

auto_cli

[image: CircleCI]
 [https://circleci.com/gh/jvanvugt/auto_cli][image: Documentation Status]
 [https://auto-cli.readthedocs.io/en/latest/?badge=latest]auto_cli is a tool for calling Python functions directly from the command-line, without the need for writing argument parsers. Instead, the argument parser is automatically generated from the annotation of the function, including default arguments and types. When you use auto_cli, you can still use your Python functions from code without any changes. In fact, you can use auto_cli to generate a CLI for functions in a stand-alone script, or for an external library, as long as the functions have type annotations.

Installation

auto_cli requires Python 3.6+ and can be installed as follows

$ git clone https://github.com/jvanvugt/auto_cli
$ pip install ./auto_cli

Getting Started

Add a file called auto_cli.py to any directory. This file registers all the functions that are available from the command-line. Imagine you wrote a package called weather, containing just a single function with the signature

def get_weather(location: str = "London") -> WeatherReport:
 ...

You can add a command-line interface for this function by making your auto_cli.py look like

import auto_cli

auto_cli.register_command("weather.get_weather")

Register your command-line app with auto_cli, by running the following command from the directory with auto_cli.py:

$ ac cli register_app --name weather

All auto_cli commands start with ac. When you install auto_cli, the cli app will automatically be registered. The cli app is used for interacting with auto_cli itself. After running the command above, the commands that are registered in auto_cli.py are available via ac weather <command>.

Now, you can call your function from the command-line:

$ ac weather get_weather --location Amsterdam
21 degrees celsius. Sunny all day in Amsterdam!

$ ac weather get_weather # It will use the default value for location
16 degrees celsius. Rainy all day in London!

Instead of giving a string to register_command (which is convenient when the package is installed), you can also give it the function object directly. That will allow you to create a CLI for functions in arbitrary Python scripts. Then your auto_cli.py would look like this:

import auto_cli
from weather import get_weather

auto_cli.register_command(get_weather)

Alternatively, you could manipulate the PYTHONPATH environment variable to make sure Python can find your function.

ac cli

The following commands are available with ac cli:

apps Get all registered apps
register_app Register an app with auto_cli
delete_app Delete the app

In general, you can figure out which commands are available for an app by running

$ ac <app>

If you want to know how to use a command, you can run it with --help:

$ ac cli register_app --help

Benefits over other CLI packages

	Write your function once, call it from Python code and the command-line

	Automatically generate argument parsers, no need to duplicate argument names, default values, documentation and types.

	Automatically print the result of the function to the console, no need to clutter your code with print or log.

	Keep your production code free of decorators to describe command-line interfaces.

	Easily view all the available commands for your app.

Contents:

	Getting Started

	API Reference

	auto_cli’s Command-Line Interface
	Registering an app

	Listing all registered apps

	Deleting an app

	Listing registered commands

Indices and tables

	Index

	Module Index

	Search Page

API Reference

	
auto_cli.cli.register_command(function: Union[str, Callable[[...], Any]], name: Optional[str] = None, parameter_types: Optional[Dict[str, Callable]] = None, return_type: Optional[Callable[[Any], Any]] = None, short_names: Optional[Dict[str, str]] = None) → None

	Register function as an available command.

	Parameters

	
	function – the function to register.

	name – Override the name of the function in the cli.
Defaults to function.__name__

	parameter_types – Override the type of an argument.
Dictionary of name of the parameter to type.

	return_type – Override the return type of the function.
Will be called with the return value of function before
it is printed to stdout.

	short_names – Optionally add a short version of the parameter.
Dictionary of name of the parameter to shorter name.
For instance {"very_long_name": "-l"}.

auto_cli’s Command-Line Interface

Registering an app

usage: ac [-h] --name NAME [--location LOCATION]

register_app: Register an app with auto_cli

required arguments:
 --name NAME Name of the app

optional arguments:
 --location LOCATION Parent directory of the auto_cli.py file.

Example:

$ ac cli register_app --name my_app

Listing all registered apps

usage: ac [-h]

apps: Get all registered apps

Example:

$ ac cli apps
['cli']

Deleting an app

usage: ac [-h] --name NAME

delete_app: Delete the app

required arguments:
 --name NAME Name of the app

Example:

$ ac cli delete_app --name my_app
Deleted my_app

Listing registered commands

usage: ac APP

positional arguments:
 APP Name of the app

Example:

$ ac cli
No command given. Available commands:
apps Get all registered apps
register_app Register an app with auto_cli
delete_app Delete the app

Index

 R

R

 	
 	register_command() (in module auto_cli.cli)

 nav.xhtml

 Table of Contents

 		
 auto_cli

 		
 API Reference

 		
 auto_cli’s Command-Line Interface

 		
 Registering an app

 		
 Listing all registered apps

 		
 Deleting an app

 		
 Listing registered commands

_static/plus.png

_static/file.png

_static/minus.png

