling, the use of state machines may make the solution more or less complicated, but anyway
more readable and easy to debug.

Download FB cylinder in ST
Implementation in Ladder

State machines are better implemented in textual language (ST, C, C++, etc.). Can be also implemented in Ladder
Diagram, its implementation is slightly different.

52 Chapter 2. Siemens PLC

Automation notes Documentation, Release 0.9.0

Good implementation

As in ST every state is represented by a unique number. The implementation is divided in 2 stages:

¢ Transition from old state to new state

* Output assignment

- MNetwork 3:

CLOSED —=QOPENMING

Bad implementation

- | #iReqOpen MOVE
==] L
[int | 1T EN
10 20 3 OUTl #oActsState
FsCLOSED F#2OPENING M
* Network4: CLOSING —=OPENNED
| | #iDpened #iClosed MOVE
== 1 1 1
[int | 1 I {/1 EN —
a0 30 # OuT FoActState
#sCLOSING #sOFPENED IM

This implementation is absolutely to be a avoided. You will encounter a lot of implementations similar to it, without
comment neither state names.

2.9 More exercises

2.9.1 State machine version of alternative motion

2.9.2 Access coordination

Write a program that control and manager the access of two robots to the same working station. Robot L put a part
on the table (Load), Robot U take away the part from the table (UNload). On the table there is a sensor that check the
presence of the part. The sensor is normally closed (No part or free=1, part present =0).

2.9. More exercises

53

Automation notes Documentation, Release 0.9.0

OUTPUTS
¥ Network 8: OPENNING
[-- | #oCmdOpen #oCmdClose
== ! 5 1 ! R } 1
I Int I | Tl J |}
20
#sOPEMIMNG
¥ Network 9: CLOSING
- | #olmdClose #oCmdCOpen
== {5} IR } i
I Int I | Tl J |}
40
#sCLOSING
Name Data type Offset Default value Visible in ... |Setpoint | Comment
4 am v swtic
5 |a= vNoFase Bool 30.0 =] (m]
6 |a@= vNoFase1 Bool 301 (=] (m] Baol
7 e FO000 Bool 302)] (]
& a@m= FO004 Bool 303 v (]
s = FO0OS Bool 304 (=] (m]
10| = FOO10 Bool 305 =] (m]
1|@» FOO11 Bool 306 (=] (m]
12 = FOO12 Bool 307 =] 0
13 @ = FOO15 Bool 31.0 v (]
14 l4m w Enn2n Boal 11 [~} (m] —
—HF i =0 — 2
Bool
#FO000 #FO004 #FO005 #F0010 #F0011 #F0012 #F0015 #F0020 #F0024 #F0025 #F0030 #uloFasel
" it 14 14 11 11 1 1 1 1 it { r—
¥ Network 16:
Bool
#uloFasel #FO035 #F0040 #F0043 #F0044 #F0045 #F0050 #F0055 #F0060 #F0065 FuNoFase
— t it 14 14 14 14 1t 1t 1t 1t { —

Fig. 57: Note that every state is represented by a boolean variable. The worst thing is that there is no comment neither
a good variable name.

54

Chapter 2. Siemens PLC

Automation notes Documentation, Release 0.9.0

- Network 17:

#vMNoFase FFO000
1 1 i
1| {5}

#iResetlCycle #FOOOD4

] | -
11 I.HI

WA192 6 #FO005
"Tag_5" {F}

#F0010
i
(R}

#FOO011
[i
iR

#F0012
=
'aH-F

#FO015
[i
iR}

#F0020
IR\
(R}

£F0024
i
{R}

#FO025

Fig. 58: During initialization a need to reset a lot of variables. If you forgot to reset some variable?

2.9. More exercises 55

Automation notes Documentation, Release 0.9.0

0: Empty 1: 0: Empty 1:
Raw 2:Working Raw 2:Working
3:Complete 3:Complete
4:5crap 4:5crap
#ioPosOPartdStat #ioPosOPartBStat
#iAuto #FO000 & = #F0004
Ll L |- -1)
1T 11 [int | Jint | =T
0 0
#FOO00
—{R }—
0: Empty1: 0: Empty1:
Raw 2:Working Raw 2:Working
3:Complete 3:Complete
A4:5crap 4:5crap
#ioPosOPartAStat #icPosOPartBStat
| F | | y | #F0O010
== == fe
|int | |int | 15}
#FOO00
—R }—
0: Empty1: 0: Empty1:
Raw 2:Working Raw 2:Working
3:Complete 3:Complete
4:5crap 4:5crap
#ioPosOFartAStat #ioPosOPartBstat
| & | | = | #F0015
== == o
[int | int | 15}
#FO0O00
{R}

Fig. 59: At every transition to a new state you need to reset the old state.

56

Chapter 2. Siemens PLC

Automation notes Documentation, Release 0.9.0

2.9.3 Unloading conveyor
2.9.4 Vision system conveyor

2.9.5 Turn table

2.10 More exercises solutions

Note: Complete and tested solution can be found in the OpenLib Library

2.10.1 State machine version of alternative motion
2.10.2 Access coordination

2.10.3 Unloading conveyor

2.10.4 Vision system conveyor

2.10.5 Turn table

2.11 Create a library

Fig. 60: Create a new library
Fig. 61: Add function block (FB) and function (FC) to the library

Fig. 62: Modify a function and update the global library

Tia portal create a local copy of the functions from the global 1library. The functions are related to the Project
library. When a function is modified is modified in the Project library. When modification is complete the
global library can be updated from the Project library

A function can be separated from the library. Notice that the small triangle on the top right of the function icon
disappear when the connection to the library is canceled.

Download Library

2.12 Simple project

Download Exercises solutions

The layout of this project is shown in the following image:

2.10. More exercises solutions 57

Automation notes Documentation, Release 0.9.0

Fig. 63: Open an existing library

The process flow should be clear, the robot take a raw part from the turn table and put it in the CNC machine, in the
loading position L. Then take the machined part from the unloading position U, and put it on the exit conveyor. The
cycle continue in this way. The external position of the table is loaded by a person.

In the previous exercise we already write the function blocks for the conveyor and turn table, feel free to modify the
logic if necessary, if you didn’t consider some situation before. The goal of this project is to show how to organize the
software.

the layout represent a ce11. In this cell we can identify three st at i ons: Turntable, machine and conveyor. Stations
normally are independent from each others. For example the conveyor don’t care neither need to know anything about
the turntable neither the machine, and vice versa. The robot is the only connection between all stations.

From this point of view we can write the logic of every station independently from other stations. This is the approach
taken also when writing the logic of very big production lines: break it down and you will see that a very complicated
production line will be easy to implement. Every station have it sown defined job.

At this point we have one cell, three station and one robot. If the PLC control more than one cell, every cell should
have its own folder. In this project, we have only one cell and one PLC. It is optional to create a cell folder. Keep in
mind always future integration, so never limit your software to the current situation.

Three folders are created for every station and one folder for the robot. another folder can be created for general
management of the cell.

Every station has it own main function and main global data block and instance data block.

A folder called _Library is created, where general functions will be placed. In the previous chapter we see how to
create an S7 library. We will add that library to the project and use conveyor and turntable FBs from it.

OB1 must contain only function calls. In the following image we can see the call to other functions. It is better to use
SCL to call other functions because it is more compact. Notice the name of the function calls in SCL and in Ladder.

The main function blocks of the station, should not have input neither outputs. The call should appear on one line.

In the following sections we will examine every station. The developlent will be done without caring too much about
where the physical IO are connected. As we think always in local variables at the beginning, we don’t care where I
and Q are assigned. Connecting those 10 will be done when the logic is completed. Of course we need to know which
IO we have in order to avoid to invent our own project. Electrical drawing should be always consulted.

58 Chapter 2. Siemens PLC

Automation notes Documentation, Release 0.9.0

Libraries w0 p
Options
El Library view [£ rl

« | Project library
| All ~| =
¥ L1 Project library
- ﬁ Types
ﬁ*"‘ Add new type
* [i:] Cylinder
b & Cylinder_FSM
» 4 Cylinder_LD
w [£2] Utility
» 4 Blink
» & LineEquation
+ | | Master copies

w | Global libraries

i oI =
p L] Buttons-and-Switches

L] Drive Lib 57 1200 1500

b L] Drive Lib 57 300 400

» Ll Long Functions

.
1

¥ Ll Monitoring-and-control-objects
¥ LL| Documentation templates
||| Training_Lib
* | 5] Types
* |tz| Oylinder
b o Cylinder_FSM
» B Cylinder_LD

: * 'tz| Utility
2.12. Simple project » - Elink 59

b Master copies

b i Common data

Automation notes Documentation, Release 0.9.0

o —1 WU T T T T TATTT - o —— —l - F = % _ —_— kel B B CH #-' =T Tttt T e -
Project tree o 4
Devices
--\.l.-
=5
* [i:] 03 stateMachine

48 FE_Cylinder_LD [FB3]
48 FE_CYLINDER_LD_BAD [FES]
38 FB_Cylinder_SCL [FB2]
¥ [&:] Excersices Test functions
3 fclinearEquationTest [FC3)
¥ [£:] Exercises
- LineEquation [FCT™
4 Blink [FBS]
= Cylinder_FSM[FB Pl Terminate connection to type
& Cylinder_LD [FB1g Editpe
& Cylinder_Segqueng Goto type
& myF_TRIG [FB7] | Y cCut
& myR_TRIG [FB6] | 25| Copy
& myTONR [FE1] g Faste
b [i:] More Examples Copyas text
b I System blocks

Open

Delete
M - x
J Technol bject
r_iﬂ echnology objects Remame
] External source files
b [a PLCtags Compile _
b TM PLC data types Daw.'nIFlad to device
b :aj, Watch and force tables ﬁ Ge -:ur.1|.|ne Carl+K
& : ;‘? Go offline Ctrl+M
b L& Online backups
3 rﬁ Traces EE Quick compare 3
b L Device proxy data i Searchin project Ctrl+F
32 Program info
— =# Generate source from blocks J

[£] PLC alarm text lists

2 5 Local maodules R(J Crosz-references F11
_}(J Cross-reference information Shift+F11

J % Ungrouped devices

¥ 5§ Security settings | Call structure
e g Accignmentlist

» &t Common dat.a _ : . neral y” Cross-ref

b _P::ﬂ] Documentation settings Switch programming language b

» [Languages & resources] rint... CtrlaP O [show il messsc
J % Online access é‘k Print preview... essages exist which mi
v [5g Card ReaderlUSE memary : ath

g Properties... Alt+Enter

60 Chapter 2. Siemens PLC

Automation notes Documentation, Release 0.9.0

2 - CNC machine

| . |

==

1 - Tutn table

T ‘® 4- Robot

3 - Ouput
conveyor

e |

Fig. 65: Turn table (1) with 2 positions, CNC machine (2) with 2 position for loading and unloading, exit conveyor (3)
and industrial robot (4)

2.12. Simple project 61

Automation notes Documentation, Release 0.9.0

~ [Project [CPU 1215C DC/DCIDC]
[IT Device configuration
% Online & diagnestics
~ |5 Frogram blocks
B’ Add new block
& Main [OB1]

¥ 'tz _Library

3 Rack orstation failure [OBE6]

3 Startup [OB100]
« [&2] 00-Cell Manager

3 CellManager [FB5S]

g dbCell [DB7]

g 'dbCellManager [DB6]
* (2] 01-Turn table

& TurnTable [FE1]

@ dbTurnTable [DB1]

@ 'dbTurnTable [DB2]
w [£:] 02-CNC machine

& CnchMachine [FB2]

@ dbCnchMachine [DB3]

@ 'dbCncMachine [DBE]
- E 03- Conwveyor

3 Conveyor [FB3]

@ dbConveyor [DE4]

g dbConveyor [DB9]
* [¢:] 04- Robot

38 Robot [FB4]

@ dbRobot [DBS]

i idbRobot [DE10]
p_-;ﬂ Technology objects
External source files
p_..g FLC tags
[PLC data types

b . . .

62

Chapter 2. Siemens PLC

Automation notes Documentation, Release 0.9.0

Project » Project [CPU 1215C DO/DC/DC] » Program blocks » Main [OB1]

It

e L ._E'E%ié.?!gi- PG AT =1 g &
Main

MName Data type Default value Comment
1 < ~ Input
2 4g]m= Initial_Call Bool Initial call of this OB
=T Remanence Bool =True, if remnanent data are available

[s O i |

CASE... FOR... WHILE..

P “or. ToDO. DO...

(*...*) REGIOM

w Block title: “Main Program Sweep (Cycle)®
Comment

4 Network 1:

- Network 2: function black call in Ladder

MNatice the name of the function block instance.

“WB6
“idbCellManager”

WFB5
“CellManager”

—EN ENO

- Network 3: Funvtion call in SCL

Motice the name of the function block instance. The name of the function is the name of the instance DE.

1
2 MidbTurnTable™{): "idbTurnTable" 2DB2
3
4 "idbCncMachine™(); "idbCncMachine™ :DBE
5
& T"idbConwveyor™(): "idhConveyor™ 3DB49
& TidbRobot"(): "idbRobot™ §DB10
9
10

2.12. Simple project 63

Automation notes Documentation, Release 0.9.0

2.12.1 Turn table
2.12.2 CNC machine
2.12.3 Exit conveyor

2.12.4 Robot
2.13 Complete project

2.13.1 Layout and process flow
2.13.2 Electrical Drawing

2.13.3 10 tags from electrical drawing

2.13.4 PLC-Robot Interface

2.13.5 Program structure

64

Chapter 2. Siemens PLC

CHAPTER 3

CoDeSys

Warning: Work in progress

3.1 IEC 61131-3

3.2 CoDeSys

65

Automation notes Documentation, Release 0.9.0

66 Chapter 3. CoDeSys

CHAPTER 4

S7 Library

OpenLib documentation TIA Portal v15

67

Automation notes Documentation, Release 0.9.0

4.1 Operating mode
4.2 Utility

4.2.1 Linear equation

4.2.2 Swapping
4.3 Drives and inverters
4.4 Actuators

4.4.1 Bi-stable cylinder

4.5 Conveyors

4.5.1 Unloading conveyor

4.5.2 Vision system conveyor
4.6 Turn tables

4.6.1 Turn table

Note: Knowledge is Power

68 Chapter 4. S7 Library

	Basics
	Siemens PLC
	CoDeSys
	S7 Library

